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Annexes and Tables

Summary. This chapter features solutions to selected exercises, some pictures chosen from
the online database of all profiles of pc-sets
http://canonsrythmiques.free.fr/MaRecherche/photos-2/
which have been included here because they are mentioned in the main text, and, for reference,
tables of singular pc-sets, phases of triads, enumeration of the most symmetrically pc-sets
in the sense of Proposition 6.10, and values of Major Scale Similarity for a large panel of
historical temperaments.

8.1 Solutions to some exercises

1.39 All sums run over the whole Zn:

f̂ ∗g(x) = ∑
k
( f ∗g(k))e−2iπkx/n = ∑

k
∑

j
f (k− j)g( j)e−2iπ(k− j+ j)x/n

= ∑
k

∑
j

f (k− j)g( j)e−2iπ(k− j)x/n = ∑
k

f (k− j)e−2iπ(k− j)x/n ×∑
j

g( j)e−2iπ jx/n

= ∑
�

f (�)e−2iπ�x/n ×∑
j

g( j)e−2iπ jx/n = f̂ (x)× ĝ(x).

1.41 We have

FA+p(x) = ∑
k∈(A+p)

e−2iπkx/n = ∑
�∈A

e−2iπ(�+p)x/n

= e−2iπ px/n ∑
�∈A

e−2iπ�x/n = e−2iπ px/nFA(x).

If FA(x) �= 0 this yields e−2iπ px/n = 1, i.e. px/n ∈ Z.

2.38 Fig. 8.1 is an excerpt of a small composition.

2.41 The direct part uses the convolution product:
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Fig. 8.1. The two hands play reverse intervals in two Z-related pc-sets

h =
2
n
(1,1 . . .1)− (1,0,0 . . .) =

2
n

1−δ .

Consider any hexachord A and its characteristic map 1A:

h∗1A =
2
n

1∗1A −δ ∗1A =
2#A

n
1−1A = 1−1A

when 2#A = n, i.e. A is a generalised hexachord (it divides Zn in two parts of same
size), and the map that we computed is 0 when x ∈ A and 1 else, i.e. h ∗ 1A is equal
to the characteristic function 1Zn\A of the complement of A.

To prove that h is a spectral unit we must study its eigenvalues. The matrix H
derives from the matrix 1 with only ones, whose nullspace has dimension n−1 (the
hyperplane x1 + . . .xn = 1) and hence 0 is an eigenvalue with multiplicity n−1. The
other eigenvalue is n, associated with vector (1,1 . . .1). Hence the eigenvalues of H
are

2
n
×0−1 =−1

2
n
×n−1 = 1.

Both eigenvalues have magnitude 1; we have proved that h is a spectral unit, con-
necting any hexachord and its complement.

2.42 The Fourier coefficients of the spectral unit j3 = (0,0,0,1,0,0,0,0,0,0,0,0)
(i.e. the eigenvalues of its matrix) are (1,−i,−1, i,1,−i,−1, i,1,−i,−1, i). Choosing
arbitrarily cubic roots of each of the 12 coefficients yields cubic roots of j3, but most
of these 531,441 distributions are irrational. One example (choosing the smallest
phases for all cubic roots) is(

3
8
+

(
1
4
+

i
8

)√
3,0,0,

3
8
− i

√
3

8
,0,0,

3
8
−

(
1
4
− i

8

)√
3,0,0,−1

8
− i√

3
8,0,0

)
.

To ensure rational spectral units, we must use Thm. 2.10, which determines all co-
efficients from the ξd ,d | n. From it we get that ξ0 =+1 (the case −1 is impossible),
that for d ∈ {1,2,3,6}, ξd is any power of e2idπ/12, and ξ4 is a power of e4iπ/12; lastly,
for any k coprime with 12, ξk d = ξ k

d (happily or by design, the last, complicated case
will not occur in this exercise).

Since ξ 3
1 = −i = e3iπ/2 we have three choices: ξ1 ∈ {eiπ/2,e7iπ/6,e11iπ/6}. The

corresponding values of ξ5,ξ7,ξ11 are then determined (for instance ξ5 = ξ 5
1 ). Simi-

larly ξ2 ∈ {−1,e5iπ/3,eiπ/3} and hence ξ10 = ξ 2.
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The constraint of the theorem appears for ξ3 which must be a power of i. The
only possibility is then ξ3 =−i and ξ9 = i; ξ4 ∈ {1, j, j2}= {1,e2iπ/3,e4iπ/3} hence
ξ8. Lastly ξ6 =−1 and we are reduced to 33 = 27 solutions, which can be produced
by inverse DFT or matrix products (the amount of computation is the same).

A typical rational cubic root of j3 is(
−1

4
,

1
4
,0,

1
4
,

1
4
,

1
2
,−1

4
,

1
4
,0,

1
4
,

1
4
,−1

2

)
.

3.66 Φ1 =X−1,Φ2 =X+1,Φ3 =X2+X+1,Φ4 =X2+1,Φ6 =X2−X+1,Φ12 =
X4 −X2 +1.

3.67 Φ16(X) =
X16 −1
X8 −1

= X8 +1.

3.69 Singular: by rote, there are as many odd and even elements, so a6 = 0.

3.70 (CG) is the sum of all 6 fifths beginning on C�, D�, F, G, A, and B, minus the
5 fifths beginning on D, E, F� G� and A�.

3.73 One could compute A(e2iπ/30) numerically but this is not a rigorous proof
(trigonometric computation is possible but deep). Best is to check that A(X) is di-
visible by Φ30(X) = X8 +X7 −X5 −X4 −X3 +X + 1. Polynomial division yields
quotient X16 −X15 +X14 +X11 +X9 +X7 +X5 +X3 +1 and remainder 0.

3.76 A(X) = (1+X5)(1+X8) =
X10 −1
X5 −1

(1+X8) = Φ10Φ2Φ16.

Hence RA = {2,10,16} (A tiles Z16).

4.56 Try multiplying the first line (0,1,3,8,12,18) by 2, 4, 8. . . Because of multi-
pliers, there are three affine maps transforming each voice into another given one.

5.12 The smallest values of q satisfying the formula for N = 100 (i.e. both ratio-
nal approximations are closer than 1/(10q)) are q = 36,63,70,99 . . . . For instance(

140
99

,
311
99

)
−

(√
2,π

)
≈ −(0.0000721,0.000179), both coordinates well under

1/990.

5.16 The proof follows the same pattern as the case developed in the example. Let
A = {a1, . . .ad} be a d−subset of Zn (or indeed of the continuous circle modulo n)
and B = {b1, . . .bd} be a subset of a regular d−polygon, i.e. d(bi − b j) ∈ Z ∀i, j,
which is equivalent to |FB(d)|= d as we have seen previously.

Assume B is the closest to A among similar subsets. Then by derivation

dAB2

db
= 2∑(bk −ak) = 0

where db stands for any dbi since they are differentially identical. If B is written as a
particular type of subset of a polygon, e.g. B = x+{. . .b0 +

mk

d
. . .} with a specific

distribution of the integers mk, this pinpoints the value of the offset x (modulo n/d)
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and hence of B, but this is not relevant in the following computation, insofar as we can
assume that the quantities bk −ak are small. We now compute the Fourier coefficient
FA(d):

FA(d) = ∑
k

e−2iπdak/n = ∑
k

e−2iπd
(

bk+(ak−bk)
)
/n = e−2iπdb/n ∑

k
e−2iπd(ak−bk)/n

where b stands for any bk, since e−2iπdbk/n is independent of k by our assumption on
the geometry of B.

Putting ϕk = ak −bk one gets

|FA(d)|=
∣∣∑

k
e−2iπd/nϕk

∣∣ = ∣∣∑
k

(
1−2

πd
n

ϕk − 2π2d2

n2 ϕ2
k + . . .

)∣∣ ≈ d − 2π2d2

n2 ∑
k

ϕ2
k

since ∑ϕk = 0. This yields the formula since ∑k ϕ2
k =VL2.

6.12

e−2i2π/12 − e0 = e−iπ/3(e−iπ/3 − e+iπ/3) =−2isin
π
3

e−iπ/3

= 2sin
π
3

e−iπ/3−iπ/2 =
√

3e−5iπ/3/6.

6.13 Between CEG and BDG the change is the same as between C and B. For a3 it
is Δa3 = e−2i3×11π/12 − e0 = i−1 =

√
2e3iπ/4.

However the phase of CEG is ϕ3 = 0.46365 and for BEG it is 1.10715; hence the
variation of phase is Δϕ3 = 1.10715−0.46365 = 0.64350. Similarly we find

Δa5 = e−2i5×11π/12 − e0 = e10iπ/12 −1 = 2sin
5π
12

e5iπ/12

and Δϕ5 = 1.83260−0.78540 = 1.04720.
Notice that the phase of the difference Δak is not the difference of phases Δϕk:

the first is the direction of a vector in Hoffman’s space (arg(ak−bk)) and the second a
difference of one coordinate in the torus of phases (arg(ak)−arg(bk)). This illustrates
the fact that the map arg is not linear.

6.14 a3 = 2 and a5 =
1
2 +

i
√

3
2 so ϕ3 = 0,ϕ5 = π/3.

6.16 The inversion around 0 turns {0,4,7,10} into {0,2,5,8} (central symmetry
x �→ 12− x). A tentative motif between the minor seventh and the dominant seventh
is given in Fig. 8.2 (I will readily agree that Wagner’s version is better).
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Fig. 8.2. Another Tristan chimera
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8.2 Lewin’s ‘special cases’

Fig. 8.3. Table of all classes of singular pc-sets
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8.3 Some pc-sets profiles
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Fig. 8.4. Second/seventh
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Fig. 8.5. Fourth/fifth
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Fig. 8.6. Major/minor triad
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Fig. 8.7. Rock/blues bass
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Fig. 8.8. Whole-tone trichord
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Fig. 8.9. Chromatic trichord
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Fig. 8.10. Diminished seventh
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Fig. 8.11. Chunk of whole-tone scale
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Fig. 8.12. S.N.C.F. jingle
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Fig. 8.13. Homometric quadruplet
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Fig. 8.14. Chromatic tetrachord
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Fig. 8.15. Whole-tone tetrachord
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Fig. 8.16. An octa/diatonic tetrachord
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Fig. 8.17. A rather diatonic tetrachord
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Fig. 8.18. Pentatonic scale
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Fig. 8.19. Beginning of La Puerta del Vino
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Fig. 8.20. Whole-tone pentachord
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Fig. 8.21. A pentachord saturated in minor thirds
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Fig. 8.22. Chromatic pentachord
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Fig. 8.23. Whole-tone scale
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Fig. 8.24. Magic hexachord
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Fig. 8.25. Messiaen Mode M5
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Fig. 8.26. Guidonian hexachord
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Fig. 8.27. Chromatic hexachord
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Fig. 8.28. Balanced seven-note scale
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Fig. 8.29. Diatonic scale
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Fig. 8.30. Messiaen Mode M4
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Fig. 8.31. Octatonic scale or M2
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Fig. 8.32. An ‘octatonish’ collection in Stravinsky
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Fig. 8.33. Nonatonic scale or Messiaen Mode M3
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8.4 Phases of major/minor triads

triad θ3 θ5 triad θ3 θ5

047 0,46365 0,78540 2611 2,67795 2,35619

058 -0,46365 -0,78540 1610 -2,67795 -2,35619

158 -1,10715 -1,83260 037 1,10715 -0,26180

169 -2,03444 2,87979 2711 2,03444 1,30900

269 -2,67795 1,83260 038 0,46365 -1,30900

2710 2,67795 0,26180 148 -0,46365 -2,87979

3710 2,03444 -0,78540 149 -1,10715 2,35619

3811 1,10715 -2,35619 259 -2,03444 0,78540

049 -0,46365 1,30900 2510 -2,67795 -0,26180

4811 0,46365 2,87979 3610 2,67795 -1,83260

1510 -2,03444 -1,30900 3611 2,03444 -2,87979

059 -1,10715 0,26180 4711 1,10715 1,83260

Fig. 8.34. Phase coordinates of major and minor triads
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8.5 Very symmetrically decomposable hexachords

Fig. 8.35. The 18 most decomposable hexachords (up to transposition)

8.6 Major Scales Similarity

MSS: F F♯ G G♯ A A♯ B C C♯ D D♯ E

Zarlino
MeanTone15

MeanTone16

WM2

Pythagore

Kirnberger2

Kirnberger3

Vallotti
WM1

Lindley94
WM3

WM5

BachLehman
WM4

Lehman94

Sparschu
Lindley

LindleyBis

59 0 112 204 316 386 498 590 702 814 884 1 017 1 088

80 0 114 195 308 389 503 616 697 811 892 1 005 1 086

117 0 110 196 306 392 502 612 698 807 894 1 004 1 090

120 0 82 196 294 392 498 588 694 784 890 1 004 1 086

142 0 114 204 294 408 498 612 702 816 906 996 1 110

147 0 90 204 294 386 498 590 702 792 895 996 1 088

164 0 90 195 294 386 498 590 698 792 890 996 1 088

164 0 94 196 298 392 502 592 698 796 894 1 000 1 090

181 0 90 192 294 390 498 588 696 792 888 996 1 092

224 0 108 200 305 402 502 606 699 807 901 1 004 1 104

235 0 96 204 300 396 504 600 702 792 900 1 002 1 098

235 0 108 210 306 408 504 612 708 804 912 1 008 1 110

260 0 104 200 306 404 502 604 698 808 902 1 004 1 104

268 0 91 196 298 395 498 595 698 793 893 1 000 1 097

283 0 94 202 298 399 500 596 700 796 900 1 000 1 097

293 0 105 204 301 404 498 605 702 804 904 1 000 1 105

308 0 106 202 304 401 501 604 700 806 902 1 003 1 103

362 0 97 201 297 400 499 598 701 796 901 997 1 099

Fig. 8.36. Values of MSS for different tunings

See the algorithm in Section 3.3 for computing the MSS of any other tuning.
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