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Saliency

Summary. In the seminal [72], Ian Quinn tries to define a ‘landscape of chords’ starting from
cultural/intuitive knowledge of the most ‘salient’ chords, and from there infers in a prodigious
leap of intuition the existence of a measurable ‘chord quality’, or saliency, maximal for the
prototypical chords. Moreover, he notices that these chords are well known: they are the Ma-
ximally Even Sets, i.e. the most even divisions of the octave. In another brilliant intuition, he
notices that such pc-sets are characterised by a maximal value of some Fourier coefficient.
Thus his vision of a chord landscape is achieved by plotting the magnitude of this Fourier
coefficient for all chords (with a given cardinality). Though other measures of chord quality
have been devised (Douthett-Kranz, Junod), this notion of saliency will of course be the topic
of this chapter.

It is important to mention that this notion applies equally well to periodic rhythms, or any
(musical) phenomenon that can be modeled in a cyclic group; for instance, the tresilo which
is prominent in much of Latin-American dance music will be mentioned below. But since the
focus in correlated research has been on scales, I will stick mostly to pc-sets vocabulary and
examples.

A selection of Fourier profiles (i.e. magnitudes of Fourier coefficients) of pc-sets is shown
in Chapter 8. In this chapter, many references are made to these pictures and the reader is
invited to browse the whole collection online at

http://canonsrythmiques.free.fr/MaRecherche/photos-2/
(pc-sets are considered up to transposition but not inversion for easier recognition).

Alternatively, the reader is invited to download some software for computing their own
Fourier coefficients of any pc-set on

http://canonsrythmiques.free.fr/MaRecherche/styled/.
This requires MathematicaTM or the free CDF reader provided by Wolfram Research.

We will study three types of pc-sets with some overlapping between them: saturated
scales, generated scales, and maximally even scales. All these highly polarised sets of notes
have highly uneven magnitudes of Fourier coefficients; actually, all of them are characterised
by some maximum Fourier coefficient. Once this classification is achieved, and some simi-
lar/close cases examined, we can move on to the opposite case, flat histogram of either inter-
vals or magnitudes of Fourier coefficients, and prove that the one is flat if and only if the other
is too. A seminal case of a flat profile is the aggregate minus one note, which is indeed often
tiled by such subsets. Thus the landscape of chords/scales is well described by its peaks and
valleys. For instance, the highest peaks in Fig. 4.1 for trichords are augmented triads.
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Fig. 4.1. The landscape of trichords

4.1 Generated scales

Much study has been devoted in music theory to the generation of musical scales,
whether with just intervals (fifths, thirds) or otherwise. In this section we will con-
sider the monogenous case in equal temperament, according to the following:

Definition 4.1. A generated scale in Zn is a subset1 of Zn generated by some arith-
metic progression, i.e. A = {a,a+ f ,a+2 f , . . .a+(d −1) f}. The generating inter-
val2, or generator, or common difference, is f , the starting point is a.

The most famous example is the diatonic scale, generated by fifths (or fourths). Other
cases are the non-hemitonic pentatonic (‘Chinese’) scale and the whole-tone scale.
These three are maximally even scales (see Section 4.2), which is not the case of the
Guidonian hexachord {0,2,4,5,7,9} though it is also generated.

1 We require distinct elements, i.e. A is not a multiset. Of course A can be viewed as a periodic
rhythm instead of a scale, but the historical context of study of these subsets being scale
theory, the name stuck.

2 The letter f is chosen as the initial of ‘fifth’, but of course it can take on any value.
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4.1.1 Saturation in one interval

Since a+ k f can only be connected by an interval of f to a+(k+ 1) f (upwards)
or a+(k− 1) f (downwards), the number of occurrences of one given interval in a
pc-set cannot exceed the set’s cardinality. Conversely, we get the saturation charac-
terisation:

Proposition 4.2. If a scale A with d elements is generated by interval f , then the
number of occurrences of f is d −1 or d. The latter case is that of a closed regular
polygon. Conversely, a saturated scale is, in the latter case, a periodic subset or a
reunion of periodic subsets with the same size (i.e. the orbit of a subgroup of Zn);
and in the former, the same but with one incomplete subcycle.

The more complicated case of several complete plus one incomplete cycles occurs
fairly frequently in 19th century music, cf. the excerpt of Liszt’s Piano Sonata in Fig.
4.2 featuring {2,5,8,11}∪9 and {1,4,7,10}∪11. Its Fourier profile appears in Fig.
8.21.

Fig. 4.2. Minor third with multiplicity 4 in 5 notes, in Liszt’s Sonata in B.

We will find similar subsets when computing the maximal possible values of the
magnitude of Fourier coefficients.

Proof. The number of occurrences of f in {a,a + f ,a + 2 f , . . .a + (d − 1) f} is
clearly at least d − 1 and can only reach d if a+ d f = a (in Zn), which means that
d f = 0 mod n; and hence the scale closes, i.e. A is a regular polygon. Conversely,
the pairs (x,x+ f ) cannot happen more than d times, in which case every single el-
ement x ∈ A plays once the role of x in the pair and once the role of x+ f , i.e. one
has x+ f ∈ A and x− f ∈ A (equivalently, the map τ f : a �→ a+ f is a permutation of
the set A). This means that A is closed under translation by f , i.e. A is an orbit, or a
reunion of orbits, of the group fZn, i.e. a reunion of translates of fZn. With a count
of d−1 occurrences of interval f , the condition can and must be relaxed on one and
only one x, which will satisfy x and x− f ∈ A but x+ f /∈ A, so that by removing
that element we get the same case with both #A and the number of occurrences of f
decremented by one; so the proposition is proved by induction.
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4.1.2 DFT of a generated scale

It is easy to compute the DFT of chromatic cluster A = {0,1,2, . . .d − 1}, since all
coefficients are sums of geometric series:

FA(t) =
d−1

∑
k=0

e−
2iktπ

n =
e−

2idtπ
n −1

e−
2i tπ

n −1
=

e−
idtπ

n

e−
i tπ
n

e−
idtπ

n − e
idtπ

n

e−
i tπ
n − e

i tπ
n

= ei(1−d)tπ/n sin dtπ
n

sin tπ
n
.

Hence the magnitude of the DFT of any generated scale

B = f A+ τ = {τ,τ + f ,τ +2 f , . . .}
(translation by τ does not change the magnitude, and multiplication by f multiplies
the index of the coefficient):

Proposition 4.3. |FB(t)|=

⎧⎪⎨⎪⎩
d if sin f πt

n = 0 (i.e. n | f t)

(±)
sin f dπt

n

sin f πt
n

else
.

For instance the value of |FA(5)| when A is a diatonic scale is

− sin 5×7π5
12

sin 7π5
12

=
sin 7π

12
sin π

12
=

1
tan π

12
= 2+

√
3.

It is obvious that the first case, d, is the maximum possible value, especially when
one remembers that we just summed d complex numbers e−

2ik f tπ
n , all of them with

magnitude 1. It is perhaps less obvious that the reciprocal is true (for the moment,
we consider only generated scales): if any of the exponentials in the sum defining the
Fourier coefficient do not have the exact same direction, then their sum has a smaller
length than the sum of their lengths:

Lemma 4.4. For a,b ∈ C, |a+b|= |a|+ |b| ⇐⇒ a,b have the same direction, i.e.
∃λ ∈ R+,b = λa (unless a = 0).

So when the magnitude of the Fourier coefficient is maximum, all exponentials in
it share the same direction. But equality of the phases of all e−2i f k t π/n means that
n | f t, i.e. we are in the first case when sin f π t

n = 0.
The other extreme case is FB(t) = 0, when bd t is a multiple of n but bt is not.

Let us clarify the behavior of these values. Jason Yust noticed the periodicity of these
coefficients:

Proposition 4.5. Fix the generator f and the index of the Fourier coefficient, t. Then
the magnitude3 of this Fourier coefficient is periodic in the cardinality d of the gen-
erated scale: d �→ |FB(t)| has period

n
gcd(n, f t)

.

For n = 12, this period boils down to:

3 The complex Fourier coefficient itself is either periodic or anti-periodic.



4.1 Generated scales 95

• n/r, where r is the integer closest to 0 and congruent to ± f t ; and
• no period (i.e. period 12) when f t is coprime with 12 (for instance, FB(1) for

fifth-generated scales has no period).

A few examples will show how simple this is:

Example 4.6. Consider first chromatic clusters, like {0,1,2}, with generator 1 and let

us look at FB(4) as a function of the cardinality d: |FB(4)|=
∣∣∣∣ sin(dπ/3)

sin(π/3)

∣∣∣∣ = ψ(d)

and ψ is 3-periodic (|sin | being π-periodic). Indeed the values taken for d = 1,2,3 . . .
are 1,1,0,1,1,0,1,1,0,1,1 . . . .

For a less trivial case, take coefficient 5 and generator 2 (whole-tone scale
chunks). Since 2× 5 = 10 = −2 mod 12 we have r = 2, period 6, and indeed for
d = 1,2,3 . . .11 we compute |FB(5)| = 1,

√
3,2,

√
3,1,0,1,

√
3,2,

√
3,1. The asso-

ciated pc-sets appear in the tables as Figs. 8.4, 8.8, 8.15, 8.20, and 8.23.
A more complicated case where Yust’s rule of thumb does not apply: let n = 24

and f × t = 7×2 = 14. Then the period is 12.
Lastly, a rhythm example: consider generator 3 in an eight beats bar; the tresilo

(0, 3, 6) (modulo 8) is such a generated rhythm, with d = 3. The value of the Fourier
coefficient |a3| takes on magnitudes sin9dπ/8

sin9π/8 , which is maximum when d = 4 for

rhythm (0, 1, 3, 6). In general, d �→ sin f dπt
n

sin f πt
n

will be maximum when f d t is as close

as possible to n/2 mod n.

The proof of this periodicity lies in the formula in Proposition 4.3. Amusingly, Yust’s
shortcut for n = 12 works for the same reason that Lemma 4.20 below is true.

Another beautiful relationship between the chromatic case (generator 1) and the
general case (generator f ) is

Theorem 4.7 (P. Beauguitte, 2011). Let Ak = {0,1,2 . . .k−1} ⊂ Zn. For k coprime
with n, let � = k−1 be the multiplicative inverse of k modulo n and B = −k A� =
{0,−k,−2k · · ·− k(�− 1)} the �-scale generated by −k. Then FB = 1/FA, i.e. the
coefficients of one scale are the inverses of the coefficients of the other.4

The choice of � will be clarified below with the definition of ME sets. A common
example with k = 7,n = 12, � = 7 yields the diatonic scale, but in general, the two
scales have a different number of elements.

Proof. FA(t) = 1+ e−2iπt/n + . . .e−2iπ(k−1)t/n =
1− e−2iπkt/n

1− e−2iπt/n and

FB(t) = 1+ e2iπkt/n + . . .e2iπ(�−1)kt/n =
1− e2iπk�t/n

1− e2iπkt/n =
1− e2iπt/n

1− e2iπkt/n , hence the

result by inverting the fraction and the phases.

This remarkable result shows that for many generated scales, the direction of the
DFT is the same as for a chromatic sequence, whilst the magnitude is inversed. This
appears clearly in Fig. 4.3, with n = 10,k = 3, �= 7:

4 Except of course for index 0 which is the cardinality of the scale.
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Fig. 4.3. Beauguitte’s theorem: inverse magnitudes of two generated scales in Z10.

The saturation feature is linked with the probability of occurrence of intervals:
in diatonic music, the fifth is more probable than other intervals (if the probability
of any pitch-class is uniform, which admittedly is seldom the case except perhaps
in strict dodecaphonic, non-serial music), as checked experimentally in [58] for in-
stance. This suggests, in a broad sense, that generated scales are somewhat periodic
and might be recognised by Fourier features. This is precisely the topic of the max-
imally even sets section below. For more about occurrences of intervals and their
relationship with Fourier coefficients, see Section 4.3.

4.1.3 Alternative generators

Notice the extreme cases (first pointed out, to the best of my knowledge, by N. Carey
in [28] wherein the first case of Theorem 4.8 is also proved) when f is a generator of
Zn, and A is the whole aggregate, or d = n−1, i.e. A is the whole group Zn minus one
element. In this case, A has ϕ(n) distinct generators5 (and as many starting points),
which is a somewhat unexpected behaviour for arithmetic sequences. For instance,
the aggregate from C to B�, e.g. {0,1,2,3 . . .10}, can be written as four distinct
arithmetic sequences:

(0,1,2 . . .10), (4,9,2,7,0,5,10,3,8,1,6) and their reverses, with generators 11,7.

This can be seen in Fig. 4.4 with 6 different generators for a 7-scale in Z21.
The converse is true:

Theorem 4.8. [Amiot, 2011] The number of generators of a generated scale is al-
ways a totient number, i.e. ϕ(n) for some n.

More precisely:

5 Remember ϕ is Euler’s totient function, which gives precisely the number of generators of
a cyclic group.
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Fig. 4.4. Many generators for a regular polygon

� if f is coprime with n then A has exactly two generators ± f , unless A is the full
aggregate (A = Zn) or the almost full (Zn \{u}).

� if f is not coprime with n, the generated scale A with cardinality d > 1, has

• one generator when the scale is (a translate of) {0,n/2} (a tritone);
• two generators (not coprime with n) when d is strictly between 1 and n′ − 1 =

(n/m)−1 where m = gcd(n, f );
• ϕ(d) generators when d = n′ = n/m, i.e. when A is a regular polygon;
• ϕ(d +1) generators when d = n′ −1, A is a regular polygon minus one vertex.

The last two cases are those of a full or almost full regular polygon, whose picture
is the same as the full or almost full aggregate but for a smaller cardinality n′ | n.
Moreover all generators share the same order in the group (Zn,+).

Proof. First consider the case of a generator f coprime with n. Up to multiplication
by the inverse f−1 of this generator modulo n and translation, we are dealing with
the chromatic sequence A = {0,1, . . .d − 1} and we are looking for an alternative
generation to the obvious one (generator 1). So let us assume that A can also be
generated as A = τ + b×{0,1,2 . . .d − 1} = bA+ τ and let us prove that b = ±1.
My original proof made use of the interval vector of A, which is (d,d−1,d−2 . . .d−
2,d − 1). An alternative one, more appropriate in the context of this book, uses the
DFT:6

6 Incredibly but appropriately, a recent formula [78] expresses the totient function as the DFT
of the GCD: ϕ(n) = ∑n

k=1 e
2iπk

n gcd(n,k) = ∑n
k=1 cos

(
2πk

n

)
gcd(n,k).
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FA(t) =
d−1

∑
k=0

e−2iktπ/n =
e−2idtπ/n −1
e−2i tπ/n −1

,

FbA+τ(t) =
d−1

∑
k=0

e−2i(bk+τ)tπ/n = e−2iτtπ/n e−2ibdtπ/n −1
e−2ibtπ/n −1

.

It is sufficient to focus on the magnitudes: since |e−2iϕ − 1| is equal to |2sinϕ|,
the respective magnitudes are

sin(dπ/n)
sin(π/n)

and
sin(bdπ/n)
sin(bπ/n)

(0 < d < n).

(I removed the absolute values for readability). Replacing b if necessary by n− b
without changing the magnitude, one may assume without loss of generality that
b ∈ {0,1 . . .n/2}. A cursory study of next-to-maximum values7 of function f : b �→
sin(dbπ/n)
sin(bπ/n)

,1 � b � n/2 (see Fig. 4.5) proves that b must be equal to 1 for the

respective magnitudes to coincide, hence b = ±a. Let us now consider f non co-

Fig. 4.5. Graph of f : b �→ sin(7bπ/12)
sin(bπ/12)

prime with n, i.e. m = gcd(n, f )> 1. The cardinality of A is now less than n/m, since
n
m

f = 0 mod n. The difficult question is: do we reach the same m if we start from
another generator? But with a computation similar to the one above, if A is generated
by f then

|FA(t)|=
⎧⎨⎩

|sin(π d t f/n)|
|sin(π t f/n)| or

d when sin(πt f/n) = 0.

Moreover, |FA(t)|� d, and |FA(t)|= d ⇐⇒ sin(πt f/n) = 0. This entails the fol-
lowing:

7 They occur for b > 2n
d and hence f (x) does not exceed 1

sin(2π/d) , well under sin(dπ/n)
sin(π/n) =

f (1).
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Lemma 4.9. If f ,g are two generators of a same scale A, then

m = gcd(n, f ) = gcd(n,g).

NB: this lemma can also be reached algebraically, by considering the group of differences8

Δ ∞(A) = lim
n→∞

Δ n(A) =
⋃
n�1

Δ n(A) where Δ(X) = X −X = {x− y,(x,y) ∈ X2}.

This shorter but more abstract proof was used in [9].
Now the end is easy: up to translation, assume A contains 0. Then A=mA′ where

the elements of A′ are defined modulo n′ = n/m, and we are back to the initial case
gcd(n′, f ) = 1 when we have only two generators, except if A′ is an (almost) full
aggregate. This yields the theorem.

Leaving aside the extreme cases of one-note scales and tritones, the geometry of
generated scales comes in three types:

• The seminal case: ‘diatonic-like scales’, i.e. scales with only two (opposite) gen-
erators.

• Regular polygons.
• Regular polygons minus one note.

So this seminal case, with one beginning and one end, is by no means the only one.
The three cases are summarised in Fig. 4.6.

Fig. 4.6. The three cases: seminal, polygon and almost-whole polygon

4.2 Maximal evenness

Maximally even sets, or ME sets for short, were introduced in [31, 30] and devel-
oped by Jack Douthett and other co-authors. In the context of this book, his most

8 [65], Section 7.26.
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interesting paper is [33] wherein a ME set is described and defined as an equilibrium
position for (say) electrons placed on several equally disposed sites on a circle; it is
impressive that seven electrons on 12 sites will choose to settle as a diatonic scale!

There are many possible definitions of maximal evenness, an intuitive notion but
a tricky one to nail down: see [31, 32, 38, 24]. The most practical appears in the
seminal [30] as a consequence of more philosophical constraints:

Definition 4.10. A maximally even set with cardinality d in Zn is the set of values of
one of the following J-functions:

Jα
d,n(k) = �α +

kn
d
� mod n,k = 0,1 . . .d −1.

One can choose the round function instead of the floor function (or ceiling) with
equivalent results. This formula approximates exact divisions of n into d parts, which
is of course impossible to do exactly unless d | n.

Example 4.11. Depending on the offset α , the J12
7,α generates the 12 major scales (in

fifth order), for instance

J0
7,12([[ 0,6 ]]) = {0,1,3,5,6,8,10}, i.e. D� major,

whereas C major is generated by J5
7,12([[ 0,6 ]]).

4.2.1 Some regularity features

It is possible to define the class MEn,d as the generic ME set with d elements in
Zn, because this class is invariant under the action of T/I: any ME set in the class
is translated (and also inversed) from any other one.9 It follows that the number of
different ME sets with given (n,d) is a divisor of n, depending on inner periodicities
in the set. We will see also that the complement set of a ME set is still a ME set.

An aesthetically remarkable feature of ME sets is the precise quantity of variants
of intervals between consecutive elements, or more generally of typed subsets. This
is better explained with an example: consider {0,2,4,7,9}=ME12,5. Consecutive in-
tervals, or steps, come in exactly two sizes (2 or 3). The same is true for ‘thirds’, leav-
ing every odd note out: they are 4−0 = 4,7−2 = 5,9−4 = 5,0−7 = 5,2−9 = 5.10

Similarly, consecutive triplets like (0,2,4),(2,4,7),(4,7,9) come in three configura-
tions, as do the ‘triads’ (0,4,9),(2,7,0),(7,0,4) and so on. When this cardinality of
a subset of the scale is always equal to the variety of different instances of the type of
subset (‘Cardinality=Variety’), the scale is said to be Well-Formed, henceforth WF
for short. See [28] for much more on this subject. ME sets are WF, or degenerate-WF;
for instance the whole-tone scale ME12,6 has only one step size, not two.

One definite advantage of the definition of ME sets in terms of DFT below is
that it makes obvious that the complement of a ME set is a ME set. Indeed, from the

9 This will be proved easily with the alternative DFT definition provided below.
10 Tymoczko points out these ‘thirds’ in pentatonic context in the last phrase of Debussy’s

La Fille aux cheveux de lin.
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typology below or the J-function definition one easily gets the following paradoxical
statement:

Theorem 4.12. Let A ⊂ Zn be a ME set and B = Zn \A its complement. Then B is a
ME set; moreover, some translate of B is included in A or the reverse.

As I mentioned and proved in [9], this ‘Chopin’s theorem’ holds mutatis mutandis
for generated scales: when a scale and its complement are both generated, they share
their set of generators. This is of course reminiscent of Babbitt’s theorem. The ref-
erence to Chopin of course alludes to his Etude op. 10, n◦ 5, cf. Fig. 4.7, wherein
the pentatonic played throughout the piece by the right hand is a subset of the major
scales (mostly G� and B�) played by the left hand.

Fig. 4.7. Pentatonic vs. diatonic

A nice application to rhythms is Astor Piazzolla’s use of the complement of tre-
silo T = {0,3,6} ⊂ Z8: he uses the pattern C = {1,2,4,5,7}, not only in its function
of complement of T , which is fairly common in post 1950s-tango, but also as a ba-
sis for a secondary theme in La Milonga del Angel. As discussed in Theorem 4.12,
the ternary pulsation is present also in this complement rhythm, see Fig. 4.8 which
shows how ‘the silence in tango is still tango’.

4.2.2 Three types of ME sets

A fine distinction

In [72], Quinn introduces a typology of ME sets, depending on m = gcd(d,n). We
reproduce this classification here, since it is closely related to questions of inner pe-
riodicities and complementarity, qualities that can actually be diagnosed at a glance
on the DFT. The seminal case is

Definition 4.13. A type I ME set happens when m = 1. The scale is generated (and
WF).

It is generated by the multiplicative inverse f of d in Zn, or by − f (these are the only
two generators). Typical examples are the diatonic and pentatonic scales in Z12. All
its Fourier coefficients are non zero (a trivial consequence of Theorem 4.7).
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Fig. 4.8. Tresilo and its complement in Piazzolla’s Milonga del Angel

Definition 4.14. A type IIaII ME set happens when m = d, i.e. d | n. The scale is gen-
erated, but it is degenerate WF, dividing Zn into a regular polygon.

Typical examples are the diminished seventh D7 = {0,3,6,9} (Fig. 8.10) and whole-
tone scale WT = {0,2,4,6,8,10} (Fig. 8.23). The DFT is quite characteristic: coef-
ficients are 0 except those whose index is a multiple of n/d, which are all equal to d.
For instance, for a diminished seventh it is (4,0,0,0,4,0,0,0,4,0,0,0).

Definition 4.15. A type IIbI ME set happens when 1 < m = n−d < d. It is the com-
plement of a type IIaII ME set.

Since the complement has cardinality m, which is a divisor of n, it is ME because the
complement of a ME set is a ME set (proved below). The prototype is the octatonic
collection {0,1,3,4,6,7,9,10} (Fig. 8.31). Its DFT is the same as type IIa (except of
course the 0th coefficient).

Definition 4.16. Type III ME sets gather the remaining cases: 1 < m < d,m �=�� n−d.

The DFT is a compound of the two other types: the varied values of the DFT are
the same as in type I, with 0’s interspersed because of its periodicity (remember
the formula for oversampling, cf. Fig. 1.5). For instance {0,2,4,6,9,11,13,15} =
ME18,8 (Fig. 4.9) yields coefficients (magnitudes)

(8,0,1.06,0,1.3,0,2,0,5.76,0,5.76,0,2,0,1.3,0,1.06,0).

This classification in three types is stable by complementation.
The last two classes are ME sets with a smaller period, i.e. what Messiaen called

Limited Transposition Modes. They are all concatenated from smaller ME sets.
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Remark 4.17. Clampitt et alii [28] argue that type I is fundamental, inasmuch as this
type generates all others: type III is obtained by slicing n into m equal parts and
filling each part with the same type I ME set with d′ notes among n′ = n/m, see Fig.
4.9.

Remark 4.18. Types II and III are ‘perfectly balanced’ in the sense of [67], i.e. a1 = 0
(they are unions of regular polygons). Note that this perfect balancing, a pure Fourier
quality, fails to characterise ME sets: for ME(12,7),

|a1|= sin(π/12)
sin(7π/12)

= 2−
√

3 ≈ 0.26795

is not the smallest value for seven-note scales, superseded by {0,1,2,5,6,8,9} for
which a1 = 0, cf. Fig. 8.28.11

Fig. 4.9. A type III ME set : {0,2,4,6}⊕{0,9} ⊂ Z18

Existence of type III ME sets

Quinn ([72]) was remarkably astute in this taxonomy, since as he himself pointed
out there are no type III ME sets when n = 12, a rather prominent case for West-
European music at least. This type exists though: for instance, when n = 18, con-
sider ME(18,8) = {0,2,4,6,9,11,13,15}= {0,2,4,6}⊕{0,9}= ME(9,4) redoubled,
shown in Fig. 4.9. Incidentally, its DFT can be computed easily from this decompo-
sition, since the DFT of {0,2,4,6} in Z9 is (in magnitudes)

11 The fifth coefficient is also nil, since this balanced scale type is invariant by affine transfor-
mations: 5×{0,1,2,5,6,8,9}= {0,1,2,5,6,8,9}+4 mod 12.
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(4,0.53,0.65,1.,2.88,2.88,1,0.65,0.53)

and it only remains to intersperse zeroes and multiply by 2 to retrieve the DFT of
ME(18,8) already given above.

Of course type III is impossible when n is prime, since in this case only type I
happens (barring the full aggregate or the empty set). But for large composite n, type
III is always possible:

Theorem 4.19 (Amiot, 2005).

For composite n > 12, there exists d such that ME(n,d) has type III.

The proof hinges on a technical

Lemma 4.20. For composite n > 12, there exists k | n and a prime number p < k−1
such that p is not a divisor of k.

Proof. Notice that for n = 12 the lemma fails, since at most k = 6 and all prime
numbers p < 5 divide 6.

Consider a composite n � 25 – lower values are checked by hand or computer.
The general idea is to have k be the largest strict divisor of n. It can be written either
k = 2m+1 or k = 2m+2. Since n/k is a smaller divisor of n, k � n/k, i.e. k �√

n,
hence k � 5 and m � 2.

• First case: n = 2r. Let k = n/2, p = 3. Works whenever n � 8.
• Second case: n admits an odd divisor k � 5, not necessarily prime. Select this

value for k, and let p = 2. This works for n = 10,14,15 · · · .
• Last case: n = 2a3b,a � 1,b � 1. This is the trickier case, since it is for n =

2× 2× 3 that the lemma fails. It is not really difficult though, since whenever
n � 24, setting k = n/2 and p = 5 satisfy the lemma conditions.

The theorem follows now from the construction

j �→ �k j
p
�= � jn

np/k
�

yielding a type III ME set, concatenated from MEk,p which is a type I in Zk since p
does not divide k.

4.2.3 DFT definition of ME sets

This definition is our principal aim in this section: Quinn discovered that ME sets
can be characterised by a high value of some Fourier coefficient. To quote [72]:

We note that generic prototypicality may be interpreted as maximal im-
balance on the associated Fourier balance – at least to the extent that a
generic prototype tips its associated Fourier balance more than any other
chord of the same cardinality possibly can.12

12 Quinn was originally interested in what he calls ‘prototypical chords’, defined by cultural
consensus, and which happen to be ME sets.
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More precisely, as proved rigorously in [10] with excruciating detail, one can
adopt the following definition as equivalent to the other ones (say Def. 4.10):

Definition 4.21. The pc-set A ⊂ Zn, with cardinality d, is a ME set if the number
|FA(d)| is maximal among the values |FX (d)| for all pc-sets X with cardinality d:

∀X ⊂ Zn, #X = d ⇒ |FA(d)|� |FX (d)|.
From the formulas already derived for DFT, it follows without further ado

Proposition 4.22. Transposition, inversion and complementation of a ME set still
yield a ME set: any pc-set homometric to a ME set is a ME set.

This is obvious since all these operations preserve the magnitude of Fourier coeffi-
cients, which is a definite advantage over alternative definitions. It also hints that the
magnitude of Fourier coefficients might be a perceptible quality – at least it is one
commonly recognised.

We will show that the DFT definition is equivalent to the definition pinpointing
a generated scale, in the spirit of Rem. 4.17. Reduction to the J-function definition
has been carried in [10] and would be redundant here, since the equivalence of all
previously known definitions had been already proved in seminal works on ME sets.

Proof. Quinn provided a simple argument which is fairly convincing for the type I
case when gcd(d,n) = 1, and even more in the degenerate case – but insufficient for
the remaining cases. Remember

FA(d) = ∑
k∈A

e−2idkπ/n = FdA(1)

where dA may be a multiset.
When d | n, one easily gets FA(d)= d for A= {0,n/d,2n/d . . .}, a regular subdi-

vision of Zn. Conversely, one has |FA(d)|� 1+1+ . . .1 = d by triangular inequal-
ity, and the equality (for a Euclidean norm) may only happen when the complex
exponentials involved all point to the same direction, since |z+ z′| < |z|+ |z′| for
non-colinear z,z′. But this happens if and only if

∀k,k′ ∈ A 2dkπ/n = 2dk′π/n mod 2π ⇐⇒ k = k′ mod (n/d);

hence (since #A = d) A is a whole arithmetic sequence with common difference
n/d.13 In this case, A′ = dA is a multiset with exactly one element repeated d times.

When gcd(d,n) = 1, multiplication by d is bijective and A′ = dA is a genuine set
with the same cardinality as A. All the exponentials must then be distinct, so the ar-
gumentation above does not work. Quinn argues that these exponentials should be as
close as possible one to another14, meaning that A′ is a chromatic cluster {1,2 . . .d}.
This can (and should) be formally proved using
13 The same argument proves that for #A < d, |FA(d)| will be maximal when A is a subset of

such a sequence, see Section 4.3.
14 ‘The best the chord can do is to have pcs gathered in adjacent pans, so that the arrows point

in approximately the same direction’, ibid.
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Lemma 4.23 (Huddling together).

Have d points a1, . . .ad on the unit circle S1, and move a1 towards the sum s =
∑d

k=1 ak, meaning a1 is replaced by a′1 whose argument (or phase) is between the
phases of a1 and s.

Then |a′1 +a2 + . . .ad |� |a1 +a2 + . . .ad |.

Proof. In a nutshell, the sum increases because the angle between s =
d
∑

k=1
ak and

a′1 − a1 is acute. Let us provide a comprehensive computation: up to rotation and
symmetry, one can assume without loss of generality that arg(s) = 0 and ϕ1 =
arg(a1) ∈]0,π]; then ϕ ′

1 = arg(a′1) ∈ [0,arg(a1)] ⊂ [0,π] so a1 and a′1 are both
‘above’, see Fig. 4.10.

Since cos is decreasing on [0,π] we have

cosϕ1 + cosϕ2 + . . .cosϕn � cosϕ ′
1 + cosϕ2 + . . .cosϕn.

These sums are the projections of s and s′ = a′1 + a2 + . . .ad on the real axis. But s
is assumed to be real, and |s′| is greater than its projection. Hence |s′| � s and more
precisely |s′|> s unless ϕ1 = ϕ ′

1.

∑
ai

aaaaa111

a′1

a′1 ++
∑
k≥2

ak

Fig. 4.10. The length of the sum increases.

The fact that A′ must be a chromatic cluster follows: else, A′ would feature holes
in the sequence between its elements15, and one extremal point could be moved to
15 Writing A′ in a ‘basic form’ such as A′ = {0,α,β . . .ω} with 0 < α < β < · · ·< ω < n and

n−ω maximal, for instance.
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one such hole, increasing |FA′(1)| in the process. This can be iterated until we get a
chromatic cluster and no more.

Since dA = A′ = {1,2, . . .d} or some translate thereof, we find A = f A′ =
{ f ,2 f , . . .d f} where f is the multiplicative inverse of d in Zn. In the seminal ex-
ample, the diatonic collection with 7 elements is generated by fifths since 7−1 = 7
mod 12. The previous discussion on the number of generators of a generated se-
quence modulo n shows that in this case there are only the two generators f and
− f .

The remaining case gcd(d,n) > 1, with d not a divisor of n, is slightly more com-
plicated. Let m = gcd(d,n),n′ = n/m,d′ = d/m: then n′ and d′ are coprime and we
aim at reducing the study to the preceding case. For instance, consider the case of
A = {0,1,3,4,6,7,9,10} (the octatonic collection) with d = 8,m = 4,n′ = 3,d′ = 2.
Indeed πd : x �→ dx now maps Zn to Zn′ , each fiber (pre-image) having m elements.
Assume |FA(d)| is maximal and let A′ = πd(A) (here we consider A′ as a set, not a
multiset. See [10] for a proof in the context of multisets). Then

FA(d) = ∑
k∈A

e−2ikdπ/n = ∑
k′∈A′

m(k′)e−2ik′d′π/n′ = ∑
k′′∈A′′=d′A′

m(k′)e−2ik′′π/n′

where m(k′)= #(π−1
d ({k′})) denotes the cardinal of the fiber, i.e. the number of times

k′ is hit as an image of an element of A. Lemma 4.23 can be used here since it does
not assume the points to be distinct. We can huddle the elements of A′′ = d′A′ up to
m times each, since m(k′)� m. Hence in the maximal case, A′ has d′ elements, each
fiber contains m antecedents, i.e. A is periodic since for any a ∈ A we must have all
the l different a+k n

m ∈ A (for the octatonic example, A′′ is {0,4} ⊂ 4Z12 = {0,4,8}
with each element repeated four times); hence

|FA(d)|� m|FA′(d′)|� m max
B⊂Zn′ ,#B=d′

|FB(d′)|.

For the maximal value to be reached, A′ must be maximally even (i.e. the elements
of A′′ form a chromatic cluster) and each fiber must be full (i.e. each m(k′) is equal
to m, meaning A is the whole of π−1

d (A′)). This means

Proposition 4.24. In the case m = gcd(d,n) > 1, d not a divisor of n, a set A ⊂
Zn,#A = d is maximally even iff A′ = dA is maximally even in Zn/m and A is m-
periodic. In other words, A must be concatenated from A′.

In the example proposed, A′ = ME3,2 – for instance A′ = {0,1} ∈ Z3 – and hence
A = π−1

4 (A′) = {0,1,3,4,6,7,9,10}= A′ ⊕3Z12 with a slight abuse of notation.
This description of the last case exemplifies the transfer of the DFT from A to

its projection on an appropriate subgroup of Zn, cf. Proposition 3.36 above. It is
illuminating to compare the DFTs of A and A′ in Fig. 4.11, where a simple scale
change allows us to superimpose both graphics.

To sum it up, the Fourier definition of ME sets pinpoints the quality of being as
close as possible to a regular subdivision of the circle – etymologically, a cyclotomy.
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DFT of A

superposition of both

DFT of A’

Fig. 4.11. Fourier magnitudes of a periodic ME set and its type I projection

4.3 Pc-sets with large Fourier coefficients

4.3.1 Maximal values

We have just seen that |FA(d)| is maximal for MEn,d , among all d-subsets. One
may well ask what are the maximal cases for other coefficients. For instance, when
one keeps the cardinality d fixed, the pc-sets which maximise |a1| are the chromatic
clusters, e.g. {0,1,2 . . .d − 1} as we have established during the proof of the type
I-ME set case.

An extension of this result yields the maximum case for |FA(k)| when k is co-
prime with n: in this case k A is a set, not a multiset and

FA(k) = Fk A(1)

is maximal when k A is a chromatic cluster, meaning that A is generated, with gen-
erating interval k−1, the inverse of k in Zn. As a corollary, all maximum values of
FA(k) are identical for k ∈ Z∗

n. For fixed d, this maximum is sin(dπ/n)
sin(π/n) (which gets

close to d when n is large).
Remember that k,k′ are associated if there exists λ ∈ Z∗

n such that k′ = λk. Then
we can generalise slightly the above computation:

Proposition 4.25. The maximum of |FA(k)| on d-subsets is the same as the maxi-
mum of |FA(k′)| for k′ associated to k.

However, it is a completely different case when gcd(k,n) > 1, because k A can
then be a multiset, not a set, as we have seen for type II and III ME sets. It may
even be possible to reach |ak|= d, for type II ME sets or their subsets. This happens
whenever d � n

gcd(k,n) .
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Example 4.26. Any subset of a whole-tone scale has maximum FA(6): for instance
for A =CDF�G�= {0,2,6,8}, FA(6) = 4 = #A, cf. Fig. 8.11.

The most complicated cases are reminiscent of the study of saturation in one
interval: sometimes d is larger than all strict divisors of n. Of course, if d > n/2 we
already know that the Fourier coefficients are the same as those of the complement
subset, so let us assume d < n/2 (the case d = n/2 yields a maximum FA(d) = d for
A = 2Zn). Following the general idea of the proof of the DFT definition of ME sets,
we want the multiset k A to be as huddled as possible: if repetition of a single value is
not available, then we aim for repeating several huddled values. This happens when
k A is a repetition of a subset of a regular polygon, with the eventual added points all
situated on the same location, see Fig. 4.12.

Example 4.27. Consider n = 75,d = 27 > n/3. We can construct a perfect ME set
with 25 elements, A = {0,3,6 . . .72}. Then for k = 3 one gets A′

mult = 25A = {0#25},
i.e. 0 repeated 25 times. Since there is no way16 to enlarge A without adding new ele-
ments to A′

mult , the best one can do is to have these extraneous elements in A′
mult stay

as close as possible to 0. For instance, one can add 4 and 31 to A, which turns A′
mult

to {0#25,25#2}, i.e. 0 25 times and 25 twice. The resulting set yields the maximum
possible value of |FA(25)| for 27-subsets of Z75.

It is not clear that this value is the greatest possible of |FA(k)| for 27-subsets and
any k. Indeed one has to check for other divisors of 75. In Fig. 4.12, I tried also B,
saturated in interval 5, made of a 15-polygon and another, incomplete one as close as
possible; and C, saturated in interval 15, union of five pentagons and two points on a
sixth; and checked the values of the corresponding Fourier coefficients. In this case,
|FA(25)| = 24.062, |FB(15)| = 22.506 and |FC(15)| = 21.206; hence A achieves
the highest possible maximal value of a Fourier coefficient among all 27-subsets of
Z75. For the record, FM(27) = 21.658 for M = ME75,27, i.e. the ME set only beats
C.

The general question now arises: for a given pair (n,d), what are the subsets
A ⊂ Zn with cardinality d that yield the maximal value of their largest |FA(k)|?
There are three cases, summed up by the following:

Theorem 4.28. Among d-subsets of Zn (with d < n/2), the sets with the largest
Fourier coefficients are

1. Subsets of regular polygons (when d is smaller than some divisor of n).
2. Maximally even sets.
3. The kind of saturated/huddled subsets shown by the example above.

Notice that even in the last case, some solutions can be generated by J functions.
For instance (0,6,12,1,7,13,2,8) in Fig. 4.13 is the sequence of values of �6.34k�
mod 18 for k = 0 . . .7; indeed even the tango/habanera pattern {0,3,4,6} can be
achieved as values of �2+2.5k�,k ∈ [[ 1,4 ]].17

16 If A is a true set, not a multiset.
17 Keep in mind however that some pc-sets cannot be generated in this way, for instance

{0,1,4} when n � 10.
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Fig. 4.12. Three candidates for maximum max |FAFF | for 27-subsets of Z75

This was first analysed in the third online supplementary of [10]. The last case is
somewhat messy: there is no simple formula (one has to check for k being any divisor
of n, because the largest divisor does not always yield the highest Fourier coefficient)
and the result is not unique up to isometry, in contrast to the ME set cases. The
three different cases are exemplified in Fig. 4.13 with n = 18 and d = 7,5,8. The
corresponding multisets are shown underneath.

================ ================ ================

Fig. 4.13. Three types for maximum max |FAFF |.
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When do large values occur?

All these results vindicate Quinn’s notion of saliency, i.e. large a5 show a large
fifthishness (which we will rename diatonicity in the musical examples below) while
large a6 exemplifies whole-tonedness, etc. We have already explored the maximal
cases, in the end of the discussion let us relax the condition to ‘relatively large’ with,
of necessity, fuzzier assertions.

Example 4.29. For instance, for a short excursion in the rhythmic domain we can
assert that the tresilo (0,3,6) in Z8 has maximal ‘ternariness’, i.e. largest a3 among
all 3-sets (|a3|= 2.41). But the standard tango pattern (0,3,4,6) in the same Z8 has
some ternary saliency too (|a3| = 1.85), though its largest Fourier coefficient is the
fourth (|a4|= 2), asserting that tango music is binary though with a strongish ternary
intent.18 The four-note rhythm with best ternary saliency is (0,1,3,6), a generated
set generalizing the ME-sets construction:

{0,1,3,6}= {0,3,6,9}= 3×{0,1,2,3} mod 8 (|a3|= 2.61).

It has been observed [25, 98] that frequent occurrences of some intervals between
pc-sets (measured on a time span of one to five bars of the score, for instance) are
correlated with large values of some Fourier coefficients – the fifth interval with the
fifth coefficient, or minor thirds with the fourth coefficient, for instance. This is well
in line with what we discussed in Section 4.1.1, and easier to adapt than the notion
of maximal evenness. Is it a really reliable guideline though?

Example 4.30. Since it is a periodic ME set, O = {0,1,3,4,6,7,9,10} (the octatonic
collection) has clear-cut Fourier coefficient magnitudes: |FO |=(8,0,0,0,4,0,0, . . .).
The zeroes reflect the periodicity of this pc-set (the coefficients from 7th to 11th have
been omitted since their values are reversed from the first ones).

Subsets of this collection still preserve the saliency of the fourth coefficient:
for A = {0,1,3,4,7,9}, one finds (6,1,1,2,3,1,2, . . .) and for A′ = {0,1,3,4,6,7},
|FA′ |= (6,1.93,1.73,1.41,3,0.52,0, . . .).19

The last two examples both display four minor thirds, and though the fourth Fourier
coefficient has the same magnitude, the other coefficients do not. The more we stir
away from the regular subsets studied before, the less exact the correlation between
saturation and saliency becomes, cf. 5.4 below.

For generated sequences whose generator is not a divisor of n, or bouts of such
sequences which are not ME sets, first remember that a generated sequence fea-
tures more occurrences of the generating interval than several juxtaposed partial se-
quences: there are six second intervals in a whole-tone scale WT = {0,2,4,6,8,10},
but only four in the Guidonian hexachord GH = {0,2,4,5,7,9} which is a reunion

18 Indeed a kind of walz, El vals criollo is among the three principal styles of music played
and danced in tango balls.

19 This somewhat informal remark is very important, as it will lead us to replace advanta-
geously the ‘complex’ manipulations in Forte’s ‘Set Theory’ (i.e. subset relationships) by
consideration of saliency. This is a forte of DFT theory, noticed by Yust.
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of two three-note whole-tone sequences (i.e. a convolution product of {0,2,4} by
{0,5}, see Figs. 8.8 and 8.5 respectively). On the other hand, this last pc-set is a full-
fledged fifth sequence (5,0,7,2,9,4). All this appears clearly on the Fourier magni-
tudes, see also Fig. 8.26 and 8.23:

|FWT |= (6,0,0,0,0,0,6, . . .) |FGH |= (6,1.035,0,1.414,0,3.864,0, . . .).

Notice that the sixth coefficient, maximal for WT, altogether vanishes in GH despite
the four whole tones in it20 which shows crudely that the magnitude of a Fourier co-
efficient is not completely equivalent to the frequency of occurrence of a correspond-
ing interval. However, in tonal music where a diatonic universe is often prevalent, the
organisation of fifths often adheres to the generating sequence of the diatonic, which
is maximal in number of fifths, and the 5th Fourier coefficient is accordingly large
– as we have seen in Section 4.2, the diatonic collection has maximum magnitude
(1+

√
3 ≈ 2.73) among all other seven-notes pc-sets for the fifth coefficient. Its most

frequent subsets, the simple and popular boogie/rock bass sequence CFG (057) and
the pentatonic collection, reach exactly the same value. In the former case (CFG) this
is not far from the absolute maximum possible for the DFT of a 3-pc-set. In the latter
we have the absolute maximum.

So when can we rely on the informal remark above, since it is not always true?
The Fourier transform being continuous, slight modifications of a pc-set entail

slight modifications of the Fourier coefficients. Hence the somewhat vague, but in-
formative, assertion:

Proposition 4.31. Usually, pc-(multi)sets with a high frequency of occurrence of in-
terval d are close to (subsets of) arithmetic sequences with generator d and yield a
high value of their kth Fourier coefficient, where k is

• n/d when d divides n, or
• d−1 ∈ Zn when n,d are coprime.21

This lacks a precise definition of ‘closeness’ to a given pc-set, a notion that is open
to interpretation, and leaves aside the case of a loose relationship between d and n
(neither divisor nor coprime). It is also debatable for small d and especially d = 1,
though there is some correlation in this case with the number of successive semitones
but their overall distribution could ruin this character, see Fig. 8.28 where a scale with
four semitones has a1 = 0.22

We will discuss in Section 5.4 a relationship between size of DFT coefficient
and voice-leading distance to a (usually virtual) chord with maximum value, first
estimated by Tymoczko and improved for the present publication.

20 This is because there are as many odd pcs as even. Another way to look at it is that this
coefficient is nil already for the factor {0,5}.

21 See Section 4.2 for an explanation of this value of k.
22 The only such seven-note scale.
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4.3.2 Musical meaning

A word of caution is in order: when considering the character of a pc-set (diatonic, whole-
tonic, etc. . . ) we usually compare the respective magnitudes of appropriate Fourier coeffi-
cients. But it could well be argued that these magnitudes should be weighted: for instance,
coefficient a2 can be as large as 6 (for a whole-tone scale) but a5 (or a1) is never more than√

2 +
√

6 (Guidonian hexachord). However, these limitations fall when one drops genuine
pc-sets and considers continuous DFT, even if the musical notions underlying, say, a regular
division in seven of an octave, are more virtual than real. In balancing these arguments, I
prudently chose not to choose and left the comparison of magnitudes of Fourier coefficients
as is, though perhaps with a modicum of salt. For instance, the jingle for la Société Nationale
des Chemins de Fer created by Michael Boumendil (which I quote because David Gilmour,
Pink Floyd’s lead guitarist, fell in love with it and used it as a leitmotif in his song Rattle
That Lock: see https://www.youtube.com/watch?v=L1v7hXEQhsQ) arpeggiates
a seventh chord CGA�E�; the corresponding profile in Fig. 8.12 shows a large a3, i.e. ‘major
thirdishness’ or ‘augmentedness’, which indeed correlates with the presence of three thirds
(two major, one minor). But the value of |a5|, though only 2/3 of |a3|, is comparatively large
because it is closer to the maximum theoretical value for a5 (indeed, the pc-set is almost
saturated in fifths), and hence the pc-set is also fairly diatonic, which is good for rock music.

The six characters

We may as well begin with clarifying the meaning of saliency for coefficients
1,2,3,4,5,6 in Z12. I take them from the easiest to the less obvious. Examples are
provided on Fig. 4.14.

chromatic augmentedtritonic/quartal

diatonicoctatonic whole-tonic

Fig. 4.14. Examples of the six characters

• The sixth is easiest to understand, especially using Quinn’s (weighing) ‘scales’:
this coefficient is greater when its pcs concentrate in one of the two whole-
tone scales. It is uncontrovertibly the whole-toneness. Clear-cut examples can
be found on Figs. 8.23, 8.15, 8.23; a more ambivalent case is the Guidonian hex-
achord in Fig. 8.23, a reunion of two whole-tone tetrachords CDE - FGA, but
with opposite polarities resulting in zero ‘whole-toneness’.
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• As we have already discussed at length, the fifth coefficient can well and truly
be called the diatonicity of a pc-set: it has everything to do with the tonal char-
acter (or alternatively the generatedness by fifths) which marks pentatonic and
diatonic scales among other prominent specimens, see Fig. 8.18 and 8.29 or even
8.7 (CFG) and 8.8 (CDE).23 Notice that the rather large index 5 discriminates
dramatically between just and diminished fifths, since a tritone has nil a5 but a
fifth is the maximal dyad for this saliency, cf. Example 4.32 below.

• Third and fourth mark on the one hand generatedness (or saturation) in major and
minor thirds respectively, but minor(major)-thirdishness is a somewhat ambigu-
ous notion: among subsets with similar cardinality, any subset of a diminished
seventh features a maximal magnitude for a4, but so does the octatonic scale
(among eight-notes pc-sets); and I can agree with J. Yust who dubs octatonic
the pc-sets with large a4 – they are usually subsets of some octatonic scale. As
for major thirdishness, I like to think of it as ‘augmentedness’, good prototypes
being the augmented triad or the ‘magic’ hexachord {0,1,4,5,8,9} (also called
‘ode to Napoleon’), cf. Fig. 8.24.

• From the discussion above, one could wonder whether a large a1 corresponds to
many semitones or many (major) sevenths, but the issue is not large and we will
call chromatic any pc-set with a comparatively large a1. However it should be
noticed that too many notes will perforce diminish this coefficient. For instance,
the scale B C D� E F G A� or {0,1,4,5,7,8,11} has a1 = 0 (see [67] and Fig.
8.28) though it features many semitones. Notwithstanding, decent prototypes are
chromatic chunks of lengths 4 to 6, i.e. Figs. 8.14, 8.22, 8.27 with chromaticities
equal respectively to 3.35,3.73,3.86. These coefficients are less sensitive than a5:
a major triad is generated neither by major nor minor thirds but both coefficients
a3,a4 (and of course a5 too) are fairly large.

• The more troublesome coefficient is a2. Yust uses Messiaen’s Limited Trans-
position Mode M5 = {0,1,2,6,7,8} as a prototype (Fig. 8.25), together with
M4 = {0,1,2,3,6,7,8,9} (Fig. 8.30) which sports almost the same value (and
is more frequently used, if only in R. Wagner’s Tristan, cf. [5]). I like the ne-
ologism tritonic to qualify pc-sets with large a2, though Yust’s quartal quality
is convincingly expostulated in his example of Ruth Crawford Seeger’s ‘White
Moon’ [98, 100].24 It is perhaps an artifact of working modulo 12, but as he
points out, this quality quite often goes with a lack of thirds and sixths, which
is a hallmark of some early 20th century music: for instance, the prominence of
this coefficient in B. Bartok’s Fourth Quartet can be arguably correlated to its
acknowledged ‘modernism’ [98].25

This classification makes it really easy to appreciate the character of any given pc-set:

23 Actually the Guidonian hexachord does slightly better than all other pc-sets, with 3.86
instead of 3.73 for the diatonic, a minor triumph for archeo-musicologists perhaps.

24 Sandburg Songs, n◦ 2.
25 And of course, if one Fourier coefficient is large, then the others are left less room, since

the sum of their squares is fixed.
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Example 4.32. Consider for instance the three aggressive fifths initiating C. De-
bussy’s La Puerta del Vino (Préludes, II): A�-D�, E-A, A-D, constituting the pc-set
{1,2,4,8,9}. Its Fourier profile can be found online or computed with the software
I provided with this book, or even roughly estimated: to begin with, the tritone (2,8)
can be cancelled out for any odd-indexed coefficient, leaving {1,4,9} to be exponen-
tiated and summed with diverse coefficients. Since this is very close to an equilateral
triangle ({1,5,9}) the coefficient a1 must be quite small, i.e. the pc-set is not chro-
matic (character 1). On the other hand, multiplying by 5 yields {5,8,9}, whereas
a maximum would be reached for {7,8,9}; hence our pc-set is somewhat diatonic
(bearing in mind though that only three of its five notes bear their weight on this
character). Most of the bulk is carried by the quartal quality: multiplying by 2 yields
the multiset {2,4,4,6,8} (after reordering) whose vector sum has magnitude close to
3 after cancellation of the tritone (2,8). The remainder is on the ‘augmented’ quality,
i.e. a3, which can be computed from multiset {3,0,3}.

All in all, this describes a non-chromatic, still diatonic but fairly modern pc-
set, which I would say is an accurate description of a listener’s intuitive perception.
Check its profile in Fig. 8.19.

Examples in modal music

Fig. 4.15. Voiles, Preludes vol I, C. Debussy
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In Voiles, C. Debussy opposes quite stringently two of those pure archetypes:
the whole-tone scale, which is used for most of the piece, and the pentatonic (black
keys) which occurs during the climax just before the last page, back in whole-tone
(Fig. 4.15). A deaf scientist, riveted to the meters of Fourier coefficients during the
piece, could not miss the exchange of high values between a6 (from concentration
in 6 down to 1) and a5 (from 2+

√
3 ≈ 3.7 down to 0) coefficients, even without

any knowledge of scales and music theory, cf. Fig. 4.16. The Fourier profiles are
provided separately in the tables, Figs. 8.23 and 8.18.

{0,2,4,6,8,10}{1,3,6,8,10}

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

Fig. 4.16. a5 and a6 in Debussy’s Voiles

This is caricatural of course, since traditional analysis of scale content gives the
same result quite easily. The point of Fourier analysis of saliency is that it can help
decide the character of (a passage of) a piece in less clear-cut cases. Less caricatural
perhaps is the pivotal oscillation between the first and middle section, playing on the
intersection of the two pc-sets {6,8,10}, i.e. G�A�B�: again set-theoretic considera-
tion provides an adequate explanation of this move (around A� which happens to be
a common center of symmetry of both scales), but it does not hurt to recall that the
pc-set {6,8,10} is both whole-tonic and diatonic, i.e. with both a5,a6 large, see the
central peak in Fig. 8.8.

A more striking example of the efficiency of DFT magnitude is Yust’s analysis in
[98] of the beginning of Bartok’s Fourth String Quarter IV’s movement iv, wherein
the melody plays an acoustic scale opposing the accompaniment on DE�GA�, see
fig. 4.17.

A much more detailed analysis is to be found in the reference given. Here we
will simply observe that classical comparison of these two pc-sets is difficult, and
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Fig. 4.17. Bartok’s String Quartet 4, iv, mm 6-12

that the analyst is tempted to resort to subjective qualities of the scales involved,
while confrontation of the DFT’s magnitudes is illuminating, see Fig. 4.18.

{0,2,3,5,6,8,10}{2,3,7,8}

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

Fig. 4.18. DFT magnitudes of melody and accompaniment in Bartok’s String Quartet 4, iv,
mm 6-12

The second component, the quartal or tritonic quality, is nil for the acoustic scale
in the melody, but large for the bass. Indeed, the latter shows a decidedly atonal
quality. Conversely, the whole-toneness of the acoustic scale is large (|a6|= 3) while
the accompaniment’s is nil, its four notes being equally distributed in the two whole-
tone scales, i.e. Quinn’s two ‘pans’. The values of the first (chromaticity) and fifth
(diatonicity), while not as contrasted as second and sixth, are also very revealing of
the opposite characters of melody and accompaniment.

Magnitude of Fourier coefficients can help resolve old conflicts. In [100], Yust
observes three clearly diatonic voices in Stravinsky’s Three Pieces for String Quar-
tet, first movement, namely GABC, C�D�EF� and CD�E� (cf. Fig. 4.19 and their
Fourier profiles respectively on Figs. 8.17, 8.16 and ??), whose large coefficents a5
more or less cancel each other out when the pc-sets are reunited, according to their
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Fig. 4.19. Pc-content of three instruments in Stravinsky’s Three Pieces for String Quartet, first
movement

balanced phases around the circle26, as formulated in Proposition 6.2; the union of
these three pc-sets is CC�D�EF�GAB, close to an octatonic collection (see profile in
Fig. 8.32 with its spikes on a4, even more pronounced if one unites the three voices
in a multiset, not a set). The octatonic character of this movement is confirmed by
the magnitude of a4 for the second violin and cello.

Traditional set-theoretic analysis (using subset relationships or ‘historical’ argu-
ments) of this passage and numerous others had so far spectacularly failed to achieve
unanimity, see the fur fly between [92], [93] and more recently [91], [84] (I borrow
these references from Yust). This kind of issue can now very easily be resolved, sim-
ply by measuring |a4|, or looking it up on the Fourier profiles of pc-sets in Stravin-
sky’s scores.

Tropes

Hex. 1 Hex. 1Hex. 2 Hex. 2

Fig. 4.20. First phrase of Webern op. 27, n◦ 1 (retranscribed)

26 We will see that the phase of a5 locates a pc-set on the circle of fifths.
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A very common occurrence in dodecaphonic music is the division of the twelve
tones in two hexachords, or ‘tropes’. It is a golden opportunity to use Babbitt’s the-
orem, either from the intervallic point of view, or using DFT. This is effective on
almost any example, such as the first bars of Webern’s first movement of Variationen
op. 27 (Fig. 4.20).27 The first hexachord is divided between the two hands28 in two
trichords, FEC� and BF�G. The DFT magnitudes of both trichords and their reunion
(dotted line) are shown in Fig. 4.21.

1 2 3 4 5 6 7 8 9 10 11
0

4
| ( )|

{ } { }

Fig. 4.21. Decomposition of a hexachord in Fourier space

The most interesting coefficient is the third, which is the highest valued for both
trichords though it is nil for the hexachord. This brings us a taste of the analysis of
directions, or phases, of Fourier coefficients, that will be developed in Chapter 6.

Remember that a3 is about the ‘major-thirdishness’ (or ‘augmentedness’): specif-
ically, FEC� alias {1,4,5} has a large a3 = 1− 2i (with magnitude

√
5) that points

towards the closest pc-multiset with maximal third coefficient on the continuous pitch
circle, i.e. {0.5,4.5,4.5}, subset of an augmented triad. The other trichord has oppo-
site a3 = 2i−1, because29 {6,7,11} is closest to {6.5,6.5,11.5} which is in perfect
opposition with the other augmented triad position. To sum it up, both trichords have

27 Actually this part is often analysed as a superposition of the tone-row and its retrograde. At
first hearing however what is perceived is what I develop here.

28 It is known that this division was very important for the composer, who strongly opposed
easier fingerings proposed by his pianist Peter Stadlen. However, no less a pianist than
Glenn Gould suppressed the high-risk hand-crossing at the beginning of the second half of
variation 2.

29 One could also use a symmetry argument.
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a strong augmented flavour, but live in opposite directions of the harmonic spectrum
in that respect, so that they neutralise each other, cf. Fig. 4.22.

2 - i

i - 2i

-3 x {1, 4, 5} -3 x {6, 7, 11}

Fig. 4.22. Coefficients a3 for both trichords are opposite

The fourth coefficient is a simpler situation: {6,7,11} is devoid of any minor-
thirdish/octatonic flavour (it touches all three diminished sevenths) and the whole
minor-thirdishness of the hexachord is supported by the first trichord, {1,4,5}. For
all other coefficients, the trichords more or less combine their strengths into the hex-
achord’s. The overall picture of this hexachord is highly chromatic, and somewhat
whole-tonic (high values of first and sixth).

1 2 3 4 5 6 7 8 9 10 11
0

4
| ( )|

{ } { }

Fig. 4.23. Decomposition of the complement hexachord
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It should come as no surprise that the second, complementary hexachord has the
same Fourier distribution! But the decomposition into trichords introduces a slightly
different fragrance: as we can see in Fig. 4.23, the (still opposite) third coefficients
are much smaller (±i). Here it is a very chromatic trichord {8,9,10} that is devoid
of any specific diminished character (fourth coefficient nil), and the whole of this
dimension in the hexachord is carried by the other trichord {0,2,3}.

All in all, this shows that despite the absence of isometry, the choice of contrasted
constituent trichords enhances the balance between the hexachords, which goes well
with Webern’s use of symmetries in all three variations.

Another famous and much analyzed dodecaphonic example is the initial tone-
row of Berg’s Lyrische Suite op. 28 (Fig. 4.24). The following analysis adds a new
perspective to the traditional analysis of hidden (fourth/fifth) cycles, like [71].

Fig. 4.24. DFT profile of the initial seven notes (or last five).

This time, there are conjoint rhythmic, melodic and dynamic reasons to segment
this series into 7+5 notes, cutting between the high A� and the sequel. Of course,
the DFT of FECAGDA� is identical (except the 0th coefficient) with the DFT of the
remainder D�E�G�B�B, by Babbitt’s generalised theorem. However the shape of Fig.
4.24 deserves commentary.

The large fifth (or seventh) coefficient is known as an indicator of diatonicity.
Indeed, both parts are close to diatonic and pentatonic respectively (rotating the last
B to the beginning of the series would allow a perfect decomposition of this sort). If
we remove the A� (equivalently, we may decide to segment the phrase before the A�,
the two hexachords are isometric a tritone away), it yields the Guidonian hexachord,
which has a neat DFT profile (see Fig. 8.26) with maximal diatonicity (it is saturated
in fifths), and nil even coefficients, enhancing the contrast with the fifth content –
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which is rhythmically obvious when one picks every other note, getting fifths FC,
EA, CG, AD. . .

Another well-known feature of this tone-row which deserves further comment
is the structure of consecutive intervals: though we know (from Babbitt’s theorem
again) that the overall intervallic structures of both parts are equal (up to a constant
since their cardinalities differ here), the composer manages to pick up different con-
secutive intervals. Specifically, if interval δ = b−a appears between two consecutive
notes in the first seven, the opposite interval appears in the sequel (e.g. FE vs. B�B).
This is a delicate construct to achieve by hand, and I leave it to the reader to con-
struct the 48 ‘all-interval series’ beginning with the seven white keys in some order
(the last being precisely Berg’s tone-row, up to a cyclic permutation).

I think that it is not so far-fetched to infer from this example one reason why
Berg seems more amenable to untrained ears (in 20th century music): even in do-
decaphonic music, he manages to keep a significant diatonic character. This idea is
not original, but it can now be checked scientifically by using DFT. For instance,
segmenting his sonata op. 1 every two seconds, the value of |a5| on each segment
averages 1.57, a significantly large value. This should be researched more inten-
sively of course30, studying motives and especially hexachords throughout his work
vs. Webern’s and Schönberg’s. I will venture just another (well-known) example of
clear diatonicity in Berg, the initial and last bars of his Violin Concerto arpeggiating
fifth cycles (as a four-note cycle and then a diatonic F major scale), and the main
tone-row featuring remarkably diatonic hexachords, see Fig. 4.25.

Fig. 4.25. First bars and tone-row in Berg’s Violin Concerto, with its hexachords’ clearly
diatonic Fourier profile

30 I carried out a cursory analysis of Berg’s Vier Stücke op. 3, an ‘intermediate’ piece, atonal
but not yet dodecaphonic; interestingly, it seems to exhibit much lower values of a5.
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In conclusion, DFT now provides precise, objective, quantitative measurements
of diatonicity (or octatonicity, or whole-toneness, etc.) for almost any given piece of
music.

4.3.3 Flat distributions

FLIDs

In his talk at the first MCM convention (Berlin 2007), Canadian theorist Jonathan
Wild introduced FLIDs – Flat Interval Distribution Sets. The idea was a generalisa-
tion of the famous case of ‘all-interval pc-set’, e.g. for A = {0,1,3,7} ⊂ Z12, every
interval occurs exactly once (except the tritone, because 7−1 is the same as 1−7= 6
modulo 12).

Definition 4.33. A ⊂ Zn is a FLID if IC(A)(k) is constant for k = 1,2 . . .n/2.

Wild allowed the tritone interval n/2 when n is even, or else there are no possible
FLIDs since a tritone must occur twice or not at all (n/2 =−n/2)31; we cannot take
this view here because of Theorem 4.36 below and hence restrict FLIDs to odd values
of n. One index which cannot be taken into account is 0, because IC(A)(0) is always
the cardinality of A, larger than all other possible values of IC(k).

Actually the notion has been well studied in combinatorics under the name
of ‘difference sets’. There is a nice relationship with block designs32: if D =
{d1, . . .dk} ⊂ Zn is such that any b �= 0 in Zn can be expressed in λ different ways as
di −d j, then the D+ τ,τ ∈ Zn, form a (n,k,λ ) block design.

Example 4.34. Let n = 11 and consider the quadratic residues, i.e. all squares re-
duced modulo n (for instance 52 ≡ 3 mod 11). Their set, D = {0,1,3,4,5,9} is a
3-FLID: in D − D all possible values (except 0) occur thrice, see Fig. 4.26 (this
construction, known as Hadamard difference sets, works for prime powers n ≡ 3
mod 4). The associated block design is (11,6,3): any pair of translates of D, e.g. D
and D+3 = {1,3,4,6,7,8}, intersects in exactly three points.

The last example is invariant under multiplication (squares of multiples are
squares). More generally, since affine maps permute the values of the IC33, we can
state that

Proposition 4.35. Any affine transform of a FLID A ⊂ Zn (i.e. any aA + b for a
coprime with n) is also a FLID.

31 If the tritone is counted only once, then {0,1,3,7} mod 12 or {0,2,3,5} mod 6 (i.e. the
French augmented sixth A�CDF� as a subset of a whole-tone scale) are FLIDs. A variant
of Theorem 4.36 below could be established for this generalised definition, with the DFT’s
magnitude oscillating between two close values.

32 A block design (n,k,s) is a collection of k-subsets of a n-set such that any pair of subsets
shares s elements. When s = 1,A is called a projective plane, like the famous Fano plane
which is the reunion of the seven ‘lines’ {0,1,3}+ τ in Z7 which intersect one another in
one point exactly.

33 Under the bijection x �→ ax+b, any interval δ is mapped to aδ .
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- 0 1 3 4 5 9

0 0 10 8 7 6 2

1 1 0 9 8 7 3

3 3 2 0 10 9 5

4 4 3 1 0 10 6

5 5 4 2 1 0 7

9 9 8 6 5 4 0

Fig. 4.26. Differences mod 11 of D = {0,1,3,4,5,9}.

Hence two such sets are usually considered equivalent if one is the affine image of
the other.

Since affine maps also permute Fourier coefficients, this yields a neat proof of
the easy implication of the following theorem, which links intervals and Fourier co-
efficient distributions:

Theorem 4.36. A is a FLID iff its Fourier transform is flat. More precisely,

IC(A) = (d,m,m,m . . .) ⇐⇒ |FA|2 =
(
d +(n−1)m,d −m,d −m, . . .d −m

)
.

Remark 4.37. By a continuity argument, this means that the dispersion of values of
the DFT (the 0th coefficient excepted) is correlated to the dispersion of the intervallic
distribution: both are nil for FLIDs. We have studied the opposite case before: max-
imum values for one Fourier coefficient coincide with maximum occurrences for a
given interval. Explicit but messy formulas for these dispersions can be computed.

Proof. The direct implication is straightforward, since ÎC(A) = |FA|2: for IC(A) =
(d,m,m,m . . .) one computes its Fourier transform,

|FA|2(k) = d +
n−1

∑
t=1

me−2iπkt/n = (d −m)+
n−1

∑
t=0

me−2iπkt/n = d −m for k � 1.

The value in 0 is the ‘cardinality’ of IC(A), i.e. the sum of its elements d+(n−1)m.
The reverse implication is trickier. My original proof in [13] uses the algebra of

circulating matrixes isomorphic with Fourier space. Here is a shorter one with DFT
only, but it is not constructive.

Assume that |FA|2 is flat, i.e. |FA|2 = (k, �, �, � . . .) for some k, � ∈ R+. Define
d,m ∈ R such that d − m = �,d + (n − 1)m = k; then by the direct computation,
the Fourier transform of the distribution f = (d,m, . . .m) is |FA|2. Since DFT is
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bijective, and ÎC(A) = |FA|2 = f̂ , we have IC(A) = f = (d,m, . . .m), i.e. IC(A) is
flat.

Large determinants

An equivalent characterisation stems from the following remark. The determinant
of the circulating matrix associated with A (see Section 1.2.3) is simply the pro-
duct of its Fourier coefficients: det(A ) = ∏

k
FA(k). Consider |det(A )|2, which is

the product of the Fourier coefficients of IC(A). From Parseval-Plancherel’s identity
(Theorem 1.8),

∑
k∈Zn

|FA(k)|2 = nd where d = #A.

As we have stated again, FA(0) = #A cannot vary. But in order to maximise
the product of the other Fourier coefficients ∏n−1

k=1 |FA(k)|2 under the condition
∑n−1

k=1 |FA(k)|2 = (n−d)d, one must have them all equal.34 Hence

Proposition 4.38. Among all d-subsets A∈Zn, the maximal possible value of |det(A )|
is reached when A is a FLID.

Geometrically, this means that the columns of A are the least colinear as possible,
i.e. that the translates A,A+1,A+2 . . . are as much apart (in Rn) as possible i.e. that
their mutual angles are as close to a square angle as possible.

FLIDs do not exist for any pair (n,d)35, but this yields an explicit universal ma-
joration:

#A = d ⇒ |det(A )|� d
(

d
n−d
n−1

) n−1
2
.

For instance, for 4-subsets of Z12, the maximum determinant is reached for the all-
intervals tetrachords {0,1,3,7} (or {0,1,4,6}) and is equal to 1,024, though the for-
mula’s upper bound yields about 1,421; there are no genuine FLIDs in Z12 because
of the tritone doubling.

Perhaps this notion of the size of the determinant should warrant additional re-
search. Obviously it is

• nil for subsets which tile;
• small for subsets with irregular interval distribution, like ME sets;
• and maximal for FLIDs.

FLIDs which tile

When the multiplicity m of all intervals in a FLID A is equal to 1, we reach a very
interesting situation, because A tiles almost all of Zn:

34 This is well known and can be proved for instance with convexity arguments.
35 At least if one insists on actual pc-sets, i.e. distributions with values in 0-1.



126 4 Saliency

Definition 4.39. A Golomb ruler is a set A such that all difference values occur ex-
actly once:

ai −a j = ak −al ⇐⇒ (i, j) = (k, l)

It is perfect if all possible values (except 0) are obtained once, i.e.

IC(A) = (d,1,1,1 . . .).

A Sidon set is a set A such that all sum values occur exactly once:

ai +a j = ak +al ⇐⇒ (i, j) = (k, l)

It is complete if all possible values (except 0) are obtained once, i.e. A tiles a subset
of Zn.

Hence a perfect Golomb ruler in Zn is a 1-FLID.

Proposition 4.40. Sidon sets = Golomb rulers.

Proof. ai − a j = ak − al has a unique solution ⇐⇒ ai + al = ak + a j has a unique
solution.

This trivial proposition yields a very nice link between intervallic studies and tilings;
unfortunately there is no way these sets can provide true tilings of the whole of
Zn. For instance {0,1,3} only tiles {0,1,2,3,4,6} in Z7. Even almost FLIDs like
{0,1,4,6} in Z12 cannot tile without overlapping36 since

Proposition 4.41. An all-interval set intersects any of its translates. The cardinality
of the intersection A

⋂
(A+ t) is IC(A)(t).

Though difference sets are mostly studied in Z (or even larger structures) they
deserve a mention in this book. 37 For one thing, Sidon originally created the eponym
sets during his investigation of Fourier series.38 Some very specific constructions are
known which yield spectacular results.

For instance, in [80] Singer inadvertently constructed a superb 1-FLID39, alias
Sidon set:

Theorem 4.42. For any prime p there exists a subset A of Zn with p+ 1 elements,
where n = p2 + p+1, such that the intervallic distribution is uniform: IC(A)(k) = 1
for all k (except k = 0 of course).

36 Composer Tom Johnson has practiced with graphs between pc-sets with the relationship
‘not intersect’, see for instance [52].

37 See also the notion of spectral set which can be expressed in terms of differences, cf. Propo-
sition 3.58.

38 Sidon sets are still instrumental in the study of lacunar and/or random Fourier series in
Harmonic Analysis.

39 The construction also yields
(

pn+2 −1
p−1

,
pn+2 −1

p−1
,

pn+2 −1
p−1

)
difference sets, cf. [29].
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The construction is non-trivial, making use of cubic extensions of finite fields (which
appear to crop up often, quite unexpectedly, in tiling theory, see [6] for instance).
Examples are {0,1,4,6} for p = 3,n = 13 or {0,1,4,6,13,21} for p = 5,n = 31 or
{0,1,6,15,22,26,45,55} for p = 7,n = 57.

It is easy to check [29] that for these distributions

Proposition 4.43.

∀k �= 0 FA(k) =
√

p.

Proof. This a special case of Theorem 4.36 which also yields the reciprocal. In this
case, one can compute directly

|FA(k)|2 = FA(k)FA(k) = ∑
x,y∈A

e−2iπk(x−y)/n

= ∑
x,y∈A,x �=y

e−2iπk(x−y)/n + ∑
x∈A

e−2iπk(x−x)/n

=
n−1

∑
z=1

e−2iπkz/n + ∑
x∈A

e0 =−1+(p+1) = p.

For practical purposes, it is often convenient to assume that the Singer set begins with
(0,1) (up to affine transform). A feature these sets share with FLIDs is the stability
of their class under affine transformations, since these transformations only permute
the interval distribution. Jon Wild sent me the following collection of FLIDs/Singer
sets in Z31:

(0,1,3,8,12,18),(0,1,4,10,12,17),(0,1,16,18,22,29),
(0,1,11,19,26,28),(0,1,15,19,21,24)

which are all affine images one of another40 and can be arranged to tile Z∗
31 with

appropriate translations.41 This is an instance of different but homometric tiles which
have perfectly balanced saliency for all coefficients. It might seem strange that the
tiles have no nil Fourier coefficients in this situation. But it could be surmised from
the fact that they tile Zn \{0}, complement of the Dirac distribution (neutral element
for ∗), whose DFT is non singular (it is (n−1,−1,−1,−1,−1, . . .)).

Fig. 4.27. Tiling with different Singer sets modulo 31

40 See in exercises.
41 He also found tilings with two or four tiles out of these five.



128 4 Saliency

The interplay with the affine group suggests looking for stability features. Quite
often, a Singer set A (or a FLID, actually) is invariant under an affine map or simply
multiplication by a constant, i.e. pA = A.

Definition 4.44. Such a p is called a multiplier of A. The set of all multipliers of A is
a subgroup of Z∗

n.

For instance (1,2,4) in Z7 has multiplier 2: it is actually the orbit of 1 under multi-
plication by 2. In the above example, if A = (0,1,4,6,13,21) we can see that 5A =
(0,5,20,30,65 = 3,105 = 12), i.e. 5A+ 1 = (0,1,4,6,13,21) = A or 5(A+ 8) =
A+8, i.e. 5 is a multiplier of A+8 = (8,9,12,14,21,29) = (1,5,25)⊗ (8,12). It is
conjectured that in general, some translate of a FLID has multipliers.42 This might
be interesting for composers who play with affine transforms, and should perhaps
warrant exploration with non-commutative Fourier transform in the affine group.

To round up this discussion and generalise the last example, let us mention that
other tilings of Zn \{0} by augmentation have been discovered in investigating com-
poser Tom Johnson’s autosimilar melodies [54]. To quote him, the absence of 0 is
a welcome respite – he devotes a whole chapter to ‘punching some holes in the
melody,’ because:

The musical interest can be quite a bit greater after punching some holes,
however. The different durations define themes with more character, that can
be more easily recognised, and this is a great advantage when we are trying
to hear the theme in two or three different tempos.

Example 4.45. Consider motif A = {1,2,4}. It is an orbit of x �→ 2x22 in Z7. The other
orbit is {3,6,12 = 5}. Thus A

⋃
3A = {1,2,3,4,5,6}. From there, one can associate

one note to each orbit and thus reach a melody with ratio 2 autosimilarity (picking
every other note yields the same melody, twice slower); or tile Z∗

7 with a cross-section
of the orbits – say S = {2,3} – and its augmentations {4,6} and {1,5}, see Fig. 4.28
with the autosimilar melody first, then the tiling by augmentation.

Fig. 4.28. Autosimilar melody and dual tiling by augmentation

For a larger example, take n = 31,A = {1,2,4,8,16}.
The other orbits, 3A= {3,6,12,17,24},5A= {5,9,10,18,20},7A= {7,14,19,25,28},

42 At least when p divides n−m. This is equivalent to invariance under (some kind of) affine
transformation.
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11A = {11,13,21,22,26} and 15A = {15,23,27,29,30}, partition Z∗
31. Now choose

any cross-section of these orbits, say S = {1,3,5,7,11,15}; another partition uses
S,2S,4S,8S,16S. This enables one to construct a tiling by binary augmentation, see
Fig. 4.29, reminding of Fig. 4.27.

Fig. 4.29. Tiling by augmentation modulo 31

Finally, there are tilings of the complement of a subgroup using all different ratios
of augmentation exactly once: in [53], T. Johnson cites a tiling with augmentations
of {0,1,3} with ratios 1,2,3,4,5,6,7,8 which leave aside all beats congruent with 2
mod. 3, see Fig. 4.30. More complicated examples are also mentioned but we are
straying away from the topic of this book. See [4], online supplementary, for details
and generalisations.

An open question is the characterisation of these objects by way of using Fourier
transform of the multiplicative abelian group Z∗

n, whose structure varies a lot ac-
cording to the value of n and boils down to multidimensional DFT because of the
decomposition of any abelian finite group into a product of cyclic groups.
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Fig. 4.30. Tiling with 013 and augmentations, leaving holes every third eighth-note
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Heisenberg’s uncertainty principle

We have now seen enough varied material, from both ends of the spectrum so to
speak, that we can perhaps address some broader issues. I will broach the question
of the cardinality of A (i.e. pcs, for scales or chords, or beats, for periodic rhythms)
vs. the zeroes of FA which have been so important in different situations.

Much of the material in this book addresses questions of retrieval (phase retrieval
for homometry, support retrieval for a complement of a tiling motif, and so on).
There is a definite advantage then, when the number of coefficients to retrieve is
small. This can be foretold in some measure. It is well known, at least informally,
that the DFT spreads when the information (size of time window, sampling, smaller
periodicity. . . ) decreases. A few examples:

• If A has a period d | n, A has at least n/d elements and FA is nil except on the
subgroup with d elements.

• If A is a FLID (see 4.3.3) then #A may be small but FA never vanishes.
• If A tiles Zn, then #A divides n, i.e. is usually comparatively small; FA vanishes

on Z(A), the union of all elements whose order belongs to R(A) (a reunion of
orbits of the action of Z∗

n, cf. Theorem 3.11) and hence a sizeable subset of Zn.
Besides, if A tiles with B, then #Z(A)+#Z(B)� n−1 while #A×#B = n.

These relationships between the zeroes of FA and those of 1A can be quantised
by the following result, commonly used by researchers in various fields but not re-
ally pointed out in textbooks, and reminiscent of Heisenberg’s famous inequality in
quantum physics:

Theorem 4.46 (Discrete Uncertainty Principle).

Let f be a distribution on Cn, f̂ its DFT, and let Supp( f ) stand for {x ∈ Zn |
f (x) �= 0}. Then

#Supp( f )×#Supp( f̂ )� n

This means that if f̂ has few zeroes then f has many, and conversely. Notice that
Supp( f̂ ) is just the complement of the zero set of the Fourier transform.

Proof. Recall Parseval-Plancherel equality (Theorem 1.8):

∑ | f̂ (k)|2 = n∑ | f (k)|2,
and plug in the following elementary inequalities:

sup | f (x)|= sup
x

∣∣∣∣∣1
n ∑

k
f̂ (k)e2iπkx/n

∣∣∣∣∣ � 1
n ∑

k
| f̂ (k)| (inverse DFT)

∑ | f (k)|2 = ∑
k∈Supp( f )

| f (k)|2 � #Supp( f )× sup | f (x)|2

∑ | f̂ (k)|= ∑
k∈Supp( f̂ )

1×| f̂ (k)|

�
√

∑
k∈Supp( f̂ )

12
√

∑
k∈Supp( f̂ )

| f̂ (k)|2 =
√

#Supp( f̂ )
√

∑ | f̂ (k)|2,
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this last one being Cauchy-Schwarz inequality. Combining all this,

∑ | f̂ (k)|2 = n∑ | f (k)|2 � n#Supp( f )sup | f (x)|2 � n#Supp( f )

(
1
n ∑

k
| f̂ (k)|

)2

� 1
n

#Supp( f )#Supp( f̂ )∑ | f̂ (k)|2,

hence the result.

The inequality is sharp: if n is a square n = d2 then for A = {0,d,2d, . . .d2 − d} =
dZn, the DFT FA is proportional to 1A itself and both supports have d elements.

Improvements of this lower bound are known in the case of very simple cyclic
groups (for instance when n is prime) – see [83] from which I borrowed much of this
section – but are so far of little interest to musicians.

It should be noted that the extreme cases of maximal vs. nil Fourier coefficients
are by no means contradictory. It could even be argued that an ubiquitous motif like
CDE (“Brother John”. . . ) owes much of its versatility to the dual facts that on the
one hand it tiles, having several nil Fourier coefficients (a2,a4 . . . ), but on the other
hand it exhibits strong characters: a6 is maximal since CDE is a chunk of whole-tone
scale, cf. Fig. 8.8.

Exercises

Exercise 4.47. Generated scales: peruse the online catalog for Fourier profiles of
generated scales in Z12, on

http://canonsrythmiques.free.fr/MaRecherche/photos-2/.

Exercise 4.48. Saturation: find musical instances of pc-sets saturated in major thirds,
like {0,1,4,8} or {0,1,4,5,8}.

Exercise 4.49. Generated scales: create a scale with 20 generators in some Zn.

Exercise 4.50. Generated scales: find other occurrences of the complement set of the
tresilo rhythm in tango or elsewhere.

Exercise 4.51. ME sets: compute instances of ME(11,7),ME(19,7),ME(24,7) (‘diatonic
scales’ in other divisions of the octave).

Exercise 4.52. ME sets: find some other type III ME sets.

Exercise 4.53. Saliency: using the online catalog of Fourier profiles, study the salien-
cies of some pc-sets in a musical piece of your own choosing. Early 20th century is
a good starting point.

Exercise 4.54. FLID: find some FLID, for instance the Hadamard kind for n = 23 or
n = 43, and check its interval content.
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Exercise 4.55. FLID: prove Proposition 4.41.

Exercise 4.56. Singer sets: find the affine maps transforming the first motif in Fig.
4.27 in each of the others. Check that they are indeed Singer sets.

Exercise 4.57. Pick up a tiling A⊕B=Zn in the examples given or otherwise. Check
Heisenberg’s uncertainty principle on each factor.
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