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Nil Fourier Coefficients and Tilings

Summary. Originally, vanishing Fourier coefficients appeared as an obstruction: they impede
phase retrieval and prevent, for instance, the solution of Lewin’s problem (find A knowing B
and IFunc(A,B)). But recent research and problems shed a more positive light: for instance
the set Z(A) of indexes k such that ak = 1̂A(k) = 0, a highly organised subset of Zn, is now
the fashionable introduction to a definition of tilings. The theory of tilings is a crossroad
of geometry, algebra, combinatorics, topology; and one of those privileged domains where
musical ideas enable us to make some headway in non-trivial mathematics. Here the notion
of Vuza canon together with transformational techniques (often introduced by composers)
allowed some progress on difficult conjectures. More generally, tiling situations provide rich
compositional material as we will see later in this book, cf. Section 4.3.3. In that respect, I
included in this chapter Section 3.3 on algorithms ( for practical purposes, though there are
some interesting theoretical implications in there too.

We will need some additional algebraic material on polynomials, which is introduced
in the preliminary section. A few more technical results of Galois theory are recalled and
admitted without proof.

Cyclotomic polynomials

We will require the notion of cyclotomic polynomial. The etymology is telling: much
of our work relates to ‘splitting the circle’, and this notion is the most powerful tool
to do it.

Lemma 3.1. Let Φm(X) = ∏(X −ξ ) where ξ runs over the set of roots of unity with
order exactly m, i.e. ξ m = 1 but ξ p �= 1 for 0 < p < m. In other words,

Φm(X) = ∏
k∈Z∗

m

(X − e2iπk/m).

Then Φm ∈ Z[X ] (it has integer coefficients) and Φm is irreducible in the ring Q[X ]
(or Z[X ]): any divisor of Φm is a constant or Φm itself.

Proof. The non-obvious point is the irreducibility in Q[X ], we refer the curious
reader to textbooks or the Internet. The integral character of the coefficients derives
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52 3 Nil Fourier Coefficients and Tilings

from the following formula, each polynomial being monic. It is also an effective way
of computing these polynomials by Euclidean division:

Xn −1 = ∏
d|n

Φd(X) (3.1)

For instance for n = p prime, we get Φp(X) =
X p −1
X −1

= 1+X + . . .X p−1.

The meaning of this is that any rational polynomial which vanishes in some root of
unity must be divisible by Φm, i.e. it also features all other roots with the same order.
Actually this is one way to prove the irreducibility, using the Galois automorphisms
of the cyclotomic field which permutes roots with the same order so that any poly-
nomial featuring the factor (X −ξ ) in C[X ] also features (X −ξ ′) if ξ ′ has the same
order.

By induction one derives the following from formula 3.1:

Proposition 3.2. Φn(1) is equal to

{
p if n is a prime power pα

1 else
.

3.1 The Fourier nil set of a subset of Zn

3.1.1 The original caveat

It is now clear that when Lewin wrote his first paper [62] wherein he considered the
question of identifying A from the knowledge of another pc-set B and IFunc(A,B),
he had in mind the formula

1A ∗1−B = IFunc(A,B) ⇐⇒ FA ×FB = ̂IFunc(A,B).

However he could only allude to Fourier transform (and even that earned him
outraged reactions from readers of the Journal of Music Theory). So perhaps he was
right in stating the condition that FB vanished in less mathematical terms. However,
‘Lewin’s conditions’ are far from convenient. Let us enumerate these cases1 which
prevent2 recuperation of one pc-set from its intervallic relationship with another:

1. the whole-tone scale property

A chord has this property if it “has the same number of notes in one whole-tone
set, as it has in the other [whole-tone set].”

2. the diminished-seventh chord property

A chord has this property if it “has the same number of notes in common with
each of the three diminished-seventh chord sets.”

3. the augmented triad property

A chord has this property if, “for any augmented-triad set A, [it] has the same
number of notes in common with T6(A),3 as it has in common with A.”

1 We use a more synthetic presentation [63] than the original one [62] which is frankly un-
readable.

2 See however the new method in Section 2.2.2 above.
3 As usual in music theory, Tk(A) = A+ k denotes the transposition by k semitones.
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4. the tritone property

A chord has this property if “for any (0167)-set K, [it] has the same number of
notes in common with T3TT (K), as it has in common with K.” This is equivalent to
keeping the difference of notes between the intersection with a tritone T and its
translate T3TT (T ) a constant, hence the original name.

5. the exceptional property

A chord has this property if it “can be expressed as a disjoint union of tritone sets
and/or augmented-triad sets” (the original definition enumerated no less than 10
sub-cases).

The least one can say about these properties (especially the last two) is that they
are not exactly straightforward, especially when compared to the concise ‘FAFF (k) =
0’ (respectively for k = 6,4,3,2,1 as we will develop below). More precisely, they
originate in the nullity of several specific Fourier coefficients, respectively (at least)

1. The 6th for the whole-tone property;
2. The 4th and 8th for the diminished-seventh property;
3. The 3rd and 9th for the augmented triad property;
4. The 2nd and 10th for the “tritone” property;
5. The 1st ,5th,7th and 11th for the exceptional property.

See below the discussion around Theorem 3.11 for an explanation of this multiplica-
tion of nil Fourier coefficients. In Fig. 3.1, one can see an example for each situation,
following the order in which they are enumerated in the text.

The five special cases enumerated by Lewin

In his dissertation, Ian Quinn introduced a wonderfully telling implementation of
these conditions, in terms of ‘balances’ (the word here is taken in the non-musical
meaning of [weighing] ‘scale’, this word being admittedly misleading in the context).
For instance, the third one is expressed by the balance of four pans, each containing
the intersection of A with one of the four augmented triads, see Fig. 3.2. Though the
expression of the five conditions with Quinn’s balances has an aesthetic charm of its
own, it is still cumbersome to check whether a given pc-set will fail one of them. We
can provide a more synthetic characterisation of the ‘bad cases’ of Lewin’s problem:

Theorem 3.3. A distribution s has at least one nil Fourier coefficient iff the associ-
ated circulating matrix S is singular, which can be checked for instance with its
determinant (or rank).
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Fig. 3.2. Condition FA(3) = 0 is checked by pc-set {0,2,3,4,5,6,9,11}.

Example 3.4. One can check whether the melodic A minor {0,2,4,6,8,9,11} is a
‘bad case’ by computing the following determinant, which is straightforward for
most pocket calculators and does not involve the complex numbers and exponentials
featured in the definition of the DFT:

det(S ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 1 0 1 0 1 0 1
1 0 1 1 0 1 1 0 1 0 1 0
0 1 0 1 1 0 1 1 0 1 0 1
1 0 1 0 1 1 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 1
1 0 1 0 1 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1 1 0 1 1
1 0 1 0 1 0 1 0 1 1 0 1
1 1 0 1 0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 1 0 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Remark 3.5. Another way to check that the matrix is singular consists of noticing
that the sums of columns 1,6,7,12 is the same as that of columns 3,4,9,10, namely
(3,2,2,3,2,2,3,2,2,3,2,2)T .

In our opinion it is high time that a spade be called a spade, and ‘Lewin’s special
cases’ should be computed in the way they were discovered, i.e. by checking the
nullity of Fourier coefficients.

Usually a clock diagram of the multiset (k A)mult (all multiples of elements of A,
times k mod n, counted with their multiplicities) will enable one to see at a glance
whether FA(k) = 0. In Fig. 3.3 one can see the diagrams for FA(1) and FA(2)
where A is the melodic minor above. For the first coefficient, the clock represents
just A and one cancels out 0-6 and 2-8; the remainder 4-9-11 obviously does not
sum to 0. On the next clock, (2A)mult = {0,4,8,0,4,6,10} is a multiset with 0-4
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redoubled. Gathering 0-4 together with 8 as a subset with sum 0 leaves 0-4-6-10
which also sums to nil. All cases of nil coefficients for n = 12 are similarly reducible
to obvious cases (see Conjecture 3.16 and Fig. 3.5 below though), the ‘special case’
being actually the simplest, since no multiplication of A into a multiset is necessary.

A complete table of the 134 pc-sets classes (up to transposition) with some nil
Fourier coefficient is provided on Table 8.2.4

The vector sum is not 0 Notice 0 & 4 are doubled Both subsets sum to 0

A = {0, 2, 4, 6, 8, 9, 11} 2Amult = {0, 0, 4, 4, 6, 8, 10}
= B  C

B

C

Fig. 3.3. Checking nullity of some Fourier coefficients

3.1.2 Singular circulating matrixes

According to Theorem 3.3, the vanishing of some Fourier coefficients can be checked
by computing a determinant. We introduce the corresponding matricial vocabulary
for convenience:

Definition 3.6. A distribution s ∈ Kn is singular ⇐⇒ detS = 0, i.e. when at least
one of its Fourier coefficients is nil (S is the circulating matrix associated with s).
Otherwise it is invertible.

From the characterisation of singular matrixes by the linear dependency of their
columns we get the useful

Proposition 3.7. A subset A of Zn is singular iff the subset is a linear combination
of its translates A+ k,k �= 0.

For instance, the whole-tone scale is equal to every one of its translates by an even
number of semitones. Less trivially, a minor third is a combination of other minor
thirds, as for instance

4 There are 1,502 special cases out of 4,094 subsets of Z12, a fairly common occurrence.
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(C,E�)− (E�,F�)+(F�,A) = (A,C)

This might appear to be a consequence of the minor third dividing the octave equally,
but this is wrong, since the scale matrix of the major third is invertible, and the scale
matrix of the fifth is singular.5

Since these singular cases are troublesome for reconstruction problems, [13] ex-
plored the simplest cases of singular subsets: dyads.

Theorem 3.8. The pair (0,d) in Zn is never singular if n is odd. If n = 2vq with q
odd, it is invertible iff 2v divides d, the span of the dyad. Otherwise, the rank of the
matrix associated with (0,d) is equal to n−gcd(d,n); it is minimal for d = n/2, the
equal division of the octave (the generalised tritone). In that case, it is equal to n/2.

For instance, when n = 12 the only ‘invertible dyad’ is the major third.

Proof. The matrix S of the dyad (0,d) is equal to identity plus the matrix D of
the permutation i �→ i + d mod n. Hence the kernel (or nullspace) of S is the
eigenspace of D for eigenvalue -1. Let us reason geometrically, considering the
vectors e0 . . .en−1 of the canonical basis of Rn. A vector x = ∑n−1

i=0 xiei lies in this
eigenspace iff

n−1

∑
i=0

xiei =
n−1

∑
i=0

−xiei+d ⇐⇒ ∀i = 0, . . .n−1 xi+d =−xi

(all indexes are computed modulo n).
From this we get xi+k d mod n = (−1)kxi. Hence xi+nd mod n = xi = (−1)nxi: if n

is odd then the only solution is x = 0, i.e. S is invertible.
Say now that n is even, n = 2vq where q is odd. Let k be the smallest integer such

that k d = 0 mod n, e.g. k = n/gcd(d,n) = n/g (we put throughout g = gcd(d,n) for
concision). If k is odd, for instance 2v divides d, then we have the same impossibility,
and S is invertible. We have proved that if 2v divides d, then S is invertible.

Assume now that 2v does not divide d, i.e. d = 2ud′ with d′ odd and u < v. We
can produce the eigenvectors, i.e. elements of the kernel of S, in the following way:

• Fix one coordinate – say x0 = 1.
• From the equation above, xd = x0+d =−x0 =−1.
• Iterate until back to x0: x2d =+1,x3d =−1, . . .x0 = xn = xn/g×d =+1. The last

value is indeed +1 because n/g is an even number.

So the value of one coordinate determines the value of n/g coordinates. We have thus
n/

(
n/g

)
= g arbitrary coordinates x0,x1 . . .xg−1, that is to say g degrees of freedom,

and hence the dimension of the kernel of S is exactly g. Its largest possible value
(apart from d = 0 which is no more a dyad) is for d = n/2. In general, we get the
rank of matrix S by way of the rank-nullity theorem: rank(S ) = n−g, remembering
though that rank(S ) = n when 2v divides d.

5 The sum of all fifths beginning on one whole-tone scale is equal to the whole aggregate, as
is the similar sum starting on the other whole-tone scale. Hence any single fifth is a linear
combination of all the others.
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The special case of the tritone (= half-octave) is worth a deeper analysis. Its
matrix has the lowest possible rank, and more precisely all Fourier coefficients with
odd index are nil. We can see for n = 12 how the codomain is generated by the first
six columns, and the computation next to it shows the nullity of the odd Fourier
coefficients.

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t̂(2p+1) = 1+ e
(2p+1)6×2iπ

12 = 0.

This was actually noted by Yust in [96], who proved the following statement.

Lemma 3.9 (The tritone lemma). Adding a tritone to a pc-set does not change its
third and fifth Fourier coefficients.

This follows directly from the linearity of the Fourier transform, and is also true for
all other odd indexed coefficients. For instance, a fifth and the associated dominant
seventh (GD and GBDF) have identical odd coefficients. So do a pentatonic (non
hemitonic) scale and the associated diatonic (CDEGA and CDEFGAB), or even a
single note and the diminished triad it divides (D and BDF). Conversely, one can
remove a tritone from a melodic minor and get a singular hemitonic pentatonic with
the same Fourier coefficients (ABCDEF�G� → ABCEF�). More impressive still, a
minor triad has the same odd coefficients as the whole (harmonic minor) scale since
they differ by two tritones. The most striking case I have found is the initial figure of
Alban Berg’s Sonata op. 1, which despite its spectacularly atonal character reduces
to the single pc B when the tritones are removed, cf. Fig. 3.4.

There is a partial reciprocal, more technical, which involves Lemma 3.1.

Proposition 3.10. Let A be a pc-set for which the Fourier coefficients FA(3) and
FA(5) are nil. Then A is a tritone or a reunion of tritones.

Proof. Consider the characteristic polynomial A(X) = ∑
a∈A

Xa.

Since the kth Fourier coefficient of A is simply FA(k) = A(e−2ikπ/12) by Propo-
sition 1.32, we are assuming that

e−2i3π/12 =−i and e−2i5π/12 = e−5iπ/6 =−
√

3
2

+
i
2

are roots of the polynomial A(X).
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Fig. 3.4. The initial motif and B have identical odd Fourier coefficients

A(X) has integer coefficients, the minimal polynomials of these roots in Z[X ] are
the cyclotomic polynomials Φ4(X) = X2 +1 and Φ12(X) = X4 −X2 +1. Both being
irreducible, A(X) must be a multiple of their product Φ4(X)×Φ12(X) = X6 + 1,
which is the characteristic polynomial of a tritone.

Let B(X) =
A(X)

X6 +1
= ∑

0�k�5
bkXk be the exact quotient, with degree at most 5

since A(X) has degree at most 11.
It must have integer coefficients since X6 +1 is unitary, which must be 0’s or 1’s

because they are coefficients of A(X):

A(X) = (1+X6)× ∑
0�k�5

bkXk = b0 + . . .b5X5 +b0X6 + . . .b5X11.

Hence A(X) is the characteristic polynomial of a union of tritones, for example

(X6 +1)× (X +X2 +X4) = X +X7 +X2 +X8 +X4 +X10.

We leave as an exercise the generalisation to Zn with even n.

One must beware that this does not exhaust all possible cases of non injectivity. For
instance, as we will see in discussing the torus of phases, since dyads {0,11} and
{4,7} have the same phase coordinates, so does their reunion, the major seventh
{0,4,7,11}.6

3.1.3 Structure of the zero set of the DFT of a pc-set

Lynx-eyed readers may have noticed that Lewin’s conditions only consider the nul-
lity of five Fourier coefficients. Perhaps this is sufficient because of the symmetry
property FA(n− k) = FA(k), true for any real-valued distribution. Or is it? We left
in the dark the values of FA(5),FA(7). But actually it is enough to compute the
FA(k) when k is a divisor of n (in the set N of integers) because of the deep result
below:

6 I am indebted to J. Yust for this example.
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Theorem 3.11. For any rational-valued distribution f (a fortiori for any pc-set) we
have

∀α ∈ Z∗
n f̂ (k) = 0 ⇐⇒ f̂ (αk) = 0.

Remember that Z∗
n denotes the invertible elements of Zn. Other equivalent formula-

tions involve associated elements:7

Definition 3.12. k is associated with � in Zn ⇐⇒ ∃α ∈ Z∗
n, �= αk.

Actually the transformations k �→ αk for invertible α’s are the automorphisms of the
additive group (Zn,+). Hence

Proposition 3.13.

• Two elements of Zn are associated iff they have the same order in the additive
group (Zn,+).

• Any element of Zn is associated with (the class modulo n of) exactly one divisor
of n.

• The classes of the relation ‘being associated with’ are the orbits of homotheties
in Zn.

For instance these classes in Z12 are (0),(1,5,7,11),(2,10),(3,9),(4,8),(6). Thus
Theorem 3.11 states that when the DFT vanishes in k it vanishes for all classes
modulo n associated with k. Finally, this vindicates the exhaustiveness of the five
Lewin’s conditions, indexed by divisors 6, 4, 3, 2 and 1. The proof of the theorem
involves cyclotomic polynomials again.

Proof. Let f be any integer-valued distribution8 and F ∈ Z[X ] the associated poly-
nomial: F(X) = ∑ f (p)X p.

Say f̂ (k) = 0. Since f̂ (k) = F(e−2ikπ/n) by Proposition 1.32, it means that
e−2ikπ/n is a root of F. The order of e−2ikπ/n in the group (C∗,×) is m = n/gcd(n,k).
By lemma 3.1, Φm must divide F, hence all roots of unity with order m are roots of
F, i.e. all elements in Zn associated with n/m are zeroes of the DFT, which is the
result of the theorem.

It is high time we defined and considered the zero-set of a DFT:

Definition 3.14. For a distribution f ∈ Cn (resp. a subset A ∈ Zn) the zero-set of its
DFT is the set Z( f ) (resp. Z(A)) of the indexes k, satisfying f̂ (k) = 0 (resp. FA(k) =
0).

Theorem 3.11 proves that (for rational-valued distributions) Z(A) is structured as a

reunion of classes dZ∗
n, orbits of associated elements, indexed by the set of divisors

of n. Another way to put it is the invariance of Z(A) under multiplication (by invert-
ible elements). This is a strong feature: there are for instance 220 − 1 = 1,048,575

7 Already met in the proof of Theorem 2.10.
8 Actually this result is true for rational-valued coefficients, which is trivial in a way – any

rational polynomial being an integer-coefficient polynomial divided by some integer – and
deep too, because of the topological density of rational polynomials in R[X ].



60 3 Nil Fourier Coefficients and Tilings

subsets of Z20, but only 64 = 26 of them can be zero-sets, pieced together from
six orbits which partition the whole group. This will provide access to a method of
classification and exhaustive search for tiling canons as we will see in Section 3.3.

As we will develop soon, coverings with zero-sets is the condition for tiling by
translation, and the relationships between the diverse classes constituting Z(A) may
give clues to abstract conditions for tiling and help lead to solutions of baffling open
problems, such as the spectral conjecture.

Example 3.15.
1. For a tritone T ⊂ Z12,Z(T ) = {1,3,5,7,9,11}.
2. For a melodic minor scale mms such as (A B C D E F� G�) alias {0,2,4,6,8,9},

Z(mms) = {2,10}.
3. Remember that in the example of 3−homometry in Z32, one subset was

A = {0,7,8,9,12,15,17,18,19,20,21,22,26,27,29,30}.
Here Z(A) is the set of even classes, which can be decomposed as

Z(A) = 2Z32 \{0}= {2,4, . . . ,30}= 2Z∗
32 ∪4Z∗

32 ∪8Z∗
32 ∪16Z∗

32.

4. Anticipating the next section, the subset A = {0,6,8,14} tiles Z16, and

Z(A) = {1,3,4,5,7,9,11,12,13,15}
= {1,3,5,7,9,11,13,15}∪{4,12}= 1Z∗

16 ∪4Z∗
16.

Here the odd numbers are the invertibles (whose order is 16), and {4,12} are the
elements with order 4 in Z16 (4×4 = 12×4 = 0).

This is an algebraic constraint. One can well wonder how a Fourier coefficient
manages to be equal to 0 in the first place. In the examples that we have detailed so
far, it derived from Lemma 1.6, that it to say the exponentials involved in the sum
are placed on the vertices of a regular polygon (for instance 1+ i+(−1)+(−i) = 0
expresses the sum of the complex numbers on the vertices of a square). It seems
natural to conjecture that, at least in the case of a subset distribution, a nil sum of
exponentials can be decomposed into such regular subsums, a geometric constraint.

Conjecture 3.16. Let A ∈ Zn such that ∑
a∈A

e2iπa/n = 0. Then A can be partitioned as a

disjoint reunion of regular polygons.

However, this conjecture is false as seen in Fig. 3.5.9 The smallest counter-example
that I found is A = {0,1,7,11,17,18,24} ⊂ Z30. Checking that the sum is exactly
0 involves finding the factor Φ30 in the characteristic polynomial A(X), see [14],
which is equivalent to saying that A(e2iπ/30) = 0. This sobering result warns that the
study of nil Fourier coefficients is trickier than it seems.10

9 Apparently it was first noticed in the 1950s but I could not find a precise reference. More
about the algorithmic search for this counter-example in [14].

10 A very recent paper [67] studies precisely those ‘perfectly balanced sets’ and hints that
they can always be expressed as algebraic linear combinations of perfect polygons, in the
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Fig. 3.5. Exponentials summing to 0 without regular subsums

3.2 Tilings of Zn by translation

3.2.1 Rhythmic canons in general

The notion of musical canon is as old as the hills and remains popular even to our day
in kindergarten songs. Informally, a canon is made of several voices playing the same
tune, or pattern, or motif, at different times, i.e. starting with different offbeats. Often
the canon is repeated in a loop and called a ‘round’, which expresses well its social
function. Well-known examples in Anglo-Saxon culture are ‘Brother John, Are You
Sleeping?’, ‘Row, Row, Row Your Boat’ or ‘Three Blind Mice’. On the other hand,
Ockeghem and Bach are known for brilliant intellectual constructions which played
some part much later in the development of serial techniques.

Here we focus on just one musical dimension, usually considered as rhythm
(though it could be any quantified musical quantity, and indeed there exist multi-
dimensional canons tiling the spaces of rhythm and pitch for instance). Furthermore,
in accordance with the topic of the book, we will mostly focus on canons by trans-
lations. It is of course possible to build canons with retrogradation, augmentation
or any transformation of the motif, or to allow several notes to occur on the same
beat (say an odd number of notes, see [27] for a recent study of canons mod p), but
very little is known about these cases mathematically speaking (see [11] for a recent

spirit of linear combination of scales in [13]. For instance, my example can be decomposed
as three pentagons: {0,6,12,18,24}⊕ {0,1,4} united with two dyads {or digons, or di-
ameters} {2,17},{8,23} minus three dyads {1,16},{4,19},{10,25} and two equilateral
triangles {0,10,20}⊕{2,8,12}. This decomposition does prove the nullity of the Fourier
coefficient. However it is hardly a practical method.
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survey). A typical canon by translation is shown in Fig. 3.6 and was composed by
George Bloch as a birthday greeting card (each voice sings ‘Happy birthday’).

Fig. 3.6. A birthday greeting periodic canon

The mathematical model of this canon is very simple: counting beats in sixteenth
notes and setting the origin 0 at the start of the repeated bar, the four rhythmic voices
are

{0,4,5,9},{1,8,12,13},{2,3,7,14},{6,10,11,15}
which are all copies of the initial {0,4,5,9} with offsets of 0, 8, -2, and 6 respectively,
the computation being made modulo 16 which expresses the repetition of a bar. A
notion emerges: the tiling of a cyclic group with translates of one subset. Already
we can see that the musical feature of repeating the bar models modular arithmetic.
As we will see below, musical concepts are a great help in the mathematical study of
rhythmic tilings.

Another essential feature of this canon is its perfect packing of the bar: each beat
is played once and only once, which is a substantial difference from common mu-
sical canons where overlappings and silences are the rule rather than the exception.
For musical treatment we will need this constraint (which still allows for billions of
canons).

If only translations of the motif are allowed, it has been shown in the 1950s that
a tiling of Z with a finite tile always has a period:

Theorem 3.17 (Hajòs, de Bruijn 1950). Let A be a finite subset of Z and B such that
A⊕B = Z. Then ∃n ∈ N∗,C ⊂ Z such that B = nZ⊕C, i.e. A⊕C = Zn (reducing
A,C modulo n).

Hence the limitation to tilings of a cyclic group, which will be the only ones studied
in this chapter. It has been recently shown by Kolountzakis and others [55] that the
width of the motif does not really limit the period of the canon, refuting the long-
standing conjecture that the latter was limited to twice the former (see again [11]).11

The study of tilings of cyclic groups (and more generally of abelian groups) was
initiated in the 1950s, mostly by East-European mathematicians. The musical ap-
proach was single-handedly tackled by Dan Tudor Vuza ([94]) who rediscovered on

11 The initial idea of Kolountzakis involves unfolding a cyclic group in 3 dimensions using its
decomposition as a group product and geometric constructions. A similar vision probably
presided over the creation of Szabó’s counterexamples in [81], see Section 3.3.
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his own the results of Hajòs, Redei, de Bruijn, Sands and others. The notion of ‘Vuza
canons’ provided new impetus for these researches, especially since [6] connected
them to difficult conjectures on tilings. Consequently, new algorithms have been de-
vised for their enumeration ([57]), and these will be detailed below (section 3.3) for
the sake of their relationship with DFT.

3.2.2 Characterisation of tiling sets

Definition 3.18. A rhythmic canon12 is a tiling of a cyclic group by translates of one
tile, called motif.

The motif A is called ‘inner voice’, and the set of its offsets is the ‘outer voice’ B.
They form a rhythmic canon iff A⊕B = Zn.

Example 3.19. In Fig. 3.6 one has A = {0,4,5,9},B = {0,6,8,14} and A ⊕ B =
{0,1, . . .15}= Z16 .

Proposition 3.20.

A⊕B = Zn ⇐⇒ 1A ∗1B = 1Zn = 111

(the constant map equal to 1 for any element of Zn)

As we have seen in Chapter 1, the convolution product of characteristic functions
turns into ordinary product of characteristic polynomials:

Proposition 3.21.

A⊕B = Zn ⇐⇒ A(X)×B(X) = 1+X +X2 + . . .Xn−1 mod (Xn −1)

Either taking the DFT or plugging in X = e−2iπk/n in the last equation, we get

Proposition 3.22.

A⊕B = Zn ⇐⇒ 1̂A × 1̂B = n 1̂Zn = nδ =

(
x �→

{
n for x = 0
0 else

)

Essentially, setting apart the case of 0, the product of the Fourier transforms of the
characteristic maps of the inner and outer voices must be nil. This vindicates again
the definition of Z(A) = {k ∈ Zn, 1̂A(k) = 0}, the set of zeroes of the Fourier trans-
form of (the characteristic map of) A already given above, and firmly grounds the
question of tiling (by translation) in Fourier space:

Proposition 3.23. Motif A tiles with outer voice B if and only if

Z(A)∪Z(B) = Zn \{0} and #A×#B = n.

The zeroes of the Fourier transforms of A and B must cover Zn (minus 0), allowing
overlaps. For instance, with A⊕B = {0,4,5,9}⊕{0,6,8,14} = Z16 (the factors in
Fig. 3.6) we have
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Fig. 3.7. Z(A) and Z(B) cover Z16 \{0}

Z(A) = {1,3,4,5,7,9,11,12,13,15} and Z(B) = {2,6,8,10,14}

as can be seen on the graphs of |FA| and |FB| featured in Fig. 3.7. Again, a complex
phenomenon in musical space is seen at a glance in Fourier space, cf. Theorem 1.11.

At this point, the question of building all rhythmic canons with period n (i.e. all
tilings of Zn by translation, i.e. all factorisations Zn = A⊕B), or the subproblem of
‘completing’ a given motif A with its counterpart B, appears as an extension of the
phase retrieval problem: given a pair of zero sets covering Zn – a very limited choice
since these sets must be unions of a few orbits, according to Theorem 3.11 – is it
possible to find corresponding subsets? But knowing only where FA = 0 is even less
informative than knowing |FA| (which is what we know in homometry questions)
since the magnitude of the DFT has yet to be chosen where it is not (necessarily) nil;
the problem is hence even more formidable. Precisely,

Proposition 3.24. If A tiles Zn with B (i.e. A⊕B = Zn) then any A′ homometric with
A also tiles with B : A′ ⊕B = Zn.

This includes all the transforms of A under the dihedral group T/I, of course.13 Less
trivial cases are possible: for instance14

both A = {0,1,6,10,12,13,15,19}, A′ = {0,2,5,6,11,12,15,17}
tile Z24 with B = {0,8,16},

though A,A′ are homometric but not at all isometric (they both cover all residues
modulo 8, however) as can be seen in Fig. 3.8.

12 Properly speaking, a ‘mosaic rhythmic canon by translation’.
13 And there are scarcely any other sets homometric with a given A as seen in Chapter 2. This

will be extended to affine transforms of A in Section 3.2.5.
14 I am indebted to M. Andreatta who urged me to research these cases, probably the simplest

subsets which tile and admit a non-trivially homometric twin.
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Fig. 3.8. Non-trivial homometric tiles, illustrating Proposition 3.24

However, some choices of Z(A),Z(B) are impossible:15 for instance a set like
A = {0,2,4,5,6,7} cannot possibly tile, as is easily gathered from trial and error (no
way to fill the gaps 1, 3 with the ‘lumpy’ 4567 obstructing the process), and it can
also be seen on Z(A) as we will see in the next subsection. Notice that A tiles with
its inversion (3−A) though. Some reasons for such obstructions are known, and are
our next topic.

3.2.3 The Coven-Meyerowitz conditions

[35] was the first paper enumerating general sufficient and (sometimes) necessary
conditions for a finite motif to tile some cyclic group. Considering that the study of
factorisations originated around 1948, this was long overdue. How does one check,
for instance, whether {0,1,2,5,22,2415} does tile16, other than by finding a com-
plement (which would be a long and arduous search considering the diameter of A)?
Coven and Meyerowitz discovered that the cyclotomic factors of the characteristic
polynomial are the key, and indeed provide something very close to a sufficient and
necessary condition. As we have already explained, this prevalence of cyclotomic
polynomials is another way of expressing the rigid structure of Fourier zero sets.

15 For genuine pc-sets at least.
16 It does. See below.
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In [35] they introduced, for A ⊂ Zn,

Definition 3.25.

RA = {d,d | n and Φd | A(X)} and SA = {pα ∈ RA, p prime,α ≥ 1}.

The elements of RA are exactly the orders in (Zn,+) of the elements of Z(A), see
Theorem 3.11:

Z(A) =
⋃

d∈RA

{x ∈ Zn | ord(x) = d}=
⋃

d∈RA

n
d
.Z∗

n

For instance with A = {0,3,6,12,23,27,36,42,47,48,51,71} one gets RA =
{2,8,9,18,72},SA = {2,8,9}.17

The presence of all factors Φd ,d | n, in A(X)×B(X) entails that

• SA ∪SB is the set18 of all prime powers dividing n, and
• RA ∪RB is the set of all divisors of n (1 excepted).

Coven and Meyerowitz then proceeded to prove the following statements, the last of
which is quite difficult.

Theorem 3.26. Defining conditions

(T1): ∏
pα∈SA

p = #A;

(T2): pα ,qβ ,rγ · · · ∈ SA ⇒ pα qβ rγ · · · ∈ RA (products of powers of distinct primes
belonging to SA are in RA);

one has

1. If A tiles, then (T1) is true.
2. If both (T1),(T2) are true, then A tiles.
3. If #A has at most two different prime factors, and A tiles, then both (T1),(T2) are

true.

As of today, it is not known whether condition (T2) is always necessary for tiling.
With the example above we can check (T1) : #A = 12 = 2 × 2 × 3 since SA =
{21,23,32}, and (T2) : 2×9 ∈ RA and 8×9 ∈ RA.

With the unreasonable tile given before, A′ = {0,1,2,5,22,2415}, with #A′ = 6
it is soon verified19 that SA′ = {2,3} and 6 ∈ RA′ , hence A′ tiles quite trivially (it tiles
Z6 and hence any Z6n).

17 Actually the definition of [35] stands for A⊂Z; we simplify slightly their exposition, since
for any other polynomial congruent with A(X) mod (Xn −1), the subset of the divisors of
n in RA, which are the indexes of the relevant cyclotomic factors, does not change. We
choose this as our definition for RA. Anyhow, SA is always made of divisors of n.

18 They show that corresponding cyclotomic polynomials occur only once, so this is a parti-
tion of the set of all prime powers dividing n. On the other hand, sometimes RA ∩RB �=∅.

19 By computing A(e2iπ/3) = 0 = A(−1).
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Part of the proof of Theorem 3.26 is the useful

Lemma 3.27. If A tiles some cyclic group, then it tiles Zn where n = lcm(SA) (re-
ducing A modulo n).

The link with Fourier transforms is straightforward: recall the organisation of
Z(A) in subsets of elements with equal multiplicative orders, these orders are pre-
cisely the elements of RA.

3.2.4 Inner periodicities

Recall that A ⊂ Zn is periodic, meaning A+ τ = A for some 0 < τ < n, if and only
if20 FA(t) = 0 except when t belongs to some subgroup of Zn. This comes from
FA+τ(t) =FA(t)e−2iπτt/n, hence FA+τ(t) =FA(t)⇒FA(t) = 0 except when τ t ∈
nZ, i.e. t ∈ n

gcd(τ,n)Z.
It turns out to be quite an effective way to check a priori periodicity, especially

when one considers the complement set of Z(A). The following theorem expresses
the above in terms of Z(A):

Theorem 3.28. A is periodic in Zn if and only if the complement set of Z(A) is part
of some subgroup of Zn. In practice, since any such subgroup is part of a maximal
proper subgroup pZn with p a prime factor of n, it is sufficient to check whether
there exists such a p which divides all elements not in Z(A) in order to know whether
A is n/p-periodic.

This can be checked almost visually.
For A′ = {0,5,8,13}, which tiles Z16, RA′ = SA′ = {2,(10),16}21 and (keeping

n = 16) the complement of Z(A′) = {1,3,5,7,8,9,11,13,15} is contained in the
subgroup 2Z16, meaning that A′ is 16/2 = 8-periodic. The non zeroes of the DFT are
clearly members of the even subgroup materialised by big dots in Fig. 3.9 (though 8
is also a zero, inherited from A = {0,5} from which A′ is concatenated, see below).

In this example, A′ = A⊕{0,8} where A = {0,5}, and we recognize the kin-
ship between their respective Fourier transforms in Fig. 3.10. It is a ‘multiplication
d’accords’ but in Z16, though the DFT of {0,5} is drawn in Z8.

Some motifs can be completed by either periodic or aperiodic outer voices:
A = {0,8,16,18,26,34} tiles Z72 with
B = {0,9,12,21,24,33, . . .60,69}= {0,9}⊕{0,12,24,36,48,60}, 12-periodic,

but also with B′ = {0,3,12,23,27,36,42,47,48,51,71}. Comparison of zero sets is
illuminating:

RB = {2,6,8,9,18,24,36,72} ⊃ RB′ = {2,8,9,18,72}
20 Notice that without loss of generality one may replace τ with gcd(τ,n) and assume that τ

is a divisor of n.
21 Φ10 divides A(X) but is discounted since 10 is not a divisor of 16, according to Def. 3.25:

this factor disappears if one changes any element of A′ by a multiple of 16, see Footnote
17.
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Fig. 3.9. The complement of Z(A′) is in 2Z16, as seen on the graph of |FA′ |. On the right,
graph of |FA|.
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Fig. 3.10. The Fourier transforms of A = {0,5} ⊂ Z8 and of A′ = {0,5}⊕{0,8} ⊂ Z16.

while RA = {3,4,6,12,24,36}.
It is time to introduce

Definition 3.29. A Vuza canon22 is a counterexample to Hajós’s 1950 conjecture, i.e.
a rhythmic canon Zn = A⊕B where neither A nor B is periodic.

I would like to point out that the notion of Vuza canons is musical, inasmuch as a
canon with (say) a periodic outer voice is heard as the repetition of a shorter canon
(with a shorter outer voice). This leads to a useful decomposition process, as we will
see later. It took three decades for several top-notch mathematicians to establish the
following theorem, which was rediscovered independently by D.T. Vuza in the 1980s
([77, 94]).

Theorem 3.30.

1. There exist Vuza canons.

22 In some older papers, this term specifies those canons provided by Vuza’s algorithm; this
is no longer the case and we call ‘Vuza canons’ what he himself called ‘Rhythmic Canons
of Maximal Category’.
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2. Vuza canons exist in Zn ⇐⇒ n is not of the form

n = pα ,n = pα q,n = p2q2,n = p2qr,n = pqrs

where p,q,r,s are different primes and α � 1.

A cyclic group Zn with n having any of the 5 forms above is often called, af-
ter Hajós, a ‘good group’; the other cyclic groups are ‘bad’ (meaning that Hajòs’s
conjecture fails in them). The smallest bad group is Z72, the next ones occur for
n = 108,120,144,168,180 . . .23 Classification of Vuza canons based on the zero sets
of the factors is also a way of computing them exhaustively, which has been achieved
for the values of n just stated. Some of the algorithms involved are mentioned in Sec-
tion 3.2.3, the condition in Theorem 3.28 enabling the pruning of many cases where
the only factors available would be periodic. The simplest construction of a Vuza
canon in Zn uses the recipe provided by Jedrzejewski: let p1, p2 be prime numbers
and n1,n2,n3 integers such that gcd(n1 p1,n2 p2) = 1. Then have

A = n2n3 ×{0, . . . p2 −1}⊕ p2n1n2n3 ×{0, . . . p1 −1}
B = n1n3 ×{0, . . . p1 −1}⊕ p1n1n2n3 ×{0, . . . p2 −1}
S = p2n2n3 ×{0, . . .n1 −1}⊕ p1n1n3 ×{0, . . .n2 −1}

R =
({1, . . .n3 −1}⊕B

)⋃
A.

Then R⊕S = Zn yields a Vuza canon.

3.2.5 Transformations

Transformation of an existing canon has two obvious aims: the production of new
canons, and their classification and taxonomy. For instance, {0,4,5,9} and its trans-
late {0,1,5,12} tile identically Z16 with complement {0,6,8,14}, itself the same as
{0,2,8,10} if the origin of time is changed. Perceptively, in a canon repeated peri-
odically, there is no privileged starting note or starting voice. Mathematically it is
thus natural to consider the factors A,B up to translation in Zn. But there are other
transformations which unravel less obvious relationships between canons.

Definition 3.31. The dual canon of A⊕B = Zn is B⊕A = Zn (revert the roles of
inner and outer voice).

This is useful mainly for classification purposes, though some musical applications
could be imagined. One other transformation does not change the size of the tiling:

Proposition 3.32. If A tiles Zn with B then mA tiles with B too for any m coprime
with n.

Proof. This is a direct consequence of Theorem 3.11, since the zero set Z(mA) must
be equal to Z(A). Remarkably, this non-trivial feature of tilings was (re)discovered
experimentally by not one, but several composers.

23 Sloane’s sequence of integers A102562.
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This allows a finer classification of rhythmic canons than orbits under T or even T/I.
For instance, for n = 72 there are only two different Vuza canons up to affine

transformation,

A = {0,3,6,12,23,27,36,42,47,48,51,71}
or A′ = {0,4,5,11,24,28,35,41,47,48,52,71}

with one outer voice B = {0,8,10,18,26,64} – instead of six inner voices and three
outer voices under T/I.

Remember also that the famous Z-related sets {0,1,3,7} and {0,1,4,6} are
affinely related24 in Z12, but this is a more complicated case since non-nil Fourier co-
efficients must be permutated according to the affine transform. In this example, all
odd (resp. even) coefficients share the same size

√
2 (resp. 2). A neater generalisation

comes with J. Wild’s FLIDs, see Section 4.3.3.
Further transformations of canons change n. In order to proceed we need to over-

come an apparent ambiguity here: there is no canonical way to turn a subset of Zn
into a subset Zk n but this will prove to be irrelevant:

Definition 3.33. For any B in Zn, we call immersion of B in Zk n any subset B′ ⊂ Zk n
such that the canonical projection πn = Zk n → Zn maps bijectively B′ to B.

In the transformations discussed below, any choice of B′ will do, elements of B′ being
chosen up to a multiple of n.25 The trick is to keep in mind that R(B) = R(B′) but
Z(B) �= Z(B′) when Zn changes into Zk n. The rule is a simple one, preserving the
multiplicative order:

Lemma 3.34. With the same notations, Z(B′) = k(Z(B)).

The most important transformation is the next one:

Definition 3.35. Concatenation of a canon consists in replacing the motif by itself,
repeated several times. In other words, A ∈ Zn turns into

Ak
= A′ ⊕{0,n,2n, . . .(k−1)n} ∈ Zk n

where A′ is an immersion of A.

For instance, A = {0,1,4,5} ⊂ Z8 (which tiles Z8 with B = {0,2}) can be prolonged
to A3

= {0,1,4,5, 8,9,12,13, 16,17,20,21} ⊂ Z24. Obviously this new motif still
tiles with complement B′ = {0,2} ⊂ Z24. This is general:

Proposition 3.36. A tiles Zn with B if and only if Ak tiles Zk n with B′.

24 In Z12, 5×{0,1,3,7}= {0,3,5,11}= {0,1,4,6}−1.
25 In practice one uses the elements of B not caring whether they are integers, classes modulo

n, or modulo k n, i.e. one replaces B with B′ ruthlessly, usually choosing integers inside
[[ 0,n−1 ]].
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This property is easily checked with the geometric definition of a tiling26, but with
an eye on the next subsection, we will provide a more complicated proof involving
the DFT.

Concatenation is the simplest recipe for building periodic motifs: Ak is n−periodic
in Zk n, and conversely, any periodic motif is by nature concatenated from a shorter
one. Hence as proved already, all Fourier coefficients, except those with index mul-
tiple of k, must be 0.

Lemma 3.37. With the notations above, the elements of Z(Ak
) have the same orders

as those in Z(A), plus those orders which are divisors of k n but not divisors of n:

R(Ak
) = R(A)∪ (

Div(k n)\Div(n)
)
.

This will entail Proposition 3.36, since all non-nil elements of Zk n will fall either in
Z(Ak

) or Z(B). Notice that elements with sthe ame orders are different because the
group changes.

Proof. Using the characteristic polynomials:

Ak(X) = (1+Xn +X2n + . . .X (k−1)n)×A(X) =
Xk n −1
Xn −1

×A(X).

The roots of A(X) are still roots of Ak(X), keeping the same order (as roots of unity),

adding only the roots of
Xk n −1
Xn −1

, whose orders divide k n but not n, as stated.

Concatenation is an extension (to a larger group) of ‘multiplication d’accords’, i.e.
a convolution product of characteristic functions or sum of (multi)sets: Ak

= A′ ⊕
nZk n, and the computation of the zero set Z(Ak

) might have been derived from the
following trivial corollary of Theorem 1.10 (first noticed by J. Yust):

Proposition 3.38. If a distribution f is singular (i.e. some Fourier coefficients are
nil) then so is the convolution product f ∗ g for any distribution g. In terms of pc-
(multi)sets, it means that if A⊂Zn is one of Lewin’s ‘special cases,’ then so is Amult +
Bmult for any (multi)set B.27

This is more general than the repetition/oversampling transformation that we have
already considered in Chapter 1; it applies to collections of disjoint tritones or minor
thirds, for instance. See Fig. 1.1 for an example of a singular set in Chopin which
can be factored in a (singular) dyad × a (singular) minor triad.

Here is an example of computation of Z(Ak
).

26 Ak
= A′ ⊕ nZk n,A⊕B = Zn,Zn

′ ⊕ nZk n = Zk n ⇒ Ak ⊕B′ = A′ ⊕ nZk n ⊕B′ = A′ ⊕B′ ⊕
nZk n = Zn

′ ⊕nZk n = Zk n.
27 The index means that we consider multisets, and count multiplicities of elements of Amult +

Bmult if necessary. Beware that this is different from the common (musicological) usage in
‘multiplication d’accords’ or transpositional combination.
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Fig. 3.11. Concatenation of {0,1,4,5} and associated DFT.

Example 3.39. A = {0,1,4,5} tiles Z8, the elements of Z(A) ∈ Z8 are 1,3,5,7 and
4, with orders 8 and 2. For its third order repetition A3

= A′ ⊕ {0,8,16} ⊂ Z24, the
elements of Z(A3

) have order 2,8, and also the divisors of 24 which do not divide 8,
i.e. 3,6,12 and 24 – the multiples of 3 (see Fig. 3.11; the numerous new 0s are due to
the additional orders, for instance 1, 5, 7. . . have order 24). It is perhaps even more
straightforward to look at the other side: Z(B′) is still made up of the elements with
order 4, which were 2,6 in Z8 and become 6,18 in Z24 (the same, times 3).

This statement could also be expressed in terms of sets RA and R
Ak with RA defined in

Section 3.2.3 above, or alternatively with an expression of the DFT of a direct sum, a
distinct possibility since a direct sum of subsets is ‘une multiplication d’accords,’ i.e.
a convolution product of characteristic functions, i.e. a termwise product of DFTs. It
could even be argued with sleight of hands that if a subset has some inner period, i.e.
a smaller period than the size of the group it tiles, then fewer Fourier coefficient are
required to describe the subset. The explicit description of the zero set that we have
computed is a bit cumbersome but explicit.

Concatenation creates a periodic tile. Conversely, unless a canon is a Vuza canon,
factor A or B (or both) is periodic, i.e. is a concatenation of smaller motifs. Iterating
the process until it is no longer possible, we get the two following cases:

Proposition 3.40. Any canon can be produced by concatenation (and duality) from
either the trivial canon {0}⊕{0}, or a Vuza canon.

Moreover, this entails a recursive construction of all tilings of finite ranges [[ 0,n−1 ]]
(i.e. without reduction modulo n), since

Theorem 3.41. Any compact canon, i.e. A⊕B = [[ 0,n−1 ]] (without reduction mod-
ulo n), can be reduced by concatenation and duality to the trivial canon.

This was proved by N. G. de Bruijn in [37].

Example 3.42. {0,1,4,5}⊕ {0,2} = [[ 0,7 ]] is concatenated from {0,1}⊕ {0,2} =
[[ 0,3 ]], this last from {0,1}⊕{0} = [[ 0,1 ]] which is a duplication of the trivial canon
{0}⊕{0}= [[ 0,0 ]].
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Fig. 3.12. Example of stuttering

Other cases of reducible canons include the ‘assymmetric rhythms’ of [48], whose
study originates in ethnomusicology.

Zooming and stuttering are two dual transformations. I called stuttering (one
could see it as ‘upsampling’) the act of replacing each note or rest in the motif by k
repetitions of itself. Of course one must again replace Zn with Zk n in the process.

Example 3.43. From {0,2,7}⊕{0,3,6,9}= Z12 one gets

{(0,1), (4,5), (14,15)}⊕{0,6,12,18}= Z24,

cf. Fig. 3.12.

Algebraically, this means turning A into28 Stut(A,k) = (k A)′ ⊕ {0,1,2 . . .k− 1} ⊂
Zk n (remember that (kA)′ is kA seen in Zk n). This time, in order to keep a canon it is
necessary to augment, i.e. zoom in, the outer voice B into k B′, i.e.

Theorem 3.44. A tiles Zn with B if and only if Stut(A,k) = (k A)′ ⊕{0,1,2 . . .k−1}
tiles Zk n with k B′.

In this book, we find it desirable to clarify what happens to the DFT during such
transformations.

Lemma 3.45. The transformation B �→ k B′ from Zn to Zk n turns Z(B) into Z(k B′) =
Z(B)′ ⊕nZk n. Equivalently, R(k B′) = R(B).

Proof. This is what we had already stated about oversampling. In the following line,
t ′ is any preimage in Zk n of t ∈ Zn, i.e. t = πn(t ′), i.e. t ′ ≡ t mod n:

Fk B(t ′) = ∑
x∈k B

e−2iπxt ′/(kn) = ∑
y∈B

e−2iπyt ′/n = ∑
y∈B

e−2iπyt/n = FB(t)

does not change with the choice of t ′, i.e. if t ′ is modified by some multiple of n.
Hence Fk B vanishes on Z(B)⊕nZk n.

Example 3.46. Say B = {0,1,4,5} ⊂ Z8, then Z(B) = {1,3,4,5,7} and

Z(3B)′= {1,3,4,5,7, 9,11,12,13,15, 17,19,20,21,23}= {1,3,4,5,7}⊕{0,8,16}.
28 It may be construed as a kind of tensorial product, as Franck Jedrzejewski showed in an

unpublished conference at the MaMuX seminar in IRCAM (Paris). With the matricial for-
malism introduced in Section 1.2.3, this is equivalent to tensorial products of matrixes,
which would yield the same results but in a more cumbersome way.
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Lemma 3.47. Stuttering A into Stut(A,k) = (k A)′ ⊕{0,1,2 . . .k−1} ∈ Zk n from Zn
to Zk n turns Z(A) into Z(Stut(A,k)) = nZk n ∪

(
Z(A)⊕nZk n

)\{0}.

Proof.

FStut(A,k)(t
′) = ∑

x∈k A′⊕[[ 0,k−1 ]]

e−2iπxt ′/(kn) = ∑
a∈A,�∈[[ 0,k−1 ]]

e−2iπ(k a+�)t ′/(kn)

= ∑
a∈A

e−2iπat ′/n × ∑
�∈[[ 0,k−1 ]]

e−2iπ�t ′/(kn) = FA(t)×
⎧⎨⎩

1− e−2iπt ′/n

1− e−2iπt/(kn)
if defined

k else.

This is 0 whenever t ′ is a multiple of n or when t ∈ Z(A), i.e. t ′ ∈ Z(A)⊕nZk n.

Example 3.48. Let A = {0,2,7} ∈ Z12 : since A(e2iπ/3) = 1+ j2 + j7 = 0, Z(A) =
{4,8}. Now for 3A′ ⊕{0,1,2}= {0,1,2, 6,7,8, 21,22,23} we get the zero set

{4,8,12,16,20,24,28,32}= ({0,4,8}⊕{0,12,24})\{0}.

Quite contrary to concatenation, these operations preserve the non-periodicity of ei-
ther voice, and hence turn a Vuza canon into a (larger) Vuza canon. Historically, this
has been used (in combination with the other transformations) in order to produce
larger Vuza canons, for instance before Harald Fripertinger managed to enumerate
all of them for periods 72 and 108 ([44]). Of course, it is equally possible to zoom
on A and stutter with B.

Multiplexing is a generalisation of stuttering (see example in Fig. 3.13):
instead of building {0,1,2 . . .k − 1}⊕ k A, one chooses k inner voices A0, . . .Ak−1
which tile with the same outer voice B, i.e. A0 ⊕B = A1 ⊕B = · · ·= Zn, and the new

motif with period k n is Ã =
k−1⋃
i=0

(
k A′

i + i
)
. Again,

Theorem 3.49. Ã⊕ k B′ = Zk n ⇐⇒ ∀i = 0 . . .k−1,Ai ⊕B = Zn.

The easy proof is left to the reader.
It seems ambitious to look for the zero set of such a complicated construction.

But all Z(Ak)’s have enough in common to warrant a statement:

Lemma 3.50. Z(Ã) is at least the same as the zero set obtained by stuttering,

Z(Ã)⊃ Z(Stut(A,k)) = nZk n ∪
(
Z(A)⊕nZk n

)\{0}= (
({0}∪Z(A))⊕nZk n

)\{0}

(according to Lemma 3.47) if we define Z(A) as ∩kZ(Ak), which complements Z(B)
in Zn by hypothesis.

Example 3.51. In Fig. 3.13, both motifs {0,1,11},{0,2,7} share the same Z(A) =
{4,8} and hence the multiplexed motif satisfies Z(Ã)⊃ {4,8,12,16,20}.
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(
2× {0, 1, 11} ∪ 2× ({0, 2, 7}+ 1)

) ⊕ 2× {0, 3, 6, 9}

{0, 1, 11} ⊕ {0, 3, 6, 9} = Z12 {0, 2, 7} ⊕ {0, 3, 6, 9} = Z12

= {0, 1, 2, 5, 12, 22} ⊕ {0, 6, 12, 18} = Z24

Fig. 3.13. An example of multiplexing.

This transformation opens interesting compositional possibilities, since several canons
merge into a larger one while remaining audible, cf. Fig. 3.13. The dual transfor-
mation (multiplexing the outer voice) enlarges the motif and complexifies its outer
voice.

An interesting theoretical point is that a kind of reciprocal stands: each canon
wherein the outer voice can be written k B (i.e. up to translation, all elements of the
outer voice are divisible by a common k) is multiplexed from a canon k times smaller
(see in Fig. 3.13 how the smaller canons can be retrieved from the larger one). It was
conjectured, in various contexts and by several authors, that essentially all canons
were instances of some such multiplexing; but this is not true, as demonstrated by
[81], though the smallest known counter examples have period 900, see Section 3.3.
This precludes, to this day, reducing all canons to the trivial canon.

Uplifting

The last transformation we will study, uplifting (Fig. 3.14), came to the fore in
recent developments of the search for Vuza canons [57], though it was probably used
by composers before. It stems from the simple idea that allowed us above to immerse
a subset of Zn in a larger group:

Proposition 3.52. If A tiles Zn then A – or rather its immersion A′ – tiles any larger
cyclic overgroup Zk n; moreover, translating any individual element of A′ by any
multiple of n provides a new motif A′′ that also tiles Zk n.

Proof. If A⊕B=Zn, let A′ = {a1+k1n, . . .ap+kpn}⊂Zk n where A= {a1, . . .ap}⊂
Zn and k1, . . .kp ∈ Z. This makes sense, since applying the canonical projection πn
from Zk n to Zn yields πn(a+ kn) = a as in the other transformations studied above.
Let also B′ = {bi + κn,bi ∈ B,κ = 0, . . .k− 1}; then it is straightforward to check
that
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A′ ⊕B′ = Zk n,

considering29 that the map A′ ×B′ � (a,b) �→ a+ b is still injective and that #A′ ×
#B′ = k n.

Again, one can reach most of the zero set of the new motif:

Lemma 3.53. Z(A′) contains at least kZ(A)′ (equivalently, R(A′)⊃ R(A)).

Proof. When A is immersed in Zk n its DFT changes and Z(A) (in Zn) turns into
Z(A′)⊃ kZ(A)′ (in Zk n), since now

t ′ ∈ k Z(A)′ ⇒ FA(t ′) = ∑
a′∈A′

e
−2iπa′t′

kn = ∑
a′∈A′

e
−2iπa′kt

kn = ∑
a∈A

e
−2iπat

n = FA(t) = 0

since t ′ = kt for some t ∈ Z(A).
As we see in the computation, changing any element a ∈ A by any multiple of n

does not change the result.

For instance, from {0,1,4,5}⊕{0,2} = Z8 one ‘uplifts’ to the Bloch canon in Ex-
ample 3.6, e.g.

{0,9 = 1+8,4,5}⊕{0,2,8,10}= Z16.

The zero sets are respectively {1,3,4,5,7} ⊂ Z8 and {2,6,8,10,14} ⊂ Z16, the or-
ders of their elements being in both cases 8 or 2.

This is most probably what Bloch actually did in order to produce his canon. But
the main strength of this transformation is made clear when one is looking for some
motif A ∈ Zk n knowing that A also tiles Zn. This was instrumental in many cases in
the algorithmic quest for all the smallest Vuza canons, see [57, 11] and Section 3.3
below.

Fig. 3.14. Uplifting a canon in Z8 to a larger one in Z16

In all these transformations, we keep control of Z(A). Hence, in order to prove
most conjectures on rhythmic canons, it is enough to check only those canons who
generate all other ones by those transformations, i.e. Vuza canons.

29 Alternatively one can reason on sets, writing B′ = B⊕nZk n.
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3.2.6 Some conjectures and routes to solve them

The (T2) conjecture

Let us recall the Coven-Meyerowitz conditions introduced in Section 3.2.3:

1. If A tiles, then (T1) is true.
2. If both (T1),(T2) are true, then A tiles.
3. If #A has at most two different prime factors, and A tiles, then both (T1),(T2) are

true.

[35] carefully refrained from enunciating the sometimes improperly stated ‘Coven-
Meyerowitz conjecture,’ namely

Conjecture 3.54. A tiles ⇐⇒ both (T1),(T2) are true.

The discussion of Z(A) in the section above shows that (T2) is inherited through
all transformations:

Theorem 3.55. If A⊕ B = Zn is concatenated (or zoomed, or stuttered, or multi-
plexed) to a larger rhythmic canon, then (T2) is true for the large canon whenever it
is true for the smaller one.

Proof. Consider for instance Ak, the concatenation of the motif A k times. As we
have established above, R(Ak

) = R(A)
⋃(

Div(kn) \Div(n)
)
. Hence S(Ak

) is S(A),
adding pα whenever pα | k though p does not divide n, and changing pα to pα+β if
pα , pβ are the powers of p in n,k respectively.

Remark 3.56. Checking condition (T1) was not required, because it must be satisfied
in both the short and large canons; but it would be straightforward to verify that it is
true for A whenever it is true for Ak.

From the equation above, clearly condition (T2) holds in R(Ak
) iff it holds in R(A):

apart from R(A) itself, in R(Ak
) we have also all terms with pα as a factor when p

divides k but not n, and when p is a factor of both k and n then the pα+β qγ . . . as
above are in R(Ak

) since they are divisors of kn but not of n because the exponent
of p is too large.

The other factor B of the tiling does not change30, and neither do R(B),S(B) or
hence condition (T2) for B. The proof is similar for other transformations, using the
results of the lemmas in last section.

Similar arguments hold for the other transformations, see [6, 46]. Since any canon
can be deconcatenated down to a Vuza canon (or to the trivial canon, {0}⊕{0}), it
follows:

Proposition 3.57. Conjecture 3.54 is true ⇐⇒ it is true for Vuza canons.

30 With the notations above, B changes to B′ but for instance the polynomial B(X) stays the
same.
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This result revived the interest in Vuza canons when it was first published in [6],
proving Conjecture 3.54 (and the spectral conjecture below too) in ‘good groups’,
adding cases n = pmqr, pqrs (with p,q,r,s distinct primes) to [35]’s case n = pα qβ .

This deconcatenation technique also applies to all ‘compact canons’ (i.e. A ⊂
Z,B ⊂ Z with A⊕B = {0,1,2 . . .n− 1} without modulo n reduction), and [35] al-
ready noted that this implied the truth of Conjecture 3.54 in that case.

The spectral conjecture

Despite its name, the origin of the spectral conjecture is extraneous to the field of the
present book, but it is still open in dimension 1 and 2, the former being our topic. It
states

Conjecture 3.58. (Fuglede, 1974) A tiles some Zn ⇐⇒ A is spectral.31

Here, ‘spectral’ means that the tile (a measurable subset of Rn in the most general
context) admits a Hilbert basis of exponential functions, meaning, in the seminal
case, that any map in L2([0,1[) is the sum of its Fourier expansion. In dimension 1
we have a less esoteric definition involving difference sets:

Definition 3.59. A subset A ∈ Z is spectral if there exists a spectrum Λ ⊂ [0,1[,
i.e. a subset with the same cardinality as A, such that e2iπ(λi−λ j) is a root of the
characteristic polynomial A(X) for all distinct λi,λ j ∈ Λ .

In other words, Z(A) must include a (large enough) difference set.
It is still unknown whether in general the λi−λ j must be rational, i.e. whether the

roots in question are roots of unity, though some progress was recently made in that
respect. But if we consider A as a set in Z defined modulo nZ, i.e. any element of A
can be twiddled by any multiple of n – since this does not change the condition that
A tiles Zn – then only those roots of A(X) which are nth roots of unity are unchanged.

Hence we may assume that Λ ⊂ {0,
1
n
,

2
n
. . .

n−1
n

}, i.e. nΛ ⊂ Zn, which we will do

henceforth.32

The spectral conjecture has been proved in many cases (convex tiles for instance)
but in general it is false, as first shown in high dimension by Fields medalist Terence
Tao [82]. Following further work [56], the conjecture only remains open in dimen-
sions 1 and 2. In dimension 1, which is our context for rhythmic canons, Izabella
Łaba has proved [59] that (T1) + (T2) implies ‘spectral’, explicitly constructing a
spectrum under these conditions, just as [35] proved that (T1)+(T2) implies ‘tiling’.
So the conjecture is known to be true when n has only two prime factors, by the

31 Originally it is a question of tiling Rn but in dimension 1 it can be reduced to tilings of Z,
see [45, 59].

32 Twiddling an element by n adds Xn − 1 to the characteristic polynomial A(X), which de-
stroys any root which is not common to both polynomials, hence this statement. [46] argues
for this restricted definition of ‘spectral’, through characters of the group Zn, which also
makes perfect sense and yields the same overset of Λ . Perhaps this condition should be
properly labeled ‘spectrality in a cyclic group’.
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last result in Theorem 3.26; it is also true for motifs that tile a ‘good group’, be-
cause by deconcatenation such a tiling reduces to the trivial tiling and hence inherits
(T1)+ (T2) (first proved in [6]). More generally, it is true for any motif that can be
reduced to a tiling satisfying (T1)+(T2), for instance the compact tilings mentioned
above.33

Without condition (T2) we have a direct heredity result:

Theorem 3.60. Let A ⊂ Z be a finite motif of some tiling. We know from [35] that it
tiles Zn with n = gcd(R(A)); then Ak is spectral if and only if A is spectral.

This was announced in [3, 8], but first properly stated and proved in printed form in
[46], which we follow below. If all Vuza canons are spectral, meaning both factors
A,B are spectral sets, then by concatenation (and duality) any canon is spectral too.
Hence the spectral conjecture (in the direction tiling ⇒ spectral) is true if and only
if it is true for all Vuza canons, which is another stringent motivation for their study.

Proof. Consider the concatenation of A,Ak ⊂ Zk n. We have proved above that
R(Ak

)=R(A)
⋃(

Div(kn)\Div(n)
)
. Assume that we know a spectrum Λ for A, mean-

ing that e2iπ(λi−λ j) is a root of the characteristic polynomial A(X) for all distinct
λi,λ j ∈ Λ . But in the ring of polynomials,

A
k
(X) = (1+Xn +X2n + . . .X (k−1)n)×A(X) =

Xnk −1
Xn −1

×A(X).

Hence Λ already produces some roots of A
k
(X). But #Ak

= k× #A and we need a
larger spectrum. A possible solution is the sum

Λ ′ = Λ +
{

0,
1
nk

,
2
nk

. . . ,
k−1

nk

}
.

First, this spectrum has the right cardinality k#A (one has to check that the sum
is direct, this follows from the fact that λi −λ j = q/n as assumed above).

Last, any element of Λ ′, i.e. (λi − λ j)± p
nk

, is equal either to λi − λ j (when

p = 0), providing a root of A(X) as mentioned in the beginning of the proof, or to
some

q
n
± p

nk
with −n < q < n and −k < p < k, and hence provides a root of Xnk −1

which is not a root of Xn −1, i.e. one of the additional roots in R
Ak . In both cases we

get a root of A
k
(X) and hence Λ ′ is a spectrum.

For the complete reduction of Fuglede’s conjecture to Vuza canons (or to the triv-
ial canon when the deconcatenation process only ever stops with {0}⊕ {0}), one
also needs the preservation of the spectral condition under duality (exchanging the

33 In some cases I was able to predict that any Vuza canon in Z180 with a specific value of
RA could be reduced by demultiplexing to a canon with period 90, implying (T2), with-
out finding explicitly the canons in question but knowing from the factors in RA that any
complement B of A would be divisible by 2, i.e. that the canon could be demultiplexed.
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factors) and prolongation of the other factor in concatenation B ⊂ Zn to Zk n, which
are both trivial, as is the zooming operation changing A ⊂Zn into k A′ ⊂ kZn. Gilbert
also proved that the condition is invariant under affine transform or even multiplexing
under conditions analogous to our computation above, when the new ZÃ is computed
from the

⋂
ZAi (assuming this intersection is spectral in a natural sense).

Example 3.61. Consider A = {0,1,4,5}, RA = {2,8} and hence A tiles Zn for n = 8.
Triple concatenation of A yields

A3
= {0,1,4,5,8,9,12,13,16,17,20,21}

and R
A3 is made of all integers below 24 except 6 and 18 (Fig. 3.11). This happens

because A3
(X) is a pure product of cyclotomic polynomials:34

A3
(X) = Φ2Φ3Φ6Φ8Φ12Φ24

A spectrum for A is 35 Λ =
{

0,
1
2
}⊕{

0,
1
8
}
=

{
0,

1
8
,

1
2
,

5
8
}

.36 For a spectrum in

A3 one adds
0,1,2

24
and finally Λ ′ =

1
24

{0,1,2,3,4,5,12,13,14,15,16,17} with 12

elements as required, whose differences yield all values of
k

24
barring

6
24

and
18
24

,
as desired.

Detailed algorithms are provided in Section 3.3.

3.3 Algorithms

3.3.1 Computing a DFT

The definition formula is easy to implement in any modern programming language:
loop over both the elements of the pc-set and the indexes. In the most general case,
for a distribution f ∈ CZn one

• Selects (or input) the index k of the coefficient.
• Sets s = 0.
• For j from 0 to n−1, does s = s+ e−2iπk j/n × f ( j).
• Returns the value of s: it is f̂ (k).

34 Building up rhythmic canons from products of cyclotomic polynomials was tried in [1] and
implemented in OpenMusic. It is a fairly quick process – list cyclotomic polynomials, select
index lists satisfying condition (T2) and effectuate the corresponding product, discard the
result if it is not 0-1, else find the possible outer voices – but omits many canons.

35 I follow Łaba’s recipe in [59].
36 Search for a spectrum may well require exponential time, unless conjecture 3.54 is true,

since the Coven-Meyerowitz conditions can be checked in polynomial time, as pointed out
by Kolountzakis.



3.3 Algorithms 81

At worst one can separate real and imaginary parts and compute them separately (the
former a sum of cosines, the latter a sum of sines).
Using cos(π/6) =

√
3/2,sin(π/6) = 1/2 and other trigonometric values, one can

even compute a DFT by hand (preferably beginning with the kind of geometrical sim-
plifications suggested in Fig. 3.3). Some practical advice: numerical calculations of-
ten fail to identify 0, so a routine that tidies the results (turning any x∈ [−10−10,1010]
to 0 for instance) is generally a good idea, especially for inverse Fourier transform.

Many high-level environments will provide a ready-made Fourier transform. One
has to check which convention is used and perhaps adjust the result. For instance in
MathematicaTM , the DFT of a pc-set (say {0,4,7}) as defined in this book could be
obtained with the native function Fourier by

Fourier [{1,0,0,0,1,0,0,1,0,0,0,0}, FourierParameters →{1,−1}].

Notice that the pc-set is replaced by the associated distribution – this can be auto-
mated by something like

Table[ If [ MemberQ[ set, k ], 1, 0], {k,0,n−1}]

unless one prefers to compute one’s own DFT with a loop inside a loop, as described
above.

Major Scale Similarity

I include in this subsection the computation of Major Scale Similarity (MSS)
though it is only defined below. One has to input first a temperament (TeT). Say
it is given as a table of values in cents – for instance, Werkmeister’s fifth TeT is

(0,107.8,209.8,305.9,407.8,503.9,611.7,707.8,803.9,911.7,1007.8,1109.8).

Now define the magnitude of the first Fourier coefficient of a scale37 (i.e. a table of
7 values in cents) as

A(scale) =
6

∑
k=0

e2iπ scale[k]/1200e−2ikπ/7

(beware of your programming language’s conventions; here I assume that the first
index of a table is 0).

Compute the table of all major scales in the given TeT: starting from the list of
indexes ind = [0,2,4,5,7,9,11], run the 12 transpositions, i.e. ind+k (mod 12), and
tabulate

scale[k] = table(TeT[(ind[ j]+ k) (mod 12)], j = 0 . . .6).
With a simple loop, compute the max M and min m of the 12 values A(scale[k]):

• m = 1000, M = 0.

37 With Noll’s order-dependent definition, see FA (1) inSection 5.2.
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• For k = 0 to 11, do x = A(scale[k]);
– If x > M then M = x;
– If x < m then m = x;

Now the value of MMS(TeT) is
1

M−m
.

3.3.2 Phase retrieval

For convenient reference, I repeat here the algorithm for finding the unknown coef-
ficient in Lewin’s problem when one Fourier coefficient is nil:

1. Compute the cardinality of A: it is the sum of the elements of IFunc(A,B) divided
by #B.

2. Compute FA =
F (IFunc(A,B))

FB
, with two coefficients still indeterminate.

3. Compute the sum of the squared magnitudes of the n− 2 known coefficients in
the last step; subtract the result from n×#A to get 2r2 and hence r, the magnitude
of the missing coefficient.

4. Compute the inverse Fourier transform of FA as a function of the missing coef-
ficient r eiϕ , where only ϕ remains unknown.

5. Taking into account that all the values computed in the last step must be 0’s or
1’s, determine ϕ; complete the computation of 1A.

To some extent, this algorithm could be used even when A is a multiset.

3.3.3 Linear programming

The matricial formalism mentioned in Section 1.2.3 provides practical solutions to
many retrieval problems. In [13], we have used linear programming to good effect for
solving equations like s∗1A = 1B (which corresponds to finding a linear combination
of translates of A equal to B) and the same procedure could be used for solving
1A ∗1−B = IFunc(A,B) in A, i.e. Lewin’s problem, among others like tiling.

Here is the algorithm: given a motif A and a period n for the tiling, consider a
vector x = (x0, . . . ,xn−1). By linear programming, minimize x0+x1+ . . .xn under the
constraint A .xT = (1,1, . . .1) (this is the tiling condition) and conditions 0 � xi � 1
for all i (this compels the ‘quantity of pc i’ to be somewhere between 0 and 1, and
hopefully either one or the other).

But though the algorithm seems to work well, it is not formally proved yet that
it always provides a solution! For one thing, there may well be multiple solutions
(obtained by varying the starting point). For example, for B= {0,2,4,6,8,10}⊂Z12,
IFunc(A,±B) does not change when A is replaced by A+ 2 and there are at least
six different solutions for the same value of IFunc(A,B). Notice that this method
bypasses Fourier transform altogether.

It is advantageous to use an environment wherein linear programming is already
implemented (Mathematica, Maple, Fortran, . . . ).
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3.3.4 Searching for Vuza canons

Tilings by translation, i.e. decomposition of cyclic groups in direct sums, gave rise
to many conjectures. So far, most of them have proved to be false:

1. Sands and Tidjeman independently believed that any rhythmic canon is decon-
catenable, i.e. when A⊕B = Zn then – assuming 0 ∈ A∩B up to translation –
either A or B lies in a strict subgroup of Zn.

2. Call D the diameter of a finite set of integers A (i.e. up to translation A ⊂
{0,1 . . . ,D}), T the least period of a tiling by A (i.e. A tiles ZT ) and T (D)
the largest T for all A’s with diameter � D. From the case A = {0,D}, it is clear
that T (D)� 2D; in the other direction, from the pigeonhole principle, it can be
shown that T (D)� 2D, a rather wide bracket.

The first conjecture was proved false by Szabó ([81]). For the second one, Kolountza-
kis and others proved that γD2 � T (D) � β exp(α

√
D logD) for some constants

α,β ,γ; the lower bound was since increased to any power of D. The upper bound
actually uses Fourier analysis, the factorisation in cyclotomic polynomials, and a so-

phisticated lower bound for Euler’s totient function ϕ(n) � Cn
log logn

allowing one

to construct cyclotomic factors with large degrees. In this section, we will focus on
the construction that proves the lower bound and on the similar one by Szabó that
disproves Sand’s conjecture.

Both constructions start from two basic ideas: first, for composite n, Zn can be
decomposed as a direct sum (or product) of other cyclic groups (three at least in both
cases), enabling one to look at 3D periodic lattices; and second, a very regular tiling
(say B is a subgroup of Zn,B = dZn and A is a complete set of residues modulo d)
can be easily perturbed into a very aperiodic tiling. Szabó and Kolountzakis differ in
the second part because their aims are different.

Generalised Kolountzakis algorithm

Initially, Kolountzakis starts from an integer n = 30pq and the isomorphism Zn ≈
Z3p×Z5q×Z2 where p,q are large distinct primes with a similar magnitude ∼D. He
then singles out the two “parallel planes” P0 =Z3p×Z5q×{0} and P1 =Z3p×Z5q×
{1}. He starts from the trivial tiling of Z3p×Z5q by A = {0,1,2}×{0,1,2,3,4} and
B = {0,3,6 . . .}×{0,5,10 . . .} where B is a subgroup (isomorphic to Zpq) and A,
omitted in Fig. 3.15, would appear as a small square. Now for P0, a row of the first
factor of B is translated; say B0 = {0,4,6 . . .}× {0,5,10 . . .} and similarly for P1
we translate a column of the second factor, say B1 = {0,3,6 . . .}× {0,8,10 . . .}.
This shatters any periodicity in the tiling. Keeping the same A×{0} as motif and
putting B′ = B0 ×{0} ∪ B1 ×{1} we have an aperiodic tiling of Z3p ×Z5q ×Z2
and by isomorphism a Vuza canon in Zn. Explicit expression of this isomorphism
(given below in 3.3) shows that the diameter of A has the same order of magnitude as
D ∼ p ∼ q, whilst n = 30pq ∼ D2, proving the worst-case lower bound given supra.
In Fig. 3.15 we can see at left the regular lattice B, and at right the same perturbed
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in B′; the first and second planes having respectively a row and a column pushed
somewhat out of place (p,q have been reduced to 3 and 4 for the sake of readability).

Fig. 3.15. A lattice tiling and its perturbation

I provide without details an example of such a construction, which is useful for
building Vuza canons of medium size even though it was devised to prove asymptotic
results.

Let p = 3,q = 5. Hence n = 450. In Zn we find that A is {0,126,252} ⊕
{0,100,200,300,400}, i.e.

A = {0,2,28,54,100,126,128,154,200,226,252,254,326,352,378}

and B = {0,30,60,90 . . .420} = 30Zn. This corresponds, in 3D, to the triplets with
coordinates (0/3/6,0/5/10/15/20,0/1) (/ denotes here an arbitrary choice be-
tween the values). The perturbation changes (0,0,0) and (3,0,0) to (2,0,0) and
(5,0,0) in B0, and the (3,5k,1) to (5,5k+ 2,1) in B1, which yields ultimately the
new factor

B′ = {15,21,30,45,60,90,100,105,111,120,135,180,195,201,210,225,
240,250,270,285,291,315,330,360,375,381,390,400,405,420}.

By using five parallel planes instead of two, it is possible to get a tiling of Z180, the
minimal value for this construction. One solution is shown in Fig. 3.16.

I will now expound a more general version.

1. Have five numbers a,b,c, p,q such that ap,bq and c are pairwise coprime.
2. Construct the tile

A ⊂ G = Zap ×Zbq ×Zc by A = {0,1,2 . . .a−1}×{0,1 . . .b−1}×{0}.
3. Construct the lattice complements
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Fig. 3.16. Minimal Vuza canon (n = 180) built by Kolountzakis’ algorithm

B0 = {0,a,2a, . . .(p−1)a}×{0,b . . .(q−1)b}×{0} . . .
...

Bc−1 = {0,a,2a, . . .(p−1)a}×{0,b . . .(q−1)b}×{c−1}.
4. For k = 0 . . .c−1 add a perturbation vector εk to every element of each Bk, either

of the form εk = (pk,0,0) or εk = (0, pk,0). The two kinds must be present. Let
B′

k = Bk +{εk}.
5. Compute B =

⋃
B′

k. Now A⊕B = G.
6. Turn into a tiling of Zn by the canonical linear isomorphism Ψ : G → Zn,

Ψ(x,y,z) = ux+ vy+wz

where u is defined modulo by Ψ(x,y,z) ≡ x (mod a)p and similar equations,

hence

⎧⎪⎨⎪⎩
u ≡ 1 (mod a)p
u ≡ 0 (mod b)q
u ≡ 0 (mod c)

; so u is a multiple of bcq and we get explicitly

u = bcq× (bcq)−1 in Zap (similarly for v,w).

This is not guaranteed to yield a Vuza canon, though it usually does. In practice,
generate all possible canons by this method and sort out the aperiodic ones.

On the other hand, it is possible to compute RA quite easily; since in Zn one gets

A = {0,u, . . .(a−1)u}⊕{0,v, . . .(b−1)u}
and in polynomials

A(X) = (1+Xu +X2u + . . .X (a−1)u)(1+Xv +X2v + . . .X (b−1)v) =
Xau −1
Xu −1

Xbv −1
Xv −1

.

Hence RA is made of the divisors of au which do not divide u, together with the
divisors of bv which do not divide v:

Proposition 3.62. RA =
(
Div(au)∪Div(bv)

)\ (
Div(u)∪Div(v)

)
.

This easily entails the non-periodicity of A. It is also a clear case of verifying con-
ditions (T1) and (T2). It is possible to tell something about RB (notably proving that
it always satisfies condition (T2)), but since the computation is analogous in the next
algorithm, I will only do the latter.
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Szabó’s algorithm

In [81] the 3D-decomposition is not explicitly made. I will endeavour here to make
it so.

Consider three pairs of integers ui,vi, i = 1 . . .3 such that uivi and u jv j are co-
prime for i �= j. Let mi = uivi and n = m1m2m3. It is convenient to introduce
gi = n/mi, e.g. g1 = u2v2u3v3.

For an example, let u1 = v1 = 2,u2 = v2 = 3,u3 = v3 = 5,n = 900.
Now the three groups Gi generated by the mi satisfy G1 ⊕G2 ⊕G3 = Zn. Each

can be further decomposed in

Gi = {0,gi,2gi, . . .(ui −1)gi}⊕{0,
n
vi
,2

n
vi
, . . .(vi −1)

n
vi
}= Ai ⊕Bi.

In the example, G2 = {0,100,200}⊕{0,300,600}.
Construct A =

⊕
Ai,B =

⊕
Bi: we have a tiling since

Zn =
⊕

i

(Ai ⊕Bi) =
(⊕

i

Ai
)⊕ (⊕

i

Bi
)
= A⊕B.

It is helpful to think of A as ‘small change’ and B as ‘banknotes’.38

In the example, A = {0,225} ⊕ {0,100,200} ⊕ {0,36,72,108,144} and B =
{0,30,60 . . .}= 30Z900.

B is always a subgroup, generated by all three n/vi = uigi, i.e. B = n
v1v2v3

Zn.
The idea is to perturbate B using the three dimensions. To ensure that the new B′

still tiles with A, Szabó chooses a (circular) permutation σ of {1,2,3}. Remembering
that the elements of B can be written as ∑kiuigi, select the xk,i = kuigi + uσ(i)gσ(i)
and replace all xk,i by x′k,i = xk,i +gi.

In the example, if we take σ(i) = i+1 (mod 3) then we replace x2,3 = 2u3g3 +
u1g1 = 360+450= 810 by x2,3+g1 = 810+225= 135. On this term, the divisibility
by 2 is destroyed, this is how this construction shatters Sand’s conjecture. In all,
∑vi = 2+3+5 = 10 elements are changed.

This destroys the regularity of B but preserves the tiling quality, and perhaps a
little more:

Theorem 3.63. This construction yields a non-deconcatenable, non-demultiplexable,
Vuza canon for large enough ui,vi. However, both factors of the tiling always satisfy
condition (T2).

The first assertion is proved in [81], at least for composite n greater than 60,060
(though the smallest known counterexample, which uses this construction, lies in
Z900). The last assertion appears in the literature, but as far as I know no proof of it
has been published before.

38 Appropriately, one of the very first papers on tilings of integers, On Number Systems by
Nicolas de Bruijn (1956), originated from the consideration of the British money system.
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Proof. Consider the characteristic polynomial

B(X) = 1+Xm +X2m + · · ·= Xn −1
Xm −1

where m = u1u2u3.

In order to turn B into B′ we multiply, for all i and all k = 0 . . .vi − 1, the term
Xkuigi+uσ(i)gσ(i) by Xgi . In effect we had to B(X) the polynomials Pi(X), i = 1 . . .3
defined by

(Xgi −1)Xuσ(i)gσ(i)
vi−1

∑
k=0

Xkuigi = (Xgi −1)Xuσ(i)gσ(i)
Xn −1

Xuigi −1
.

Adding these polynomials and multiplying by the explicit form of A(X) would prove
that the new outer voice B′ still tiles with A. I will not do it here, since it is already
done in [81].

The cyclotomic factors of this perturbation factor are the Φd with RPi = d ∈
(Div(n) \Div(uigi))∪Div(gi). Remember that RB = Div(n) \Div(m). Let us eluci-
date SB: a prime factor p of ui can only appear again in vi by assumption; if it does
not then it is cancelled out in the divisors of m, i.e. the prime powers in SB are those
common to ui and vi. Any such prime factor being confined to one index i can be
labelled pi, and pk

i ∈ SB only if k is greater than the pi-valuation of ui, i.e. pk
i is not a

divisor of ui.

In the example above, B(X) =
X900 −1
X30 −1

and SB = {2×2,3×3,5×5}.

Such powers still belong to RPi . So do products of these powers for different
indexes i: consider without loss of generality r = p2

1 p2
2 where pi is a prime factor of

ui and vi, i = 1,2 (with valuation 1 to ease the notation). Then r is a divisor of n, of
course, but not a divisor of u1g1 = n/v1 = p1

1 ×Q where Q is coprime with p1. A
similar verification can be done for P3. This means that condition (T2) still holds.

In the example above, SB′ = SB = 4,9,25 and we preserve at least 36,100,225
and 900 in SB′ . Some factors have disappeared but are not required by condition
(T2) : 12,18,20,45,50,60,75,90,150,180,300,450.

Matolcsi’s algorithm

In [57], Matos Matolcsi devised a neat procedure for an exhaustive search for Vuza
canons in a given Zn. Though this sometimes fails because of computational com-
plexity, it is still worthwhile to study it in the context of this book.

The key to his procedure is a useful lemma in [35]:

Lemma 3.64. If A satisfies (T1) and (T2), then a complement of A in Zn, i.e. B sat-
isfying A⊕B = Zn, can be produced by its characteristic polynomial: B(X) is the
product of the Φpα (Xn/pv(p)

), where pα | n is not in SA, and n = ∏i pv(pi)
i is the de-

composition of n into prime powers (so that n/pv(p) is the largest divisor of n coprime
with p).
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Example 3.65. Consider SA = {2,8} and n = 24.39 Since 24 = 23 31, the missing
prime powers in SA – which must indeed be in SB – are 4 = 22 and 3, which are
respectively complemented to 24 by coprime prime powers 3 and 8. We compute

B(X) = Φ4(X3)×Φ3(X8) = (1+(X3)2)(1+(X8)+(X8)2),

hence B = {0,6,8,14,16,22} which does tile, for instance with A = {0,3,12,15}.

Now the idea is to check all possible sets SA. Begin by choosing n.

• Compute all partitions in two subsets of the set of prime power divisors of n.
Keep (usually) the smallest part, which will be SA (the other being of course SB).

• Compute the Coven-Meyerowitz complement B for SA.40

• Compute all possible A completing B, using one of the general completion al-
gorithms described in [11].41 Sort by the different values of RA, keeping one
representative Ai for each possibility.

• Discard all sets RA that either
1. ensure that A is periodic, or
2. ensure that B must be periodic (recalling that RB must contain at least all

divisors of n not in RA), making use of Theorem 3.28.
• For each remaining representative of possible A’s, compute complements B, dis-

carding eventual periodic ones.
• Whatever remains is a Vuza canon.

Details and tables of results are given in [8].

One algorithm that I will not discuss here, though it sounds closely related to har-
monic analysis, is the search for a spectrum (cf. Section 3.2.6). Actually it is mostly
(as of today) a computational problem; Kolountzakis has studied its complexity and
provides strong heuristic reasons for it to be NP-complete, unless the (T2) conjecture
is true. Actually he views this as a strong argument against the latter conjecture!

Exercises

Exercise 3.66. Compute the cyclotomic polynomial Φd when d runs over all divisors
of 12 (use Eq. 3.1).

Exercise 3.67. X8 +1 is a cyclotomic polynomial. Which one?

Exercise 3.68. Choose some singular pc-set in Table 8.2 and check which of Lewin’s
conditions is satisfied. Compare with the appropriate Fourier coefficient (e.g. if the
augmented triad property is satisfied, check that a3 = 0).
39 If we start from an actual motif A and n is unknown, n can be taken equal to the lcm of RA

– or any multiple thereof.
40 This is a simple motif, product of ‘metronomes’, cf. exercises.
41 This is the weak point of the algorithm because when B is very regular, both the number of

solutions for A and the searching time get considerable.



3.3 Algorithms 89

Exercise 3.69. Is {0,2,3,5,7,8} singular or invertible in Z12?

Exercise 3.70. Express a fifth (e.g. {0,7}) as a linear combination of the 11 other
ones.

Exercise 3.71. Compute by hand the DFT of {0,1,6,7,11}, Berg’s sonata’s initial
pc-set.

Exercise 3.72. Decompose the even elements of Z32 in classes of associated ele-
ments, i.e. according to their order.

Exercise 3.73. A = {0,1,7,11,17,18,24} ⊂ Z30. Check that a1 = 0 and that A can-
not be decomposed as a reunion of regular polygons.

Exercise 3.74. Prove Proposition 3.20 and/or the next one.

Exercise 3.75. Check that A= {0,1,6,10,12,13,15,19}, A′= {0,2,5,6,11,12,15,17}
both tile Z24.

Exercise 3.76. Compute RA for A = {0,5,8,13}.

Exercise 3.77. Use Jedrzejewski’s recipe and build a Vuza canon.

Exercise 3.78. Prove Theorem 3.49 (discuss on each possible residue i, or read [6]).

Exercise 3.79. Check that
{

0,
1
8
,

1
2
,

5
8
}

is a spectrum for A = {0,1,4,5} in Z8.

Exercise 3.80. Finish the computation of the example in Z900 of Szabó’s algorithm.

Exercise 3.81. A motif A is such that SA = {2,8,9} and satisfies condition (T2).
Build B that tiles with A using the construction in Lemma 3.64. Use

Φpα (X) = 1+X pα−1
+X2pα−1

+ . . .X (p−1)pα−1
=

X pα −1
X pα−1 −1

.
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