
Chapter 5
Introduction to Long-Range Dependence

5.1 The Hurst Phenomenon

The history of long-range dependence as a concrete phenomenon believed to be
important in its own right should be regarded as beginning in the 1960s with a series
of papers by Benoit Mandelbrot and his coworkers, such as Mandelbrot (1965) and
Mandelbrot and Wallis (1968). The cause was a need to explain an empirical finding
by Hurst (1951, 1956) that studied the flow of water in the Nile. A particular data
set studied by Hurst appears in Figure 5.1.

Many features of this data set are interesting (one of which is how long ago
the data were collected). Harold Hurst, who was interested in the design of dams,
looked at these data through a particular statistic. Given a sequence of n observations
X1;X2; : : : ;Xn, define the partial sum sequence Sm D X1C : : :CXm for m D 0; 1; : : :

(with S0 D 0). The statistic Hurst calculated is

R

S
.X1; : : : ;Xn/ D max0�i�n.Si � i

n Sn/ � min0�i�n.Si � i
n Sn/

. 1n
Pn

iD1.Xi � 1
n Sn/2/1=2

: (5.1)

Note that Sn=n is the sample mean of the data. Therefore, max0�i�n.Si � i
n Sn/,

for example, measures how far the partial sums rise above the straight line they
would follow if all observations were equal (to the sample mean), and the difference
between the maximum and the minimum of the numerator in (5.1) is the difference
between the highest and lowest positions of the partial sums with respect to the
straight line of uniform growth. It is referred to as the range of observations. The
denominator of (5.1) is, of course, the sample standard deviation. The entire statistic
in (5.1) has then been called the rescaled range or R=S statistic.

When Harold Hurst calculated the R=S statistic on the Nile data in Figure 5.1,
he found that it grew as a function of the number n of observations, approximately
as n0:74.
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Fig. 5.1 Annual minima of the water level in the Nile for the years 622 to 1281, measured at the
Roda gauge near Cairo

To see that this observation is interesting, let us suppose that X1;X2; : : : is a
sequence of random variables. If we apply the R=S statistic to the first n observations
X1;X2; : : : ;Xn for increasing values of n, what would we expect the resulting
sequence of values of the R=S statistic to be like, for the “usual” models of
X1;X2; : : :?

Example 5.1.1. Suppose that X1;X2; : : : is, in fact, a stationary sequence of random
variables with a finite variance and a common mean �. Define the centered partial
sum process by

S.n/.t/ D SŒnt� � Œnt��; 0 � t � 1 : (5.2)

The classical functional central limit theorem (Donsker’s theorem, invariance
principle) says that if X1;X2; : : : are i.i.d., then

1p
n

S.n/ ) ��B weakly in DŒ0; 1�; (5.3)

where �2� is equal to the common variance �2 of the observations, and B is the
standard Brownian motion on Œ0; 1� (Theorem 14.1 in Billingsley (1999)). Here
DŒ0; 1� is the space of right continuous functions on Œ0; 1� having left limits equipped
with the Skorokhod J1 topology. In fact, the functional central limit theorem is
known to hold for stationary processes with a finite variance that are much more
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general than an i.i.d. sequence (with the limiting standard deviation �� not equal, in
general, to the standard deviation of the Xi); see a survey by Merlevéde et al. (2006).

The function f W DŒ0; 1� ! R defined by

f .x/ D sup
0�t�1

.x.t/ � tx.1// � inf
0�t�1.x.t/ � tx.1// ;

x D .x.t/; 0 � t � 1/ 2 DŒ0; 1�, is easily seen to be continuous. It is straightforward
to check that the range of the first n observations (the numerator in the R=S statistic)
is equal to f .S.n//. Therefore, if the invariance principle (5.3) holds, then by the
continuous mapping theorem, Theorem 10.2.4,

1p
n
.the range of the first n observations/ D f

�
1p
n

S.n/
�

) f .��B/ D ��
h

sup
0�t�1

.B.t/ � tB.1// � inf
0�t�1.B.t/ � tB.1//

i

WD ��
�

sup
0�t�1

B0.t/ � inf
0�t�1B0.t/

�
;

where B0 is a Brownian bridge on Œ0; 1�. Further, if the stationary process X1;X2; : : :
(or its bilateral extension in Proposition 1.1.2) is ergodic, then by the pointwise
ergodic theorem, Theorem 2.1.1 (or (2.8)), we have, with probability 1,

1

n

nX

iD1
.Xi � 1

n
Sn/

2 D 1

n

nX

iD1
X2i �

 
1

n

nX

iD1
Xi

!2

! E
�
X21
� �

�
E
�
X1
�	2 D �2 :

Assuming, therefore, that the functional central limit theorem holds, and that the
observations form an ergodic process, we see that

1p
n

R

S
.X1; : : : ;Xn/ ) ��

�

�
sup
0�t�1

B0.t/ � inf
0�t�1B0.t/

�
: (5.4)

That is, the R=S statistic grows, distributionally, as the square root of the sample
size.

The distributional n0:5 rate of growth of the values of the R=S statistic obtained
under, apparently quite reasonable, assumptions of Example 5.1.1 looks incom-
patible with the empirical n0:74 rate of growth Hurst observed on the Nile data.
Therefore, if one wants to construct a stochastic model of observations with a similar
behavior of the R=S statistic to the one observed by Hurst, some of the “reasonable”
assumptions of the example must be dropped.
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The following example looks at what happens when the assumption of finite vari-
ance of the observations is dropped and replaced by an assumption of appropriately
heavy tails.

Example 5.1.2. In order to be able to concentrate better on the effect of heavy tails,
we will assume that the observations X1;X2; : : : are i.i.d. Assume that the balanced
regular variation property of Definition 4.2.7 holds, and 0 < ˛ < 2; this guarantees
that the variance of the observations is infinite. In this case, we will apply the
Poisson convergence result in Theorem 4.4.1 to understand the “size” of the R=S
statistic.

We begin with a typical “truncation” step, needed because various sums of
points are not continuous functionals of point processes in the topology of vague
convergence. For � > 0, let

S.�/m D
mX

jD1
Xj1
�jXjj > �an

�
; m D 0; 1; 2 : : : ;

where, as usual, an D inf
˚
x > 0 W P.jX1j > x/ � 1=n



, n D 1; 2; : : :. Consider a

modified version of the R=S statistic defined by

RSn.�/ D max0�i�n.S
.�/
i � i

n S.�/n / � min0�i�n.S
.�/
i � i

n S.�/n /

.
Pn

iD1 X2i 1
�jXjj > �an

�
/1=2

: (5.5)

Note that RSn.�/ D g�.Nn/, where Nn is the point process in (4.52) and g� W
MRC

�
Œ0; 1� � R

d
0

� ! .0;1/ is defined by

g�.K/ D R�.K/

.
R
Œ0;1��.RnŒ��;��/ y2K.ds; dy//1=2

;

with

R�.K/ D sup
0�t�1

�Z

Œ0;t��.RnŒ��;��/
yK.ds; dy/ � t

Z

Œ0;1��.RnŒ��;��/
yK.ds; dy/

�

� inf
0�t�1

�Z

Œ0;t��.RnŒ��;��/
yK.ds; dy/ � t

Z

Œ0;1��.RnŒ��;��/
yK.ds; dy/

�

:

According to Exercise 4.6.8, the law of the limiting Poisson process in Theo-
rem 4.4.1 does not charge the set of the discontinuities of the function g�; see
Exercise 5.5.1. Therefore, by the continuous mapping theorem (Theorem 10.2.4),

g�.Nn/ ) g�.N/ in Œ0;1/ as n ! 1,



5.1 The Hurst Phenomenon 179

and we can represent the limit distributionally as

g�.N/ D
sup
0�t�1

Y�.t/ � inf
0�t�1Y�.t/

.
P1

jD1 �
�2=˛
j 1.�j < ��˛//1=2

:

Here

Y�.t/ D
1X

jD1

�
1.Uj � t/ � t

�
�j�

�1=˛
j 1.�j < �

�˛/; 0 � t � 1 : (5.6)

Recall that .Ui/ is a sequence of i.i.d. standard uniform random variables, .�i/ is a
sequence of i.i.d. random variables taking the value 1 with probability p, and the
value �1 with probability q D 1 � p, and .�i/ is a sequence of standard Poisson
arrivals on .0;1/, with all three sequences being independent.

Corollary 3.4.2 says that Y� is an infinitely divisible process. Furthermore, if we
take 0 < �1 < �2 and use the same random ingredients in (5.6) for the two processes,
Y�1 and Y�2 , then the difference Y�1 � Y�2 can be written in the form

Y�1 .t/ � Y�2 .t/ D L�1;�2 .t/ � tL�1;�2 .1/; 0 � t � 1;

where

L�1;�2 .t/ D
1X

jD1
1.Uj � t/�j�

�1=˛
j 1

�
��˛
2 � �j < �

�˛
1 /; 0 � t � 1 :

By Corollary 3.4.2, L�1;�2 is a Lévy process without a Gaussian component, whose
one-dimensional Lévy measure ��1;�2 is the measure

m.dx/ D �
p1.x > 0/C q1.x < 0/

�
˛jxj�.˛C1/ dx

restricted to the set .��2;��1/ [ .�1; �2/, and whose local shift is

b D .2p � 1/
Z ��˛

1

��˛
2

ŒŒx�1=˛�� dx I

see Example 3.2.3. It is, in fact, a compound Poisson Lévy process. It follows from
the general properties of Lévy processes that sup0�t�1 jL�1;�2 .t/j ! 0 in probability
as �2 ! 0, uniformly in 0 < �1 < �2; see Kallenberg (1974). Therefore, the same is
true for sup0�t�1 jY�1 .t/ � Y�2 .t/j. We conclude that

Y�.t/ ! Y.t/ WD
1X

jD1

�
1.Uj � t/ � t

�
�j�

�1=˛
j ; 0 � t � 1; as � ! 0
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in probability in the uniform topology in the space D.Œ0; 1�/. Therefore, as � ! 0,

g�.N/ !
sup
0�t�1

1X

jD1

�
1.Uj � t/ � t

�
�j�

�1=˛
j � inf

0�t�1

1X

jD1

�
1.Uj � t/ � t

�
�j�

�1=˛
j

.
P1

jD1 �
�2=˛
j /1=2

(5.7)
in probability. Notice that by the strong law of large numbers, �j=j ! 1 as j ! 1
with probability 1. This and the fact that 0 < ˛ < 2 imply that the dominator on the
right-hand side is finite and justifies the convergence.

Let g.N/ denote the random variable on the right-hand side of (5.7). If one shows
that the statement

lim
�!0

lim sup
n!1

P

�ˇ
ˇ
ˇ
ˇ
1p
n

R

S
.X1; : : : ;Xn/ � RSn.�/

ˇ
ˇ
ˇ
ˇ > 	

�

D 0 (5.8)

for every 	 > 0 is true, then a standard weak convergence argument, e.g., in
Theorem 3.2 in Billingsley (1999), allows us to conclude that

1p
n

R

S
.X1; : : : ;Xn/ ) g.N/ : (5.9)

Note that (5.9) means that even in the heavy-tailed case, the R=S statistic grows as
the square root of the sample size.

The validity of (5.8) is verified in Exercise 5.5.2.

We conclude, therefore, as was done in Mandelbrot and Taqqu (1979), that
infinite variance alone cannot explain the Hurst phenomenon. A different drastic
departure from the assumptions leading to the square root of the sample size rate of
growth of the R=S statistic was suggested in Mandelbrot (1965), and it had nothing
to do with heavy tails. The idea was, instead, to take as a model a stationary process
with a finite variance, but with correlations decaying so slowly as to invalidate the
functional central limit theorem (5.3). The simplest model of that sort is fractional
Gaussian noise, which is the increment process of fractional Brownian motion.

Let us begin with a fractional Brownian motion, or FBM, constructed in
Example 3.5.1. This is a zero-mean Gaussian process .BH.t/; t � 0/ that is self-
similar with exponent of self-similarity H 2 .0; 1/ and stationary increments. These
properties imply that BH.0/ D 0 and E.BH.t/ � BH.s//2 D �2jt � sj2H for some
� > 0; see Section 8.2. Taking an appropriately high moment of the increment
and using the Kolmogorov criterion in Theorem 10.7.7 allows us to conclude that
a fractional Brownian motion has a continuous version, and we always assume that
we are working with such a version.

A fractional Gaussian noise, or FGN, is a discrete step increment process of a
fractional Brownian motion defined by Xj D BH.j/� BH.j �1/ for j D 1; 2; : : :. The
stationarity of the increments of the FBM implies that this is a stationary Gaussian
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process. Using the fact ab D .a2 C b2 � .a � b/2/=2 and the incremental variance
of the FBM, we easily see that

Cov.XjCn;Xj/ D �2

2

h
.n C 1/2H C jn � 1j2H � 2n2H

i
(5.10)

for j � 1; n � 0. That is,

�n WD Corr.XjCn;Xj/ � H.2H � 1/n�2.1�H/ as n ! 1. (5.11)

In particular, �n ! 0 as n ! 1. This implies that the FGN is a mixing, hence
ergodic, process; see Example 2.2.8. Furthermore, by the self-similarity of the
fractional Brownian motion, for every n,

Var.X1 C : : :C Xn/ D VarBH.n/ D �n2H : (5.12)

Suppose now that a set of observations X1;X2; : : : forms a fractional Gaussian
noise as defined above, and let us consider the behavior of the R=S statistic on these
observations. The ergodicity of the FGN implies that the denominator of the statistic
converges a.s. to the standard deviation of the observations, � ; see Example 2.1.5.
For the numerator of the R=S statistic, we notice that Si D BH.i/ for every i, and the
self-similarity of the FBM gives us

max
0�i�n

.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/

D max
0�i�n

.BH.i/ � i

n
BH.n// � min

0�i�n
.BH.i/ � i

n
BH.n//

dD nH

�

max
0�i�n

.BH.
i

n
/ � i

n
BH.1// � min

0�i�n
.BH.

i

n
/ � i

n
BH.1//

�

:

By the continuity of the sample paths of the fractional Brownian motion, we have

max
0�i�n

.BH.
i

n
/ � i

n
BH.1// � min

0�i�n
.BH.

i

n
/ � i

n
BH.1//

! sup
0�t�1

.BH.t/ � tBH.1// � inf
0�t�1.BH.t/ � tBH.1//

with probability 1. That is, for the FGN,

n�H R

S
.X1; : : : ;Xn/ ) sup

0�t�1
.BH.t/ � tBH.1// � inf

0�t�1.BH.t/ � tBH.1// ;

and so the R=S statistic grows distributionally at the rate nH as a function of the
sample size. Therefore, selecting an appropriate H in the model will, finally, explain
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the Hurst phenomenon. In particular, the exponent H of self-similarity of fractional
Brownian motion is often referred to as a Hurst parameter.

This success of the fractional Gaussian noise model in explaining the Hurst
phenomenon is striking. We have used the self-similarity of the fractional Brownian
motion in the above computation, but it is not hard to see that a very important
property of the fractional Gaussian noise is the unusually slow decay of correlations
in (5.11), especially for high values of H (i.e., close to 1). For these values
of H, the variance of the partial sums in (5.12) also increases unusually fast.
Unlike the previous unsuccessful attempt to explain the Hurst phenomenon by
introducing in the model unusually heavy tails (infinite variance in this case), the
FGN model succeeds here by introducing unusually long memory. Particularly
vivid terminology was introduced in Mandelbrot and Wallis (1968), in the context
of weather and precipitation: unusually heavy tails were called the Noah effect,
referring to the biblical story of Noah and extreme incidents of precipitation, while
unusually long memory was called the Joseph effect, referring to the biblical story
of Joseph and long stretches (seven years) of time greater than average and less than
average precipitation. This success of the FGN brought the fact that memory of a
certain length can make a big difference to the attention of many. The terms “long-
range dependent process” and “long memory” came into being; they can already be
found in the early papers by Mandelbrot and coauthors.

5.2 The Joseph Effect and Nonstationarity

The Joseph effect is clearly visible in Figure 5.2: in the left plot, where the
observations are those of fractional Gaussian noise with Hurst parameter H D
0:8, there are long stretches of time (hundreds of observations) during which the
observations tend to be on one side of the true mean 0. This is clearly not the case
on the right plot of i.i.d. normal observations. Returning momentarily to the Nile
data in Figure 5.1, we see evidence of the Joseph effect there as well.

Such behavior of the observations obviously seems to indicate lack of sta-
tionarity, and in general, the relationship between long-range dependence and
nonstationarity is delicate in a number of ways. We have seen that the Joseph
effect involves long stretches of time when the process tends to be above the mean,
and long stretches of time when the process tends to be below the mean. Quoting
a description in Mandelbrot (1983), page 251, of a fractional Gaussian noise
with H > 1=2: “Nearly every sample looks like a ‘random noise’ superimposed
upon a background that performs several cycles, whichever the sample’s duration.
However, these cycles are not periodic, that is, cannot be extrapolated as the sample
lengthens.”

This discussion shows that in application to real data, either stationary long
memory models or appropriate nonstationary models can be used in similar
situations. There is, obviously, no “right” or “wrong” way to go here, beyond the
principle of parsimony.
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Fig. 5.2 Fractional Gaussian noise with H D 0:8 (left plot) and i.i.d. standard Gaussian random
variables (right plot)

Among the first to demonstrate the difficulty of distinguishing between stationary
long memory models and certain nonstationary models was the paper Bhattacharya
et al. (1983), in which it was suggested that instead of fractional Gaussian noise
or another model with long memory, the Hurst phenomenon can be explained by a
simple nonstationary model as follows. Let Y1;Y2; : : : be a sequence of independent
identically distributed random variables with a finite variance �2. Let 0 < ˇ < 1=2,
choose a � 0, and consider the model

Xi D Yi C .a C i/�ˇ; i D 1; 2; : : : : (5.13)

Clearly, the stochastic process X1;X2; : : : is nonstationary, for it contains a nontrivial
drift. However, it is asymptotically stationary (as the time increases), and the drift
can be taken to be very small to start with (by taking a to be large). This process
has no memory at all, since the sequence Y1;Y2; : : : is i.i.d. It does, however, cause
the R=S statistic to behave in the same way as if the sequence X1;X2; : : : were a
fractional Gaussian noise, or another long-range dependent process.

To see why this is true, note that for this model, the numerator of the R=S statistic
is bounded between

rn � RY
n � max

0�i�n
.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/ � rn C RY

n ;

where

rn D max
0�i�n

.si � i

n
sn/ � min

0�i�n
.si � i

n
sn/ ;

RY
n D max

0�i�n
.SY

i � i

n
SY

n / � min
0�i�n

.SY
i � i

n
SY

n / ;

and SY
m D Y1 C : : :C Ym, sm D Pm

jD1.a C j/�ˇ for m D 0; 1; 2; : : :.
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Since sm is a sum of a decreasing sequence of numbers, we see that min0�i�n.si �
i
n sn/ D 0. On the other hand, by Theorem 10.5.6,

sn � 1

1 � ˇ n1�ˇ as n ! 1.

If we denote by i�n the value of i over which the maximum is achieved in
max0�i�n.si � i

n sn/, then we see that

i�n D b.sn=n/�1=ˇ � ac � .1 � ˇ/1=ˇn

as n ! 1. Therefore,

max
0�i�n

.si � i

n
sn/ D si�n � i�n

n
sn � ˇ.1 � ˇ/1=ˇ�2 n1�ˇ ;

so that

rn � Cˇ n1�ˇ; Cˇ D ˇ.1 � ˇ/1=ˇ�2

as n ! 1.
Recall that Y1;Y2; : : : are i.i.d. random variables with a finite variance. Therefore,

the range RY
n of the first n observations from this sequence grows distributionally as

n1=2. We immediately conclude that

1

n1�ˇ

�

max
0�i�n

.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/

�

! Cˇ

in probability as n ! 1.
Similarly, for the denominator of the R=S statistic, we have a bound

DY
n � dn �

� nX

iD1
.Xi � 1

n
Sn/

2
	1=2 � DY

n C dn ;

where

DY
n D

� nX

iD1
.Yi � 1

n
SY

n /
2
	1=2

; dn D
� nX

iD1

�
.a C i/�ˇ � 1

n
sn
�2
	1=2

:

We know that DY
n=n1=2 ! � a.s. as n ! 1, while an elementary computation

using, for example, Theorem 10.5.6, leads to dn � C0̌ n1=2�ˇ as n ! 1 for some
0 < C0̌ < 1. Therefore,

n�1=2�
nX

iD1
.Xi � 1

n
Sn/

2
	1=2 ! �
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Fig. 5.3 Observations from the model (5.13) with standard normal noise, a D 2 and ˇ D 1=4.
No Joseph effect is visible

a.s., and we conclude that

1

n1�ˇ
R

S
.X1; : : : ;Xn/ ! Cˇ

�

in probability as n ! 1.
Therefore, for the i.i.d. model with small drift as in (5.13), the R=S statistic grows

as n1�ˇ , the same rate as for the FGN with H D 1 � ˇ, and so the R=S statistic
cannot distinguish between these two models. Apart from fooling the R=S statistic,
however, the model (5.13) is not difficult to tell apart from a stationary process
with correlations decaying as in (5.11). Even visually, the observations from the
model (5.13) do not appear to exhibit the Joseph effect, as the plot in Figure 5.3
indicates.

A very important class of nonstationary models that empirically resemble
long-memory stationary models is that of regime-switching models. The name is
descriptive, and it makes it clear where the lack of stationarity comes from. The
fractional Gaussian noise also appears to exhibit different “regimes” (the Joseph
effect), but the nonstationary regime-switching models are usually those with
breakpoints, whose location changes with the sample size, in either a random or
nonrandom manner.

One class of regime-switching models is obtained by taking a parametric model
that would be stationary if its parameters were kept constant and then changing the
parameters along a sequence of nonrandom time points, again chosen relative to the
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sample size. Such a change can affect the mean and the variance (among many other
things) of the process after breakpoints, and to many sample statistics this will look
like long memory.

To see what might happen, consider a sample X1; : : : ;Xn, where the observations
come from r � 2 subsamples of lengths proportional to the overall sample size.
That is, given fixed proportions 0 < pi < 1, i D 1; : : : ; r with p1 C : : : C pr D 1,
the sample has the form

X.1/1 ; : : : ;X
.1/

Œnp1�
;X.2/Œnp1�C1; : : : ;X

.2/

Œn.p1Cp2/�
; : : : ;X.r/Œn.1�pr/�C1; : : : ;X

.r/
n ; (5.14)

where the ith subsample forms a stationary ergodic process with a finite variance,
i D 1; : : : ; r. Since one of the common ways to try to detect long-range dependence
is by looking for a slow decay of covariances and correlations, let us check the
behavior of the sample covariance of the sample (5.14). Fix a time lag m and denote
by ORm.n/ the sample covariance at that lag based on the n observations in (5.14).
Note that

ORm.n/ D 1

n

n�mX

jD1
.Xj � NX/.XjCm � NX/ D Am.n/C Bm.n/ ;

where NX D .X1 C : : :C Xn/=n is the overall sample mean,

Am.n/ D 1

n

n�mX

jD1
XjXjCm � . NX/2 ;

and

Bm.n/ D 1

n
NX
0

@
mX

jD1
Xj C

nX

jDn�mC1
Xj

1

A � m

n
. NX/2 :

By ergodicity, NX ! Pr
iD1 pi�i, where �i is the mean of the ith subsample, i D

1; : : : ; r. Further, since m is fixed, Bm.n/ ! 0 in probability as n ! 1.
Finally, if Ii denotes the set of indices within f1; : : : ; ng corresponding to the ith

subsample, i D 1; : : : ; r, then by ergodicity,

1

n

n�mX

jD1
XjXjCm

D
rX

iD1

Card.Ii \ .Ii � m//

n

1

Card.Ii \ .Ii � m//

X

j2Ii\.Ii�m/

X.i/j X.i/jCm
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C1

n

rX

iD1

X

j2f1;:::;n�mg

j2Ii ;jCm2IiC1

XjXjCm

!
rX

iD1
piE
�
X.i/1 X.i/1Cm

� D
rX

iD1
pi.R

.i/
m C �2i / ;

where R.i/m is the covariance at lag m of the ith subsample. We conclude that

ORm.n/ !
rX

iD1
pi
�
R.i/m C �2i

� �
 

rX

iD1
pi�i

!2

(5.15)

D
rX

iD1
piR

.i/
m C 1

2

rX

i1D1

rX

i2D1
pi1pi2 .�i1 � �i2 /

2

in probability as n ! 1. What (5.15) indicates is that if there is regime-switching as
we have described, and (some of) the mean values in different regimes are different,
then the sample covariance function will tend to stabilize, at large, but fixed, lags at
a positive value.

This is what is often observed in practice, and long memory is suspected. Of
course, this regime-switching model is simply a deterministic way of mimicking
the Joseph effect (recall Figure 5.2), and an example of this phenomenon can be
seen in Figure 5.4, where r D 4, p1 D p2 D p3 D p4 D 1=4, and the four
different stationary ergodic processes are all autoregressive processes of order 1,
with normal innovations with the mean and the standard deviation both equal to 1.
The autoregressive coefficients are  1 D 0:7;  2 D 0:75;  3 D 0:65;  4 D 0:8.
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Fig. 5.4 Observations from a regime-switching AR(1) model (left plot) and their sample autocor-
relation function (right plot)
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5.3 Long Memory, Mixing, and Strong Mixing

The notion of memory in a stationary stochastic process is by definition related to
the connections between certain observations and those occurring after an amount
of time has passed. If X1;X2; : : : is the process, then the passage of time corresponds
to the shifted process, XkC1;XkC2; : : :, for a time shift k. In other words, the notion
of memory is related to the connections between the process and its shifts. This
makes the language of the ergodic theory of stationary processes, elements of which
are outlined in Chapter 2, an attractive language for describing the memory of a
stationary process.

We begin by observing that it is very natural to say that a nonergodic stationary
process X has infinite memory. Indeed, a nonergodic process has the structure given
in Proposition 2.1.6. That is, it is a mixture of the type

�
Xn; n 2 Z

� dD

 �

Yn; n 2 Z
�

with probability p;�
Zn; n 2 Z

�
with probability 1 � p,

where stationary processes
�
Yn; n 2 Z

�
and

�
Zn; n 2 Z

�
have different finite-

dimensional distributions, and the choice with probability 0 < p < 1 is made
independently of the two stationary processes. This means that the result of a single
“coin toss” (with probabilities p and 1�p) will be “remembered forever.” Therefore,
it certainly makes sense to call stationary ergodic processes “processes with finite
memory,” and stationary nonergodic processes “processes with infinite memory.”

It is very tempting to try to use another ergodic theoretical notion, stronger
than ergodicity, such as weak mixing or mixing, for example, to define finite and
short memory in a stationary process. Then ergodic stationary processes that lack
this stronger property will be naturally called processes with long memory. If the
property of mixing were used for this purpose, for example, then a long-range
dependent process would be an ergodic but nonmixing process.

Such definitions of long-range dependence are possible, but they have not
become standard, for reasons that will be discussed below. Before we do that, how-
ever, it is important to note that the approaches to memory of a stationary process
via the ergodic theoretical properties of the corresponding shift transformation are
very attractive from the following point of view. Let X be a stationary process, and
let the process Y be derived from the process X by means of a point transformation
Yn D g.Xn/ for all n, where g W R ! R is a measurable function. Clearly, Y is also
a stationary process. It is intuitively clear that the process X “remembers at least
as much” as the process Y does. If, in particular, g is a one-to-one map, and g�1 is
also measurable, then this intuition says that the processes X and Y should have the
“same length of memory”: if one of them has long memory, then so should the other
one.

This, apparently very natural, requirement has proved to be difficult to satisfy
by many of the proposed definitions of long-range dependence. It is, however,
automatic with ergodic theoretically based definitions. Indeed, it follows from
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Corollary 2.2.5 and Proposition 2.2.14 that if X is mixing (respectively weak mix-
ing), then the process Y with Yn D g.Xn/ for all n is also mixing (respectively weak
mixing). This would imply that short memory was preserved under a measurable
map, and if the map is one-to-one, with a measurable inverse, then the map must
preserve long memory as well.

It is instructive to record what the ergodic theoretically based notions of memory
discussed above mean for stationary Gaussian processes. Let X be a (real-valued)
stationary Gaussian process with covariance function Rk; k � 0 and spectral
measure F on .�
; 
�. That is, Rk D R

.�
;
� cos.kx/F.dx/ for k � 0. Then

• the process X is ergodic if and only if the spectral measure F is atomless;
• the process X is mixing if and only if Rk ! 0 as k ! 1;

see Examples 2.2.8 and 2.2.18. The requirement that the covariance function vanish
as the time lag increases, however, proved to be insufficient in dealing with long
memory for Gaussian processes. Indeed, many “unusual” phenomena have been
observed for Gaussian processes whose covariance functions vanish in the limit, but
sufficiently slowly, as we have already seen in the example of fractional Gaussian
noise. Therefore, the mixing property is not believed to be sufficiently strong to
say that a stationary process with this property has short memory. A stronger
requirement is needed.

For this purpose, strong mixing conditions, some of which are discussed
in Section 2.3, have been used. A possible connection between strong mixing
properties and lack of long memory (i.e., presence of short memory) has been
observed, beginning with Rosenblatt (1956). We discuss results in this spirit in
Comments to Chapter 9. Such results explain why the absence of one or another
strong mixing condition (as opposed to ergodic-theoretical mixing) is sometimes
taken as the definition of long-range dependence.

The strong mixing properties share with the ergodic-theoretical notions of
ergodicity and mixing the following very desirable feature: if a process Y is derived
from a process X by means of a one-to-one point transformation Yn D g.Xn/ for
all n, where g W R ! R is a one-to-one function such that both g and g�1 are
measurable, then the process X has long memory in the sense of lacking one of the
strong mixing properties if and only if the process Y does; see Exercise 2.6.11.

The role that the strong mixing conditions play in eliminating the possibility of
long-range dependence is real, but limited. Its effects are felt more in the behavior
of the partial sums of a process than in, say, the behavior of the partial maxima.

Overall, the strong mixing conditions have not become standard definitions of
absence of long-range dependence, i.e., of short memory. To some extent, this is due
to the fact that the effect of strong mixing conditions is limited. More importantly,
the strong mixing conditions are not easily related to the natural building blocks
of many stochastic models and are difficult to verify, with the possible exception
of Gaussian processes and Markov chains. Even in the latter cases, necessary and
sufficient conditions are not always available, particularly for more complicated
types of strong mixing.
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5.4 Comments on Chapter 5

Comments on Section 5.2
The fact that the i.i.d. model with small drift as in (5.13) can be easily

distinguished from the fractional Gaussian noise with H > 1=2 was shown in
Künsch (1986) using the periodogram.

In Mikosch and Stărică (2016) and Mikosch and Stărică (2000a), the procedure
of changing the parameters of an otherwise stationary model was applied to the
short-memory GARCH(p; q) model, resulting in behavior resembling long-range
dependence.

Various other regime-switching models mimicking long-range dependence are
suggested in Diebold and Inoue (2001).

5.5 Exercises to Chapter 5

Exercise 5.5.1. Show that the function g� in Example 5.1.2 is a function on

MRC
�
Œ0; 1� � R

d
0

�
that is continuous at all points at which the denominator in its

definition does not vanish.

Exercise 5.5.2. In this exercise, we will check the validity of the statement (5.8).
Write

1p
n

R

S
.X1; : : : ;Xn/ D Mn � mn

Dn
; RSn.�/ D Mn.�/ � mn.�/

Dn.�/
:

(i) Use the maximal inequality in Theorem 10.7.4 to show that for some finite
positive constant c,

P

�
1

an
jMn � Mn.�/j > 	

�

� c

	

n1=2

an

�
E
�
X211.jX1j � �an

��1=2

for each 	 > 0 and n D 1; 2; : : :. Next, use the estimate on the moments of
truncated random variables in Proposition 4.2.3 and the fact that 0 < ˛ < 2

to show that

lim
�!0

lim sup
n!1

P

�
1

an
jMn � Mn.�/j > 	

�

D 0

for every 	 > 0. A similar argument proves that

lim
�!0

lim sup
n!1

P

�
1

an
jmn � mn.�/j > 	

�

D 0

for every 	 > 0.
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(ii) Check that

jDn � Dn.�/j � jSnj
n1=2

C
 

nX

iD1
X2i 1

�jXij � �an
�
!1=2

and conclude that for every 	 > 0,

lim
�!0

lim sup
n!1

P

�
1

an
jDn � Dn.�/j > 	

�

D 0 :

(iii) Use the truncation argument used in Example 5.1.2 and the already checked
part of (5.8) to conclude that a�1

n .Mn �mn/ converges weakly to the numerator
of (5.7) and so the corresponding sequence of laws is tight.

(iv) Show that

lim
M!1 lim sup

n!1
sup
0<�<1

P

�
an

Dn.�/
> M

�

D 0

and

lim
M!1 lim sup

n!1
sup
0<�<1

P

�
a2n

DnDn.�/
> M

�

D 0 :

(v) Put together the previous parts of the exercise to obtain (5.8).
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