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Preface

I first heard about long-range dependence while working on a book on stable
processes with Murad Taqqu. Initially, the notion did not seem to stand out among
other notions I was familiar with at the time. It seemed to describe simply situations
in which covariance functions (or related functions) decayed at a slow rate. Why
were so many other people excited about long-range dependence? At best, it seemed
to require us to prove some more theorems. With time, I came to understand that I
was wrong, and the people who got excited about long-range dependence were right.
The content of this phenomenon is truly special, even if somewhat difficult to define
precisely. This book is a product of many years of thinking about long memory (this
term is synonymous with long-range dependence). It is my hope that it will serve as
a useful complement to the existing books on long-range dependence such as Palma
(2007), Giraitis et al. (2012), and Beran et al. (2013), and numerous surveys and
collections.

I firmly believe that the main importance of the notion of long-range dependence
is in statistical applications. However, I think of long-range dependence as a
property of stationary stochastic processes, and this book is, accordingly, organized
around probabilistic properties of stationary processes that are important for the
presence or absence of long memory. The first four chapters of this book are
therefore not really about long-range dependence, but deal with several topics in
the general theory of stochastic processes. These chapters provide background, lan-
guage, and models for the subsequent discussion of long memory. The subsequent
five chapters deal with long-range dependence proper. This explains the title of the
book: Stochastic Processes and Long-Range Dependence.

The four general chapters begin with a chapter on stationarity and invariance.
The property of long-range dependence is by definition a property of stationary
processes, so including such a chapter is necessary. Information on stationary
processes is available from many sources, but some of the material in this chapter is
less standard. The second chapter presents elements of ergodic theory of stationary
processes. Ergodic theory intersects our journey through long-range dependence
multiple times, so this chapter is also necessary. There are plenty of books on
ergodic theory, but this literature is largely disjoint from books on stochastic
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processes. Chapter 3 is a crash course on infinitely divisible processes. These
processes provide a crucial source of examples on which to study the presence or
absence of long memory. Much of the material in this chapter is not easily available
from a single alternative source. Chapter 4 presents basic information on heavy
tailed models. There is significant difference in the way long-range dependence
expresses itself in stationary processes with light tails and those with heavy
tails, particularly processes with infinite second moment. Therefore, including this
chapter seems useful.

Chapter 5 is the first chapter specifically on long-range dependence. It is of
an introductory and historical character. The best-known approach to long-range
dependence, applicable to stationary processes with a finite second moment, is
presented in Chapter 6. The vast majority of the literature on long-memory processes
falls within this second-order approach. The chapter we include contains results
not easily available elsewhere. Long-range dependence is sometimes associated
with fractional integration, and Chapter 7 discusses this connection in some detail.
Long-range dependence is also frequently associated with self-similarity. The
connection is deep, and much of its power is due to the Lamperti theorem, which
guarantees self-similarity of the limit in certain functional limit theorems. Chapter 8
presents the theory of self-similar processes, particularly self-similar processes with
stationary increments. Finally, Chapter 9 introduces a less-standard point of view
on long memory. It is the point of view that I have come to adopt over the years.
It views the phenomenon of long-range dependence as a phase transition. In this
chapter, we illustrate the phenomenon in a number of situations. Some of the results
in this chapter have not appeared before.

The book concludes with an appendix. I have chosen to include it for convenience
of the reader. It describes a number of notions and results belonging to the topics
used frequently throughout this book.

The book can be used for a one-semester graduate topics course, even though the
amount of material it contains is probably enough for a semester and a half, so the
instructor has to be selective. There are exercises at the end of each chapter.

Writing this book took me a long time. I started working on it during my
sabbatical in the Department of Mathematics of the University of Copenhagen and
finished it during my following sabbatical (!) in the Department of Statistics of
Columbia University. Most of it was, of course, written between those two visits, in
my home department, School of Operations Research and Information Engineering
of Cornell University. I am grateful to all these institutions for providing me with
wonderful facilities and colleagues that greatly facilitated writing this book.

A number of people have read through portions of the manuscript and contributed
useful comments and corrections. My particular thanks go to Richard Davis, Emily
Fisher, Eugene Seneta, Julian Sun, and Phyllis Wan.

Ithaca, NY, USA Gennady Samorodnitsky
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Chapter 1
Stationary Processes

1.1 Stationarity and Invariance

The stationarity of a stochastic process means the invariance of its finite-dimensional
distributions under certain transformations of its parameter space. The classical
definitions apply to the situations in which the parameter is one-dimensional, and
has the interpretation of time.

Definition 1.1.1. A discrete-time stochastic process
�
Xn; n 2 Z

�
is stationary if

�
XnCk; n 2 Z

� dD �
Xn; n 2 Z

�
for all k 2 Z.

A continuous-time stochastic process
�
X.t/; �1 < t < 1�

is stationary if
�
X.t C s/; �1 < t < 1� dD �

X.t/; �1 < t < 1�
for all s 2 R.

In this case, the transformations of the (one-dimensional) parameter space form
the group of shifts gs W T ! T , s 2 T , defined by gst D t C s for t 2 T D Z

or T D R.
Sometimes, the stationarity of a stochastic process with one-dimensional time is

defined “halfway,” so to speak: the process is defined only on the positive half-line,
and shifts by only a positive amount are allowed. The following proposition shows
that the two notions are equivalent.

Proposition 1.1.2. (i) A discrete-time stochastic process
�
Xn; n D 0; 1; 2; : : :

�
has

the property that
�
XnCk; n D 0; 1; 2; : : :

� dD �
Xn; n D 0; 1; 2; : : :

�
for all k D

0; 1; 2; : : : if and only if there exists a stationary stochastic process
�
Yn; n 2 Z

�

such that
�
Xn; n D 0; 1; 2; : : :

� dD �
Yn; n D 0; 1; 2; : : :

�
.

© Springer International Publishing Switzerland 2016
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2 1 Stationary Processes

(ii) A continuous-time stochastic process
�
X.t/; t � 0

�
has the property that

�
X.t C s/; t � 0

� dD �
X.t/; t � 0

�
for all s � 0 if and only if there exists a

stationary stochastic process
�
Y.t/; �1 < t < 1�

such that
�
X.t/; t � 0

� dD�
Y.t/; t � 0

�
.

Proof. We will prove the second part of the proposition. The proof in the discrete-
time case is the same. Clearly, the existence of a stationary process

�
Y.t/; �1 <

t < 1�
as in the proposition guarantees that the process

�
X.t/; t � 0

�
has the

required shift-invariance of its finite-dimensional distributions. Conversely, suppose
that the finite-dimensional distributions of

�
X.t/; t � 0

�
are invariant under positive

shifts. Define a family of finite-dimensional distributions on R by

Ft1;:::;tk.A/ D P
��

X.0/;X.t2 � t1/; : : : ;X.tk � t1/
� 2 A

�
(1.1)

for k � 1, t1 < t2 < : : : < tk, and A a k-dimensional Borel set. This family is
clearly consistent and invariant under shifting all the time points by any real number.
By the Kolmogorov existence theorem (see, e.g., Theorem 6.16 in Kallenberg
(2002)), there exists a stochastic process

�
Y.t/; �1 < t < 1�

whose finite-
dimensional distributions are given by (1.1). The shift-invariance of the family (1.1)
means that this stochastic process is stationary, and by construction, its restriction
to nonnegative times has the same finite-dimensional distributions as the process�
X.t/; t � 0

�
. �

Remark 1.1.3. Sometimes, the distributional invariance under shifts of Defini-
tion 1.1.1 is referred to as strict stationarity, to distinguish it (for stochastic
processes with a finite second moment) from the invariance of the mean of the
process and its covariance function when the time of the process is shifted. This
weaker invariance property is then called “stationarity.” In this book, stationarity
means exclusively the distributional invariance of Definition 1.1.1, and we will
refer to stochastic processes possessing the weaker invariance property as “weakly
stationary” or “second-order stationary.”

For stochastic processes
�
X.t/; t 2 T

�
whose parameter space is not necessarily

one-dimensional, the notion of stationarity is typically connected to a group
of transformations of T . Let G be a group of transformations g W T ! T
(the transformations are then automatically one-to-one and onto).

Definition 1.1.4. A stochastic process
�
X.t/; t 2 T

�
is called G-stationary (or

stationary with respect to the group G of transformations of T) if
�
X.g.t//; t 2

T
� dD �

X.t/; t 2 T
�

for all g 2 G.

The most common examples are those of stochastic processes indexed by a finite-
dimensional Euclidian space.

Example 1.1.5. Let T D R
d for d D 1; 2; : : :. One says that a stochastic process

�
X.t/; t 2 R

d
�

is stationary if
�
X.t C s/; t 2 R

d
� dD �

X.t/; t 2 R
d
�

for all s 2 R
d.
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Here the group G of transformations in Definition 1.1.4 is the group of shifts
gs.�/ D � C s for s 2 R

d. Stationarity with respect to the group of shifts will be
our default notion of stationarity of stochastic processes indexed by R

d, unless a
different group of transformations of Rd is specified, as in the next example.

Example 1.1.6. Let, once again, T D R
d for d D 1; 2; : : :. A stochastic process

�
X.t/; t 2 R

d
�

is said to be isotropic if
�
X.U.t//; t 2 R

d
� dD �

X.t/; t 2 R
d
�

for each d � d orthogonal matrix U. According to Definition 1.1.4, an isotropic
stochastic process is stationary with respect to the group G D SO.d/ of rotations
of Rd.

A certain amount of ambiguity is connected to the notion of isotropy, because
one sometimes combines it with the stationarity under shifts of Example 1.1.5
and reserves the adjective “isotropic” for stochastic processes

�
X.t/; t 2 R

d
�

that,
according to Definition 1.1.4, are stationary with respect to the group G of rigid
motions of Rd, consisting of transformations gU;s W R

d ! R
d, U 2 SO.d/, s 2 R

d,
defined by gU;st D U.t/C s, t 2 R

d.

It is easy to understand what the various notions of stationarity and invariance
mean in the case of Gaussian processes.

Example 1.1.7. Let
�
X.t/; t 2 R

d
�

be a Gaussian stochastic process (see Exam-
ple 3.10). The finite-dimensional distributions of such a process are determined by
the mean function m.t/ D EX.t/; t 2 R

d and the covariance function R.s; t/ D
Cov

�
X.s/;X.t/

�
, s; t 2 R

d. Therefore, a Gaussian process is stationary if and only
if the mean function m.t/ � m 2 R is constant on R

d and the covariance function
R.s; t/ D R.t � s/ depends only on the difference between its arguments (we are
committing here, and will continue committing in the sequel, the usual sin of using
the same name for two slightly different functions).

A Gaussian process
�
X.t/; t 2 R

d
�

is isotropic if and only if its mean function
m.t/ D m.ktk/; t 2 R

d, depends only on the length of the parameter t, and
the covariance function R.s; t/ D R

�
U.t/;U.s/

�
remains unchanged if both of its

arguments undergo the same rotation. In one dimension, this all means only that the
mean function is even.

Finally, a Gaussian process
�
X.t/; t 2 R

d
�

is stationary with respect to the group
of rigid motions of Rd if and only if its mean function is constant and its covariance
function R.s; t/ D R.kt � sk/ depends only on the length of the difference between
its arguments.

Two major classes of stationary stochastic processes are the linear processes of
Section 1.4 and the stationary infinitely divisible processes of Section 3.1, of which
the Gaussian processes of Example 1.1.7 form a special case.

Definition 1.1.8. A stochastic process
�
X.t/; t 2 R

d
�

has stationary increments if
the finite-dimensional distributions of

�
X.t C s/ � X.s/; t 2 R

d
�

do not depend
on s 2 R

d.
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A similar definition applies to stochastic processes indexed by t 2 Z
d, in which case

the finite-dimensional distributions of the increment process should not depend on
the initial time point s 2 Z

d.
Clearly, every stationary process has stationary increments as well, but the

converse is not true: there are nonstationary stochastic processes with stationary
increments.

Example 1.1.9. Let d D 1. A Brownian motion has stationary increments. More
generally, every Lévy process

�
X.t/; �1 < t < 1�

of Example 3.1.2 below
has stationary increments. Such a process is obviously nonstationary (unless it
degenerates to the zero process).

Example 1.1.10. Let
�
X.t/; t 2 R

d
�

be a Gaussian process. It is clear that if its
mean function is linear, m.t/ D .c; t/, t 2 R

d, for some c 2 R
d, and the incremental

variance depends only on the difference between the two points, Var
�
X.t/�X.s/

� D
H.t � s/, s; t 2 R

d, for some function H, then the process has stationary increments.
The latter condition is also necessary for stationarity of the increments. The former
condition is necessary as well if, for example, the mean function is continuous
(which will be the case if the process is measurable; see below), but in general,
there are “pathological” nonlinear mean functions consistent with stationarity of
the increments, given as solutions of the Cauchy functional equation. See Bingham
et al. (1987). An example of a Gaussian process with stationary increments is the
fractional Brownian motion of Example 3.5.1, including the usual Brownian motion
as a special case.

The following, somewhat unexpected, result shows that stochastic processes with
stationary increments become stationary if one “randomizes” them additionally
by a shift chosen according to the Lebesgue measure. We will always denote the
Lebesgue measure in any dimension by �.

Proposition 1.1.11. A stochastic process
�
X.t/; t 2 R

d
�

on a probability space
�
�;F ;P

�
has stationary increments if and only if the image on R

R
d

of the � -finite

measure � � P on R � � by the map
�
u C X.t C s/; t 2 R

d
� W R � � ! R

R
d

is
independent of s 2 R

d.

Proof. Suppose first that
�
X.t/; t 2 R

d
�

has stationary increments. Let t1; : : : ; tk; s
be arbitrary points in R

d, and let A be a .k C 1/-dimensional Borel set. Let F be the
.k C 1/-dimensional law of the random vector

�
X.s/;X.t1 C s/ � X.s/;X.t2 C s/ �

X.t1 C s/; : : : ;X.tk C s/ � X.tk�1 C s/
�
. Notice that

� � P
�
.u; !/ 2 R �� W (1.2)

�
u C X.s/;X.t1 C s/ � X.s/;X.t2 C s/ � X.t1 C s/; : : : ;X.tk C s/ � X.tk�1 C s/

� 2 A
�

D
Z

R

�Z

R

Z

Rk
1
��

u C x; y1; : : : ; yk
� 2 A

�
F.dx; dy1; : : : ; dyk/

�
du
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D
Z

R

�Z

R

Z

Rk
1
��

u; y1; : : : ; yk
� 2 A

�
F.dx; dy1; : : : ; dyk/

�
du

D
Z

R

P
��

X.t1 C s/ � X.s/;X.t2 C s/ � X.t1 C s/; : : : ;X.tk C s/ � X.tk�1 C s/
� 2 Au

�
du ;

where Au D ˚
.y1; : : : ; yk/ 2 R

k W .u; y1; : : : ; yk/ 2 A
�

is the u-section of A. By the
stationarity of the increments, this last expression is independent of s 2 R

d. Since
for every .k C 1/-dimensional Borel set B, there is a .k C 1/-dimensional Borel set
A such that

˚
.x0; x1 : : : ; xk/ W .x0; x1 : : : ; xk/ 2 B

�

D ˚
.x0; x1 : : : ; xk/ W .x0; x1 � x0; : : : ; xk � xk�1/ 2 A

�
;

this proves the required invariance of the infinite “law” of
�
u C X.t/; t 2 R

d
�

under
shifts.

In the opposite direction, given the invariance of the above infinite “law,” the very
first expression in (1.2) is independent of s 2 R

d for all t1; : : : ; tk in R
d and .k C 1/-

dimensional Borel sets A. Choosing A D Œ0; 1� � C, where C is a k-dimensional
Borel set, it follows from (1.2) that

P
��

X.t1 C s/ � X.s/;X.t2 C s/ � X.t1 C s/; : : : ;X.tk C s/ � X.tk�1 C s/
� 2 C

�

does not depend on s 2 R
d either, which means that the process

�
X.t/; t 2 R

d
�

has
stationary increments. �

1.2 Stationary Processes with a Finite Variance

For a stochastic process
�
X.t/; t 2 T

�
such that EX.t/2 < 1 for all t 2 T , we

denote by

RX.s; t/ D Cov.X.s/;X.t//; s; t 2 T;

its covariance function. If T is a topological space and the process
�
X.t/; t 2 T

�
is

continuous in L2, then the bound

ˇ̌
ˇRX.s; t/ � RX.s1; t1/

ˇ̌
ˇ

� �
Var.X.s/

�1=2�
Var.X.t/ � X.t1//

�1=2 C �
Var.X.t1/

�1=2�
Var.X.s/ � X.s1//

�1=2

(it is an easy consequence of the Cauchy–Schwarz inequality) implies that the
covariance function is continuous in both of its arguments.
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If
�
X.t/; t 2 T

�
is stationary with respect to a group G of transformations of T ,

then the covariance function automatically satisfies the relation

RX.s; t/ D Cov.X.s/;X.t// D Cov
�
X.g.s//;X.g.t//

� D RX
�
g.s/; g.t// (1.3)

for all s; t 2 T , g 2 G.
In the particular case that G D T is an abelian group (e.g., G D T D R

d, or
G D T D Z

d), we will denote the identity element by 0 and use additive notation.
Selecting g D �s in (1.3) then gives us

RX.s; t/ D RX.0; t � s/; s; t 2 T :

The covariance function of a G-stationary process then becomes a function of
one variable. It is very common simply to drop the unnecessary variable in the
covariance function and write RX.t/ when the meaning is RX.s; s C t/ for some
(equivalently, any) s 2 T . We will adopt this reasonably innocent abuse of notation
in this book. If G D T is a topological abelian group, and a process

�
X.t/; t 2 T

�

is both G-stationary and continuous in L2, then its one-variable covariance function
clearly inherits continuity from its two-variable counterpart.

If
�
X.t/; t 2 T

�
is a stochastic process with a finite variance, then for every n � 1,

t1; : : : ; tn 2 T , and complex numbers z1; : : : ; zn, one has E
ˇ̌Pn

jD1 zjX.tj/
ˇ̌2 � 0,

which gives the relation

nX

jD1

nX

kD1
zjNzkRX.tj; tk/ � 0 : (1.4)

This is the nonnegative definiteness property of the covariance function. In the cases
in which stationarity allows us to use a one-variable notation for the covariance
function, the nonnegative definiteness property takes the form

nX

jD1

nX

kD1
zjNzkRX.tj � tk/ � 0 (1.5)

for all n � 1, t1; : : : ; tn 2 T , and complex numbers z1; : : : ; zn.
Suppose now that G D T is a locally compact abelian group, and a G-stationary

process
�
X.t/; t 2 T

�
is continuous in L2. By Theorem 10.1.2, we know that there

is a uniquely defined finite measure �X on the dual group � of G such that

RX.t/ D
Z

�

�.t/ �X.d�/; t 2 T (1.6)

(recall that � 2 � are the continuous characters of G). Since we work with real-
valued stochastic processes, the covariance function is real, and the uniqueness of
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�X guarantees that it is invariant under the transformation of the dual group � that
sends every continuous character to its complex conjugate. The measure �X is the
spectral measure of the (covariance function of the) process

�
X.t/; t 2 T

�
.

Applying the general representation (1.6) to the cases G D T D R
d and G D

T D Z
d and using Example 10.1.1 proves the following theorem.

Theorem 1.2.1. (i) Let
�
X.t/; t 2 R

d
�

be a stationary stochastic process with
a finite variance, continuous in L2. Then there is a unique finite symmetric
measure �X on R

d such that

RX.t/ D
Z

Rd
ei.a;t/ �X.da/; t 2 R

d : (1.7)

(ii) Let
�
X.t/; t 2 Z

d
�

be a stationary stochastic process with a finite variance.
Then there is a unique finite symmetric measure �X on .�	; 	�d such that

RX.t/ D
Z

.�	;	�d
ei.a;t/ �X.da/; t 2 Z

d : (1.8)

In the second part of the theorem, the symmetry of the spectral measure �X is
understood to mean invariance under the map .�	; 	�d ! .�	; 	�d with a !�
H.a.1//; : : : ;H.a.d/

�
for a D �

a.1/; : : : ; a.d/
�
, and H W .�	; 	� ! .�	; 	� is

defined by

H.a/ D
	 �a if �	 < a < 	;
	 if a D 	:

The measure�X in both parts of Theorem 1.2.1 is also called the spectral measure
of the (covariance function of the) process. Part (i) of Theorem 1.2.1 with d D 1

is often referred to as the Bochner theorem, while part (ii) of Theorem 1.2.1 with
d D 1 is often referred to as the Hergoltz theorem.

Example 1.2.2. Let
�
X.t/; t 2 R

d
�

be a stochastic process with a finite variance,
continuous in L2. Suppose that the process is G-stationary with respect to the group
G of rigid motions of R

d (see Example 1.1.6). That is,
�
X.t/; t 2 R

d
�

is both
stationary and isotropic. Let �X be its spectral measure in part (i) of Theorem 1.2.1.
For every rotation U 2 SO.d/, we have by (1.3),

RX.t/ D RX
�
U.t/

� D
Z

Rd
ei.a;U.t// �X.da/

D
Z

Rd
ei.U�1.a/;t/ �X.da/ D

Z

Rd
ei.a;t/ �X ı U.da/
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for every t 2 R
d. By the uniqueness of the spectral measure, we conclude that

�X D �X ı U for all U 2 SO.d/, and so the spectral measure of
�
X.t/; t 2 R

d
�

is
invariant under the rotations of Rd.

If the spectral measure of a stationary process in either part of Theorem 1.2.1
has a density hX with respect to the d-dimensional Lebesgue measure �d, then hX is
called the spectral density of the (covariance function of the) process. It a symmetric
(outside of a set of �d-measure 0) function such that

RX.t/ D
Z

Rd
ei.a;t/ hX.a/ da; t 2 R

d ; (1.9)

if
�
X.t/; t 2 R

d
�

is a stationary stochastic process with a finite variance, continuous
in L2, and

RX.t/ D
Z

.�	;	/d
ei.a;t/ hX.a/ da; t 2 Z

d ; (1.10)

if
�
X.t/; t 2 Z

d
�

is a stationary stochastic process with a finite variance.
A spectral density always exists if the covariance function of the process decays

sufficiently fast to zero at large lags.

Proposition 1.2.3. (i) Let
�
X.t/; t 2 Z

d
�

be a stationary stochastic process with
a finite variance. Assume that

X

t2Zd

ˇ
ˇ̌
RX.t/

ˇ
ˇ̌
< 1 : (1.11)

Then the process has a bounded and continuous spectral density given by

hX.a/ D .2	/�d
X

t2Zd

ei.t;a/RX.t/ (1.12)

for a 2 .�	; 	/d.
(ii) Let

�
X.t/; t 2 R

d
�

be a stationary stochastic process with a finite variance,
continuous in L2. Assume that

Z

Rd

ˇ̌
ˇRX.t/

ˇ̌
ˇ dt < 1 : (1.13)

Then the process has a bounded and continuous spectral density given by

hX.a/ D .2	/�d
Z

Rd
ei.t;a/RX.t/ dt (1.14)

for a 2 R
d.
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Proof. (i) For a D �
a.1/; : : : ; a.d/

� 2 .�	; 	/d, the function hX defined by the
right-hand side of (1.12) is well defined and is clearly bounded and continuous.
Since the covariance function RX is nonnegative definite, for every K D 1; 2 : : :,

0 � 1

Kd

X

t2f�K;:::;Kgd

X

s2f�K;:::;Kgd
ei.t�s;a/RX

�
t � s

�

D
KX

t.1/D�K

: : :

KX

t.d/D�K

1

Kd

dY

mD1

�
2K � jt.m/j� ei

Pd
jD1 t.j/ja.j/jRX

�
.t.1/; : : : ; t.d//

�
;

and the last expression converges to 2dhX.a/ as K ! 1. Hence hX is a
nonnegative function. Finally, for every t 2 Z

d,

Z

.�	;	/d
ei.a;t/ hX.a/ da D

X

s2Zd

RX.s/.2	/�d
Z

.�	;	/d
ei.a;tCs/ da

D RX.�t/ D RX.t/;

since

Z 	

�	
eian da D

	
2	 if n D 0,
0 if n 2 Z; n 6D 0.

Therefore, hX is the spectral density of the process
�
X.t/; t 2 Z

d
�
.

(ii) Notice that the L2 continuity of the process implies continuity, hence measur-
ability, of the covariance function, so the condition (1.13) makes sense. As in
part (i), for a D �

a.1/; : : : ; a.d/
� 2 R

d, the function hX defined by the right-hand
side of (1.14) is well defined, bounded, and continuous. By the symmetry of
the covariance function, hX is also real-valued. If �X is the spectral measure of
the process, then all we need to prove is that for all �1 < yj < zj < 1; j D
1; : : : ; d,

Z

Qd
jD1.yj;zj�

h.a/ da D �X

� dY

jD1
.yj; zj�

�
; (1.15)

and it is clearly enough to prove (1.15) for “boxes”
Qd

jD1.yj; zj� such that �X

assigns zero measure to the set fx 2 R
d W x.j/ D �yj or � zjg D 0 for each

j D 1; : : : ; d.
The integrability assumption (1.13) justifies the application of Fubini’s

theorem in
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Z

Qd
jD1.yj;zj�

h.a/ da D .2	/�d
Z

Rd
RX.t/

"Z

Qd
jD1.yj;zj�

ei.t;a/ da

#

dt

D .2	/�d lim
T!1

Z

Œ�T;T�d
RX.t/

dY

jD1

eit.j/zj � eit.j/yj

it.j/
dt :

For every T > 0, another application of Fubini’s theorem gives us

Z

Œ�T;T�d
RX.t/

dY

jD1

eit.j/zj � eit.j/yj

it.j/
dt

D
Z

Rd

2

4
Z

Œ�T;T�d
ei.t;w/

0

@
dY

jD1

eit.j/zj � eit.j/yj

it.j/

1

A dt

3

5 �X.dw/

D
Z

Rd

dY

jD1

�
'T.zj C w.j// � 'T.yj C w.j//

�
�X.dw/ ;

where for T > 0 and h 2 R,

'T.h/ D
Z T

�T

sin.th/

t
dt :

Notice that 'T.0/ D 0, 'T.�h/ D �'T.h/ for h > 0, and further, for h 2
.0;1/, 'T.h/ D 'Th.1/ is a uniformly (for T > 0 and h > 0) bounded function
satisfying limT!1 'T.h/ D 	 . It follows that the function of T > 0 and w 2 R

d

dY

jD1

�
'T.zj C w.j// � 'T.yj C w.j//

�

is uniformly bounded and converges, as T ! 1, to

2	1Qd
jD1.�zj;�yj/

.w/ ;

apart from the points in the set fw 2 R
d W w.j/ D �yj or � zj for some

j D 1; : : : ; dg, which has, by the assumption, �X measure zero.
By the bounded convergence theorem, we obtain

lim
T!1

Z

Œ�T;T�d
RX.t/

dY

jD1

eit.j/zj � eit.j/yj

it.j/
dt
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D .2	/d�X
� dY

jD1
.�zj;�yj/

� D .2	/d�X
� dY

jD1
Œ�zj;�yj/

�

D .2	/d�X
� dY

jD1
.yj; zj�

�

by the symmetry of the spectral measure. The relation (1.15) follows. Therefore,
hX is the spectral density of the process

�
X.t/; t 2 R

d
�
. �

We finish this section with an example presenting several frequently encountered
one-dimensional spectral measures and densities.

Example 1.2.4. The first two examples refer to a continuous-time stationary
stochastic process

�
X.t/; �1 < t < 1�

with a finite variance.

If RX.t/ D e�b2t2=2; t 2 R, b > 0 (the so-called Gaussian covariance function),
then the spectral measure of the process is, of course, none other than the law of a
zero-mean Gaussian random variable with variance b2. Therefore, the process has
in this case a spectral density given by

hX.a/ D 1

b
p
2	

e�a2=.2b2/; �1 < a < 1 :

If RX.t/ D e�bjtj; t 2 R, b > 0 (the so-called Ornstein–Uhlenbeck covariance
function), then the spectral measure of the process is the law of a Cauchy random
variable with scale b; see Samorodnitsky and Taqqu (1994). Therefore, in this case
the process has a spectral density given by

hX.a/ D b

	

1

b2 C a2
; �1 < a < 1 :

The final example is that of the fractional Gaussian noise, a centered discrete-
time Gaussian process

�
X.t/; t D : : : ;�1; 0; 1; 2; : : :� with covariance function

RX.t/ D �2

2

h
jt C 1j2H C jt � 1j2H � 2jtj2H

i
; t 2 Z (1.16)

for � > 0 and 0 < H < 1 (the Hurst exponent). This is a legitimate covariance
function, as we will see in Section 5.1.

We claim that the fractional Gaussian noise has a spectral density, and if H 6D
1=2, the density is given by

hX.a/ D C.H/�2.1 � cos a/
1X

jD�1
j2	 j C aj�.1C2H/; �	 < a < 	 ; (1.17)
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where

C.H/ D H.1 � 2H/

�.2 � 2H/ cos.	H/
:

Notice that if H D 1=2, then (1.16) reduces to RX.0/ D �2 and RX.t/ D 0 for t 6D 0,
so that the fractional Gaussian noise with the Hurst exponent H D 1=2 is simply
an i.i.d. centered Gaussian sequence with variance �2. As such, it has a constant
spectral density hX.a/ D �2=.2	/; a 2 .�	; 	/.

In order to check the validity of (1.17) for H 6D 1=2, observe first that the function
defined in (1.17) is symmetric, bounded, and continuous away from the origin. Its
behavior at the origin is determined by the term in the sum corresponding to j D 0.
Since

.1 � cos a/jaj�.1C2H/ � 1

2
jaj1�2H; a ! 0 ;

we see that the function hX defined in (1.17) is integrable. Next, for every t 2 Z,

Z 	

�	
eitahX.a/ da D C.H/�2

Z 	

�	
cos.ta/.1 � cos a/

1X

jD�1
j2	 j C aj�.1C2H/ da

D C.H/�2
1X

jD�1

Z 	.2jC1/

	.2j�1/
cos.ta/.1 � cos a/jaj�.1C2H/ da

D C.H/�2
Z 1

�1
cos.ta/.1 � cos a/jaj�.1C2H/ da :

We will use the well-known integral formula

Z 1

0

a�2H sin a da D �.2 � 2H/ cos.	H/

1 � 2H
(1.18)

for 0 < H < 1, H 6D 1=2; see, e.g., (7.3.8) and (7.3.9) in Titchmarsh (1986). Since

cos.ta/.1 � cos a/ D 1

2


�
1 � cos..t � 1/a/� � 2�1 � cos.ta/

�C �
1 � cos..t C 1/a/

��
;

we can continue the above computation to obtain

2C.H/�2
h
jt C 1j2H C jt � 1j2H � jtj2H

i Z 1

0

a�.1C2H/.1 � cos a/ da

D �2

2

h
jt C 1j2H C jt � 1j2H � 2jtj2H

i
:
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Since this coincides with the covariance function of the fractional Gaussian noise
in (1.16), it follows that the function hX defined in (1.17) is the spectral density of
this process.

1.3 Measurability and Continuity in Probability

A continuous-time stationary stochastic process
�
X.t/; t 2 R

d
�

may lack even very
basic regularity properties, as the following example shows.

Example 1.3.1. The so-called i.i.d. process is a process for which every finite-
dimensional distribution is the distribution of the appropriate number of i.i.d.
random variables. As an illustration, consider that case in which these i.i.d. random
variables are standard normal. Then the process is an uncountable collection of i.i.d.
standard normal random variables. Clearly, this process is very irregular: it is not
continuous in probability, and its realizations are unbounded on every infinite set of
time points.

In spite of the previous example, most stationary and stationary increment
processes one encounters possess as least some level of regularity. For example,
a certain degree of regularity is guaranteed for stationary and stationary increment
processes that are also measurable.

Definition 1.3.2. A stochastic process
�
X.t/; t 2 R

d
�

defined on a probability
space

�
�;F ;P

�
is measurable if the map X W R

d �� ! R is product measurable.

Two stochastic processes, one measurable and the other not measurable, can
have the same finite-dimensional distributions. Nonetheless, the finite-dimensional
distributions of a process determine whether the process has a measurable version.
Explicit necessary and sufficient conditions on the finite-dimensional distributions
of a process for a measurable version to exist can be found in Section 9.4 of
Samorodnitsky and Taqqu (1994). When a measurable version of a process exists,
we always identify the process with such a version, and, with some abuse of
terminology, simply call that process measurable.

Theorem 1.3.3. Every measurable stochastic process
�
X.t/; t 2 R

d
�

with station-
ary increments is continuous in probability.

Proof. Let �X be the “infinite law,” described in Proposition 1.1.11, of the shifted
process

�
X.t/; t 2 R

d
�

on R
R

d
equipped with the cylindrical � -field.

Consider the � -finite measure space
�
R

R
d
; �X

�
, and let U0 be the group of

invertible measure-preserving transformations on that space. The group operation
is the composition of two transformations, which we denote by ı. We equip U0 with
the metric
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.U;V/ D
1X

nD1
2�n

�kfn ı U � fn ı Vk2 C kfn ı U�1 � fn ı V�1k2
�
; (1.19)

where .fn/ is an orthonormal basis in the separable Hilbert space L2
�
R

R
d
; �X

�
.

Then .U0; 
/ is a complete separable metric space; both the composition of two
transformations and taking the inverse of a transformation are continuous in the
metric 
. In short, U0 equipped with the metric 
 is a Polish group; see Aaronson
(1997), pp. 13–14.

By Proposition 1.1.11, we can define a map T W R
d ! U0 by

�
T.s/

��
.x.t/; t 2 R

d/
� D �

.x.t C s/; t 2 R
d/
�
; s 2 R

d : (1.20)

This map satisfies T.s1 C s2/ D T.s1/ ı T.s2/ for s1; s2 2 R
d, i.e., T is a group

homomorphism from R
d to U0. We claim that this map is also Borel measurable.

To show this, it is enough to prove that for every open ball B in the metric 
, the
set

˚
s 2 R

d W T.s/ 2 B
�

is measurable. By the definition of the metric 
, this will

follow if we show that for every fixed functions .gn/, .hn/ in L2
�
R

R
d
; �X

�
and � > 0,

the set
(

s 2 R
d W

1X

nD1
2�n

�kfn ı T.s/ � gnk2 C kfn ı T.�s/ � hnk2
�
< �

)

(1.21)

is measurable.
To this end, we will check that for every function f 2 L2

�
R

R
d
; �X

�
, the map T

from R
d to L2

�
R

R
d
; �X

�
that maps a point s 2 R

d to the shifted function f ,

�
T.s/f

��
.x.t/; t 2 R

d/
� D f

�
.x.t C s/; t 2 R

d/
�
;

is Borel measurable. Indeed, such measurability will imply that the function s !
kf ı T.s/ � gk is measurable for every f ; g 2 L2

�
R

R
d
; �X

�
, and the sum in (1.21) is

a countable sum of measurable functions, hence itself measurable. By the definition
of the measure �X, the measurability of the shift T on L2

�
R

R
d
; �X

�
will follow once

we prove that for all f ; g 2 L2
�
R

R
d
; �X

�
and � > 0, the set

	
s 2 R

d W
Z 1

�1
E
�

f
�
u C .X.t C s/; t 2 R

d/
� � g

�
u C .X.t/; t 2 R

d/
��2

du < �

�

is Borel measurable. However, this is an immediate consequence of Fubini’s
theorem once we notice that by the measurability of the process

�
X.t/; t 2 R

d
�
,

the map

�
u; !; s

� ! �
u C X.t C s/; t 2 R

d
�

from R �� � R
d to R

R
d

is measurable.
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Since measurable group homomorphisms of a locally compact group and a
separable topological group (Rd and U0, respectively, in this case) are continuous
(Corollary I.9 in Neeb (1997)), the map (1.20) is continuous. By the definition of
the metric (1.19), this means that for every function f among the basis functions fn
in (1.19), and for every t 2 R

d,

Z 1

�1
E
�

f
�
u C X.� C t/

� � f
�
u C X.� C s/

��2
du ! 0 as s ! t. (1.22)

Since every function f 2 L2
�
R

R
d
; �X

�
of norm 1 can be chosen to be in a basis of

L2
�
R

R
d
; �X

�
, we conclude that (1.22) holds for all f 2 L2

�
R

R
d
; �X

�
.

Choosing f
�
.x.r/; r 2 R

d/
� D 1

�jx.0/j � 1
�
, the statement (1.22) becomes

E
�jX.t/ � X.s/j ^ 2� ! 0 as s ! t,

which is, of course, equivalent to saying that X.s/ ! X.t/ in probability. �

Remark 1.3.4. There is a simple and intuitive way to view the statement of
Theorem 1.3.3. Lusin’s theorem of real analysis says that a measurable function
is “nearly continuous”; see, e.g., Folland (1999). This allows for a “small number”
of “bad points.” Since each point of a process with stationary increment is equally
“good” or “bad” as far as continuity in probability is concerned, it is easy to believe
that every point must be a point of continuity in probability.

Remark 1.3.5. Note that Theorem 1.3.3 guarantees only that a measurable stochas-
tic process with stationary increments is continuous in probability. No claim
regarding sample continuity is made, and in fact, there exist measurable stationary
processes

�
X.t/; t 2 R

d
�

whose sample functions are, on an event of probability
1, unbounded in every d-dimensional ball of a positive radius; see e.g. Maejima
(1983).

Interestingly, sometimes continuity and almost sure unboundedness in every ball
of positive radius are the only options for a measurable stationary stochastic process.
For example, for measurable stationary Gaussian processes, this is the statement of
Belyayev’s theorem; see Itô and Nisio (1968).

1.4 Linear Processes

Linear processes, otherwise known as infinite moving average processes, are
discrete-time processes of the form

Xn D
1X

jD�1
'n�j "j D

1X

jD�1
'j "n�j ; n D 1; 2; : : : ; (1.23)
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where ."n; n D : : : ;�1; 0; 1; 2; : : :/ are i.i.d. noise variables, or innovations, and
.'n/ are deterministic coefficients. The coefficients, clearly, have to satisfy certain
conditions for the series to converge and the process to be well defined. It is obvious
that whenever the process is well defined, it is stationary. If 'j D 0 for all j < 0,
then the moving average is sometimes called causal (with respect to the noise
sequence ."n/). In that case, each Xn is a function of the noise variables "j with j � n.
Similarly, if 'j D 0 for all j > 0, then the moving average is sometimes called purely
noncausal (with respect to the noise sequence). In that case, each Xn is a function of
the noise variables "j with j � n.

Linear processes form a very attractive class of stationary processes because of
their clear and intuitive (though not necessarily simple) structure. As a result, they
have been very well studied.

The actual conditions needed for the series (1.23) to converge depend mostly on
how heavy the tails of the noise variables are. In the situation that the noise variables
are known to possess a finite moment of a certain order, the next theorem provides
explicit sufficient conditions for convergence of that series. Let " be a generic noise
variable.

Theorem 1.4.1. Suppose that Ej"jp < 1 for some p > 0.

(i) If 0 < p � 1, then the condition

1X

jD�1
j'jjp < 1 (1.24)

is sufficient for convergence of the series (1.23).
(ii) If 1 < p � 2 and E" D 0, then condition (1.24) is sufficient for convergence of

the series (1.23). If E" 6D 0, then (1.24) and the condition

the series
1X

jD�1
'j converges (1.25)

are sufficient for convergence of the series (1.23).
(iii) If p > 2 and E" D 0, then the condition

1X

jD�1
'2j < 1 (1.26)

is sufficient for convergence of the series (1.23). If E" 6D 0, then condi-
tions (1.26) and (1.25) are sufficient for convergence of the series (1.23).

Under the sufficient conditions for convergence of the series (1.23) in all
three parts of the theorem, one also has EjXnjp < 1, n D 1; 2; : : :.
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Proof. We begin by assuming that E" D 0 whenever p > 1. We will prove that
the series (1.23) converges in Lp. This will imply EjXnjp < 1, n D 1; 2; : : :.
Furthermore, it will also imply convergence of the series (1.23) in probability,
and for series of independent random variables, convergence in probability implies
almost sure convergence.

In order to prove the Lp convergence of the series (1.23), we need to show that

lim
m!1 sup

k�0
E

ˇ̌
ˇ̌
ˇ
ˇ

X

m�jjj�mCk

'j"j

ˇ̌
ˇ̌
ˇ
ˇ

p

D 0 : (1.27)

We will prove (1.27) by induction on K D 1; 2; : : :, by considering K � 1 < p � K.
Suppose first that K D 1. We have by the triangle inequality in Lp that

E

ˇ̌
ˇ
ˇ̌
ˇ

X

m�jjj�mCk

'j"j

ˇ̌
ˇ
ˇ̌
ˇ

p

� E
X

m�jjj�mCk

j'jjpj"jjp D Ej"jp
X

m�jjj�mCk

j'jjp ;

and (1.27) follows from (1.24).
Next, suppose that K D 2. Since we are assuming that E" D 0, we may use the

Marcinkiewicz–Zygmund inequalities of Theorem 10.7.2 to obtain

E

ˇ̌
ˇ̌
ˇ̌

X

m�jjj�mCk

'j"j

ˇ̌
ˇ̌
ˇ̌

p

� BpE

0

@
X

m�jjj�mCk

'2j "
2
j

1

A

p=2

: (1.28)

Since p=2 � 1, we may use, once again, the triangle inequality in Lp=2 to conclude
that

E

ˇ̌
ˇ
ˇ̌
ˇ

X

m�jjj�mCk

'j"j

ˇ̌
ˇ
ˇ̌
ˇ

p

� BpEj"jp
X

m�jjj�mCk

j'jjp ;

and (1.27) follows, once again, from (1.24).
Assume now that (1.27) holds for 0 < p � K, for some K � 2, and consider

K < p � K C 1. Note that the Marcinkiewicz–Zygmund inequalities still apply,
and (1.28) holds. Subtracting and adding E"2 inside the sum on the right-hand side,
we can further bound the right-hand side of (1.28) by

Bp2
p=2�1�Ej"j2�p=2

0

@
X

m�jjj�mCk

'2j

1

A

p=2

C Bp2
p=2�1E

0

@
X

m�jjj�mCk

'2j ."
2
j � E"2/

1

A

p=2

:
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The assumption (1.26) implies that

lim
m!1 sup

k�0

0

@
X

m�jjj�mCk

'2j

1

A

p=2

D 0 :

Furthermore, p=2 � K, and so the induction hypothesis (which we apply while
replacing 'j with '2j and "j with "2j � E"2) tells us that

lim
m!1 sup

k�0
E

0

@
X

m�jjj�mCk

'2j ."
2
j � E"2/

1

A

p=2

D 0

as well. This proves (1.27) for K < p � K C 1 and thereby completes the inductive
argument.

The above argument proves the statement of the theorem if one assumes that
E" D 0 whenever p > 1. If p > 1 but E" 6D 0, then we write (for n D 0)

1X

jD�1
'�j "j D

1X

jD�1
'�j

��
"j � E"

�C E"
�

and thereby reduce the situation to the case already considered. �

A partial converse to the statement of Theorem 1.4.1 is in Exercise 1.6.2. See
also Exercise 1.6.3.

Remark 1.4.2. Note that we have actually proved that in the case p � 1, the
series (1.23) converges absolutely in Lp and with probability 1. In the case p > 1,
absolute convergence may not hold, but the series converges unconditionally. This
means that for every deterministic permutation of the terms of the series, the
resulting series converges in Lp and with probability 1, and the limit is almost surely
equal to the sum of the original series.

Let
�
Xn; n 2 Z

�
be a linear process (1.23), and suppose that the noise variables

have a finite second moment. The conditions of part (iii) of Theorem 1.4.1 are,
according to Exercise 1.6.2, necessary and sufficient for the linear process to be well
defined in this case; the fact that they are satisfied will be assumed in the sequel
every time we deal with finite-variance linear processes. The series defining the
process converges in L2, and therefore, the linear process has the covariance function

RX.n/ D Var."/
1X

jD�1
'j'jCn; n D 0; 1; : : : : (1.29)

It turns out that a finite-variance linear process has a spectral density, as described
in the following theorem.
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Theorem 1.4.3. Let
�
Xn; n 2 Z

�
be a linear process (1.23) with a finite variance.

Then the process has a spectral density given by

h.a/ D Var."/

2	

ˇ̌
ˇ̌
ˇ̌

1X

jD�1
'je

ija

ˇ̌
ˇ̌
ˇ̌

2

; a 2 .�	; 	/ ; (1.30)

where the series in (1.30) converges in L2
�
.�	:	/; �1

�
.

Proof. For m � 1, consider a finite-variance linear process
�
X.m/n ; n 2 Z

�
with

finitely many nonzero coefficients, '.m/n D 'n1.jnj � m/; n 2 Z. Define also

h.m/.a/ D Var."/

2	

ˇ
ˇ̌
ˇ̌
ˇ

mX

jD�m

'je
ija

ˇ
ˇ̌
ˇ̌
ˇ

2

WD Var."/

2	

ˇ̌
g.m/.a/

ˇ̌2
; a 2 .�	; 	/ :

Note that for every n D 0; 1; : : :,

Z 	

�	
eianh.m/.a/ da D Var."/

2	

mX

j1D�m

mX

j2D�m

'j1'j2

Z 	

�	
eia.nCj1�j2/ da

D Var."/

2	

mX

j1D�m

mX

j2D�m

'j1'j21
�
j2 � j1 D n

�
.2	/ D RX.m/ .n/

by (1.29). That is, h.m/ is the spectral density of the linear process
�
X.m/n ; n 2 Z

�
.

For m; k � 1,
�
X.mCk/

n � X.m/n ; n 2 Z
�

is also a finite-variance moving average, with
finitely many nonzero coefficients,

�
'n1.m < jnj � m C k/; n 2 Z

�
, and hence has

the spectral density

h.m;k/.a/ D Var."/

2	

ˇ̌
g.mCk/.a/ � g.m/.a/

ˇ̌2
; a 2 .�	; 	/ :

Therefore,

Var
�

X.mCk/
0 � X.m/0

�
D Var."/

2	

Z 	

�	
h.m;k/.a/ da (1.31)

D Var."/

2	

Z 	

�	

ˇ̌
g.mCk/.a/ � g.m/.a/

ˇ̌2
da :
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Since by the L2 convergence of the series (1.23), the right-hand side of (1.31)
converges to zero as m ! 1, uniformly in k, we conclude that

lim
m!1 sup

k�0

Z 	

�	

ˇ̌
g.mCk/.a/ � g.m/.a/

ˇ̌2
da D 0 ;

and so the sequence of functions

g.m/.a/ D
mX

jD�m

'je
ija; a 2 .�	; 	/ ;

m D 1; 2; : : :, converges in L2
�
.�	:	/; �1

�
. If we denote its limit by

g.a/ D
1X

jD�1
'je

ija; a 2 .�	; 	/ ;

then we can use twice the L2 convergence, first on the probability space, and then
on
�
.�	; 	/; �1

�
to obtain, for every n D 0; 1; : : :,

RX.n/ D lim
m!1RX.m/ .n/ D lim

m!1

Z 	

�	
eianh.m/.a/ da

D lim
m!1

Z 	

�	
eian Var."/

2	

ˇ̌
g.m/.a/

ˇ̌2
da D

Z 	

�	
eian Var."/

2	
jg.a/j2 da

D
Z 	

�	
eianh.a/ da ;

which shows that h is the spectral density of the finite-variance linear process�
Xn; n 2 Z

�
. �

The function g.a/ D P1
jD�1 'jeija, �	 < a < 	 , is sometimes called the

transfer function of the linear filter defined by the coefficients .'n/, and the function
jgj2 is called the power transfer function of that filter.

Example 1.4.4. A special class of linear processes consists of stationary AutoRe-
gressive Moving Average, or ARMA, processes. Let r; q � 0 be two nonneg-
ative integers, and let .�0; : : : ; �r/ and .
0; : : : ; 
q/ be real numbers such that
�0 D 
0 D 1.

Given a sequence
�
"n; n 2 Z

�
of i.i.d. random variables, a stationary ARMA.r; q/

process
�
Xn n 2 Z

�
is defined to be a stationary process that satisfies the recurrence

rX

jD0
�jXn�j D

qX

jD0

j"n�j for all n 2 Z. (1.32)

We will assume that the noise variables satisfy Ej"jp < 1 for some p > 0.
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In order to answer the obvious existence and uniqueness questions, and to
see the connection with the linear processes, we introduce two polynomials: the
autoregressive polynomial � and the moving average polynomial 
 , of degrees r
and q, respectively, defined by

�.x/ D
rX

jD0
�jx

j; 
.x/ D
qX

jD0

jx

j; x 2 C :

We assume that

�.x/ 6D 0 for all x 2 C with jxj D 1. (1.33)

Under the assumption (1.33), the polynomial � does not vanish in the annulus
fx 2 C W R�1 < jxj < Rg for some R > 1. Therefore, 1=� is an analytic function in
that region and hence has a power series expansion

1

�.x/
D

1X

jD�1
 jx

j; x 2 C; R�1 < jxj < R I (1.34)

see Section 2.3 in Chapter VI of Ahlfors (1953). In particular, the coefficients . j/

decay exponentially fast: for every � 2 .R�1; 1/, there is a finite C such that j jj �
C� jjj for all j. The analytic function equal identically to 1 satisfies in the annulus
fx 2 C W R�1 < jxj < Rg the relation

1 D
rX

jD0
�jx

j
1X

jD�1
 jx

j ;

and the uniqueness of the power series expansion of an analytic function means that
the coefficients at the like powers of x in the two series are the same:

rX

kD0
�k j�k D 1

�
j D 0

�
: (1.35)

Similarly, the expansion of the analytic function 
=� satisfies

qX

jD0

jx

j
1X

jD�1
 jx

j D 
.x/

�.x/
WD

1X

jD�1
'jx

j (1.36)

in the annulus fx 2 C W R�1 < jxj < Rg, and using once again the uniqueness of the
power series expansion of an analytic function tells us that the coefficients of like
powers of x in the two series around 
=� are the same:
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'j D
qX

kD0

k j�k for each j 2 Z. (1.37)

We conclude that the coefficients .'j/ decay exponentially fast as well. Furthermore,
the relation


.x/ D �.x/

.x/

�.x/
; x 2 C; R�1 < jxj < R;

between three analytic functions leads to the corresponding relation between the
three series expansions in that annulus:

qX

jD0

jx

j D
rX

jD0
�jx

j
1X

jD�1
'jx

j :

Appealing yet again to the uniqueness of the power series expansion of an analytic
function, we may equate the coefficients of like powers of x to conclude that


j D
rX

kD0
�k'j�k; j 2 Z ; (1.38)

which one interprets as 0 D 0 if j 62 f0; : : : ; qg.
Recall that the noise variables satisfy Ej"jp < 1 for some p > 0. Theorem 1.4.1

applies regardless of the value of p > 0, and the infinite moving average Xn DP1
jD�1 'n�j "j; n 2 Z, in (1.23) with the coefficients given by (1.37) is well

defined. Furthermore, for every n 2 Z, we can use (1.38) to see that

rX

jD0
�jXn�j D

rX

jD0
�j

1X

kD�1
'k "n�j�k

D
rX

jD0
�j

1X

kD�1
'k�j "n�k D

1X

kD�1

0

@
rX

jD0
�j'k�j

1

A "n�k

D
qX

kD0

k"n�k ;

and so the linear process with the coefficients given by (1.37) satisfies the ARMA
equation (1.32).

In the other direction, suppose that
�
Xn n 2 Z

�
is a stationary process satisfying

the ARMA equation (1.32), and denote by Wn the random variable appearing on
both the left-hand and right-hand sides of (1.32), n 2 Z. Since Ej"jp < 1, we
also have EjWjp < 1. The first Borel–Canteli lemma then shows that with the
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coefficients . j/ defined by (1.34), the sum
P

j  jWn�j converges with probability
1 for each n, and, by (1.32), this sum can be written in two different ways:

1X

jD�1
 jWn�j D

1X

jD�1
 j

rX

kD0
�kXn�j�k D

1X

jD�1
 j

qX

kD0

k"n�j�k : (1.39)

We first treat the last sum in (1.39). Interchanging twice a finite sum and a
convergent sum, and using (1.37), we obtain

1X

jD�1
 j

qX

kD0

k"n�j�k D

qX

kD0

k

1X

jD�1
 j�k"n�j

D
1X

jD�1

 
qX

kD0

k j�k

!

"n�j D
1X

jD�1
'n�j "j :

We would like to offer a similar treatment to the middle sum in (1.39), but a problem
arises, since we do not know a priori whether the stationary process

�
Xn n 2 Z

�
has

any finite moments and hence cannot guarantee that a sum of the type
P

j  jXn�j

converges. To overcome this problem, we write

1X

jD�1
 j

rX

kD0
�kXn�j�k D lim

M!1

MX

jD�M

 j

rX

kD0
�kXn�j�k ;

and we work first with the finite double sum above. Write for M � r,

MX

jD�M

 j

rX

kD0
�kXn�j�k D

rX

kD0
�k

kCMX

jDk�M

 j�kXn�j

D
1X

jD�1

0

@
min.r;jCM/X

kDmax.0;j�M/

�k j�k

1

AXn�j :

Appealing to (1.35), we see that for r � M � j � M, the sum over k on the right-
hand side above is equal to 1

�
j D 0

�
. Therefore, the middle sum in (1.39) can be

written as

Xn C lim
M!1

2

4
r�M�1X

jD�1

0

@
min.r;jCM/X

kDmax.0;j�M/

�k j�k

1

AXn�j (1.40)

C
1X

jD�MC1

0

@
min.r;jCM/X

kDmax.0;j�M/

�k j�k

1

AXn�j

3

5 :
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Next, observe that the inner sums over k vanish if j < �M in the first sum over j
and j > M C r in the second sum over j. If we set Q .M/ D supjjj>M�r j jj and
Q� D Pr

kD0 j�kj, then each of the two double sums above is stochastically bounded
by Q .M/ Q�Pr

jD1 jXjj. Clearly, Q .M/ ! 0 as M ! 1, and the limit in (1.40) is
equal to zero, as a limit in probability. We conclude that the middle sum in (1.39)
is equal to Xn, and therefore, the stationary process

�
Xn n 2 Z

�
satisfies Xn DP1

jD�1 'n�j "j; n 2 Z, with the coefficients defined by (1.37). We have, therefore,
the following result.

Theorem 1.4.5. Suppose that the autoregressive polynomial � has no roots on the
unit circle of the complex plane (i.e., satisfies the assumption (1.33)), and that for
some p > 0, Ej"jp < 1. Then the ARMA equation (1.32) has a unique stationary
solution. The solution is a linear process

Xn D
1X

jD�1
'n�j "j; n 2 Z

with the coefficients .'j/ defined as the coefficients of the series expansion (1.36)
of the ratio of the moving average and autoregressive polynomials in an annulus
fx 2 C W R�1 < jxj < Rg in which the autoregressive polynomial � does not
vanish. Alternatively, the coefficients .'j/ are given by (1.37). The unique stationary
solution of the ARMA equation (1.32) is a process with a finite absolute pth moment.

Furthermore, if the autoregressive polynomial � has no roots on or inside the
unit circle of the complex plane, i.e., if

�.x/ 6D 0 for all x 2 C with jxj � 1, (1.41)

then 'j D 0 for j < 0, and the unique stationary solution of the ARMA
equation (1.32) is a causal moving average

Xn D
nX

jD�1
'n�j "j; n 2 Z :

If the autoregressive polynomial � has no roots on or outside of the unit circle of the
complex plane, i.e., if

�.x/ 6D 0 for any x 2 C with jxj � 1, (1.42)

then 'j D 0 for j > 0, and the unique stationary solution of the ARMA
equation (1.32) is a purely noncausal moving average

Xn D
1X

jDn

'n�j "j; n 2 Z :
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The only parts of Theorem 1.4.5 that have not yet been proved are the facts
that the unique stationary solution is purely causal under the assumption (1.41) and
purely noncausal under the assumption (1.42). These, however, follow immediately
from the facts that a function analytic inside a circle has a convergent series
expansion inside that circle into nonnegative powers of the argument, while a
function analytic outside a circle has a convergent series expansion outside that
circle into nonpositive powers of the argument; see Ahlfors (1953).

If we now assume that the noise variables have a finite second moment, then
Theorem 1.4.3 applies to the stationary ARMA process, and we conclude that it has
a spectral density given by

h.a/ D Var."/

2	

ˇ̌
ˇ
ˇ̌
ˇ

1X

jD�1
'je

ija

ˇ̌
ˇ
ˇ̌
ˇ

2

D Var."/

2	

ˇ̌
ˇ
ˇ̌


�
eia
�

�
�
eia
�

ˇ̌
ˇ
ˇ̌

2

D Var."/

2	

ˇ̌


�
eia
�ˇ̌2

ˇ̌
�
�
eia
�ˇ̌2 ; a 2 .�	; 	/ : (1.43)

Since the spectral density of a stationary ARMA process is the ratio of (the norms of)
two finite polynomials of the complex exponential, one sometimes says that such
processes have a rational spectral density.

1.5 Comments on Chapter 1

Comments on Section 1.3
Statements of the type “measurability implies continuity in the presence of homo-

geneity” have been proved in different areas of mathematics. A common reference
is Banach’s theorem on homomorphisms between Polish groups (Theorem 4 in
Banach (1955), p. 23). Banach assumes, however, Baire measurability instead of
Borel measurability, which is more common in probability theory.

Comments on Section 1.4
A wealth of information on the ARMA processes of Example 1.4.4 is in

Brockwell and Davis (1991). This book also contains useful additional information
on general finite-variance stationary processes.

1.6 Exercises to Chapter 1

Exercise 1.6.1. Let
�
X.t/; t 2 R

d
�

be a stationary stochastic process with a finite
variance, continuous in L2, with a spectral measure �X. Then the restriction of the
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domain of the process to the integers,
�
X.t/; t 2 Z

d
�
, is also a stationary stochastic

process with a finite variance. How is its spectral measure related to the “continuous
time” spectral measure �X?

Exercise 1.6.2. Suppose that the series in (1.23) converges. Show that the coeffi-
cients .'n/ must satisfy (1.26).

Exercise 1.6.3. It is tempting to guess that if the series in (1.23) converges and
Ej"jp D 1 for some 0 < p < 2, then (1.24) has to hold. The following provides a
counterexample.

Let ."j/ be i.i.d. symmetric random variables taking values ˙nŠ for n D 1; 2; : : :

such that P." D nŠ/ D P." D �nŠ/ D c=.n C 1/Š, where c > 0 is a normalizing
constant. Suppose that the sequence of the coefficients .'n/ is piecewise constant,
with .n �1/Š of the coefficients taking the value 1=nŠ for n D 1; 2; : : :. Show that the
series in (1.23) converges, that Ej"j D 1, and that (1.24) fails for p D 1.

Exercise 1.6.4. Give an alternative proof of the convergence part of Theorem 1.4.1
using the three series theorem.

Exercise 1.6.5. Prove the following extension of Theorem 1.4.3. Let Y be a finite-
variance stationary process with a bounded spectral density fY . Let .'j/ be real
coefficients satisfying (1.26). Then

Xn D
1X

jD�1
'jYn�j; n D 1; 2; : : : ;

is a well-defined finite-variance stationary process, and it has a spectral density, a
version of which is given by

fX.x/ D fY.x/

ˇ̌
ˇ̌
ˇ
ˇ

1X

jD�1
'je

ijx

ˇ̌
ˇ̌
ˇ
ˇ

2

; x 2 .�	; 	/ :



Chapter 2
Elements of Ergodic Theory of Stationary
Processes and Strong Mixing

2.1 Basic Definitions and Ergodicity

Let
�
Xn; n 2 Z

�
be a discrete-time stationary stochastic process. Consider the space

R
Z of the doubly infinite sequences x D .: : : ; x�1; x0; x1; x2; : : :/ of real numbers,

and equip this space with the usual cylindrical � -field BZ. The stochastic process
naturally induces a probability measure �X on this space via

�X

n
x 2 R

Z W �xi; : : : ; xj
� 2 B

o
D P

��
Xi; : : : ;Xj

� 2 B
�

(2.1)

for all i � j and Borel sets B 2 R
j�iC1. The space RZ has a natural left shift operation


 W R
Z ! R

Z. For x D .: : : ; x�1; x0; x1; x2; : : :/ 2 R
Z, the shifted sequence 
x is

the sequence of real numbers whose ith coordinate is the .i C 1/st coordinate xiC1
of x for each i 2 Z. Formally,



�
.: : : ; x�1; x0; x1; x2; : : :/

� D .: : : ; x0; x1; x2; x3 : : :/ :

Clearly, the left shift is a one-to-one transformation of RZ onto itself, and both 

and its inverse, the right shift 
�1, are measurable with respect to the cylindrical
� -field. Note that the left shift 
 leaves the measure �X on R

Z unchanged, because
for all i � j and Borel sets B 2 R

j�iC1,

�X ı 
�1
n
x 2 R

Z W �xi; : : : ; xj
� 2 B

o
D �X

n
x 2 R

Z W �xiC1; : : : ; xjC1
� 2 B

o

D P
��

XiC1; : : : ;XjC1
� 2 B

�
D P

��
Xi; : : : ;Xj

� 2 B
�

D �X

n
x 2 R

Z W �xi; : : : ; xj
� 2 B

o
;
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where the third equality follows from the stationarity of the process. In other words,
the left shift preserves the measure �X induced by a stationary process on R

Z.
This is, of course, not particularly exciting. On the other hand, in spite of this
preservation of the measure �X by the left shift, if we choose a point (sequence)
x 2 R

Z according to the probability measure �X, there is no reason to expect that
the trajectory 
nx; n D 0; 1; 2; : : :, of the point x should be in some way trivial.
Here 
n D 
 ı : : : ı 
 is the composition of n left shifts, n D 1; 2; : : : (which is, of
course, simply a left shift by n time units), while 
0 is the identity operator on R

Z.
In fact, for most stationary stochastic processes, a “typical point” x selected

according to the measure �X follows a highly nontrivial trajectory. Such trajectories
are, obviously, closely related to interesting probabilistic properties of a stationary
process. Therefore, ergodic theory that studies measure-preserving transformations
(as well as more general transformations) of a measure space provides an important
point of view on stationary processes. In this and the following sections of this
chapter, we describe certain basic notions of ergodic theory and discuss what they
mean for stationary stochastic processes. Much more detail can be found in, for
example, Krengel (1985) and Aaronson (1997).

We commence by noting that the connection between a stationary stochastic
process

�
Xn; n 2 Z

�
and the probability measure �X it induces on the cylindrical

� -field on R
Z is not a one-way affair, in which the stationary process, defined on

some probability space
�
�;F ;P

�
, is the “primary actor” while the induced measure

�X is “secondary.” In fact, if we start with any probability measure � on R
Z that is

invariant under the left shift 
 , then we can define a stochastic process
�
Xn; n 2 Z

�

on the probability space
�
Z;BZ; �

�
by

Xn.x/ D xn; n 2 Z; for x D .: : : ; x�1; x0; x1; x2; : : :/ 2 R
Z, (2.2)

and then the invariance of the measure � causes stationarity of the process�
Xn; n 2 Z

�
. Moreover, the measure �X induced by this process coincides with �.

Recall also that the definition of the cylindrical � -field shows that there is a one-
to-one correspondence between shift-invariant probability measures on R

Z and
collections of the finite-dimensional distributions of stationary stochastic processes
indexed by Z.

We conclude that, given a collection of the finite-dimensional distributions of a
stationary stochastic process, we can define a stochastic process with these finite-
dimensional distributions on the space R

Z equipped with the cylindrical � -field
and appropriate shift-invariant probability measure via the coordinate evaluation
scheme (2.2). Since the ergodic properties of stationary stochastic processes we
discuss (such as ergodicity and mixing) depend only on the finite-dimensional
distributions of these processes, it is completely unimportant on what probability
space a stochastic process is defined. However, the sequence space RZ has a built-in
left shift operation, which provides a convenient language for discussing ergodic
properties. Therefore, in this section we assume, unless stated otherwise, that a
stationary process

�
Xn; n 2 Z

�
is defined on the probability space

�
R

Z;BZ; �
�
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by (2.2), and that the probability measure � is shift-invariant. We emphasize that
our conclusions about ergodic properties of stationary stochastic processes applies
regardless of the actual probability space on which a process is defined.

For now, however, we consider an arbitrary � -finite measure space
�
E; E ;m

�
. Let

� W E ! E be a measurable map. The powers of � are defined in the sense of
repeated application: �n is a map from E to E given by �n.x/ D �.�.: : : �.x/// for
n � 1 (applying � n times). The operator �0 is, by definition, the identity operator
on E. A set A 2 E is called �-invariant if m

�
A 4��1A

� D 0, where 4 denotes
the symmetric difference of two sets. It is easy to check that the collection I of
all �-invariant sets is a sub-� -field of E (see Exercise 2.6.2); we call I the (�-)
invariant � -field. Invariant � -fields naturally appear in the following key result of
ergodic theory.

Theorem 2.1.1 (Birkhoff’s pointwise ergodic theorem). Suppose that � WE ! E
is a measurable map, preserving the measure m. Let f 2 L1.m/. Then there is a
function gf W E ! R, measurable with respect to the invariant � -field I, such that

1

n

n�1X

jD0
f
�
� j.x/

� ! gf .x/ as n ! 1

for m-almost every x 2 E. The function gf satisfies gf 2 L1.m/, kgf k1 � kf k1, and

Z

A
gf .x/m.dx/ D

Z

A
f .x/m.dx/

for every set A 2 I of finite measure m.

See, e.g., Theorem 2.3 in Krengel (1985, p. 9). Note, for example, that if the measure
m in Theorem 2.1.1 is actually a probability measure, then the properties of the
function gf in the theorem identify that function as the conditional expectation of f
(viewed as a random variable on the probability space

�
E; E ;m

�
) given the invariant

� -field I.
A map � W E ! E is called nonsingular if � is both onto and one-to-one, both

� and its inverse ��1 W E ! E are measurable, and the induced measure m ı ��1
is equivalent to the original measure m. Clearly, if � preserves the measure m, it is
also nonsingular, as long as it satisfies the other requirements of nonsingularity.

Definition 2.1.2. A nonsingular map � on
�
E; E ;m

�
is called ergodic if every

�-invariant set A is such that either m.A/ D 0 or m.Ac/ D 0.

Note that every measurable set A such that either m.A/ D 0 or m.Ac/ D 0

is invariant for every nonsingular map (see Exercise 2.6.3). They are trivially
invariant, so to speak. What distinguishes ergodic nonsingular maps is that no other
measurable sets are invariant for these maps.
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Example 2.1.3. Let E D Z, let E be the collection of all subsets of Z, and let m
be the counting measure. Consider two nonsingular (actually, measure-preserving)
maps: �1.x/ D x C 1, �2.x/ D x, x 2 Z.

Note that the only �1-invariant sets are the empty set and the entire space Z.
These are trivially invariant sets, and hence �1 is an ergodic map.

On the other hand, �2 is the identity map, so that every measurable set is invariant
with respect to �2. Since this includes many nontrivially invariant sets (such as the
set of all even numbers, for example), the map �2 is not ergodic.

If � is a nonsingular measure-preserving ergodic map, then Exercise 2.6.4 tells
us that the function gf in Birkhoff’s pointwise ergodic theorem must be a constant
function regardless of what function f 2 L1.m/ we choose. In particular, if m is
an infinite measure, then for every such f , the function gf must be, up to a set of
measure zero, the zero function, since gf 2 L1.m/, and the only constant function in
the space L1.m/ of an infinite measure m is the zero function.

Now let
�
Xn; n 2 Z

�
be a stationary stochastic process defined by (2.2) on the

probability space
�
R

Z;BZ; �
�

with a shift-invariant �. We say that the stochastic
process is ergodic if the left shift 
 is an ergodic map, RZ ! R

Z, in the sense of
Definition 2.1.2. Since ergodicity of the left shift is determined by the probability
measure �, which is, in turn, determined by the finite-dimensional distributions
of the process, the latter determine whether a given stationary process is ergodic.
Notice that a stationary process

�
Xn; n 2 Z

�
is ergodic if and only if the time-

reversed process
�
X�n; n 2 Z

�
is ergodic (see Exercise 2.6.3).

Example 2.1.4. Tail and invariant � -fields In the context of stationary stochastic
processes on

�
R

Z;BZ; �
�
, the (
 -)invariant � -field I is a sub-� -field of BZ. Another

important natural sub-� -field of BZ is the tail � -field T , defined as the completion
with respect to the measure � of the � -field

1\

nD1
�
�
xn; xnC1; : : :

�
:

In general, not every tail event is an invariant event, as can be seen by choosing

� D 1

2
ı.:::;0;1;0;:::/ C 1

2
ı.:::;1;0;1;:::/ (2.3)

(x0 D 1 in the first sequence and x0 D 0 in the second sequence), and

A D
n
.: : : ; x�1; x0; x1; x2; : : :/ W x2n D 1 for infinitely many n D 0; 1; 2; : : :

o
:

On the other hand, we claim that every invariant event is a tail event, that is,

I 	 T : (2.4)
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To see this, let A be an invariant cylindrical set. Since the sets in a � -field can
be approximated arbitrarily closely with respect to a probability measure by the sets
in a field that generates the � -field, for every " > 0 there is a finite-dimensional
cylindrical set B such that

�
�
A 4 B

� � "

(finite-dimensionality of B means that B 2 ��xk; : : : ; xm
�

for some k � m); see, for
example, Corollary 1, in Billingsley (1995, p. 169). Since the measure � is shift-
invariant and the set A is invariant as well, we conclude that for every n � 0,

" � �
�
A 4 B

� D �
�

�1

�
A 4 B

��

D �
�

�1.A/4 
�1.B/

�
D �

�
A 4 
�1.B/

�
;

and iterating this procedure, we see that

�
�

A 4 
�n.B/
�

� "

for all n D 0; 1; : : :. Note that if B 2 �
�
xk; : : : ; xm

�
, then 
�n.B/ 2

�
�
xkCn; : : : ; xmCn

�
.

We conclude that for every " > 0, there are sets Bn 2 �.xn; xnC1; : : :/ for
n D 0; 1; 2; : : : such that for every n, �

�
A 4 Bn

� � "=2n. This implies that for
every m D 0; 1; 2 : : :,

�
�

A 4 [1nDm Bn

�
�
1X

nDm

�
�
A 4 Bn

� � "=2m�1 ;

and then also

�
�

A 4 \1mD0 [1nDmBn

�
�
1X

mD0
�
�
A 4 [1nDm Bn

� � 4" :

Therefore, for every " > 0, there is a set B 2 T such that �
�
A 4 B

� � ", and since
T is a � -field, there is also B 2 T such that �

�
A 4 B

� D 0. Therefore, A itself is a
tail event.

As a corollary, we conclude that every stationary process for which the tail � -field
consists of trivial events (i.e., of the events of probability 0 or 1) must be ergodic,
because every invariant event will also have probability 0 or 1. For example, if�
Xn; n 2 Z

�
consists of i.i.d. random variables, then by the Kolmogorov zero–one

law, the tail � -field consists of trivial events, and so every i.i.d. process is ergodic.
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If
�
Xn; n 2 Z

�
is a stationary stochastic process defined by (2.2) on the

probability space
�
R

Z;BZ; �
�

with a shift-invariant �, then Birkhoff’s pointwise
ergodic theorem applies, of course, in the usual way, and the limiting function gf in
that theorem is, of course, the conditional expectation of f given the invariant � -field
just because m is a probability measure. It is interesting to see how the pointwise
ergodic theorem applies if a stationary process

�
Xn; n 2 Z

�
is defined on an abstract

probability space
�
�;F ;P

�
.

We start by defining the invariant � -sub-field IX of F . Let TX W � ! R
Z be

the measurable map TX.w/ D �
: : : ;X�1.!/;X0.!/;X1.!/; : : :

�
. If I is the invariant

� -field in R
Z, then we set

IX D T�1X I D
n
T�1X .A/; A 2 I

o
	 F : (2.5)

If � is the shift-invariant probability measure on R
Z induced by the stationary

process via (2.1), then for every measurable function f W R
Z ! R such that

E
ˇ
ˇf
�
: : : ;X�1;X0;X1; : : :

�ˇˇ < 1; (2.6)

we have

1

n

n�1X

jD0
f
�
: : : ;Xj�1.!/;Xj.!/;XjC1.!/; : : :

� D 1

n

n�1X

jD0
f
�

 j.TX.!//

�

! E�
�
f
ˇ
ˇI
�
.TX.!// D E

�
f
�
: : : ;X�1;X0;X1; : : :

�ˇˇ̌IX

�
.!/ (2.7)

with probability 1, where E� is the (conditional) expectation with respect to the
probability measure � on R

Z. The convergence follows from Birkhoff’s pointwise
ergodic theorem, and the last equality follows from the definition of the � -field IX.

In particular, a stationary process
�
Xn; n 2 Z

�
is ergodic if and only if the � -field

IX defined by (2.5) consists of trivial events. For an ergodic stationary process, one
has

lim
n!1

1

n

n�1X

jD0
f
�
: : : ;Xj�1.!/;Xj.!/;XjC1.!/; : : :

�
(2.8)

D Ef
�
: : : ;X�1;X0;X1; : : :

�

with probability 1, for every measurable f satisfying (2.6). Of course, the converse
statement is also true: if (2.8) holds for every measurable f satisfying (2.6), then the
process is ergodic.

Example 2.1.5. The Strong Law of Large Numbers Suppose that
�
Xn; n 2 Z

�
is an

ergodic stationary process with a finite mean. Choosing

f
�
: : : ; x�1; x0; x1; : : :

� D x0 ;
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an immediate application of (2.8) proves the strong law of large numbers

lim
n!1

1

n

n�1X

jD0
Xj D EX0 (2.9)

with probability 1. Note, however, that the strong law of large numbers (2.9) may
hold for nonergodic stationary processes and hence does not imply ergodicity. For
example, let

�
Xn; n 2 Z

�
be a canonical stationary process defined by (2.2) on�

R
Z;BZ; �

�
, where a shift-invariant � is the following modification of the measure

in (2.3):

� D 1

4
ı.:::;0;1;0;:::/ C 1

4
ı.:::;1;0;1;:::/ C 1

2
ı.:::;1=2;1=2;1=2;:::/ :

In this case, the law of large numbers trivially holds (with EX0 D 1=2), but the
process is not ergodic, since the event

A D
n
infinitely many of xn are equal to zero

o

is obviously invariant, and its probability is equal to 1=2.

The following proposition presents a characterization of ergodicity in the context
of stationary stochastic processes that is particularly easy to visualize: a stationary
process is ergodic unless it can be represented as a mixture of two stationary
processes with different finite-dimensional distributions.

Proposition 2.1.6. A stationary process
�
Xn; n 2 Z

�
is nonergodic if and only

if there is a probability space supporting two stationary processes,
�
Yn; n 2 Z

�

and
�
Zn; n 2 Z

�
, with different finite-dimensional distributions, and a Bernoulli.p/

random variable with 0 < p < 1 independent of them such that

�
Xn; n 2 Z

� dD
	 �

Yn; n 2 Z
�

with probability p;�
Zn; n 2 Z

�
with probability 1 � p.

(2.10)

Proof. Suppose first that the process
�
Xn; n 2 Z

�
is not ergodic, and let � be the

probability measure induced by the process on the probability space
�
R

Z;BZ; �
�

via (2.1). By the lack of ergodicity, there is a set of sequences A 2 I with p WD
�.A/ 2 .0; 1/. Define two new probability measures on

�
R

Z;BZ; �
�

by

�1.B/ D p�1�
�
B \ A

�
; �2.B/ D .1 � p/�1�

�
B \ Ac

�
; B 2 BZ :

Using first the shift-invariance of A and then the shift-invariance of �, we see that

�1
�

�1.B/

� D p�1�
�

�1.B/ \ A

� D p�1�
�

�1.B/ \ 
�1.A/�

D p�1�
�

�1.B \ A/

� D p�1�
�
B \ A

� D �1.B/;

and hence �1 is shift-invariant. Similarly, the probability measure �2 is shift-
invariant as well.
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Let now � D R
Z \ f0; 1g \ R

Z, with the product � -field, and let

P D �1 � �pı1 C .1 � p/ı0
� � �2 :

Using the obvious notation, we define three stochastic processes on this probability
space by

Wn
�
.: : : ; y�1; y0; y1 : : :/; b; .: : : ; z�1; z0; z1 : : :/

� D
	

yn if b D 1

zn if b D 0
;

Yn
�
.: : : ; y�1; y0; y1 : : :/; b; .: : : ; z�1; z0; z1 : : :/

� D yn ;

Zn
�
.: : : ; y�1; y0; y1 : : :/; b; .: : : ; z�1; z0; z1 : : :/

� D zn; n 2 Z :

Since the measures �1 and �2 are shift-invariant, the processes
�
Yn; n 2 Z

�
and�

Zn; n 2 Z
�

are stationary. If the two processes had the same finite-dimensional
distributions, then the probability measures they generate on

�
R

Z;BZ; �
�

would
coincide. However, these probability measures are �1 and �2 respectively, and they
cannot coincide, since they live on disjoint subsets A and Ac of R

Z. Therefore,
the two processes have different finite-dimensional distributions. Finally, let A be
a cylindrical subset of RZ. Then

P
��

Wn; n 2 Z
� 2 A

�
D p�1.A/C .1 � p/�2.A/

D �.A/ D P
��

Xn; n 2 Z
� 2 A

�
;

and we conclude that the relation (2.10) holds.
Conversely, suppose that (2.10) holds. Since the processes Y D �

Yn; n 2 Z
�

and Z D �
Zn; n 2 Z

�
have different finite-dimensional distributions, there is a

bounded measurable function f W R
Z ! R such that Ef .Y/ 6D Ef .Z/ (one can

take f D 1A, with A a cylindrical set to which the laws of Y D �
Yn; n 2 Z

�

and Z D �
Zn; n 2 Z

�
assign different probabilities). If we call the right-hand side

of (2.10)
�
Xn; n 2 Z

�
(which is legitimate, since ergodicity depends only on the

finite-dimensional distributions of a process), then the ergodic theorem (2.7) tells us
that

lim
n!1

1

n

n�1X

jD0
f
�
: : : ;Xj�1.!/;Xj.!/;XjC1.!/; : : :

�

D
(

limn!1 1
n

Pn�1
jD0 f

�
: : : ;Yj�1.!/;Yj.!/;YjC1.!/; : : :

�
with probability p

limn!1 1
n

Pn�1
jD0 f

�
: : : ;Zj�1.!/;Zj.!/;ZjC1.!/; : : :

�
with probability 1 � p

WD
	

L1 with probability p
L2 with probability 1 � p

;
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where

EL1 D Ef .Y/ 6D Ef .Z/ D EL2 :

Therefore, L1 and L2 cannot be two identical constants, which would be the only
possibility if

�
Xn; n 2 Z

�
were ergodic. Hence (2.10) implies lack of ergodicity. �

We now switch back to an arbitrary � -finite measure space
�
E; E ;m

�
and a

measurable map � W E ! E. Let
�
G;G

�
be another measurable space, and

' W G ! G a measurable map. We say that a mapping f W E ! G is compatible
with the maps � and ' if f ı� D ' ı f , or in other words, if f .�.x// D '.f .x// for all
x 2 E. It turns out that compatible mappings preserve ergodicity, as the following
proposition shows.

Proposition 2.1.7. Let � W E ! E be a nonsingular map on a � -finite measure
space

�
E; E ;m

�
. Let ' W G ! G be a one-to-one and onto map on a measurable

space
�
G;G

�
such that both ' and its inverse are measurable. Let f W E ! G be a

measurable map that is compatible with � and '. If � is ergodic on
�
E; E ;m

�
, then

' is ergodic on
�
G;G;m ı f�1

�
.

Proof. The compatibility of f with � and ' implies that for every subset B of G,

��1
�
f�1.B/

� D f�1
�
'�1.B/

�
: (2.11)

Since � is nonsingular, for every B 2 G,

m ı f�1.B/ D 0 ” m
�
f�1.B/

� D 0 ” m
�
��1

�
f�1.B/

�� D 0

” m
�
f�1
�
'�1.B/

�� D 0 ” m ı f�1
�
'�1.B/

� D 0 ;

and so ' is nonsingular on
�
G;G;m ı f�1

�
. Next, let B be a '-invariant event.

Using (2.11) once again, we see that

0 D m ı f�1
�
B 4'�1.B/

� D m
�
f�1.B/4 f�1

�
'�1.B/

��

D m
�
f�1.B/4��1

�
f�1.B/

��
;

implying that f�1.B/ is invariant for �. Since � is ergodic, we conclude that
m
�
f�1.B/

� D 0 or 1, which is the same as m ı f�1.B/ D 0 or 1, which means
that every '-invariant event is trivially invariant, and hence ' is ergodic. �

Naturally compatible maps are produced by the common transformations of
stochastic processes. Let

�
Xn; n 2 Z

�
be a stationary stochastic process, and let

g W R
Z ! R be a measurable function. Then

Yn D g
�
.: : : ;Xn�1;Xn;XnC1; : : :/

�
; n 2 Z (2.12)

(with Xn in the zeroth position in the definition of Yn) is obviously a stationary
process as well.
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We can view this common situation as a special case of compatible maps as
follows. Let E D G D R

Z, E D G D BZ, m D �X , the law of the process�
Xn; n 2 Z

�
given by (2.1). Of course, the spaces E and G are identical, and we use

the same left shift 
 on both. In order to avoid confusion, we will use the notation

E when working on the space E, and 
G when working on the space G.

Define a map f W E ! G by

f .x/ D �
: : : ; g.
�1E x/; g.x/; g.
E.x//; : : :

� 2 G

for x D .: : : ; x�1; x0; x1; x2; : : :/ 2 E. Clearly, f is measurable. It is also trivially
compatible with the shifts 
E and 
G. Note also that the probability measure m ı f�1
is simply the law of the process

�
Yn; n 2 Z

�
given by (2.1).

Therefore, Proposition 2.1.7 applies, and we have proved the following
statement.

Corollary 2.1.8. Let
�
Xn; n 2 Z

�
be an ergodic stationary stochastic process, and

let
�
Yn; n 2 Z

�
be a stationary process given by (2.12) for some measurable function

g W R
Z ! R. Then

�
Yn; n 2 Z

�
is ergodic as well.

Example 2.1.9. Moving average processes are ergodic. Let

Xn D
1X

jD�1
'j "n�j ; n 2 Z

be an infinite moving average process (1.23). Recall that the noise variables ."n; n D
: : : ;�1; 0; 1; 2; : : :/ are i.i.d. and .'n/ are deterministic coefficients. We assume that
the series defining the process converges with probability 1.

Define a function g W R
Z ! R by

g
�
.: : : ; x�1:x0; x1; : : :/

� D
( P1

jD�1 'j x�j if the sum converges;
0 if the sum diverges:

Clearly, g is a measurable function, and

Xn D g
�
.: : : ; "n�1:"n; "nC1; : : :/

�
; n 2 Z :

Since the i.i.d. process ."n; n 2 Z/ is ergodic (see Example 2.1.4), it follows from
Corollary 2.1.8 that every infinite moving average process is ergodic.

2.2 Mixing and Weak Mixing

We start by introducing another basic ergodic-theoretical notion, that of mixing. It
applies to measure-preserving maps on probability spaces.
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Definition 2.2.1. A nonsingular measure-preserving map � on a probability space�
E; E ;m

�
is called mixing if for every two sets A;B 2 E ,

lim
n!1m

�
A \ ��nB

� D m.A/m.B/ :

Here ��n is the nth power of the inverse operator ��1. An immediate observation
is that mixing is a stronger property than ergodicity. Indeed, let � be a mixing map
on a probability space

�
E; E ;m

�
, and suppose that � is not ergodic. In that case,

there is an invariant set C 2 E with 0 < m.C/ < 1. Taking A D B D C, we have

m
�
A \ ��nB

� D m
�
C \ ��nC

� D m.C/

6D �
m.C/

�2 D m.A/m.B/ ;

contradicting the assumed mixing. Therefore, mixing implies ergodicity. On the
other hand, a map can be ergodic without being mixing.

Example 2.2.2. An ergodic but not mixing map.
Consider the left shift 
 on the sequence space

�
R

Z;BZ; �
�
, where � is the two-

point shift-invariant probability measure (2.3). Let x.1/ and x.2/ be the two points of
the support of �. Note that 
x.1/ D x.2/ and 
x.2/ D x.1/. Therefore, every invariant
set A contains either both of these points or none, so that �.A/ D 1 or 0. Since all
invariant sets are trivial, 
 is ergodic.

On the other hand, let

A D B D
n
.: : : ; x�1; x0; x1; x2; : : :/ W x0 D 1

o
:

Then

�
�
A \ 
�nB

� D
	
1
2

if n is even;
0 if n is odd

6! 1

4
D �.A/�.B/ :

Therefore, 
 is not mixing.

Let
�
Xn; n 2 Z

�
be a stationary stochastic process. We assume first that the

process is defined by (2.2) on the probability space
�
R

Z;BZ; �
�

with a shift-
invariant �. We say that the process is mixing if the left shift 
 is a mixing map
on
�
R

Z;BZ; �
�
. As in the case of ergodicity, whether or not a stationary process

is mixing is determined by its finite-dimensional distributions, regardless of what
probability space the process is really defined on. Explicitly, a stationary process�
Xn; n 2 Z

�
is mixing if for every two cylindrical subsets A, B of RZ,

P
��
: : : ;X�1;X0;X1; : : :

� 2 A;
�
: : : ;Xn�1;Xn;XnC1; : : :

� 2 B
�

(2.13)

! P
��
: : : ;X�1;X0;X1; : : :

� 2 A
�

P
��
: : : ;X�1;X0;X1; : : :

� 2 B
�

as n ! 1.
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Example 2.2.3. An i.i.d. process is mixing
We showed at the end of Example 2.1.4 that an i.i.d. process

�
Xn; n 2 Z

�
is

ergodic. Now we will check that such a process is, in fact, mixing. This fact will
also follow from Theorem 2.2.7 below, but a direct argument is instructive. We may
assume that the process is defined on the sequence space

�
R

Z;BZ; �
�

by (2.2).
Take any sets A;B 2 BZ. As in Example 2.1.4, given " > 0, we may choose

finite-dimensional cylindrical sets A1 and B1 2 ��xk; : : : ; xm
�

for some k � m such
that

�
�
A 4 A1

� � "; �
�
B 4 B1

� � " :

Note that 
�n.B1/ 2 �
�
xkCn; : : : ; xmCn

�
, so that for n > m � k, the sets A1 and


�n.B1/ are generated by disjoint sets of coordinates of a point in the sequence
space. Since the measure � is the law of an i.i.d. sequence, different components
are independent under �, which means that A1 and 
�n.B1/ are independent events
under � when n > m � k. Therefore, for such n,

ˇ̌
�
�
A \ 
�nB

� � �.A/ �.B/ˇ̌ � ˇ̌
�
�
A \ 
�nB

� � ��A1 \ 
�nB1
�ˇ̌

Cˇ̌��A1 \ 
�nB1
� � �.A1/ �.B1/

ˇ̌C ˇ̌
�.A1/ �.B1/ � �.A/ �.B/ˇ̌

� 2�
�
A 4 A1

�C 2�
�
B 4 B1

� � 4":

That is, for every " > 0,

lim sup
n!1

ˇ̌
�
�
A \ 
�nB

� � �.A/ �.B/ˇ̌ � 4";

and letting " ! 0, we conclude that

�
�
A \ 
�nB

� ! �.A/ �.B/

as n ! 1 for all A;B 2 BZ. Therefore, the shift 
 is mixing, and hence so is the
i.i.d. process

�
Xn; n 2 Z

�
.

Proposition 2.1.7 has a counterpart describing preservation of mixing.

Proposition 2.2.4. Let � W E ! E be a nonsingular measure-preserving map on
a probability space

�
E; E ;m

�
. Let ' W G ! G be a one-to-one and onto map on

a measurable space
�
G;G

�
such that both ' and its inverse are measurable. Let

f W E ! G be a measurable map that is compatible with � and '. If � is mixing on�
E; E ;m

�
, then ' is mixing on

�
G;G;m ı f�1

�
.

Proof. Starting with (2.11), an inductive argument shows that the latter relation
extends to

��n
�
f�1.B/

� D f�1
�
'�n.B/

�
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for all n � 1. Therefore, for all sets A;B 2 G,

m ı f�1
�
A \ '�n.B/

� D m
�
f�1.A/ \ f�1.'�n.B//

�

D m
�
f�1.A/ \ ��n.f�1.B//

� ! m
�
f�1.A/

�
m
�
f�1.B/

�

D m ı f�1.A/m ı f�1.B/ ;

and so ' is mixing on
�
G;G;m ı f�1

�
. �

As in the case of ergodicity, we immediately obtain the following corollary to
Proposition 2.2.4.

Corollary 2.2.5. Let
�
Xn; n 2 Z

�
be a mixing stationary stochastic process, and let�

Yn; n 2 Z
�

be a stationary process given by (2.12) for some measurable function
g W R

Z ! R. Then
�
Yn; n 2 Z

�
is mixing as well.

Example 2.2.6. Moving average processes are mixing.
Let .Xn; n 2 Z/ be the infinite moving process of Example 2.1.9. Applying

Corollary 2.2.5, we see that the mixing property of the noise variables ."n/ says
that every infinite moving process is mixing as well.

It turns out that the mixing property of a stationary stochastic process is
equivalent to weak convergence to independence of the joint distributions of the
blocks of observations of the process separated by increasing time intervals.

Theorem 2.2.7. A stationary process
�
Xn; n 2 Z

�
is mixing if and only if for every

k D 1; 2; : : :,
�
X1; : : : ;Xk;XnC1; : : : ;XnCk

� ) �
X1; : : : ;Xk;Y1; : : : ;Yk

�
(2.14)

as n ! 1, where .Y1; : : : ;Yk/ is an independent copy of .X1; : : : ;Xk/.

Proof. We start with checking the easier implication, namely the necessity of
condition (2.14). Suppose that the process

�
Xn; n 2 Z

�
is mixing, and let k � 1. The

weak convergence in (2.14) will follow once we check that for all k-dimensional
Borel sets C and D, we have

P
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�
(2.15)

! P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�

as n ! 1 (of course, it is really necessary to check (2.15) for continuity sets
of the law of .X1; : : : ;Xk/). This statement, however, is a special case of the
statement (2.13).

Suppose now that (2.14) holds. We will prove that the process is mixing by
checking the condition in the definition for successively more general sets A and B.
We treat finite-dimensional cylindrical sets first. Fix a dimension k � 1. We prove
the statement (2.15). The challenge is, of course, in the fact that by default, weak
convergence tells us that this statement holds only for continuity sets C and D, and
we need to establish (2.15) for all k-dimensional Borel sets.
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Consider first the case in which the sets C and D are “southwest corners” of the
form

CD
n
.x1; x2; : : : ; xk/ W xi � ai for i 2 I1; xi < ai for i 2 f1; : : : ; kg n I1

o
; (2.16)

BD
n
.x1; x2; : : : ; xk/ W xi � bi for i 2 I2; xi < bi for i 2 f1; : : : ; kg n I2

o
;

where I1; I2 are subsets of f1; : : : ; kg, and a1; : : : ; ak; b1; : : : ; bk are real numbers.
Note that if all of these 2k numbers are continuity points of the distribution of X1,
then the sets C and D are continuity sets of the vector .X1; : : : ;Xk;Y1; : : : ;Yk/ on the
right-hand side of (2.14), so (2.15) follows from the weak convergence in this case.
This case forms the basis of an inductive argument. Specifically, let m D 0; 1; : : : ; 2k
be the number of points among a1; : : : ; ak; b1; : : : ; bk that are not continuity points of
the distribution of X1. We have checked that (2.15) holds if m D 0, and the induction
hypothesis is that (2.15) holds if m < m0 for some m0 D 1; ; : : : ; 2k. Suppose now
that m D m0, and choose one point out of the m0 discontinuity points. We suppose
that this point is of the type bi with i 2 I2; all other cases are similar. For ease of
notation, we will simply use b1, with 1 2 I2.

Choose a sequence "j # 0 such that for each j, b1 C "j is a continuity point of the
distribution of X1. By the induction hypothesis,

lim sup
n!1

P
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

� lim sup
n!1

P
�
.X1; : : : ;Xk/ 2 C; XnC1 � b1 C "j; XnCi � bi for i 2 I2 n f1g;

XnCi < bi for i 2 f1; : : : ; kg n I2
�

D P
�
.X1; : : : ;Xk/ 2 C

�
P
�
X1 � b1 C "j; Xi � bi for i 2 I2 n f1g;

Xi < bi for i 2 f1; : : : ; kg n I2
�

for every j D 1; 2; : : :, and letting j ! 1, we obtain the upper bound

lim sup
n!1

P
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�
(2.17)

� P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�
:

In order to obtain a matching lower bound, we write

P
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

D P
�
.X1; : : : ;Xk/ 2 C; XnC1 < b1; XnCi � bi for i 2 I2 n f1g;

XnCi < bi for i 2 f1; : : : ; kg n I2
�

CP
�
.X1; : : : ;Xk/ 2 C; XnC1 D b1; XnCi � bi for i 2 I2 n f1g;
XnCi < bi for i 2 f1; : : : ; kg n I2

� WD p1.n/C p2.n/ :
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An argument identical to the one used to obtain the upper bound above (replacing
the condition XnC1 < b1 by the condition XnC < b1 � "j, where "j # 0 and b1 � "j

is, for each j, a continuity point of the distribution of X1) shows that

lim inf
n!1 p1.n/ � P

�
.X1; : : : ;Xk/ 2 C

�
P
�
X1 < b1; Xi � bi for i 2 I2 n f1g;

Xi < bi for i 2 f1; : : : ; kg n I2
�
:

Furthermore, given " > 0, we can find ı > 0 such that both P.b1�ı < X1 < b1/ � "

and P.b1 < X1 < b1 C ı/ � ", and both b1 � ı and b1 C ı are continuity points of
the distribution of X1. Then

p2.n/ � P
�
.X1; : : : ;Xk/ 2 C; b1 � ı < XnC1 < b1 C ı; XnCi � bi for i 2 I2 n f1g;

XnCi < bi for i 2 f1; : : : ; kg n I2
� � 2" ;

and by the induction hypothesis, we obtain

lim inf
n!1 p2.n/ � P

�
.X1; : : : ;Xk/ 2 C

�
P
�
b1�ı < X1 < b1Cı; Xi � bi for i 2 I2 n f1g;

Xi < bi for i 2 f1; : : : ; kg n I2
� � 2"

� P
�
.X1; : : : ;Xk/ 2 C

�
P
�
X1 D b1; Xi � bi for i 2 I2 n f1g;

Xi < bi for i 2 f1; : : : ; kg n I2
� � 2" :

Letting " ! 0 we see that

lim inf
n!1 p2.n/ � P

�
.X1; : : : ;Xk/ 2 C

�
P
�
X1 D b1; Xi � bi for i 2 I2 n f1g;

Xi < bi for i 2 f1; : : : ; kg n I2
�
;

which establishes a lower bound matching (2.17) and hence completes the inductive
argument. Therefore, we have proved that (2.15) holds when the sets C and D are
“southwest corners” of the form (2.16).

The next step is to show that (2.15) holds when C and D are “rectangles” of the
form

C D
n
.x1; x2; : : : ; xk/ W a.1/i � xi � a.2/i for i 2 I11; a.1/i � xi < a.2/i for i 2 I12;

a.1/i < xi � a.2/i for i 2 I13; a.1/i < xi < a.2/i for i 2 I14
o
; (2.18)

B D
n
.x1; x2; : : : ; xk/ W b.1/i � xi � b.2/i for i 2 I21; b.1/i � xi < b.2/i for i 2 I22;

b.1/i < xi � b.2/i for i 2 I23; b.1/i < xi < b.2/i for i 2 I24
o
;
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where both .I11; I12; I13; I14/ and .I21; I22; I23; I24/ are partitions of f1; : : : ; kg, and
�1 � a.1/i � a.2/i � 1; i D 1; : : : ; k, and b.1/i � b.2/i ; i D 1; : : : ; k, are real
numbers. For notational ease, we will consider only the case I13 D I23 D f1; : : : ; kg,
but the other cases are similar.

It is easy to check that

P
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�
(2.19)

D
X

J1;J2

.�1/jJ1jCjJ2jP�Xi � a.1/i for i 2 J1; Xi � a.2/i for i 2 f1; : : : ; kg n J1;

XnCi � b.1/i for i 2 J2; XnCi � b.2/i for i 2 f1; : : : ; kg n J2
�
;

where the sum is taken over all subsets J1 and J2 of f1; : : : ; kg. The right-hand side
of (2.19) is a finite sum of probabilities that we have already considered when we
proved (2.15) for the “southwest corners.” Therefore,

lim
n!1P

�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

D
X

J1;J2

.�1/jJ1jCjJ2jP�Xi � a.1/i for i 2 J1; Xi � a.2/i for i 2 f1; : : : ; kg n J1
�

P
�
Xi � b.1/i for i 2 J2; Xi � b.2/i for i 2 f1; : : : ; kg n J2

�

D
X

J1

.�1/jJ1jP�Xi � a.1/i for i 2 J1; Xi � a.2/i for i 2 f1; : : : ; kg n J1
�

X

J2

.�1/jJ2jP�Xi � b.1/i for i 2 J2; Xi � b.2/i for i 2 f1; : : : ; kg n J2
�

D P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�
;

where at the last step we used (2.19) once again. This proves (2.15) in the case that
C and D are “rectangles” of the form (2.18).

Next, denote by Uk the collection of all disjoint finite unions of “rectangles” of
the form (2.18). Note that Uk forms a field in R

k that generates the Borel � -field.
Since (2.15) holds for the “rectangles,” it extends by linearity to the case that C and
D are sets in Uk. Furthermore, if C and D are arbitrary k-dimensional Borel sets,
then given " > 0, we can find sets C1 and D1 in Uk such that

P
�
.X1; : : : ;Xk/ 2 C4C1

� � "; P
�
.X1; : : : ;Xk/ 2 D4D1

� � " I
see again Corollary 1, p. 169, in Billingsley (1995). Then

ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

�P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�ˇ̌
ˇ
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�
ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C1; .XnC1; : : : ;XnCk/ 2 D1

�

�P
�
.X1; : : : ;Xk/ 2 C1

�
P
�
.X1; : : : ;Xk/ 2 D1

�ˇ̌
ˇ

C
ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

�P
�
.X1; : : : ;Xk/ 2 C1; .XnC1; : : : ;XnCk/ 2 D1

�ˇ̌
ˇ

C
ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C1

�
P
�
.X1; : : : ;Xk/ 2 D1

�

�P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�ˇ̌
ˇ

�
ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C1; .XnC1; : : : ;XnCk/ 2 D1

�

�P
�
.X1; : : : ;Xk/ 2 C1

�
P
�
.X1; : : : ;Xk/ 2 D1

�ˇ̌
ˇC 4" :

Since we have proved that (2.15) holds for sets in Uk, we conclude that

lim sup
n!1

ˇ̌
ˇP
�
.X1; : : : ;Xk/ 2 C; .XnC1; : : : ;XnCk/ 2 D

�

�P
�
.X1; : : : ;Xk/ 2 C

�
P
�
.X1; : : : ;Xk/ 2 D

�ˇ̌
ˇ � 4"

for every " > 0, and letting " ! 0 shows that (2.15) holds for arbitrary
k-dimensional Borel sets.

Now that (2.15) has been established in its full generality, mixing of the process�
Xn; n 2 Z

�
follows because the statement (2.13) holds. To show that this is true,

one approximates arbitrary sets in BZ by finite-dimensional cylindrical sets, as in
Example 2.2.3. �

Example 2.2.8. An immediate conclusion of Theorem 2.2.7 is that a stationary
Gaussian process

�
Xn; n 2 Z

�
is mixing if and only if its correlation function

asymptotically vanishes: 
n WD Corr.XjCn;Xj/ ! 0 as n ! 1.

Example 2.2.9. We now take a second look at the tail � -field T of a stationary
stochastic process. We saw in Example 2.1.4 that if this � -field is trivial, then the
process is ergodic. We will show now that a trivial tail � -field implies mixing as
well. This statement is an immediate corollary of the following characterization: the
tail � -field T of a stationary process is trivial if and only if for every set A in BZ,

lim
n!1 sup

B2�.x0;x1;:::/

ˇ̌
�
�
A \ 
�nB

� � �.A/�.B/ˇ̌ D 0 ; (2.20)

where � is the law of the stationary process on .RZ;BZ/. This statement makes it
possible to view the triviality of the tail � -field as a kind of uniform mixing and
hence akin to the strong mixing properties of Section 2.3.
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The sufficiency of (2.20) for triviality of the tail � -field is clear: if the tail
� -field is not trivial, then there is a tail event A 2 \1nD1�

�
xn; xnC1; : : :

�
satis-

fying 0 < �.A/ < 1. This means that for every n D 1; 2; : : :, the set 
nA is in
�.x0; x1; : : :/, so that

sup
B2�.x0;x1;:::/

ˇ̌
�
�
A \ 
�nB

� � �.A/�.B/ˇ̌ � ˇ̌
�
�
A \ 
�n.
nA/

� � �.A/�.
nA/
ˇ̌

D �.A/ � .�.A//2 > 0 ;

contradicting (2.20). On the other hand, suppose that the tail � -field is trivial.
For events A and B as in (2.20), define random variables X D 1A � �.A/ and
YB D 1
�nB � �.B/, and note that Y is measurable with respect to the � -field
�
�
xn; xnC1; : : :

�
. Therefore,

sup
B2�.x0;x1;:::/

ˇ̌
�
�
A \ 
�nB

� � �.A/�.B/ˇ̌

D sup
B2�.x0;x1;:::/

ˇ̌
E.XYB/

ˇ̌ D sup
B2�.x0;x1;:::/

ˇ̌
ˇE
�

YBE
�
X
ˇ̌
�.xn; xnC1; : : :/

��ˇ̌
ˇ

�
h
E
�

E
�
X
ˇ̌
�.xn; xnC1; : : :/

��2i1=2
sup

B2�.x0;x1;:::/
.EY2B/

1=2

�
h
E
�

E
�
X
ˇ̌
�.xn; xnC1; : : :/

��2i1=2
:

Since the � -fields �
�
xn; xnC1; : : :

�
decrease to the trivial � -field T , it follows that

with probability 1,

E
�
X
ˇ
ˇ�.xn; xnC1; : : :/

� ! E
�
X
ˇ
ˇT
� D EX D 0 I

see, e.g., Theorem 35.9 in Billingsley (1995). Since the random variable jXj is,
furthermore, bounded by 1, the convergence in (2.20) follows.

Let us consider once again a nonsingular measure-preserving map � on a
probability space

�
E; E ;m

�
. Notice that the two ergodic-theoretical properties of

� we have already discussed, ergodicity and mixing, can be stated as

� is

(
mixing if m

�
A \ ��nB

� � m.A/m.B/ ! 0; A;B 2 E ;
ergodic if 1

n

Pn�1
jD0
�
m
�
A \ ��jB

� � m.A/m.B/
� ! 0A;B 2 E I (2.21)

in fact, the first line in (2.21) is just the definition of mixing. Let us check the second
line in (2.21). Sufficiency of the condition presented there is clear: if � were not
ergodic, then choosing A D B to be an invariant set whose measure takes a value
in .0; 1/ would provide a counterexample to the condition in (2.21). Let us check
the necessity of this condition. Suppose that � is ergodic. By the pointwise ergodic
theorem,
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1

n

n�1X

jD0
1B.�

jx/ ! m.B/

as n ! 1 for m-almost every x 2 E. By the bounded convergence theorem, the
integral over the set A of the left-hand side above converges to the integral of the
right-hand side over the same set, and this gives the condition in (2.21).

Since the usual convergence of a sequence implies its Cesaro convergence, (2.21)
provides yet another explanation of the fact that mixing is a stronger property
than ergodicity. Furthermore, (2.21) makes it clear that there is an intermediate
property of probability measure-preserving maps, weaker than mixing but stronger
than ergodicity. We introduce this notion in the following definition.

Definition 2.2.10. A nonsingular measure-preserving map � on a probability space�
E; E ;m

�
is called weakly mixing if for every two sets A;B 2 E ,

1

n

n�1X

jD0

ˇ̌
m
�
A \ ��jB

� � m.A/m.B/
ˇ̌ ! 0 :

If
�
Xn; n 2 Z

�
is a stationary stochastic process, then we say that it is

weakly mixing if the left shift 
 is a weakly mixing map on the probability space�
R

Z;BZ; �
�
, where � is the probability measure generated by the process on R

Z.
By definition,

mixing ) weak mixing ) ergodicity ;

either for stationary stochastic processes or for measure-preserving maps. However,
neither of these two implications can, in general, be reversed. It is easy to construct
an example of an ergodic map that is not weakly mixing.

Example 2.2.11. An ergodic but not weakly mixing map.
Consider the two-point left shift-invariant probability measure (2.3) considered

in Example 2.2.2. The left shift 
 is ergodic on that probability space, but is not
mixing. It is not weakly mixing either, since for A and B as in Example 2.2.2, we
have

ˇ̌
m
�
A \ 
�nB

� � m.A/m.B/
ˇ̌ D 1

4

for each n, and the Cesaro limit of these numbers is equal to 1=4, not to 0.

We will see in the sequel examples of weakly mixing stationary processes that
fail to be mixing.

An alternative point of view on weak mixing is based on the notion of
convergence in density. Recall that a subset K of positive integers N is said to have
density zero if

lim
n!1

ˇ̌
K \ f1; 2; : : : ; ngˇ̌

n
D 0 :
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A sequence .bn/ in a metric space with a metric d is said to converge in density to b
if there is a set K of density zero such that

lim
n!1; n62K

bn D b :

Explicitly, for every " > 0, there is N D N."/ such that for every n > N, n … K,
d.bn; b/ � ". The following useful lemma is even more explicit.

Lemma 2.2.12. A sequence .bn/ converges in density to b if and only if for every
" > 0, the set K" D fn W d.bn; b/ > "g has density zero.

Proof. The necessity in the statement is clear, so let us check the sufficiency part.
Assume that for every " > 0, the set K" has density zero. The task is to construct a
set of density zero away from which the sequence .bn/ converges to b.

We define an increasing sequence of nonnegative integers as follows. Let N0 D 0,
and for k � 1, let

Nk D sup
˚
n � Nk�1 C 1 W ˇ̌fj D 1; : : : ; n W d.bj; b/ >

1

k
gˇ̌ > n

2k

�
:

By the assumption, each Nk is a finite number. Let

K D
1[

kD1

˚
j W j D Nk C 1; : : : ;NkC1; d.bj; b/ >

1

k

�
:

By the definition, if n … K and n > Nk, then d.bn; b/ � 1
k , for k D 1; 2; : : :.

Therefore, limn!1; n62K bn D b. To check that K has density zero, let ki be the
largest k such that Nk � i, and notice that ki ! 1 as i ! 1. Choose m � 1 and let
n be so large that kn > m. Then

ˇ
ˇ�K \ ˚

1; : : : ; n
��ˇˇ � Nm C

kn�1X

kDm

ˇ
ˇ�˚j W j D Nk C 1; : : : ;NkC1; d.bj; b/ >

1

k

��ˇˇ

Cˇ̌�˚j W j D Nkn C 1; : : : ; n; d.bj; b/ >
1

kn

��ˇ̌

� Nm C
kn�1X

kDm

ˇ̌�˚
j W j D 1; : : : ;NkC1; d.bj; b/ >

1

k

��ˇ̌

Cˇ̌�˚j W j D 1; : : : ; n; d.bj; b/ >
1

kn

��ˇ̌

� Nm C
kn�1X

kDm

NkC1
2k

C n

2kn
� Nm C

knX

kDm

n

2k
� Nm C n

2m�1 :
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Therefore,

lim sup
n!1

ˇ
ˇK \ f1; 2; : : : ; ngˇˇ

n
� 1

2m�1 ;

and letting m ! 1 shows that K has density zero. �

The following proposition is a simple consequence.

Proposition 2.2.13. A nonsingular measure-preserving map � on a probability
space

�
E; E ;m

�
is weakly mixing if and only if for every two sets A;B 2 E ,

m
�
A \ ��nB

� ! m.A/m.B/ in density.

Proof. The sufficiency for weak mixing of the condition in the proposition is clear.
Let us check the necessity. Suppose that the condition in the proposition fails. By
Lemma 2.2.12, there is " > 0 such that the set

K" D ˚
n W ˇ̌m�A \ ��jB

� � m.A/m.B/
ˇ̌
> "

�

does not have density zero. Since

1

n

n�1X

jD0

ˇ̌
m
�
A \ ��jB

� � m.A/m.B/
ˇ̌

� 1

n

X

j2K"\f0;:::;n�1g

ˇ̌
m
�
A \ ��jB

� � m.A/m.B/
ˇ̌ � "

ˇ̌
K" \ f1; 2; : : : ; ngˇ̌

n
;

which does not converge to zero, � cannot be weakly mixing, and the proof is
complete. �

Proposition 2.2.4 has an immediate counterpart for weak mixing. The argument
is the same; just use Proposition 2.2.13 and replace the usual convergence by
convergence away from a set of density zero.

Proposition 2.2.14. Let � W E ! E be a nonsingular measure-preserving map on
a probability space

�
E; E ;m

�
. Let ' W G ! G be a one-to-one and onto map on

a measurable space
�
G;G

�
such that both ' and its inverse are measurable. Let

f W E ! G be a measurable map that is compatible with � and '. If � is weakly
mixing on

�
E; E ;m

�
, then ' is weakly mixing on

�
G;G;m ı f�1

�
.

As in the case of ergodicity and mixing, the following corollary is immediate.

Corollary 2.2.15. Let
�
Xn; n 2 Z

�
be a weakly mixing stationary stochastic

process, and let
�
Yn; n 2 Z

�
be a stationary process given by (2.12) for some

measurable function g W R
Z ! R. Then

�
Yn; n 2 Z

�
is weakly mixing as well.
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Many of the important stochastic processes are constructed as sums of inde-
pendent, and more elementary, stochastic processes. Therefore, it would be nice
to be able to obtain ergodicity of a sum based on the ergodicity of the summands.
Unfortunately, this is impossible to do in general, since the sum of two independent
stationary ergodic processes does not have to be ergodic; see Exercise 2.6.7. It turns
out, however, that strengthening the assumption on one of the two summands from
ergodicity to weak mixing is sufficient to guarantee the ergodicity of the sum.

Theorem 2.2.16. Let
�
Xn; n 2 Z

�
and

�
Yn; n 2 Z

�
be independent stationary

stochastic processes. Assume that
�
Xn; n 2 Z

�
is ergodic, and that

�
Yn; n 2 Z

�

is weakly mixing. Then the process Zn D Xn C Yn; n 2 Z is ergodic.

Proof. Let � be the probability measure generated by the process
�
Xn; n 2 Z

�
on�

R
Z;BZ

�
, and let � be the measure generated by the process

�
Yn; n 2 Z

�
. Consider

the product probability space,
�
R

Z � R
Z;BZ � BZ; � � ��. The left shift 
 on R

Z

extends naturally to the product shift 
 � 
 operating on the product space: .
 �

/.x; y/ D .
x; 
y/ for x; y 2 R

Z. This is clearly a nonsingular map that preserves
the product probability measure. Note that the mapping f W R

Z �R
Z ! R

Z defined
by f .x; y/ D x C y (coordinatewise addition) is compatible with the maps 
 � 


on R
Z � R

Z and 
 on R
Z. Furthermore, the measure .� � �/ ı f�1 that f induces

on
�
R

Z;BZ
�

is the law of the process Zn D Xn C Yn; n 2 Z. Therefore, in order to
prove ergodicity of the latter process, it is sufficient, by Proposition 2.1.7, to prove
that the product left shift 
 � 
 is itself ergodic.

To this end, we will use the criterion for ergodicity given in (2.21). We need to
prove that for every two sets A;B 2 BZ � BZ,

1

n

n�1X

jD0
.� � �/�A \ .
 � 
/�jB

� D .� � �/.A/ .� � �/.B/ (2.22)

as n ! 1. We begin with the case that A and B are measurable rectangles of the
type A D A1 � A2 and B D B1 � B2, for A1;A2;B1;B2 measurable sets in BZ. In that
case, the left-hand side of (2.22) becomes

1

n

n�1X

jD0
�
�
A1 \ 
�jB1

�
�
�
A2 \ 
�jB2

�
: (2.23)

Since the left shift 
 is weakly mixing on the probability space
�
R

Z;BZ; �
�
, we

know that

�
�
A2 \ 
�nB2

� ! �.A2/�.B2/

in density. Since a set of zero density cannot affect the Cesaro limit of a bounded
sequence, the limit of the expression in (2.23) is equal to the limit of the expression

1

n

n�1X

jD0
�
�
A1 \ 
�jB1

�
�.A2/�.B2/
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(and the two limits exist at the same time). Since the left shift 
 is ergodic on the
probability space

�
R

Z;BZ; �
�
, this last limit exists and is equal to

�.A1/�.B1/�.A2/�.B2/ D .� � �/.A/ .� � �/.B/ ;
and so we have checked that (2.22) holds when A and B are measurable rectangles.
Now we can proceed as in the proof of Theorem 2.2.7. Since (2.22) holds for
measurable rectangles, it extends, by linearity, to the case that A and B are each
a finite disjoint union of measurable rectangles. Since the latter sets form a field
generating the product � -field BZ � BZ, we can approximate general sets A and B
arbitrarily well (with respect to the product measure �� �) by finite disjoint unions
of measurable rectangles, and this shows that (2.22) holds in full generality. �

We now present an expected counterpart of Theorem 2.2.7, which says that
weak mixing of a stationary stochastic process is equivalent to weak convergence
in density to independence of the joint distributions of the blocks of observations
separated by long periods of time. Notice that the weak convergence of probability
measures on a Euclidian space is metrizable, for example by the Prokhorov metric;
see, e.g., Billingsley (1999).

Theorem 2.2.17. A stationary process
�
Xn; n 2 Z

�
is weakly mixing if and only if

for every k D 1; 2; : : :,

�
X1; : : : ;Xk;XnC1; : : : ;XnCk

� ) �
X1; : : : ;Xk;Y1; : : : ;Yk

�
(2.24)

in density, where .Y1; : : : ;Yk/ is an independent copy of .X1; : : : ;Xk/.

Proof. Sufficiency of (2.24) for weak mixing can be proved in exactly the same
way as the sufficiency part in Theorem 2.2.7; the latter proof does not differentiate
between the usual convergence and convergence in density. We prove now the neces-
sity of (2.24) for weak mixing.

Fix k, and recall that

d.�1; �2/ D sup
�2R2k

j O�1.�/ � O�2.�/j
1C k�k

is a also metric on the space of probability measures on R
2k that metrizes weak

convergence. Here O� is the characteristic function of a probability measure �. If we
denote by �n the law of the random vector on the left-hand side of (2.24), and by
� the law of the random vector on the right-hand side, then by Lemma 2.2.12, we
need to show only that for every " > 0, the set K" D fn W d.�n; �/ > "g has density
zero.

Fix, therefore, " > 0, and choose N D 1; 2; : : :, 
0 > 0, and m D 1; 2; : : : such
that

P.jX0j > N/ � "

12k
; 
0 � 2

"
;

0

p
2k

m
� "

6
:
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In the following decomposition, the probability measure� is either �n or �. Note that
in either case, the one-dimensional marginals of � are the same, and they coincide
with the law of X0. We may assume that the law of X0 puts no mass on the rational
numbers (otherwise, a global scale change of the process would have this property).
We write

O�.�/ D
Z

x2TN

ei.�;x/ �.dx/C
m�1X

j1D�m

: : :

m�1X

j2kD�m

Z

x2IN;m.j1;:::;j2k/

ei.�;x/ �.dx/ ;

where

TN D fx D .x1; : : : ; x2k/ 2 R
2k W jxij > N for some i D 1; : : : ; 2kg ;

IN;m.j1; : : : ; j2k/ D fx D .x1; : : : ; x2k/ 2 R
2k W

Nji=m < xi < N.ji C 1/=m; i D 1; : : : ; 2kg;

ji D �m; : : : ;m � 1; i D 1; : : : ; 2k. Note that by the choice of N,

ˇ̌
ˇ
ˇ

Z

x2TN

ei.�;x/ �.dx/

ˇ̌
ˇ
ˇ � "

6
: (2.25)

Furthermore, for each ji D �m; : : : ;m � 1; i D 1; : : : ; 2k, there is a zero-density
subset KN;m.j1; : : : ; j2k/ of positive integers such that for all n outside of this set,

ˇ
ˇ̌
�n
�
IN;m.j1; : : : ; j2k/

� � ��IN;m.j1; : : : ; j2k/
�ˇˇ̌ � "

6.2m/2k
: (2.26)

We define K" to be the union of the sets KN;m.j1; : : : ; j2k/ over all ji D �m; : : : ;m�1,
i D 1; : : : ; 2k. Clearly, K" is a zero-density set. It remains to show that outside of
this set, we have d.�n; �/ � ".

For each ji D �m; : : : ;m � 1; i D 1; : : : ; 2k, we can write

Z

x2IN;m.j1;:::;j2k/

ei.�;x/ �.dx/

D
h
cos
�
�; x.1/.�; �; j1; : : : ; j2k/

�C i sin
�
�; x.2/.�; �; j1; : : : ; j2k/

�i
�
�
IN;m.j1; : : : ; j2k/

�

for some points x.d/.�; �; j1; : : : ; j2k/ 2 IN;m.j1; : : : ; j2k/; d D 1; 2. Applying the
resulting decomposition of a characteristic function to the measures �n and �, we
obtain for � 2 R

k with k�k � 
0 and n 62 K", using (2.25),

j O�n.�/ � O�.�/j � "

3

C
m�1X

j1D�m

: : :

m�1X

j2kD�m

ˇ̌
ˇ
ˇ

Z

x2IN;m.j1;:::;j2k/

ei.�;x/ �n.dx/ �
Z

x2IN;m.j1;:::;j2k/

ei.�;x/ �.dx/

ˇ̌
ˇ
ˇ :
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Each term in the sum on the right-hand side can be bounded from above by

ˇ̌
cos
�
�; x.1/.�; �n; j1; : : : ; j2k/

�
�n
�
IN;m.j1; : : : ; j2k/

�

� cos
�
�; x.1/.�; �; j1; : : : ; j2k/

�
�
�
IN;m.j1; : : : ; j2k/

�ˇ̌

plus the corresponding term with the sin function replacing the cos function. Note
that each of the two terms can be bounded by

�
�
IN;m.j1; : : : ; j2k/

�k�k

x.1/.�; �n; j1; : : : ; j2k/ � x.1/.�; �; j1; : : : ; j2k/




C
ˇ̌
ˇ�n
�
IN;m.j1; : : : ; j2k/

� � ��IN;m.j1; : : : ; j2k/
�ˇ̌
ˇ

� �
�
IN;m.j1; : : : ; j2k/

�

0

p
2k

m
C "

6.2m/2k

� "

6
�
�
IN;m.j1; : : : ; j2k/

�C "

6.2m/2k

by (2.26) and the choice of m. Summarizing, we conclude that

j O�n.�/ � O�.�/j � "

for all � 2 R
k with k�k � 
0 and n 62 K". By the choice of 
0, this shows that

d.�n; �/ � " for each n 62 K", and the proof is complete. �

Example 2.2.18. Let X D �
Xn; n 2 Z

�
be a stationary centered Gaussian process.

Let �X be its spectral measure, i.e., a measure on .�	; 	� such that the covariance
function of the process satisfies

RX.n/ D
Z

.�	;	�
einx �X.dx/; n 2 Z I

see Theorem 1.2.1. Complementing the characterization of mixing of stationary
Gaussian processes in Example 2.2.8, we will show now that X is weakly mixing if
and only if it is ergodic, and that a necessary and sufficient condition for that is that
the spectral measure �X be atomless.

Since weak mixing implies ergodicity, we need to check only that the presence
of an atom in �X rules out ergodicity of X, while the absence of atoms implies weak
mixing of X.

Suppose that a 2 .�	; 	� is an atom of �X , i.e., �X.fag/ > 0. Let �1 be
a measure on .�	; 	� obtained by removing from �X the atoms at �a and a if
a 2 .�	; 	/, or only the atom at a if a D 	 . Let �2 be the measure on .�	; 	�
consisting of these removed atoms. Note that �X D �1 C �2, and �2 is a nonzero
measure. If X.j/ is a stationary centered Gaussian process with spectral measure �j,
j D 1; 2, and if X.1/ and X.2/ are independent, then X has the same distribution as
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X.1/ C X.2/, so lack of ergodicity of the process X.2/ and Proposition 2.1.6 would
imply that the process X is not ergodic. To see that the process X.2/ is not ergodic,
observe that the covariance function of this process has the form

Cov
�
X.2/0 ;X

.2/
n

� D cos.an/k�2k; n 2 Z ;

so that

�
X.2/n ; n 2 Z

� dD
�
k�2k1=2

�
G1 cos.an/C G2 sin.an/

�
; n 2 Z

�
;

where G1 and G2 are independent standard normal random variables. This shows
that for the invariant set

A D ˚
sup
n2Z

jxnj > 1�;

we have P
�
X.2/ 2 A

� 2 .0; 1/, and hence the process X.2/ is not ergodic.
Suppose now that the spectral measure �X is atomless. By Fubini’s theorem, we

conclude that the finite measure on .�2	; 2	� given by a convolution of �X with
itself, F D �X 
 �X , does not have atoms at the origin or at 2	 . Note further that

RX.n/
2 D

Z

.�2	;2	�
einx F.dx/; n 2 Z :

Therefore, for n � 1,

1

n

n�1X

jD0
RX.j/

2 D
Z

.�2	;2	�
1

n

n�1X

jD0
eijx F.dx/ :

The functions

'n.x/ D 1

n

n�1X

jD0
eijx; x 2 .�2	; 2	�;

are uniformly bounded and converge, as n ! 1, to the function 1
�
x D 0 or x D

2	
�
, which is equal to zero F-a.e. By the bounded convergence theorem, we

conclude that

lim
n!1

1

n

n�1X

jD0
RX.j/

2 D 0;

and therefore, RX.n/ converges to zero in density as n ! 1. By Theorem 2.2.17,
this implies that the process X is weakly mixing.
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2.3 Strong Mixing

In the previous section, we introduced the notions of mixing and weak mixing for
stationary stochastic processes. Perhaps unexpectedly, there exist notions of strong
mixing of stationary processes that are different from the notion of mixing. These
notions of strong mixing are not, strictly speaking, ergodic-theoretical notions in the
sense of being properties of nonsingular measure-preserving maps. They are, rather,
properties of certain families of � -fields generated by a stationary process. The
ergodic-theoretical notion of mixing of a stationary process turns out to be too weak
to be directly applicable in certain limit theorems for stationary processes, and it is
natural to view the strong mixing properties as strengthening the notion of mixing
in ways that are suitable for different purposes. We discuss several of the common
strong mixing notions in this section. An important point to keep in mind is that the
notions we present (and a number of notions that we do not present) are collectively
known as strong mixing properties. This is in spite of the fact that one of these
properties is itself known as the strong mixing property. This is confusing, since
often only the difference between the grammatical singular and the grammatical
plural clarifies the meaning. Still, this is the existing usage, and we will adhere to
this language here.

Let
�
�;F ;P

�
be a probability space, and A and B two sub-� -fields of F . We

define

˛.A;B/ D sup
A2A;B2B

ˇ̌
P.A \ B/ � P.A/P.B/

ˇ̌
: (2.27)

Clearly, this is a measure of dependence between the � -fields A and B, and
˛.A;B/ D 0 if and only if the � -fields A and B are independent. The following
lemma lists several elementary properties of this measure of dependence.

Lemma 2.3.1. For all sub-� -fields A and B of F ,

0 � ˛.A;B/ � 1

4
:

Further,

˛.A;B/ D sup
B2B

E
�
P
�
BjA� � P.B/

�
C D 1

2
sup
B2B

E
ˇ̌
P
�
BjA� � P.B/

ˇ̌
: (2.28)

Proof. The first claim of the lemma follows from the Cauchy–Schwarz inequality:
for any two events A and B,

ˇ̌
P.A \ B/ � P.A/P.B/

ˇ̌ D jCov.1A; 1B/j �
p

Var.1A/Var.1B/ � 1

4
:
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For the second claim, fix B 2 B, and note that

sup
A2A

ˇ̌
P.A \ B/ � P.A/P.B/

ˇ̌

D max
�

sup
A2A

�
P.A \ B/ � P.A/P.B/

�
C; sup

A2A
�
P.A \ B/ � P.A/P.B/

�
�
�
:

Further,

sup
A2A

�
P.A \ B/ � P.A/P.B/

�
C D sup

A2A
�
E.1A1B/ � E1AE1B

�
C

D sup
A2A

�
E.1AP.BjA// � E1AP.B/

�
C D sup

A2A

�
E
�
1A.P.BjA// � P.B/

��

C

D E
�
P
�
BjA� � P.B/

�
C ;

since the last supremum is obviously achieved on the event A D fP.BjA/ >
P.B/g 2 A. Similarly,

sup
A2A

�
P.A \ B/ � P.A/P.B/

�
� D E

�
P
�
BjA� � P.B/

�
� :

Since for every random variable X with EX D 0 we have EXC D EX� D EjXj=2,
we obtain (2.28) after optimizing over B 2 B. �

Let now
�
Xn; n 2 Z

�
be a stationary process defined on some probability space�

�;F ;P
�
. Then

F0�1 D �.Xk; k � 0/; F1n D �.Xk; k � n/; n � 1; (2.29)

are sub-� -fields of F , and we introduce the strong mixing coefficient of the process�
Xn; n 2 Z

�
by

˛X.n/ WD ˛
�
F0�1;F1n

�
; n D 1; 2; : : : : (2.30)

Definition 2.3.2. A stationary process
�
Xn; n 2 Z

�
is called strongly mixing if

˛X.n/ ! 0 as n ! 1.

A strongly mixing stationary process is alternatively known as ˛-mixing. In spite
of defining, as above, the strong mixing property via certain sub-� -fields in the
probability space on which a process is defined, the presence or absence of this
property is determined solely by the finite-dimensional distributions of the process
(Exercise 2.6.9).

Example 2.3.3. It turns out that a strongly mixing stationary process
�
Xn; n 2 Z

�

has a trivial tail � -field. To see this, let � be the measure generated by the process on�
R

Z;BZ
�
. In order to prove triviality of the tail � -field, we need to check that (2.20)
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holds for every set A in BZ. If A 2 ��: : : ; xk�1; xk
�

for some k � 0, then A1 D 
 kA 2
�
�
: : : ; x�1; x0

�
, and so for every B 2 �.x0; x1; : : :/, by stationarity,

ˇ̌
�
�
A \ 
�nB

� � �.A/�.B/ˇ̌

D ˇ
ˇ�
�
A1 \ 
�.n�k/B

� � �.A1/�.B/
ˇ
ˇ � ˛X.n � k/ ;

and (2.20) holds by the ˛-mixing of the process. Since sets A as above form a field
generating the � -field BZ, we can use our usual approximating argument to extend
the validity of (2.20) to all A in BZ. Therefore, the tail � -field is indeed trivial.

Combining the lessons learned from Examples 2.2.9 and 2.3.3, we immediately
obtain the following proposition showing that, as the terminology implies, strong
mixing guarantees ergodic-theoretical mixing.

Proposition 2.3.4. A strongly mixing stationary process is also mixing.

To introduce the next measure of dependence between two � -fields, let once
again

�
�;F ;P

�
be a probability space, and A and B two sub-� -fields of F . Two

natural probability measures on the product space
�
� � �;A � B

�
are PA;B

id and
PA;B

ind . Here PA;B
id is the probability measure induced on the product space by the

measurable map Tid W � ! � � � with Tid.!/ D .!; !/, ! 2 �, and PA;B
ind

is the product measure of the restrictions PA and PB of P to the � -fields A and
B respectively. Note that the two measures PA;B

id and PA;B
ind put the same marginal

probability measures (equal to PA and PB) on the two copies of �. We define

ˇ.A;B/ D 

PA;B
id � PA;B

ind



 D sup
C2A�B

ˇ̌
PA;B

id .C/ � PA;B
ind .C/

ˇ̌
; (2.31)

the total variation distance between the probability measures PA;B
id and PA;B

ind .
The following lemma lists several basic properties of the measure of dependence

between � -fields defined in (2.31).

Lemma 2.3.5. Let A and B be sub-� -fields of F .

(i) We have

0 � ˇ.A;B/ � 1

and

ˇ.A;B/ � 2˛.A;B/ : (2.32)

(ii) An alternative way of representing ˇ.A;B/ is

ˇ.A;B/ D 1

2
sup
I;J

IX

iD1

JX

jD1

ˇ̌
P.Ai \ Bj/ � P.Ai/P.Bj/

ˇ̌
; (2.33)



56 2 Ergodic Theory of Stationary Processes

where the supremum is taken over all finite partitions I D fA1; : : : ;AIg
and J D fB1; : : : ;BJg of � into A-measurable sets and B-measurable sets,
respectively.

(iii) ˇ.A;B/ D 0 if and only if the � -fields A and B are independent.

Proof. The first claim in part (i) is an obvious property of the total variation distance
between two probability measures. For the second claim in part (i), note that if
A 2 A and B 2 B, then PA;B

id .A � B/ D P.A \ B/. If we define for such events A
and B the sets C1.A;B/ D A � B and C2.A;B/ D Ac � Bc, then these product sets
are disjoint events in A � B, and

PA;B
id

�
C1.A;B/

� � PA;B
ind

�
C1.A;B/

� D PA;B
id

�
C2.A;B/

� � PA;B
ind

�
C2.A;B/

�

D P.A \ B/ � P.A/P.B/ :

Therefore,

ˇ.A;B/ � sup
A2A;B2B

ˇ̌
PA;B

id

�
C1.A;B/ [ C2.A;B/

� � PA;B
ind

�
C1.A;B/ [ C2.A;B/

�ˇ̌

D 2 sup
A2A;B2B

ˇ
ˇP.A \ B/ � P.A/P.B/

ˇ
ˇ D 2˛.A;B/ ;

proving (2.32).
For part (ii), let Q be a probability measure on

�
� � �;A � B

�
such that both

PA;B
id � Q and PA;B

ind � Q; an example of such a measure is Q D �
PA;B

id CPA;B
ind

�
=2.

Setting

fid D dPA;B
id

dQ
; find D dPA;B

ind

dQ
;

we have



PA;B
id � PA;B

ind



 D 1

2

Z

���
jfid.!1; !2/ � find.!1; !2/j Q.d.!1; !2//

D
Z

���
�
fid.!1; !2/ � find.!1; !2/

�
CQ.d.!1; !2//

D
Z

C

�
fid.!1; !2/ � find.!1; !2/

�
Q.d.!1; !2// ;

where

C D f.!1; !2/ W fid.!1; !2/ > find.!1; !2/g : (2.34)
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In particular, for all relevant finite partitions I D fA1; : : : ;AIg and J D
fB1; : : : ;BJg of �, we have

ˇ.A;B/ D 1

2

IX

iD1

JX

jD1

Z

Ai�Bj

jfid.!1; !2/ � find.!1; !2/j Q.d.!1; !2//

� 1

2

IX

iD1

JX

jD1

ˇ̌
ˇ̌
ˇ

Z

Ai�Bj

.fid.!1; !2/ � find.!1; !2//Q.d.!1; !2//

ˇ̌
ˇ̌
ˇ

D 1

2

IX

iD1

JX

jD1

ˇ
ˇ̌
PA;B

id .Ai � Bj/ � PA;B
ind .Ai � Bj/

ˇ
ˇ̌

D 1

2

IX

iD1

JX

jD1

ˇ̌
.Aj \ Bj/ � P.Aj/P.Bj/

ˇ̌
:

Taking the supremum over all relevant partitions yields

ˇ.A;B/ � 1

2
sup
I;J

IX

iD1

JX

jD1

ˇ
ˇP.Ai \ Bj/ � P.Ai/P.Bj/

ˇ
ˇ :

On the other hand, using the fact that the disjoint unions of measurable rectangles
of the form A � B with A 2 A, B 2 B, form a field generating the product
� -field A � B, for every " > 0 we can select such a disjoint union C0 satisfying
Q.C4C0/ � ", where C is the set in (2.34); see Corollary 1, p. 169, in Billingsley
(1995). Given ı > 0, we can select " > 0 so small that this property of C0 will
imply that

ˇ̌
ˇ
Z

C

�
fid.!1; !2/ � find.!1; !2/

�
Q.d.!1; !2//

�
Z

C0

�
fid.!1; !2/ � find.!1; !2/

�
Q.d.!1; !2//

ˇ̌
ˇ � ıI

see, e.g., Problem 16.8 in Billingsley (1995). We conclude that for every ı > 0,
there are relevant finite partitions I D fA1; : : : ;AIg and J D fB1; : : : ;BJg of �
such that

ˇ.A;B/ �
Z

C0

�
fid.!1; !2/ � find.!1; !2/

�
Q.d.!1; !2//C ı

�
IX

iD1

JX

jD1

�
P.Ai \ Bj/ � P.Ai/P.Bj/

�
C C ı :
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Since for all partitions we have

IX

iD1

JX

jD1

�
P.Ai \ Bj/ � P.Ai/P.Bj/

�
C D

IX

iD1

JX

jD1

�
P.Ai \ Bj/ � P.Ai/P.Bj/

�
� ;

we conclude, after switching to the supremum over the relevant partitions, that for
every ı > 0,

ˇ.A;B/ � 1

2
sup
I;J

IX

iD1

JX

jD1

ˇ
ˇP.Ai \ Bj/ � P.Ai/P.Bj/

ˇ
ˇC ı :

Letting ı ! 0 proves (2.33).
Part (iii) of the lemma is an immediate conclusion from (2.33). �

Let, once again,
�
Xn; n 2 Z

�
be a stationary process on a probability space�

�;F ;P
�
. Using the notation in (2.29) for the � -fields generated by the process,

we define the beta mixing coefficient of the process
�
Xn; n 2 Z

�
by

ˇX.n/ WD ˇ
�
F0�1;F1n

�
; n D 1; 2; : : : : (2.35)

Definition 2.3.6. A stationary process
�
Xn; n 2 Z

�
is called absolutely regular, or

ˇ-mixing, if ˇX.n/ ! 0 as n ! 1.

An immediate conclusion of part (i) of Lemma 2.3.5 is the following comparison of
the strong mixing property and the absolute regularity property.

Proposition 2.3.7. An absolutely regular stationary process is also strongly mixing.

Let, once again,
�
�;F ;P

�
be a probability space, and A and B two sub-� -fields

of F . We introduce a third notion of dependence between two � -fields by

�.A;B/ D sup
A2AWP.A/>0;B2B

ˇ̌
P.BjA/ � P.B/

ˇ̌
: (2.36)

An immediate observation is that unlike the measures of dependence introduced
in (2.27) and (2.31), this new notion of dependence does not appear to be symmetric,
in the sense that there seems to be no reason why �.A;B/ and �.B;A/ should
coincide. In fact, the two quantities are, in general, different. See, for instance,
Problem 2.6.10.

The next lemma summarizes the basic properties of the measure of dependence
�.A;B/.
Lemma 2.3.8. Let A and B be sub-� -fields of F .

(i) We have

0 � �.A;B/ � 1
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and

�.A;B/ � ˇ.A;B/: (2.37)

(ii) �.A;B/ D 0 if and only if the � -fields A and B are independent.

Proof. The first statement of part (i) is obvious. For the second statement of part
(i) we use the representation of ˇ.A;B/ given in (2.33). Let fA1; : : : ;AIg and
fB1; : : : ;BJg be partitions of � into A-measurable sets and B-measurable sets,
respectively. Then

IX

iD1

JX

jD1

ˇ
ˇP.Ai \ Bj/ � P.Ai/P.Bj/

ˇ
ˇ

D
IX

iD1
P.Ai/

JX

jD1

ˇ̌
P.BjjAi/ � P.Bj/

ˇ̌

D 2

IX

iD1
P.Ai/

ˇ̌
P.BC;ijAi/ � P.BC;i/

ˇ̌
;

where BC;i is the union of all Bj; j D 1; : : : ; J, such that P.BjjAi/ � P.Bj/.
Therefore,

IX

iD1

JX

jD1

ˇ̌
P.Ai \ Bj/ � P.Ai/P.Bj/

ˇ̌

� 2�.A;B/
IX

iD1
P.Ai/ D 2�.A;B/

for all partitions, and the second statement of part (i) follows from (2.33). The claim
of part (ii) is obvious.

For a stationary process
�
Xn; n 2 Z

�
defined on a probability space

�
�;F ;P

�
,

the phi mixing coefficient is defined by

�X.n/ WD �
�
F0�1;F1n

�
; n D 1; 2; : : : ; (2.38)

where the � -fields are defined in (2.29). The phi mixing coefficient leads to one
more notion of strong mixing for stationary processes.

Definition 2.3.9. A stationary process
�
Xn; n 2 Z

�
is called �-mixing if �X.n/ ! 0

as n ! 1.

By Lemma 2.3.8, we immediately obtain the following statement.

Proposition 2.3.10. A �-mixing stationary process is absolutely regular (and hence
also strongly mixing).
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The lack of symmetry of the notion of dependence between � -fields introduced
in (2.36) makes it possible to introduce the “time-reversed” versions of the � mixing
coefficient and of the �-mixing property. For a stationary process

�
Xn; n 2 Z

�
, one

simply defines

�rev
X .n/ WD �

�
F1n ;F0�1

�
; n D 1; 2; : : : ; (2.39)

leading to the following definition.

Definition 2.3.11. A stationary process
�
Xn; n 2 Z

�
is called reverse-�-mixing if

�rev
X .n/ ! 0 as n ! 1.

Clearly, an obvious version of Proposition 2.3.10 for reverse-�-mixing holds. We
mention that there exist stationary processes that are �-mixing but not reverse-�-
mixing (and conversely); see Rosenblatt (1971).

2.4 Conservative and Dissipative Maps

In this section, we return to maps on general � -finite measure spaces and discuss
certain properties of recurrence of such maps. Their probabilistic significance will
become apparent in Section 3.6.

Let
�
E; E ;m

�
be a � -finite measure space. In this section we will deal with a

nonsingular map � W E ! E that preserves the measure m (a measure-preserving
map). A set W 2 E is called wandering if the sets

�
��n.W/; n D 1; 2; : : :

�
are

mutually disjoint modulo m (recall that two measurable sets A and B are disjoint
modulo m if m.A \ B/ D 0). This means that for every point x in a wandering
set W, apart from a possible subset of W of measure zero, the trajectory �n.x/;
n D 1; 2; : : :, never reenters the set A.

Every set of measure zero is trivially a wandering set. What sets different maps
apart is the existence of nontrivial wandering sets.

Definition 2.4.1. A measure-preserving map � on
�
E; E ;m

�
is conservative if it

does not admit a wandering set of positive measure.

Observe that every measure-preserving map on a finite measure space is auto-
matically conservative, since a finite measure space cannot contain infinitely many
sets of equal and positive measure that are mutually disjoint modulo m.

Example 2.4.2. Let E D Z and let m be the counting measure. The right shift
�.x/ D x C 1 for x 2 Z is measure-preserving. Since the set W D f0g is obviously
a wandering set of positive measure, the right shift is not conservative.

The following result shows that in general, a map � has both a “conservative
part” and a part that is “purely nonconservative.”
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Theorem 2.4.3. The Hopf decomposition Let � be a measure-preserving map on
a � -finite measure space

�
E; E ;m

�
. Then there is a partition of E into �-invariant

sets C.�/ and D.�/ such that

(i) there is no wandering set of a positive measure that is a subset of C.�/;
(ii) there is a wandering set W such that D.�/ D [1nD�1�n.W/ modulo m.

The partition E D C.�/ [ D.�/ is unique in the sense that if E D C1 [ D1,
where C1 and D1 are �-invariant sets satisfying (i) and (ii), then m

�
C.�/4 C1

� D
m
�
D.�/4D1

� D 0.

Proof. We begin with a probability measure P on
�
E; E

�
equivalent to the � -finite

measure m. We will construct recursively an increasing sequence of �-invariant
sets .In; n D 0; 1; 2; : : :/ and a sequence of wandering sets .Wn; n D 1; 2; : : :/

as follows. Let I0 D ;. For n D 0; 1; 2; : : :, let

˛n D supfP.W/; W 	 Ic
n; W wanderingg :

Let WnC1 	 Ic
n be such that P.WnC1/ � ˛n=2 (if ˛n D 0, we can always choose

WnC1 D ;), and let

InC1 D In [
1[

kD�1
�k.WnC1/ :

Since P is a probability measure, we see that ˛n ! 0 as n ! 1. Set W D [1nD1Wn.
It is clear that W is a wandering set.

Let D.�/ D [1kD�1�k.W/. Then D.�/ is a �-invariant set, and so is its
complement, which we denote by C.�/. By construction, C.�/ 	 Ic

n for each
n D 1; 2; : : :, and hence so is every wandering subset V of C.�/. This implies that
P.V/ � ˛n for each n, and since ˛n ! 0, we conclude that P.V/ D 0. Since P is
equivalent to m, we also have m.V/ D 0.

To prove uniqueness, suppose, for example, that m
�
C1 n C.�/

�
> 0. Then for

some n, m
�
C1 \ �n.W/

�
> 0. Since a subset of a wandering set is a wandering set,

this contradicts the fact that C1 possesses property (i). �

The Hopf decomposition E D C.�/[D.�/ is called the decomposition of E into
the conservative part of E and the dissipative part of E with respect to �. It is usual
to say simply that C.�/ and D.�/ are the conservative part of � and the dissipative
part of � respectively. We see immediately that � is conservative if and only if its
dissipative part vanishes (modulo m). The picture is completed by the following
definition.

Definition 2.4.4. A measure-preserving map � on
�
E; E ;m

�
is dissipative if

C.�/ D ; modulo m.

Since an ergodic map � cannot have two disjoint invariant sets of positive
measure, each ergodic map is either conservative or dissipative. For the right shift
on the integers in Example 2.4.2, it is immediate that D.�/ D Z, and so the right
shift is dissipative.
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A useful and intuitive criterion for distinguishing between a conservative map
and a dissipative map, or, more generally, between the conservative and dissipative
parts of a map, is through the difference in the behavior of certain sums.

Theorem 2.4.5. Let � be a measure-preserving map on a � -finite measure space�
E; E ;m

�
. For every function f 2 L1.m/ such that f > 0 m-a.e., we have

(

x 2 E W
1X

nD1
f
�
�n.x/

� D 1
)

D C.�/ modulo m. (2.40)

Proof. We first show that the set on the left-hand side of (2.40) is, modulo m, a
subset of C.�/. By Theorem 2.4.3, it is enough to prove that for every wandering
set W,

m

 

x 2 W W
1X

nD1
f
�
�n.x/

� D 1
!

D 0 : (2.41)

However, for k D 1; 2; : : :, since � is measure-preserving and W is wandering,

Z

W

kX

nD1
f ı �n dm D

kX

nD1

Z

E
1Wf ı �k�nC1 dm

D
kX

nD1

Z

E
1W ı �nf ı �kC1 dm D

Z

E

 
kX

nD1
1W ı �n

!

f ı �kC1 dm

�
Z

E
f ı �kC1 dm D

Z

E
f dm :

By the monotone convergence theorem,

Z

W

1X

nD1
f ı �n dm �

Z

E
f dm < 1 ;

which clearly implies (2.41).
In order to prove the second inclusion in (2.40), suppose that to the contrary,

m

 

x 2 C.�/ W
1X

nD1
f
�
�n.x/

�
< 1

!

> 0 :

Let " > 0 be such that

m

 

x 2 C.�/ W � j.x/ > " for some j 2 Z,
1X

nD1
f
�
�n.x/

�
< 1

!

> 0 : (2.42)
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Let C" be the set of positive measure in (2.42). Define W to be the set of those points
x in C" such that

sup
˚
j 2 Z W f

�
� j.x/

�
> "

� D 0 :

Then W is a set of positive measure, and it is clearly a wandering set. It is also a
subset of C.�/, which is impossible by the definition of the conservative part of �.
This contradiction proves the second inclusion in (2.40). �

We finish this section with a refinement of the Hopf decomposition that will
prove very useful to us in the sequel in a discussion of the memory of stationary
non-Gaussian infinitely divisible processes.

Definition 2.4.6. A measure-preserving map � on
�
E; E ;m

�
is positive if there is a

finite measure Qm on
�
E; E

�
that is preserved by � and is equivalent to the measure m.

The following statement is immediate.

Proposition 2.4.7. A positive map � does not admit a wandering set of positive
measure and hence is conservative.

Proof. Indeed, if W is a wandering set with m.W/ > 0, then Qm.W/ > 0 as well.
Since the sets

�
��n.W/; n D 1; 2; : : :

�
are disjoint modulo m, they are also disjoint

modulo Qm, so that

Qm
 1[

nD1
��n.W/

!

D
1X

nD1
Qm���n.W/

� D 1;

since � preserves Qm. This contradicts the fact that Qm is a finite measure.
The fact that a positive map � is also conservative follows now from Theorem

2.4.3, since if � had a nontrivial dissipative part, it would admit a wandering set of
positive measure. �

As in the case of the Hopf decomposition, in general a map � has both a “positive
part” and a part that is “purely nonpositive.”

Theorem 2.4.8. The positive–null decomposition
Let � be a measure-preserving map on a � -finite measure space

�
E; E ;m

�
. Then

there is a partition of E into �-invariant sets P.�/ and N .�/ such that

(i) � is positive on P.�/;
(ii) no �-invariant measurable set A � N .�/ satisfies 0 < m.A/ < 1.

The partition E D P.�/ [ N .�/ is unique in the sense that if E D P1 [ N1,
where P1 and N1 are �-invariant sets satisfying (i) and (ii), then m

�
P.�/4P1

� D
m
�
N .�/4N1

� D 0.
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Proof. We proceed by “exhaustion,” as in the proof of Theorem 2.4.3. We again
begin with a probability measure P on

�
E; E

�
equivalent to the � -finite measure

m and construct recursively an increasing sequence of �-invariant sets .In; n D
0; 1; 2; : : :/ and a sequence of sets .Fn; n D 1; 2; : : :/ as follows. Let I0 D ;. For
n D 0; 1; 2; : : :, let

˛n D supfP.F/; F 	 Ic
n; F �-invariant and m.F/ < 1g :

Let FnC1 	 Ic
n be such that P.FnC1/ � ˛n=2 (use FnC1 D ; if ˛n D 0), and

let InC1 D In [ FnC1. Finally, let P.�/ D [1nD1Fn. By construction, P.�/ is an
invariant set, and we denote its complement by N .�/. We now check that these sets
satisfy (i) and (ii) of the theorem. If m.P.
// D 0, then � is trivially positive on
P.�/, since we can take Qm to be the null measure. If m.P.
// > 0, then we can
construct a nontrivial �-invariant finite measure on P.�/, equivalent to m on that
set, by setting

d Qm
dm

D 2�n on Fn if m.Fn/ > 0; n D 1; 2; : : : :

Therefore, � is positive on P.�/. The property (ii) holds by the construction of the
set P.�/.

It remains to prove the uniqueness of a decomposition. Suppose, once again, that
m
�
C1 n C.�/

�
> 0. Then there is a probability measure m1 supported by C1 n C.�/,

equivalent to m on that set and invariant under �. The function g D dm1=dm is
�-invariant, finite, and positive on C1 n C.�/ modulo m, and integrates to 1 with
respect to m. Therefore, there are 0 < "1 � "2 < 1 such that

Z

C1nC.�/
g.x/1

�
"1 � g.x/ � "2

�
m.dx/ > 0 :

The set

fx 2 C1 n C.�/ W "1 � g.x/ � "2
�

is a �-invariant set of finite positive measure m. Since this set is also a subset of
N .�/, we obtain a contradiction with the fact that N .�/ satisfies (ii). �

We call a positive–null decomposition E D P.�/[N .�/ the decomposition of E
into the positive part of E and the null part of E with respect to �. With terminology
similar to that in the Hopf decomposition, we say that P.�/ and N .�/ are the
positive part of � and the null part of � respectively. Then � is positive if and only if
its null part vanishes (modulo m). We observe that it follows from Proposition 2.4.7
that

P.�/ � C.�/; D.�/ � N .�/ ; (2.43)
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and the Hopf decomposition can be combined with the positive–null decomposition
into a three-way decomposition of E: let CN .�/ D C.�/ \ N .�/. Then we
decompose

E D P.�/ [ CN .�/ [ D.�/ (2.44)

uniquely into �-invariant sets that inherit their properties from the Hopf decompo-
sition and the positive–null decomposition. Finally, we also introduce the following
definition.

Definition 2.4.9. A measure-preserving map � on
�
E; E ;m

�
is null if P.�/ D ;

modulo m.

Our next goal is to understand better the structure of the positive–null decom-
position. To this end, we introduce a new notion. A set W 2 E is called weakly
wandering if there is a sequence nk ! 1 such that the sets

�
��nk.W/; k D

0; 1; 2; : : :
�
, are disjoint modulo m (with n0 D 0). Clearly, every wandering set

is weakly wandering as well. Furthermore, Proposition 2.4.7 immediately extends,
with the same proof, to the following.

Proposition 2.4.10. A positive map � does not admit a weakly wandering set of
positive measure.

The following theorem, which we prove only partially, completely clarifies the
connection between weakly wandering sets and the positive–null decomposition. It
also presents a “weighted version” of the criterion for distinguishing the parts in the
Hopf decomposition, presented in Theorem 2.40. The weighted version allows one
to distinguish the parts in the positive–null decomposition. Denote by W the set of
sequences .wn; n D 1; 2; : : :/ with the following properties:

wn > 0; wnC1 � wn; n D 1; 2; : : : ;

1X

nD1
wn D 1 : (2.45)

Theorem 2.4.11. Let � be a measure-preserving map on a � -finite measure space�
E; E ;m

�
.

(i) There exist a set W and a sequence nk ! 1 such that the sets
�
��nk.W/; k D

0; 1; 2; : : :
�

are disjoint modulo m and N .�/ D [1kD1��nk.W/ modulo m (the
set W is automatically weakly wandering).

(ii) For every sequence .wn; n D 1; 2; : : :/ in W and every function f 2 L1.m/ such
that f > 0 m-a.e,

1X

nD1
wnf

�
�n.x/

� D 1 m-a.e. on P.�/. (2.46)
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Further, there is a sequence .wn; n D 1; 2; : : :/ in W such that for every
function f 2 L1.m/ such that f > 0 m-a.e., we have

(

x 2 E W
1X

nD1
wnf

�
�n.x/

�
< 1

)

D N .�/ modulo m. (2.47)

Proof. Part (i) of the theorem is in Jones and Krengel (1974). For the first statement
of part (ii), fix a sequence in W . We may assume without loss of generality that
w1 D 1. Let pn D wn � wnC1; n D 1; 2; : : :, and p1 D limn!1 wn, so that .pn/

are probabilities on N [ fC1g. By the definition of the set W , it follows that this
probability distribution has an infinite mean. Then

1X

nD1
wnf

�
�n.x/

� D p1
1X

nD1
f
�
�n.x/

�C
1X

jD1
pj

jX

nD1
f
�
�n.x/

�
: (2.48)

If m
�
P.�/

�
> 0, then there exists a probability measure Qm supported by P.�/ and

equivalent to m on that set. By the pointwise ergodic theorem,

1

n

n�1X

jD0
f
�
� j.x/

� ! gf .x/ as n ! 1

for P-almost every x 2 P.�/, hence for m-almost every x 2 P.�/. Furthermore, the
limit is the conditional expectation of a positive random variable, hence is itself a.s.
positive. Now (2.46) follows from (2.48) and the fact that the probabilities .pn/ have
an infinite mean.

The second statement of part (ii) is in Theorem 3 in Krengel (1967). �

The following example should clarify the distinction between a wandering set
and a weakly wandering set.

Example 2.4.12. Let 0 < p < 1. The transition rule pi;iC1 D 1 � pi;i�1 D p for
i 2 Z defines a Markov chain on Z, the simple random walk that takes a step to the
right with probability p. This Markov chain is transient if p 6D 1=2, and it is null
recurrent if p D 1=2. In any case, it has an infinite invariant measure, which is the
counting measure on Z. We use the law of this random walk to construct a � -finite
measure m on E D Z

Z by

m.A/ D
X

i2Z
Pi
�
a realization of the random walk is in A

�
: (2.49)

The probability on the right-hand side of (2.49) is computed according to the law
of the Markov chain that visits state i at time zero. In the special case of a simple
random walk, this law can be constructed very simply: let .WCn ; n D 0; 1; 2; : : :/ and
.W�n ; n D 0; 1; 2; : : :/ be two independent simple random walks starting at zero, the
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first one stepping to the right with probability p, and the second one stepping to the
right with probability 1 � p. Then the stochastic process

�
: : : ; i C W�2 ; i C W�1 ; i; i C WC1 ; i C WC2 ; : : :

�

has the law Pi on E. Since the counting measure is an invariant measure for the
random walk, the measure m defined by (2.49) is invariant under the left shift on E.

Suppose first that p 6D 1=2, and consider the set

A D ˚
x 2 Z

Z W x0 D 0; xn 6D 0 for n > 0
�
: (2.50)

By construction, the set A in (2.50) is a wandering set, irrespective of the value of p.
We claim that for p 6D 1=2, we have

1[

nD�1
�n.A/ D E modulo m. (2.51)

According to Theorem 2.4.3, this would show that the left shift � is dissipative in
this case. To see that (2.51) holds, note that

 1[

nD�1
�n.A/

!c

D ˚
x W2 Z W xn 6D 0 for all n 2 Z

�

[ ˚
x W2 Z W xn D 0 for arbitrary large n 2 Z

�
:

The first set above has zero measure with respect to m, because a simple random
walk converges a.s. to the two different infinities as the times goes to ˙1, and
does so without skipping steps. Therefore, regardless of the initial state, it will a.s.
visit state zero. The second set above has zero measure with respect to m, because a
simple random walk with p 6D 1=2 is transient, and so it visits any given state only
finitely many times. This proves (2.51).

This argument for the relation (2.51) fails in the symmetric case p D 1=2, since
in that case, the random walk is recurrent. This actually implies that the left shift �
is conservative with respect to m, and hence does not admit any wandering set of
positive measure. In order to see that � is now conservative, consider a positive
measurable function on Z given by f .x/ D 2�jx0j. It is clear that f 2 L1.m/.
However,

1X

nD1
f
�
�n.x/

� �
1X

nD1
1.xn D 0/ D 1

m-a.e., since the simple symmetric random walk is recurrent and hence visits state
zero infinitely many times. By Theorem 2.4.5, C.
/ D E modulo m, and � is
conservative.
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It turns out, however, that in the case p D 1=2, the left shift admits quite “large”
weakly wandering sets, and we will construct a family of such sets. Let n1; n2; : : :
and b0; b1; b2; : : : be two strictly increasing sequences of positive integers. Let

B D ˚
x 2 Z

Z W x0 2 .�b0; b0/; x�nk 2 .�bk;�bk�1� [ Œbk�1; bk/; k � 1
�
:

(2.52)

Observe that for each k � 1 and x 2 ��nk.B/, we have x0 2 .�bk;�bk�1� [
Œbk�1; bk/, so the sets

�
��nk.B/; k D 1; 2; : : :

�
are disjoint, and hence the set B

is weakly wandering. We now show that one can choose the sequences n1; n2; : : :
and b0; b1; b2; : : : in such a way as to make this set “large.” To this end, we will
simply note that by the elementary central limit theorem, for a simple symmetric
random walk .Wn; n D : : : ;�1; 0; 1; 2; : : :/, the law of n�1=2Wn converges weakly,
as n ! 1, to the standard normal law, whence for every x > 0,

P0.jWnj � x/ ! 0 as n ! 1. (2.53)

Let " > 0 be a small number. We will choose b0 depending on " momentarily,
but let us keep b0 fixed for now. By (2.53), we can select n1 so large that

Pi.jWn1 j < b0/ � "=8 for every jij < b0,

and then we choose b1 > b0 so large that

Pi.jWn1 j � b1/ � "=8 for every jij < b0.

We proceed inductively. Once n1; : : : ; nk and b0; b1; : : : ; bk have been chosen, we
first use (2.53) to select nkC1 > nk so large that

Pi.jWnkC1�nk j < bk/ � 2�.kC3/" for every jij < bk,

and then we select bkC1 > bk so large that

Pi.jWnkC1�nk j � bkC1/ � 2�.kC3/" for every jij < bk.

In order to convince ourselves that we have obtained a “large” set B in (2.52),
we construct a probability measure � on Z

Z, equivalent to m, by selecting strictly
positive probabilities .pi/ on Z, and defining, analogously to (2.49),

�.A/ D
X

i2Z
piPi

�
a realization of the random walk is in A

�
: (2.54)

Select b0 so large that
X

jij�b0

pi � "=2 ;
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and note that

�.Bc/ � "=2C
X

jij<b0

piPi

 1[

kD1

n
jWnk�1 j < bk�1; Wnk … .�bk;�bk�1� [ Œbk�1; bk/

o
!

(with n0 D 0). We now use the Markov property to see that by construction, for
every k D 1; 2; : : :,

Pi

�
jWnk�1 j < bk�1; Wnk … .�bk;�bk�1� [ Œbk�1; bk/

�

D
X

jjj<bk�1

Pi
�jWnk�1 j D j

�
Pj

�
Wnk�nk�1 … .�bk;�bk�1� [ Œbk�1; bk/

�

� 2 � 2�.kC2/" D 2�.kC1/" ;

so that �.Bc/ � ". Selecting " > 0 small, we can hence obtain a “large” weakly
wandering set B.

Notice that we have actually proved that the map � is a null map. Indeed,
if we had m

�
P.�/

�
> 0, then we would also have �

�
P.�/

�
> 0 for the

probability measure � in (2.54). This would imply that for " > 0 small enough,
�
�
P.�/ \ B

�
> 0, hence also m

�
P.�/\B

�
> 0. Since a subset of weakly wandering

set is itself weakly wandering, we obtain a contradiction with Proposition 2.4.10.

2.5 Comments on Chapter 2

Comments on Section 2.1
There are many books on ergodic theory. The notions of ergodicity and mixing

are widely used in probability. Among the sources that have been used in probability
are Cornfeld et al. (1982) and Walters (1982).

Comments on Section 2.3
A very useful survey on strong mixing conditions is in Bradley (2005).

Comments on Section 2.4
Much of the material on the positive–null decomposition presented in this section

is in Section 3.6 of Aaronson (1997) and Section 3.4 of Krengel (1985), and many
of the results are due to U. Krengel and his coworkers, e.g., Krengel (1967) and
Jones and Krengel (1974).

The phenomenon exhibited in Example 2.4.12 goes much further than the case
of a simple random walk. For example, it is shown in Harris and Robbins (1953)
that every recurrent real-valued Markov chain with an invariant measure generates
similarly a shift-invariant measure on R

Z with respect to which the left shift is
conservative.
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2.6 Exercises to Chapter 2

Exercise 2.6.1. Let
�
E; E ;m

�
be a � -finite measure space, and � W E ! E a

measurable map. Show that the collection I of all �-invariant sets E is a � -field.

Exercise 2.6.2. Let � W E ! E be onto and one-to-one. Check that � is
nonsingular if and only if its inverse ��1 is nonsingular.

Exercise 2.6.3. (i) Prove that measurable sets satisfying either m.A/ D 0 or
m.Ac/ D 0 are invariant sets for every nonsingular map �.

(ii) Suppose that � is nonsingular. Prove that the � -field of �-invariant sets
coincides with the � -field of ��1-invariant sets. Does this remain true if �
is one-to-one and onto, but not necessarily nonsingular? Conclude that a
nonsingular map is ergodic if and only if the inverse map ��1 is ergodic.

Exercise 2.6.4. (i) Let � be a measurable map, and f W E ! R a function
measurable with respect to the � -field I of �-invariant sets. Show that f is
�-invariant in the sense that f .�.x// D f .x/ for m-almost every x.

(ii) Suppose that � is a nonsingular and ergodic map, and f is as in part (i). Show
that f is constant in the sense that there is a 2 R such that f .x/ D a for m-
almost every x.

Exercise 2.6.5. Recall that the conditional expectation can be defined for nonneg-
ative random variables without a finite mean; see Billingsley (1995). Prove that the
ergodic theorem in the form of (2.7) holds for a nonnegative measurable function f
even if the integrability assumption (2.6) fails.

Exercise 2.6.6. Show that a map � is mixing if and only if the inverse map ��1 is
mixing.

Exercise 2.6.7. Show by example that the sum of two independent stationary
ergodic processes may not be ergodic. Hint: What is the stationary process
corresponding to the measure in (2.3)? Show that on the other hand, the sum of
two independent stationary mixing processes must be mixing.

Exercise 2.6.8. Weak convergence is not kind to various ergodic-theoretical
notions.

(i) Give an example of a family of nonergodic stationary processes that converge
weakly to a mixing process (no need to work hard: a trivial example suffices).

(ii) Give an example of a family of mixing processes that converge weakly to
a nonergodic process (an autoregressive process of order 1 with Gaussian
innovations can provide an easy example).

Exercise 2.6.9. Show that the presence or absence of strong mixing is determined
by the finite-dimensional distributions of a stationary process.
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Exercise 2.6.10. Let
�
�;F ;P

�
be a probability space and A;B two events in F

such that P.A \ B/ D :2;P.A n B/ D :3; P.B n A/ D :4. Let A be the � -field
generated by the event A, and B the � -field generated by the event B. Calculate
�.A;B/ and �.B;A/ and check that they are different.

Exercise 2.6.11. Let g W R ! R be a one-to-one function such that both g and g�1
are measurable. Show that a stationary process

�
Xn; n 2 Z

�
is ˛- (ˇ-, �-) mixing if

and only if the process
�
g.Xn/; n 2 Z

�
is ˛- (ˇ-, �-) mixing.

Exercise 2.6.12. Theorem 2.4.5 requires the function to be strictly positive m-a.e.
We can relax this assumption somewhat. Let B 	 C.�/ be such that m.B/ > 0.
Prove that

1X

nD1
1B
�
�n.x/

� D 1 m-a.e. on B.

Exercise 2.6.13. Let � be a null map on (an automatically infinite) � -finite measure
space

�
E; E ;m

�
, and f 2 L1.m/. Prove that

1

n

n�1X

jD0
f
�
� j.x/

� ! 0 as n ! 1

for m-almost every x 2 E.

Exercise 2.6.14. A nonnegative sequence .gn; n D 1; 2; : : :/ is called subadditive
if gnCm � gn C gm for all n;m � 1. Prove that for every subadditive sequence, the
limit limn!1 gn=n exists and is equal to infn�1 gn=n.



Chapter 3
Infinitely Divisible Processes

3.1 Infinitely Divisible Random Variables, Vectors,
and Processes

Infinitely divisible stochastic processes form a broad family whose structure
is reasonably well understood. A stochastic process

�
X.t/; t 2 T

�
is said to

be infinitely divisible if for every n D 1; 2; : : :, there is a stochastic process�
Y.t/; t 2 T

�
such that

�
X.t/; t 2 T

� dD
0

@
nX

jD1
Yj.t/; t 2 T

1

A ;

where
�
Yj.t/; t 2 T

�
; j D 1; : : : ; n, are i.i.d. copies of

�
Y.t/; t 2 T

�
. It is also

common to say that the law of a stochastic process (rather than the process itself) is
infinitely divisible, and we will use both pieces of terminology interchangeably.

The basic ingredient of an infinitely divisible stochastic process is a one-
dimensional infinitely divisible random variable, to which an infinitely divisible
stochastic process reduces if the parameter space T is a singleton. The most powerful
tool for studying infinitely divisible random variables is their Lévy–Khinchine
representation. Specifically, a random variable X is infinitely divisible if and only if
there is a uniquely determined triple .�2; �; b/ such that the characteristic function
of X can be written in the form

Eei
X D exp

	
�1
2

2�2 C

Z 1

�1

�
ei
x � 1 � i
ŒŒx��

�
�.dx/C i
b

�
(3.1)
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for 
 2 R, where for x 2 R, its truncation ŒŒx�� is defined by

ŒŒx�� D
8
<

:

x if jxj � 1;

�1 if x < �1;
1 if x > 1:

(3.2)

The triple .�2; �; b/ is called the characteristic triple of the infinitely divisible
random variable X, and it consists of �2 � 0, a measure � on R satisfying
�
�f0g� D 0 and

Z

R

�
1 ^ x2

�
�.dx/ < 1 ;

and finally, b 2 R. See Sato (1999).
The basic examples of infinitely divisible random variables are the normal

random variable and the compound Poisson random variable of the following
example.

Example 3.1.1. If N is a mean � Poisson random variable independent of an i.i.d.
sequence Y1;Y2; : : : with a common distribution FY , then

X D
NX

iD1
Yi (3.3)

is an infinitely divisible random vector because its characteristic function is of the
form (3.1) with �2 D 0, � D �FY , and b D �EŒŒY1��. An infinitely divisible
random variable with a representation of the form (3.1.1) is said to be compound
Poisson. Note that a compound Poisson random variable has a finite measure � in
its characteristic triple.

Other examples of one-dimensional infinitely divisible random variables include
the gamma random variable and the geometric (and, more generally, the negative
binomial) random variable, as can be verified by identifying, in each of these exam-
ples, the characteristic triple. See Exercise 3.8.1.

The entry �2 in the characteristic triple of an infinitely divisible random variable
X is the variance of the Gaussian component of X; if �2 D 0, we say that
the infinitely divisible random variable has no Gaussian component. The entry
� in the characteristic triple of an infinitely divisible random variable X is the
Lévy measure of X; it describes the Poisson component of the infinitely divisible
random variable; if � D 0, the infinitely divisible random variable has no
Poisson component and hence is a Gaussian random variable. The entry b in
the characteristic triple of an infinitely divisible random variable X is sometimes
referred to as the shift component of X; this, however, has to be taken with a grain
of salt, since b interacts with the truncation ŒŒ��� in the representation (3.1) of the
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characteristic function. In certain special cases, the characteristic function of an
infinitely divisible random variable has slightly different representations, in which
the role of a “shift” parameter is clearer.

Example 3.1.2. A Lévy motion
A Lévy motion (also known as a Lévy process) is continuous in a probability

stochastic process with stationary and independent increments,
�
X.t/; t 2 R

�
, such

that X.0/ D 0 a.s. Note that it is also common to define a Lévy process only
on the positive half-line, as

�
X.t/; t � 0

�
, satisfying the same requirements. The

definition on the entire real line is more natural and convenient for our purposes.
The finite-dimensional distributions of a Lévy process are completely determined by
its one-dimensional marginal distribution at time 1, which is necessarily infinitely
divisible (in one dimension). In fact, there is a one-to-one correspondence between
the laws of Lévy processes and the laws of one-dimensional infinitely divisible
random variables that are the values of the Lévy processes at time 1. See Sato (1999).

It is easy to see that a Lévy process is an infinitely divisible stochastic process.
Indeed, let n D 1; 2; : : :. Since X D X.1/ is a one-dimensional infinitely divisible

random variable, there is an infinitely divisible random variable Y such that X
dD

Y1 C : : :C Yn, where Y1; : : : ;Yn are i.i.d. copies of Y . Let
�
Y.t/; t 2 R

�
be a Lévy

process such that Y.1/
dD Y , and let

�
Yj.t/; t 2 R

�
; j D 1; : : : ; n, be i.i.d. copies

of
�
Y.t/; t 2 R

�
. Then the stochastic process

�Pd
jD1 Yj.t/; t 2 R

�
is continuous

in probability, has stationary and independent increments, and vanishes at time 0.
Therefore, it is a Lévy process. Since

dX

jD1
Yj.1/

dD
dX

jD1
Yj

dD X
dD X.1/

by construction, we conclude that
0

@
dX

jD1
Yj.t/; t 2 R

1

A dD �
X.t/; t 2 R

�
:

Therefore,
�
X.t/; t 2 R

�
is an infinitely divisible stochastic process.

A Brownian motion is a particular Lévy process for which X.1/ has a normal
distribution.

An infinitely divisible stochastic process corresponding to a finite parameter
set T is a (finite-dimensional) infinitely divisible random vector. The distribution
of an infinitely divisible random vector, say X D .X.1/; : : : ;X.d//, is once again
uniquely determined by a characteristic triple

�
†;�;b

�
, where this time, † is a

d � d nonnegative definite matrix, and � a measure on R
d such that �

�f0g� D 0 and

Z

Rd

�
1 ^ kxk2��.dx/ < 1 :
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Finally, b 2 R
d. The characteristic function of an infinitely divisible random vector,

say X, with a characteristic triple
�
†;�;b

�
is given by

Eei.�;X/ D exp

	
�1
2

�T†� C
Z

Rd

�
ei.�;x/ � 1 � i

�
�; ŒŒx��

��
�.dx/C i.�;b/

�

(3.4)

for � 2 R
d, where the truncation of a vector is defined componentwise: for x D�

x.1/; : : : ; x.d/
�
,

ŒŒx�� D �
ŒŒx.1/��; : : : ; ŒŒx.d/��

�
:

The role of the entries in the characteristic triple of an infinitely divisible random
vector X is similar to their role in the one-dimensional case. The entry † is the
covariance matrix of the Gaussian component of X, the measure � describes the
Poisson component of X, and the vector b can be (imprecisely) thought of as
the shift vector of X.

The following characterization of an infinitely divisible stochastic process is
almost immediate; see Exercise 3.8.5.

Proposition 3.1.3. A stochastic process
�
X.t/; t 2 T

�
is infinitely divisible if and

only if all of its finite-dimensional distributions are infinitely divisible.

The most useful description of infinitely divisible processes is through their own
characteristic triples. Such triples are similar in nature to the characteristic triples
of one-dimensional infinitely divisible random variables and of infinitely divisible
random vectors, but this time, they “live on the appropriate function spaces.” In the
description below, we follow Rosiński (2007).

For a parameter space T , let RT be the collection of all real-valued functions
on T . We transform R

T into a measurable space by endowing it with the cylindrical
� -field. A measure � on R

T is said to be a Lévy measure if the two conditions stated
below hold. The first condition is as follows:

Condition 3.1.4.
Z

RT
ŒŒx��.t/2 �.dx/ < 1 for every t 2 T . (3.5)

As in the finite-dimensional case, the truncation of a function in (3.5) is understood
componentwise: for x D �

x.t/; t 2 T
� 2 R

T , ŒŒx�� 2 R
T is defined by

ŒŒx��.t/ D ŒŒx.t/��; t 2 T :

The second condition will be stated separately in two cases: when the parameter
space T is countable (or finite), and when it is uncountable.

Condition 3.1.5 (Countable space T).

�
�

x 2 R
T W x.t/ D 0 for all t 2 T

�
D 0 : (3.6)
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Condition 3.1.6 (Uncountable space T). For every countable subset T1 of T , such
that

�
�

x 2 R
T W x.t/ D 0 for all t 2 T1

�
> 0; (3.7)

there is t0 2 Tc
1 such that

�
�

x 2 R
T W x.t/ D 0 for all t 2 T1; x.t0/ 6D 0

�
> 0 : (3.8)

To state the theorem characterizing infinitely divisible stochastic processes, we
introduce the following notation: let

R
.T/ D

n
x 2 R

T W x.t/ D 0 for all but finitely many t 2 T
o

be the collection of functions on T vanishing outside of a finite set. Note the obvious
fact that if x 2 R

.T/ and y 2 R
T , then the sum

P
t2T x.t/y.t/ makes perfect sense

because the (potentially uncountable) number of terms in the sum is really only
finite, corresponding to the set of nonzero coordinates of x. Similarly, if a 2 R

T�T ,
then the double sum

P
s2T

P
t2T a.s; t/x.s/x.t/ makes perfect sense as well.

Theorem 3.1.7. A stochastic process
�
X.t/; t 2 T

�
is infinitely divisible if and only

if there exists a uniquely determined triple
�
†;�;b

�
such that for every � 2 R

.T/,

E exp

(

i
X

t2T


.t/X.t/

)

(3.9)

D exp

	
�1
2

�T†� C
Z

RT

�
ei.�;x/ � 1 � i

�
�; ŒŒx��

��
�.dx/C i.�;b/

�

with the notation

�T†� D
X

s2T

X

t2T

†.s; t/
.s/
.t/; .�; y/ D
X

t2T


.t/y.t/; y 2 R
T :

In (3.9):

• † D �
†.s; t/; s; t 2 T

�
is a nonnegative definite function on T;

• � is a Lévy measure on T;
• b 2 R

T .

See Rosiński (2007) for a proof. The sufficiency part of Theorem 3.1.7 is clear: if
a stochastic process

�
X.t/; t 2 T

�
satisfies (3.9) for some triple

�
†;�;b

�
, as in the

theorem, then for every finite subset ft1; : : : ; tdg of T , the d-dimensional random
vector

�
X.t1/; : : : ;X.td/

�
has the characteristic function
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E exp

8
<

:

X

jD1;:::;d

jX.tj/

9
=

;
D exp

(

�1
2

�T†t1;:::;td �

C
Z

Rft1;:::;tdg

�
ei.�;x/ � 1 � i

�
�; ŒŒx��

��
�t1;:::;td .dx/C i.�;bt1;:::;td /

)

for � D .
1; : : : ; 
d/ 2 R
d, with †t1;:::;td the restriction of † from T � T to

ft1; : : : ; tdg � ft1; : : : ; tdg, bt1;:::;td the restriction of b from T to ft1; : : : ; tdg, and
�t1;:::;td a measure on R

ft1;:::;tdg defined by

�t1;:::;td .B/ D �
�

x 2 R
T W �x.t1/; : : : ; x.td/

� 2 B n f0g
�

for Borel sets B 	 R
ft1;:::;tdg. Therefore,

�
X.t1/; : : : ;X.td/

�
is a d-dimensional

infinitely divisible random vector, and so all finite-dimensional distributions of the
process

�
X.t/; t 2 T

�
are infinitely divisible. By Proposition 3.1.3, one concludes

that
�
X.t/; t 2 T

�
is an infinitely divisible process.

As in the finite-dimensional case, the triple
�
†;�;b

�
appearing in Theorem 3.1.7

is referred to as the characteristic triple of the infinitely divisible process, and the
representation (3.9) its Lévy–Khinchine representation.

Remark 3.1.8. Conditions 3.1.5 and 3.1.6 on a Lévy measure on T ensure that the
measure does not put “redundant” weight on functions with “many” zero coor-
dinates. This guarantees (by Theorem 3.1.7) that an infinitely divisible stochastic
process has a unique Lévy measure.

Let, on the other hand,
�
X.t/; t 2 T

�
be an infinitely divisible stochastic process

and suppose that
�
†;�;b

�
is a triple as in Theorem 3.1.7, except that the measure

� is assumed to satisfy only Condition 3.1.4 but not necessarily conditions 3.1.5
and 3.1.6. In such a case we will say that � is a weak Lévy measure of the process�
X.t/; t 2 T

�
, and

�
†;�;b

�
is a weak characteristic triple.

“Redundant weight on zeros” of a weak Lévy measure does not play any role in
the representation (3.9) of the characteristic function of the process. For example,
suppose that T is uncountable and there exists a countable set T1 such that (3.7)
holds but (3.8) fails for every t0 2 Tc

1 . We can then remove some “redundant zeros”
by defining a measure �1 on R

T by

�1.A/ D �
�

A \
n
x 2 R

T W x.t/ 6D 0 for some t 2 T1
o�
; A a cylindrical set.

The triple
�
†;�1;b

�
clearly still satisfies (3.9). Therefore, a weak Lévy measure is

not unique.
In some cases, we will find it convenient to work with weak Lévy measures of

infinitely divisible stochastic processes. Apart from lack of uniqueness, their role in
describing the structure of infinitely divisible processes is identical to that of “true”
Lévy measures.
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Example 3.1.9. A Gaussian process is a stochastic process
�
X.t/; t 2 T

�
whose

finite-dimensional distributions are multivariate normal distributions. These are
infinitely divisible stochastic processes with characteristic triples in which the Lévy
measure � vanishes. That is, the characteristic function of a Gaussian process can
be written in the form

E exp

(
X

t2T


.t/X.t/

)

D exp

	
�1
2

�T†� C i.�;b/
�

(3.10)

for � 2 R
.T/. Then † is the covariance function of the process, and b is its mean

function.

The following proposition lists elementary properties of the characteristic triples
of infinitely divisible stochastic processes. We leave the proof for Exercise 3.8.10.

Proposition 3.1.10. (i) If
�
X.t/; t 2 T

�
is an infinitely divisible stochastic process

with a characteristic triple
�
†;�;b

�
and a 2 R n f0g, then

�
aX.t/; t 2 T

�
is an

infinitely divisible stochastic process with the characteristic triple
�
†a; �a;ba

�
,

where

†a D a2†; �a.�/ D �
�
a�1��; ba D ab C

Z

RT

�
aŒŒx�� � ŒŒax��

�
�.dx/ :

(ii) If
�
X1.t/; t 2 T

�
and

�
X2.t/; t 2 T

�
are independent infinitely divisible

stochastic processes with respective characteristic triples
�
†i; �i;bi

�
, i D 1; 2,

then
�
X1.t/C X2.t/; t 2 T

�
is an infinitely divisible stochastic process with the

characteristic triple
�
†1 C†2; �1 C �2; b1 C b2

�
.

Example 3.1.11. A stochastic process
�
X.t/; t 2 T

�
is called ˛-stable if it has the

following property: for every n � 1, there is a (nonrandom) function .cn.t/; t 2 T/
such that

�
X.t/; t 2 T

� dD
0

@n�1=˛
nX

jD1
Xj.t/C cn.t/; t 2 T

1

A ; (3.11)

where
�
Xj.t/; t 2 T

�
; j D 1; : : : ; n, are i.i.d. copies of

�
X.t/; t 2 T

�
. It is called

strictly ˛-stable if cn.t/ � 0 for every n � 1. It is called symmetric ˛-stable (often
abbreviated to S˛S) if it is ˛-stable and symmetric. It is clear that a symmetric
˛-stable process is also strictly ˛-stable.

The definition immediately implies that every ˛-stable process is infinitely
divisible. If

�
†;�;b

�
is the characteristic triple of the process

�
X.t/; t 2 T

�
,

then, by Proposition 3.1.10, the stochastic process on the right-hand side of (3.11)
is infinitely divisible with the characteristic triple

�
n1�2=˛†; n�.n1=˛ �/;bn

�
for
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some function bn 2 R
T . It follows from Theorem 3.1.7 that a stochastic process�

X.t/; t 2 T
�

is ˛-stable if and only if it is infinitely divisible and its characteristic
triple

�
†;�;b

�
satisfies

† D n1�2=˛† and � D n�.n1=˛ �/ (3.12)

for every n D 1; 2; : : :.
It follows immediately from (3.12) that † D 0 unless ˛ D 2. Further, suppose

that � 6D 0. Then there exists t0 2 T such that

h.a/ D �
�

x 2 R
T W jx.t0/j > a

�
> 0

for some a > 0. Clearly, h is a nonincreasing function. Since it follows from (3.12)
that h

�
an1=˛

� D n�1h.a/, we conclude that necessarily ˛ > 0, and further, this
relation means that lima!1 a˛h.a/ D 1. Since

Z

RT
ŒŒx��.t0/2 �.dx/ �

Z 1

0

yh.y/ dy ;

Condition 3.1.4 on a Lévy measure implies that ˛ < 2.
That is, a nondeterministic ˛-stable process can exist only for 0 < ˛ � 2. If

˛D2, then the Lévy measure of the process vanishes, and the process is the Gaussian
process of Example 3.1.9.

If 0 < ˛ < 2, then the function † in the characteristic triple of the process must
vanish, while (3.12) implies that the Lévy measure of the process must have the
scaling property

�.c�/ D c�˛� for each c > 0. (3.13)

See Exercise 3.8.11.
Conversely, every infinitely divisible process with † D 0 and Lévy measure

that scales as in (3.13) is ˛-stable. One usually constructs ˛-stable processes as
stochastic integrals as in Section 3.3.

We summarize the discussion of this section by recording the following immedi-
ate but important corollary of Theorem 3.1.7.

Corollary 3.1.12. A stochastic process
�
X.t/; t 2 T

�
is infinitely divisible if and

only if it has a unique decomposition in law

�
X.t/; t 2 T

� dD �
G.t/; t 2 T

�C �
Y.t/; t 2 T

�
;

where
�
G.t/; t 2 T

�
and

�
Y.t/; t 2 T

�
are independent stochastic processes, with�

G.t/; t 2 T
�

a centered Gaussian process and
�
Y.t/; t 2 T

�
has a characteristic

function of the form
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E exp

(
X

t2T


.t/Y.t/

)

D exp

	Z

RT

�
ei.�;x/ � 1 � i

�
�; ŒŒx��

��
�.dx/C i.�;b/

�

for � 2 R
.T/, where � is a Lévy measure on T, and b is a real-valued function on T.

If
�
X.t/; t 2 T

�
has a characteristic function given by (3.9), then † is the

covariance function of the Gaussian process
�
G.t/; t 2 T

�
(the Gaussian component

of
�
X.t/; t 2 T

�
), and the rest of the characteristic triple

�
†;�;b

�
determines the

law of the process
�
Y.t/; t 2 T

�
. The latter process is an infinitely divisible process

without a Gaussian component (the Poisson component of
�
X.t/; t 2 T

�
plus a

deterministic “shift”).

3.2 Infinitely Divisible Random Measures

An infinitely divisible random measure is the single most important infinitely
divisible stochastic process, and it often serves as the basic ingredient in construct-
ing other infinitely divisible stochastic processes. In order to define an infinitely
divisible random measure, we start with a measurable space .S;S/. We need three
measures as ingredients:

• a � -finite measure � on S;
• a measure � on S � �R n f0g� such that the measure

m0.B/ WD
Z

B

Z

Rnf0g
ŒŒx��2 �.ds; dx/; B 2 S (3.14)

is � -finite;
• a � -finite signed measure ˇ on S (see Section 10.3).

Let S0 denote the collection of sets B in S satisfying

m.B/ WD �.B/C kˇk.B/C m0.B/ < 1 : (3.15)

For sets B1;B2 2 S0, define

†
�
B1;B2

� D �
�
B1 \ B2

�
: (3.16)

Note that for every d D 1; 2; : : :, a1; : : : ; ad 2 R, and B1; : : : ;Bd 2 S0,

dX

jD1

dX

kD1
ajak†

�
Bj;Bk

� D
Z

S

0

@
dX

jD1
aj1
�
s 2 Bj

�
1

A

2

�.ds/ � 0 :

Therefore, † is a nonnegative definite function on S0.
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Next, let ˆ W S � �R n f0g
�

! R
S0 be a map defined by

ˆ.s; x/.B/ D x1.s 2 B/; B 2 S0

for s 2 S and x 2 R n f0g. Clearly, ˆ is a measurable map, and it defines a measure
on R

S0 by

� D � ıˆ�1 : (3.17)

We claim that � is a Lévy measure on S0. Note, first of all, that for every B 2 S0,
Z

RS0
ŒŒx��.B/2 �.dx/ D

Z

B

Z

Rnf0g
ŒŒx��2 �.ds; dx/ < 1

by the definition (3.15) of the collection S0. Therefore, the measure � satisfies Con-
dition 3.1.4. If the collection S0 is countable, we also need to check Condition 3.1.5.
Since the measure m in (3.15) is � -finite, the countable collection S0 covers S. Then

�
�

x 2 R
S0 W x.B/ D 0 for all B 2 S0

�
D �

�
.s; x/ W s … [B2S0B

�
D �

�;� D 0 ;

and so Condition 3.1.5 holds. If the collection S0 is uncountable, we need to check
Condition 3.1.6. Suppose that Bj 2 S0; j D 1; 2; : : :, are such that

�
�

x 2 R
S0 W x.Bj/ D 0 for all j D 1; 2; : : :

�
> 0 :

Then

�
�
.s; x/ W s … [jD1;2;:::Bj

�
> 0 ;

which is equivalent to saying that for the measure m0 in (3.14),

m0

��[jD1;2;:::Bj
�c
�
> 0 :

Since the measures m0 and m are � -finite, there is a set B in S0 such that B 	�[jD1;2;:::Bj
�c

and m0.B/ > 0. Then also

�
�
.s; x/ W s … [jD1;2;:::Bj; s 2 B

�
> 0 ;

which means that

�
�

x 2 R
S0 W x.Bj/ D 0 for all j D 1; 2; : : :; x.B/ > 0

�
> 0 :

Therefore, Condition 3.1.6 holds, and the measure � in (3.17) is a Lévy measure
on S0.
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Finally, define b 2 RS0 by

b.B/ D ˇ.B/; B 2 S0 : (3.18)

The infinitely divisible stochastic process M D �
M.B/; B 2 S0

�
with the

characteristic triple
�
†;�;b

�
defined by (3.16), (3.17) and (3.18) is called an

infinitely divisible random measure on .S;S/ with Gaussian variance measure � ,
Lévy measure �, and shift measure ˇ.

The basic properties of an infinitely divisible random measure are described in
the following proposition.

Proposition 3.2.1. (i) For every B 2 S0, M.B/ is an infinitely divisible random
variable with a characteristic triplet .�2B; �B; bB/, where

�2B D �.B/; �B.�/ D �.B � �/; ˇB D ˇ.B/ :

(ii) An infinitely divisible random measure is independently scattered. That is,

M.B1/; : : : ;M.Bd/ are independent for every collection of disjoint sets

B1; : : : ;Bd 2 S0. (3.19)

(iii) An infinitely divisible random measure is � -additive. That is, for each choice
of disjoint sets .Bj/ 	 S0 such that [jBj 2 S0,

M
�
[jBj

�
D
X

j

M.Bj/ a.s. (3.20)

(note that the exceptional set in (3.20) depends, in general, on the choice of
.Bj/ 	 S0).

Proof. Part (i) follows from the construction of the stochastic process M D�
M.B/; B 2 S0

�
and Theorem 3.1.7. For part (ii), we use the fact that the

components of an infinitely divisible random vector are independent if and only
if every pair of the components is independent (see Sato (1999)). Therefore, it is
enough to prove part (i) in the case d D 2, and then the statement follows by noticing
that for disjoint sets B1;B2 2 S0, the Gaussian component of the infinitely divisible
random vector

�
N.B1/;N.B2/

�
has vanishing covariance, while the bivariate Lévy

measure is concentrated on the axes in the plane. This implies the independence of
N.B1/ and N.B2/; see Sato (1999).

For part (iii) of the proposition, it is enough to prove that

�n WD
nX

jD1
M.Bj/ � M

�
[1jD1Bj

�
! 0 (3.21)
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in probability as n ! 1, which will, in turn, follow if we check that the
characteristic function of the difference �n on the left-hand side converges to the
constant function. By (3.9), for 
 2 R,

Eei
�n D exp

	
�1
2

2�2n C In.
/C i
bn

�
;

where by (3.16),

�2n D
nX

jD1
�.Bj/C �

�
[1jD1Bj

�
� 2

nX

jD1
�
h
Bj \

�
[1kD1Bk

�i
D �

�
[1jDnC1Bj

�
! 0

as n ! 1 because [jBj 2 S0. Further, by (3.18),

bn D
nX

jD1
ˇ.Bj/ � ˇ

�
[1jD1Bj

�
D �ˇ

�
[1jDnC1Bj

�
! 0

as n ! 1, also because [jBj 2 S0. Finally, by (3.17),

In.
/ D
Z

[1

jDnC1
Bj

Z

Rnf0g
�
e�i
x � 1C i
ŒŒx��

�
�.ds; dx/ :

Since
ˇ̌
ei
x � 1 � i
ŒŒx��

ˇ̌ � K.
/ŒŒx��2

for some K.
/ 2 .0;1/, we conclude that

ˇ
ˇIn.
/

ˇ
ˇ � K.
/

Z

[1

jDnC1
Bj

Z

Rnf0g
ŒŒx��2 �.ds; dx/ ! 0

as n ! 1, once again because [jBj 2 S0, whence the � -additivity of the random
measure. �

The Lévy measure of an infinitely divisible random measure can also be
represented in a disintegrated form, given in the following proposition. This
representation has the advantage of providing additional intuition into the structure
of infinitely divisible random measures.

Proposition 3.2.2. There exists a family of one-dimensional Lévy measures�

.s; �/; s 2 S

�
that is measurable in the sense that for every Borel set A 2 R n f0g,

the function
�

.s;A/; s 2 S

�
is measurable, and such that for each such A and

B 2 S0,

�
�
B � A

� D
Z

B

.s;A/m.ds/ : (3.22)
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The family
�

.s; �/; s 2 S

�
is unique in the sense that if

� Q
.s; �/; s 2 S
�

is another
measurable family satisfying (3.22), then Q
.s; �/ D 
.s; �/ for all s 2 S apart from a
set of m-measure zero.

Proof. Let .Sn/ be disjoint sets in S0 such that m0.Sn/ > 0 for each n and

m0

��[nSn
�c
�

D 0 : (3.23)

We will show that for each n, there is a measurable family of one-dimensional finite
measures

�

1.s; �/; s 2 Sn

�
such that for every Borel set A 2 R n f0g and measurable

subset Bn of Sn,

Z

Bn

Z

A
ŒŒx��2�.ds; dx/ D

Z

Bn


1.s;A/m0.ds/ : (3.24)

Then for each s 2 Sn,

d
2.s; �/
d
1.s; �/ .x/ D ŒŒx���2; x 2 R n f0g

defines a � -finite measure on R n f0g, which is a one-dimensional Lévy mea-
sure because 
1.s; �/ is a finite measure. Combining these one-dimensional Lévy
measures into a single family

�

2.s; �/; s 2 S

�
produces a measurable family of one-

dimensional Lévy measures such that for every Borel set A 2 R n f0g and B 2 S0,
Z

B

2.s;A/m0.ds/ D

X

n

Z

B\Sn


2.s;A/m0.ds/

D
X

n

�Z

B\Sn

Z

A
ŒŒx���2
1.s; dx/

�
m0.ds/ D

X

n

�
�
.B \ Sn/ � A

� D �.B � A/

by (3.23), and now (3.22) follows by setting


.s; �/ D 
2.s; �/dm0

dm
.s/ s 2 S :

We now prove (3.24). By scaling if necessary, we may assume that m0.Sn/ D 1.
Consider the probability space

�
Sn � .R n f0g/;Pn

�
, where we are using the product

� -field on Sn � .R n f0g/, and Pn.ds; dx/ D ŒŒx��2�.ds; dx/. On this probability space,
consider the random variable X D X.s; x/ D x, .s; x/ 2 Sn � .R n f0g/, and the
� -field G D ˚

B � .R n f0g/, B a Borel subset of Sn
�
. Let 
0

�
A; .s; x/

�
, A 2 R n f0g,

.s; x/ 2 Sn � .R n f0g/ be a conditional distribution of X given G (see Section 33
in Billingsley (1995)). Since for each A, 
0

�
A; .s; x/

�
, considered as a function on

the probability space, is G measurable, it must be a function of s alone. Setting

1.A; s/ D 
0

�
A; .s; x/

�
produces a required family

�

1.s; �/; s 2 Sn

�
.
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It remains to prove uniqueness. Let 
 and Q
 be two measurable families
satisfying (3.22). Let .An/ be an enumeration of intervals with rational endpoints that
are subsets of Rn f0g. For a fixed n, and An in place of A in (3.22), the latter relation
says that both

�

.s;An/; s 2 S

�
and

� Q
.s;An/; s 2 S
�

are the Radon–Nikodym
derivatives of the � -finite measure �.��An/ on S with respect to the � -finite measure
m. Therefore, they coincide outside of a set of m-measure zero. The union of these
null sets taken over all n is a null set, and for s outside of this null set one has
Q
.s;An/ D 
.s;An/ for each n. Since the sets An form a 	-system generating the
Borel � -field on Rn f0g, we conclude that Q
.s; �/ D 
.s; �/ for s outside of the above
null set. �

It is clear from the definition of the measure m in (3.15) that both � � m and
ˇ � m, so we can define

�.s/ D
�

d�

dm
.s/

�1=2
(3.25)

and

b.s/ D dˇ

dm
.s/ (3.26)

for s 2 S. The representations (3.22), (3.25), and (3.26) lead to a different way
of describing an infinitely divisible random measure. Specifically, we will say that
the corresponding infinitely divisible stochastic process M D �

M.B/; B 2 S0
�

with the characteristic triple
�
†;�;b

�
defined by (3.16), (3.17) and (3.18) is

an infinitely divisible random measure with control measure m, local Gaussian
variance .�2.s/; s 2 S/, local Lévy measures

�

.s; �/; s 2 S

�
, and local shifts

.b.s/; s 2 S/. This terminology is intuitively appealing if one thinks of the local
characteristics

�
�2.s/; 
.s; �/; b.s/� as describing an infinitely divisible random

variable representing the “value of the random measure around the point s 2 S.”
In other words, such an infinitely divisible random measure is an independently
scattered and � -additive random set function M D �

M.B/; B 2 S0
�

such that for
every B 2 S0, M.B/ is an infinitely divisible random variable with the characteristic
triple

�2 D
Z

B
�2.s/m.ds/; �.�/ D

Z

B

.s; �/m.ds/; b D

Z

B
b.s/m.ds/: (3.27)

Example 3.2.3. A Lévy motion as a random measure
A Lévy process of Example 3.1.2 can be thought of as an infinitely divisible

random measure in the following way. Let S D R (or a subinterval of R), and let S
denote the Borel � -field. Let �2 � 0, b 2 R, and let 
 be a one-dimensional Lévy
measure. Consider an infinitely divisible random measure M on S with the Lebesgue
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control measure, constant local Gaussian variance �2.s/ D �2, constant local Lévy
measure 
.s; �/ D 
.�/, and constant local shift b.s/ D b, s 2 S. In this case, S0
consists of all Borel sets of a finite Lebesgue measure, so we can define

X.t/ D M
�
.0; t�

�
for t � 0 and X.t/ D �M

�
.t; 0�

�
for t < 0.

It is easy to check using Proposition 3.2.1 that the process .X.t/; t 2 R/ thus con-
structed is continuous in probability and has stationary and independent increments.
Hence, it is a Lévy motion. It is also elementary that for every t > 0, X.t/ is
an infinitely divisible random variable with the characteristic triple .t�2; t
; tb/. In
particular,

Eei
X.t/ D �
Eei
X.1/

�t
for t > 0.

Therefore, (the increments of) a Lévy process can be identified with a particular
infinitely divisible random measure, and the law of a Lévy process is determined by
the one-dimensional distribution of its value at time 1, or any other fixed positive
time.

Example 3.2.4. A Gaussian random measure
An infinitely divisible random measure with vanishing local Lévy measures is

a Gaussian random measure in the sense that the stochastic process M D �
M.B/;

B 2 S0
�

is Gaussian. The most common sort of Gaussian random measures are
the centered Gaussian random measures, where the local shifts .b.s/; s 2 S/ also
vanish. In the latter case, there is no longer any utility in distinguishing the control
measure m from the Gaussian variance measure � , and a centered Gaussian random
measure is a centered Gaussian process M D �

M.B/; B 2 S0
�

with covariance
function given by

Cov
�
M.B1/;M.B2/

� D �.B1 \ B2/ D m.B1 \ B2/: (3.28)

Example 3.2.5. A Poisson random measure
A Poisson random measure is an infinitely divisible random measure for which

the local Gaussian variances vanish, �2.s/ D 0, the local shifts are equal to unity,
b.s/ D 1, while 
.s; �/ D ı1.�/, for m-almost every s 2 S. That is, all local Lévy
measures are unit masses at the unity. In this case, the control measure m is also
called the mean measure of the Poisson random measure M. Indeed, it follows
from (3.27) that for every B 2 S0, M.B/ is a Poisson random variable with parameter
m.B/; hence EM.B/ D m.B/ in this case.

Example 3.2.6. An ˛-stable random measure
Let 0 < ˛ < 2. An infinitely divisible random measure with vanishing local

Gaussian variance �2.s/ D 0 for m-almost every s 2 S and local Lévy measures
satisfying


.s; dx/ D
h
wC.s/x�.1C˛/1.x > 0/C w�.s/jxj�.1C˛/1.x < 0/

i
dx; s 2 S ;

(3.29)
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where wC;w� W S ! Œ0;1/ are measurable functions, is an ˛-stable random
measure. It is ˛-stable in the sense that the infinitely divisible process M D�
M.B/; B 2 S0

�
is ˛-stable, as in Example 3.1.11.

To see that this is the case, we need to check that the Lévy measure (3.17) satisfies
the scaling condition (3.13). Let A be a measurable set in R

S0 . For c > 0,

�.cA/ D
Z

S

�Z

Rnf0g
1
�
x1.s 2 �/ 2 cA

�

.s; dx/

�
m.ds/

D
Z

S

�
wC.s/

Z 1

0

1
�
xc�11.s 2 �/ 2 A

�
x�.1C˛/ dx

Cw�.s/
Z 0

�1
1
�
xc�11.s 2 �/ 2 A

�jxj�.1C˛/ dx

�
m.ds/

D
Z

S

�
wC.s/c�˛

Z 1

0

1
�
y1.s 2 �/ 2 A

�
y�.1C˛/ dy

Cw�.s/c�˛
Z 0

�1
1
�
y1.s 2 �/ 2 A

�jyj�.1C˛/ dy

�
m.ds/ D c�˛�.A/ ;

as required.
If the weights in (3.29) satisfy wC.s/ D w�.s/ for m-almost every s 2 S, and the

local shifts vanish, b.s/ D 0 for m-almost every s 2 S, then the infinitely divisible
random measure M is symmetric ˛-stable; see Example 3.1.11 and Exercise 3.8.12.
In this case, it is common to incorporate the weights w.s/ D wC.s/� w�.s/; s 2 S,
into the control measure m. In fact, for an S˛S random measure, it is usual to take
as the control measure and the local Lévy measures

Qm.ds/ D 1

˛C˛
w.s/m.ds/; Q
.s; dx/ D ˛C˛jxj�.1C˛/ dx; s 2 S; x 2 R n f0g ;

(3.30)
where

C˛ D
(
.�.1 � ˛/ cos.	˛=2//�1 if ˛ ¤ 1;;

2=	 if ˛ D 1:
(3.31)

In this notation, for every set B 2 S0, one has

Eei
M.B/ D e�Qm.B/j
 j˛ ; 
 2 R :

See Samorodnitsky and Taqqu (1994). In this book, in order to avoid ambiguity, we
will call the measure given in (3.30) the modified control measure of an S˛S random
measure.

We conclude this section with an obvious but useful property of infinitely
divisible random measures.
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Proposition 3.2.7. Let M1; : : : ;Mk be independent infinitely divisible random
measures on .S;S/ with Gaussian variance measures �1; : : : ; �k, Lévy measures
�1; : : : ; �k, and shift measures ˇ1; : : : ; ˇk. Let m1; : : : ;mk be the corresponding
control measures, and let S0j D ˚

B 2 S W mj.B/ < 1�
, j D 1; : : : ; k. Then

M.B/ D M1.B/C : : :C Mk.B/; B 2
k\

jD1
S0j

is an infinitely divisible random measure on .S;S/ with Gaussian variance measure
�1 C : : :C �k, Lévy measure �1 C : : :C �k, and shift measure ˇ1 C : : :C ˇk.

Example 3.2.8. The sum of k independent centered Gaussian random measures on
.S;S/ with control measures m1; : : : ;mk is a centered Gaussian random measure on
.S;S/ with control measure m1 C : : :C mk.

Example 3.2.9. Let 0 < ˛ < 2. The sum of k independent S˛S random measures
on .S;S/ with modified control measures m1; : : : ;mk is an S˛S random measure on
.S;S/ with modified control measure m1 C : : :C mk.

3.3 Infinitely Divisible Processes as Stochastic Integrals

The infinitely divisible random measures of Section 3.2 are important mainly
because it is possible to construct a great variety of stochastic models by integrating
suitable functions with respect to these random measures. In particular, it turns
out that a very large number of infinitely divisible stochastic processes can be
represented in the form

X.t/ D
Z

S
f .t; s/M.ds/; t 2 T ; (3.32)

where M is an infinitely divisible random measure, and
�
f .t; �/; t 2 T

�
is a family

of nonrandom measurable functions. It turns out that many properties of infinitely
divisible stochastic processes can be conveniently described when a process is given
in the form of a stochastic integral as in (3.32).

Let .S;S/ be a measurable space, and M an infinitely divisible random measure
on this space with control measure m, local Gaussian variance .�2.s/; s 2 S/, local
Lévy measures

�

.s; �/; s 2 S

�
, and local shifts .b.s/; s 2 S/. For a simple function

f W S ! R of the form

f .s/ D
kX

jD1
fj1.s 2 Bj/; s 2 S; (3.33)
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with k � 1, f1; : : : ; fk 2 R, and B1; : : : ;Bk disjoint sets in S0, we define the integral
of f with respect to M by

I.f / D
Z

S
f .s/M.ds/ D

kX

jD1
fjM.Bj/ :

It is easy to see using the additivity of an infinitely divisible random measure (part
(ii) of Proposition 3.2.1) that this definition is consistent, in the sense that it will
change only on a set of measure zero if one uses a different representation of the
same simple function of the form (3.33).

The following proposition lists several important properties of the integrals of
simple functions of the form (3.33).

Proposition 3.3.1. (i) For a simple function f of the form (3.33), the integral
I.f / is an infinitely divisible random variable with the characteristic function
given by

Eei
I.f / D exp

(

�1
2

2
Z

S
f .s/2�2.s/m.ds/ (3.34)

C
Z

S

�Z 1

�1
�
ei
 f .s/x � 1 � i
 f .s/ŒŒx��

�

.s; dx/

�
m.ds/C i


Z

S
f .s/b.s/m.ds/

)

:

In particular, the characteristic triple
�
�2.f /; �.f /; b.f /

�
of the integral I.f / is

as follows: the Gaussian variance is given by

�2.f / D
Z

S
f .s/2�2.s/m.ds/ ; (3.35)

the Lévy measure is given by

�.f / D �f ı T�1f ; (3.36)

where the measure �f on S � �R n f0g� is defined by

�f .A/ D �
�
A \ ˚

.s; x/ W f .s/ 6D 0
��
; A measurable,

� is the Lévy measure of the random measure M given by (3.22), and Tf W
S � �

R n f0g� ! R is given by Tf .s; x/ D xf .s/; s 2 S; x 2 R. Finally, the
“shift” parameter is given by

b.f / D
Z

S

�
f .s/b.s/C

Z 1

�1

�
ŒŒf .s/x�� � f .s/ŒŒx��

�

.s; dx/

�
m.ds/ : (3.37)
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(ii) If f and g are simple functions of the form (3.33), and a; b are real constants,
then af C bg is also a simple function of the form (3.33), and the integral has
the linearity property

I.af C bg/ D aI.f /C bI.g/ a.s. (3.38)

Proof. The expression for the characteristic function (3.34) follows from the fol-
lowing calculation, which uses the fact that an infinitely divisible random measure
is independently scattered (part (i) of Proposition 3.2.1) and the expressions (3.27)
for the characteristic triple of M.B/ for a set B 2 S0:

Eei
I.f / D
kY

jD1
Eei
 fjM.Bj/ D

kY

jD1
exp

	
�1
2

2f 2j

Z

Bj

�2.s/m.ds/

C
Z

Bj

�Z 1

�1
�
ei
 fjx � 1 � i
 fjŒŒx��

�

.s; dx/

�
m.ds/C i
 fj

Z

Bj

b.s/m.ds/

�
;

which coincides with the expression on the right-hand side of (3.34) for a function
f of the form (3.33). The expressions (3.35), (3.36), and (3.37) follow by compar-
ing (3.33) with the canonical representation (3.1); the latter requires insertion inside
the truncation of f .s/ in the middle term on the right-hand side of (3.33). Hence we
have a somewhat complicated expression for the “shift” parameter (3.37).

Since the value of the integral of a simple function of the form (3.33) changes
only on an event of probability zero if one changes a representation of the function,
part (ii) of the proposition is immediate.

In order to extend the definition of the integral from simple functions of the
form (3.33) to a more general class of measurable functions on S, we need to
introduce some notation. Let L0

�
�;F ;P

�
be the space of all random variables

defined on a probability space
�
�;F ;P

�
, equipped with the metric d0.X;Y/ D

kX � Yk0, where kXk0 D E min.jXj; 1/. Then L0
�
�;F ;P

�
is a complete metric

space, and convergence in that space is equivalent to convergence in probability.
For a simple function f of the form (3.33), we set

kf kM D sup
n
kI.g/k0 W g a simple function of the form (3.33), (3.39)

jg.s/j � jf .s/j, all s 2 S.
o

We call a measurable function f W S ! R integrable with respect to the infinitely
divisible random measure M if there is a sequence .fn/ of simple functions of the
form (3.33) such that

fn ! f m-almost everywhere as n ! 1 and lim
k;n!1 kfk � fnkM D 0 : (3.40)
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The last requirement implies that the sequence of the integrals
�
I.fn/

�
is fundamental

in L0
�
�;F ;P

�
, and since the latter space is complete, we can define

I.f / D
Z

S
f .s/M.ds/ D lim

n!1 I.fn/ ; (3.41)

defined in the sense of convergence in probability.
We denote by L0.M/ the class of functions integrable with respect to an infinitely

divisible random measure M. The next theorem, presented without a proof, describes
explicitly the class L0.M/ of integrable functions and the basic properties of their
integrals. See Rosiński (2007) and Kwapień and Woyczyński (1992) for a proof.

Theorem 3.3.2. (i) The class L0.M/ of integrable functions is a linear vector
space of functions, and a measurable function f W S ! R belongs to L0.M/ if
and only if the following three conditions hold:

Z

S
f .s/2�2.s/m.ds/ < 1 ; (3.42)

Z

S

�Z 1

�1
ŒŒf .s/x��2 
.s; dx/

�
m.ds/ < 1 ; (3.43)

Z

S

ˇ̌
ˇ̌f .s/b.s/C

Z 1

�1

�
ŒŒf .s/x�� � f .s/ŒŒx��

�

.s; dx/

ˇ̌
ˇ̌ m.ds/ < 1 : (3.44)

(ii) For every f 2 L0.M/, the integral I.f / is an infinitely divisible random variable
with the characteristic function given by (3.34) and the characteristic triple�
�2.f /; �.f /; b.f /

�
given by (3.35), (3.36), and (3.37), respectively.

(iii) The integral is linear: for every f ; g 2 L0.M/ and a; b 2 R, the equality (3.38)
holds.

(iv) Let .fn/ be a sequence of measurable functions such that jfnj � g m-a.e. for
every n � 1, where g 2 L0.M/. Suppose that as n ! 1, fn ! f m-a.e. for
some measurable function f . Then f 2 L0.M/ and I.fn/ ! I.f / in probability
as n ! 1.

Remark 3.3.3. Intuitively, condition (3.42) for integrability in part (i) of Theo-
rem 3.3.2 requires the function to be integrable with respect to the Gaussian part
of the random measure M. Condition (3.43) deals with the integrability of the
function with respect to the Poisson part of the infinitely divisible random measure;
it makes sure that the function does not “rearrange the Poisson jumps” of the random
measure in such a way that they “break” the properties required of a Lévy measure.
The requirement (3.44) is, in a sense, the trickiest. It is related to the centering of
the Poisson points in a neighborhood of the origin, and its complicated form is due
to the fact that the function f may “move” the points of the random measure in and
out of a neighborhood of the origin.
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Remark 3.3.4. If f W S ! R is a measurable function and B 2 S , it is common
to use the notation

R
B f .s/M.ds/ for the integral

R
S f .s/1

�
s 2 B/M.ds/ as long as

f 1.� 2 B/ 2 L0.M/.

The definition (3.40) of an integrable function uses a somewhat involved “size
functional” k�kM in (3.39). Instead, one could have used the functional k�k0 directly
and still defined the integral as in (3.41). The definition we are using, even though
more restrictive, has the appealing property that for measurable functions f ; g,

if f 2 L0.M/ and jgj � jf j m-a.e. on S, then g 2 L0.M/. (3.45)

See Exercise 3.8.15. This property would not automatically follow under the broader
definition, not the least due to a different treatment of the Poisson points of the
random measure in and out of a neighborhood of the origin. See Remark 3.3.3
above.

In certain cases, however, the two definitions become equivalent, and the
conditions for integrability in part (i) of Theorem 3.3.2 simplify. Suppose, for
example, that an infinitely divisible random measure M is symmetric. That is,


.s; �/ is a symmetric measure and b.s/ D 0 for m-a.e. s 2 S. (3.46)

It follows from (3.27) that if M is a symmetric infinitely divisible random measure,
then for every set B 2 S0, M.B/ is an infinitely divisible random variable, with a
symmetric Lévy measure and a vanishing “shift” parameter. This implies that M.B/
is a symmetric random variable, whence the adjective “symmetric” applied to M.

Proposition 3.3.5. Let M be a symmetric infinitely divisible random measure.
A measurable function f is integrable with respect to M if and only if there is a
sequence .fn/ of simple functions of the form (3.33) such that

fn ! f m-almost everywhere as n ! 1 and lim
k;n!1 kfk � fnk0 D 0 : (3.47)

Further, f 2 L0.M/ if and only if (3.42) and (3.43) hold.

Proof. The only part of the statement that requires proof is that in the symmetric
case, (3.47) implies (3.40). Let f and g be simple functions of the form (3.33) such
that jg.s/j � jf .s/j for all s 2 S. We can find disjoint sets B1; : : : ;Bk in S0 and real
numbers f1; : : : ; fk and g1; : : : ; gk with jgjj � jfjj for each j D 1; : : : ; k such that

f .s/ D
kX

jD1
fj1.s 2 Bj/; g.s/ D

kX

jD1
gj1.s 2 Bj/; s 2 S :
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Because of the symmetry, we may use the contraction inequality in Theorem 10.7.5
to obtain

kI.g/k0 D E min
�jI.g/j; 1� D

Z 1

0

P
�jI.g/j > t

�
dt

D
Z 1

0

P

0

@

ˇ̌
ˇ
ˇ̌
ˇ

kX

jD1
gjM.Bj/

ˇ̌
ˇ
ˇ̌
ˇ

1

A > t
�

dt � 2

Z 1

0

P

0

@

ˇ̌
ˇ
ˇ̌
ˇ

kX

jD1
fjM.Bj/

ˇ̌
ˇ
ˇ̌
ˇ

1

A > t
�

dt

D 2

Z 1

0

P
�jI.f /j > t

�
dt D 2E min

�jI.f /j; 1� D 2kI.f /k0 :

We conclude that

kI.f /kM � 2kI.f /k0
for every simple function of the form (3.33), and so (3.47) implies (3.40). �

Example 3.3.6. The integral with respect to a centered Gaussian measure
Let M be a centered Gaussian measure on S with control measure m; see

Example 3.2.4. Applying Theorem 3.3.2 or Proposition 3.3.5, we see that L0.M/ D
L2.m/, and for f 2 L2.m/, I.f / is a zero-mean normal random variable with variance
kf k2

L2.m/
.

Example 3.3.7. Functions integrable with respect to a Poisson random measure
Let M be a Poisson random measure on S with mean measure m; see Example 3.2.5.
By Theorem 3.3.2, it is immediate that f 2 L0.M/ if and only if

Z

S
min.1; jf .s/j/m.ds/ < 1 : (3.48)

Example 3.3.8. The integral with respect to a symmetric ˛-stable measure
Let M be a symmetric ˛-stable random measure on S, 0 < ˛ < 2, with control

measure m and weights w.s/; s 2 S; see Example 3.2.6. By Theorem 3.3.2 or
Proposition 3.3.5, a measurable function f is integrable with respect to M if and
only if (3.43) holds. Since

Z

S

�Z 1

�1
ŒŒf .s/x��2 
.s; dx/

�
m.ds/ D

Z

S

�Z 1

�1
ŒŒf .s/x��2 jxj�.1C˛/ dx

�
w.s/m.ds/

D 4

˛.2 � ˛/
Z

S
jf .s/j˛w.s/m.ds/ ;

we conclude that L0.M/ D L˛. Qm/, where Qm is defined in (3.30). Furthermore, for
f 2 L˛. Qm/, the characteristic function of the integral I.f / satisfies
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Eei
I.f / D exp

( Z

S

�Z 1

�1
�
ei
 f .s/x � 1 � i
 f .s/ŒŒx��

�

.s; dx/

�
m.ds/

)

D exp

(

�2
Z

S

�Z 1

0

�
1 � cos

�

 f .s/x

�� jxj�.1C˛/ dx

�
w.s/m.ds/

D exp

(

�2
Z 1

0

�
1 � cosy

�
y�.1C˛/ dy j
 j˛

Z

S
jf .s/j˛w.s/m.ds/

)

D exp
n
�j
 j˛

Z

S
jf .s/j˛ Qm.ds/

o
; (3.49)

and so I.f / is an S˛S random variable. See Samorodnitsky and Taqqu (1994).

Integrals with respect to infinitely divisible random measures behave in the
expected way with respect to the addition of the measures as well. In the situation
of Proposition 3.2.7, we have the following additivity statement.

Proposition 3.3.9. Let M1; : : : ;Mk be independent infinitely divisible random mea-
sures on .S;S/ and f 2 L0.Mj/ for j D 1; : : : ; k. Then f 2 L0

�
M1 C : : :C Mk

�
and

Z

S
f .s/

�
M1 C : : :C Mk

�
.ds/ D

kX

jD1

Z

S
f .s/Mj.ds/ a.s.

Proof. The fact that f 2 L0
�
M1C: : :CMk

�
follows immediately from Theorem 3.3.2

and Proposition 3.2.7. Next, for n � 1 define

fn.s/ D
8
<

:

j
2n if j

2n � f .s/ < jC1
2n ; j D �n2n; : : : ; n22 � 1; n2n;

�n if f .s/ < �n;
n if f .s/ � n:

(3.50)

It follows by Theorem 3.3.2 that .fn/ is a sequence of simple functions of the
type (3.33) for the infinitely divisible random measure M1 C : : : C Mk, and then,
by Proposition 3.2.7, also for each infinitely divisible random measure Mj; j D
1; : : : ; k. Applying part (iv) of Theorem 3.3.2, we see that

Z

S
fn.s/

�
M1 C : : :C Mk

�
.ds/ !

Z

S
f .s/

�
M1 C : : :C Mk

�
.ds/;

Z

S
fn.s/Mj.ds/ !

Z

S
f .s/Mj.ds/; j D 1; : : : ; k

in probability as n ! 1. Since for each n � 1 we have

Z

S
fn.s/

�
M1 C : : :C Mk

�
.ds/ D

kX

jD1

Z

S
fn.s/Mj.ds/ ;

the claim of the proposition follows. �
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Not only is the integral with respect to an infinitely divisible random measure M
of an integrable function an infinitely divisible random variable, but also the family
of the integrals of a collection of integrable functions is an infinitely divisible
stochastic process. This fact, announced at the beginning of this section, is the
single most important property of stochastic integrals with respect to infinitely
divisible random measures. It is contained in Theorem 3.3.10 below.

Theorem 3.3.10. Let M be an infinitely divisible random measure on a measurable
space .S;S/, with control measure m, local Gaussian variance .�2.s/; s 2 S/, local
Lévy measures

�

.s; �/; s 2 S

�
, and local shifts .b.s/; s 2 S/. Let f .t; �/ 2 L0.M/ for

each t 2 T. Then the stochastic process X.t/ D I
�
f .t; �/�; t 2 T, defined in (3.32) is

infinitely divisible, with a weak characteristic triple
�
†X; �X;bX

�
given by

†X.t1; t2/ D
Z

S
f .t1; s/f .t2; s/�

2.s/m.ds/; t1; t2 2 T ; (3.51)

�X D � ı H�1 ; (3.52)

where � is the Lévy measure of the random measure M given by (3.22), and H W
S � R ! R

T is given by H.s; x/ D �
xf .t; s/; t 2 T

�
for s 2 S; x 2 R. Finally,

bX.t/ D
Z

S

�
f .t; s/b.s/C

Z 1

�1

�
ŒŒf .t; s/x�� � f .t; s/ŒŒx��

�

.s; dx/

�
m.ds/; t 2 T :

(3.53)

Proof. We begin by noticing that by (3.42) and (3.44), the functions †X and bX

are well defined, since each f .t; �/ is in L0.M/. Next, let t1; : : : ; td 2 T , and

1; : : : ; 
d 2 R. By the linearity of the integral (Theorem 3.3.2),

E exp

8
<

:

dX

jD1

jX.tj/

9
=

;
D E exp

8
<

:

dX

jD1

jI
�
f .tj; �/

�
9
=

;
D E exp

8
<

:
I

0

@
dX

jD1

jf .tj; �/

1

A

9
=

;
:

Next, we use part (ii) of Theorem 3.3.2 with f D Pd
jD1 
jf .tj; �/ to conclude that in

the notation (3.51), (3.52), and (3.53), this is further equal to

exp

(

�1
2

Z

S

0

@
dX

jD1

jf .tj; s/

1

A

2

�2.s/m.ds/

C
Z

S

0

@
Z 1

�1

�
eix

Pd
jD1 
jf .tj;s/ � 1 � i

dX

jD1

jf .tj; s/ŒŒx��

�

.s; dx/

1

A m.ds/

Ci
Z

S

dX

jD1

jf .tj; s/b.s/m.ds/

)
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D exp

(

�1
2

dX

j1D1

dX

j2D1
†X
�
tj1 ; tj2

�

j1
j2

C
Z

RT

�
ei
Pd

jD1 
jx.tj/ � 1 � i
dX

jD1

jŒŒx��.tj/

�
�X.dx/C i

dX

jD1

jbX.tj/

)

:

According to Theorem 3.1.7 and Remark 3.1.8, our statement will follow once we
check that the measure �X in (3.52) is a weak Lévy measure on T . However, for
every t 2 T ,

Z

RT
ŒŒx��.t/2 �X.dx/ D

Z

S

�Z 1

�1
ŒŒf .t; s/x��2 
.s; dx/

�
m.ds/ < 1

by (3.44), since f .t; �/ 2 L0.M/. Therefore, �X satisfies Condition 3.1.4. �

In many concrete cases, it is easy to check that the measure �X in (3.52) is a
Lévy measure on R

T , and not only a weak Lévy measure; see Exercise 3.8.18.
Combining the statement of Theorem 3.3.10 with Exercise 3.8.3, we immediately

obtain the following important corollary.

Corollary 3.3.11. (i) Let M be an infinitely divisible random measure on a
measurable space .S;S/, with control measure m, local Gaussian variance
.�2.s/; s 2 S/, local Lévy measures

�

.s; �/; s 2 S

�
, and local shifts

.b.s/; s 2 S/. Let f ; g 2 L0.M/. Then the integrals I.f / and I.g/ are independent
if and only if the following two conditions hold:

Z

S
f .s/g.s/�2.s/m.ds/ D 0 ;

xf .s/g.s/ D 0 for �-a.e. .s; x/.

(ii) Let f .t; �/ 2 L0.M/, g.t; �/ 2 L0.M/ for each t 2 T. Then the stochastic
processes X.t/ D I

�
f .t; �/�; t 2 T, and Y.t/ D I

�
g.t; �/�; t 2 T, are independent

if and only if f .t1; �/ and g.t2; �/ satisfy the two assumptions of part (i) for all
t1; t2 2 T (i.e., if X.t1/ and Y.t2/ are independent for all t1; t2 2 T).

When an infinitely divisible stochastic process is represented as a stochastic inte-
gral with respect to an infinitely divisible random measure, as in Theorem 3.3.10,
it is sometimes more convenient to work with the process and study its properties
via the integral representation, and not via its Lévy–Khinchine representation (3.9).
Fortunately, it turns out that every infinitely divisible stochastic process with a
� -finite Lévy measure has an integral representation.

Theorem 3.3.12. Let
�
X.t/; t 2 T

�
be an infinitely divisible process with a � -finite

Lévy measure. Then there exist a measurable space .S;S/ and an infinitely divisible
random measure on that space, with some control measure m and some local
characteristics

�
�2.s/; 
.s; �/; b.s/�, and functions f .t; �/ 2 L0.M/; t 2 T, such that
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�
X.t/; t 2 T

� dD
�Z

S
f .t; s/M.ds/; t 2 T

�
: (3.54)

Proof. Let
�
†X; �X;bX

�
be the characteristic triple of the infinitely divisible process�

X.t/; t 2 T
�
. We choose S D R

T , and S the cylindrical � -field on R
T . Let

�
X.t/; t 2 T

� dD �
G.t/; t 2 T

�C �
Y.t/; t 2 T

�

be the decomposition of the infinitely divisible stochastic process into a sum of
two independent processes, a centered Gaussian process and an infinitely divisible
process without a Gaussian component given in Corollary 3.1.12. We defined the
ingredients of an infinitely divisible random measure on .S;S/ as follows.

Let � be the (probability) law of the Gaussian process
�
G.t/; t 2 T

�
on R

T , and
define a measure on R

T � �R n f0g� by � D �X � ı1. Finally, let ˇ D ıa, where a is
a function on T defined by

a.t/ D bX.t/ �
Z

RT

�
ŒŒx.t/�� � x.t/

�
�X.dx/; t 2 T :

Let now M be an infinitely divisible random measure on .S;S/ defined by
the measures � , �, and ˇ, and let m be the corresponding control measure, and�
�2.s/; 
.s; �/; b.s/� the corresponding local characteristics. For x D �

x.t/; t 2 T
� 2

S and t 2 T , we define f .t; x/ D x.t/. That is, f is the evaluation function on R
T . By

the definition of the cylindrical � -field, f .t; �/ W R
T ! R is a measurable function

for every t 2 T . Next we check that f .t; �/ 2 L0.M/ for each t 2 T by checking the
three conditions in part (i) of Theorem 3.3.2.

First of all,
Z

S
f .t; x/2�2.x/m.dx/ D

Z

Rt
x.t/2 �.dx/ D EG.t/2 < 1;

since a Gaussian process has a finite variance. This verifies condition (3.42). Next,

Z

S

�Z 1

�1
ŒŒf .t; x/x��2 
.x; dx/

�
m.dx/ D

Z

Rt
ŒŒx.t/��2 �X.dx/ < 1;

since �X is a Lévy measure on R
T . This verifies condition (3.43). Finally,

Z

S

ˇ̌
ˇ
ˇf .t; x/b.x/C

Z 1

�1

�
ŒŒf .t; x/x�� � f .t; x/ŒŒx��

�

.x; dx/

ˇ̌
ˇ
ˇ m.dx/

�
Z

Rt
jx.t/jˇ.dx/C

Z

RT

ˇ̌
ŒŒx.t/�� � x.t/

ˇ̌
�X.dx/ D ja.t/j C

Z

RT

ˇ̌
ŒŒx.t/�� � x.t/

ˇ̌
�X.dx/ < 1;

because once again, �X is a Lévy measure on R
T . This verifies condition (3.44), and

so f .t; �/ 2 L0.M/ for each t 2 T .



3.3 Infinitely Divisible Processes as Stochastic Integrals 99

The only step remaining to complete the proof of the theorem is to check that the
(weak) characteristic triple of the infinitely divisible stochastic process defined as
the integral on the right-hand side of (3.54) (and given in Theorem 3.3.10) coincides
with the characteristic triple of the process

�
X.t/; t 2 T

�
. First of all, for t1; t2 2 T ,

Z

S
f .t1; x/f .t2; x/�2.x/m.dx/ D

Z

Rt
x.t1/x.t2/ �.dx/ D EG.t1/G.t2/ ;

and so the Gaussian components in the two triples coincide. Trivially, �ıH�1 D �X,
which means that the Lévy measures in the two triples coincide as well. Finally, for
t 2 T ,

Z

S

�
f .t; x/b.x/C

Z 1

�1

�
ŒŒf .t; x/x�� � f .t; x/ŒŒx��

�

.x; dx/

�
m.dx/

D a.t/ �
Z

RT

�
ŒŒx.t/�� � x.t/

�
�X.dx/ D bX.t/ ;

which checks that the last components in the two triples are the same, and the proof
is complete. �

Example 3.3.13. Centered Gaussian processes as integrals with respect to a cen-
tered Gaussian measure Let M be a centered Gaussian measure on S with control
measure m, and T a parameter space. Suppose that for each t 2 T , a function f .t; �/ 2
L2.m/ is given. Generalizing Example 3.3.6, we observe that by Theorem 3.3.10,
X.t/ D I

�
f .t; �/�; t 2 T , is a centered Gaussian process with covariance function

given by (3.51).

Example 3.3.14. Symmetric ˛-stable processes as integrals with respect to a
symmetric ˛-stable measure Let M be an S˛S random measure on S with a modified
control measure Qm, and T a parameter space. Suppose now that for each t 2 T , a
function f .t; �/ 2 L˛. Qm/, 0 < ˛ < 2, is given. We can generalize Example 3.3.8
and define a stochastic process by X.t/ D I

�
f .t; �/�; t 2 T . By Theorem 3.3.10, this

process is an S˛S process with characteristic function satisfying

E exp

8
<

:
i

kX

jD1

jX.tj/

9
=

;
D exp

8
<

:
�
Z

S

ˇ̌
ˇ̌
ˇ̌

kX

jD1

jf
�
tj; s
�
ˇ̌
ˇ̌
ˇ̌

˛

Qm.ds/

9
=

;
(3.55)

for every k D 1; 2; : : :, t1; : : : ; tk, in T and real numbers 
1; : : : ; 
k. We leave the
verification to Exercise 3.8.20.

Using stochastic integrals with respect to infinitely divisible random measures,
we can define new infinitely divisible random measures, as described in the
following proposition.
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Proposition 3.3.15. Let M be an infinitely divisible random measure on .S;S/ with
a Gaussian variance measure � , a Lévy measure �, and a shift measure ˇ, and
f W S ! R a measurable function. Let

QS0 D
n
B 2 S W f 1.� 2 B/ 2 L0.M/

o
:

Then

Mf .B/ D
Z

B
f .s/M.ds/; B 2 QS0

is an infinitely divisible random measure on .S;S/ with a Gaussian variance
measure Q� , a Lévy measure Q�, and a shift measure Q̌, where

Q� � � with
d Q�
d�
.s/ D f .s/2 ;

the measure Q� is the restriction to S � �R n f0g� of the measure � ı F�1 with

F W S � �R n f0g� ! S � R given by F.s; x/ D �
s; xf .s/

�
;

and Q̌ D Q̌
1 C Q̌

2, where

Q̌
1 � ˇ with

d Q̌
1

dˇ
.s/ D f .s/

and Q̌
2 is a signed measure on S defined by

Q̌
2.B/ D

Z

B

Z 1

�1

�
ŒŒf .s/x�� � f .s/ŒŒx��

�
�.ds; dx/; B 2 QS0:

Remark 3.3.16. In order to simplify the notation in defining the measure Q�2 in the
proposition, we used the letter � to denote the obvious extension of the measure �
to S � R. Note that the proposition simply says that for every set B 2 QS0, we have

Q�.B/ D
Z

B
f .s/2 �.ds/ (3.56)

and

Q̌.B/ D
Z

B
f .s/ ˇ.ds/C

Z

B

Z 1

�1

�
ŒŒf .s/x�� � f .s/ŒŒx��

�
�.ds; dx/ : (3.57)

Proof of Proposition 3.3.15. Let m be the control measure of the infinitely divisible
random measure M and let

�
�2.s/; 
.s; �/; b.s/

�
, s 2 S, be its local characteristics.

By Theorem 3.3.10,
�
Mf .B/; B 2 QS0

�
is an infinitely divisible process with a weak

characteristic triple
� Q†; Q�; Qb� given as follows. For any sets B1; B2 2 QS0,
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Q†�Mf .B1/; Mf .B2/
� D

Z

S

�
f .s/1.s 2 B1/

��
f .s/1.s 2 B2/

�
�2.s/m.ds/

D
Z

B1\B2

f .s/2�2.s/m.ds/ D
Z

B1\B2

f .s/2 �.ds/ D Q�.B/ :

Further, if H W S � R ! R
QS0 is given by H.s; x/ D �

xf .s/1.s 2 B/; B 2 QS0
�

for
s 2 S; x 2 R, and if ˆ is as in (3.17), then

Q� D � ı H�1 D Q� ıˆ�1 :

Finally, for every set B 2 QS0,

Qb.B/ D
Z

S

�
f .s/1.s 2 B/b.s/

C
Z 1

�1

�
ŒŒf .s/1.s 2 B/x�� � f .s/1.s 2 B/ŒŒx��

�

.s; dx/

�
m.ds/

D Q̌
1.B/C Q̌

2.B/:

Since the measure

Qm0.B/ WD
Z

B

Z

Rnf0g
ŒŒx��2 Q�.ds; dx/ D

Z

B

Z

Rnf0g
ŒŒxf .s/��2 Q�.ds; dx/; B 2 S

is � -finite because the measure m0 in (3.14) is, the statement of the proposition will
follow once we check that

QS0 D
n
B W Q�.B/C k Q̌k.B/C Qm0.B/ < 1

o
:

This last statement, however, follows immediately from the description of L0.M/ in
Theorem 3.3.2. �

Combining Proposition 3.3.15 with examples 3.3.13 and 3.3.14 leads to the
following useful corollary.

Corollary 3.3.17. (i) Let M be a centered Gaussian measure on S with control
measure m, and f W S ! R a measurable function. Let

QS0 D
n
B 2 S W

Z

B
f .s/2 m.ds/ < 1

o
:

Then
�
Mf .B/; B 2 QS0

�
is a centered Gaussian measure on S with control

measure Qm � m and d Qm=dm D f 2.
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(ii) Let M me an S˛S random measure on S with a modified control measure m, and
f W S ! R a measurable function. Let

QS0 D
n
B 2 S W

Z

B
jf .s/j˛ m.ds/ < 1

o
:

Then
�
Mf .B/; B 2 QS0

�
is an S˛S random measure on S with modified control

measure Qm � m and d Qm=dm D jf j˛ .

Intuitively, one can view the relation between infinitely divisible random mea-
sures M and Mf in Proposition 3.3.15 as the relation of absolute continuity, with
f serving as the “derivative.” With this point of view, the following proposition is
completely expected.

Proposition 3.3.18. Let M, f , and Mf be as in Proposition 3.3.15. Let g W S ! R

be a measurable function. Then g 2 L0.Mf / if and only if fg 2 L0.M/, and in that
case,

Z

S
g.s/Mf .ds/ D

Z

S
f .s/g.s/M.ds/ a.s.

Proof. The fact that g 2 L0.Mf / if and only if fg 2 L0.M/ follows from the
description of the two L0 spaces in Theorem 3.3.2.

Let now g 2 L0.Mf /. For n � 1, let gn be the simple function defined on the basis
of g as in (3.50).

By part (iv) of Theorem 3.3.2, we know that

Z

S
gn.s/Mf .ds/ !

Z

S
g.s/Mf .ds/;

Z

S
f .s/gn.s/M.ds/ !

Z

S
f .s/g.s/M.ds/

in probability as n ! 1. However, each gn is a simple function of the form gn.s/ DPk
jD1 aj1.s 2 Bj/ for some k � 1, real numbers .aj/, and measurable sets .Bj/ such

that 1.� 2 Bj/ 2 L0.Mf / and f 1.� 2 Bj/ 2 L0.M/ for each j. Therefore,

Z

S
gn.s/Mf .ds/ D

kX

jD1
ajMf .Bj/ D

kX

jD1
aj

Z

Bj

f .s/M.ds/

D
Z

S
f .s/

kX

jD1
aj1.s 2 Bj/M.ds/ D

Z

S
f .s/gn.s/M.ds/ ;

and the claim follows. �
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3.4 Series Representations

An infinitely divisible stochastic process without a Gaussian component has only a
Poisson component. Such a process has representations, often explicit, as an infinite
series involving the standard Poisson arrivals as well as an independent of them
sequence of i.i.d. random vectors. Representations of this kind are often very helpful
in understanding the structure of infinitely divisible processes and their properties.
In this section, we present an introduction to such representations. A full discussion
can be found in Rosiński and Samorodnitsky (2016).

We begin by introducing the notation that is standard in series representations
of infinitely divisible stochastic processes. Let �1; �2; : : : be the ordered points of
a unit-rate Poisson process on .0;1/. In queuing applications, it is common to use
the terminology “arrival times” or “Poisson arrivals,” and we will use these terms
interchangeably. Note that

�n D e1 C : : :C en; n D 1; 2; : : : ;

where .ej/ is a sequence of i.i.d. standard exponential random variables.
Let T be an arbitrary parameter space, and let .E; E/ be a measurable space.

Given a family of measurable functions H.tI �/ W .0;1/ � E ! R, t 2 T , we define
a stochastic process

X.t/ D
1X

nD1
H.tI�n;Yn/; t 2 T ; (3.58)

where .Yn/ is a sequence of i.i.d. E-valued random variables independent of
the Poisson arrivals .�n/. Of course, the functions H.tI �/ must satisfy certain
assumptions to make sure that the series in (3.58) converge. If the series converges,
then the process .X.t/; t 2 T/ is automatically infinitely divisible, and it is possible
to represent its characteristic triple through the functions H.tI �/ and the law of a
generic representative Y of the sequence .Yn/. In this case, one views the right-hand
side of (3.58) as a series representation of the infinitely divisible stochastic process
on the left-hand side. A given infinitely divisible stochastic process has, generally,
multiple series representations.

The following theorem gives sufficient conditions for convergence in (3.58).

Theorem 3.4.1. Let H W .0;1/ � E ! R be a measurable function. If

Z 1

0

E
�
ŒŒH.x;Y/��

�2
dx < 1 and

Z 1

0

ˇ
ˇE
�
ŒŒH.x;Y/��

�ˇˇ dx < 1 ;

then the series

X D
1X

nD1
H.�n;Yn/ (3.59)
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converges a.s. Further, X is infinitely divisible, with a characteristic triplet
.�2; �; b/, where � D 0, the Lévy measure is given by

�.B/ D
Z 1

0

P
�
H.x;Y/ 2 B n f0g/ dx; B Borel ; (3.60)

and

b D
Z 1

0

E
�
ŒŒH.x;Y/��

�
dx : (3.61)

Proof. In order to prove the a.s. convergence of the series (3.59), we would like to
use the three series theorem, Theorem 10.7.6. However, the latter applies to series
of independent random variables, while the series in (3.59) is not, generally, a series
of independent random variables due to the dependence introduced by the Poisson
arrival sequence. To overcome this difficulty, we first condition on that sequence.
Formally, we may assume that the underlying probability space is a product space,�
�;F ;P

� D �
�1 � �2;F1 � F2;P1 � P2

�
, and the Poisson arrival sequence .�n/

lives on �1, while the i.i.d. sequence .Yn/ lives on �2. By Fubini’s theorem, the
a.s. convergence of the series (3.59) will follow from its P2-a.s. convergence for
P1-a.e. !1 2 �1, which we now proceed to prove. Note that for a fixed !1 2 �1, the
series (3.59) is a series of independent random variables, so the three series theorem
applies.

We begin with the first series in Theorem 10.7.6. Choosing c D 1=2, we use the
Markov inequality to write

1X

nD1
P2
�jH.�n.!1/;Y/j > 1=2

� D
1X

nD1
P2
�jŒŒH.�n.!1/;Y/��j > 1=2

�

� 4

1X

nD1
E2
�
ŒŒH.�n.!1/;Y/��

2
�
:

In order to prove that the last sum is finite P1-a.s., it is enough to check that its
expectation is finite. However, by Fubini’s theorem, since the nth Poisson arrival
has the gamma distribution with n degrees of freedom, we have

E1

1X

nD1
E2
�
ŒŒH.�n.!1/;Y/��

2
� D

1X

nD1

Z 1

0

E2
�
ŒŒH.x;Y/��2

� xn�1

.n � 1/Še
�x dx

D
Z 1

0

E
�
ŒŒH.x;Y/��2

�
dx < 1;

by an assumption of the theorem.
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For the second series in Theorem 10.7.6, also with c D 1=2, we have

1X

nD1
E2
�

H.�n.!1/;Y/1
�jH.�n.!1/;Y/j � 1=2

��

D
1X

nD1
E2
�
ŒŒH.�n.!1/;Y/��1

�jH.�n.!1/;Y/j � 1=2
��

D
1X

nD1

h
E2
�
ŒŒH.�n.!1/;Y/��

� � E2
�
ŒŒH.�n.!1/;Y/��1

�jH.�n.!1/;Y/j > 1=2
��i

:

Note that
1X

nD1

ˇ̌
ˇE2
�
ŒŒH.�n.!1/;Y/��1

�jH.�n.!1/;Y/j > 1=2
��ˇ̌
ˇ

�
1X

nD1
P2
�jH.�n.!1/;Y/j > 1=2

�
< 1

on a subset of �1 of P1-probability 1, as we have already proved. Therefore, it is
enough to prove that

1X

nD1

ˇ̌
E2
�
ŒŒH.�n.!1/;Y/��

�ˇ̌
< 1

on a subset of �1 of P1-probability 1 as well. Taking as before an expectation with
respect to P1, we obtain by the second assumption of the theorem,

E1

1X

nD1

ˇ̌
E2
�
ŒŒH.�n.!1/;Y/��

�ˇ̌ D
1X

nD1

Z 1

0

ˇ̌
E2
�
ŒŒH.x;Y/��

�ˇ̌ xn�1

.n � 1/Še
�x dx

D
Z 1

0

ˇ̌
E
�
ŒŒH.x;Y/��

�ˇ̌
dx < 1 ;

as required. Finally, convergence of the third series in Theorem 10.7.6 follows from
what we have already proved, since

1X

nD1
Var2

�
H.�n.!1/;Y/1

�jH.�n.!1/;Y/j � 1=2
��

�
1X

nD1
E2
h�

H.�n.!1/;Y/1
�jH.�n.!1/;Y/j � 1=2

��2i

�
1X

nD1
E2
�
ŒŒH.�n.!1/;Y/��

2
�
< 1

on a subset of �1 of P1-probability 1.
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Now that we have proved that the series in (3.59) converges with probability 1,
we can write

X D lim
w!1

X

nW�n�w

H.�n;Yn/

in the sense of almost sure, hence also distributional, convergence. Let Xw be the
random variable under the limit. We can write, in distribution,

Xw D
KwX

kD1
H.Uk;Yk/ ;

where .Un/ is an i.i.d. sequence of random variables uniformly distributed between
0 and w, Kw has the Poisson distribution with mean w, and .Un/, .Yn/ and K
are independent; see Exercise 3.8.19. That is, Xw is a compound Poisson random
variable, so that

Ei
Xw D exp

	Z w

0

Z

E

�
ei
H.x;s/ � 1 � i
ŒŒH.x; s/��

�
FY.ds/ dx

Ci

Z w

0

Z

E
ŒŒH.x; s/��FY.ds/ dx

�
I

see Example 3.1.1. Here FY is the law of Y1 on E. As w ! 1, the characteristic
function on the left-hand side converges to the characteristic function of X, while
the assumptions of the theorem guarantee that the expression on the right-hand side
converges to

exp

	Z 1

0

Z

E

�
ei
H.x;s/ � 1 � i
ŒŒH.x; s/��

�
FY.ds/ dx

Ci

Z 1

0

Z

E
ŒŒH.x; s/��FY.ds/ dx

�

D exp

	Z 1

�1

�
ei
z � 1 � i
ŒŒz��

�
�.dz/C i
b

�

with � and b given by (3.60) and (3.61) respectively. This completes the proof. �

The following is a consequence of Theorem 3.4.1. It can be proved using linearity
in the same manner as in the proof of Theorem 3.3.10.

Corollary 3.4.2. Let H.tI �/ W .0;1/ � E ! R, t 2 T, be a family of measurable
functions. Assume that for every t 2 T,

Z 1

0

E
�
ŒŒH.tI x;Y/��

�2
dx < 1 and

Z 1

0

ˇ̌
E
�
ŒŒH.tI x;Y/��

�ˇ̌
dx < 1 : (3.62)
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Then the .X.t/; t 2 T/ in (3.58) is a well-defined infinitely divisible stochastic
process with a weak characteristic triple

�
†X; �X;bX

�
, where †X vanishes, while

�X D .� � FY/ ı H�1

and

bX.t/ D
Z 1

0

E
�
ŒŒH.tI x;Y/��

�
dx; t 2 T :

Here FY is the law of Y1 on E, and H W .0;1/�E ! R
T is defined by the collection

H.tI �/ W .0;1/ � E ! R, t 2 T.

One of the very useful types of series representations of infinitely divisible
processes is obtained as series representations of processes given as stochastic
integrals with respect to infinitely divisible random measures. We now present one
such representation. We restrict ourselves to the integrals with respect to symmetric
infinitely divisible random measures.

Let M be a symmetric infinitely divisible random measure on S without a
Gaussian component, with control measure m. Recall that this means that the local
Gaussian variances vanish and that b.s/ D 0 and 
.s; �/ is a symmetric measure for
m-a.e. s 2 S. Suppose that .f .t; �/; t 2 T/ is a family of measurable functions on T
such that

Z

S

Z

R

ŒŒf .tI s/x��2 
.s; dx/m.ds/ < 1 for each t 2 T . (3.63)

By Theorem 3.3.2, each function f .t; �/ is in the space L0.M/ of integrable functions;
hence the stochastic process

X.t/ D
Z

S
f .t; s/M.ds/; t 2 T ; (3.64)

is a well-defined symmetric infinitely divisible process. Its series representation can
be obtained as follows. Let � be a probability measure on S equivalent to the control
measure m. Then

r.s/ D dm

d�
.s/; s 2 S ; (3.65)

is a strictly positive (on a set of full measure m) function, and


r.s; �/ D r.s/
.s; �/ (3.66)

is, for each s 2 S, a symmetric one-dimensional Lévy measure. We define its
generalized inverse by

G.x; s/ D inf
˚
y > 0 W 
r

�
s; .y;1/

� � x=2
�
; x > 0 : (3.67)
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Theorem 3.4.3. Let ."n/ be a sequence of i.i.d. Rademacher random variables (i.e.,
random variables taking values ˙1 with probability 1=2 each), and let .Yn/ be a
sequence of i.i.d. S-valued random variables with a common law � . Let .�n/ be a
sequence of standard Poisson arrivals on .0;1/. All three sequences are assumed
to be independent. Then

Y.t/ D
1X

nD1
"nG.�n;Yn/f .t;Yn/; t 2 T ; (3.68)

is a well-defined stochastic process equal in its finite-dimensional distributions to
the process .X.t/; t 2 T/ in (3.64).

Proof. We begin by checking the conditions (3.4.2) with E D f�1; 1g � S,
H.tI x; .y; s// D y G.x; s/f .t; s/, t 2 T; x > 0; y 2 f�1; 1g, and s 2 S. Since
E
�
ŒŒH.tI x; ."1;Y1/��

� D 0 by symmetry for every t 2 T and x > 0, only the first
condition in (3.4.2) needs to be verified. Note that for a fixed s 2 S,

�
�fx > 0 W G.x; s/ > zg� D 2
r

�
s; .z;1/

�
; z > 0 : (3.69)

Therefore, using Fubini’s theorem and changing the variable of integration, we
obtain

Z 1

0

E
�
ŒŒH.tI x; ."1;Y1//��

�2
dx D E

�Z 1

0

ŒŒG.x;Y1/f .t;Y1/��
2 dx

�

D 2E

�Z 1

0

ŒŒf .t;Y1/z��
2 
r.Y1; dz/

�

D 2

Z

S

Z 1

0

ŒŒf .t; s/z��2 
r.s; dz/ �.ds/ D
Z

S

Z

R

ŒŒf .t; s/z��2 
.s; dz/m.ds/ < 1

for every t 2 T by (3.63). This verifies the assumptions of Corollary 3.4.2 and shows
that .Y.t/; t 2 T/ is a well-defined symmetric infinitely divisible stochastic process.
If B is a cylindrical set in R

T , then the corollary tells us that the mass assigned by a
weak Lévy measure of the process to the set B is

1

2
.� � �/�f.x; s/ W G.x; s/f .�; s/ 2 Bg�C 1

2
.� � �/�f.x; s/ W G.x; s/f .�; s/ 2 �Bg� :

Appealing to (3.69), we see that this is also equal to

Z

S

Z 1

0

1
�
xf .�; s/ 2 B/ 
r.s; dx/ �.ds/C

Z

S

Z 1

0

1
�
xf .�; s/ 2 �B/ 
r.s; dx/ �.ds/

D
Z

S

Z

R

1
�
xf .�; s/ 2 B/ 
.s; dx/m.ds/ ;
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which is, by Theorem 3.3.10, the weight a weak Lévy measure of the process
.X.t/; t 2 T/ assigns to the set B. Therefore, the two processes have the same finite-
dimensional distributions. �

Example 3.4.4. Let M be an S˛S random measure on S with a modified control
measure Qm. Let .f .t; �/; t 2 T/ be a family of measurable functions on T such that
f .t; �/ 2 L˛. Qm/ for each t 2 T . Then the stochastic process .X.t/; t 2 T/ in (3.64) is
a well-defined S˛S process; see Example 3.3.14.

Let � be a probability measure on S equivalent to Qm. Define

Qr.s/ D d Qm
d�
.s/; s 2 S :

We apply Theorem 3.4.3. A straightforward calculation shows that

G.x; s/ D .2C˛/
1=˛ Qr.s/1=˛x�1=˛ for x > 0 and s 2 S.

Therefore, a series representation (in law) of the S˛S process .X.t/; t 2 T/ is
given by

X.t/ D .2C˛/
1=˛

1X

nD1
"n�
�1=˛
n Qr.Yn/

1=˛f .t;Yn/; t 2 T : (3.70)

Certain other representations of S˛S processes of the previous example are
indicated in Exercise 3.8.14.

3.5 Examples of Infinitely Divisible Self-Similar Processes

A stochastic process
�
X.t/; t 2 T

�
with T D Œ0;1/ or T D R is called self-similar

if for some H 2 R,

�
X.ct/; t 2 T

� dD �
cHX.t/; t 2 T

�
(3.71)

in the sense of equality of the finite-dimensional distributions for every c > 0.
The number H is the exponent of self-similarity. Some of the best-known examples
of stochastic processes regarded as long-memory processes are the increment
processes of certain self-similar processes with stationary increments. In turn,
the best-known of the latter processes are infinitely divisible. In this section, we
present several examples of infinitely divisible self-similar processes with stationary
increments by constructing them as stochastic integrals defined in the previous
section. The general theory of self-similar processes will be discussed in Chapter 8.
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Example 3.5.1. Fractional Brownian motion A fractional Brownian motion, com-
monly abbreviated FBM, is the most famous self-similar process with stationary
increments. Let Qt D �

Qt.x/; x 2 R
�
; t 2 R, be a family of kernels on R with

Qt 2 L2
�
�; R

�
for t 2 R (recall that � is the one-dimensional Lebesgue measure)

satisfying the following conditions: for all s; t and c > 0,

Qt.x/ � Qs.x/ D Qt�s.x � s/; Qct.cx/ D cH�1=2Qt.x/; (3.72)

up to a set of Lebesgue measure zero, where H is a real number. Let B D �
B.x/;

x 2 R
�

be the standard Brownian motion, which we view as a Gaussian random
measure on R with the Lebesgue Gaussian variance measure (Example 3.2.3). The
stochastic process

X.t/ D
Z

R

Qt.x/B.dx/; t 2 R; (3.73)

is a well-defined zero-mean Gaussian process. Notice that for every c > 0, by (3.72)
and Exercise 3.8.17,

�
X.ct/; t 2 R

� D
�Z

R

Qct.x/B.dx/; t 2 R

�

D
�Z

R

cH�1=2Qt
�
c�1x

�
B.dx/; t 2 R

�
dD
�

cH
Z

R

Qt.x/B.dx/; t 2 R

�

D �
cHX.ct/; t 2 R

�
;

and so the process (3.73) is self-similar with exponent H. Similarly, for every s > 0,
by (3.72) and Exercise 3.8.16,

�
X.t C s/ � X.s/; t 2 R

� D
�Z

R

�
QtCs.x/ � Qs.x/

�
B.dx/; t 2 R

�

D
�Z

R

Qt.x � s/B.dx/; t 2 R

�
dD
�Z

R

Qt.x/B.dx/; t 2 R

�
D �

X.t/; t 2 R
�
:

Therefore, the process (3.73) has stationary increments. We will see in Section 8.2
that up to a scale change, there is only one self-similar Gaussian process with
stationary increments, and this process is called a fractional Brownian motion.
Therefore, the process (3.73) is, in fact, a fractional Brownian motion.

We will also see in the sequel that the only possible range of the exponent of
self-similarity is 0 � H � 1 (unless the process is the trivial zero process), and if
the process is continuous in probability (or only measurable), then the value H D 0

is impossible. Furthermore, the only such process with H D 1 is the trivial straight
line process X.t/ D tX.1/ a.s. for each t 2 R. Therefore, kernels not identically
equal to zero satisfying (3.72) do not exist outside of the above range, and only in
the range 0 < H < 1 can nontrivial processes appear. In the above range, however,
a number of kernels possess property (3.72). If H 6D 1=2, one choice is
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gt.c1; c2I HI x/ D c1
h�
.t � x/C

�H�1=2 � �
.�x/C

�H�1=2i
(3.74)

Cc2
h�
.t � x/�

�H�1=2 � �
.�x/�

�H�1=2i
;

where 0a is interpreted as 0 for all a 2 R, and c1; c2 are real constants. It is
elementary to check that this kernel has the required properties. Using kernel (3.74)
leads to the so-called moving-average representations of the fractional Brownian
motion. When H D 1=2, a fractional Brownian motion is just a Brownian motion,
but using the kernel in (3.74) with H D 1=2 produces the zero process. Nontrivial
moving-average representations of a Brownian motion can be obtained using the
kernel

gt.c1; c2I 1=2I x/ WD c1
�
1Œ0;t�.x/ � 1Œt;0�.x/

�C c2
�
log jt � xj � log jxj� ; (3.75)

where c1; c2 are real constants. (It is transparent that kernel (3.75) with c2 D 0

produces a Brownian motion, but the above discussion shows that the same is true
in general.) Another well-known kernel is given as follows. Let 1=2 < � < 1. For
0 < H < 1, H 6D 3=2 � � , the kernel

Qt.x/ D
Z 1

x
.v � x/��

�jvjHC��3=2 � jv � tjHC��3=2�dv; x 2 R; (3.76)

for t � 0 is in L2
�
�; R

�
and satisfies (3.72). We will see in the sequel that there

are natural generalizations of (3.76) to a family of functions on R
d that lead to self-

similar processes with stationary increments that can be written as multiple integrals
with respect to a Brownian motion. However, it turns out that the kernel (3.76) is
actually a special case of the kernel (3.74) if H 6D 1=2, and of (3.75) if H D 1=2, as
is, in fact, every kernel satisfying (3.76) and additional mild regularity assumptions;
see Exercise 3.8.22.

One can also represent a fractional Brownian motion as a stochastic integral
without using kernels of the type (3.72). For example, let Bj D �

Bj.x/; x > 0
�
,

j D 1; 2, be independent standard Brownian motions. The stochastic process

X.t/ D
Z 1

0

1 � cos tx

xHC1=2 B1.dx/C
Z 1

0

sin tx

xHC1=2 B2.dx/; t 2 R; (3.77)

is, for 0 < H < 1, a well-defined zero-mean Gaussian process. By Theorem 3.3.10,
its incremental variance is

E
�
X.t/ � X.s/

�2 D
Z 1

0

�
cos sx � cos tx

�2

x2HC1 dx C
Z 1

0

�
sin tx � sin sx

�2

x2HC1 dx

D
Z 1

0

2
�
1 � cos

�
.t � s/x

��

x2HC1 dx D cjt � sj2H ;
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where

c D 2

Z 1

0

1 � cos x

x2HC1 dx :

As we will see in Section 8.2, this means that
�
X.t/; t 2 R

�
is a fractional Brownian

motion.
A more direct argument, using the properties of the integral, is also possible.

The self-similarity with exponent H of the process defined in (3.77) follows using
Exercise 3.8.17 in the same manner as above. Let us check the stationarity of the
increments. For s > 0, by the linearity of the integral,

�
X.t C s/ � X.s/; t 2 R

�

D
 Z 1

0

cos sx� cos
�
.tCs/x

�

sHC1=2 B1.dx/C
Z 1

0

sin
�
.tCs/x

�� sin tx

xHC1=2 B2.dx/; t 2 R

!

D
 Z 1

0

cos sx � �
cos tx cos sx � sin tx sin sx

�

sHC1=2 B1.dx/

C
Z 1

0

�
sin tx cos sx C cos tx sin sx

� � sin tx

xHC1=2 B2.dx/; t 2 R

!

D
�Z 1

0

1 � cos tx

xHC1=2 cos sx B1.dx/ �
Z 1

0

1 � cos tx

xHC1=2 sin sx B2.dx/

C
Z 1

0

sin tx

xHC1=2 sin sx B1.dx/C
Z 1

0

sin tx

xHC1=2 cos sx B2.dx/; t 2 R

�
:

For a Borel subset B of .0;1/ with a finite Lebesgue measure, let

M1.B/ D
Z

B
cos sx B1.dx/ �

Z

B
sin sx B2.dx/ ;

M2.B/ D
Z

B
sin sx B1.dx/C

Z

B
cos sx B2.dx/ :

It follows from Corollary 3.3.17 and Proposition 3.2.7 that M1 and M2 are centered
Gaussian random measures with the Lebesgue control measure each. Moreover, M1

and M2 are independent; see Exercise 3.8.21. Proposition 3.3.18 gives us
�

X.t C s/ � X.s/; t 2 R
�

dD
�Z 1

0

1 � cos tx

xHC1=2 M1.dx/C
Z 1

0

sin tx

xHC1=2 M2.dx/; t 2 R

�
dD �

X.t/; t 2 R
�
;

and so the process in (3.77) has stationary increments.
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The representation of a fractional Brownian motion given in (3.77) is its so-called
harmonizable representation.

In the remainder of this section, we will consider self-similar symmetric ˛-stable
processes with stationary increments, 0 < ˛ < 2. Such processes are often referred
to as fractional S˛S motions. We will see in the sequel that the only interesting range
of the exponent H of self-similarity of such a process is

H 2
	 �
0; 1=˛� if 0 < ˛ � 1;�
0; 1/ if 1 < ˛ < 2:

(3.78)

In a notable departure from the Gaussian case, where the only self-similar centered
Gaussian process with stationary increments is a fractional Brownian motion, for
“most” of the feasible pairs .˛;H/ of the exponents of stability and self-similarity,
there exist many (substantially) different fractional S˛S motions with exponent H
of self-similarity.

Most of the known fractional S˛S motions are represented as stochastic integrals
with respect to S˛S random measures. Often, one starts with an integral representa-
tion of a fractional Brownian motion and modifies it in an appropriate way.

Example 3.5.2. Linear fractional symmetric stable motions Let Qt D �
Qt.x/;

x 2 R
�
; t 2 R, be a family of kernels on R with Qt 2 L˛

�
�; R

�
for t 2 R, satisfying

the following conditions: for all s; t and c > 0,

Qt.x/ � Qs.x/ D Qt�s.x � s/; Qct.cx/ D cH�1=˛Qt.x/; (3.79)

up to a set of Lebesgue measure zero, where H is a real number (note the similarity
to (3.72)). The number H has to be in a subset of the range described by (3.78). Let
L D �

L.x/; x 2 R
�

be the unit-scale S˛S motion, which we now view as an S˛S
random measure on R with the Lebesgue modified control measure (Example 3.2.3).
The stochastic process

X.t/ D
Z

R

Qt.x/L.dx/; t 2 R; (3.80)

is a well-defined S˛S process. The same arguments as in the case of the fractional
Brownian motion shows that the process (3.80) is self-similar with exponent H and
has stationary increments.

Let 0 < H < 1. If we exclude the value H D 1=˛ (possible if 1 < ˛ < 2), then
a kernel satisfying the above properties is the following modification of (3.74):

gt.c1; c2I HI x/ D c1
h�
.t � x/C

�H�1=˛ � �
.�x/C

�H�1=˛i
(3.81)

Cc2
h�
.t � x/�

�H�1=˛ � �
.�x/�

�H�1=˛i
;
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where once again, c1; c2 are real constants. If 1 < ˛ < 2 and H D 1=˛,
then the kernel (3.75) has the required properties in the stable case as well.
Using kernels (3.81) and (3.75) leads to the so-called linear fractional stable
motions. Notice the difference in terminology between the Gaussian and stable
cases. In the Gaussian case, different kernels lead to different representations of
the same fractional Brownian motion, and our terminology reflects that. In the
˛-stable case, 0 < ˛ < 2, different kernels (or even different parameters in
the same kernel) typically lead to different processes, and we have changed the
terminology accordingly.

As in the Gaussian case, every kernel satisfying (3.79) and mild regularity
assumptions reduces to the form (3.81) or (3.75), with parameters c1 and c2
depending on the kernel. To see this, one needs an obvious modification of
Exercise 3.8.22. An example is the following extension of (3.76) to the case
1 < ˛ < 2: for 0 < H < 1, 1=˛ < � < 1 such that � 6D 1 C 1=˛ � H, the
kernel

Qt.x/ D
Z 1

x
.v � x/��

�jvjHC��1�1=˛ � jv � tjHC��1�1=˛�dv; x 2 R; (3.82)

for t � 0 is in L˛
�
�; R

�
. It also clearly satisfies (3.79) (and hence has to be of the

form (3.81) or (3.75), with parameters c1 and c2 depending on � ).
Recall that in the Gaussian case, all the different choices of the parameters c1 and

c2 in (3.74) and (3.75) led to the same (up to a multiplicative constant) fractional
Brownian motion. The situation is very different in the ˛-stable case, 0 < ˛ < 2, as
the following proposition shows.

Proposition 3.5.3. Let 0 < H < 1, and let
�
Xi.t/; t 2 R

�
, i D 1; 2, be two linear

fractional stable motions corresponding to (3.81) and (3.75) with the respective

choices of the constants
�
c.i/1 ; c

.i/
2

�
, i D 1; 2. Then

�
X1.t/; t 2 R

� dD �
X2.t/; t 2 R

�
if

and only if for some " 2 f�1; 1g, c.1/1 D "c.2/1 and c.1/2 D "c.2/2 .

Proof. Only the necessity has to be proved. Let
�
X1.t/; t 2 R

� dD �
X2.t/; t 2 R

�
.

The measures �X1 and �X2 given by (3.52) for the two processes (based on the
integral representation (3.80) with the kernel (3.74) and (3.75)) are Lévy measures
on R

R (see Exercise 3.8.18). Hence, by the uniqueness statement of Theorem 3.1.7,
we must have

�X1 D �X2 : (3.83)

Suppose first that H 6D 1=˛. Notice that by (3.52), for every a; b > 0, for i D 1; 2,

�Xi

�
 2 R

R W  0.0/ 0.1/ < 0; lim
n!1

 .2n/ �  .n/
nH�1=˛ exists and is greater than a;
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lim
n!1

 .�2n/ �  .�n/

nH�1=˛ exists and is greater than b

�

D C˛
�
2H�1=˛ � 1

�˛
min

�ˇ
ˇc.i/1

ˇ
ˇ˛a�˛;

ˇ
ˇc.i/2

ˇ
ˇ˛b�˛

�

if c.i/1 c.i/2 > 0, and the measure is equal to zero if c.i/1 c.i/2 � 0 (see (3.31)).

If c.1/1 c.1/2 > 0, then it follows from (3.83) that c.2/1 c.2/2 > 0 as well, and letting

a ! 0 or b ! 0, we obtain the statement of the proposition. If c.1/1 c.1/2 � 0, then it

follows from (3.83) that c.2/1 c.2/2 � 0 as well. In the case c.1/1 c.1/2 < 0, we obtain the
statement of the proposition by looking at

�Xi

�
 2 R

R W  0.0/ 0.1/ < 0; lim
n!1

 .2n/ �  .n/
nH�1=˛ exists and is greater than a;

lim
n!1

 .�2n/ �  .�n/

nH�1=˛ exists and is less than �b

�
:

We leave it to the reader to consider the final case c.1/1 c.1/2 D c.2/1 c.2/2 D 0

(Exercise 3.8.23).
If 1 < ˛ < 2 and H D 1=˛, we proceed in a similar manner. For every a; b > 0,

for i D 1; 2,

�Xi

�
 2 R

R W  0.0/ 0.1/ < 0; lim
n!1

�
 .2n/ �  .n/� exists and is greater than a;

lim
n!1

�
 .n/ �  .�n/

�
exists and is greater than b

�

D C˛ min
�ˇ̌

c.i/2
ˇ̌˛�

log 2
�˛

a�˛;
ˇ̌
c.i/1
ˇ̌˛

b�˛
�

if c.i/1 c.i/2 > 0, and the measure is equal to zero if c.i/1 c.i/2 � 0. Once again, if

c.1/1 c.1/2 > 0, then it follows from (3.83) that c.2/1 c.2/2 > 0 as well, and we obtain

the statement of the proposition by letting a ! 0 or b ! 0. If c.1/1 c.1/2 � 0 (and then

also c.2/1 c.2/2 � 0), we consider instead

�Xi

�
 2 R

R W  0.0/ 0.1/ < 0; lim
n!1

�
 .2n/ �  .n/� exists and is greater than a;

lim
n!1

�
 .n/ �  .�n/

�
exists and is less than �b

�
;

and the case c.1/1 c.1/2 D c.2/1 c.2/2 D 0 is left to Exercise 3.8.23. �

Example 3.5.4. Harmonizable fractional stable motion Let
�
�0;F 0;P0

�
be a

probability space supporting two measurable stochastic processes,
�
Gj.x/ D

Gj.!
0; x/; x > 0

�
; j D 1; 2, such that for each x, G1.x/ and G2.x/ are independent
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standard normal random variables. Let M be an S˛S infinitely divisible random
measure on �0 � .0;1/ with modified control measure P0 � �. The random
measure itself lives on some other probability space,

�
�;F ;P

�
, and so does the

stochastic process defined for 0 < H < 1 as

X.t/ D
Z

�0

Z 1

0

.1 � cos tx/G1.!
0; x/C sin tx G2.!

0; x/
xHC1=˛ M.d!0; dx/; t 2 RI

(3.84)
we are using the double integral notation instead of the more awkward

Z

�0�.0;1/
� � � M.d.!0; x// :

It is elementary that the process (3.84) is a well-defined S˛S process. It follows
from (3.55) that for all k D 1; 2; : : :, real numbers t1; : : : ; tk, and 
1; : : : ; 
k,

E exp

8
<

:
i

kX

jD1

jX.tj/

9
=

;
(3.85)

D exp

8
<

:
�E0

Z 1

0

ˇ̌
ˇ̌
ˇ̌

kX

jD1

j

�
1 � cos.tjx/

�
G1.x/C sin.tjx/G2.x/

xHC1=˛

ˇ̌
ˇ̌
ˇ̌

˛

dx

9
=

;

D exp

8
<

:
�
Z 1

0

E0
ˇ̌
ˇ̌
ˇ̌G1.x/

kX

jD1

j
�
1 � cos.tjx/

�C G2.x/
kX

jD1

j sin.tjx/

ˇ̌
ˇ̌
ˇ̌

˛

x�.˛HC1/ dx

9
=

;

D exp

8
ˆ̂<

ˆ̂:
�
Z 1

0

EjG1.1/j˛
2

6
4

0

@
kX

jD1

j
�
1 � cos.tjx/

�
1

A

2

C
0

@
kX

jD1

j sin.tjx/

1

A

2
3

7
5

˛=2

x�.˛HC1/ dx
�
:

Observe that the finite-dimensional distributions of the process
�
X.t/; t 2 R

�

defined in (3.84) do not depend on further properties of the processes
�
Gj.x/

x > 0
�
; j D 1; 2, apart from the fact that for each x, G1.x/ and G2.x/ are independent

standard normal random variables.
Applying (3.85), we see that for every c > 0,

E exp

8
<

:
i

kX

jD1

jX.ctj/

9
=

;
D E exp

8
<

:
i

kX

jD1

jc

HX.tj/

9
=

;
;

and so the process defined in (3.84) is self-similar with exponent H. Furthermore,
for s 2 R,
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X.t C s/ � X.s/ D
Z

�0

Z 1

0

�
cos sx� cos.tCs/x

�
G1.!

0; x/C�sin.tCs/x� sin sx
�

G2.!
0; x/

xHC1=˛ M.d!0; dx/

D
Z

�0

Z 1

0

.1 � cos tx/ QG1.!
0; x/C sin tx QG2.!

0; x/
xHC1=˛ M.d!0; dx/ ;

where

QG1.x/ D cos sx G1.x/ � sin sx G2.x/; QG2.x/ D sin sx G1.x/C cos sx G2.x/; x > 0:

Clearly, it is still true that for each x, QG1.x/ and QG2.x/ are independent standard
normal random variables. Therefore, the process

�
X.t C s/ � X.s/; t 2 R

�
has, for

each s, the same finite-dimensional distributions as the process
�
X.t/; t 2 R

�
, and

so the latter process has stationary increments.
The process

�
X.t/; t 2 R

�
defined in (3.84) is called the real harmonizable

S˛S motion, and it is an extension to the ˛-stable case of the harmonizable
representation (3.77), even though the two integrals do not quite look alike.

The real harmonizable fractional S˛S motion is a very different process from the
linear fractional S˛S motions of Example 3.5.2; see Section 3.6.

Example 3.5.5. FBM-local time fractional stable motions As in Example 3.5.4, we
begin with a probability space

�
�0;F 0;P0

�
. This time, we would like this probability

space to support a fractional Brownian motion
�
BH0.t/; t � 0

�
with exponent H0

of self-similarity and consequently also its jointly continuous local time process�
l.x; t/ D l.x; t/.!0/; x 2 R; t � 0

�
. The fact that

�
�0;F 0;P0

�
supports such a local

time process follows from Proposition 10.4.6.
Let M be an S˛S random measure on the space �0 � R with modified control

measure P0 � �. Once again, the random measure itself lives on some other
probability space,

�
�;F ;P

�
. We define

X.t/ D
Z

�0

Z

R

l.x; t/.!0/M.d!0; dx/; t � 0: (3.86)

The following proposition shows that this is, in fact, a well-defined S˛S process that
is also self-similar and has stationary increments.

Proposition 3.5.6. The process .X.t/; t � 0/ in (3.86) is a well-defined S˛S
process. It has stationary increments, and is self-similar with exponent

H D 1 � H0 C H0=˛ D 1C H0
�
1

˛
� 1

�
: (3.87)

Proof. To show that the process in (3.86) is well defined, we need to show that
Z

�0

Z

R

l.x; t/.!0/˛ P0.d!0/ dx D E0
Z

R

l.x; t/˛ dx < 1:
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By Proposition 10.4.3, Fubini’s theorem, and the Cauchy–Schwartz inequality, we
have

E0
Z

R

l.x; t/˛ dx D
Z

R

E0
�

l.x; t/˛1
�

sup
0�s�t

jBH0.s/j � jxj�
�

dx

�
Z

R

�
E0l.x; t/2˛

�1=2�
P
�

sup
0�s�t

jBH0.s/j � jxj�
�1=2

dx

�
�

sup
x2R

E0l.x; t/2˛
�1=2 Z

R

�
P
�

sup
0�s�t

jBH0.s/j � jxj�
�1=2

dx :

By Proposition 10.4.7, the first term on the right-hand side above is finite.
Furthermore, by the Borell-TIS inequality of Theorem 10.7.8, for all x with jxj large
enough,

P
�

sup
0�s�t

jBH0.s/j � jxj� � P
�ˇ̌

sup
0�s�t

jBH0.s/j � E sup
0�s�t

jBH0.s/jˇ̌ � jxj=2�

� 2 exp
˚�.x=2/2=2Var

�
BH0.t/

�� D 2 exp
˚�x2=8t2H0

�
;

and so the integral

Z

R

�
P
�

sup
0�s�t

jBH0.s/j � jxj�
�1=2

dx

is clearly finite. Therefore, the process in (3.86) is well defined.
Notice that by Proposition 10.4.6 and Theorem 10.7.8, fractional Brownian

motion satisfies the assumptions of parts (i) and (iii) of Proposition 10.4.8. In
particular, for c > 0; k � 1; 
1; : : : ; 
k 2 R and t1; : : : ; tk � 0, we can use
first (3.55) and then part (i) of Proposition 10.4.8 to obtain

E exp

0

@i
kX

jD1

jX.ctj/

1

A D exp

0

@�
Z

R

E0
ˇ̌
ˇ̌
ˇ̌

kX

jD1

jl.x; ctj/

ˇ̌
ˇ̌
ˇ̌

˛

dx

1

A

D exp

0

@�
Z

R

E0
ˇ̌
ˇ̌
ˇ̌

kX

jD1

jc

1�H0

l.
x

cH0

; tj/

ˇ̌
ˇ̌
ˇ̌

˛

dx

1

A

D exp

0

@�c˛.1�H0/E0
Z

R

ˇ̌
ˇ̌
ˇ̌

kX

jD1

jl.

x

cH0

; tj/

ˇ̌
ˇ̌
ˇ̌

˛

dx

1

A

D exp

0

@�c˛.1�H0/CH0

E0
Z

R

ˇ̌
ˇ
ˇ̌
ˇ

kX

jD1

jl.y; tj/

ˇ̌
ˇ
ˇ̌
ˇ

˛

dy

1

A
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D E exp

0

@i
kX

jD1

jc

1�H0CH0=˛X.tj/

1

A

D E exp

0

@i
kX

jD1

jc

HX.tj/

1

A :

Therefore, the process
�
X.t/; t � 0

�
in (3.86) is self-similar with exponent

of self-similarity given by (3.87). Next, using first (3.55) and then part (iii) of
Proposition 10.4.8, we see that for every h � 0 ; k � 1; 
1; : : : ; 
k 2 R and
t1; : : : ; tk � 0,

E exp

0

@i
kX

jD1

j.X.tj C h/ � X.h//

1

A

D exp

0

@�
Z

R

E0
ˇ̌
ˇ̌
ˇ̌

kX

jD1

j.l.x; tj C h/ � l.x; h//

ˇ̌
ˇ̌
ˇ̌

˛

dx

1

A

D exp

0

@�
Z

R

E0
ˇ̌
ˇ̌
ˇ̌

kX

jD1

jl.x; tj/

ˇ̌
ˇ̌
ˇ̌

˛

dx

1

A

D E exp

0

@i
kX

jD1

jX.tj/

1

A :

Therefore, the process (3.86) has stationary increments. �

Interestingly, the exponent of self-similarity of the FBM-local time fractional
stable motion (3.86) belongs to the range

8
<

:

H 2 �1; 1=˛� if 0 < ˛ < 1
H D 1 if ˛ D 1;

H 2 �1=˛; 1/ if 1 < ˛ < 2:

In spite of the fact that in the case ˛ D 1, all choices of H0 2 .0; 1/ of the exponent
of self-similarity of the underlying fractional Brownian motion lead to the same
value H D 1 of the exponent of self-similarity of the FBM-local time fractional
stable motion, the finite-dimensional distributions of the latter depend on the value
of H0; see Proposition 4.4 in Cohen and Samorodnitsky (2006).

The FBM-local time fractional stable motion turns out to be a very different
process from both the linear fractional S˛S motions of Example 3.5.2 and the
real harmonizable fractional S˛S motion of Example 3.5.4, as will be seen in
Section 3.6.
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3.6 Stationary Infinitely Divisible Processes

In this section, we discuss certain properties of stationary infinitely divisible pro-
cesses. We will use frequently the following notation. For t 2 R let 
t W R

R ! R
R

be defined by


t.x/.w/ D x.t C w/; w 2 R

for x D �
x.w/; w 2 R

�
. The shifts .
t; t 2 R/ define a group of measurable maps.

We begin with a basic structural result on stationary infinitely divisible processes.

Theorem 3.6.1. Let
�
X.t/; t 2 R

�
be an infinitely divisible process with a

characteristic triple
�
†;�;b

�
. Then the process X is stationary if and only if the

following conditions are satisfied:

†.s; t/ D R.t � s/; s; t 2 R (3.88)

for some nonnegative definite function R on R;

the function b is constant on R; (3.89)

� ı 
�1r D � for all r 2 R. (3.90)

Proof. For every r 2 R, the shifted process
�
X.t C r/; t 2 R

�
is clearly an infinitely

divisible process with a characteristic triple
�
†r; �r;br

�
given by

†r.s; t/ D †.s C r; t C r/; s; t 2 R; �r D � ı 
�1r ; br D 
r.b/ :

The process is stationary if and only if
�
†r; �r;br

� D �
†;�;b

�
for all r, which is

equivalent to the conditions (3.88), (3.89), and (3.90). �

Remark 3.6.2. It should be clear that the statement of Theorem 3.6.1 remains true
for an infinitely divisible process in discrete time,

�
Xn; n 2 Z

�
. In this case, all

the functions are defined on Z, and the shifts 
n W R
Z ! R

Z for n 2 Z are now
shifts of functions defined on the integers. We will set 
 D 
1, so that 
n D 
n for
each n 2 Z. In fact, in the rest of this section, we will deal mostly with stationary
infinitely divisible processes in discrete time.

Let
�
Xn; n 2 Z

�
be a stationary infinitely divisible process. Its Lévy measure �

is, by Theorem 3.6.1, invariant under the measure-preserving map 
 . It turns out
that it is useful to classify stationary infinitely divisible processes according to the
recurrence properties of this map as discussed in Section 2.4.

Definition 3.6.3. A stationary infinitely divisible process with Lévy measure �
is said to be generated by a conservative (respectively dissipative, null, positive)
flow if the shift 
 is a conservative (respectively dissipative, null, positive) map on�
R

Z;BZ; �
�
.
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The decomposition given in (2.44) immediately gives us the following result.

Theorem 3.6.4. Every stationary infinitely divisible process X D �
Xn; n 2 Z

�
can

be decomposed into a sum X D X.p/ C X.cn/ C X.d/ of three independent stationary
infinitely divisible processes such that X.p/ is generated by a positive flow, X.cn/ is
generated by a conservative null flow, and X.d/ is generated by a dissipative flow.
Moreover, the Lévy measures of X.p/, X.cn/, and X.d/ are uniquely determined.

Remark 3.6.5. The uniqueness part of Theorem 3.6.4 cannot be strengthened to the
uniqueness of the decomposition, because both the Gaussian part and the shift of the
process X can be decomposed in multiple ways. When the Gaussian part is absent,
however, the decomposition is automatically unique up to a shift by a constant. If
there is a “canonical” shift (such as zero shift in the symmetric case, for instance),
the decomposition becomes truly unique.

Since in most cases we work with infinitely divisible processes given as
stochastic integrals with respect to infinitely divisible random measures, we discuss
next the relationship between an integral representation of a stationary infinitely
divisible process and its decomposition in Theorem 3.6.4. We will consider several
situations.

The first situation we consider is both very general and the most transparent. Let�
E; E ;m

�
be a � -finite measure space, and let � W E ! E be a nonsingular measure-

preserving map. Let 
 be a one-dimensional Lévy measure, and b 2 R a constant.
Let M be an infinitely divisible random measure on E with control measure m and
constant local characteristics, equal to .0; 
; b/. In particular, M has no Gaussian
component. Let f 2 L0.M/. We consider an infinitely divisible process given by

Xn D
Z

E
f ı �n.s/M.ds/; n 2 Z : (3.91)

Notice that by Theorem 3.3.12, every stationary process X D �
Xn; n 2 Z

�
has a

representation of the form (3.91). See Exercise 3.8.24.

Theorem 3.6.6. (i) The process X given by (3.91) is a well-defined stationary
infinitely divisible process.

(ii) Let P.�/, CN .�/, and D.�/ be the decomposition (2.44) of the map �. Then

X.p/n D
Z

P.�/
f ı �n.s/M.ds/; n D 0; 1; : : : ;

X.cn/
n D

Z

CN .�/

f ı �n.s/M.ds/; n D 0; 1; : : : ;

and

X.d/n D
Z

D.�/
f ı �n.s/M.ds/; n D 0; 1; : : : ;
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are well-defined independent stationary infinitely divisible processes, X.p/ is
generated by a positive flow, X.cn/ is generated by a conservative null flow, and
X.d/ is generated by a dissipative flow. Furthermore, X D X.p/ C X.cn/ C X.d/.

(iii) If � is positive, then X is generated by a positive flow. If � is conservative null,
then X is generated by a conservative null flow. If � is dissipative, then X is
generated by a dissipative flow. The converse of these statements is true if the
function f has full support, i.e.,

m
�

s 2 E W f ı �n.s/ D 0 for all n D 0; 1; 2; : : :
�

D 0 : (3.92)

Proof. The process X is well defined because the fact that f 2 L0.M/ means that
f ı �n 2 L0.M/ for every n, since � preserves the measure m. Furthermore, by
Theorem 3.3.10, the process X is infinitely divisible, without a Gaussian component,
with a constant shift function, and Lévy measure given by

�X D .m � 
/ ı H�1 ; (3.93)

with H W E � R ! R
Z given by H.s; x/.n/ D xf ı �n.s/, n 2 Z, for s 2 E and

x 2 R. By Theorem 3.6.1, we conclude that X is a stationary process.
Next, since P.�/, CN .�/, and D.�/ are invariant under the map �, we see that

Z

P.�/
f ı �n.s/M.ds/ D

Z

E
1P.�/.s/f ı �n.s/M.ds/

D
Z

E



1P.�/f

� ı �n.s/M.ds/ :

Further, (3.45) tells us that 1P.�/f 2 L0.M/. Therefore, the already established part
(i) of the theorem tells us that X.p/ is a well-defined stationary infinitely divisible
process. Similarly, X.cn/ and X.d/ are also well-defined stationary infinitely divisible
processes. Furthermore, since P.�/, CN .�/, and D.�/ are invariant under the map
�, we obtain independence of the processes X.p/, X.cn/, and X.d/ by Corollary 3.3.11.
The fact that X D X.p/ C X.cn/ C X.d/ follows from Theorem 3.3.2.

Let us prove that X.d/ is generated by a dissipative flow. If the Lévy measure �d

of this process vanishes, then there is nothing to prove, so assume that �d does not
vanish. Let h be a positive function in L1.�d/. By Theorem 2.4.5, we need to prove
that

�d

 

x 2 R
Z W

1X

nD1
h
�

n.x/

� D 1
!

D 0 :

By Theorem 3.3.10, this is the same as to show that

.m � 
/
 

.s; x/ 2 D.�/ � R W
1X

nD1
h
�
x.f ı �nCk.s/; k 2 Z/

� D 1
!

D 0 :
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By Fubini’s theorem, there is a Borel subset B of R of a full 
-measure such that for
every x 2 B, the function

hx.s/ D h
�
x.f ı �k.s/; k 2 Z/

�
; s 2 D.�/ ;

is in L1
�
mjD.�/� (the measure m restricted to D.�/), and it is enough to prove that

for every x 2 B,

m

 

s 2 D.�/ W
1X

nD1
hx ı �n.s/ D 1

!

D 0 :

This, however, follows from the fact that the map �, restricted to D.�/, is dissipative
and from Theorem 2.4.5. Therefore, X.d/ is generated by a dissipative flow, and
in the same way, we can prove that X.cn/ is generated by a conservative flow. Let
us check that the latter process is also generated by a null flow. If the process is
not generated by a null flow, then by Theorem 3.6.4, this process has a positive
part with a nonvanishing Lévy measure. We now use part (ii) of Theorem 2.4.11
(instead of Theorem 2.4.5) to show, in the above notation, that for every sequence
.wn; n D 1; 2; : : :/ in W , there is a set of positive measure 
 such that for every x in
this set, we have

m

 

s 2 CN .�/ W
1X

nD1
wnhx ı �n.s/ D 1

!

> 0 :

This, however, contradicts part (ii) of Theorem 2.4.11 applied to N .�/.
Finally, to see that X.p/ is generated by a positive flow, assume that m.P.�// > 0,

and choose a �-invariant probability measure Qm supported by P.�/ and equivalent
to m on this set. Then by Theorem 3.3.10, there exists a shift-invariant probability
measure on R

Z equivalent to the Lévy measure �p of the process X.p/. This means
that the left shift is positive with respect to �p, and hence the process X.p/ is
generated by a positive flow.

If � is a dissipative map, then P.�/ and CN .�/ have m-measure zero, so that the
processes X.p/ and X.cn/ vanish, and hence by part (ii) of the theorem, the process
X D X.d/ is generated by a dissipative flow. Similarly, if � is a positive (respectively
conservative null) map, then the process X is generated by a positive (respectively
conservative null) flow.

Suppose now that (3.92) holds. Let X be generated by a dissipative flow. If � is
not dissipative, then either m.P.�// > 0 or m.CN .�// > 0, and hence by (3.92),
either the process X.p/ or the process X.cn/ has a nonvanishing Lévy measure. By
Theorem 3.6.4, this means that the process X is not generated by a dissipative flow.
This contradiction shows that � is a dissipative map. Similarly, if X is generated by
a positive (respectively conservative null) flow and (3.92) holds, then � is a positive
(respectively conservative null) map. �
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We consider next stationary S˛S processes, 0 < ˛ < 2, represented as stochastic
integrals with respect to an S˛S random measure, i.e., processes given in the form

Xn D
Z

E
fn.s/M.ds/; n 2 Z ; (3.94)

where M is an S˛S random measure on a measurable space
�
E; E

�
, with modified

control measure Qm, and fn 2 L˛. Qm/ for n 2 Z; see Example 3.3.14. Note that in the
first part of the theorem, we do not assume that the functions .fn/ are of the special
form they take in (3.91).

Theorem 3.6.7. Let X be a stationary S˛S process, 0 < ˛ < 2, given in the
form (3.94).

(i) If

1X

nD1
jfn.s/j˛ < 1 Qm-a.e., (3.95)

then X is generated by a dissipative flow. If for some sequence .wn; n D
1; 2; : : :/ in W ,

1X

nD1
wnjfn.s/j˛ < 1 Qm-a.e., (3.96)

then X is generated by a null flow. If for some " > 0,

1X

nD1
jfn.s/j˛C" D 1 Qm-a.e., (3.97)

then X is generated by a conservative flow. If for every sequence .wn; n D
1; 2; : : :/ in W , for some 0 < " < ˛,

1X

nD1
wn min

�jfn.s/j˛C"; jfn.s/j˛�"
� D 1 Qm-a.e., (3.98)

then X is generated by a positive flow.
(ii) Suppose that a stationary S˛S process, 0 < ˛ < 2, is given in the form (3.91),

with M an S˛S random measure on a measurable space
�
E; E

�
, with modified

control measure Qm (so that fn.s/ D f ı �n.s/). If

1X

nD1
jfn.s/j˛ D 1 Qm-a.e., (3.99)
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then X is generated by a conservative flow. If for every sequence .wn; n D
1; 2; : : :/ in W ,

1X

nD1
wnjfn.s/j˛ D 1 Qm-a.e., (3.100)

then X is generated by a positive flow.

Proof. Suppose that (3.95) holds. Then by (3.93),

1X

nD1
h
�

n.x/

�
< 1 �X-a.e.,

where h W R
Z ! R is given by h.x/ D jx.0/j˛ . This implies that C.
/ D ; �X-a.e.

(see Exercise 2.6.12), and so X is generated by a dissipative flow. Similarly, if (3.96)
holds for some sequence .wn; n D 1; 2; : : :/ in W , then the function h above also
satisfies

1X

nD1
wnh

�

n.x/

�
< 1 �X-a.e.,

which implies, by Theorem 2.4.11, that P.
/ D ; �X-a.e.
If, on the other hand, (3.97) holds, then we define a function h W R

Z ! R by

h.x/ D min
�jx.0/j˛�"; jx.0/j˛C"� :

It is elementary to check that h 2 L1.�X/, and by the assumption,

1X

nD1
h
�

n.x/

� D 1 �X-a.e. (3.101)

By Theorem 2.4.5, this implies that D.
/ D ; �X-a.e., and so X is generated by
a conservative flow. Using the same function h and Theorem 2.4.11, we see that
if (3.98) holds for every sequence .wn; n D 1; 2; : : :/ in W , then N .
/ D ; �X-a.e.,
and so X is generated by a positive flow.

If we have fn.s/ D f ı �n, n 2 Z, then the sufficiency of the condition (3.99)
follows from Theorem 3.6.6 and Theorem 2.4.5, while the sufficiency of the
condition (3.100) follows from Theorem 3.6.6 and Theorem 2.4.11. �

The following proposition is sometimes helpful in conjunction with Theo-
rem 3.6.7, because it allows us to relate properties of stationary S˛S processes to
different values of ˛.

Proposition 3.6.8. Let ˛1; ˛2 be numbers in .0; 2/. Suppose that both X.1/ and
X.2/ have integral representation (3.94), with the same functions .fn/ and the same
modified control measure Qm. In one case, the random measure M is an S˛1S
measure, while in the second case, the random measure M is an S˛2S measure.
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Assume that both X.1/ and X.2/ are well-defined stationary processes. If X.1/ is
generated by a dissipative (respectively conservative, positive, null) flow, then also
X.2/ is generated by a dissipative (respectively conservative, positive, null) flow.

Proof. It follows from Theorem 3.3.10 that the Lévy measures �X.1/ and �X.2/ of the
two processes are equivalent. Since both the Hopf decomposition and the positive–
null decomposition are clearly invariant under a switch from one measure to an
equivalent one, the statement of the proposition follows. �

Example 3.6.9. The increment process Xn D X.n/ � X.n � 1/, n � 1, of the
linear fractional stable motion X of Example 3.5.2 is generated by a dissipative
flow. Indeed, if H 6D 1=˛, we have

Xn D
Z

R

fn.s/L.ds/; n D 1; 2; : : : ;

with

fn.s/ Dc1
h�
.n � s/C

�H�1=˛ � �
.n � 1 � s/C

�H�1=˛i

Cc2
h�
.n � s/�

�H�1=˛ � �
.n � 1 � s/�

�H�1=˛i
;

so that

fn.s/ � c1.H � 1=˛/ nH�1=˛�1 as n ! 1,

and (3.95) holds because H < 1.
A similar computation can easily be done in the case 1 < ˛ < 1 and H D 1=˛

with the kernel (3.75).

Example 3.6.10. The increment process Xn D X.n/ � X.n � 1/, n � 1, of the
harmonizable fractional stable motion X of Example 3.5.4 is generated by a positive
flow. Indeed, we have

Xn D
Z

�0

Z 1

0

fn.!
0; x/M.d!0; dx/; n D 1; 2; : : : ;

with

fn.!
0; x/ D

�
cos..n � 1/x/� cos nx

�
G1.!

0; x/C�sin nx � sin..n � 1/x/�G2.!
0; x/

xHC1=˛ :

Elementary trigonometry shows that

fn.!
0; x/ D 2 sin..n � 1=2/x/

h
cos.x=2/G2.!

0; x/ � sin.x=2/G1.!
0; x/

i
:
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For every x that is irrational relative to 	 , the trajectory of the sequence
�
sin..n �

1=2/x/; n D 1; 2; : : :
�

visits the interval .1=2; 1/ (say) at a linear frequency. This
implies that (3.98) holds for every sequence .wn; n D 1; 2; : : :/ in W (with w1 D 1),
since the probabilities pn D wn � wnC1; n D 1; 2; : : :, and p1 D limn!1 wn have
infinite mean, as in the proof of Theorem 2.4.11.

Example 3.6.11. The increment process Xn D X.n/� X.n �1/, n � 1, of the FBM-
local time fractional stable motion X of Example 3.5.5 is generated by a conservative
null flow. To see this, notice that we can write

Xn D
Z

�0

Z

R

.l.x; n C 1/.!0/ � l.x; n/.!0//M.d!0; dx/; n � 0 : (3.102)

Note that

mX

nD0



l.x; n C 1/.!0/ � l.x; n/.!0/

� D l.x;m C 1/.!0/ ! 1 as m ! 1

outside of a subset of�0�R of measure 0. By part (i) of Theorem 3.6.7, this implies
that in the case 0 < ˛ < 1, the FBM-H-local time fractional S˛S noise is generated
by a conservative flow. An appeal to Proposition 3.6.8 shows that the same is true
for all 0 < ˛ < 2.

In order to prove that the FBM-H-local time fractional S˛S noise is generated by
a null flow, we use, once again, Theorem 3.6.7 and Proposition 3.6.8. It is enough
to exhibit a sequence .wn/ 2 W such that

1X

nD0
wn


l.x; n C 1/.!0/ � l.x; n/.!0/

�
< 1 (3.103)

for P0 � Leb-almost every .!0; x/. We claim that the sequence wn D .1C n/�
 with

 2 .1 � H; 1� satisfies (3.103). To see this, it is clearly enough to find a strictly
positive measurable function g such that

E0
Z

R

g.x/
1X

nD0
wn


l.x; n C 1/.!0/ � l.x; n/.!0/

�
dx < 1: (3.104)

Note that by (10.11),

E0
Z

R

g.x/
1X

nD0
wn


l.x; n C 1/.!0/ � l.x; n/.!0/

�
dx D

1X

nD0
wn

Z nC1

n
E0g.BH.t//dt :

Choose g.x/ D exp.�x2=2/; x 2 R. Then for all t � 0, we have

E0g.BH.t// D 1

.1C t2H�2/1=2
;
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where �2 D Var BH.1/. Then the left-hand side of (3.104) is

1X

nD0
wn

Z nC1

n

dt

.1C t2H�2/1=2
�
1X

nD0
wn

1

.1C n2H�2/1=2
< 1 (3.105)

by the choice of 
 . Hence (3.103) follows, and so the process is generated by a null
flow.

In particular, we have learned from the last three examples that the increment
processes of the linear fractional stable motion, of the harmonizable fractional stable
motion, and of the FBM-local time fractional stable motion are different, and hence
the three motions themselves are different processes.

3.7 Comments on Chapter 3

Comments on Section 3.1
An encyclopedic treatment of finite-dimensional infinitely divisible random

vectors and Lévy processes can be found in Sato (1999).
A thorough discussion of ˛-stable processes, 0 < ˛ < 2, is in Samorodnitsky

and Taqqu (1994).

Comments on Section 3.2
The theory of infinitely divisible random measures and stochastic integrals with

respect to these measures was presented in the fullest generality in Rajput and
Rosiński (1989).

Comments on Section 3.4
Early work on series representations of infinitely divisible random variables often

dealt with the so-called shot noise models, representing sums of certain impulses
(usually nonnegative) generated by Poisson arrivals; see, e.g., Vervaat (1979). An
approach to the series representations focused on ordering the underlying Poisson
jumps by their size was introduced in Ferguson and Klass (1972). An explicit form
of such a representation in the stable case was given in LePage et al. (1981). A very
general discussion of series representations is in Rosiński (1990).

Comments on Section 3.5
The moving-average representations of the fractional Brownian motion origi-

nated with Mandelbrot and Van Ness (1968); see also Section 7.2.1 in Samorod-
nitsky and Taqqu (1994). The origins of the harmonizable representation of the
fractional Brownian motion are in Kolmogorov (1940) and Yaglom (1955).

The fractional Brownian motion on Œ0;1/ can also be represented as a stochastic
integral on compact intervals, of the form

X.t/ D
Z t

0

KH.t; x/B.dx/; t � 0 ;
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where KH W ˚.t; x/ W 0 � x � t
� ! R is a kernel such that KH.t; �/ 2 L2.�/ for

each t � 0, and B is the standard Brownian motion; see Decreusefond and Üstünel
(1999).

The FBM-local time fractional stable motion was first introduced in Cohen and
Samorodnitsky (2006). One can also obtain new classes of self-similar stationary
increment S˛S processes using the local times of stable Lévy processes, as was
shown in Dombry and Guillotin-Plantard (2009).

More examples of self-similar stable processes with stationary increments are in
Example 8.4.1 and Example 9.6.3.

Comments on Section 3.6
Integral representations of stationary infinitely divisible processes are discussed

in Kabluchko and Stoev (2016). The line of work connecting the recurrence proper-
ties of nonsingular flows to the structure of stationary ˛-stable processes originated
with the paper Rosiński (1995). The role of the positive–null decomposition in the
same context was pointed out in Samorodnitsky (2005). A very general treatment
for general stationary infinitely divisible processes without a Gaussian component
was given in Roy (2007).

3.8 Exercises to Chapter 3

Exercise 3.8.1. Show that the gamma random variable and the negative binomial
random variable are all infinitely divisible by computing their characteristic triples.

Exercise 3.8.2. Let X be a one-dimensional infinitely divisible random variable
with a characteristic triple .�2; �; b/. Assume that X has a finite variance. Show
that

Var.X/ D �2 C
Z

R

x2 �.dx/ :

Exercise 3.8.3. Let X D .X.1/; : : : ;X.d// be an infinitely divisible random vector
with characteristic triple

�
†;�;b

�
, and let A [ B D f1; : : : ; dg be a partition of

f1; : : : ; dg into two nonempty parts. Prove, using the uniqueness of the characteristic
triple, that the random vectors .X.j/; j 2 A/ and .X.j/; j 2 B/ are independent if and
only if the following two conditions hold:

†j1j2 D 0 for each j1 2 A; j2 2 B;

�

0

@x D .x.1/; : : : ; x.d// W
X

j2A

.x.j//2 > 0 and
X

j2B

.x.j//2 > 0

1

A D 0 :
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Exercise 3.8.4 (Rosiński and Żak (1997)). Let .X1;X2/ be an infinitely divisible
random vector. Suppose that neither the one-dimensional Lévy measure of X1 nor
the one-dimensional Lévy measure of X2 puts any mass on the set f2	k; k 2 Zg.
Prove that if both

E
�
ei.X1CX2/

� D E
�
eiX1

�
E
�
eiX2

�
and E

�
ei.X1�X2/

� D E
�
eiX1

�
E
�
e�iX2

�
;

then X1 and X2 are independent.

Exercise 3.8.5. Prove Proposition 3.1.3.

Exercise 3.8.6. Consider the following condition on a measure on R
T: for every

countable subset T1 of T, there is a countable set T2 of T such that T1 	 T2, and

�
�

x 2 R
T W x.t/ D 0 for all t 2 T1

�
(3.106)

D �
�

x 2 R
T W x.t/ D 0 for all t 2 T1, but not for all t 2 T2

�
:

Prove that a measure satisfies this condition if and only if it satisfies Condition 3.1.5
when T is countable, and Condition 3.1.6 if T is uncountable.

Exercise 3.8.7. Prove that a Lévy measure on a countable set T is necessarily
� -finite.

Exercise 3.8.8. Let T be an arbitrary set, and
�
X.t/; t 2 T

�
a stochastic process

whose finite-dimensional distributions consist of i.i.d. components such that X.t/
dD

X for each t 2 T, with X an infinitely divisible random variable. Prove that�
X.t/; t 2 T

�
is an infinitely divisible stochastic process, and express its Lévy

measure in terms of the one-dimensional Lévy measure of X. Show that if the
latter does not vanish and T is uncountable, then the Lévy measure of the infinitely
divisible process

�
X.t/; t 2 T

�
is not � -finite.

Exercise 3.8.9. The notion of a compound Poisson random variable of Exam-
ple 3.1.1 has an extension to infinitely divisible processes. Let

�
Yi.t/; t 2 T

�
; i D

1; 2; : : :, be a sequence of i.i.d. stochastic processes on T, independent of a mean-�
Poisson random variable N. Prove that

X.t/ D
NX

iD1
Yi.t/; t 2 T;

is an infinitely divisible stochastic process with a characteristic triple .0; �FY;b/,
where FY is the law of the process Y on R

T , and b.t/ D �EŒŒY1.t/��, t 2 T. The
process X is then a compound Poisson process.

Exercise 3.8.10. Prove Proposition 3.1.10.

Exercise 3.8.11. Prove (3.13).
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Exercise 3.8.12. (i) Prove that an ˛-stable process is strictly ˛-stable if and
only if

b D
Z

RT
ŒŒx�� �.dx/ if 0 < ˛ < 1;

Lévy measure � is symmetric if ˛ D 1;

b D
Z

RT

�
ŒŒx�� � x

�
�.dx/ if 1 < ˛ < 2.

(ii) Prove that an ˛-stable process is symmetric ˛-stable if and only if the Lévy
measure � is symmetric and b D 0.

Exercise 3.8.13. Prove that the process .X.t/; t 2 R/ constructed in Example 3.2.3
is continuous in probability, that it has stationary and independent increments, and
that X.1/ is an infinitely divisible random variable with the characteristic triple
.�2; 
; b/.

Exercise 3.8.14. Prove that the representation (3.70) of an S˛S process can be
generalized in the following way: the Rademacher sequence ."n/ can be replaced by
any other i.i.d. sequence .Wn/ of symmetric random variables such that EjW1j˛ D 1.

Note that this allows the choice of .Wn/ being zero-mean normal and shows
that an S˛S process of the form (3.64) is, distributionally, a mixture of zero-mean
Gaussian processes.

Exercise 3.8.15. Prove the comparison property (3.45).

Exercise 3.8.16. Let L be a Lévy motion and f 2 L0.L/. Prove that for every s 2 R,
one has f .� C s/ 2 L0.L/ and

Z

R

f .x C s/L.dx/
dD
Z

R

f .x/L.dx/ :

Exercise 3.8.17. (i) Let B be a Brownian motion on R and f 2 L2
�
�;R

�
. Prove

that for every c > 0,
Z

R

f .x/B.dx/
dD
Z

R

c1=2f .cx/B.dx/ :

(ii) Let 0 < ˛ < 2, and let L be an S˛S Lévy motion on R. Let f 2 L˛
�
�;R

�
. Prove

that for every c > 0,
Z

R

f .x/L.dx/
dD
Z

R

c1=˛f .cx/L.dx/ :

Exercise 3.8.18. Let M be an infinitely divisible random measure on a measurable
space .S;S/, and let f .t; �/ 2 L0.M/ for each t 2 T. Let m0 be the � -finite measure
on .S;S/ given in (3.14). If T is countable, assume that
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m0

�
s 2 S W f .t; s/ D 0 for all t 2 T

�
D 0 :

If T is uncountable, assume that for every countable subset T1 of T such that

m0

�
s 2 S W f .t; s/ D 0 for all t 2 T1

�
> 0;

there is t0 2 Tc
1 such that

m0

�
s 2 S W f .t; s/ D 0 for all t 2 T1; f .t0; s/ 6D 0

�
> 0 :

Prove that the measure �X in (3.52) is a Lévy measure on R
T (and not only a weak

Lévy measure).

Exercise 3.8.19. The following is a convenient construction of a Poisson random
measure with a finite mean measure. Let m be a finite measure on a measurable
space .S;S/. Let X1;X2; : : : be i.i.d. S-valued random variables with a common law
m=m.S/, independent of a Poisson random variable K with mean m.S/. For B 2 S ,
let

M.B/ D
KX

kD1
1.Xk 2 B/ ;

the number of points among X1; : : : ;XK that are in the set B. Prove that
�
M.B/;

B 2 S
�
, is a Poisson random measure with mean measure m.

Exercise 3.8.20. Prove the claim of Example 3.3.14.

Exercise 3.8.21. Let M.1/ and M.2/ be independent centered Gaussian random
measures on .S;S/ with control measure m each. Let f ; g W S ! R be measurable.
Prove that M.1/

f C M.2/
g and M.1/

g � M.2/
f are, once again, independent centered

Gaussian random measures on .S;S/ with control measure Qm � m each, where
d Qm=dm D f 2 C g2.

Exercise 3.8.22. Let 0 < H < 1, and let Qt D �
Qt.x/; x 2 R

�
; t � 0, be a family

of kernels on R with Qt 2 L2
�
�; R

�
for t � 0 satisfying (3.72). Assume that for each

t > 0, Qt is continuous at each x 62 f0; tg. Prove that there are real numbers c1; c2
such that Qt.x/ D gt.c1; c2I HI x/ for all t � 0 and x 62 f0; tg, where gt.c1; c2I HI �/
is given by (3.74) if H 6D 1=2 and by (3.75) if H D 1=2.

Exercise 3.8.23. Complete the proof of Proposition 3.5.3 by considering the case
c.1/1 c.1/2 D c.2/1 c.2/2 D 0.

Exercise 3.8.24. Let X D �
Xn; n 2 Z

�
be a stationary infinitely divisible process

without a Gaussian component. Prove that the integral representation of X given
in Theorem 3.3.12 has the form (3.91) (in particular, the random measure M has
constant local characteristics, i.e., it is a homogeneous infinitely divisible random
measure).



Chapter 4
Heavy Tails

4.1 What Are Heavy Tails? Subexponentiality

When we talk about the “tails” of a one-dimensional random variable X, we usually
think about probabilities of the type P.X > x/ and P.X < �x/ for a large positive
x, with the appropriate meaning of “right tail” and “left tail.” If .X.t/; t 2 R/

or .Xn; n 2 Z/ is a stationary stochastic process, the kind of marginal tails the
process has may significantly impact the way memory expresses itself in the process.
Particularly important is the distinction between stochastic processes with “light
tails” and those with “heavy tails.”

Defining the notions of light tails and heavy tails precisely is neither possible nor
actually necessary, since the distinction varies from application to application. Let
us begin with a nonnegative random variable X, so that we have only one tail to
worry about. Let F be the c.d.f. of X. Intuitively, if F.x/ D P.X > x/ decays fast as
x ! 1, then X has a light tail, whereas a slow decay of F.x/ means that X has a
heavy tail. If

Ee
X < 1 for some 
 > 0,

then the tail of X decays at least exponentially fast at infinity, and in such situations,
we will always say that the tail is light. On the other hand, in some cases the much
weaker finite variance assumption EX2 < 1 is adequate enough to say that the tail
of X is light.

Somewhat analogously, if the infinite second moment assumption EX2 D 1
holds, then we say that the tail of X is heavy, but in some cases, much weaker
assumptions on X suffice to induce us to say that X has a heavy tail. As a rule, most
formal definitions of heavy tails impose a certain regularity on the tail function F
besides its slow decay. We begin with one of the broadest available definitions.

© Springer International Publishing Switzerland 2016
G. Samorodnitsky, Stochastic Processes and Long Range Dependence,
Springer Series in Operations Research and Financial Engineering,
DOI 10.1007/978-3-319-45575-4_4

133



134 4 Heavy Tails

Definition 4.1.1. A nonnegative random variable X, or its distribution F, is called
subexponential if F.x/ > 0 for all x � 0 and

lim
x!1

F ? F.x/

F.x/
D 2 : (4.1)

Note that this simply says that X is subexponential if

lim
x!1

P.X1 C X2 > x/

P.X > x/
D 2 ; (4.2)

where X1 and X2 are i.i.d. copies of X.
Unless stated otherwise, in the rest of this section, X1 and X2 are assumed to be

i.i.d. copies of a given random variable X. It is clear that X1 C X2 � max.X1;X2/ for
nonnegative random variables. Furthermore, we also have

P.max.X1;X2/ > x/ D 2P.X > x/ � �
P.X > x/

�2

� 2P.X > x/

as x ! 1. In particular, for every nonnegative random variable X with P.X > x/ >
0 for all x � 0, we have

lim inf
x!1

P.X1 C X2 > x/

P.max.X1;X2/ > x/
D lim inf

x!1
P.X1 C X2 > x/

2P.X > x/
� 1 : (4.3)

We also see that an alternative way of defining subexponentiality is by

lim
x!1

P.X1 C X2 > x/

P.max.X1;X2/ > x/
D 1 : (4.4)

That is, for a subexponential random variable X, the tail of the sum of two
independent copies of X is equivalent to the tail of the maximum of these random
variables. Note a very important message in this sentence: for a subexponential
random variable, such a sum becomes very large because one of the two terms in
this sum becomes as large as required for the entire sum (and not, say, because both
terms in the sum become about half of the total value each)!

A quintessential example of subexponential random variables is that of regularly
varying random variables.

Definition 4.1.2. A nonnegative random variable X, or its distribution F, is called
regularly varying if F.x/ > 0 for all x � 0 and there is ˛ � 0 such that for every
b > 0,

lim
x!1

F.bx/

F.x/
D b�˛ : (4.5)

We discuss regularly varying random variables in detail in Section 4.2.
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Proposition 4.1.3. A regularly varying random variable is subexponential.

Proof. Let 0 < " < 1. We can write

P.X1 C X2 > x/ � P.X1 > .1 � "/x or X2 > .1 � "/x/
CP

�
X1 C X2 > x; X1 � .1 � "/x; X2 � .1 � "/x�

� 2P.X > .1 � "/x/C P.X1 > "x; X2 > "x/

D 2P.X > .1 � "/x/C �
P.X > "x/

�2
:

By the definition of a regularly varying random variable,

P.X > .1 � "/x/
P.X > x/

! .1 � "/�˛; P.X > "x/

P.X > x/
! "�˛

as x ! 1. Therefore,

lim sup
x!1

P.X1 C X2 > x/

P.X > x/
� 2.1 � "/�˛ :

Letting " # 0, we obtain

lim sup
x!1

P.X1 C X2 > x/

P.X > x/
� 2;

which, according to (4.3), implies subexponentiality. �

Next, we discuss the basic properties of subexponential random variables. The
property described in the following proposition is often called the long tail property.

Proposition 4.1.4. If X is a subexponential random variable, then

lim
x!1

P.X > x C y/

P.X > x/
D 1 (4.6)

uniformly in y over compact sets.

Proof. By monotonicity, it is enough to check (4.6) for a fixed negative y. Suppose
that, to the contrary,

lim sup
x!1

P.X > x C y/

P.X > x/
D 1C 
 > 1 :

Then we can write

P.X1 C X2 > x/ � P
�

max.X1;X2/ > x or x C y < X1 � x; X2 � �y
�

� 2P.X > x/C P.x C y < X � x/P.X � �y/ � o
�

P.X > x/
�
;
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implying that

lim sup
x!1

P.X1 C X2 > x/

P.X > x/
� 2C 
P.X � �y/ > 2 :

This contradicts the assumption of subexponentiality. �

The long tail property of subexponential random variables has the following
corollary, which says that the tail of a subexponential random variable decays more
slowly than any exponential function (and hence explains why a random variable
satisfying (4.1) is called “subexponential”).

Corollary 4.1.5. If X is a subexponential random variable, then for every " > 0,

lim
x!1 e"xP.X > x/ D 1 : (4.7)

Proof. By Proposition 4.1.4, we know that for every 0 < 
 < 1, there is x0 > 0

such that for every x � x0, we have

P.X > x C 1/ � 
P.X > x/ :

Iterating, we see that for every n � 1,

P.X > x0 C n/ � 
nP.X > x0/ :

By monotonicity, this means that there is a finite positive constant C such that for
all x � x0,

P.X > x/ � Ce.log 
/x :

This shows that (4.7) holds for every " > � log 
. Since 
 can be taken arbitrarily
close to 1, (4.7) holds for every " > 0. �

We have said previously that the sum of two independent copies of a subexpo-
nential random variable becomes large only because one of the two terms becomes
large. The next lemma formalizes this statement.

Lemma 4.1.6. If X is a subexponential random variable, then

lim
M!1 lim sup

x!1
P.X1 C X2 > x; X1 > M; X2 > M/

P.X > x/
D 0 :

Proof. For every M > 0, we have by the long tail property,

lim
x!1

P.X1 C X2 > x; X1 � M/

P.X > x/
D P.X � M/ ;
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so that

lim
M!1 lim

x!1
P.X1 C X2 > x; min.X1;X2/ � M/

P.X > x/
D 2 ;

and the claim of the lemma follows from the definition of subexponentiality. �

It turns out that tail equivalence to a subexponential random variable implies
subexponentiality.

Proposition 4.1.7. Let X and Y be nonnegative random variables. If X is subexpo-
nential and P.Y > x/=P.X > x/ ! c 2 .0;1/ as x ! 1, then Y is subexponential
as well.

Proof. Denote by FX and FY the corresponding distributions of X and Y . For every
" > 0, there is x" > 0 such that for all x � x", P.Y > x/=P.X > x/ � c.1C "/.

Let M � x", and denote by yM > x" a positive number such that for all x � yM ,
P.X > x � M/=P.X > x/ � 1C ". For x > 2M, we have

P.Y1 C Y2 > x/ D 2P.Y1 C Y2 > x; Y1 � M/C P.Y1 C Y2 > x; Y1 > M; Y2 > M/ :

Now for all x � yM C M,

P.Y1 C Y2 > x; Y1 � M/ D
Z

Œ0;M�
P.Y > x � y/FY.dy/

� c.1C "/

Z

Œ0;M�
P.X > x � y/FY.dy/ � c.1C "/2P.X > x/P.Y � M/ :

Similarly,

P.Y1 C Y2 > x; Y1 > M; Y2 > M/ D
Z

.M;1/
P.Y > max.x � y;M//FY.dy/

� c.1C "/

Z

.M;1/
P.X > max.x � y;M//FY.dy/

D c.1C "/

Z

.M;1/
P.Y > max.x � y;M//FX.dy/

� c2.1C "/2
Z

.M;1/
P.X > max.x � y;M//FX.dy/

D c2.1C "/2P.X1 C X2 > x; X1 > M; X2 > M/ :

Therefore, for all M � x",

lim sup
x!1

P.Y1 C Y2 > x/

P.X > x/
� 2c.1C "/2P.Y � M/

Cc2.1C "/2 lim sup
x!1

P.X1 C X2 > x; X1 > M; X2 > M/

P.X > x/
:
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Applying Lemma 4.1.6, we obtain

lim sup
x!1

P.Y1 C Y2 > x/

P.X > x/
� 2c.1C "/ :

Since this is true for all " > 0, we conclude that

lim sup
x!1

P.Y1 C Y2 > x/

P.Y > x/
� 2 :

By (4.3), this means that Y is indeed subexponential. �

The tail equivalence (4.2) with two random variables in the definition of a
subexponential random variable implies an analogous tail equivalence with an
arbitrary number of terms in the sum.

Proposition 4.1.8. Let X be a subexponential random variable. Then for every k D
1; 2; : : :,

lim
x!1

P.X1 C : : :C Xk > x/

P.X > x/
D k : (4.8)

Proof. We begin by proving (4.8) for k of the form k D 2m; m D 1; 2; : : :, and
we proceed by induction on m. For m D 1, the statement is the definition of
subexponentiality (4.2). Assume that the statement holds for some m D 1; 2; : : :.
Then by Proposition 4.1.7, Y.m/ WD X1 C : : :C X2m is subexponential, so that by the
induction hypothesis,

P.X1 C : : :C X2mC1 > x/

P.X > x/

D P.Y.m/1 C Y.m/2 > x/

P.Y.m/ > x/

P.Y.m/ > x/

P.X > x/
! 2 � 2m D 2mC1 ;

completing the induction step. Next, we prove (4.8) for a general k, and since the
statement has already been established for k of the form k D 2m; m D 1; 2; : : :, it is
enough to verify the backward induction step: if (4.8) holds for some k � 2, then it
also holds for k � 1. Since by the inclusion–exclusion formula, we clearly have

lim inf
x!1

P.X1 C : : :C Xk�1 > x/

P.X > x/
� k � 1 ;

we need to prove only the appropriate asymptotic upper bound. However,

P.X1 C : : :C Xk > x/

� P.X1 C : : :C Xk�1 > x/C P.Xk > x/ � o
�

P.X1 C : : :C Xk�1 > x/
�
;



4.1 What Are Heavy Tails? Subexponentiality 139

so that by the assumption of the backward induction,

k D lim
x!1

P.X1 C : : :C Xk > x/

P.X > x/

� lim sup
x!1

P.X1 C : : :C Xk�1 > x/

P.X > x/
C 1 ;

from which the required upper bound

lim sup
x!1

P.X1 C : : :C Xk�1 > x/

P.X > x/
� k � 1

follows. This shows the backward induction step and hence completes the proof. �

The backward induction step used in the proof of the last proposition immedi-
ately establishes the following corollary.

Corollary 4.1.9. Let X be a nonnegative random variable. If (4.8) holds for some
k � 2, then X is subexponential (and hence (4.8) holds for all k � 2).

The result of Proposition 4.1.8 is a tail equivalence statement, in the sense that it
compares the tail function of a subexponential random variable to the tail function
of a sum of several independent copies of the random variable in the asymptotic
sense. The next proposition provides a useful comparison of these tail functions,
valid for all values of the argument.

Proposition 4.1.10. Let X be a subexponential random variable. For every " > 0,
there is K D K" 2 .0;1/ such that

P.X1 C : : :C Xn > x/

P.X > x/
� K.1C "/n (4.9)

for all x � 0 and n D 1; 2; : : :.

Proof. Clearly,

P.X1 C X2 > x/ D P.X1 C X2 > x; min.X1;X2/ � x/C o
�
P.X > x/

�
;

implying that

lim
x!1

P.X1 C X2 > x; min.X1;X2/ � x/

P.X > x/
D 2 :

Further, it follows from (4.4) that

P.X1 C X2 > x; X1 � x; X2 � x/ D P.X1 C X2 > x/ � P.max.X1;X2/ > x/

D o
�
P.X > x/

�
:
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These two facts together show that

lim
x!1

P.X1 � x; X1 C X2 > x/

P.X > x/
D 1 : (4.10)

Given " > 0, choose x0 � 0 such that

P.X1 � x; X1 C X2 > x/

P.X > x/
� 1C "

2

for all x � x0, and let

K D max

�
1

P.X > x0/
;

2

".1C "/

�
:

We will prove (4.9) by induction on n. The statement is trivially valid for n D 1.
Assume that it is valid for some n � 1. Using the notation F for the distribution of
X, we have for every x � x0, by the induction hypothesis,

P.X1 C : : :C Xn C XnC1 > x/ D P.X > x/C
Z

Œ0;x�
P.X1 C : : :C Xn > x � y/F.dy/

� P.X > x/C K.1C "/n
Z

Œ0;x�
P.X > x � y/F.dy/

D P.X > x/C K.1C "/nP.X1 � x; X1 C X2 > x/

� P.X > x/C K.1C "/n.1C "=2/P.X > x/

� K.1C "/nC1P.X > x/;

since K � 2=.".1C"//. On the other hand, for 0 � x < x0, since K � 1=P.X > x0/,

P.X1 C : : :C Xn C XnC1 > x/ � 1 � KP.X > x0/ � K.1C "/nC1P.X > x/ :

This completes the inductive argument and hence the proof of the proposition. �

A consequence of Proposition 4.1.10 is the following extension of the tail
equivalence in Proposition 4.1.8 to the sum of a random number of terms.

Corollary 4.1.11. Let N be a nonnegative integer-valued random variable indepen-
dent of a sequence X1;X2; : : : of i.i.d. copies of a subexponential random variable
X. If Ee
N < 1 for some 
 > 0, then

lim
x!1

P.X1 C : : :C XN > x/

P.X > x/
D EN :
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Proof. By Proposition 4.1.10 with 0 < " � e
 � 1, the dominated convergence
theorem, and Proposition 4.1.8,

lim
x!1

P.X1 C : : :C XN > x/

P.X > x/
D lim

x!1

1X

nD0

P.X1 C : : :C Xn > x/

P.X > x/
P.N D n/

D
1X

nD0
lim

x!1
P.X1 C : : :C Xn > x/

P.X > x/
P.N D n/

D
1X

nD0
n P.N D n/ D EN :

�

Example 4.1.12. The most important application of Corollary 4.1.11 is to the
compound Poisson random variables of Example 3.1.1. Let

Y D X1 C : : :C XN ; N a mean � Poisson random variable

and let X1;X2; : : : be i.i.d. random variables independent of N. Then subexponen-
tiality of X implies

lim
x!1

P.Y > x/

P.X > x/
D � :

Remark 4.1.13. The converse statement of Corollary 4.1.9 easily generalizes to the
case of the sum of a random number of terms. For the converse statement, one does
not even need the assumption of finite exponential moments of the random number
of terms. Let N be a nonnegative integer-valued random variable independent of a
sequence X1;X2; : : : of i.i.d. random variables. Assume that P.N � 2/ > 0 and
EN < 1. If

lim
x!1

P.X1 C : : :C XN > x/

P.X > x/
D EN ;

then X is subexponential. To see this, let k � 2 be such that P.N D k/ > 0. By
Corollary 4.1.9, it is enough to show that

lim
x!1

P.X1 C : : :C Xk > x/

P.X > x/
D k :

Indeed, if this fails, then we must have

lim sup
x!1

P.X1 C : : :C Xk > x/

P.X > x/
> k ;
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since the obvious counterpart of (4.3) says that for every n D 1; 2; : : :,

lim inf
x!1

P.X1 C : : :C Xn > x/

P.X > x/
� n :

In that case, we would have by Fatou’s lemma

lim sup
x!1

P.X1 C : : :C XN > x/

P.X > x/
� P.N D k/ lim sup

x!1
P.X1 C : : :C Xk > x/

P.X > x/

C
X

n6Dk

P.N D n/ lim inf
x!1

P.X1 C : : :C Xn > x/

P.X > x/

> kP.N D k/C
X

n6Dk

nP.N D n/ D EN ;

contradicting the assumption.

The long tail property (4.6) of subexponential random variables is a basic one,
and one might conjecture that every nonnegative random variable with a long tail is
subexponential. The conjecture is false, as the following example demonstrates.

Example 4.1.14 (Embrechts and Goldie (1980)). For n D 1; 2; : : :, we set

an D maxfk D 1; 2; : : : W .k C 1/Š � n C 1g;
kn D maxfk D 1; 2; : : : W .k C 1/Š � .n C 1/ang :

The following properties of the two sequences are clear:

1 � an " 1; kn � an : (4.11)

Let now X be a nonnegative random variable with the density

fX.x/ D 1

an.n C 1/Š
for .n C 1/Š � x � .n C 1/ŠC nan, n D 1; 2; : : :,

and equal to zero otherwise. Clearly, fX is a legitimate density, and

P.X > .n C 1/Š/ D 1

nŠ
for n D 1; 2; : : :.

We first check that X has a long tail. To this end, we need to check that for every
y > 0,

R xCy
x fX.t/ dt

P.X > x/
! 0 as x ! 1. (4.12)
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Let .n C 1/Š � x < .n C 2/Š; n D 1; 2; : : :. Then

P.X > x/ � P.X > .n C 2/Š/ D 1

.n C 1/Š
;

while

Z xCy

x
fX.t/ dt � y

1

an.n C 1/Š
;

so that the ratio in (4.12) is at most y=an ! 0 as n ! 1, and (4.12) follows. Hence,
X has a long tail.

Next, we check that X is not subexponential. We will check that

lim
n!1

P.X1 C X2 > .n C 1/ŠC nan/

P.X > .n C 1/ŠC nan/
D 1 : (4.13)

To this end, observe that

P.X1 C X2 > .n C 1/ŠC nan/

� P
�
.n C 1/Š < X1 � .n C 1/ŠC nan; X1 C X2 > .n C 1/ŠC nan

�

D 1

an.n C 1/Š

Z .nC1/ŠCnan

.nC1/Š
P.X > .n C 1/ŠC nan � u/ du

D 1

an.n C 1/Š

Z nan

0

P.X > x/ dx � 1

an.n C 1/Š

knX

kD1

Z .kC1/Š

kŠ
P.X > x/ dx

� 1

an.n C 1/Š

knX

kD1

�
.k C 1/Š � kŠ

�
P.X > .k C 1/Š/

D 1

an.n C 1/Š

knX

kD1
k D kn.kn C 1/

2an.n C 1/Š
:

Since

P.X > .n C 1/ŠC nan/ D P.X > .n C 2/Š/ D 1

.n C 1/Š
;

we see that

P.X1 C X2 > .n C 1/ŠC nan/

P.X > .n C 1/ŠC nan/
� kn.kn C 1/

2an

� an C 1

2
! 1
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by (4.11), which proves (4.13). Therefore, X is not subexponential, even though it
has a long tail.

Remark 4.1.15. Somewhat surprisingly, the class of subexponential distributions
turns out not to be closed under convolutions. That is, there exist independent
nonnegative subexponential random variables, X and Y , such that the sum X C Y
does not have a subexponential distribution. An example showing this can be found
in Leslie (1989).

It is useful to extend the notion of subexponentiality to not necessarily nonnega-
tive random variables.

Definition 4.1.16. A real-valued random variable X, or its distribution F, is called
subexponential if the positive part XC of X is subexponential according to Defini-
tion 4.1.1.

In fact, for a real-valued subexponential random variable X, the tail equivalence
relation (4.2) still holds. To see this, note that

lim sup
x!1

P.X1 C X2 > x/

P.X > x/
� lim sup

x!1
P..X1/C C .X2/C > x/

P.XC > x/
D 2;

and for every M > 0,

P.X1 C X2 > x/ � P.X1 > x C M;X2 > �M or X1 > �M;X2 > x C M/

D 2P.X1 > x C M;X2 > �M/ � .P.X1 > x C M//2;

so that

lim inf
x!1

P.X1 C X2 > x/

P.X > x/
� lim inf

x!1 2
P.X1 > x C M;X2 > �M/

P.X > x/

D 2P.X > �M/ :

Letting M ! 1, we obtain (4.2).
Most of the properties of nonnegative subexponential random variables extend

easily to real-valued subexponential random variables. This includes the long tail
property of Proposition 4.1.4, as well as Corollary 4.1.5 and Proposition 4.1.7.
The statements of Proposition 4.1.8 and Corollary 4.1.11 are also true in this more
general case. See Exercise 4.6.1.

The following statement gives an explicit criterion for membership in the class
of subexponential distributions. It is due to Pitman (1980).

Theorem 4.1.17. Let X be a nonnegative random variable with P.X > x/ > 0 for
all x, and set g.x/ D � log P.X > x/; x � 0. Suppose that there is x0 > 0 such that
on the interval .x0;1/, g is differentiable, and g0.x/ decreases to zero as x increases
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to infinity. If
Z 1

x0

exp
˚
xg0.x/ � g.x/

�
g0.x/ dx < 1 ; (4.14)

then X is subexponential.

Proof. It is easy to construct a random variable Y with P.Y > x/ D P.X > x/
for x > 2x0 such that Y satisfies the assumption of the theorem with x0 D 0.
By Proposition 4.1.7, it is enough to prove subexponentiality of Y . For notational
simplicity, we write X instead of Y . Since

P.X1 C X2 > x/ D P.X1 � x=2; X1 C X2 > x/C P.X2 � x=2; X1 C X2 > x/

CP.X1 > x=2; X2 > x=2/ ;

the claim of the theorem will follow once we check that

lim
x!1

P.X1 � x=2; X1 C X2 > x/

P.X > x/
D 1 (4.15)

and

lim
x!1

�
P.X > x=2/

�2

P.X > x/
D 0 : (4.16)

We can write the fraction in (4.15) as

P.X1 � x=2; X1 C X2 > x/

P.X > x/
D
Z

Œ0;x=2�
eg.x/�g.x�y/g0.y/ e�g.y/ dy :

Notice that for every y � 0,

1
�
y � x=2

�
eg.x/�g.x�y/ D 1

�
y � x=2

�
exp

	Z x

x�y
g0.t/ dt

�
! 1

as x ! 1, since g0 converges to zero. Furthermore, by the monotonicity of the
derivative,

0 � 1
�
y � x=2

�
exp

	Z x

x�y
g0.t/ dt

�

� 1
�
y � x=2

�
exp

˚
yg0.x � y/

� � eyg0.y/ :

By (4.14) and the dominated convergence theorem, we obtain

lim
x!1

P.X1 � x=2; X1 C X2 > x/

P.X > x/
D
Z

Œ0;1/
g0.y/ e�g.y/ dy D 1 ;
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establishing (4.15). For (4.16), we can write, for every a > 0 and x > 2a, by the
monotonicity of g0,

�
P.X > x=2/

�2

P.X > x/
D eg.x/�2g.x=2/ D exp

( Z x

x=2
g0.t/ dt �

Z x=2

0

g0.t/ dt

)

D exp

( Z x=2

a

�
g0.t C x=2/ � g0.t/

�
dt C

Z x=2Ca

x=2
g0.t/ dt �

Z a

0

g0.t/ dt

)

� exp

( Z x=2Ca

x=2
g0.t/ dt �

Z a

0

g0.t/ dt

)

� exp
˚
ag0.x=2/ � g.a/

�
:

Since the derivative g0 converges to zero, we have

lim sup
x!1

�
P.X > x=2/

�2

P.X > x/
� e�g.a/ D P.X > a/ :

Letting a ! 1 establishes (4.16). �

Example 4.1.18. If X is a (nondegenerate) normal random variable, then Y D eX

is a lognormal random variable. It is easy to check, using Proposition 4.1.7 and
Theorem 4.1.17, that a lognormal random variable is subexponential. It is equally
easy to check that every random variable whose right tail satisfies

P.X > x/ � exp
˚�cxa.log x/


�
as x ! 1

for c > 0 is subexponential as well, under any of the following conditions:

• 0 < a < 1 and 
 2 R;
• a D 0 and 
 > 0;
• a D 1 and 
 < 0.

See Exercise 4.6.2.

4.2 Regularly Varying Random Variables

Regularly varying nonnegative random variables were introduced in Definition 4.1.2
as an example of subexponential random variables. In this section, we discuss this
important class in more detail. The parameter ˛ � 0 in (4.5) is sometimes called
the index of regular variation, or the exponent of regular variation. Sometimes, the
expression “tail exponent” is used. When the tail exponent of a random variable is
equal to zero, the random variable is said to have a slowly varying tail. The tail of
such a random variable is particularly heavy.
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Clearly, to say that a random variable is regularly varying with exponent ˛ � 0

is the same as to say that its distribution function F satisfies the requirement that
F.x/ D 1 � F.x/ be regularly varying at infinity with exponent �˛ � 0. We
discuss general regularly varying functions in Section 10.5. By its definition, the
tail distribution function F is not only regularly varying, but also monotone.

It follows immediately that a nonnegative random variable X is regularly varying
with tail exponent ˛ if and only if

P.X > x/ D x�˛L.x/; x � 0; (4.17)

for a positive slowly varying function L. When ˛ D 0, then L has to be
nonincreasing. One of the reasons why random variables with regularly varying
tails (or distributions of random variables with regularly varying tails) are popular
is that the tail exponent ˛ provides a linear scale of how heavy a tail is; the lower
the value of ˛, the heavier the tail. One consequence of this is that the tail exponent
of a nonnegative random variable largely determines which moments of the random
variable are finite.

Proposition 4.2.1. Let X be a nonnegative regularly varying random variable with
tail index ˛. Then for p > 0,

EXp is

	
< 1 if p < ˛;
D 1 if p > ˛:

Proof. Since we can write for p > 0

EXp D p
Z 1

0

xp�1P.X > x/ dx ; (4.18)

the statement of the proposition follows from the comparison (10.33) of a regularly
varying function and power functions. �

Remark 4.2.2. Note that a nonnegative regularly varying random variable with tail
index ˛ may or may not have a finite moment EX˛ . In fact, finiteness of that moment
or lack thereof is determined by further properties of the slowly varying function L
in (4.17).

When a moment of a regularly varying random variable is infinite, it is an often
very useful fact that the corresponding truncated moment is regularly varying as
well.

Proposition 4.2.3. Let X be a nonnegative regularly varying random variable with
tail index ˛. Then for p � ˛, the truncated pth moment

mp.x/ D E.X ^ x/p; x � 0 ;
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is regularly varying with exponent p � ˛, and

lim
x!1

E.X ^ x/p

xpP.X > x/
D p

p � ˛ ;

with p=0 D C1.

Proof. Applying (4.18) to the random variable X ^ x gives us

E.X ^ x/p D p
Z x

0

yp�1P.X > y/ dy

and the claim follows from Theorem 10.5.6. �

A related statement for upper truncated moments is in Exercise 4.6.4.
If X is a not necessarily nonnegative random variable, we say that it has a

regularly varying right tail with tail exponent ˛ � 0 if its positive part XC is
regularly varying with tail exponent ˛. Clearly, (4.17) still characterizes a regularly
varying right tail, regardless of whether the random variable is nonnegative.

Regular variation of the tails of random variables is a very robust property, one
that is preserved under various operations. We begin with a simple observation
described in the following lemma.

Lemma 4.2.4. Let X have a regularly varying right tail. Suppose that Y is
independent of X and such that

lim
x!1

P.Y > x/

P.X > x/
D A � 0 :

Then

lim
x!1

P.X C Y > x/

P.X > x/
D 1C A :

In particular, X C Y also has a regularly varying right tail.

Proof. For every 0 < " < 1 and x > 0,

P.X C Y > x/ � P.X > .1 � "/x/C P.Y > .1 � "/x/C P.X > "x; Y > "x/ :

Therefore, by the assumption of regular variation and independence,

lim sup
x!1

P.X C Y > x/

P.X > x/
� lim sup

x!1
P.X > .1 � "/x/

P.X > x/
C lim sup

x!1
P.Y > .1 � "/x/

P.X > x/

C lim sup
x!1

P.Y > "x/
P.X > "x/

P.X > x/

D .1 � "/�˛ C A.1 � "/�˛ C 0 � "�˛ D .1C A/.1 � "/�˛ :
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Letting " ! 0, we conclude that

lim sup
x!1

P.X C Y > x/

P.X > x/
� 1C A :

For the matching lower bound, write for 
 > 0,

P.X C Y > x/ � P
�n

X > x C 
;Y > �

o

[
n
Y > x C 
;X > �


o�

� P.X > x C 
;Y > �
/C P.Y > x C 
;X > �
/ � P.X > x;Y > x/ :

Since a random variable with a regularly varying tail is subexponential, we conclude
by the long tail property of subexponential random variables in Proposition 4.1.4
that

lim inf
x!1

P.X C Y > x/

P.X > x/
� lim inf

x!1 P.Y > �
/P.X > x C 
/

P.X > x/

C lim inf
x!1 P.X > �
/P.Y > x C 
/

P.X > x/

D P.Y > �
/C AP.X > �
/ :
Letting 
 ! 1 completes the proof. �

The next statement shows that if X has a regularly varying right tail, then adding
a random variable with a lighter tail does not change the tail of X even in the absence
of independence.

Proposition 4.2.5. Suppose that X has a regularly varying right tail and Y is a
random variable such that

lim
x!1

P.jYj > x/

P.X > x/
D 0 : (4.19)

Then

lim
x1

P.X C Y > x/

P.X > x/
D 1 : (4.20)

In particular, X C Y also has a regularly varying right tail.

Proof. For every 0 < " < 1,

P.X > .1C "/x/� P.Y < �"x/ � P.X C Y > x/ � P.X > .1� "/x/C P.Y > "x/ :

Therefore, by (4.19) and the regular variation of X,

lim sup
x!1

P.X C Y > x/

P.X > x/
� .1 � "/�˛ C lim sup

x!1
P.jYj > "x/
P.X > "x/

"�˛ D .1 � "/�˛ ;
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where ˛ is the tail exponent of X. Now the upper bound in (4.20) follows by letting
" ! 0. The lower bound in (4.20) can be obtained in the same way. �

It turns out, further, that multiplying a random variable X with a regularly varying
right tail by an independent positive random variable with a sufficiently light tail
leaves the tail of X asymptotically unchanged apart from multiplying it by a positive
constant.

Proposition 4.2.6. Suppose that X has a regularly varying right tail with exponent
˛ � 0, and Y is a positive random variable such that

EY˛C" < 1 (4.21)

for some " > 0. Then

lim
x!1

P.YX > x/

P.X > x/
D EY˛ : (4.22)

In particular, YX also has a regularly varying right tail.

Proof. Let FY be the law of the random variable Y . Write

P.YX > x/ D
Z 1

0

P.X > x=y/FY.dy/ :

Let y � 1. By the Potter bounds of Corollary 10.5.8, there exist C > 0 and a" > 0
such that if x=y � a", then

P.X > x=y/

P.X > x/
� Cy˛C" : (4.23)

On the other hand, if x=y < a", then

P.X > x=y/

P.X > x/
� 1

P.X > a"y/
:

This last expression, according to (10.33), is smaller than y˛C" for all y > y0, for
some y0 � 1, and hence is also bounded from above by C1y˛C" for all y � 1 if we
choose

C1 D 1

P.X > a"y0/
:
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Therefore, (4.23) holds for all y � 1 and x > 0 if we increase the constant C. By the
dominated convergence theorem, we conclude that

lim
x1

P.YX > x/

P.X > x/
D
Z 1

0

lim
x1

P.X > x=y/

P.X > x/
FY.dy/

D
Z 1

0

y˛ FY.dy/ D EY˛ :

�
It is sometimes appropriate to discuss regular variation of both the left and the

right tails of a random variable at the same time. The key notion is that of balanced
regularly varying tails.

Definition 4.2.7. A real-valued random variable X, or its distribution F, is said
to have balanced regularly varying tails with exponent ˛ � 0 if the nonnegative
random variable jXj is regularly varying with exponent ˛ and for some 0 � p; q � 1,
p C q D 1,

lim
x!1

P.X > x/

P.jXj > x/
D p; lim

x!1
P.X < �x/

P.jXj > x/
D q : (4.24)

Note that the numbers p and q in Definition 4.2.7 describe the relative weights
of the right and left tails of the random variable X. The right tail of X is actually
guaranteed to be regularly varying only if p > 0, and the left tail does not need to
be regularly varying unless q > 0. If, however, 0 < p < 1, then both tails of X are
regularly varying with exponent ˛, and moreover, asymptotically equivalent to each
other.

Example 4.2.8. Recall that for 0 < ˛ < 2, an ˛-stable random variable is an
infinitely divisible random variable X with a characteristic triplet .�2; �; b/, where
� D 0, and the Lévy measure � is of the form

�.dx/ D
h
a�jxj�.1C˛/1.x < 0/C aCx�.1C˛/1.x > 0/

i
dx :

Here a�; aC � 0, a� C aC > 0. For an ˛-stable random variable,

P.jXj > x/ � a� C aC
˛

x�˛ as x ! 1;

and (4.24) holds with

p D aC
a� C aC

; q D a�
a� C aC

I
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see Samorodnitsky and Taqqu (1994). Therefore, ˛-stable random variables have
balanced regularly varying tails. In particular, for an ˛-stable random variable, the
absolute moment of order ˛ is infinite, but all absolute moments of orders strictly
smaller than ˛ are finite.

A two-sided version of Proposition 4.2.6 is contained in the following easy
corollary.

Corollary 4.2.9. Let X have balanced regularly varying tails with exponent ˛ � 0,
and let Y be independent of X such that for some " > 0, EjYj˛C" < 1. Then

lim
x!1

P.jYXj > x/

P.jXj > x/
D EjYj˛

and

lim
x!1

P.YX > x/

P.jYXj > x/
D p

EY˛C
EjYj˛ C q

EY˛�
EjYj˛ ;

lim
x!1

P.YX < �x/

P.jYXj > x/
D p

EY˛�
EjYj˛ C q

EY˛C
EjYj˛ :

In particular, YX also has balanced regularly varying tails with exponent ˛.

See Exercise 4.6.5.
An immediate consequence of Lemma 4.2.4 and Corollary 4.2.9 says that if

X1; : : : ;Xn are i.i.d. random variables with balanced regularly varying tails with
exponent ˛ � 0, independent of a sequence Y1; : : : ;Yn of independent random
variables such that for some " > 0, EjYij˛C" < 1, i D 1; : : : ; n, then the sumPn

iD1 YiXi also has balanced regularly varying tails with exponent ˛, which are
asymptotically equivalent to the tails of a generic representative X of the sequence
X1; : : : ;Xn.

This statement, however, can be greatly generalized. First of all, it remains true
even if Y1; : : : ;Yn are not independent. Second, we can even allow a certain type of
dependence between the sequences X1; : : : ;Xn and Y1; : : : ;Yn. Finally, and perhaps
most importantly, the statement remains true even for infinite sequences (i.e., for
n D 1), under additional assumptions on the random variables Y1;Y2; : : :.

The following theorem, stated here without proof, is a very general result of this
type. The proof can be found in Hult and Samorodnitsky (2008).

Theorem 4.2.10. Let X1;X2; : : : be i.i.d. random variables with balanced regularly
varying tails with exponent ˛ > 0. If ˛ > 1, we assume that EX D 0. Let Y1;Y2; : : :
be a sequence of random variables such that supj jYjj > 0 a.s.

Assume that there is a filtration .Fj; j � 1/ such that

Yj is Fj-measurable, Xj is FjC1-measurable, (4.25)

Fj is independent of �.Xj;XjC1; : : :/, j � 1.
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Suppose that there is 0 < " < ˛ such that

1X

nD1
EjYnj˛�" < 1 and

1X

nD1
EjYnj˛C" < 1; if ˛ 2 .0; 1/ [ .1; 2/;

(4.26)

E

 1X

nD1
jYnj˛�"

! ˛C"
˛�"

< 1; if ˛ 2 f1; 2g; (4.27)

E

 1X

nD1
jYnj2

! ˛C"
2

< 1; if ˛ 2 .2;1/: (4.28)

Then the series

S D
1X

nD1
YnXn

converges with probability 1. Moreover,

lim
x!1

P.jSj > x/

P.jXj > x/
D
1X

nD1
EjYnj˛ (4.29)

and

lim
x!1

P.S > x/

P.jXj > x/
D
1X

nD1



pE.Yn/

˛C C qE.Yn/
˛�
�
: (4.30)

In particular, S has balanced regularly varying tails with exponent ˛.

Remark 4.2.11. Under the assumptions of the theorem, the series S converges
absolutely if ˛ � 1, and unconditionally if ˛ > 1; see Remark 1.4.2.

The condition (4.25) means that the sequence Y1;Y2; : : : is, in a sense, predictable
with respect to the sequence X1;X2; : : :. This framework includes, as a special
case, the situation in which the sequence Y1;Y2; : : : is independent of the sequence
X1;X2; : : :, since in this case, one can choose Fj D �

�
Yn; n D 1; 2; : : : ; Xn; n < j

�

for j D 1; 2; : : :.
It follows from Proposition 4.2.5 that even without the assumption of zero mean

in the case ˛ > 1 in Theorem 4.2.10, the conclusions of that theorem will still be
valid under the following additional assumption on the sequence Y1;Y2; : : ::

the series SY D
1X

nD1
Yn converges and lim

x!1
P.jSY j > x/

P.jXj > x/
D 0 : (4.31)
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When the sequence Y1;Y2; : : : in Theorem 4.2.10 is actually deterministic,
the result of the theorem gives sufficient conditions for the linear processes of
Section 1.4 to consist of random variables with balanced regularly varying tails.
We state these conditions as a corollary; it is an immediate consequence of
Theorem 4.2.10. This corollary complements the result of Theorem 1.4.1.

Corollary 4.2.12. Let : : : ;X�1;X0;X1;X2; : : : be i.i.d. random variables with bal-
anced regularly varying tails with exponent ˛ > 0, and let .'n; n 2 Z/ be real
numbers such that

P1
nD�1 j'nj˛�" < 1 for some 0 < " < ˛, if ˛ � 2,P1
nD�1 j'nj2 < 1 if ˛ > 2.

(4.32)

If ˛ > 1, assume that either EX D 0 or (1.25) holds (i.e., the series
P
'n

converges). Then the series

S D
1X

nD�1
'nXn

converges with probability 1, and

lim
x!1

P.jSj > x/

P.jXj > x/
D

1X

nD�1
j'nj˛ ; (4.33)

lim
x!1

P.S > x/

P.jXj > x/
D

1X

nD�1



p.'n/

˛C C q.'n/
˛�
�
: (4.34)

Therefore, S has balanced regularly varying tails with exponent ˛.

Remark 4.2.13. It is clear that Theorem 4.2.10 can be applied in the situation of
Corollary 4.2.12, even though the series in the latter is doubly infinite. Note that the
convergence statement in Corollary 4.2.12 follows also from Theorem 1.4.1.

4.3 Multivariate Regularly Varying Tails

It is often desirable to have a notion of heavy tails for a random vector. In the
context of a stochastic process, this corresponds to the notion of heavy tails for
the finite-dimensional distributions of the process. A multivariate version of the
subexponential tails of Section 4.1 exists, but it has not proved to be particularly
useful. On the other hand, there is a very useful notion of multivariate regularly
varying tails.
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Definition 4.3.1. A random vector X 2 R
d, or its law, is said to be regularly varying

if P.kXk > x/ > 0 for all x � 0, and there exist ˛ � 0 and a probability measure �
on the unit sphere S

d�1 of Rd such that for every b > 0,

lim
x!1

P.kXk > bx; X=kXk 2 �/
P.kXk > x/

D b�˛�.�/ (4.35)

vaguely in S
d�1.

Remark 4.3.2. Since the unit sphere S
d�1 is compact, there is very little difference

between vague and weak convergence in S
d�1. The reason we call convergence

in (4.35) vague is that the measures involved are not probability measures. See
Section 10.2 for a discussion of weak and vague convergence.

The parameter ˛ is called, as in the one-dimensional case, the index of regular
variation, the exponent of regular variation, or the tail exponent. The probability
measure � is called the spectral measure of X.

Of course, (4.3.1) simply says that for every � -continuity Borel set A 2 S
d�1,

lim
x!1

P.kXk > bx; X=kXk 2 A/

P.kXk > x/
D b�˛�.A/ : (4.36)

In particular, using (4.36) with A D S
d�1 shows that the norm of a regularly varying

random vector is itself a regularly varying nonnegative random variable. Even more
precisely, the statement (4.36) can be restated as follows.

Proposition 4.3.3. Let X 2 R
d be a random vector. On the event X 6D 0, define

�X D X=kXk. Then the vector X is multivariate regularly varying with tail exponent
˛ and spectral measure � if and only if its norm kXk is regularly varying with tail
exponent ˛ and the conditional law of �X given that kXk > x converges weakly to
� as x ! 1.

Example 4.3.4. What is multivariate regular variation in R
1? In this case, S0 D

f�1; 1g, and for a probability measure � on S
0, set p D �.f1g/; q D �.f�1g/.

Then (4.36) becomes

lim
x!1

P.X > x/

P.jXj > x/
D p; lim

x!1
P.X < �x/

P.jXj > x/
D q ;

so that multivariate regular variation in R
1 is exactly the balanced regular variation

of Definition 4.2.7.

In the case ˛ > 0, there is an alternative characterization of multivariate regular
variation in which the unit sphere does not play a special role. An advantage of this
characterization is that it is possible to use it as a definition of regular variation in
metric spaces more general than R

d, in which an obvious unit sphere may not be
available.
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Consider the space R
d
0 D Œ�1;1�d n f0g, which we endow with the subspace

topology inherited from Œ�1;1�d. It is not difficult to check that R
d
0 is metrizable

as a complete separable metric space; see Exercise 4.6.6. Note that relatively

compact sets in R
d
0 are precisely the sets that are bounded away from the origin.

Theorem 4.3.5. Let X 2 R
d be a random vector. The following statements are

equivalent.

(a) X is multivariate regularly varying with a tail index ˛ > 0.
(b) There is a sequence an " 1 such that

nP.a�1n X 2 �/ v! �.�/ (4.37)

vaguely in R
d
0, where a Radon measure � on R

d
0 is assumed to be nonzero and

to satisfy

�
�n
.x1; : : : ; xd/ W xj 2 f˙1g for some j D 1; : : : ; d

o�
D 0 : (4.38)

Furthermore, if (4.37) holds, then there is ˛ > 0 such that the measure � has
the scaling property

�
�
aA
� D a�˛�.A/ (4.39)

for every a > 0 and every Borel set A 	 R
d
0, and the parameter ˛ is the exponent of

regular variation of the vector X.

Proof. Suppose first that X is multivariate regularly varying with tail index ˛ > 0.

Define a measure � on R
d
0 by assigning it zero mass on infinite points (i.e.,

guaranteeing (4.38) by definition), and setting

�.B/ D
Z

Sd�1

Z 1

0

1.xs 2 B/ ˛x�.˛C1/ dx �.ds/

for Borel sets B 	 .�1;1/d n f0g. Clearly, � assigns finite values to sets bounded

away from the origin; hence it is a Radon measure on R
d
0. Next, we set

an D inf
˚
x > 0 W P.kXk > x/ � 1=n

�
; n D 1; 2; : : : ; (4.40)

and define

mn.�/ D nP.a�1n X 2 �/ on R
d
0; n D 1; 2; : : : :

Let B 	 R
d
0 be a compact set. Then there is ı > 0 such that kxk � ı for all x 2 B,

so that

mn.B/ � nP.kXk � anı/ � P.kXk � anı/

P.kXk � an/
! ı�˛
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as n ! 1 (see Exercise 4.6.3). Therefore, each measure mn is Radon, and by

Theorem 10.2.8, the family .mn/ is relatively compact in the vague topology on R
d
0.

In order to prove (4.37), it is enough to prove that all subsequential limits of the
sequence .mn/ coincide with �.

Suppose that mnk

v! � for some subsequence nk ! 1 and a Radon measure � .
Let C� D ˚

� > 0 W ��fx W kxk D �g� D 0
�
. Note that the complement of C� in

.0;1/ is at most countable. For every � 2 C� ,

�
�fx W kxk � �g� D lim

k!1mnk

�fx W kxk � �g� D ��˛;

as above. Letting � ! 1, we see that � does not charge infinite points.
Next, let � 2 C� , and let A be a Borel subset of Sd�1 that is a continuity set both

for the spectral measure � and for the measure

��.�/ D �
�˚

x W � � kxk < 1; x=kxk 2 ��
�

on S
d�1. Then the set

B D
n
x 2 R

d
0 W � < kxk < 1 and x=kxk 2 A

o

is a continuity set for � . In particular, mnk.B/ ! �.B/ as k ! 1. On the other
hand,

mn.B/ D n P
�kXk > an�; X=kXk 2 A

�

� P
�kXk > an�; X=kXk 2 A

�

P.kXk > an/
! �.A/��˛ D �.B/

as n ! 1 by the multivariate regular variation of X. Therefore, �.B/ D �.B/.
Since sets B as above form a 	-system generating the Borel � -field on R

d n f0g,
the measures � and � coincide on that Borel � -field. Since neither � nor � charges
the set of infinite points, we conclude that � D �, and so all subsequential limits
of the sequence .mn/ indeed coincide with �.

In the opposite direction, suppose that (4.37) holds and � satisfies (4.38). For
x > 0, define h.x/ D P.kXk > x/, g.x/ D �

�fx W kxk > xg�. The functions h and
g satisfy the assumptions of Lemma 10.5.15, so we conclude that the sequence .an/

is regularly varying with some exponent ˇ > 0. Let a > 0 and take any bj � 0;

j D 1; : : : ; d, not all equal to zero, such that

�fx W xj D bj or xj D abj for some j D 1; : : : ; dg D 0 :
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Let A D Qd
jD1Œbj;1/. Then both A and aA are relatively compact �-continuity sets

in R
d
0, so by (4.37) and the regular variation of the sequence .an/,

�.aA/ D lim
n!1 nP.a�1n X 2 aA/

D lim
n!1 nP

�
a�1dna�1=ˇeX 2 A/ D a1=ˇ�.A/ :

Setting ˛ D 1=ˇ, and noticing that the sets A as above form a 	-system generating
the Borel � -field on Œ0;1/d n f0g, we conclude that the measures �.a�/ and a˛�.�/
coincide on Œ0;1/d n f0g. Reversing the directions of some of the half-lines in
the definition of the set A above and using the same argument shows that these
two measures coincide on all the other quadrants in R

d n f0g as well. This proves
the scaling property (4.39). One consequence of (4.39) is that the measure � must
assign zero weight to all spheres bSd�1, b > 0, for if it assigns a positive weight to
any one of these spheres, by the scaling property it assigns a positive weight to all of
them, and a � -finite measure cannot assign a positive weight to each of uncountably
many disjoint sets.

Because of (4.39), the measure

�.A/ D �
˚
x W kxk > b; x=kxk 2 A

�

�fx W kxk > bg ; A a Borel subset of Sd�1,

is a probability measure on S
d�1, independent of the choice of b > 0. If A is a

� -continuity Borel subset of Sd�1, then for every b > 0, the set

B D ˚
x W kxk > b; x=kxk 2 A

�

is a �-continuity relatively compact Borel subset of R
d
0. If we set, for x > 0, nx D

inffn � 1 W an � xg, then nx ! 1 as x ! 1. For every b > 0, we have, by (4.37),
with sets A and B as above,

nxP
�kXk > bx; X=kXk 2 A

� � nxP
�kXk > banx ; X=kXk 2 A

�

D nxP.X 2 anx B/ ! �.B/ D �.A/�
�
bSd�1�

as x ! 1. Since

nxP.kXk > x/ � nxP
�kXk > anx

� ! �
�
S

d�1� ;

we conclude by (4.39) that

lim
x!1

P.kXk > bx; X=kXk 2 A/

P.kXk > x/
D �.A/

�
�
bSd�1�

�
�
Sd�1� D b�˛�.A/ ;

and (4.36) follows. Therefore, X is multivariate regularly varying with a tail index
˛ > 0. �
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The limiting measure � in (4.37) is called the tail measure of the random vector
X. It is clear that the tail measure is defined uniquely up to a positive multiplicative
constant.

Corollary 4.2.9 has the following, very natural, extension to the case of multi-
variate regular variation.

Proposition 4.3.6. Let X 2 R
d be a random vector. Assume that X is multivariate

regularly varying with a tail index ˛ > 0 and tail measure �X, corresponding to
some sequence .an/. Let A be an m � d random matrix, independent of X, such that
for some " > 0, EkAk˛C" < 1. Assume that the measure E

�
�X ıA�1

�
on R

m is not
the zero measure. Then the random vector Z D AX 2 R

m is multivariate regularly
varying with a tail index ˛ > 0. If one uses the same sequence .an/, then the tail
measure of Z is given by �Z D E

�
�X ı A�1

�
.

Proof. Let B be a Borel subset of Rm, bounded away from the origin. Assume that B
is a continuity set for the measure E

�
�XıA�1

�
. Then the set A�1.B/ is a Borel subset

of Rd bounded away from the origin. It is, further, with probability 1, a continuity
set for the measure �X . Notice that

nP.anZ 2 B/ D
Z

Rm�d
nP
�
X 2 a�1.B/

�
FA.da/ :

Here FA is the law of the random matrix on the space of Rm�d of m � d matrices.
For FA-almost every a,

nP
�
X 2 a�1.B/

� ! �X
�
a�1.B/

�
:

Let ı WD inffkxk W x 2 Bg > 0. For a 2 R
m�d, write

nP
�
X 2 a�1.B/

� � nP
�
a�1n kXk > ıkak�1�

D nP
�
a�1n kXk > ı�P

�
a�1n kXk > ıkak�1�

P
�
a�1n kXk > ı� :

The argument, using the Potter bounds of Corollary 10.5.8 in the proof of Proposi-
tion 4.2.6, shows that there is a constant C > 0 such that

P
�
a�1n kXk > ıkak�1�

P
�
a�1n kXk > ı� � Ckak˛C" :

Using the moment assumption on the norm of the random matrix A, we apply the
dominated convergence theorem to obtain

lim
n!1 nP.anZ 2 B/ D

Z

Rm�d
lim

n!1 nP
�
X 2 a�1.B/

�
FA.da/

D
Z

Rm�d
�X
�
a�1.B/

�
FA.da/ D E

�
�X ı A�1.B/

�
;

as required. �
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Let X 2 R
d be a multivariate regularly varying random vector with a tail index

˛ > 0. Let �X be the tail measure of X, corresponding to some sequence .an/. Let
.b1; : : : ; bd/ 2 R

d. Then

P
�Pd

jD1 bjXj > x
�

P.kXk > x/
! �X

�fx W Pd
jD1 bjxj > 1g

�

�X
�fx W kxk > 1g�

as x ! 1. This means that every linear combination of the components of X is a
one-dimensional random variable whose right tail is regularly varying with the same
tail index ˛. Even more precisely, the right tails of the distributions of all the linear
combinations are equivalent, and all are equivalent to the tail of the distribution
of the norm of the vector X. Strictly speaking, this is true only for those linear
combinations for which

�X
�fx W

dX

jD1
bjxj > 0g

�
> 0 : (4.41)

If for some coefficients .b1; : : : ; bd/, the condition (4.41) fails, then the right tail of
the distribution of the linear combination

Pd
jD1 bjXj is still proportional to the right

tail of the distribution of the norm kXk, but the coefficient of proportionality is equal
to zero. The fact that the tail measure �X is not the zero measure implies that the
condition (4.41) holds at least for some vectors of coefficients.

This discussion is often summarized by saying that all linear combinations of
the components of a multivariate regularly varying random vector are themselves
regularly varying in one dimension.

The question to what extent a properly formulated assumption of regular
variation of all linear combinations of the components of a random vector implies
multivariate regular variation of the latter is much harder, and we address it next.
Let X 2 R

d be a random vector, and let D be a regularly varying positive random
variable with a tail index ˛ > 0. The assumption

w.b/ D lim
x!1

P
�Pd

jD1 bjXj > x
�

P.D > x/
exists and is finite for any b D .b1; : : : ; bd/ 2 R

d

w.b.0// > 0 for at least one b.0/ 2 R
d (4.42)

is the form in which we think of regular variation of the linear combinations of
the components of a random vector. We have seen that if a random vector X is
multivariate regularly varying, then (4.42) holds with D D kXk. On the other hand,

suppose that (4.42) holds. Define for t > 0 a finite measure on R
d
0 by

mt.�/ D P.X 2 t�/
P
�Pd

jD1 b.0/j Xj > t
� ; (4.43)



4.3 Multivariate Regularly Varying Tails 161

where b.0/ D .b.0/1 ; : : : ; b
.0/
d / is as in (4.42). Note that for each ı > 0,

mt
�fx W kxk > ıg� �

dX

jD1

P.jXjj > tı=d/

P
�Pd

jD1 b.0/j Xj > t
�

!
dX

jD1

w
�
de.j/=ı

�C w
��de.j/=ı

�

w.b.0//
< 1

as t ! 1. Here e.j/ is the vector in R
d with all zero coordinates except the jth

coordinate, which is equal to one. By Theorem 10.2.8, the family .mt/ is relatively

compact in the vague topology on R
d
0. Let � be such that mtk

v! � as k ! 1
for some sequence tk ! 1. Then by the continuous mapping theorem for vague
convergence (Theorem 10.2.9) and (4.42), for every b 2 R

d and x > 0,

�
�˚

y W
dX

jD1
bjyj > x

�� D lim
k!1

P
�Pd

jD1 bjXj > tkx
�

P
�Pd

jD1 b.0/j Xj > tk
� D x�˛

w.b/
w.b.0//

I (4.44)

note that the regular variation of D in (4.42) justifies the first equality above, because
the set on which the measure � is evaluated must be a � -continuity set.

Note that the expression on the left-hand side of (4.44) is determined by the ratios
w.b/=w.b.0//, b 2 R

d. Therefore, all possible limiting measures � as above coincide
on the half-spaces of the type

˚
y W Pd

jD1 bjyj > x
�
. If the values a Radon measure

on such half-spaces were to determine the entire measure � , we would immediately
conclude that a vague limit of �t as t ! 1 exists. Defining

an D inf
˚
t > 0 W P

� dX

jD1
b.0/j Xj > t

� � 1=n
�
; n D 1; 2; : : : ;

we see that (4.37) holds. Since by (4.44), the limiting measure � does not charge the
infinite points, we would conclude by Theorem 4.3.5 that X is multivariate regularly
varying. Moreover, the spectral measure � of X would be uniquely determined by
the ratios w.b/=w.b.0//, b 2 R

d.
Everything hangs, therefore, on the question whether certain Radon measures are

uniquely determined by the values they assign to half-spaces of the type

˚
y W

dX

jD1
bjyj > x

�
; b 2 R

d; x > 0 : (4.45)

A simple characteristic functions argument shows that probability measures are
indeed uniquely determined by their values on such half-spaces. Since we are
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dealing with infinite measures, the situation is more complicated, and we have to
use the natural scaling property of the possible limiting measures.

Theorem 4.3.7 below shows that in most cases, (4.42) implies multivariate
regular variation of X, because the possible limiting measures are, in fact, uniquely
determined by their values on the half-spaces.

Theorem 4.3.7. Suppose that a random vector X satisfies (4.42). If ˛ > 0 is a
noninteger, then X is multivariate regularly varying, and the spectral measure � of
X is uniquely determined by the ratios w.b/=w.b.0//, b 2 R

d, where b.0/ is such
that w.b.0// > 0. The same is true if ˛ is an odd integer and X is either symmetric
or takes values in Œ0;1/d.

Proof. We need to prove that under the assumptions of the theorem, all possible
subsequential limits of the family .mt/ in (4.43) have the following property: if two
such measures coincide on subspaces of type (4.45), then the two measures are in
fact equal. The characterizing feature of the possible limiting measures � turns out
to be its scaling (in x > 0) property (4.44). While this property does not immediately
imply that the measure � enjoys a full scaling property as in (4.39), it carries enough
information to establish finiteness of certain integrals with respect to � . Specifically,
we claim that

R
kyk�1 kykp �.dy/ < 1 for every p > ˛
R
kyk�1 kykp �.dy/ < 1 for every p < ˛

: (4.46)

Indeed, let p > ˛. By (4.44), for some cp 2 .0;1/,

Z

kyk�1
kykp �.dy/ D

Z 1

0

�
�˚

y W 1.kyk � 1/kykp > t
��

dt

�
Z 1

0

�
�˚

y W kykp > t
��

dt � cp

dX

jD1

Z 1

0

�
�˚

y W jyjj > t1=p=d
��

dt

D cp

dX

jD1

Z 1

0

w.ej/C w.�ej/

w.b.0//

�
t1=p=d

��˛
dt < 1 :

Similarly, for 0 < p < ˛,

Z

kyk�1
kykp �.dy/ D

Z 1

0

�
�˚

y W 1.kyk � 1/kykp > t
��

dt

� �
�˚

y W 1.kyk � 1/
��C

Z 1

1

�
�˚

y W kykp > t
��

dt

� �
�˚

y W 1.kyk � 1/
��C cp

dX

jD1

Z 1

1

w.ej/C w.�ej/

w.b.0//

�
t1=p=d

��˛
dt < 1 :
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The integrability properties (4.46) will allow us to use the characteristic function
approach as if we were dealing with probability measures. Suppose first that ˛ is
a noninteger. Let �j; j D 1; 2, be two measures satisfying (4.46) that coincide on
subspaces of type (4.45). We will prove that �1 D �2. For an integer n � 1 such that
˛ 2 .2n � 2; 2n/, we define for j D 1; 2,

�j.B/ D .�1/n
Z

B

�
ei.b.0/;y/ � e�i.b.0/;y/�2n

�j.dy/; B Borel : (4.47)

Since the integrand in this integral is bounded, and additionally, its absolute value
is bounded by a constant factor of kyk2n near the origin, it follows from (4.46) that
the integral is a finite nonnegative real number. Therefore, �1 and �2 are two finite
measures on R

d. We will prove that their characteristic functions coincide. This will
imply that the total masses of �1 and �2 are equal and, after a normalization, that
�1 D �2. Since d�1=d�1 D d�2=d�2, the latter fact will imply that �1 D �2 as long
as the common Radon–Nykodim derivative does not vanish outside a set of measure
zero with respect to both �1 and �2. However, the derivative vanishes only on the
countable collection of hyperplanes

˚
y W .b.0/; y/ D 	 C 	m

�
, m D 0;˙1; : : :,

and by (4.44), each of these hyperplanes has measure zero with respect to both �1
and �2.

It remains, therefore, to prove that the characteristic functions of �1 and �2
coincide. For a 2 R

d, we have by the binomial formula

.�1/n
Z

Rd
ei.a;y/ �j.dy/ D

Z

Rd

2nX

kD0
.�1/k

 
2n

k

!

exp
˚
i.a C 2.n � k/b.0/; y/

�
�j.dy/ :

(4.48)

Recall that since �1 and �2 coincide on subspaces of type (4.45), we automatically
have

Z

Rd
'
�
.b; y/

�
�1.dy/ D

Z

Rd
'
�
.b; y/

�
�2.dy/ (4.49)

for b 2 R
d and every measurable function ' for which the two integrals are well

defined. Therefore, if we could interchange the sum and the integral in (4.48), we
could apply (4.49) to each of the resulting integrals and conclude that the expression
in (4.48) is the same for j D 1 and j D 2. However, even though the sum on the
right-hand side of (4.48) is integrable, each individual term in the sum is easily seen
not to be integrable. To overcome this problem, we modify the individual terms
without changing the sum, as follows. Let j < m be two nonnegative integers. By
the binomial formula,

mX

kD0
.�1/k

 
m

k

!

k.k � 1/ : : : .k � j C 1/

D .�1/j m.m � 1/ : : : .m � j C 1/

m�jX

kD0
.�1/k

 
m � j

k

!

D 0 ;
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implying that

mX

kD0
.�1/k

 
m

k

!

kj D 0

as well. In particular, for every pair of complex numbers h1; h2, and 0 � j < m,

mX

kD0
.�1/k

 
m

k

!

ekh1Ch2 D
mX

kD0
.�1/k

 
m

k

! 

ekh1Ch2 �
jX

lD0

.kh1 C h2/l

lŠ

!

: (4.50)

Suppose that ˛ 2 .2n � 1; 2n/. We use (4.50) with m D 2n, j D 2n � 1, h1 D
�2i.b.0/; y/, and h2 D i.a C 2nb.0/; y/ to rewrite the right-hand side of (4.48) as

Z

Rd

2nX

kD0
.�1/k

 
2n

k

!

R2n�1
�
i.a C 2.n � k/b.0/; y/

�
�j.dy/ (4.51)

D
2nX

kD0
.�1/k

 
2n

k

!Z

Rd
R2n�1

�
i.a C 2.n � k/b.0/; y/

�
�j.dy/ :

Here

Rj.z/ D ez �
jX

lD0

zl

lŠ
;

and interchanging the sum and the integral is now permitted, since for each k D
0; 1; : : : ; 2n, for some finite constant c,

ˇ
ˇR2n�1

�
i.a C 2.n � k/b.0/; y/

�ˇˇ �
	

ckyk2n if kyk � 1;

ckyk2n�1 if kyk � 1.

By (4.46), all the integrals on the right-hand side of (4.51) are finite. Finally,
appealing to (4.49), we conclude that the right-hand side of (4.51) is the same for
j D 1 and j D 2, and hence the same is true for (4.48). Thus, the characteristic
functions of �1 and �2 coincide.

If ˛ 2 .2n � 2; 2n � 1/, we can use the same argument as above, but with
j D 2n � 2. Therefore, we have proved the theorem in the case of a noninteger
˛.

We consider now the case that ˛ D 2n � 1 is an odd integer. Suppose first that
X is a symmetric random vector. In that case, all the measures mt in (4.43) are
symmetric, and hence so are all possible vague limits of these measures. Therefore,
when proving that �1 D �2 above, we need to consider only symmetric measures
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�1 and �2. By this symmetry, we can rewrite the integral on the left-hand side
of (4.51) as

1

2

Z

Rd

2nX

kD0
.�1/k

 
2n

k

!h
R2n�1

�
i.a C 2.n � k/b.0/; y/

�

CR2n�1
��i.a C 2.n � k/b.0/; y/

�i
�j.dy/

D 1

2

2nX

kD0
.�1/k

 
2n

k

!Z

Rd

h
R2n�1

�
i.a C 2.n � k/b.0/; y/

�

CR2n�1
��i.a C 2.n � k/b.0/; y/

�i
�j.dy/ :

Note that interchanging the sum and the integral is again permitted, because for each
k D 0; 1; : : : ; 2n, for some finite constant c,

ˇ̌
ˇR2n�1

�
i.a C 2.n � k/b.0/; y/

�C R2n�1
��i.a C 2.n � k/b.0/; y/

�ˇ̌
ˇ

�
	

ckyk2n if kyk � 1

ckyk2n�2 if kyk � 1
;

which by (4.46) provides the needed integrability when ˛ D 2n � 1. We complete
the argument by appealing, once again, to (4.49).

Finally, we consider the case of ˛ D 2n � 1 and X taking values in Œ0;1/d. Let
Y be a random vector whose law is the equal-weight mixture of the laws of X and
�X. Clearly, Y is a symmetric random vector. By the assumption (4.42), for every
b 2 R

d,

lim
x!1

P
�Pd

jD1 bjYj > x
�

P.D > x/

D 1

2

 

lim
x!1

P
�Pd

jD1 bjXj > x
�

P.D > x/
C lim

x!1
P
�Pd

jD1.�bj/Xj > x
�

P.D > x/

!

D 1

2

�
w.b/C w.�b/

�
:

Therefore, the vector Y itself satisfies (4.42). Define a family of measures as
in (4.43) but corresponding to Y:

m.Y/
t .�/ D P.Y 2 t�/

P
�Pd

jD1 b.0/j Yj > t
� ; t > 0 :

These measures are related to the measures defined by (4.43) (for X) by

m.Y/
t .�/ D P

�Pd
jD1 b.0/j Xj > t

�

P
�Pd

jD1 b.0/j Yj > t
�
1

2

�
mt.�/C mt.��/� :
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If mtk
v! � as k ! 1 for some sequence tk ! 1, then

m.Y/
tk .�/

v! w.b.0//
w.b.0//C w.�b.0//

.�.�/C �.��// :

However, by the already considered symmetric case, the vague limit of m.Y/
tk does

not depend on the sequence tk ! 1. Therefore, the sum �.�/ C �.��/ is uniquely
determined. Since � is concentrated on Œ0;1/d nf0g, � itself is uniquely determined,
and the proof of the theorem is complete. �

Remark 4.3.8. The statement of Theorem 4.3.7 is not true without restrictions on
the value of ˛ > 0 and/or the support of the vector X. In Hult and Lindskog
(2006), examples are provided of random vectors X satisfying (4.42) with an integer
˛ but not possessing multivariate regular variation. The authors also present an
example of a random vector taking values in Œ0;1/d that does not have the property
of multivariate regular variation for which all linear combinations of coordinates
with nonnegative weights are regularly varying, with any given integer exponent
of regular variation. This cannot happen if the exponent of regular variation of the
linear combinations is a noninteger; see Exercise 4.6.7.

It is not known whether the statement of Theorem 4.3.7 remains true if ˛ is an
even integer and X takes values in Œ0;1/d. However, a corresponding statement
when X is symmetric is false. To see this, let ˛ D 2k, and let Y1; : : : ;Yd be a
random vector taking values in Œ0;1/d without the property of multivariate regular
variation, for which all linear combinations of coordinates with nonnegative weights
are regularly varying with exponent ˛ D k, in the sense of (4.42). Let G1; : : : ;Gd

be i.i.d. standard normal random variables independent of Y1; : : : ;Yd, and define
Xi D GiY

1=2
2 ; i D 1; : : : ; d. Clearly, X D .X1; : : : ;Xd/ is a symmetric random

vector. For each b 2 R
d, as x ! 1,

P
�
.b;X/ > x

� D P

0

@
dX

jD1
bjGjY

1=2
j > x

1

A

D P

0

@G1

dX

jD1
b2j Yj > x

1

A � E
�
.G1/C

�k
P

0

@
dX

jD1
b2j Yj > x

1

A

by Proposition 4.2.6. Therefore, the random vector X satisfies (4.42). However, it is
not multivariate regularly varying. Indeed, if it were multivariate regular varying, so
would be its coordinatewise square .G2

1Y1; : : : ;G
2
dYd/. The “cancellation property”

of the powers of a normal random variable (see Theorem 4.1 in Damek et al. (2014)
and Example 4.4 in Jacobsen et al. (2008)) tells us that in this case, the vector Y D
.Y1; : : : ;Yd/ would itself be multivariate regular varying, which, by the assumption,
it is not.
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4.4 Heavy Tails and Convergence of Random Measures

Various limit theorems concerning sequences of regularly varying random variables
and vectors often become clearer when viewed through the lenses of point pro-
cesses and, more generally, random measures associated with these sequences. Let
.X1;X2 : : :/ be a sequence of i.i.d. regularly varying random vectors in R

d, with a
tail index ˛ > 0. With the sequence .an/ defined by (4.40), we define the point
process associated with the first n observations in the sequence by

Nn D
nX

jD1
ı.j=n;Xj=an/ I (4.52)

recall that ıb is the (Dirac) point mass at b. The next theorem shows that this
sequence of point processes converges to a Poisson process, weakly in the space

MRC
�
Œ0; 1��R

d
0

�
of Radon measures on Œ0; 1��R

d
0, endowed with the vague topology;

see Section 10.2. Here R
d
0 D Œ�1;1�d nf0g, and by Exercise 4.6.6, it is metrizable

as a complete separable metric space. Therefore, so is the space Œ0; 1��R
d
0, endowed

with the product topology.

Theorem 4.4.1. Let .X1;X2 : : :/ be a sequence of i.i.d. regularly varying random
vectors in R

d, with a tail index ˛ > 0 and tail measure �. Then

Nn ) N� as n ! 1 (4.53)

weakly in MRC
�
Œ0; 1� � R

d
0

�
, where N� is a Poisson random measure on Œ0; 1� � R

d

with mean measure m D ���, naturally considered as a Poisson random measure

on Œ0; 1� � R
d
0.

Proof. By Theorem 10.2.13, it is enough to prove that the Laplace functional of Nn

converges to the Laplace functional of N� for every nonnegative continuous function

f on Œ0; 1� � R
d
0 with compact support. As the expression for the Laplace functional

of a Poisson random measure in Exercise 10.9.4 shows, this convergence, in turn,
will follow from the following statement:

lim
n!1E exp

	
�
Z

Œ0;1��Rd
f .t; x/Nn.dt; dx/

�
(4.54)

D exp

	
�
Z

Œ0;1�

Z

Rd

�
1 � e�f .t;x/� �.dx/ dt

�

for every bounded and uniformly continuous function f on Œ0; 1� � R
d
0 such that for

some " D ".f / > 0,

f .t; x/ D 0 for all .t; x/ such that kxk � ". (4.55)
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We will begin by checking that for every t 2 Œ0; 1�,

lim
n!1

�
Ee�f

�
t;X1=an

��n

D exp

	
�
Z

Rd

�
1 � e�f .t;x/� �.dx/

�
: (4.56)

To see this, reuse the notation mn.�/ D nP.a�1n X 2 �/ as a Radon measure on R
d
0.

Theorem 4.3.5 says that mn
v! �. Since the function 1 � e�f .t;�/ is continuous with

compact support, we conclude that

Z

Rd

�
1 � e�f .t;x/� �.dx/ D lim

n!1

Z

Rd

�
1 � e�f .t;x/� mn.dx/

D lim
n!1 n E

�
1 � e�f

�
t;X1=an

��
:

This implies (4.56). We proceed with discretizing the function f . For m D 1; 2; : : :,
let fm.0; x/ D f .0; x/ and

fm.t; x/ D f
�
i=m; x

�
if .i � 1/=m < t � i=m; i D 1; : : : ;m.

It is clear that for every m D 1; 2; : : :,

sup
.t;x/

ˇ̌
fm.t; x/

ˇ̌ � sup
.t;x/

ˇ̌
f .t; x/

ˇ̌
; fm.t; x/ D 0 for all .t; x/ such that kxk � ".

Further, by the uniform continuity of f ,

lim
m!1 sup

.t;x/

ˇ̌
f .t; x/ � fm.t; x/

ˇ̌ D 0 : (4.57)

Fix m D 1; 2; : : :. Using the notation ci;m.n/; i D 1; : : : ;m, for positive numbers
satisfying ci;m.n/ ! 1 as n ! 1, i D 1; : : : ;m, we obtain by (4.56),

E exp

	
�
Z

Œ0;1��Rd
fm.t; x/Nn.dt; dx/

�
D

mY

iD1

�
Ee�f

�
i=m;X1=an

��ci;m.n/n=m

(4.58)

! exp

(

� 1

m

mX

iD1

Z

Rd

�
1 � e�f .i=m;x/� �.dx/

)

as n ! 1. The latter expression converges, as m ! 1, to the expression on the
right-hand side of (4.54), since the Riemann sums converge to the corresponding
integral. Therefore, the claim of the theorem follows from the following calculation:
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ˇ̌
ˇ̌E exp

	
�
Z

Œ0;1��Rd
f .t; x/Nn.dt; dx/

�
� E exp

	
�
Z

Œ0;1��Rd
fm.t; x/Nn.dt; dx/

� ˇ̌
ˇ̌

� E

ˇ̌
ˇ
ˇ

Z

Œ0;1��Rd
f .t; x/Nn.dt; dx/ �

Z

Œ0;1��Rd
fm.t; x/Nn.dt; dx/

ˇ̌
ˇ
ˇ

� sup
.t;x/

ˇ̌
f .t; x/ � fm.t; x/

ˇ̌
E
ˇ̌˚

j D 1; : : : ; n W kXj=ank > "�ˇ̌

D sup
.t;x/

ˇ̌
f .t; x/ � fm.t; x/

ˇ̌
nP
�kX1k > "an

�
;

since the latter expression is a product of two terms, one of which converges to a
finite limit as n ! 1 by the definition of the sequence .an/, and the other converges
to zero as m ! 1 by (4.57). �

Theorem 4.4.1 has a very simple and useful intuitive meaning. Dividing the
observations X1; : : : ;Xn by a large number an makes each individual observation
small (in norm) with a very high probability. The number n of observations is
exactly large enough that the exceptionally large observations (with norm of order
at least an) arrange themselves into a Poisson random measure. The fact that
the mean measure of the limiting Poisson random measure has a uniform factor
corresponding to the time coordinate t reflects the obvious point that in an i.i.d.
sample, the exceptionally large observations are equally likely to be found anywhere
in the sample. On the other hand, the factor of the mean measure corresponding to
the space coordinate x is the tail measure of the observations. This measure puts an
infinite mass in every neighborhood of the origin, reflecting the obvious point that
most observations are not exceptionally large, and hence after the normalization,
will appear near the origin.

The next theorem presents a result related to Theorem 4.4.1. In the new setup,
the observations X1; : : : ;Xn are still divided by a large number, but the number is
now much smaller than an. This makes for a growing number of the corresponding
exceptionally large observations. In order to obtain a sensible limit, one must divide
the entire point process by an appropriately large number. This has an averaging
effect, resulting in a nonrandom limit.

Let .kn/ be a sequence of positive numbers satisfying

kn ! 1; kn=n ! 0 as n ! 1. (4.59)

Define

Mn D 1

kn

nX

jD1
ıXj=a

nk�1
n
; n D 1; 2; : : : : (4.60)

Note that the notation av for a real number v � 1 really means abvc. Further, the
fact that Mn in (4.60) has atoms with a weight generally different from 1 means that
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it is no longer a point process (but it is still, clearly, a random Radon measure). It is
sometimes called the tail empirical measure.

Theorem 4.4.2. Let .X1;X2 : : :/ be a sequence of i.i.d. regularly varying random
vectors in R

d, with a tail index ˛ > 0 and tail measure �, and let .kn/ be a sequence
of positive numbers satisfying (4.59). Then

Mn ) � as n ! 1 (4.61)

weakly in MRC
�
R

d
0

�
.

Proof. We proceed as in the proof of Theorem 4.4.1. By Theorem 10.2.13, it is
enough to prove convergence of the Laplace transforms, i.e., that

lim
n!1E exp

	
�
Z

Rd
f .x/Mn.dx/

�
D exp

	
�
Z

Rd
f .x/ �.dx/

�
(4.62)

for every bounded and uniformly continuous function f on R
d
0 that vanishes in a

neighborhood of the origin. Since

E exp

	
�
Z

Rd
f .x/Mn.dx/

�
D
�

E exp

	
� 1

kn
f
�
X1=ank�1

n

���n

;

(4.62) will follow from the statement

lim
n!1 n E

�
1 � exp

	
� 1

kn
f
�
X1=ank�1

n

��� D
Z

Rd
f .x/ �.dx/ :

This statement is equivalent (since the function f is bounded and kn ! 1) to the
statement

lim
n!1 nk�1n Ef

�
X1=ank�1

n

� !
Z

Rd
f .x/ �.dx/ ;

which follows immediately from the fact that mbnk�1
n c

v! �, as in the proof of (4.56).
�

Notice that we have eliminated the time coordinate t from the definition of the
tail empirical measure Mn in (4.60). This is because in the limit, all the atoms of
Mn disappear, and it is no longer of interest to keep track of when the exceptionally
large observations appear. Exercise 4.6.9 describes what happens when one insists
on preserving the time coordinate.
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4.5 Comments on Chapter 4

Comments on Section 4.1
The general result regarding sums with random numbers of terms of Corol-

lary 4.1.11 and the subsequent discussion is due to Embrechts et al. (1979); the
special case of geometric sums was discussed even earlier in Pakes (1975) and
Teugels (1975). The paper Embrechts et al. (1979) describes a number of additional
important properties of the family of subexponential distributions, including its
closure under convolution roots: if X1 C : : : C Xn is subexponential for some n,
then so is X.

Comments on Section 4.2
The importance of regular variation in probability became clear after Feller

(1968, 1971) and deHaan (1970).
Balanced regular variation of the tails of real-valued random variable with

exponent 0 < ˛ < 2 turns out to be a necessary and sufficient condition for
this random variable, or its law, to be in the domain of attraction of an ˛-stable
distribution; for the domain of attraction of the normal distribution, a condition
can be stated in terms of the slow variation of the truncated second moment of
the random variable. See Theorem 2, p. 577, Feller (1971).

Regular variation of the tails of infinite weighted sums of i.i.d. random variables
with regularly varying tails has been considered by many authors. A frequently cited
result was given in the PhD thesis Cline (1983). The result in Corollary 4.2.12 was
proved in Mikosch and Samorodnitsky (2000).

Comments on Section 4.3
Most of the content of Theorem 4.3.7 showing that in some cases, regular

variation of the linear combinations of the components of a random vector implies
multivariate regular variation of the vector itself, is due to Basrak et al. (2002). In
Hult and Lindskog (2006) one can find examples of random vectors that are not
multivariate regularly varying, for which all linear combinations of the coordinates
are regularly varying with any given integer exponent of regular variation (their
examples are based on unpublished notes of H. Kesten), as well as an example
of a random vector taking values in Œ0;1/d that does not have the property of
multivariate regular variation for which all linear combinations of coordinates with
nonnegative weights are regularly varying, with any given integer exponent of
regular variation. A related example for ˛ D 2 is in Basrak et al. (2002).

Inverse problems for regular variation have been studied in Jacobsen et al. (2008)
and Damek et al. (2014). An example of such an inverse problem is a converse to
Proposition 4.2.6: if X and Y are independent, XY is regularly varying, and Y has a
sufficiently light tail, does it follow that X is regularly varying? Similar questions
can be asked about the multivariate version of Proposition 4.2.6 in Proposition 4.3.6,
or about certain versions of Theorem 4.2.10 and its multivariate analogues. The
“cancellation property” of the powers of a normal random variable in Remark 4.3.8
is an example of such a result.
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Comments on Section 4.4
S. Resnick introduced the idea of using weak convergence of point processes to

a Poisson limit in order to derive various limit theorems for regular varying random
vectors in Resnick (1986), and the monograph Resnick (1987) contains a detailed
exposition; some of it is also in Resnick (2007). Versions of Theorem 4.4.1 have
been proved for stationary sequences of regularly varying random vectors, under
weak dependence assumptions, including a version of strong mixing assumptions;
see Davis and Hsing (1995), Davis and Mikosch (1998). Such theorems have also
been established for specific families of stationary sequences of regularly varying
random vectors, such as certain ARMA and GARCH processes; see Davis and
Resnick (1985), Mikosch and Stărică (2000b). A general feature of these results
is that the limiting process is no longer Poisson, but rather cluster Poisson, whereby
each point of the Poisson process N� in Theorem 4.4.1 is replaced by a cluster of
secondary points generated by the Poisson point. Completely different behavior is
possible for long-range dependent stationary sequences of regularly varying random
vectors; an example is in Resnick and Samorodnitsky (2004).

Convergence of the empirical tail measure to the tail measure is often used to
prove consistency of tail estimators; see, e.g., Resnick (2007). Theorem 4.4.2 also
holds for certain non-i.i.d. stationary sequences of regularly varying random vectors;
an example is in Resnick and Stărică (1995).

4.6 Exercises to Chapter 4

Exercise 4.6.1. Prove the statements of Proposition 4.1.8 and Corollary 4.1.11 for
real-valued subexponential random variables.

Exercise 4.6.2. Prove that the random variables in Example 4.1.18 are subexpo-
nential.

Exercise 4.6.3. Let X be a nonnegative regularly varying random variable. Define

q.t/ D inf
˚
x > 0 W P.kXk > x/ � t

�
; 0 < t < 1 :

Then

lim
t!0

1

t
P
�kXk > q.t/

� D 1 :

Exercise 4.6.4. Let X be a nonnegative regularly varying random variable with tail
index ˛. Let 0 < p � ˛. If p D ˛, assume that EXp < 1. Then the upper truncated
moment

Mp.x/ D E
�
Xp1.X > x/

�
; x � 0 ;
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is regularly varying with exponent p � ˛, and

lim
x!1

E
�
Xp1.X > x/

�

xpP.X > x/
D ˛

˛ � p
;

with ˛=0 D C1.

Exercise 4.6.5. Prove Corollary 4.2.9.

Exercise 4.6.6. Give an example of a complete separable metric on R
d
0 that

metrizes its topology.

Exercise 4.6.7 (Basrak et al. (2002)). Suppose that X takes values in Œ0;1/d and
satisfies (4.42) for all vectors b with nonnegative coordinates. Assume that ˛ > 0

is a noninteger. Replacing in the proof of Theorem 4.3.7 characteristic functions by
Laplace transforms, prove that X is multivariate regularly varying.

Exercise 4.6.8. Let X1;X2; : : : be a sequence of one-dimensional random variables
with balanced regularly varying tails with index ˛ > 0. Show that the limiting Pois-
son random measure N� in Theorem 4.4.1 has the representation in distribution as

N� D
1X

iD1
ı
.Ui; 
i�

�1=˛
i /

;

where .Ui/ is a sequence of i.i.d. standard uniform random variables, .
i/ is a
sequence of i.i.d. random variables taking the value 1 with probability p, and the
value �1 with probability q D 1� p (in the notation of Definition 4.2.7), and .�i/ is
a sequence of standard Poisson arrivals on .0;1/. All three sequences are assumed
to be independent.

Exercise 4.6.9. Let .kn/ be a sequence of positive numbers satisfying (4.59). For a
sequence .X1;X2 : : :/ of i.i.d. regularly varying random vectors in R

d, with a tail

index ˛ > 0 and tail measure �, define random Radon measures on Œ0; 1� � R
d
0 by

QMn D 1

kn

nX

jD1
ı.j=n;Xj=a

nk�1
n
/; n D 1; 2; : : : :

Prove that QMn ) ��� weakly in MRC
�
Œ0; 1��R

d
0

�
endowed with the vague topology.



Chapter 5
Introduction to Long-Range Dependence

5.1 The Hurst Phenomenon

The history of long-range dependence as a concrete phenomenon believed to be
important in its own right should be regarded as beginning in the 1960s with a series
of papers by Benoit Mandelbrot and his coworkers, such as Mandelbrot (1965) and
Mandelbrot and Wallis (1968). The cause was a need to explain an empirical finding
by Hurst (1951, 1956) that studied the flow of water in the Nile. A particular data
set studied by Hurst appears in Figure 5.1.

Many features of this data set are interesting (one of which is how long ago
the data were collected). Harold Hurst, who was interested in the design of dams,
looked at these data through a particular statistic. Given a sequence of n observations
X1;X2; : : : ;Xn, define the partial sum sequence Sm D X1C : : :CXm for m D 0; 1; : : :

(with S0 D 0). The statistic Hurst calculated is

R

S
.X1; : : : ;Xn/ D max0�i�n.Si � i

n Sn/ � min0�i�n.Si � i
n Sn/

. 1n
Pn

iD1.Xi � 1
n Sn/2/1=2

: (5.1)

Note that Sn=n is the sample mean of the data. Therefore, max0�i�n.Si � i
n Sn/,

for example, measures how far the partial sums rise above the straight line they
would follow if all observations were equal (to the sample mean), and the difference
between the maximum and the minimum of the numerator in (5.1) is the difference
between the highest and lowest positions of the partial sums with respect to the
straight line of uniform growth. It is referred to as the range of observations. The
denominator of (5.1) is, of course, the sample standard deviation. The entire statistic
in (5.1) has then been called the rescaled range or R=S statistic.

When Harold Hurst calculated the R=S statistic on the Nile data in Figure 5.1,
he found that it grew as a function of the number n of observations, approximately
as n0:74.
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Fig. 5.1 Annual minima of the water level in the Nile for the years 622 to 1281, measured at the
Roda gauge near Cairo

To see that this observation is interesting, let us suppose that X1;X2; : : : is a
sequence of random variables. If we apply the R=S statistic to the first n observations
X1;X2; : : : ;Xn for increasing values of n, what would we expect the resulting
sequence of values of the R=S statistic to be like, for the “usual” models of
X1;X2; : : :?

Example 5.1.1. Suppose that X1;X2; : : : is, in fact, a stationary sequence of random
variables with a finite variance and a common mean �. Define the centered partial
sum process by

S.n/.t/ D SŒnt� � Œnt��; 0 � t � 1 : (5.2)

The classical functional central limit theorem (Donsker’s theorem, invariance
principle) says that if X1;X2; : : : are i.i.d., then

1p
n

S.n/ ) ��B weakly in DŒ0; 1�; (5.3)

where �2� is equal to the common variance �2 of the observations, and B is the
standard Brownian motion on Œ0; 1� (Theorem 14.1 in Billingsley (1999)). Here
DŒ0; 1� is the space of right continuous functions on Œ0; 1� having left limits equipped
with the Skorokhod J1 topology. In fact, the functional central limit theorem is
known to hold for stationary processes with a finite variance that are much more
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general than an i.i.d. sequence (with the limiting standard deviation �� not equal, in
general, to the standard deviation of the Xi); see a survey by Merlevéde et al. (2006).

The function f W DŒ0; 1� ! R defined by

f .x/ D sup
0�t�1

.x.t/ � tx.1// � inf
0�t�1.x.t/ � tx.1// ;

x D .x.t/; 0 � t � 1/ 2 DŒ0; 1�, is easily seen to be continuous. It is straightforward
to check that the range of the first n observations (the numerator in the R=S statistic)
is equal to f .S.n//. Therefore, if the invariance principle (5.3) holds, then by the
continuous mapping theorem, Theorem 10.2.4,

1p
n
.the range of the first n observations/ D f

�
1p
n

S.n/
�

) f .��B/ D ��
h

sup
0�t�1

.B.t/ � tB.1// � inf
0�t�1.B.t/ � tB.1//

i

WD ��



sup
0�t�1

B0.t/ � inf
0�t�1B0.t/

�
;

where B0 is a Brownian bridge on Œ0; 1�. Further, if the stationary process X1;X2; : : :
(or its bilateral extension in Proposition 1.1.2) is ergodic, then by the pointwise
ergodic theorem, Theorem 2.1.1 (or (2.8)), we have, with probability 1,

1

n

nX

iD1
.Xi � 1

n
Sn/

2 D 1

n

nX

iD1
X2i �

 
1

n

nX

iD1
Xi

!2

! E
�
X21
� �

�
E
�
X1
��2 D �2 :

Assuming, therefore, that the functional central limit theorem holds, and that the
observations form an ergodic process, we see that

1p
n

R

S
.X1; : : : ;Xn/ ) ��

�



sup
0�t�1

B0.t/ � inf
0�t�1B0.t/

�
: (5.4)

That is, the R=S statistic grows, distributionally, as the square root of the sample
size.

The distributional n0:5 rate of growth of the values of the R=S statistic obtained
under, apparently quite reasonable, assumptions of Example 5.1.1 looks incom-
patible with the empirical n0:74 rate of growth Hurst observed on the Nile data.
Therefore, if one wants to construct a stochastic model of observations with a similar
behavior of the R=S statistic to the one observed by Hurst, some of the “reasonable”
assumptions of the example must be dropped.
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The following example looks at what happens when the assumption of finite vari-
ance of the observations is dropped and replaced by an assumption of appropriately
heavy tails.

Example 5.1.2. In order to be able to concentrate better on the effect of heavy tails,
we will assume that the observations X1;X2; : : : are i.i.d. Assume that the balanced
regular variation property of Definition 4.2.7 holds, and 0 < ˛ < 2; this guarantees
that the variance of the observations is infinite. In this case, we will apply the
Poisson convergence result in Theorem 4.4.1 to understand the “size” of the R=S
statistic.

We begin with a typical “truncation” step, needed because various sums of
points are not continuous functionals of point processes in the topology of vague
convergence. For � > 0, let

S.�/m D
mX

jD1
Xj1
�jXjj > �an

�
; m D 0; 1; 2 : : : ;

where, as usual, an D inf
˚
x > 0 W P.jX1j > x/ � 1=n

�
, n D 1; 2; : : :. Consider a

modified version of the R=S statistic defined by

RSn.�/ D max0�i�n.S
.�/
i � i

n S.�/n / � min0�i�n.S
.�/
i � i

n S.�/n /

.
Pn

iD1 X2i 1
�jXjj > �an

�
/1=2

: (5.5)

Note that RSn.�/ D g�.Nn/, where Nn is the point process in (4.52) and g� W
MRC

�
Œ0; 1� � R

d
0

� ! .0;1/ is defined by

g�.K/ D R�.K/

.
R
Œ0;1��.RnŒ��;��/ y2K.ds; dy//1=2

;

with

R�.K/ D sup
0�t�1

�Z

Œ0;t��.RnŒ��;��/
yK.ds; dy/ � t

Z

Œ0;1��.RnŒ��;��/
yK.ds; dy/

�

� inf
0�t�1

�Z

Œ0;t��.RnŒ��;��/
yK.ds; dy/ � t

Z

Œ0;1��.RnŒ��;��/
yK.ds; dy/

�
:

According to Exercise 4.6.8, the law of the limiting Poisson process in Theo-
rem 4.4.1 does not charge the set of the discontinuities of the function g�; see
Exercise 5.5.1. Therefore, by the continuous mapping theorem (Theorem 10.2.4),

g�.Nn/ ) g�.N/ in Œ0;1/ as n ! 1,
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and we can represent the limit distributionally as

g�.N/ D
sup
0�t�1

Y�.t/ � inf
0�t�1Y�.t/

.
P1

jD1 �
�2=˛
j 1.�j < ��˛//1=2

:

Here

Y�.t/ D
1X

jD1

�
1.Uj � t/ � t

�

j�
�1=˛
j 1.�j < �

�˛/; 0 � t � 1 : (5.6)

Recall that .Ui/ is a sequence of i.i.d. standard uniform random variables, .
i/ is a
sequence of i.i.d. random variables taking the value 1 with probability p, and the
value �1 with probability q D 1 � p, and .�i/ is a sequence of standard Poisson
arrivals on .0;1/, with all three sequences being independent.

Corollary 3.4.2 says that Y� is an infinitely divisible process. Furthermore, if we
take 0 < �1 < �2 and use the same random ingredients in (5.6) for the two processes,
Y�1 and Y�2 , then the difference Y�1 � Y�2 can be written in the form

Y�1 .t/ � Y�2 .t/ D L�1;�2 .t/ � tL�1;�2 .1/; 0 � t � 1;

where

L�1;�2 .t/ D
1X

jD1
1.Uj � t/
j�

�1=˛
j 1

�
��˛2 � �j < �

�˛
1 /; 0 � t � 1 :

By Corollary 3.4.2, L�1;�2 is a Lévy process without a Gaussian component, whose
one-dimensional Lévy measure 
�1;�2 is the measure

m.dx/ D �
p1.x > 0/C q1.x < 0/

�
˛jxj�.˛C1/ dx

restricted to the set .��2;��1/ [ .�1; �2/, and whose local shift is

b D .2p � 1/
Z ��˛

1

��˛
2

ŒŒx�1=˛�� dx I

see Example 3.2.3. It is, in fact, a compound Poisson Lévy process. It follows from
the general properties of Lévy processes that sup0�t�1 jL�1;�2 .t/j ! 0 in probability
as �2 ! 0, uniformly in 0 < �1 < �2; see Kallenberg (1974). Therefore, the same is
true for sup0�t�1 jY�1 .t/ � Y�2 .t/j. We conclude that

Y�.t/ ! Y.t/ WD
1X

jD1

�
1.Uj � t/ � t

�

j�
�1=˛
j ; 0 � t � 1; as � ! 0
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in probability in the uniform topology in the space D.Œ0; 1�/. Therefore, as � ! 0,

g�.N/ !
sup
0�t�1

1X

jD1

�
1.Uj � t/ � t

�

j�
�1=˛
j � inf

0�t�1

1X

jD1

�
1.Uj � t/ � t

�

j�
�1=˛
j

.
P1

jD1 �
�2=˛
j /1=2

(5.7)
in probability. Notice that by the strong law of large numbers, �j=j ! 1 as j ! 1
with probability 1. This and the fact that 0 < ˛ < 2 imply that the dominator on the
right-hand side is finite and justifies the convergence.

Let g.N/ denote the random variable on the right-hand side of (5.7). If one shows
that the statement

lim
�!0 lim sup

n!1
P

�ˇˇ̌
ˇ
1p
n

R

S
.X1; : : : ;Xn/ � RSn.�/

ˇ
ˇ̌
ˇ > �

�
D 0 (5.8)

for every � > 0 is true, then a standard weak convergence argument, e.g., in
Theorem 3.2 in Billingsley (1999), allows us to conclude that

1p
n

R

S
.X1; : : : ;Xn/ ) g.N/ : (5.9)

Note that (5.9) means that even in the heavy-tailed case, the R=S statistic grows as
the square root of the sample size.

The validity of (5.8) is verified in Exercise 5.5.2.

We conclude, therefore, as was done in Mandelbrot and Taqqu (1979), that
infinite variance alone cannot explain the Hurst phenomenon. A different drastic
departure from the assumptions leading to the square root of the sample size rate of
growth of the R=S statistic was suggested in Mandelbrot (1965), and it had nothing
to do with heavy tails. The idea was, instead, to take as a model a stationary process
with a finite variance, but with correlations decaying so slowly as to invalidate the
functional central limit theorem (5.3). The simplest model of that sort is fractional
Gaussian noise, which is the increment process of fractional Brownian motion.

Let us begin with a fractional Brownian motion, or FBM, constructed in
Example 3.5.1. This is a zero-mean Gaussian process .BH.t/; t � 0/ that is self-
similar with exponent of self-similarity H 2 .0; 1/ and stationary increments. These
properties imply that BH.0/ D 0 and E.BH.t/ � BH.s//2 D �2jt � sj2H for some
� > 0; see Section 8.2. Taking an appropriately high moment of the increment
and using the Kolmogorov criterion in Theorem 10.7.7 allows us to conclude that
a fractional Brownian motion has a continuous version, and we always assume that
we are working with such a version.

A fractional Gaussian noise, or FGN, is a discrete step increment process of a
fractional Brownian motion defined by Xj D BH.j/� BH.j �1/ for j D 1; 2; : : :. The
stationarity of the increments of the FBM implies that this is a stationary Gaussian
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process. Using the fact ab D .a2 C b2 � .a � b/2/=2 and the incremental variance
of the FBM, we easily see that

Cov.XjCn;Xj/ D �2

2

h
.n C 1/2H C jn � 1j2H � 2n2H

i
(5.10)

for j � 1; n � 0. That is,


n WD Corr.XjCn;Xj/ � H.2H � 1/n�2.1�H/ as n ! 1. (5.11)

In particular, 
n ! 0 as n ! 1. This implies that the FGN is a mixing, hence
ergodic, process; see Example 2.2.8. Furthermore, by the self-similarity of the
fractional Brownian motion, for every n,

Var.X1 C : : :C Xn/ D VarBH.n/ D �n2H : (5.12)

Suppose now that a set of observations X1;X2; : : : forms a fractional Gaussian
noise as defined above, and let us consider the behavior of the R=S statistic on these
observations. The ergodicity of the FGN implies that the denominator of the statistic
converges a.s. to the standard deviation of the observations, � ; see Example 2.1.5.
For the numerator of the R=S statistic, we notice that Si D BH.i/ for every i, and the
self-similarity of the FBM gives us

max
0�i�n

.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/

D max
0�i�n

.BH.i/ � i

n
BH.n// � min

0�i�n
.BH.i/ � i

n
BH.n//

dD nH

�
max
0�i�n

.BH.
i

n
/ � i

n
BH.1// � min

0�i�n
.BH.

i

n
/ � i

n
BH.1//

�
:

By the continuity of the sample paths of the fractional Brownian motion, we have

max
0�i�n

.BH.
i

n
/ � i

n
BH.1// � min

0�i�n
.BH.

i

n
/ � i

n
BH.1//

! sup
0�t�1

.BH.t/ � tBH.1// � inf
0�t�1.BH.t/ � tBH.1//

with probability 1. That is, for the FGN,

n�H R

S
.X1; : : : ;Xn/ ) sup

0�t�1
.BH.t/ � tBH.1// � inf

0�t�1.BH.t/ � tBH.1// ;

and so the R=S statistic grows distributionally at the rate nH as a function of the
sample size. Therefore, selecting an appropriate H in the model will, finally, explain
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the Hurst phenomenon. In particular, the exponent H of self-similarity of fractional
Brownian motion is often referred to as a Hurst parameter.

This success of the fractional Gaussian noise model in explaining the Hurst
phenomenon is striking. We have used the self-similarity of the fractional Brownian
motion in the above computation, but it is not hard to see that a very important
property of the fractional Gaussian noise is the unusually slow decay of correlations
in (5.11), especially for high values of H (i.e., close to 1). For these values
of H, the variance of the partial sums in (5.12) also increases unusually fast.
Unlike the previous unsuccessful attempt to explain the Hurst phenomenon by
introducing in the model unusually heavy tails (infinite variance in this case), the
FGN model succeeds here by introducing unusually long memory. Particularly
vivid terminology was introduced in Mandelbrot and Wallis (1968), in the context
of weather and precipitation: unusually heavy tails were called the Noah effect,
referring to the biblical story of Noah and extreme incidents of precipitation, while
unusually long memory was called the Joseph effect, referring to the biblical story
of Joseph and long stretches (seven years) of time greater than average and less than
average precipitation. This success of the FGN brought the fact that memory of a
certain length can make a big difference to the attention of many. The terms “long-
range dependent process” and “long memory” came into being; they can already be
found in the early papers by Mandelbrot and coauthors.

5.2 The Joseph Effect and Nonstationarity

The Joseph effect is clearly visible in Figure 5.2: in the left plot, where the
observations are those of fractional Gaussian noise with Hurst parameter H D
0:8, there are long stretches of time (hundreds of observations) during which the
observations tend to be on one side of the true mean 0. This is clearly not the case
on the right plot of i.i.d. normal observations. Returning momentarily to the Nile
data in Figure 5.1, we see evidence of the Joseph effect there as well.

Such behavior of the observations obviously seems to indicate lack of sta-
tionarity, and in general, the relationship between long-range dependence and
nonstationarity is delicate in a number of ways. We have seen that the Joseph
effect involves long stretches of time when the process tends to be above the mean,
and long stretches of time when the process tends to be below the mean. Quoting
a description in Mandelbrot (1983), page 251, of a fractional Gaussian noise
with H > 1=2: “Nearly every sample looks like a ‘random noise’ superimposed
upon a background that performs several cycles, whichever the sample’s duration.
However, these cycles are not periodic, that is, cannot be extrapolated as the sample
lengthens.”

This discussion shows that in application to real data, either stationary long
memory models or appropriate nonstationary models can be used in similar
situations. There is, obviously, no “right” or “wrong” way to go here, beyond the
principle of parsimony.
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Fig. 5.2 Fractional Gaussian noise with H D 0:8 (left plot) and i.i.d. standard Gaussian random
variables (right plot)

Among the first to demonstrate the difficulty of distinguishing between stationary
long memory models and certain nonstationary models was the paper Bhattacharya
et al. (1983), in which it was suggested that instead of fractional Gaussian noise
or another model with long memory, the Hurst phenomenon can be explained by a
simple nonstationary model as follows. Let Y1;Y2; : : : be a sequence of independent
identically distributed random variables with a finite variance �2. Let 0 < ˇ < 1=2,
choose a � 0, and consider the model

Xi D Yi C .a C i/�ˇ; i D 1; 2; : : : : (5.13)

Clearly, the stochastic process X1;X2; : : : is nonstationary, for it contains a nontrivial
drift. However, it is asymptotically stationary (as the time increases), and the drift
can be taken to be very small to start with (by taking a to be large). This process
has no memory at all, since the sequence Y1;Y2; : : : is i.i.d. It does, however, cause
the R=S statistic to behave in the same way as if the sequence X1;X2; : : : were a
fractional Gaussian noise, or another long-range dependent process.

To see why this is true, note that for this model, the numerator of the R=S statistic
is bounded between

rn � RY
n � max

0�i�n
.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/ � rn C RY

n ;

where

rn D max
0�i�n

.si � i

n
sn/ � min

0�i�n
.si � i

n
sn/ ;

RY
n D max

0�i�n
.SY

i � i

n
SY

n / � min
0�i�n

.SY
i � i

n
SY

n / ;

and SY
m D Y1 C : : :C Ym, sm D Pm

jD1.a C j/�ˇ for m D 0; 1; 2; : : :.
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Since sm is a sum of a decreasing sequence of numbers, we see that min0�i�n.si �
i
n sn/ D 0. On the other hand, by Theorem 10.5.6,

sn � 1

1 � ˇ n1�ˇ as n ! 1.

If we denote by i�n the value of i over which the maximum is achieved in
max0�i�n.si � i

n sn/, then we see that

i�n D b.sn=n/�1=ˇ � ac � .1 � ˇ/1=ˇn

as n ! 1. Therefore,

max
0�i�n

.si � i

n
sn/ D si�n � i�n

n
sn � ˇ.1 � ˇ/1=ˇ�2 n1�ˇ ;

so that

rn � Cˇ n1�ˇ; Cˇ D ˇ.1 � ˇ/1=ˇ�2

as n ! 1.
Recall that Y1;Y2; : : : are i.i.d. random variables with a finite variance. Therefore,

the range RY
n of the first n observations from this sequence grows distributionally as

n1=2. We immediately conclude that

1

n1�ˇ

�
max
0�i�n

.Si � i

n
Sn/ � min

0�i�n
.Si � i

n
Sn/

�
! Cˇ

in probability as n ! 1.
Similarly, for the denominator of the R=S statistic, we have a bound

DY
n � dn �

� nX

iD1
.Xi � 1

n
Sn/

2
�1=2 � DY

n C dn ;

where

DY
n D

� nX

iD1
.Yi � 1

n
SY

n /
2
�1=2

; dn D
� nX

iD1

�
.a C i/�ˇ � 1

n
sn
�2�1=2

:

We know that DY
n=n1=2 ! � a.s. as n ! 1, while an elementary computation

using, for example, Theorem 10.5.6, leads to dn � C0̌ n1=2�ˇ as n ! 1 for some
0 < C0̌ < 1. Therefore,

n�1=2
� nX

iD1
.Xi � 1

n
Sn/

2
�1=2 ! �
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Fig. 5.3 Observations from the model (5.13) with standard normal noise, a D 2 and ˇ D 1=4.
No Joseph effect is visible

a.s., and we conclude that

1

n1�ˇ
R

S
.X1; : : : ;Xn/ ! Cˇ

�

in probability as n ! 1.
Therefore, for the i.i.d. model with small drift as in (5.13), the R=S statistic grows

as n1�ˇ , the same rate as for the FGN with H D 1 � ˇ, and so the R=S statistic
cannot distinguish between these two models. Apart from fooling the R=S statistic,
however, the model (5.13) is not difficult to tell apart from a stationary process
with correlations decaying as in (5.11). Even visually, the observations from the
model (5.13) do not appear to exhibit the Joseph effect, as the plot in Figure 5.3
indicates.

A very important class of nonstationary models that empirically resemble
long-memory stationary models is that of regime-switching models. The name is
descriptive, and it makes it clear where the lack of stationarity comes from. The
fractional Gaussian noise also appears to exhibit different “regimes” (the Joseph
effect), but the nonstationary regime-switching models are usually those with
breakpoints, whose location changes with the sample size, in either a random or
nonrandom manner.

One class of regime-switching models is obtained by taking a parametric model
that would be stationary if its parameters were kept constant and then changing the
parameters along a sequence of nonrandom time points, again chosen relative to the
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sample size. Such a change can affect the mean and the variance (among many other
things) of the process after breakpoints, and to many sample statistics this will look
like long memory.

To see what might happen, consider a sample X1; : : : ;Xn, where the observations
come from r � 2 subsamples of lengths proportional to the overall sample size.
That is, given fixed proportions 0 < pi < 1, i D 1; : : : ; r with p1 C : : : C pr D 1,
the sample has the form

X.1/1 ; : : : ;X
.1/

Œnp1�
;X.2/Œnp1�C1; : : : ;X

.2/

Œn.p1Cp2/�
; : : : ;X.r/Œn.1�pr/�C1; : : : ;X

.r/
n ; (5.14)

where the ith subsample forms a stationary ergodic process with a finite variance,
i D 1; : : : ; r. Since one of the common ways to try to detect long-range dependence
is by looking for a slow decay of covariances and correlations, let us check the
behavior of the sample covariance of the sample (5.14). Fix a time lag m and denote
by ORm.n/ the sample covariance at that lag based on the n observations in (5.14).
Note that

ORm.n/ D 1

n

n�mX

jD1
.Xj � NX/.XjCm � NX/ D Am.n/C Bm.n/ ;

where NX D .X1 C : : :C Xn/=n is the overall sample mean,

Am.n/ D 1

n

n�mX

jD1
XjXjCm � . NX/2 ;

and

Bm.n/ D 1

n
NX
0

@
mX

jD1
Xj C

nX

jDn�mC1
Xj

1

A � m

n
. NX/2 :

By ergodicity, NX ! Pr
iD1 pi�i, where �i is the mean of the ith subsample, i D

1; : : : ; r. Further, since m is fixed, Bm.n/ ! 0 in probability as n ! 1.
Finally, if Ii denotes the set of indices within f1; : : : ; ng corresponding to the ith

subsample, i D 1; : : : ; r, then by ergodicity,

1

n

n�mX

jD1
XjXjCm

D
rX

iD1

Card.Ii \ .Ii � m//

n

1

Card.Ii \ .Ii � m//

X

j2Ii\.Ii�m/

X.i/j X.i/jCm
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C1

n

rX

iD1

X

j2f1;:::;n�mg

j2Ii ;jCm2IiC1

XjXjCm

!
rX

iD1
piE
�
X.i/1 X.i/1Cm

� D
rX

iD1
pi.R

.i/
m C �2i / ;

where R.i/m is the covariance at lag m of the ith subsample. We conclude that

ORm.n/ !
rX

iD1
pi
�
R.i/m C �2i

� �
 

rX

iD1
pi�i

!2
(5.15)

D
rX

iD1
piR

.i/
m C 1

2

rX

i1D1

rX

i2D1
pi1pi2 .�i1 � �i2 /

2

in probability as n ! 1. What (5.15) indicates is that if there is regime-switching as
we have described, and (some of) the mean values in different regimes are different,
then the sample covariance function will tend to stabilize, at large, but fixed, lags at
a positive value.

This is what is often observed in practice, and long memory is suspected. Of
course, this regime-switching model is simply a deterministic way of mimicking
the Joseph effect (recall Figure 5.2), and an example of this phenomenon can be
seen in Figure 5.4, where r D 4, p1 D p2 D p3 D p4 D 1=4, and the four
different stationary ergodic processes are all autoregressive processes of order 1,
with normal innovations with the mean and the standard deviation both equal to 1.
The autoregressive coefficients are  1 D 0:7;  2 D 0:75;  3 D 0:65;  4 D 0:8.
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Fig. 5.4 Observations from a regime-switching AR(1) model (left plot) and their sample autocor-
relation function (right plot)
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5.3 Long Memory, Mixing, and Strong Mixing

The notion of memory in a stationary stochastic process is by definition related to
the connections between certain observations and those occurring after an amount
of time has passed. If X1;X2; : : : is the process, then the passage of time corresponds
to the shifted process, XkC1;XkC2; : : :, for a time shift k. In other words, the notion
of memory is related to the connections between the process and its shifts. This
makes the language of the ergodic theory of stationary processes, elements of which
are outlined in Chapter 2, an attractive language for describing the memory of a
stationary process.

We begin by observing that it is very natural to say that a nonergodic stationary
process X has infinite memory. Indeed, a nonergodic process has the structure given
in Proposition 2.1.6. That is, it is a mixture of the type

�
Xn; n 2 Z

� dD
	 �

Yn; n 2 Z
�

with probability p;�
Zn; n 2 Z

�
with probability 1 � p,

where stationary processes
�
Yn; n 2 Z

�
and

�
Zn; n 2 Z

�
have different finite-

dimensional distributions, and the choice with probability 0 < p < 1 is made
independently of the two stationary processes. This means that the result of a single
“coin toss” (with probabilities p and 1�p) will be “remembered forever.” Therefore,
it certainly makes sense to call stationary ergodic processes “processes with finite
memory,” and stationary nonergodic processes “processes with infinite memory.”

It is very tempting to try to use another ergodic theoretical notion, stronger
than ergodicity, such as weak mixing or mixing, for example, to define finite and
short memory in a stationary process. Then ergodic stationary processes that lack
this stronger property will be naturally called processes with long memory. If the
property of mixing were used for this purpose, for example, then a long-range
dependent process would be an ergodic but nonmixing process.

Such definitions of long-range dependence are possible, but they have not
become standard, for reasons that will be discussed below. Before we do that, how-
ever, it is important to note that the approaches to memory of a stationary process
via the ergodic theoretical properties of the corresponding shift transformation are
very attractive from the following point of view. Let X be a stationary process, and
let the process Y be derived from the process X by means of a point transformation
Yn D g.Xn/ for all n, where g W R ! R is a measurable function. Clearly, Y is also
a stationary process. It is intuitively clear that the process X “remembers at least
as much” as the process Y does. If, in particular, g is a one-to-one map, and g�1 is
also measurable, then this intuition says that the processes X and Y should have the
“same length of memory”: if one of them has long memory, then so should the other
one.

This, apparently very natural, requirement has proved to be difficult to satisfy
by many of the proposed definitions of long-range dependence. It is, however,
automatic with ergodic theoretically based definitions. Indeed, it follows from



5.3 Long Memory, Mixing, and Strong Mixing 189

Corollary 2.2.5 and Proposition 2.2.14 that if X is mixing (respectively weak mix-
ing), then the process Y with Yn D g.Xn/ for all n is also mixing (respectively weak
mixing). This would imply that short memory was preserved under a measurable
map, and if the map is one-to-one, with a measurable inverse, then the map must
preserve long memory as well.

It is instructive to record what the ergodic theoretically based notions of memory
discussed above mean for stationary Gaussian processes. Let X be a (real-valued)
stationary Gaussian process with covariance function Rk; k � 0 and spectral
measure F on .�	; 	�. That is, Rk D R

.�	;	� cos.kx/F.dx/ for k � 0. Then

• the process X is ergodic if and only if the spectral measure F is atomless;
• the process X is mixing if and only if Rk ! 0 as k ! 1;

see Examples 2.2.8 and 2.2.18. The requirement that the covariance function vanish
as the time lag increases, however, proved to be insufficient in dealing with long
memory for Gaussian processes. Indeed, many “unusual” phenomena have been
observed for Gaussian processes whose covariance functions vanish in the limit, but
sufficiently slowly, as we have already seen in the example of fractional Gaussian
noise. Therefore, the mixing property is not believed to be sufficiently strong to
say that a stationary process with this property has short memory. A stronger
requirement is needed.

For this purpose, strong mixing conditions, some of which are discussed
in Section 2.3, have been used. A possible connection between strong mixing
properties and lack of long memory (i.e., presence of short memory) has been
observed, beginning with Rosenblatt (1956). We discuss results in this spirit in
Comments to Chapter 9. Such results explain why the absence of one or another
strong mixing condition (as opposed to ergodic-theoretical mixing) is sometimes
taken as the definition of long-range dependence.

The strong mixing properties share with the ergodic-theoretical notions of
ergodicity and mixing the following very desirable feature: if a process Y is derived
from a process X by means of a one-to-one point transformation Yn D g.Xn/ for
all n, where g W R ! R is a one-to-one function such that both g and g�1 are
measurable, then the process X has long memory in the sense of lacking one of the
strong mixing properties if and only if the process Y does; see Exercise 2.6.11.

The role that the strong mixing conditions play in eliminating the possibility of
long-range dependence is real, but limited. Its effects are felt more in the behavior
of the partial sums of a process than in, say, the behavior of the partial maxima.

Overall, the strong mixing conditions have not become standard definitions of
absence of long-range dependence, i.e., of short memory. To some extent, this is due
to the fact that the effect of strong mixing conditions is limited. More importantly,
the strong mixing conditions are not easily related to the natural building blocks
of many stochastic models and are difficult to verify, with the possible exception
of Gaussian processes and Markov chains. Even in the latter cases, necessary and
sufficient conditions are not always available, particularly for more complicated
types of strong mixing.
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5.4 Comments on Chapter 5

Comments on Section 5.2
The fact that the i.i.d. model with small drift as in (5.13) can be easily

distinguished from the fractional Gaussian noise with H > 1=2 was shown in
Künsch (1986) using the periodogram.

In Mikosch and Stărică (2016) and Mikosch and Stărică (2000a), the procedure
of changing the parameters of an otherwise stationary model was applied to the
short-memory GARCH(p; q) model, resulting in behavior resembling long-range
dependence.

Various other regime-switching models mimicking long-range dependence are
suggested in Diebold and Inoue (2001).

5.5 Exercises to Chapter 5

Exercise 5.5.1. Show that the function g� in Example 5.1.2 is a function on

MRC
�
Œ0; 1� � R

d
0

�
that is continuous at all points at which the denominator in its

definition does not vanish.

Exercise 5.5.2. In this exercise, we will check the validity of the statement (5.8).
Write

1p
n

R

S
.X1; : : : ;Xn/ D Mn � mn

Dn
; RSn.�/ D Mn.�/ � mn.�/

Dn.�/
:

(i) Use the maximal inequality in Theorem 10.7.4 to show that for some finite
positive constant c,

P

�
1

an
jMn � Mn.�/j > �

�
� c

�

n1=2

an

�
E
�
X211.jX1j � �an

��1=2

for each � > 0 and n D 1; 2; : : :. Next, use the estimate on the moments of
truncated random variables in Proposition 4.2.3 and the fact that 0 < ˛ < 2

to show that

lim
�!0 lim sup

n!1
P

�
1

an
jMn � Mn.�/j > �

�
D 0

for every � > 0. A similar argument proves that

lim
�!0 lim sup

n!1
P

�
1

an
jmn � mn.�/j > �

�
D 0

for every � > 0.
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(ii) Check that

jDn � Dn.�/j � jSnj
n1=2

C
 

nX

iD1
X2i 1

�jXij � �an
�
!1=2

and conclude that for every � > 0,

lim
�!0 lim sup

n!1
P

�
1

an
jDn � Dn.�/j > �

�
D 0 :

(iii) Use the truncation argument used in Example 5.1.2 and the already checked
part of (5.8) to conclude that a�1n .Mn �mn/ converges weakly to the numerator
of (5.7) and so the corresponding sequence of laws is tight.

(iv) Show that

lim
M!1 lim sup

n!1
sup
0<�<1

P

�
an

Dn.�/
> M

�
D 0

and

lim
M!1 lim sup

n!1
sup
0<�<1

P

�
a2n

DnDn.�/
> M

�
D 0 :

(v) Put together the previous parts of the exercise to obtain (5.8).



Chapter 6
Second-Order Theory of Long-Range
Dependence

6.1 Time-Domain Approaches

The second-order theory is the oldest and best developed among all points of view
on long-range dependence. By necessity, it applies only to stationary processes with
a finite variance. Let, therefore, X be a stationary process with a finite variance
�2X and covariance function RX . The time-domain second-order approaches to long-
range dependence concentrate on two related issues.

Issue 1. How fast or slowly does the covariance function RX.n/ decay as the lag
n goes to 1?

Issue 2. How fast or slowly does the partial sum variance VarSn increase as the
lag n goes to 1?

Here, as usual, Sn D X1 C : : : C Xn is the sum of the first n observations, n D
1; 2; : : :.

The general idea is that short memory corresponds to a sufficiently fast rate
of decay of the covariance function and a sufficiently slow rate of increase of the
variance of the partial sums. Correspondingly, long-range dependence corresponds
to a sufficiently slow rate of decay of the covariance function and a sufficiently fast
rate of increase of the variance of the partial sums. Some intuition into this approach
can be obtained by examining the corresponding rates for the fractional Gaussian
noise in (5.11) and (5.12).

Notice that the terms “fast rate of decay/increase” and “slow rate of
decay/increase” are vague. Furthermore, the two issues above are related, but not
identical. One of our goals in the sequel is to understand the relationship between
these issues.
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The reason the two issues are related is the following simple expression for the
variance of the partial sum:

VarSn D
nX

iD1

nX

jD1
Cov.Xi;Xj/ (6.1)

D
nX

iD1

nX

jD1
RX.ji � jj/ D nRX.0/C 2

n�1X

iD1
.n � i/RX.i/ :

The following elementary statement describes one way to make precise “fast rate
of decay of covariances” and the implication that this has on the variance of the
partial sums.

Proposition 6.1.1. Assume that

1X

iD0
jRX.i/j < 1 : (6.2)

Then

lim
n!1

VarSn

n
D RX.0/C 2

1X

iD1
RX.i/ 2 Œ0;1/ : (6.3)

Proof. The claim follows immediately from (6.1), since the condition (6.2) allows
us to use the Lebesgue dominated convergence theorem. �

The summability of covariances condition in (6.2) is the single most commonly
used second-order definition of short memory. By Proposition 6.1.1, it leads to an
at most linear rate of increase of the variance of the partial sums. Since the limit
in (6.3) can happen to be equal to zero (as the example of fractional Gaussian noise
with 0 < H < 1=2 shows), the summability of covariances does not guarantee a
linear rate of increase in the partial sum variance.

If the summability of covariances condition in (6.2) is taken as the definition of
a short-memory second-order process, then the lack of this property, that is,

1X

iD0
jRX.i/j D 1 ; (6.4)

should be taken as the definition of long-range dependence.
On the other hand, one can also define short memory in a second-order process

by extending somewhat the conclusion of Proposition 6.1.1. Specifically, a process
can be considered to have short memory if

lim sup
n!1

VarSn

n
< 1 ; (6.5)
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that is, if the variance of the partial sums grows at most linearly. If (6.5) is taken as
the definition of short memory, then long-range dependence means absence of this
property. This is a slightly modified version of the Allen short and long memory
notions of Heyde and Yang (1997).

It is important to keep in mind that the Allen short memory (6.5) can hold even
when the summability of covariances fails. By (6.1),

VarSn

n
D RX.0/C 2

1

n

n�1X

jD1

jX

iD1
RX.i/ ; (6.6)

so the condition

nX

iD1
RX.i/ is a bounded function of n (6.7)

implies (6.5), whereas a stronger condition

nX

iD1
RX.i/ ! �X 2 .�1;1/ as n ! 1 (6.8)

implies even that

lim
n!1

VarSn

n
D RX.0/C 2�X :

The following example shows that one or both of these conditions can hold when
the covariances are not summable.

Example 6.1.2. The covariance function RX.i/ D .�1/i; i D 0; 1; 2; : : :, provides
an example of the situation in which (6.7) holds but (6.2) fails.

Further, let R be any nonnegative nonsummable covariance function that is even-
tually decreasing to zero; the covariance function (5.10) of a fractional Gaussian
noise with 0 < H < 1=2 is one example of such a covariance function. Since the
product of two nonnegative definite functions is a nonnegative definite function,
RX.i/ D .�1/iR.i/; i D 0; 1; 2; : : :, is a covariance function that satisfies (6.8) but
not (6.2).

Finally, additional insight into the Allen short memory condition (6.5) can be
gained by noticing that we can have

0 < lim inf
n!1

VarSn

n
< lim sup

n!1
VarSn

n
< 1 ;

starting, for instance, with Example 6.5.3.
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The above example shows, among other things, that the lack of summability of
covariances (6.4) is not, by itself, informative as far as the rate of growth of the
variance of the partial sums is concerned. Much more informative is the following,
more specific, assumption:

.RX.n// is a regularly varying sequence with exponent d 2 Œ�1; 0�; (6.9)

if d D �1, assume, additionally, that (6.4) holds.

Theorem 6.1.3. Assume that (6.9) holds. Then

lim
n!1

VarSn

n
D 1 : (6.10)

Further,

lim
n!1

VarSn

n2RX.n/
D 2

.1C d/.2C d/
: (6.11)

Proof. Let

hn D
nX

iD1
RX.i/; i D 1; 2; : : : : (6.12)

It follows by the definition of a regularly varying sequence and Theorem 10.5.6 that
the sequence .hn/ is regularly varying with exponent 1C d and

lim
n!1

hn

nRX.n/
D 1

1C d
: (6.13)

We have

VarSn

n
D RX.0/C 2

1

n

n�1X

jD1
hj :

Since (6.9) implies that hn ! 1 as n ! 1, we obtain (6.10). Furthermore, (6.11)
follows from (6.13) and Theorem 10.5.6. �

It follows from Theorem 6.1.3 that under the assumption (6.9) of regular variation
of covariances, the variances of the partial sums grow at a rate faster than linear, so
that (6.5) fails, implying the Allen long memory. In fact, (6.9) also implies that

.VarSn/ is a regularly varying sequence with exponent � 2 Œ1; 2�; (6.14)

moreover, if � D 1, then VarSn=n ! 1 as n ! 1.
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Example 6.1.4. An example of the situation in which (6.9) holds, and hence (6.14)
holds as well, is that of fractional Gaussian noise; see (5.11) and (5.12), and
Example 6.2.8 below. On the other hand, (6.14) can hold without regular variation
of covariances, as the covariance function RX.i/ D .�1/i C RFGN.i/; i D 0; 1; : : :,
(with RFGN the covariance function of a fractional Gaussian noise) demonstrates.

The message of Example 6.1.4 notwithstanding, we have the following partial
converse result.

Proposition 6.1.5. Suppose that the covariance function .RX/ is eventually mono-
tone decreasing. If (6.14) holds with � 2 .1; 2/, then (6.9) holds as well with
d D � � 2.

Proof. The eventual monotonicity of the covariance implies, in particular, that the
covariance function is eventually positive. Therefore, the sequence .hn/ in (6.12) is
eventually increasing. It follows from (6.14) that

lim
n!1

VarSnPn
jD1 hj

D 1 I

in particular,

the sequence
� nX

jD1
hj
�

is regularly varying with exponent � .

By the second part of Exercise 10.9.8, we conclude that the sequence .hj/ is
regularly varying with exponent � � 1. Appealing, once again, to the eventual
monotonicity of the covariance and to the second part of Exercise 10.9.8, we obtain
the claim of the proposition. �

6.2 Spectral Domain Approaches

In Section 6.1, we saw certain second-order approaches to long-range dependence
that concentrated either on the rate of decay of the covariance function of the process
or on the rate of increase of the variance of the partial sums of the successive
observations of the values of the process. A closely related second-order approach
to long-range dependence concentrates on the behavior of the spectral measure of
the process near the origin.

Let, therefore, FX be the spectral measure of a stationary finite-variance process
X D .X1;X2; : : :/. Recall from Section 1.2 that FX is a symmetric measure on
.�	; 	� such that

RX.n/ D
Z

.�	;	�
cos nx FX.dx/; n D 0; 1; : : : : (6.15)

If a spectral density exists, we will denote it by fX .
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The first connection between the memory notions of Section 6.1 and the
properties of the spectral measure is contained in the following immediate corollary
of Proposition 1.2.3.

Corollary 6.2.1. Suppose the property (6.2) of summability of correlations holds.
Then the process has a bounded and continuous spectral density given by

fX.x/ D 1

2	

 

RX.0/C 2

1X

nD1
RX.n/ cos nx

!

; �	 < x < 	 : (6.16)

That is, the summability of covariances implies existence of a spectral density
that is “nice” (bounded and continuous) everywhere. On the other hand, it turns out
that it is mostly the behavior of the spectral measure near the origin that affects the
rate of increase of the partial sum variance and, to a lesser extent, the rate of decay
of the covariances. The following statement is our first result of this type.

Theorem 6.2.2. Suppose that the spectral measure FX has, in a neighborhood of
the origin, a density fX such that the limit

f �X .0/ D lim
x!0 fX.x/ 2 Œ0;1� exists.

Then

lim
n!1

VarSn

n
D 2	 f �X .0/ : (6.17)

Proof. Suppose first that the spectral measure FX puts no mass at the point 	 . We
will use the following standard formulas for the sum of cosine functions and for the
sum of sine functions:

jCkX

mDj

cos mx D sin
�
.j C k C 1/x

�C sin
�
.j C k/x

� � sin.jx/ � sin
�
.j � 1/x�

2 sin x

(6.18)
and

jCkX

mDj

sin mx D cos.jx/C cos
�
.j � 1/x� � cos

�
.j C k C 1/x

� � cos
�
.j C k/x

�

2 sin x
:

(6.19)
We begin by applying (6.18) to the inner sum on the right-hand side of (6.6). We
have by (6.15), for every j D 1; 2; : : :,

jX

mD1
RX.m/ D

jX

mD1

Z

.�	;	�
cos mx FX.dx/ (6.20)
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D
Z

.�	;	�
sin
�
.j C 1/x

�C sin.jx/ � sin x

2 sin x
FX.dx/

D 1

2

Z

.�	;	�
sin
�
.j C 1/x

�

sin x
FX.dx/C 1

2

Z

.�	;	�
sin.jx/

sin x
FX.dx/ � 1

2
RX.0/ :

Next, we apply (6.19) to the outer sum on the right-hand side of (6.6), which
amounts to applying (6.19) twice to the right-hand side of (6.20). After a simpli-
fication, we obtain

VarSn

n
D 1

n
RX.0/C

Z

.�	;	�
1

n
An.x/FX.dx/ ;

where

An.x/ D 1C 2 cos x C cos.2x/ � cos
�
.n � 1/x� � 2 cos.nx/ � cos

�
.n C 1/x

�

2 sin2 x
:

Let now ı 2 .0; 	/ be such that in the interval .�ı; ı/, the spectral measure has
density fX as described in the theorem. It is elementary to check that the functions
An are uniformly bounded on .�	; 	/ n .�ı; ı/, which implies that

lim
n!1

Z

.�	;	/n.�ı;ı/
1

n
An.x/FX.dx/ D 0 ;

and the claim of the theorem will follow once we prove that

lim
n!1

Z

.�ı;ı/
1

n
An.x/fX.x/ dx D 2	 f �X .0/ : (6.21)

Let

bn D 1

2n

Z

.�ı;ı/
1 � cos.nx/

sin2 x
fX.x/ dx; n D 1; 2; : : : :

Then as n ! 1,

bn � 1

2n

Z

.�ı;ı/
1 � cos.nx/

x2
fX.x/ dx

D 1

2

Z nı

�nı

1 � cos.x/

x2
fX.x=n/ dx

! f �X .0/
2

Z 1

�1
1 � cos.x/

x2
dx;
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by the dominated convergence theorem. Since the integral obtained in the limit is
equal to 	 by (10.49), and since

Z

.�ı;ı/
1

n
An.x/fX.x/ dx D bn�1 C 2bn C bnC1

� 1

n

Z

.�ı;ı/
2.1 � cos x/C .1 � cos.2x//

sin2 x
fX.x/ dx ;

we have proved (6.21) and hence also (6.17), under the assumption that the spectral
measure FX puts no mass at the point 	 .

Allowing for a point mass p � 0 of the spectral measure at the point 	 , write

FX D QFX C pı	 ;

where QFX puts no mass at the point 	 . Note that QFX coincides with FX on .�	; 	/,
hence has a density in a neighborhood of the origin as described in the theorem.
Write

QRX.n/ D
Z

.�	;	�
cos nx QFX.dx/; n D 0; 1; : : : ;

so that

RX.n/ D QRX.n/C p.�1/n; n D 0; 1; : : : :

Then

VarSn

n
D RX.0/C 2

1

n

n�1X

jD1

jX

iD1
RX.i/

D QRX.0/C 2
1

n

n�1X

jD1

jX

iD1
QRX.i/C p

0

@1C 2
1

n

n�1X

jD1

jX

iD1
.�1/i

1

A

! 2	 f �X .0/;

since the expression in parentheses is easily seen to vanish in the limit. �

Remark 6.2.3. Note that if under the assumptions of Theorem 6.2.2, the spectral
density vanishes at the origin, f �X .0/ D 0, then VarSn=n ! 0 as n ! 1, so that the
variance of the partial sums grows at a slower than linear rate. This is the case, for
example, for fractional Gaussian noise with 0 < H < 1=2; see Example 1.2.4.

Remark 6.2.4. A common spectral domain definition of short memory requires
the existence of a spectral density that is continuous at the origin. Indeed, by
Theorem 6.2.2, in this case the variance of the partial sums of the process grows
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at most linearly, so the Allen short memory condition (6.5) is satisfied. However,
the theorem also demonstrates that the spectral measure can have arbitrarily “bad
properties” outside a small neighborhood of the origin and still have a variance of
the partial sums growing at most linearly if the assumptions of the theorem are
satisfied in that small neighborhood of the origin (with f �X .0/ < 1).

An elementary modification of the proof of Theorem 6.2.2 gives us the following
result.

Proposition 6.2.5. Suppose that the spectral measure FX has, in a neighborhood
of the origin, a density fX bounded from above by a constant M. Then

lim sup
n!1

VarSn

n
� 2	M :

In particular, this proposition demonstrates that if a spectral density exists in a small
neighborhood of the origin, then the Allen short memory condition (6.5) does not
require its continuity at the origin. In fact, even the existence of a finite limit on
the left-hand side of (6.17) does not require continuity of a version of the spectral
density at the origin; see Problem 6.5.4.

What behavior of the spectral measure of the process leads to a violation of the
Allen short memory condition, i.e., faster than linear rate of growth of the variance
of the partial sums? We first check that such a violation is already guaranteed by
“too much mass near the origin” of the spectral measure.

Proposition 6.2.6. Suppose that

lim sup
"#0

FX
�
Œ0; "�

�

"
D 1 : (6.22)

Then

lim sup
n!1

VarSn

n
D 1 :

Proof. We may assume that the spectral measure FX puts no mass at the point 	 .
As in the proof of Theorem 6.2.2, it is enough to show that

lim sup
n!1

bn D 1 ;

where

bn D 1

2n

Z

.�ı;ı/
1 � cos.nx/

sin2 x
FX.dx/; n D 1; 2; : : : ;
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for some 0 < ı < 	 . However, using the facts that sin x � x as x ! 0 and
1 � cos x � cx2 for some c > 0 if jxj � 1, we have for n large enough,

bn � 1

2n

Z

Œ�1=n;1=n�

1 � cos.nx/

sin2 x
FX.dx/ � .c=2/nFX

�
Œ0; 1=n�

�
;

and this converges to infinity along some subsequence of the integers by (6.22). �

Obviously, if (6.22) holds with the actual limit replacing the limsup, the
conclusion of the proposition will change accordingly to (6.10). Some situations
in which this happens are the presence of an atom of the spectral measure at the
origin and the equality f �X .0/ D 1 in Theorem 6.2.2. A fractal-like nature of
the support of the spectral measure near the origin can easily lead to the same
phenomenon; a simple example can be constructed by taking the Cantor set with
its natural Hausdorff measure.

More precise information about the rate of growth of the variance of the
partial sums of a process can be obtained under the assumption of existence, in a
neighborhood of the origin, of a regularly varying spectral density.

Theorem 6.2.7. Suppose that the spectral measure FX has, in a neighborhood of
the origin, a density fX such that

fX.x/ D jxj�.1Cd/L
�
1=jxj� (6.23)

as x ! 0, where �2 < d < 0, and L is a slowly varying function. Then

Var Sn � vd n2CdL.n/ as n ! 1, (6.24)

where

vd D
(
4�.�d/ cos.	d=2/
.1Cd/.2Cd/ if d 6D �1

2	 if d D �1.

Proof. As in the proof of Theorem 6.2.2, let ı 2 .0; 	/ be such that in the interval
.�ı; ı/, the spectral measure has a density fX as described in the theorem. If we set

an D 1

2

Z

.�ı;ı/
1 � cos.nx/

x2
fX.x/ dx; n D 1; 2; : : : ;

then

Var Sn D .1C o.1//
�
an�1 C 2an C anC1

�C O.1/

as n ! 1. Therefore, the statement of the theorem will follow once we prove that

an � .vd=4/n
2CdL.n/ as n ! 1. (6.25)
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However, by (6.23),

an D
Z ı

0

1 � cos.nx/

x3Cd
L.1=x/ dx D n2CdL.n/

Z ın

0

1 � cos y

y3Cd

L.n=y/

L.n/
dy :

Since L.n=y/=L.n/ ! 1 for every y > 0 as n ! 1, and since

Z 1

0

1 � cos y

y3Cd
dy D

(
�.�d/ cos.	d=2/
.1Cd/.2Cd/ if d 6D �1;

	=2 if d D �1,

by (10.49), we only need to justify the passage to the limit under the integral in this
argument. To this end, choose " 2 �

0;min.�d; 2 C d/
�
. By the Potter bounds of

Corollary 10.5.8, for all n large enough we have

L.n=y/

L.n/
�
	
.1C "/y�" if y < 1
.1 � "/�1y" if y � 1

WD h.y/ :

Since the function

1 � cos y

y3Cd
h.y/; y > 0 ;

is integrable on .0;1/ by the choice of ", we can use the Lebesgue dominated
convergence theorem to justify the passage to the limit under the integral. �

The cases �1 < d < 0 and d D �1 and the function L does not remain bounded
as its argument approaches infinity describe the situations relevant to our discussion
of long-range dependence. Indeed, in these cases the variance of the partial sums
grows faster than linearly fast, at least along a subsequence.

Concentrating on the case �1 < d < 0, the statements of Theorem 6.1.3 and
Theorem 6.2.7 lead to an interesting observation. Consider the following three
properties of a stationary finite-variance process X D .X1;X2; : : :/. Let L be a
slowly varying function on .0;1/. The first property is a property of the covariance
function of the process:

RX.n/ � ndL.n/; �1 < d < 0; n ! 1 : (6.26)

The second property is a property of the spectral measure of the process: there is, in
a neighborhood of the origin, a density fX such that

fX.x/ � 1

2�.�d/ cos.	d=2/
jxj�.1Cd/L

�
1=jxj�; �1 < d < 0; x ! 0 : (6.27)

The final property is a property of the variance of the partial sums of the process:

Var Sn � 2

.1C d/.2C d/
n2CdL.n/; �1 < d < 0; n ! 1 : (6.28)
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Certain fractional Gaussian noises, for example, possess all three of these
properties, as the following example shows.

Example 6.2.8. Let .BH.t/; t � 0/ be the fractional Brownian motion of Exam-
ple 3.5.1. Recall that the increment process Xj D BH.j/� BH.j � 1/ for j D 1; 2; : : :

is a stationary zero-mean Gaussian process, called the fractional Gaussian noise
(FGN). It has the covariance function

RX.n/ D �2

2

h
.n C 1/2H C jn � 1j2H � 2n2H

i
; n D 0; 1; : : : ;

where � > 0 is a scale parameter, and H 2 .0; 1/ the Hurst parameter, which is the
parameter of self-similarity of the underlying fractional Brownian motion. Recall
also that the FGN has a spectral density given by

fX.x/ D C.H/�2.1 � cos x/
1X

jD�1
j2	 j C xj�.1C2H/; �	 < x < 	 ;

where

C.H/ D H.1 � 2H/

�.2 � 2H/ cos.	H/
:

Suppose that 1=2 < H < 1. It follows from (5.11) that the FGN has the
property (6.26) with d D �2.1 � H/ and L.x/ D H.2H � 1/�2, x > 0. Further,
it is clear that

fX.x/ � C.H/

2
jxj1�2H as x ! 0,

whence the FGN has the property (6.27) as well. Finally, by the definition of the
FGN,

Var Sn D Var

0

@
nX

jD1
Xj

1

A D Var BH.n/ D �2n2H; n D 1; 2; : : : :

Therefore, the FGN has the property (6.28) too.

All three properties (6.26), (6.27), and (6.28) have been taken as definitions of
long-range dependence in a stationary process with a finite variance. In general,
it follows from Theorem 6.1.3 that (6.26) implies (6.28), and it follows from
Theorem 6.2.7 that (6.27) also implies (6.28).

On the other hand, Example 6.1.4 shows that the property (6.28) of the
variance of the partial sums does not imply the property (6.26) of the covariances.
Further, Exercise 6.5.5 contains an example of a spectral measure without the
property (6.27). Nonetheless, the property (6.28) of the variance of the partial sums
still holds.



6.2 Spectral Domain Approaches 205

It is, clear, therefore, that the property (6.28) is the weakest of the three
properties. The exact relation between the properties (6.26) and (6.27), however,
still needs to be clarified. We begin with examples showing that neither of these two
properties implies the other.

We begin with an example of a process with a spectral density that is regularly
varying at the origin but without a regularly varying covariance function.

Example 6.2.9. Let 0 < " < 	=2. Let �1 < d < 0, and let g be a positive integrable
function on .0; "/ such that g is regularly at the origin with exponent �.1 C d/ of
regular variation; one could take as g, for instance, the restriction of the spectral
density of the fractional Gaussian noise to the interval .0; "/. Define

f .x/ D g.jxj/1�0 < jxj < "�C g.	 � jxj/1�	 � " < jxj < 	�; �	 < x < 	 :

Then f is a nonnegative integrable symmetric function on .�	; 	/ that satisfies the
property (6.27) of regular variation at the origin. Let .Rn/ be the covariance function
of a process with spectral density equal to f . Then

Rn D 2

Z 	

0

cos nx f .x/ dx D 2

Z "

0

cos nx g.x/ dx C 2

Z 	

	�"
cos nx g.	 � x/ dx

D 2
�
1C .�1/n

� Z "

0

cos nx g.x/ dx :

Therefore, the covariance function vanishes at all odd lags; hence it does not have
the property (6.26) of regular variation.

In the next example, we demonstrate a covariance function that is regularly
varying according to (6.26) and whose spectral density does not satisfy (6.27).

Example 6.2.10. Let 0 < d < 1, and let g be the spectral density satisfying (6.27)
such that the corresponding covariance function satisfies (6.26). One could use
the spectral density and the covariance function of the fractional Gaussian noise,
for instance. We will construct a nonnegative continuous integrable function g1 on
.0; 	/ such that

lim sup
x#0

x2g1.x/ > 0 (6.29)

and
Z 	

0

cos nx g1.x/ dx D o

�Z 	

0

cos nx g.x/ dx

�
(6.30)

as n ! 1. Once this is done, we will define a spectral density by

f .x/ D g.x/C g1.jxj/; �	 < x < 	 :



206 6 Second-Order Theory

This function does not have the property (6.26), because every function with the
latter property must satisfy, by (10.33),

f .x/ D o
�
x�.1Cd0/

�
as x # 0

for every d < d0 < 1, but the property (6.29) of g1 rules this out. On the other hand,
by (6.30), we see that

lim
n!1

R 	
�	 cos nx g.x/ dx
R 	
�	 cos nx f .x/ dx

D 1 :

Since the sequence in the numerator of the ratio above is regularly varying by
construction, the same is true for the sequence in the denominator, and the latter
sequence is the sequence of the covariances corresponding to the spectral density f .

It remains to construct a function g1 satisfying (6.29) and (6.30). Let

h.x/ D
	
2x if 0 � x � 1=2;

2.1 � x/ if 1=2 � x �� 1.

Define

g1.x/ D 22jh

�
x � 2�j

2�2j

�
if 2�j � x � 2�j C 2�2j

; j D 0; 1; 2; : : :,

and g1.x/ D 0 otherwise. Note that for xj D 2�j C 2�2j
=2 (the midpoint of the jth

interval), we have

g1.xj/ D 22j � x�2j as j ! 1.

Therefore, g1 satisfies (6.29). Next, notice that for every 0 < a < b < 	 ,

Z b

a
cos nx h

� x � a

b � a

�
dx

D
Z b

a
cos nx

�Z x

a

1

b � a
h0
� y � a

b � a

�
dy

�
dx

D 1

n.b � a/

Z b

a
h0
� y � a

b � a

� �
sin nb � sin ny

�
dy

D 2

n.b � a/

Z b

a
h0
� y � a

b � a

�
sin

n.b � y/

2
cos

n.b C y/

2
dy :

Using the facts that jh0.z/j � 2 a.e. and j sin zj � min.1; jzj/, we see that

ˇ̌
ˇ̌
Z b

a
cos nx h

� x � a

b � a

�
dx

ˇ̌
ˇ̌ � 4

n
min

�
1;

n.b � a/

4

�
:
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Therefore,

ˇ̌
ˇ̌
Z 	

0

cos nx g1.x/ dx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

1X

jD0
22j
Z 2�jC2�2j

2�j
cos nx h

�
x � 2�j

2�2j

�
dx

ˇ̌
ˇ̌
ˇ̌

� 4

n

1X

jD0
22j min

�
1;

n

4
2�2j

�
D 4

n

X

j�log2 log2 n

C4

n

X

j>log2 log2 n

:

Clearly, for n > 1,

4

n

X

j�log2 log2 n

22j min
�
1;

n

4
2�2j

�
� 4

n

X

j�log2 log2 n

22j

� 4

3
n�122 log2 log2 n D 4

3
n�1

�
log n

�2
:

Further, for n � 16,

4

n

X

j>log2 log2 n

22j min
�
1;

n

4
2�2j

�
� 4

n

X

j>log2 log2 n

22j n

4
2�2j

D
X

j>log2 log2 n

22j�2j � 2 � 22 log2 log2 n�2log2 log2 n D 2n�1
�
log n

�2
:

Since by construction, the sequence of the integrals on the right-hand side of (6.30)
is regularly varying with exponent d 2 .�1; 0/, we see that the function g1
satisfies (6.30).

Examples 6.2.9 and 6.2.10 notwithstanding, under certain regularity assump-
tions, conditions (6.26) and (6.27) do, in a sense, imply each other. This is exhibited
in the result below. A main assumption in this result is that the slowly varying
functions involved belong to the Zygmund class; see Definition 10.5.1. Membership
in this class is not preserved under tail equivalence, and therefore, in this theorem
it is no longer enough to assume the respective condition (6.26) or(6.27) as an
asymptotic equivalence.

Theorem 6.2.11. (a) Assume that the covariances of a stationary second-order
process X satisfy

RX.n/ D ndL.n/; n D 1; 2; : : : ; (6.31)

�1 < d < 0, and the slowly varying function L belongs to the Zygmund class.
Then the process X has a spectral density that satisfies (6.27).

(b) Assume that a stationary second-order process X has a spectral density such
that

fX.x/ D 1

2�.�d/ cos.	d=2/
jxj�.1Cd/L

�
1=jxj�; 0 < x < 	 ; (6.32)
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�1 < d < 0, and the slowly varying function L belongs to the Zygmund class.
Assume, further, that the spectral density has bounded variation on the interval
."; 	/ for every 0 < " < 	 . Then the covariance function of X satisfies (6.26).

Remark 6.2.12. It will be seen from the proof of the theorem that in fact, only a
part of the Zygmund class assumptions is needed for each part of the theorem.
For part (a), one needs to assume only that the function

�
xdL.x/; x > 0

�
is

eventually nonincreasing. For part (b), one needs to assume only that the function�
x1CdL.x/; x > 0

�
is eventually nondecreasing.

Before embarking on the proof of the theorem, we establish several preliminary
results.

Lemma 6.2.13. For every nonnegative nonincreasing sequence .an/ and arbitrary
sequence .cn/,

ˇ̌
ˇ̌
ˇ

kX

nD1
ancn

ˇ̌
ˇ̌
ˇ

� a1 max
n�k

jsnj; k D 1; 2; : : : ; (6.33)

where sn D c1 C : : : C cn, n D 1; 2; : : :. In particular, for every nonnegative
nonincreasing sequence .an/ and 0 < x < 	 ,

ˇ
ˇ̌
ˇ̌

m2X

nDm1

an cos nx

ˇ
ˇ̌
ˇ̌ � 2.sin x/�1am1 (6.34)

and
ˇ̌
ˇ
ˇ̌

m2X

nDm1

an sin nx

ˇ̌
ˇ
ˇ̌ � 2.sin x/�1am1 (6.35)

for every m2 > m1 � 1. Consequently, if an # 0, then the sums
P

n an cos nx andP
n an sin nx converge.

Proof. Let bk D ak, bj D aj � ajC1; j D 1; : : : ; k � 1. Since all bj are nonnegative,
we see that

ˇ̌
ˇ̌
ˇ

kX

nD1
ancn

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ̌

kX

nD1
cn

kX

jDn

bj

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

kX

jD1
bjsj

ˇ̌
ˇ̌
ˇ̌

�
kX

jD1
bjjsjj �

kX

jD1
bj max

n�k
jsnj D a1 max

n�k
jsnj ;

proving (6.33).
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To verify the statements (6.34) and (6.35), one uses (6.33) and the summation
formulas (6.18) and (6.19). �

Lemma 6.2.14. For �1 < d < 0, let

h.x/ D
1X

nD1
nd cos nx; 0 < x < 	 :

Then

h.x/ � �.1C d/ sin
�
	jdj=2� x�.dC1/ as x # 0. (6.36)

Proof. The function h is finite-valued by Lemma 6.2.13. To show (6.36), let us start
with the obvious fact that the (main branch of the) function

g.z/ D .1 � z/�.dC1/

is analytic in fz 2 C W jzj < 1g. Specifically, in this domain, the Taylor expansion

.1 � z/�.dC1/ D
1X

nD0

.1C d/.2C d/ : : : .n C d/

nŠ
zn WD

1X

nD0
cn.d/z

n

holds. In particular, for every 0 < x < 	 and 0 < r < 1,

�
1 � reix

��.dC1/ D
1X

nD0
cn.d/r

neinx : (6.37)

We claim that it is legitimate to let r ! 1 in (6.37) to obtain

�
1 � eix

��.dC1/ D
1X

nD0
cn.d/e

inx : (6.38)

Since the left-hand side of (6.37) clearly converges to the left-hand side of (6.38),
we need to show only that the right-hand side of (6.38) makes sense and is the limit
of the right-hand side of (6.37). Since

cnC1.d/ D n C 1C d

n C 1
cn.d/ < cn.d/

for n D 0; 1; : : :, Lemma 6.2.13 applies and shows that the series on the right-hand
side of (6.38) converges. Next, by Stirling’s formula for the gamma function,

cn.d/ D 1

nŠ

�
�.2C d/

�.1C d/

�.3C d/

�.2C d/
: : :

�.n C 1C d/

�.n C d/

�
(6.39)
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D 1

�.1C d/

�.n C 1C d/

nŠ

D 1

�.1C d/

e�.nC1Cd/.n C 1C d/nC1Cdn�1=2
�
1C O.1=n/

�

e�.nC1/.n C 1/nC1n�1=2
�
1C O.1=n/

�

D nd

�.1C d/

�
1C O.1=n/

�

as n ! 1. In particular, by Lemma 6.2.13,
ˇ
ˇ̌
ˇ̌
1X

nDNC1
cn.d/e

inx

ˇ
ˇ̌
ˇ̌ D

ˇ
ˇ̌
ˇ̌
1X

nDNC1
cn.d/ cos nx C i

1X

nDNC1
cn.d/ sin nx

ˇ
ˇ̌
ˇ̌

� 4.sin x/�1cNC1.d/rNC1 � 4.sin x/�1cNC1.d/ ! 0

as N ! 1 uniformly in 0 < r � 1. Since for every fixed finite N,

NX

nD0
cn.d/r

neinx !
NX

nD0
cn.d/e

inx

as r ! 1, the identity (6.38) follows.
Since for 0 < x < 	 ,

1 � eix D 2 sin.x=2/ei.	�x/=2 ;

we can take the real parts of both sides of the identity (6.38) to obtain

1X

nD1
cn.d/ cos nx D Re

��
2 sin.x=2/

��.dC1/
ei.x�	/.dC1/=2�

D �
2 sin.x=2/

��.dC1/
cos
�
.x � 	/.d C 1/=2

�

� x�.dC1/ cos
�
	.d C 1/=2

�

D x�.dC1/ sin
�
	jdj=2�

as x ! 0. Now the claim (6.36) follows, since by (6.39),

1X

nD1
cn.d/ cos nx D

1X

nD1

nd

�.1C d/

�
1C O.1=n/

�
cos nx

D 1

�.1C d/

1X

nD1
nd cos nx C O.1/

as x ! 0. �
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Proof of Theorem 6.2.11. We begin by proving part (a). Define a function fX on
.�	; 	/ by (6.16). We need to prove that this function is actually well defined,
that it is (a version of) the spectral density of the process X, and finally, that it
satisfies (6.27).

We will assume that the covariance function RX is eventually positive. The case in
which it is eventually negative can be treated in a similar way. First of all, since the
slowly varying function belongs to the Zygmund class, the covariance function RX

is eventually nonincreasing, and hence by Lemma 6.2.13, the infinite series in (6.16)
converges, and hence the function fX is well defined.

In order to prove that the function fX is the spectral density of the process X,
we need to show that it is integrable over .�	; 	/ and further, that for every m D
0; 1; : : :,

Z 	

�	
cos mx fX.x/ dx D RX.m/ : (6.40)

We will prove the integrability and (6.40) for m D 0. The proof for general m is
similar and is left as an exercise. By (6.16), we need to show only that the integral

Z 	

�	

 1X

nD1
RX.n/ cos nx

!

dx

is well defined and is actually equal to zero. Since

Z 	

�	
cos nx dx D 0

if n � 1, it is enough to show that

lim
N!1

Z 	

0

ˇ̌
ˇ̌
ˇ

1X

nDN

RX.n/ cos nx

ˇ̌
ˇ̌
ˇ

dx D 0 : (6.41)

To this end, we may assume that N is so large that for n � N, the covariance function
is positive and nonincreasing. Write

Z 	

0

ˇ̌
ˇ
ˇ̌
1X

nDN

RX.n/ cos nx

ˇ̌
ˇ
ˇ̌ dx

�
Z 	

0

1X

nDN

RX.n/1
�
n � 1= sin x

�
dx C

Z 	

0

ˇ
ˇ̌
ˇ̌
ˇ

X

n�max.N;1= sin x/

RX.n/ cos nx

ˇ
ˇ̌
ˇ̌
ˇ

dx :
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By Fubini’s theorem,

Z 	

0

1X

nDN

RX.n/1
�
n � 1= sin x

�
dx (6.42)

D 2

1X

nDN

RX.n/arcsin.1=n/ � 2

1X

nDN

1

n
RX.n/ ! 0

as N ! 1 by (6.31). Next, by Lemma 6.2.13 and the choice of N,

Z 	

0

ˇ̌
ˇ̌
ˇ̌

X

n�max.N;1= sin x/

RX.n/ cos nx

ˇ̌
ˇ̌
ˇ̌ dx

� 2

Z 	

0

1

sin x
max

�
N;

1

sin x

�d

L
�

max
�
N; 1= sin x

��
dx :

Let 0 < ı < �d. By (10.33), we can further bound the above expression by

� C
Z 	

0

1

sin x
max

�
N;

1

sin x

�dCı
dx ;

where C is a finite constant. Since the integrand is bounded from above by

�
sin x

��1�dCı
;

which is an integrable function, the dominated convergence theorem implies that

Z 	

0

ˇ̌
ˇ
ˇ̌
ˇ

X

n�max.N;1= sin x/

RX.n/ cos nx

ˇ̌
ˇ
ˇ̌
ˇ

dx ! 0

as N ! 1. Together with (6.42), this implies (6.41).
It remains to prove that the spectral density (6.16) satisfies (6.27). Let 0 < x < 	 .

For a small 0 < 
 < 1, we write

1X

nD1
RX.n/ cos nx D

X

n�
=x

C
X


=x<n�
�1=x

C
X

n>
�1=x

WD T1.x/C T2.x/C T3.x/ :

(6.43)
It follows by Theorem 10.5.6 that as x # 0,

jT1.x/j �
X

n�
=x

ndjL.n/j � .1C d/�1
�

=x

��

=x

�d
L
�

=x

�

� 
1Cd.1C d/�1x�.1Cd/L.1=x/
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by the slow variation of L. Therefore,

lim

!0 lim sup

x#0
T1.x/

x�.1Cd/L.1=x/
D 0 : (6.44)

Next, for x > 0 so small that ndL.n/ is nonincreasing on n > 
�1=x, we have by
Lemma 6.2.13,

jT3.x/j D
ˇ̌
ˇ̌
ˇ
ˇ

X

n>
�1=x

ndL.n/ cos nx

ˇ̌
ˇ̌
ˇ
ˇ

� 2
�b
�1=xc C 1

�d
L
�b
�1=xc C 1

�
.sin x/�1

� 2
�dx�.1Cd/L.1=x/

as x # 0. Therefore,

lim

!0 lim sup

x#0
T3.x/

x�.1Cd/L.1=x/
D 0 : (6.45)

Further, write

T2.x/ D L.1=x/
X


=x<n�
�1=x

nd cos nx C
X


=x<n�
�1=x

nd
�
L.n/ � L.1=x/

�
cos nx

WD T2;1.x/C T2;2.x/ :

It follows from Lemma 6.2.14 and (6.44) and (6.45) with L � 1 that for every
0 < " < 1, there is 
" 2 .0; 1/ such that for all 0 < 
 � 
",

.1 � "/�.1C d/ sin
�
	jdj=2� � lim inf

x#0
T21.x/

x�.1Cd/L.1=x/
(6.46)

� lim sup
x#0

T21.x/

x�.1Cd/L.1=x/
� .1C "/�.1C d/ sin

�
	jdj=2� :

Note also that

jT2;2.x/j � max

=x<n�
�1=x

ˇ̌
L.n/ � L.1=x/

ˇ̌ X


=x<n�
�1=x

nd

� L.1=x/ max

=x<n�
�1=x

ˇ
ˇ̌
ˇ

L.n/

L.1=x/
� 1

ˇ
ˇ̌
ˇ

�

�1

x

�1Cd

:
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Therefore, by Proposition 10.5.5, for each 0 < 
 < 1,

lim
x#0

T2;2.x/

x�.1Cd/L.1=x/
D 0 : (6.47)

Putting all the pieces together, we conclude by (6.44), (6.45), (6.46), and (6.47) that

lim
x#0
�
x�.1Cd/L.1=x/

��1 1X

nD1
RX.n/ D �.1C d/ sin

�
	jdj=2� :

The property (6.27) now follows using (6.16) and the identity (10.48) of the gamma
function.

We now prove part (b) of the theorem. By (6.15), we need to prove that

Z 	

0

x�.1Cd/L.1=x/ cos nx dx � �.�d/ cos.	d=2/ndL.n/ as n ! 1. (6.48)

Note, first, that in the case L � 1, we already know that(6.48) holds, since by (10.47)
and (10.48),

Z 	

0

x�.1Cd/ cos nx dx D nd
Z n	

0

x�.1Cd/ cos x dx

� nd
Z 1

0

x�.1Cd/ cos x dx D nd �.�d/ cos.	d=2/ :

In the general case, we proceed similarly to the steps taken in the proof of part (a).
For a small 0 < 
 < 1, we write

Z 	

0

x�.1Cd/L.1=x/ cos nx dx D
Z 
=n

0

C
Z 
�1=n


=n
C
Z 	


�1=n
WD I1.n/C I2.n/C I3.n/ :

By Theorem 10.5.9, as n ! 1,

jI1.n/j �
Z 
=n

0

x�.1Cd/L.1=x/ dx

� jdj�1.
=n/.
=n/�.1Cd/L.n=
/ � 
�djdj�1ndL.n/

by the slow variation of L. Therefore,

lim

!0 lim sup

n!1
I1.n/

ndL.n/
D 0 : (6.49)
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Next, let � > 0 be so small that the function x1CdL.x/ is nondecreasing on .1=�;1/.
Since the spectral density is assumed to be of bounded variation on .�; 	/, there is
a signed measure mf on .�; 	/ such that

x�.1Cd/L.1=x/ D ��.1Cd/L.1=�/C mf
�
.�; x�

�
a.e. on .�; 	/.

If we write

I3.n/ D
Z �


�1=n
C
Z 	

�

WD I3;1.n/C I3;2.n/ ;

then by Fubini’s theorem,

I3;2.n/ D
Z 	

�

�
��.1Cd/L.1=�/C mf

�
.�; x�

��
cos nx dx

D �1
n
��.1Cd/L.1=�/ sin n� � 1

n

Z 	

�

sin ny mf .dy/ ;

so that

jI3;2.n/j � 1

n

�
��.1Cd/jL.1=�/j C kmf k

�
:

Therefore, for every 0 < 
 < 1,

lim
n!1

I3;2.n/

ndL.n/
D 0 : (6.50)

We treat the term I3;1.n/ in a similar manner. By the choice of � , the function
x�.1Cd/L.1=x/ is nonincreasing on .0; �/, so there is a positive measure Qmf on .0; �/,
finite away from the origin, such that

x�.1Cd/L.1=x/ D ��.1Cd/L.1=�/C Qmf
�
.x; �/

�
a.e. on .0; �/.

Once again, by Fubini’s theorem,

I3;1.n/ D
Z �


�1=n

�
��.1Cd/L.1=�/C Qmf

�
.x; �/

��
cos nx dx

� ��.1Cd/L.1=�/

ˇ
ˇ̌
ˇ

Z �


�1=n
cos nx dx

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ

Z

.
�1=n;�/

�Z z


�1=n
cos nx dx

�
Qmf .dz/

ˇ
ˇ̌
ˇ

�
�
��.1Cd/L.1=�/C

Z

.
�1=n;�/
Qmf .dz/

�
sup

z>
�1=n

ˇ̌
ˇ
ˇ

Z z


�1=n
cos nx dx

ˇ̌
ˇ
ˇ

� �

�1=n

��.1Cd/
L.
n/

�
2=n

� D 2
1CdndL.
n/ :
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Using again the slow variation of L, we conclude that

lim

!0 lim sup

n!1
I3;1.n/

ndL.n/
D 0 : (6.51)

Finally, we treat the term I2.n/, and we do it in the same way we treated the term
T2.x/ in the proof of part (a). Write

I2.n/ D L.n/
Z 
�1=n


=n
x�.1Cd/ cos nx dx C

Z 
�1=n


=n
x�.1Cd/

�
L.1=x/ � L.n/

�
cos nx dx

D I2;1.n/C I2;2.n/ :

Since (6.48) holds in the case L � 1, it follows from (6.49), (6.50), and (6.51) that
for every 0 < " < 1, there is 
" 2 .0; 1/ such that for all 0 < 
 � 
",

.1 � "/�.�d/ cos.	d=2/ � lim inf
n!1

I2;1.n/

ndL.n/
(6.52)

� lim sup
n!1

I2;1.n/

ndL.n/
� .1C "/�.�d/ cos.	d=2/;

while as in the proof of part (a), using Proposition 10.5.5, we see that for each
0 < 
 < 1,

lim

!0 lim sup

n!1
I2;2.n/

ndL.n/
D 0 : (6.53)

Now the statement (6.48) follows from (6.49), (6.50), (6.51), (6.52), and (6.53). �

6.3 Pointwise Transformations of Gaussian Processes

We have already discussed in Section 5.3 that it is useful to understand the effect of
pointwise transformations on a stationary process that has, from some point of view,
long memory. Does the transformed process have, from the same point of view, long
memory or not? This question turns out to be particularly interesting when we work
with the second-order notions of long memory and the initial long-range dependent
process is centered Gaussian.

In this section, we will work with a stationary zero-mean Gaussian process X and
let g W R ! R be a measurable function. Then Yn D g.Xn/; n D 1; 2; : : :, is again a
stationary process. Assuming that the function g is such that EY2n < 1, what is the
effect of the transformation on the covariance function and on the spectral measure
of the process?
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The key tool in answering this question is Hermite polynomials. For n � 0, define
a function of a real variable x by

Hn.x/ D .�1/nex2=2 dn

dxn
e�x2=2; x 2 R : (6.54)

It is elementary to check that H0.x/ D 1, H1.x/ D x, H2.x/ D x2 � 1. Furthermore,
it is not hard to check by induction the following explicit representation:

Hn.x/ D
Œn=2�X

mD0

nŠ

mŠ.n � 2m/Š
.�2/�mxn�2m; x 2 R I (6.55)

see Exercise 6.5.7. Therefore, each Hn is a polynomial of degree n. It is called the
nth Hermite polynomial.

The following proposition describes the first- and second-order properties of
Hermite polynomials evaluated at a normalized and centered Gaussian vector.

Proposition 6.3.1. (i) Let X be a standard normal random variable. Then for
every n � 1, E

�
Hn.X/

� D 0.
(ii) Let .X;Y/ be a zero-mean unit-variance Gaussian vector with Corr.X;Y/ D 
.

Then for n;m � 0,

E
�
Hn.X/Hm.Y/

� D
	
0 if n 6D m;
nŠ 
n if n D m.

(6.56)

Proof. Note that for n � 1,

E
�
Hn.X/

� D
Z 1

�1
1p
2	

e�x2=2Hn.x/ dx

D .�1/n 1p
2	

Z 1

�1
dn

dxn
e�x2=2 dx

D .�1/n 1p
2	

dn�1

dxn�1 e�x2=2

ˇ̌
ˇ̌
1

�1
D 0 ;

proving part (i). Next, consider the function

'.s; x/ D esx�s2=2; s; x 2 R : (6.57)

Equivalently,

'.s; x/ D e�.s�x/2=2ex2=2; s; x 2 R : (6.58)



218 6 Second-Order Theory

By (6.58),

@n

@sn
'.s; x/ D ex2=2 @

n

@yn
e�y2=2

ˇ̌
yDs�x

D ex2=2.�1/ne�.s�x/2=2Hn.s � x/ :

In particular,

@n

@sn
'.s; x/

ˇ̌
ˇ̌
sD0

D .�1/nHn.�x/ : (6.59)

Furthermore, let .X;Y/ be the Gaussian vector in the proposition. By (6.57), for
every real s; t,

E
�
'.s;X/'.t;Y/

� D E
�

exp
˚
sX � s2=2

�
exp

˚
tY � t2=2

��
(6.60)

D exp
˚�.s2 C t2/=2

�
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�

exp
˚
sX C tY

��

D exp
˚�.s2 C t2/=2

�
exp

˚
.s2 C 2st
C t2/=2

�

D est
 ;

where we used the fact that sX C tY has the zero-mean normal distribution with
variance s2 C 2st
C t2. Since an easy calculus exercise shows that for n;m � 0,
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it follows that
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On the other hand, by (6.60) and (6.59),
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D E
�
.�1/nHn.�X/ .�1/mHm.�Y/

�

D .�1/nCmE
�
Hn.X/Hm.Y/

�
;

since the good integrability properties of a normal random variable allow taking the
derivatives inside the expectation. Note further that on the last step, we used the fact

that .�X;�Y/
dD .X;Y/.

The two resulting expressions for the mixed partial derivative prove the claim of
part (ii) of the proposition. �

An immediate conclusion from the proposition is the fact that for a standard
normal random variable X,

Var
�
Hn.X/

� D nŠ; n D 1; 2; : : : : (6.61)

Proposition 6.3.1 has a very important consequence for square integrable func-
tions of a standard normal random variable.

Proposition 6.3.2. Let �G be the law of the standard normal random variable
on R. The Hermite polynomials .Hn; n D 0; 1; : : :/ form an orthogonal basis in
L2
�
R; �G

�
.

Proof. Since orthogonality of the Hermite polynomials follows from Proposi-
tion 6.3.1, it remains to show that every function f 2 L2

�
R; �G

�
such that

Z 1

�1
f .x/Hn.x/'.x/ dx D 0 for every n D 0; 1; : : :, (6.62)

where ' is the standard normal density, must be the null function.
Indeed, since for every n D 0; 1; : : :, the function of the real variable xn

can be written as a finite linear combination of H0; : : : ;Hn, every function f
satisfying (6.62) must also satisfy

Z 1

�1
xnf .x/'.x/ dx D 0 for every n D 0; 1; : : :. (6.63)

We claim that f is also orthogonal to the complex exponentials: for every t 2 R,

Z 1

�1
eitxf .x/'.x/ dx D 0 : (6.64)

To see this, we use the Taylor expansion of the complex exponential. Because each
power function is, by (6.63), orthogonal to f , it is enough to check that

lim
N!1

Z 1

�1
f .x/

1X

nDN

intnxn

nŠ
'.x/ dx D 0 :
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Since the integrand converges pointwise to zero as N ! 1, it is enough to exhibit
an integrable dominating function. Such a function is provided by the estimate

ˇ
ˇ̌
ˇ̌f .x/

1X

nDN

intnxn

nŠ

ˇ
ˇ̌
ˇ̌ � jf .x/j

1X

nDN

jtjnjxjn
nŠ

� jf .x/j
1X

nD0

jtjnjxjn
nŠ

D jf .x/jejtxj :

The just established equation (6.64) says that the signed measure with density
f .x/'.x/; x 2 R, with respect to the Lebesgue measure has vanishing Fourier
transform. Therefore, the measure is the zero measure. Since the Gaussian density
never vanishes, the function f is the null function. �

The following corollary forms the basis of our subsequent analysis of square
integrable functions of centered and normalized stationary Gaussian processes.

Corollary 6.3.3. Let X be a standard normal random variable. For every function
g 2 L2

�
R; �G

�
, there is a unique expansion in L2,

g.X/ D
1X

nD0

an.g/

nŠ
Hn.X/ : (6.65)

The coefficients in the expansion are given by

an.g/ D E
�
Hn.X/g.X/

�
; n D 0; 1; : : : : (6.66)

The expansion (6.65) is called the Hermite expansion of g.X/. Suppose that
.X;Y/ is a zero-mean unit-variance Gaussian vector with Corr.X;Y/ D 
, and g; h
are two functions in L2

�
R; �G

�
. Then g.X/ and h.Y/ are random variables with

finite variance, each of which has its Hermite expansion (6.65) with corresponding
sequences of coefficients given by (6.66). By Proposition 6.3.1, we conclude that

E
�
g.X/h.Y/

� D
1X

nD0

an.g/an.h/

nŠ

n (6.67)

and

Cov
�
g.X/; h.Y/

� D
1X

nD1

an.g/an.h/

nŠ

n : (6.68)

Now we are in a position to describe the effect of a pointwise transformation on
the second-order characteristics of a centered and normalized stationary Gaussian
process.
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Theorem 6.3.4. Let X be a stationary centered Gaussian process with unit vari-
ance, and let g 2 L2

�
R; �G

�
. Then Yn D g.Xn/; n D 1; 2; : : :, is a stationary process

with finite variance.
If RX is the covariance function of the process X, then the covariance function of

the process Y is given by

RY.n/ D
1X

kD1

ak.g/2

kŠ
RX.n/

k : (6.69)

If FX is the spectral measure of the process X, then the spectral measure of the
process Y is given by

FY D
1X

kD1

ak.g/2

kŠ
F�k;f

X ; (6.70)

where F�k;f
X is the folded kth convolution power of FX, k D 1; 2; : : :, defined by

F�k;f
X .A/ D FX � : : :� FX

�˚
.x1; : : : ; xk/ 2 .�	; 	�k W x1 C : : :C xk 2 A mod 2	

��
;

A a Borel subset of .�	; 	�.
Proof. The only part of the theorem that has not yet been proved is the expres-
sion (6.70) for the spectral measure of the process Y. However, the latter statement
follows immediately from (6.69), since for every n D 0; 1; : : : and k D 1; 2; : : :,

Z

.�	;	�
einx F�k

X .dx/ D
�Z

.�	;	�
einx FX.dx/

�k

D RX.n/
k :

�

Given a function g 2 L2
�
R; �G

�
, let

kg D inf
˚
k � 1 W ak.g/ 6D 0

�
: (6.71)

The number kg is called the Hermite index or Hermite rank of the function g. For
example, the Hermite index of the nth Hermite polynomial Hn is equal to n for n � 1

and to infinity for n D 0. We can restate the conclusions of Theorem 6.3.4 as

RY.n/ D
1X

kDkg

ak.g/2

kŠ
RX.n/

k (6.72)

and

FY D
1X

kDkg

ak.g/2

kŠ
F�k;f

X : (6.73)



222 6 Second-Order Theory

The importance of the notion of the Hermite index becomes clear in the following
result.

Theorem 6.3.5. Under the assumptions of Theorem 6.3.4, suppose additionally
that kg < 1 and RX.n/ ! 0 as n ! 1. Then

lim
n!1

RY.n/
�
RX.n/

�kg
D akg.g/

2

kgŠ
:

Proof. The claim is immediate from (6.72) and the L2 convergence of the Hermite
expansion (6.65). �

In particular, if the Hermite index of the function is equal to 1, then the covariance
function of the process

�
Yn D g.Xn/; n D 1; 2; : : :

�
, decays to zero at the same

rate as the covariance function of the original process X, while if kg > 1, then the
covariance function RY converges to zero, since the lag goes to infinity faster than
the covariance function RX does.

Suppose now that the covariance function .RX.n// satisfies the assumption (6.9),
i.e., it is regularly varying with exponent d 2 Œ�1; 0�, and the covariances are
nonsummable. Then it follows from Theorem 6.3.5 that the covariance function
.RY.n// is regularly varying with exponent kgd. If kg D 1, then this covariance
function still satisfies the assumption (6.9). On the other hand, if kg > 1, then
the covariance function .RY.n// may or may not satisfy the assumption (6.9), and
the covariances may or may not be nonsummable. The crucial factor is whether
kgd � �1.

From a certain point of view, the situation may appear to be reasonable, since
we expect the transformed process

�
Yn D g.Xn/; n D 1; 2; : : :

�
to “remember as

much as the process X does or less.” If one measures the memory in terms of the
rate of decay of the covariance function, then the above analysis showing that the
covariance function RY converges to zero at the same rate as the covariance function
RX or faster seems to carry the same message.

If a function g is, however, a one-to-one function, then arguably, the process�
Yn D g.Xn/; n D 1; 2; : : :

�
“remembers exactly as much as the process X does.” It

is an uncomfortable fact that there exist one-to-one functions g 2 L2
�
R; �G

�
with

Hermite index larger than 1. This is demonstrated by the following example.

Example 6.3.6. There exists a > 0 such that

ae�a
Z 1

a
xexe�x2=2 dx D

Z a

0

x2e�x2=2 dx : (6.74)

To see this, note that the expressions on the left-hand side and the right-hand side
of (6.74) are respectively O.a/ and O.a3/ as a # 0, so for small a, the expression
on the left-hand side is larger. On the other hand, the expression on the left-hand
side vanishes in the limit as a ! 1, while the expression on the right-hand side
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converges to a positive limit. Thus for large a, the right-hand side is larger. Since
both expressions are continuous functions of a, there is a > 0 satisfying (6.74).

Choose such an a > 0 and define

g.x/ D
	 � 1

a x if 0 � x < a
ex�a if x � a

:

Set g.x/ D �g.�x/ for x < 0.
Notice that the function g is one-to-one and measurable. Furthermore, the inverse

function g�1 is measurable as well. Clearly, g 2 L2
�
R; �G

�
. Since the function g is

odd, it is immediate that

ak.g/ D E
�
Hk.X/g.X/

� D 0 for all even k,

with X a standard normal random variable. Furthermore, since the number a
satisfies (6.74),

a1.g/ D E
�
H1.X/g.X/

� D E
�
Xg.X/

� D 0 :

Therefore, the Hermite rank of the function g is at least 3.

If X is a stationary centered Gaussian process with unit variance whose covari-
ance function .RX.n// satisfies the assumption (6.9) and whose exponent of regular
variation satisfies d 2 Œ�1;�1=3/, and g is the function in Example 6.3.6, then by
Theorem 6.3.5, the covariance function .RY.n// of the process

�
Yn D g.Xn/; n D

1; 2; : : :
�

is regularly varying with exponent kgd < �1. That is, the original process
X has long-range dependence according to its rate of decay of covariances and
nonsummability of its covariances, while the transformed process Y has short
memory according to either of the two criteria.

The phenomenon discussed above is also visible in the spectral domain. The
following theorem is a version of Theorem 6.3.5 for spectral densities.

Theorem 6.3.7. Under the assumptions of Theorem 6.3.4, suppose additionally
that kg < 1 and that the process X has a spectral density fX satisfying (6.27)
with some d 2 .�1; 0/ and bounded outside of every neighborhood of the origin.
Then the process Y has a spectral density fY . This density can be chosen so that the
following properties hold:

(i) If kgd > �1, then

lim
x#0

fY.x/

xkg�1fX.x/kg
D akg.g/

2

kgŠ
c.kg; d/ ; (6.75)

where the constant c.k; d/ is given by the integral

Z 1

�1
: : :

Z 1

�1
jz1j�.1Cd/ : : : jzk�1j�.1Cd/

ˇ
ˇ1�.z1C: : :Czk�1/

ˇ
ˇ�.1Cd/

dz1 : : : dzk�1
(6.76)

and is finite if kd > �1.
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(ii) If kgd < �1, then the density fY is bounded.

Proof. It follows from (6.73) that under the assumptions of the theorem, the spectral
measure FY has density given by

fY.x/ D
1X

kDkg

ak.g/2

kŠ
f �k;f
X .x/ ; (6.77)

where

f �k;f
X .x/ D

X

n2ZW xC2	n2.�	k;	k/

f �k
X .x C 2	n/; �	 < x < 	 ;

and f �k
X is the usual kth convolution power of fX . We will prove parts (i) and (ii) of

the theorem for the version of the spectral density given in (6.77).
As a first observation, it is easy to see that the constant in (6.76) is indeed finite if

kd > �1, simply by computing the iterated integrals one by one. Next, we proceed
with two claims. First of all,

lim
x#0

f �k;f
X .x/

xk�1fX.x/k
D c.k; d/ < 1 if kd > �1. (6.78)

Further,

f �k;f
X is bounded if kd < �1. (6.79)

Indeed, we may assume that (6.27) holds as an exact equality on .0; 	/ and not only
as an asymptotic equivalence. Extend the slowly varying function L to the entire
half-line .0;1/ by setting it equal to zero outside of the interval .1=	;1/, so that
we may regard (6.27) as equality on R. Note that for 0 < x < 	 ,

f �k
X .x/ D

Z 	

�	
: : :

Z 	

�	
fX.y1/ : : : fX.yk�1/fX

�
x � y1 � : : : � yk�1

�
dy1 : : : dyk�1

(6.80)

D fX.x/
kxk�1

Z 1

�1
: : :

Z 1

�1
fX.xz1/

fX.x/
: : :

fX.xzk�1/
fX.x/

fX
�
x.1 � z1 � : : : � zk�1/

�

fX.x/
dz1 : : : dzk�1 :

Suppose that kd > �1. As x # 0, the integrand on the right-hand side converges, by
the regular variation, to the integrand in (6.76). Furthermore, by the Potter bounds
of Corollary 10.5.8 and boundedness of fX outside of every neighborhood of the
origin, for every 0 < " < 1 and all positive x small enough, we have

fX.xz/

fX.x/
� C

�jzj�.1CdC"/ C jzj�.1Cd�"/�
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for some finite C and all z 2 R. Since we can choose " so small that k.d � "/ > �1
and dC" < 0, the finiteness of the constant in (6.76) gives us a dominating function,
and we conclude that

lim
x#0

f �k
X .x/

xk�1fX.x/k
D c.k; d/ :

In order to verify that this implies (6.78), we need to check only that f �k
X is bounded

outside of every neighborhood of the origin. To see this, suppose that jxj > " for
some " > 0. Then at least one of the arguments of the k functions fX appearing in the
definition of f �k

X .x/ in (6.80) has absolute value larger than "=k. Therefore, the value
of fX at that point is bounded from above by some finite number, say a, depending
only on " and k. Since the integral in (6.80) over that part of the domain where a
particular fX term is bounded by a is itself bounded by a (since fX is a probability
density), we conclude that f �k;f

X .x/ � ka, which proves the required boundedness
outside of every neighborhood of the origin.

Next we check (6.79), so suppose that kd < �1. Choose " > 0 so small that
k.d C "/ < �1 and d C " < 0. Using once again the Potter bounds and boundedness
of fX outside of every neighborhood of the origin, we see that there is a finite constant
C such that fX.x/ � Cjxj�.1CdC"/ for jxj < 	 . Therefore, we can also bound fX by a
constant times the density of the symmetric gamma random variable with the shape
�.d C "/ and scale 1, i.e., of W1 � W2, where W1 and W2 and independent gamma
random variables with the shape �.dC"/ and scale 1. It is an elementary probability
exercise to check that if k� > 1, then the sum of k i.i.d. symmetric gamma random
variables with shape � has bounded density. Therefore, (6.79) follows.

We need one more fact about a folded convolution. Let f and g be two probability
densities on .�	; 	/ such that g.x/ � M for all x. We claim that the folded
convolution of f and g is bounded by M as well. Indeed, suppose, for instance,
that �	 < x � 0. The value of the folded convolution of f and g at the point x is

f 
 g.x/C f 
 g.x C 2	/

D
Z xC	

�	
f .y/g.x � y/ dy C

Z 	

xC	
f .y/g.x C 2	 � y/ dy

� M
Z xC	

�	
f .y/ dy C M

Z 	

xC	
f .y/ dy D M :

Suppose now that kgd < �1. By (6.79), f
�kg;f
X is bounded. For all k > kg, f �k;f

X

is the folded convolution of f
�kg;f
X and f

�k�kg;f
X and hence is bounded by the same

constant. Since the coefficients in (6.77) are summable, the statement of part (ii)
follows.

Suppose, finally, that kgd > �1. If �1=d is not an integer, then the statement of
part (i) also follows from what has already been proved, because we can write

fY.x/ D
b�1=dcX

kDkg

ak.g/2

kŠ
f �k;f
X .x/C

1X

kDb�1=dcC1

ak.g/2

kŠ
f �k;f
X .x/ :
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We already know that the second sum on the right-hand side is bounded. The first
sum on the right-hand side is a finite sum and, by (6.78), the first term in that sum
dominates, as x ! 0, the rest of the terms. Therefore, the statement of part (i)
follows from (6.78).

An extra step is needed if �1=d is an integer. We leave it to Exercise 6.5.8. �

The constant c.k; d/ in (6.76) can be computed explicitly; see Exercises 6.5.9
and 6.5.10.

We see, therefore, that if a stationary Gaussian process X has spectral density fX
satisfying (6.27) with d 2 .�1; 0/ (and is bounded outside of the origin), and kg D 1,
then the spectral density of the process Y also satisfies (6.27), with the same value
of d. If, however, kg > 1, then the spectral density of Y may still satisfy (6.27),
but with a larger d, or it may even be bounded, depending on the value of kgd.
Since Example 6.3.6 shows that there exist one-to-one functions g with Hermite
index kg > 1, we may construct examples of processes X that have long-range
dependence according to the behavior of the spectral density at the origin, but for
which the process Y has short memory according to the same definition even though
the transformation is via a one-to-one function.

6.4 Comments on Chapter 6

Comments on Section 6.1
Much of the emphasis on the second-order point of view on long-range depen-

dence originated with B. Mandelbrot. A power-like decay of covariances appears
in Mandelbrot (1965) as an attribute of a model needed to account for the Hurst
phenomenon. Both slow decay of covariances and fast rate of increase of the
variances of the partial sums were explicitly introduced as crucial features of
long-range dependent processes in Mandelbrot and Wallis (1968). A significant
number of papers appeared in the subsequent 10–15 years discussing concrete
models having regularly varying nonsummable covariances and partial sums whose
variances grow faster than linearly fast; the early ones include Davydov (1970),
Taqqu (1975), Rosenblatt (1976). The survey Mandelbrot and Taqqu (1979) uses
persisting correlations as synonymous with long memory.

Comments on Section 6.2
A very early paper exhibiting the importance of slowly vanishing correlations

and pointing out the concurrent singularity at the origin of the spectral density
is Rosenblatt (1961). The exact relationship between properties (6.26) and (6.27)
generated some confusion, with imprecise statements having been published. Part
(i) of Theorem 6.2.11 is in Theorem (2–6) in Chapter V of Zygmund (1968).

Comments on Section 6.3
The importance of the Hermite rank for the second-order characteristics of

pointwise transformations of stationary Gaussian processes was pointed out in
Taqqu (1975), but a special case of this phenomenon is mentioned in Rosenblatt
(1961).
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6.5 Exercises to Chapter 6

Exercise 6.5.1. Let X D .Xn; n 2 Z/ be an infinite moving average process of
Section 1.4. Assume that the noise variables ."n; n 2 Z/ have zero mean and finite
variance. Prove that if

P j'jj < 1, then the covariances of the process X are
absolutely summable, i.e., that (6.2) holds.

Exercise 6.5.2. Let m be a finite (not necessarily symmetric) measure on .�	; 	�.
Prove that

lim
n!1

1

n

n�1X

jD0

Z

.�	;	�
eijx m.dx/ D m.f0g/ :

Exercise 6.5.3. Suppose that the spectral measure of a stationary finite-variance
process X is given by

F D
1X

kD1
2�kŠ

�
ı2�kŠ.	=2/ C ı�2�kŠ.	=2/

�
:

Show that VarSn=n ! c > 0 as n ! 1 over the subsequence n D 2mŠ, while
VarSn=n ! 0 as n ! 1 over the subsequence n D 4 � 2mŠ.

Exercise 6.5.4. Suppose that the spectral measure FX has, in a neighborhood of
the origin, the density fX given by

fX.x/ D 1C cos.1=jxj/ :

Show that (6.17) holds with f �X .0/ D 1.

Exercise 6.5.5. Suppose that the spectral measure FX has, in a neighborhood of
the origin, the density fX given by

fX.x/ D �
1C cos.1=jxj/� 1

2�.�d/ cos.	d=2/
jxj�.1Cd/L

�
1=jxj�; �1 < d < 0 ;

where L is a function that is slowly varying at infinity. Show that (6.28) holds.

Exercise 6.5.6. Prove (6.40) for m 6D 0.

Exercise 6.5.7. (i) Prove, directly from the definition (6.54) of the Hermite poly-
nomials, the following relations:

H0n.x/ D nHn�1.x/; x 2 R; n D 1; 2; : : : (6.81)

and

HnC1.x/ D xHn.x/ � H0n.x/; x 2 R; n D 0; 1; : : : : (6.82)
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(ii) Use part (i) to prove by induction the representation (6.55) of the Hermite
polynomials.

Exercise 6.5.8. Complete the proof of Theorem 6.3.7 in the case that �1=d is an
integer.

Exercise 6.5.9. Let f1 and f2 be symmetric probability density functions supported
by the interval .�	; 	/. Assume that f1 and f2 are bounded when their argument is
bounded away from zero and that

fi.x/ D x�.1Cdi/Li.1=x/ as x # 0

for i D 1; 2, some �1 < di < 0, and a slowly varying function Li. Suppose that
d1 C d2 > �1. Then the probability density function given by the folded convolution
f1.
; f/ f2, is bounded when its argument is bounded away from the origin, and it
satisfies

f1.
; f/ f2.x/ � C.d1; d2/x
�.1Cd1Cd2/L1.1=x/L2.1=x/ as x # 0;

where

C.d1; d2/ D B.�d1�; d2/C B.1C d1 C d1;�d1/C B.1C d1 C d1;�d2/

D 1

�.�d1 � d2/�.1C d1/�.1C d2/

	2

2 sin.	d1
2
/ sin.	d2

2
/ cos.	.d1Cd2/

2
/
:

Exercise 6.5.10. Use Exercise 6.5.9 to show that the constant c.k; d/ in (6.76) is
equal to

c.k; d/ D 2k�1
�
�.�d/ cos.	d=2/

�k

�.�kd/ cos.	kd=2/
;

kd > �1.



Chapter 7
Fractionally Differenced and Fractionally
Integrated Processes

7.1 Fractional Integration and Long Memory

The adjective “fractional” appears frequently in the names of processes related
to long-range dependence; two immediate examples are the fractional Brownian
motion of Example 3.5.1 and the fractional Gaussian noise introduced in Sec-
tion 5.1. The term “fractional” carries a connotation of “unusual,” which is one
explanation for this appearance. There is, however, a deeper connection, and it is
related to the issues of stationarity and nonstationarity in the context of long-range
dependence discussed in Section 5.2.

Let X D .: : : ;X�1;X0;X1; : : :/ be a stationary process. Clearly, the differenced
process Y with Yn D Xn � Xn�1 for n 2 Z is also stationary. The usual notation
is Y D .I � B/X, where I is the identity operator on the space R

Z of sequences
x D .: : : ; x�1; x0; x1; x2; : : :/, and B is the backward shift operator on the same
space:

B.: : : ; x�1; x0; x1; x2; : : :/ D .: : : ; x�2; x�1; x0; x1; : : :/I

note that B is the inverse of the shift operator 
 from Section 2.1. A common notation
for the differencing operator is � D I � B.

Does there exist (perhaps on an enlarged probability space, but in this chapter we
will disregard this point) for every stationary process Y, a stationary process X for
which Y D .I � B/X? The answer is no, as the following example shows.

Example 7.1.1. Let Y D .: : : ;Y�1;Y0;Y1; : : :/ be a sequence of i.i.d. random
variables such that P.Y0 6D 0/ > 0. If there existed a stationary process X such
that Y D .I � B/X, then we would have

Sn WD Y1 C : : :C Yn D Xn � X0 for any n D 1; 2; : : :.
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The stationarity of the process X implies that the sequence of the laws of the
differences on the right-hand side of this equation is tight, whence so must be the
sequence of the laws of the sums on the left-hand side. In particular, there must exist
a sequence nk ! 1 such that the sequence .Snk/ converges in distribution. Note,
however, that by independence, we have for the characteristic functions

Eei
Sn D �
Eei
Y0

�n
; 
 2 R; n D 1; 2; : : : :

The assumption P.Y0 6D 0/ > 0 implies that there are arbitrarily small positive

 such that

ˇ̌
Eei
Y0

ˇ̌
< 1, and at every such point, Eei
Snk ! 0. This precludes

convergence in distribution of the sequence .Snk/.
We conclude that there is no stationary process X such that Y D .I � B/X.

According to the example, not every stationary process Y can be written in the
form Y D .I�B/X for some stationary process X. If, however, Y can be represented
in this form, we can write X D .I � B/�1Y and call the process X an integrated
process (specifically, Y that has been integrated). Obviously, an integrated process,
if it exists, is not uniquely determined: one can add the same random variable to
each Xn, as long as doing so preserves stationarity. For example, adding a random
variable independent of X always works.

It is intuitive that the differencing operator on stationary processes, � D I � B,
makes the memory in the process “less positive, more negative,” simply because
of alternating plus and minus signs attached to the same random variables. For
example, the left plot of Figure 7.1 is a realization of an AR(1) process Xn D
0:5Xn�1 C Zn, with the standard Gaussian noise .Zn/; it has positive dependence
due to the positive autoregressive coefficient. The right plot of the figure shows the
result of differencing this sample. Increased negative dependence is easily visible.

Similarly, if it is possible to “integrate” a stationary process (i.e., to apply the
inverse operator��1 D .I �B/�1) and obtain a stationary process, we would expect
the integrated process to have “more positive” memory than the original stationary
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Fig. 7.1 An autoregressive Gaussian process (left plot) and its first difference (right plot)
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process. Long memory, when present, is usually “of the positive kind” (we will
address this point in the sequel); so, starting with some stationary process, one could
try to obtain a process with long-range dependence by integrating that initial process
“as many times as possible.”

The difficulty with this program is that, as we saw in Example 7.1.1, many
stationary processes cannot be integrated even once while preserving stationarity.
Therefore, the desire to integrate a process “as many times as possible” must, in
many cases, refer to a fractional number of times. This turns out to be possible, and
it leads to a class of models known as fractionally integrated processes. The starting
point is the generalized binomial formula, which was already used in Lemma 6.2.14,

.1 � z/d D
1X

jD0
.�1/j

 
d

j

!

zj; (7.1)

for complex z with jzj < 1, where

 
d

j

!

D d.d � 1/ : : : .d � j C 1/

jŠ
:

If d is a nonnegative integer, then (7.1) is just the classical binomial formula and
a sum with finitely many terms; otherwise, it is an infinite sum, and then it can be
rewritten in the form

.1 � z/d D
1X

jD0

�.j � d/

�.j C 1/�.�d/
zj : (7.2)

Notice that the coefficients of zj in the sum (7.2) satisfy, by (6.39),

�.j � d/

�.j C 1/�.�d/
D j�.dC1/

�.�d/

�
1C O.1=j/

�
(7.3)

as j ! 1. If �1 < d < 0, the coefficients are nonnegative and decreasing.
Now let d be a real number that is not a nonpositive integer. Given a stationary

process Y, one can formally define the process X D ��dY by expanding ��d D
.I � B/�d in powers of the backward shift operator B as in (7.2) by formally
identifying the identity operator with the unity and the shift operator B with z. That
is, we define

Xn D
1X

jD0

�.j C d/

�.j C 1/�.d/
Yn�j (7.4)
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(as long as the sum converges, say in probability) for n D : : : ;�1; 0; 1; 2; : : :. If
d > 0, we view the process X as an integrated process Y, and if d < 0, we view it
as a differenced process Y.

Since our goal is to construct processes with as a long memory as possible, we
will be interested in the “integrated” case. We will consider the case of a “true
fractional integration” 0 < d < 1. The simplest way to perform integration with
d � 1 is to start (if possible) with the usual, “nonfractional,” integration, and then
perform additional fractional integration as necessary.

It is clear that if the series in (7.4) converges in probability, then the resulting
process X is stationary. However, convergence of the infinite series in (7.4) requires
restrictions on the initial process Y.

Remark 7.1.2. Since .1 � z/�d.1 � z/d D 1 (for z in the interior of the unit circle
in the complex plane), the logic we used to define a fractionally integrated process
suggests that the subsequent corresponding fractional differencing should undo the
fractional integration, so that with X defined by (7.4), one recovers the original
process Y via

Yn D
1X

jD0

�.j � d/

�.j C 1/�.�d/
Xn�j (7.5)

for n D : : : ;�1; 0; 1; 2; : : :. This turns out to be true under appropriate assumptions
on the process Y.

We would like to draw the attention of the reader to the fact that if 0 < d < 1

and both (7.4) and (7.5) hold, then for every real number x and for every n,

Yn D
1X

jD0

�.j � d/

�.j C 1/�.�d/
.Xn�j C x/

as well, because by (7.2) and (7.3),

1X

jD0

�.j � d/

�.j C 1/�.�d/
D 0 :

If we view a fractionally integrated process Y as a stationary process whose
fractional difference in (7.5) coincides with the process Y, then this process is not
uniquely defined. In fact, exactly as in the case of the integration and differencing
of order 1, we can add the same random variable to each Xn as long as doing
so preserves stationarity. The definition used in (7.4) gives one version of such a
process.
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7.2 Fractional Integration of Second-Order Processes

In this section, we assume that the process Y is a stationary zero-mean finite-
variance process with variance �2 and correlation function 
, and we consider first
the situation in which this covariance function is absolutely summable.

Theorem 7.2.1. Let Y be a stationary zero-mean finite-variance process with
covariance function R satisfying (6.2). Let 0 < d < 1=2.

(a) The series (7.4) converges in L2, and the resulting process X is a second-order
stationary process, with covariance function given by

R�n D
1X

mD�1
bn�mRm; n 2 Z ; (7.6)

with

bk D
1X

iD�k_0
aiaiCk; k 2 Z :

Furthermore, the inversion formula (7.5) holds, with the sum converging in L2.
(b) The process X has a spectral density f � that is continuous outside of the origin,

satisfying

f �.x/ �
� 1
2	

1X

mD�1
Rm

�
x�2d as x # 0. (7.7)

(c) Assume that

‰n WD
1X

mDn

Rm D o
�

n�.1�2d/
�

as n ! 1. (7.8)

Then the covariance function R� of the process X satisfies

R�n �
� �.1 � 2d/

�.d/�.1 � d/

1X

mD�1
Rm

�
n�.1�2d/ (7.9)

as n ! 1.

Proof. Denoting the jth coefficient in (7.4) by aj, we note that for m; k � 1,

E

0

@
mCkX

jDmC1
ajYn�j

1

A

2

D R0

mCkX

jDmC1
a2j C 2

mCkX

jDmC1
aj

mCkX

iDjC1
aiRi�j : (7.10)
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Since the sequence .aj/ is nonnegative and decreasing, we conclude that

E

0

@
mCkX

jDmC1
ajYn�j

1

A

2

�
 

R0 C 2

1X

nD1
jRnj

!
mCkX

jDmC1
a2j :

For 0 < d < 1=2, the sum
P

j a2j converges by (7.3), and so the series (7.4)
converges in L2.

We prove now that the inversion formula (7.5) holds. For m D 1; 2; : : :, consider
the finite sum

Y.m/n D
mX

jD0

�.j � d/

�.j C 1/�.�d/
Xn�j (7.11)

D
mX

kD0

0

@
kX

jD0

�.j � d/

�.j C 1/�.�d/

�.k � j C d/

�.k � j C 1/�.d/

1

AYn�k

C
1X

kDmC1

0

@
mX

jD0

�.j � d/

�.j C 1/�.�d/

�.k � j C d/

�.k � j C 1/�.d/

1

AYn�k :

The following property of the generalized binomial coefficients can be easily
verified from (7.1):

kX

jD0

 
d

j

! 
�d

k � j

!

D 0 for k � 1: (7.12)

Therefore, the first sum on the right-hand side of (7.11) is identically equal to Yn, and
it remains to prove that the second sum on the right-hand side of (7.11) converges
to 0 in L2 as m ! 1. To this end, we will show that there is a finite constant c such
that

ˇ
ˇ̌
ˇ̌
ˇ

mX

jD0

�.j � d/

�.j C 1/�.�d/

�.k � j C d/

�.k � j C 1/�.d/

ˇ
ˇ̌
ˇ̌
ˇ

� ckd�1

for all 1 � m � k. Once this is proved, a calculation similar to (7.10) will give us
the claim we need. By (7.12), it is enough to prove that

ˇ̌
ˇ̌
ˇ̌

kX

jDmC1

�.j � d/

�.j C 1/�.�d/

�.k � j C d/

�.k � j C 1/�.d/

ˇ̌
ˇ̌
ˇ̌ � ckd�1 : (7.13)
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Allowing a finite constant c to change from line to line, we can bound the left-hand
side of (7.13) by a term o.k�1/ plus

c
k�1X

jDmC1
j�.dC1/.k � j/d�1 � c

k�1X

jD1
j�.dC1/.k � j/d�1 ;

after which (7.13) follows easily, for example by splitting the sum into the part with
j � k=2 and its complement, and using Karamata’s theorem.

For part (b) of the theorem, recall that the absolute summability of the correla-
tions of the process Y implies that the latter process has a continuous spectral density
f , given by (6.16). By Exercise 1.6.5, we know that the fractionally integrated pro-
cess X has also a spectral density, f �, given by f �.x/ D ˇ

ˇP1
mD0 ameimx

ˇ
ˇ2 f .x/, with

the infinite sum in the expression for the density converging in L2
�
.�	; 	�; f .x/dx

�
.

However, by (6.38),
ˇ̌P1

mD�1 ameimx
ˇ̌2 D j1�eixj�2d for every x 2 .�	; 	� different

from x D 0 and x D 	 . Therefore, a version of the spectral density f � is given by

f �.x/ D j1 � eixj�2df .x/; x 2 .�	; 	/ : (7.14)

This function is clearly continuous outside of the origin, and

f �.x/ � x�2df .0/ D
� 1
2	

1X

mD�1
Rm

�
x�2d

as x # 0 by (6.16).
For part (c) of the theorem, notice that the covariance function of the process X

is given by

R�n D lim
M!1

MX

iD0

MX

jD0
aiajRnCi�j D lim

M!1

nCMX

mDn�M

b.M/n�mRm ;

where

b.M/k D
.M�k/^MX

iD�k_0
aiaiCk :

Since 0 < d < 1=2, it follows that the numbers b.M/k are uniformly bounded (byP1
0 a2i ). Since the correlations of the process X are absolutely summable, it follows

by the dominated convergence theorem that (7.6) holds. Notice that bk D b�k.
It follows from (7.3) that

bk � �.1 � 2d/

�.d/�.1 � d/
k�.1�2d/ as k ! 1; (7.15)
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see Exercise 7.5.1. Clearly, the statement (7.9) will follow from (7.6) and (7.15)
once we check that

lim
M!1 lim sup

n!1
n1�2d

ˇ̌
ˇ
ˇ̌
�MX

mD�1
bn�mRm

ˇ̌
ˇ
ˇ̌ D 0 (7.16)

and

lim
M!1 lim sup

n!1
n1�2d

ˇ̌
ˇ̌
ˇ

1X

mDM

bn�mRm

ˇ̌
ˇ̌
ˇ

D 0 : (7.17)

The statement (7.16) follows from (7.15) and summability of the covariances of the
process Y, since by the monotonicity of the coefficients .ai/,

ˇ̌
ˇ
ˇ̌
�MX

mD�1
bn�mRm

ˇ̌
ˇ
ˇ̌ � bn

�MX

mD�1
jRmj :

In order to prove (7.17), we note that by (7.3),

ak � akC1 D 1 � d

k C 1
ak � 1 � d

�.d/
k�.2�d/: (7.18)

It follows that

gk WD bk � bkC1 � �.2 � 2d/

�.d/�.1 � d/
k�2.1�d/ as k ! 1, (7.19)

see once again Exercise 7.5.1. Using summation by parts, we see that in the notation
of (7.8),

1X

mDM

bn�mRm D bn�MC1‰M C
1X

mDM

gn�m‰m :

By (7.15), for c > 0,

lim
M!1 lim sup

n!1
n1�2dbn�MC1‰M D lim

M!1 c‰M D 0 :

Next, we write

1X

mDM

gn�m‰m D
X

M�m�n=2

C
X

m>n=2

WD S.1/n .M/C S.2/n .M/ :
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By (7.19) and the assumption (7.8), we see that for some constant c (which may
change from appearance to appearance) and large n,

ˇ
ˇS.1/n .M/

ˇ
ˇ � cn�2.1�d/

Œn=2�X

mDM

j‰mj

� cn�2.1�d/
Œn=2�X

mDM

m�.1�2d/ � cn�2.1�2d/ ;

and so for all M > 0,

lim
n!1 n1�2dS.1/n .M/ D 0 :

Finally, by the assumption (7.8), we have

ˇ
ˇS.2/n .M/

ˇ
ˇ � o.1/n�.1�2d/

1X

mD�1
jgmj :

Using the fact that g�k D �gk�1, we see that the sum on the right-hand side is finite
by (7.19). Therefore, for all M > 0,

lim
n!1 n1�2dS.2/n .M/ D 0 ;

and (7.17) follows. �

Note that if

1X

mD�1

m 6D 0 ; (7.20)

then the fractionally integrated process X has the second-order properties (6.26)
and (6.27) associated with long-range dependence. From this point of view,
fractional integration achieves its goal of producing a long-range dependent model.

Remark 7.2.2. In the situation of Theorem 7.2.1, we can guarantee only a possibil-
ity of a fractionally integrated process for 0 < d < 1=2. One can interpret this fact as
follows: a sufficiently negative dependence in the process Y could potentially permit
even a nonfractional (order-1) integration, and it is intuitive that the more negative
the dependence in the process Y, the higher the order of fractional integration one
can perform on Y. The assumptions of the theorem, however, do not imply any
negative dependence in the process Y. By the same token, if the process Y had a
significant positive dependence, then the extent of possible fractional integration
would be lower. In particular, we should not be able to integrate a very positively
dependent process at all. This is, however, not allowed in Theorem 7.2.1 through
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the assumption of absolute summability of covariances. This explains, intuitively,
the “middle” upper bound of 1=2 on the order of partial integration in the theorem.
In the remaining part of this section, we will confirm this intuition.

We begin with the situation of positive dependence in the process Y.

Theorem 7.2.3. Let Y be a stationary zero-mean finite-variance process with
covariance function R.

(a) Suppose that for some 0 < 
 � 1 and a > 0,

jRnj � an�
 ; n � 1 : (7.21)

Then for every 0 < d < 
=2, the series (7.4) converges in L2, and the resulting
process X is a second-order stationary process with covariance function given
by (7.6).

(b) Suppose that Rn is regularly varying with exponent �
 2 .�1; 0/. Then for
every 0 < d < 
=2, the series (7.4) converges in L2, and the resulting process
X is a second-order stationary process with covariance function R� satisfying

R�n � a.d; 
/n2dRn (7.22)

as n ! 1, with

a.d; 
/ D �.1� 2d/

�.d/�.1� d/

�
�.
 � 2d/�.1� 
/

�.1� 2d/
C �.2d/�.1� 
/
�.1C 2d � 
/ C

�.
 � 2d/�.2d/

�.
/

�
:

Proof. Starting with (7.10), and using (7.3) and (7.21), we see that

E

0

@
mCkX

jDmC1
ajYn�j

1

A

2

� R0

1X

jDmC1
a2j C C

1X

jDmC1
jd�1

1X

iDjC1
id�1.i � j/�
 :

The first sum on the right-hand side converges to zero as m ! 1 for any 0 < d <
1=2, while the second sum is bounded by

C
1X

jDmC1
j2d�
�1 ! 0

as m ! 1 if 0 < d < 
=2. This proves the L2 convergence of the series (7.4).
The same argument as in the proof of Theorem 7.2.1 shows that (7.6) still

holds. The covariances of the process Y are no longer guaranteed to be summable,
but (7.15) and (7.21) allow us to use the dominated convergence theorem.

Under the regular variation assumption of part (b) of the theorem, note that by
Corollary 10.5.8, (7.21) still holds if we replace 
 by 
 � " for any 0 < " < 
 .
Choosing " so small that d < .
 � "/=2, we see that part (a) of the theorem applies,
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and X is a stationary process with covariance function .R�n / given by (7.6). Write,
using the fact that both .bn/ and .Rn/ are even functions,

R�n D
1X

mD1
bnCmRm C

nX

mD0
bn�mRm C

1X

mD1
bmRnCm :

By part (b) of Theorem 10.5.10 with ˛ D �.1 � 2d/, ˇ D �
 ,

1X

mD1
bnCmRm �

�
�.
 � 2d/�.1 � 
/

�.1 � 2d/

�
nbnRn; n ! 1 :

By part (a) of Theorem 10.5.10 with ˛ D �
 , ˇ D �.1 � 2d/,

nX

mD0
bn�mRm �

�
�.2d/�.1 � 
/
�.1C 2d � 
/

�
nbnRn; n ! 1 :

Finally, by part (b) of Theorem 10.5.10 with ˛ D �
 , ˇ D �.1 � 2d/,

1X

mD1
bmRnCm �

�
�.
 � 2d/�.2d/

�.
/

�
nbnRn; n ! 1 :

In combination with (7.15), this proves (7.22). �

A possible way of defining a second-order notion of negative dependence is
through a vanishing sum of covariances. Assume that the covariance function R
of Y satisfies (6.2) and

1X

nD�1
Rn D 0 : (7.23)

The following relates the rate of convergence to zero in (7.23) to the degree to which
a process can be fractionally integrated.

Theorem 7.2.4. Let Y be a stationary zero-mean finite-variance process with an
absolutely summable covariance function R satisfying (7.23). Suppose that for some
0 < 
 � 1 and a > 0,

ˇ̌
ˇ̌
ˇ̌

1X

jDn

Rj

ˇ̌
ˇ̌
ˇ̌ � an�
 ; n � 1 : (7.24)
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Then for every 0 < d < .1C
/=2, the series (7.4) converges in L2, and the resulting
process X is a second-order stationary process with covariance function given by

R�n D
nX

jD1
Wj
�
hjCn�1 � hn�j

�C
1X

jDnC1
Wj
�
hjCn�1 C hj�n�1

�
; n 2 Z : (7.25)

Here for k 2 Z,

Wk D
1X

jDk

Rj ;

hk D
1X

iD0
ai
�
aiCk � aiCk�1

�
:

Proof. We rewrite (7.10) as

E

0

@
mCkX

jDmC1
ajYn�j

1

A

2

D
 

mCkX

iDmC1
a2i

!

R0 C 2

k�1X

lD1

 
mCk�lX

iDmC1
aiaiCl

!

Rl :

For fixed m; k, let

gl D
mCk�lX

iDmC1
aiaiCl �

mCk�lC1X

iDmC1
aiaiCl�1; l D 1; : : : ; k � 1 :

Then summation by parts and (7.23) give us the expression

E

0

@
mCkX

jDmC1
ajYn�j

1

A

2

D 2

k�1X

jD1
gjWjC1 � 2amC1amCkWk : (7.26)

The second term on the right-hand side of (7.26) clearly goes to zero as m ! 1,
uniformly in k, and we proceed to show that so does the first term. Observe that
by (7.3) and (7.18),

jgjj � jamCk�jC1amCkj C
mCk�jX

iDmC1
jai.aiCj�1 � aiCj/j

� c.m C k � j C 1/d�1.m C k/d�1 C c
mCk�jX

iDmC1
id�1.i C j/d�2 :
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Therefore, by (7.24) and elementary calculations,

ˇ
ˇ
ˇ̌
ˇ
ˇ

k�1X

jD1
gjWjC1

ˇ
ˇ
ˇ̌
ˇ
ˇ

� c.m C k/d�1
k�1X

jD1
j�
 .m C k � j C 1/d�1 C c

k�1X

jD1
j�


mCk�jX

iDmC1
id�1.i C j/d�2

� c.m C k/d�1.m C k/d�
 C c
mCk�1X

iDmC1
id�1

1X

jD1
j�
 .i C j/d�2

� c.m C k/2d�1�
 C c
mCk�1X

iDmC1
id�1i�
Cd�1 � c.m C 1/2d�1�
 :

Since d < .1 C 
/=2, this goes to zero as m ! 1, and the proof of the
L2 convergence is complete. Therefore, the covariance function of the process X
satisfies

R�n D lim
M!1

1

2

2

4E

 
MX

iD0
ai
�
Y�i C Yn�i

�
!2

� 2E

 
MX

iD0
aiY�i

!23

5 :

Notice that for a fixed n, the process
�
Z.n/i D Yi C YnCi

�
has summable covariance

that moreover, adds up to zero. Therefore, (7.26) applies, and we obtain

R�n D lim
M!1

2

4
MX

jD0
h.M/j

�
W.n/

jC1 � 2WjC1
� � a0aM

�
W.n/

MC1 � 2WMC1
�
3

5

with

W.n/
k D

1X

jDk

E
�
Z.n/0 Z.n/k

�
; k D 1; 2; : : : ;

h.M/k D
M�kX

iD0
aiaiCk �

M�kC1X

iD0
aiaiCk�1; k D 0; 1; : : : ;M :

Since

E
�
Z.n/0 Z.n/k

� D 2Rk C Rk�n C RkCn ;

we see that

R�n D lim
M!1

MX

jD0
h.M/j

�
Wj�nC1 C WjCnC1

�
:
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Writing

h.M/k D
M�kX

iD0
ai
�
aiCk � aiCk�1

� � aMaM�kC1 ! hk as M ! 1,

by (7.3), (7.18), and (7.24), the dominated convergence theorem applies, whence

R�n D
1X

jD0
hj
�
Wj�nC1 C WjCnC1

�
; n 2 Z :

Since it follows from the symmetry of the covariance function and (7.23) that for
k D 0; 1; : : :we have W�k D �WkC1, (7.25) now follows by a simple rearrangement
of the terms in the sum. �

7.3 Fractional Integration of Processes with Infinite Variance

To what extent can one fractionally integrate a stationary process that does not have
a finite second moment? We begin with the example of an i.i.d. sequence.

Example 7.3.1. Let .Yn/ be a sequence of i.i.d. random variables, which for
simplicity, we will assume to be symmetric. Let

pcr D sup
˚
p � 0 W EjY0jp < 1� 2 Œ0;1� :

We are interested in the case in which the random variables do not have a finite
second moment, so assume that pcr � 2. We claim that the fractionally integrated
process X in (7.4) is well defined if 0 < d < 1 � 1=pcr, and is not well defined if
d > 1 � 1=pcr.

Indeed, suppose that 0 < d < 1 � 1=pcr, and choose 0 < p < pcr such that
0 < d < 1 � 1=p. Notice that by assumption, 0 < p < 2. It follows from (7.3) that

1X

jD0

ˇ̌
ˇ̌ �.j C d/

�.j C 1/�.d/

ˇ̌
ˇ̌
p

< 1 ;

and the fact that the series (7.4) converges a.s. follows from Theorem 1.4.1. On the
other hand, let 0 < d < 1 satisfy d > 1 � 1=pcr. For every c > 0,

1X

jD0
P
�jY0j > cj1�d

� D
1X

jD0
P
�
.jY0j=c/1=.1�d/ > j

� D 1;
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since EjYj1=.1�d/ D 1. Now the fact that the series (7.4) diverges follows from (7.3)
and the three series theorem, Theorem 10.7.6.

Example 7.3.1 shows that the extent to which an i.i.d. sequence can be fraction-
ally integrated shrinks as the tails become heavier, and if the first moment is infinite,
that such a sequence cannot be fractionally integrated at all. As in the finite-variance
case, the extent of fractional integration is also affected by the dependence in the
process Y.

One possibility to measure the dependence in a stationary process in which the
second moment is infinite is by the rate of growth of the moments of the partial
sums, of order smaller than 2. This rate of growth is affected both by the memory
and by the marginal tails.

Let S.Y/n D Y1C : : :CYn, n D 0; 1; : : :, be the partial-sum sequence of the process
Y, and suppose that EjYjp < 1 for some p > 0. We will concentrate on conditions
of the following form: for some 
 > 0 and c > 0,

EjS.Y/n jp � cn
 ; n D 1; 2; : : : : (7.27)

Note that it is always possible to choose


 D max.1; p/ ; (7.28)

and that this choice is, in general, the best possible; see Problem 7.5.3. On the other
hand, if the random variables Y are symmetric and i.i.d., then it is always possible
to choose


 D p=2 ; (7.29)

and this choice is, once again, the best possible in general; see Problem 7.5.4.
If the process Y satisfies (7.27) with 
 smaller than the value given in (7.29),
then we can view it as an indication of negative dependence. On the other hand,
if the smallest possible value of 
 for which (7.27) holds exceeds the value
given in (7.29), then we can view it as an indication of positive dependence. The
following proposition confirms that negative dependence can increase the order of
the fractional integration one can perform on a process Y.

Proposition 7.3.2. Let a stationary process Y be such that for some 0 < p < 2,
EjYjp < 1. Suppose that (7.27) holds for some 
 > 0. Then for every 0 < d < 1

such that

d < 2 � 1

min.1; p/
� 


p
; (7.30)

the series (7.4) converges in Lp, and the resulting process X is a well-defined
stationary process.
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Proof. We consider the sum (7.4) for n D 0. For notational simplicity, we reverse
the time in the process Y. Note that marginally, the partial sums of the time-reversed
process have the same law as those of the original process, so condition (7.27) does
not change. The summation by parts gives us, for m; k � 1,

mCkX

jDmC1
ajYj D

mCk�1X

jDm

.aj � ajC1/S.Y/j C amCkS.Y/mCk � amS.Y/m : (7.31)

Note, first of all, that by (7.27) and (7.3),

E
ˇ̌
anS.Y/n

ˇ̌p � cnp.d�1/n
 ! 0

as n ! 1, since d < 1 � 
=p. Therefore, the last two terms on the right-hand side
of (7.31) converge to zero in Lp as m ! 1, uniformly in k � 1. We now consider
the first term on the right-hand side of (7.31). Suppose first that p � 1. We use
Theorem 10.7.1 with q D 1 to obtain

0

@E

ˇ̌
ˇ̌
ˇ
ˇ

mCk�1X

jDm

.aj � ajC1/S.Y/j

ˇ̌
ˇ̌
ˇ
ˇ

p1

A

1=p

�
mCk�1X

jDm

�
EjSjjp

�1=pjaj � ajC1j

� c
mCk�1X

jDm

j�.2�d/j
=p ! 0

as m ! 1, because d < 1 � 
=p. If 0 < p < 1, we proceed similarly, using the
bound

ˇ
ˇ̌
ˇ̌
ˇ

mCk�1X

jDm

.aj � ajC1/S.Y/j

ˇ
ˇ̌
ˇ̌
ˇ

p

�
mCk�1X

jDm

jaj � ajC1jpjS.Y/j jp:

This shows the Lp convergence, and stationarity is obvious. �

Note that if p � 1=2, then no d > 0 will satisfy the constraint (7.30), regardless
of how small 
 > 0 is. It turns out that in the case of very heavy tails, much of our
intuition about fractional integration turns out to be misleading, as the following
example demonstrates. It shows that in the case of very heavy tails, a stationary
stochastic process that can be integrated completely (with d D 1) may fail to allow
any fractional integration.

Example 7.3.3. Let Z be a sequence of i.i.d. symmetric random variables in the
domain of attraction of an ˛-stable law with 0 < ˛ < 2, and let Yn D Zn �Zn�1; n 2
Z. Then the process Y has marginal tails that are regularly varying with exponent
�˛. see, e.g., Feller (1971). Furthermore, the partial sums of this process satisfy
S.Y/n D Zn � Z0, which shows that (7.27) holds with any 0 < p < ˛ and 
 D 0.
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Depending on the exact tails of the process Z, (7.27) may also hold with p D ˛, but
it cannot hold with p > ˛. In particular, if 0 < ˛ � 1=2, then Proposition 7.3.2 does
not give any positive value of d for possible fractional integration. It turns out that
this is, in fact, the case: the process Y cannot be fractionally integrated, in spite of
the fact that it can be integrated with d D 1.

To see this, suppose that the process Y can be fractionally integrated for some
0 < d < 1, so that the series (7.4) converges in probability. Then the expression
on the right-hand side of (7.31) should converge to zero in probability as m ! 1,
uniformly in k. Since an ! 0 as n ! 1, the last two terms on the right-hand side
of (7.31) converge to zero in probability, so that the same must be true for the first
term. Since S.Y/n D Zn � Z0 for all n, we conclude that the series

1X

jD1
.aj � ajC1/Zj

converges in probability. This is a series of independent random variables, so that
by the Itô–Nisio theorem (Theorem 10.7.6), this series must converge a.s. This is,
however, impossible, since by the Borel–Cantelli lemma, jZjj exceeds j2 infinitely
often, while j2jaj � ajC1j ! 1 as j ! 1 by (7.18).

7.4 Comments on Chapter 7

Most of the discussion related to convergence of the series (7.4) and, in the case of
finite variance, to the behavior of the resulting covariance function, depends on little
more than the asymptotic order of the magnitude of the coefficients in the infinite
series (7.4) and their differences. The specific choice of the coefficients in (7.4),
with their relation to the generalized binomial formula, is attractive both because of
its intuitive meaning and because of parsimony arising from dependence on a single
parameter 0 < d < 1.

In practice, one often begins with an i.i.d. process Y or a stationary ARMA model
of Example 1.4.4; see Brockwell and Davis (1987). A stationary ARMA process Y
has exponentially fast decaying correlations, and Theorem 7.2.1 applies. The result-
ing fractionally integrated processes X are typically called ARI(integrated)MA pro-
cesses or, more explicitly, fractional ARIMA (or FARIMA, alternatively ARFIMA)
models, and were originally introduced in Granger and Joyeux (1980) and Hosking
(1981). Such models are popular because they are specified by the finitely many
parameters of the ARMA process Y, in addition to the single parameter d of
fractional integration.

Fractionally integrated processes, especially FARIMA models, have found
numerous applications in economics and econometrics; two examples are Crato
and Rothman (1994) and Gil-Alana (2004). In this area of application one
would like to combine fractional integration with the so-called clustering of
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volatility, or conditional heteroscedasticity. The standard (but nonfractional)
model with clustering of volatility is the Generalized AutoregRessive Conditionally
Heteroscedastic (or GARCH) process, introduced in Engle (1982) in its original
(nongeneralized) form and generalized in Bollerslev (1986). A possible way of
introducing clustering of volatility into a fractionally integrated model is to start
with a process Y in (7.4) that has the clustering of volatility property, for example
with a GARCH process. This approach is suggested in Hauser and Kunst (1998).
Even earlier on, an alternative model was suggested in Baillie et al. (1996). This
model directly combines fractional differencing/integration with the recursion for
computation of the conditional variance of each subsequent observation, and has
become known as a fractionally integrated GARCH (or FIGARCH) model. This
model has proved difficult to analyze; even existence of a stationary version of the
model that has desired properties is an issue. Recent progress has been made in
Douc et al. (2008); see also Zaffaroni (2004).

7.5 Exercises to Chapter 7

Exercise 7.5.1. Prove (7.15) and (7.19). You may need to use the fact that for 0 <
a < b,

Z 1

0

ya�1.1C y/�b dy D �.a/�.b � a/

�.b/
:

Exercise 7.5.2. In Theorem 7.2.4, assume that Sn is regularly varying with exponent
�
 2 .�1; 0/. State and prove a version of part (b) of Theorem 7.2.3 that
corresponds to this negatively dependent case.

Exercise 7.5.3. Prove that (7.27) holds for some c > 0 if one chooses 
 as in (7.28).
Prove also that for every 
 strictly smaller than the value given (7.28), there exists
a symmetric stationary process Y with EjYjp < 1 such that (7.27) fails, no matter
what c > 0 is.

Exercise 7.5.4. Suppose that Y consists of symmetric i.i.d. random variables, and
EjYjp < 1. Prove that (7.27) holds for some c > 0 if one chooses 
 as in (7.29).
Prove also that for every 
 strictly smaller than the value given in (7.29), there exists
a symmetric i.i.d. process Y with EjYjp < 1 such that (7.27) fails, no matter what
c > 0 is.



Chapter 8
Self-Similar Processes

8.1 Self-Similarity, Stationarity, and Lamperti’s Theorem

The notion of self-similarity was already introduced in Section 3.5. Recall that a
stochastic process

�
X.t/; t � 0

�
is called self-similar if for some H 2 R,

�
X.ct/; t � 0

� dD �
cHX.t/; t � 0

�
(8.1)

in the sense of equality of finite-dimensional distributions for every c > 0. The
number H is the exponent of self-similarity, and we will often say simply that the
process is H-self-similar. The point t D 0 in the definition (8.1) of self-similarity is
clearly “separate.” If

�
X.t/; t > 0

�
is a stochastic process satisfying the condition

�
X.ct/; t > 0

� dD �
cHX.t/; t > 0

�
(8.2)

for all c > 0, then extending the time domain of the process by setting X.0/ D 0

will always result in a process on Œ0;1/ satisfying the full condition (8.1). We will
use either of the definitions, (8.1) or (8.2), as appropriate. Sometimes it is even
appropriate to define self-similarity for stochastic processes indexed by the entire
real line, as opposed to its nonnegative half.

Self-similarity is an invariance property with respect to certain simultaneous
transformations of time and space. The following simple result connects the
property of self-similarity to the property of stationarity.

© Springer International Publishing Switzerland 2016
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Proposition 8.1.1. (a) Let
�
X.t/; t > 0

�
be H-self-similar. Then the process�

Y.t/; t 2 R
�

defined by

Y.t/ D e�tHX.et/; t 2 R ;

is stationary.
(b) Let

�
Y.t/; t 2 R

�
be a stationary process, and let H 2 R. Then the process�

X.t/; t > 0
�

defined by

X.t/ D tHY.log t/; t > 0;

is H-self-similar.

Proof. Both statements are immediate consequences of the definitions of self-
similarity and stationarity. �

The transformations of self-similar processes into stationary processes and
conversely, as described in Proposition 8.1.1, are sometimes called the Lamperti
transformations. The following corollary is an immediate consequence of the
proposition and Theorem 1.3.3.

Corollary 8.1.2. Every measurable self-similar stochastic process
�
X.t/; t > 0

�
is

continuous in probability.

Note that appending the point t D 0 by setting X.t/ D 0 can destroy the continuity
in probability while preserving the measurability of the process.

Self-similar processes are ubiquitous in many areas of probability because they
arise in common functional limit theorems. In fact, in many cases they turn out to
be the only possible weak limits. The generic situation may be described as follows.
Let

�
U.t/; t � 0

�
be a stochastic process. Let .an/ be a sequence of positive numbers

increasing to infinity. Many limit theorems in probability theory are of the form

� 1
an

U.nt/; t � 0
�

) �
Y.t/; t � 0

�
(8.3)

as n ! 1, at least in terms of convergence of finite-dimensional distributions and,
more frequently, in terms of weak convergence on an appropriate space of functions.

Example 8.1.3. Let X1;X2; : : : be a sequence of random variables. Let S0 D 0 and
Sn D X1 C : : : C Xn for n D 1; 2; : : :. If we define a stochastic process by U.t/ D
Sbtc; t � 0, then a typical functional law of large numbers or a functional central
limit theorem is a result of the type (8.3). Notice that this formulation does not
allow certain types of centering in a theorem.

Example 8.1.4. Let X1;X2; : : : be a sequence of nonnegative random variables. Let
M0 D 0 and Mn D max.X1; : : : ;Xn/ for n D 1; 2; : : :. If we define a stochastic
process by U.t/ D Mbtc; t � 0, then a typical functional extremal limit theorem is a
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result of the type (8.3). Once again, this formulation does not allow certain types of
centering in a theorem.

It turns out that under reasonably weak assumptions, all possible limiting processes
Y in (8.3) are self-similar. Together with Example 8.1.4 and Example 8.1.3, this
explains the appearance of self-similar processes in functional central and extremal
limit theorems. The first result of this type was proved by Lamperti (1962) (in a
slightly different form, allowing extra centering). In particular, statements such as
our Theorems 8.1.5 and 8.1.6 below are often called Lamperti’s theorems.

Theorem 8.1.5. Let .U.t/; t � 0/ be a stochastic process and an " 1 a sequence
of positive numbers. Assume that (8.3) holds in terms of convergence of finite-
dimensional distributions. Assume further that the limiting process Y satisfies
P.Y.1/ 6D 0/ > 0 and is continuous in law. That is, for every k D 1; 2; : : :, if�
s.m/1 ; : : : ; s.m/k

� ! .t1; : : : ; tk/, then
�
Y.s.m/1 /; : : : ;Y.s.m/k /

� ) �
Y.t1/; : : : ;Y.tk/

�
.

Then Y is H-self-similar for some H � 0, and the sequence .an/ is regularly varying
with exponent H.

Proof. Let k D 1; 2; : : :. Note that

1

akn
U.n/ D 1

akn
U
�
kn=k

� ) Y.1=k/ :

If l D lim inf an=akn and L D lim sup an=akn, then the above and the obvious
expression

1

akn
U.n/ D 1

an
U.n/

an

akn

show that

Y.1=k/
dD l Y.1/

dD L Y.1/ :

Since P.Y.1/ 6D 0/ > 0, it follows that l D L, and hence the limit

'.k/ D lim
n!1

akn

an
(8.4)

exists. Note that if '.k/ D 1, then

1

akn
U.kn/ D 1

an
U.kn/

an

akn
! 0

in probability. Since the left-hand side above also converges weakly to Y.1/, this
contradicts the nondegeneracy assumption on Y.1/. Hence ' is a finite nondecreas-
ing function, with values in Œ1;1/, and for every t > 0 and k D 1; 2; : : :,

Y.kt/
dD '.k/Y.t/ :
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This implies that for all k1; k2 D 1; 2; : : :,

Y.1/
dD '.k1/

'.k2/
Y
�
k2=k1

�
:

Since Y is continuous in law and P.Y.1/ 6D 0/ > 0, we conclude that

lim
k2=k1!1

'.k1/

'.k2/
D 1 : (8.5)

Next, we claim that

lim
n!1

an

anC1
D 1 : (8.6)

By the monotonicity of the sequence .an/, it is enough to prove only the appropriate
statement about the lower limit. To this end, choose k1; k2 D 1; 2; : : :, k2 > k1. Then
for large n,

n C 1 �
jk2

k1
n
k
; which implies that

an

anC1
� an

ab.k2=k1/ nc
:

Let jk1 � n < .j C 1/k1 for j D 1; 2; : : :. Then, by the monotonicity of the sequence
.an/, the above inequality implies

an

anC1
� ajk1

a.jC1/k2
:

However, for large j, .j C 1/k2 � j.k2 C 1/, and so for large n,

an

anC1
� ajk1

aj.k2C1/
! '.k1/

'.k2 C 1/

as n, and hence j, increase to infinity. Therefore, for every k1; k2 D 1; 2; : : :, k2 > k1,

lim inf
n!1

an

anC1
� '.k1/

'.k2 C 1/
:

Setting k2 D k1 C 1 and letting k1 ! 1, we can use (8.5) to obtain (8.6).
Next we show that for every k1; k2 D 1; 2; : : :,

lim
n!1

ab.k2=k1/ nc
an

D '.k2/

'.k1/
: (8.7)

Indeed, as before, letting jk1 � n < .j C 1/k1 for j D 1; 2; : : :, we can use
monotonicity of the sequence .an/ and (8.6) to obtain

ab.k2=k1/ nc
an

� a.jC1/k2
ajk1

D ajk2

ajk1

ajk2Ck2

ajk2

! '.k2/

'.k1/
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and

ab.k2=k1/ nc
an

� ajk2

a.jC1/k1
D ajk2

ajk1

ajk1

ajk1Ck1

! '.k2/

'.k1/
;

which proves (8.7). In particular, the ratio '.k2/='.k1/ cannot decrease as long as
k2=k1 does not decrease.

Let c > 0. We will check now that the limit

 .c/ D lim
n!1

abcnc
an

(8.8)

exists. Indeed, by (8.7) and monotonicity of the sequence .an/,

lim
k2=k1"c

'.k2/

'.k1/
� lim inf

n!1
abcnc
an

� lim sup
n!1

abcnc
an

� lim
k2=k1#c

'.k2/

'.k1/
:

Moreover, it follows from (8.5) that the two limits above coincide. Therefore, (8.8)
follows. Clearly,  is a positive nondecreasing function, and  .k/ D '.k/ for k D
1; 2; : : :. Furthermore, for every c1; c2 > 0,

 .c1c2/ D lim
n!1

abc1c2nc
an

� lim sup
n!1

abc1bc2ncc
an

D lim
n!1

abc1bc2ncc
abc2nc

abc2nc
an

D  .c1/ .c2/;

and

 .c1c2/ � lim inf
n!1

abc1.bc2ncC1/c
an

� lim inf
n!1

abc1bc2nccCdc1e
an

D lim
n!1

abc1bc2ncc
abc2nc

abc2nc
an

abc1bc2nccCdc1e
abc1bc2ncc

D  .c1/ .c2/;

where in the last step we used (8.6). We conclude that

 .c1c2/ D  .c1/ .c2/ for all c1; c2 > 0. (8.9)

Since  is a monotone, hence measurable, function, it follows from (8.9) that
 .c/ D cH for some H � 0; see, e.g., Theorem 1.1.9 in Bingham et al. (1987).
Setting h.t/ D aŒt� for t � 1, we may use an argument identical to that used to
prove (8.9) to show that for every c > 0,

lim
t!1

h.ct/

h.t/
D lim

t!1
aŒct�

aŒt�
D  .c/ D cH;
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which shows that h, and hence the sequence .an/, are regularly varying with
exponent H.

The final step is to prove the self-similarity of the process Y. We will show that
for every c > 0,

� 1

abcnc
U.cnt/; t � 0

�
) �

Y.t/; t � 0
�
: (8.10)

Once this is established, the self-similarity of Y will follow from the obvious facts
that

� 1
an

U.cnt/; t � 0
�

) �
Y.ct/; t � 0

�
;

and

� 1
an

U.cnt/; t � 0
�

D
�abcnc

an

1

abcnc
U.cnt/; t � 0

�
) �

cHY.t/; t � 0
�
:

To prove (8.10), let k1; k2 D 1; 2; : : :. By taking the limit over the subsequence
n D jk1, j D 1; 2; : : :, we see that (8.10) holds for every rational c D k2=k1. Let .cm/

be a sequence of positive rational numbers converging to c. By the continuity in law
of the process Y, we see that

�
Y
�
.c=cm/t

�
; t � 0

�
) �

Y.t/; t � 0
�

as m ! 1. Choose now t1; : : : ; tj � 0. The regular variation of the function h.t/ D
abtc, t � 1, implies that for every � > 0,

lim
m!1 lim sup

n!1
P

�





1

abcnc

�
U.cnt1/; : : : ; .cntj/

�

� 1

abcmnc

�
U.cnt1/; : : : ; .cntj/

�



 > �
�

D 0 :

By Theorem 3.2 in Billingsley (1999), we conclude that

1

abcnc

�
U.cnt1/; : : : ; .cntj/

�
) �

Y.ct1/; : : : ;Y.ctj/
�

is Rj, and so (8.10) follows. �

The second version of Lamperti’s theorem strengthens the assumption (8.3) to
continuous scaling. As a result, fewer a priori assumptions are required on the
limiting process Y.
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Theorem 8.1.6. Let .U.t/; t � 0/ be a stochastic process, and .A.�/; � > 0/ a
positive measurable function such that A.�/ ! 1 as � ! 1. Assume that

� 1

A.�/
U.�t/; t � 0

�
) �

Y.t/; t � 0
�

(8.11)

as � ! 1, in terms of convergence of finite-dimensional distributions, to a limiting
process Y such that P.Y.1/ 6D 0/ > 0. Then Y is H-self-similar for some H � 0,
and the function A is regularly varying with exponent H.

The proof is a simplification of the proof of Theorem 8.1.5, and is left as an exercise
(Exercise 8.7.1).

Self-similar processes arising as limits in a situation such as (8.3) often have
additional invariance properties. We begin with the property of stationary incre-
ments; see Definition 1.1.8. The first statement is obvious.

Proposition 8.1.7. Suppose that (8.3) holds and the process U has stationary
increments. Then so does the process Y.

The next proposition addresses the situation of Example 8.1.3. Note that
Proposition 8.1.7 does not directly apply in this case.

Proposition 8.1.8. Let X1;X2; : : : be a stationary stochastic process, and define
U.t/ D Sbtc D X1 C : : : C Xbtc; t � 0. Let an ! 1 be a sequence of
positive numbers, and assume that (8.3) holds. Then the process Y has stationary
increments.

Proof. Fix s � 0, m � 1, and positive t1; : : : ; tm. Notice that by stationarity,

1

an

�
U
�
n.t1 C s/

� � U.ns/; : : : ;U
�
n.tm C s/

� � U.ns/
�

D 1

an

�
XbnscC1 C : : :C Xbnt1Cnsc; : : : ;XbnscC1 C : : :C XbntmCnsc

�

dD 1

an

�
X1 C : : :C Xbnt1Cnsc�bnsc; : : : ;X1 C : : :C XbntmCnsc�bnsc

�

D 1

an

�
U
�
nt1
�
; : : : ;U

�
ntm
��C 1

an

�
Xbnt1cC1
n;1;XbntmcC1
n;m

�
;

where 
n;1; : : : ; 
n;m are numbers taking values in f0; 1g. Since an ! 1, it follows
from (8.3) that the expression on the left-hand side converges weakly to

�
Y.t1Cs/�

Y.s/; : : : ;Y.tm C s/ � Y.s/
�
, while the expression on the right-hand side converges

weakly to
�
Y.t1/� Y.0/; : : : ;Y.tm/� Y.0/

�
. Therefore, the two limits have the same

laws, which proves the stationary of the increments of the process Y. �

An invariance property analogous to the stationarity of the increments, but more
appropriate to the case of the partial maxima described in Example 8.1.4, is given
in the following definition.
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Definition 8.1.9. A stochastic process
�
X.t/; t � 0

�
has stationary max-increments

if for every s � 0, there exists, perhaps on an enlarged probability space, a stochastic
process

�
X.s/.t/; t � 0

�
such that

�
X.s/.t/; t � 0

� dD .X.t/; t � 0/ ;

.X.t C s/; t � 0/
dD �

X.s/ _ X.s/.t/; t � 0
�
: (8.12)

The following statement is analogous to Proposition 8.1.8.

Proposition 8.1.10. Let X1;X2; : : : be nonnegative random variables forming a
stationary stochastic process, and define U.t/ D Mbtc D max.X1; : : : ;Xbtc/; t � 0.
Let an ! 1 be a sequence of positive numbers, and assume that (8.3) holds. Then
the process Y is continuous in probability and has stationary max-increments.

Proof. First of all, it is not difficult to check that with A.�/ D an if n � 1 � � <

n, n D 1; 2; : : :, the process U satisfies the continuous scaling assumption (8.11)
(Exercise 8.7.3). If the limiting process Y is the zero process, then the claim of the
proposition is trivial. If it is not the zero process, then Theorem 8.1.6 applies, and we
conclude that the process Y is self-similar with exponent H � 0. If Y is a constant
process, then once again, the claim of the proposition is trivial. Assume that this is
not the case. Then the exponent of the self-similarity H is greater than zero.

For every 0 � t1 < t2 and n large enough, by stationarity,

1

an

�
Mbnt2c � Mbnt1c

� � 1

an
max

nt1<i�nt2
Xi

st� 1

an
Mb2n.t2�t1/c :

Taking weak limits, we see that the difference Y.t2/ � Y.t1/ is nonnegative and
bounded stochastically by Y

�
2.t2�t1/

�
. Therefore, it follows from the self-similarity

of .Y.t/; t � 0/ with H > 0 that it is continuous in probability.
It remains to check the stationarity of the max-increments. Let r > 0, and

ti > 0; i D 1; : : : ; k, for some k � 1. Write

1

an
Mbn.tiCr/c D 1

an
Mbnrc

_ 1

an
max

nr<j�n.tiCr/
Xj; i D 1; : : : ; k : (8.13)

By the assumption of the theorem and stationarity of the process .X1;X2; : : :/,

1

an
Mbnrc ) Y.r/ in R,

� 1
an

max
nr<j�n.tiCr/

Xj; i D 1; : : : ; k
�

) �
Y.t1/; : : : ;Y.tk/

�
in R

k

as n ! 1. Since every weakly converging sequence is tight, and a sequence with
tight marginals is itself tight, we conclude that

�
1

an
Mbnrc;

� 1
an

max
nr<j�n.tiCr/

Xj; i D 1; : : : ; k
��
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is a tight sequence in R � R
k. This tightness means that for every sequence

nm ! 1, there exist a subsequence nm.l/ ! 1 and a k-dimensional random vector
�
Y.r/.t1/; : : : ;Y.r/.tk/

� dD �
Y.t1/; : : : ;Y.tk/

�
such that as l ! 1,

�
1

anm.l/

Mbnm.l/rc;
� 1

anm.l/

max
nm.l/r<j�nm.l/.tiCr/

Xj; i D 1; : : : ; k
��

)
�

Y.r/;
�
Y.r/.t1/; : : : ;Y

.r/.tk/
��
:

Let now �i; i D 1; 2; : : :, be an enumeration of the rational numbers in Œ0;1/.
A diagonalization argument shows that there exist a sequence nm ! 1 and

a stochastic process
�
Y.r/.�i/; i D 1; 2; : : :

�
, with

�
Y.r/.�i/; i D 1; 2; : : :

� dD�
Y.�i/; i D 1; 2; : : :

�
, such that

�
1

anm

Mbnmrc;
� 1

anm

max
nmr<j�nm.�iCr/

Xj; i D 1; 2; : : :
��

(8.14)

)
�

Y.r/;
�
Y.r/.�i/; i D 1; 2; : : :

��

in finite-dimensional distributions, as m ! 1. Obviously, the stochastic process�
Y.r/.�i/; i D 1; 2; : : :

�
has sample paths that are, a.s., nondecreasing on the

rationals. We can therefore extend the process Y.r/ to the entire positive half-line
by setting

Y.r/.t/ D 1

2

�
lim

�"t; rational
Y.r/.�/C lim

�#t; rational
Y.r/.�/

�
; t � 0 :

The continuity in probability implies that this process is a version of .Y.t/; t � 0/.
This continuity in probability, (8.14), and monotonicity imply that as m ! 1,

�
1

anm

Mbnmrc;
� 1

anm

max
nmr<j�nm.tCr/

Xj; t � 0
��

)
�

Y.r/;
�
Y.r/.t/; t � 0

��

(8.15)
in finite-dimensional distributions. Now the stationarity of max-increments follows
from (8.13), (8.15), and the continuous mapping theorem. �

8.2 General Properties of Self-Similar Processes

In this section, we explore the general properties of stochastic processes that are
self-similar, or are both self-similar and have stationary increments. We will use
certain common abbreviations. Thus, a self-similar process with be often called an
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SS process, or an H-SS process if we want to emphasize the exponent H of self-
similarity. Similarly, a self-similar process with stationary increments will be often
called an SSSI process, or an H-SSSI process.

We begin with a simple statement about inclusion of time zero in the domain of
the process.

Lemma 8.2.1. Let
�
X.t/; t � 0

�
be self-similar with exponent H 6D 0. Then X.0/ D

0 a.s.

Proof. By self-similarity,

X.0/ D X.c � 0/ dD cHX.0/

for every c > 0. Letting c ! 0 if H > 0 and c ! 1 if H < 0 proves the claim. �

It is clear that there are many H-SS processes
�
X.t/; t > 0

�
with an arbitrary

H 2 R; the deterministic process X.t/ D tH; t > 0, provides one example. Once
we insist on the property of stationary increments as well, the domain of the Hurst
exponent becomes, apart from a small number of mostly degenerate examples, much
smaller.

Lemma 8.2.2. Let
�
X.t/; t � 0

�
be an H-SSSI process with H < 0. Then X is the

zero process, i.e., P.X.t/ D 0/ D 1 for each t � 0.

Proof. By self-similarity,

X.t/
dD tHX.1/ ! 0

in probability as t ! 1. By Lemma 8.2.1 and the stationarity of the increments,
for every t � 0,

X.t/ D X.t/ � X.0/
dD X.t C b/ � X.b/

for every b � 0. Letting b ! 1 shows that X.t/ D 0 a.s. �

Lemma (8.2.2) rules out a negative Hurst exponent for a nontrivial H-SSSI
process. The following example shows that there exist nontrivial H-SSSI processes
with H D 0.

Example 8.2.3. Let
�
X.t/; t � 0

�
be an (uncountable) collection of i.i.d. random

variables as in Example 1.3.1. This process is trivially self-similar with H D 0. It is
also a stationary process, hence a process with stationary increments.

The uncountable collection of i.i.d. random variables in this example is an “ugly”
process. Since this process is stationary but not continuous in probability (unless the
i.i.d. random variables are equal to a constant), it follows from Theorem 1.3.3 that
this process is not even measurable. It turns out that only trivial H-SSSI processes
with H D 0 are measurable.
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Proposition 8.2.4. Let
�
X.t/; t � 0

�
be a measurable H-SSSI process with H D 0.

Then X is a constant process, i.e., P.X.t/ D X.0// D 1 for each t � 0.

Proof. Let t � 0 and c > 0. Using first stationarity of the increments, then self-
similarity, and then once again stationarity of the increments, we have

X.c C t/ � X.t/
dD X.c C c/ � X.c/

dD X.1C 1/ � X.1/
dD X.1/ � X.0/ :

Since the process X is measurable, Theorem 1.3.3 implies that it is continuous in
probability. Letting c # 0, we immediately conclude that P.X.1/ D X.0// D 1. By
self-similarity, P.X.t/ D X.0// D 1 for all t > 0. �

Lemma 8.2.2 and Proposition 8.2.4 show why in most applications we encounter
only H-SSSI processes with H > 0. In the remainder of this section we will consider
only this range of the exponent of self-similarity. The first property of such processes
is elementary.

Lemma 8.2.5. Every H-SSSI process with H > 0 is continuous in probability.

Proof. Let
�
X.t/; t � 0

�
be an H-SSSI process with H > 0. For every s; t � 0 and

" > 0, using first stationarity of the increments together with Lemma 8.2.1 and then
self-similarity, we see that

P
�jX.t/ � X.s/j > "� D P

�jX.jt � sj/j > "� D P
�jt � sjHjX.1/j > "� ! 0

as jt � sj ! 0, whence the continuity in probability. �

It turns out that finiteness of certain moments of H-SSSI processes constrains
how large the exponent H can be.

Proposition 8.2.6. Let
�
X.t/; t � 0

�
be an H-SSSI process such that P.X.1/ 6D

0/ > 0.

(a) Suppose that EjX.1/j� < 1 for some 0 < � < 1. Then H < 1=� .
(b) Suppose that EjX.1/j < 1. Then H � 1.

Proof. Since part (b) of the proposition is a trivial consequence of part (a), it is
enough to prove the latter. Let

Ai D ˚
X.i/ � X.i � 1/ 6D 0

�
; i D 1; 2; : : : :

It follows from Lemma 8.2.1 and stationarity of the increments that for every i D
1; 2; : : :, we have P.Ai/ D p > 0, where p D P.X.1/ 6D 0/. If n > 1=p, then the
events A1; : : : ;An cannot be disjoint up to sets of probability zero, so that there are
different numbers 1 � j1; j2 � n such that P.Aj1 \ Aj2 / > 0. Consider the identity

E
�jX.n/j�� D E

 ˇ̌
ˇ
ˇ̌

nX

iD1

�
X.i/ � X.i � 1/�

ˇ̌
ˇ
ˇ̌

�!

:
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A simple concavity argument shows that for all real numbers a1; : : : ; an, we have

ja1 C : : : anj� � ja1j� C : : :C janj� ;

and the inequality is strict unless at most one of the numbers a1; : : : ; an is different
from zero. That is,

ˇ̌
ˇ
ˇ̌

nX

iD1

�
X.i/ � X.i � 1/�

ˇ̌
ˇ
ˇ̌

�

�
nX

iD1

ˇ
ˇX.i/ � X.i � 1/ˇˇ� ;

and the inequality is strict on a set of positive probability (at least on the set Aj1 \Aj2
above). Therefore, by the stationarity of the increments,

E
�jX.n/j�� < E

 
nX

iD1

ˇ̌
X.i/ � X.i � 1/ˇ̌�

!

D nE
�jX.1/j�� :

Since by self-similarity,

E
�jX.n/j�� D n�HE

�jX.1/j��;

and moreover,

0 < E
�jX.1/j�� < 1 ;

we conclude that H < 1=� , as claimed. �

Corollary 8.2.7. Let
�
X.t/; t � 0

�
be an S˛S H-SSSI process, H > 0, 0 < ˛ < 2.

Then the exponent H of self-similarity must be in the range

H 2
	 �
0; 1=˛� if 0 < ˛ � 1;�
0; 1� if 1 < ˛ < 2:

(8.16)

Are the bounds on the value of the exponent of self-similarity in Proposition 8.2.6
and Corollary 8.2.7 the best possible?

Example 8.2.8. S˛S Lévy motion The law of a Lévy process
�
X.t/; t � 0

�
is

determined by the one-dimensional distribution of X.1/. Let us choose the latter
such that for some 0 < ˛ � 2 and � > 0,

Eei
X.t/ D �
Eei
X.1/

�t D e�t�˛ j
 j˛ ; 
 2 R; t > 0 : (8.17)

Then X.1/ is an S˛S random variable if 0 < ˛ < 2, and a zero-mean normal random
variable if ˛ D 2. In the former case, the Lévy motion is an S˛S Lévy motion,
while in the latter case, it is a Brownian motion. By definition, these processes have
stationary increments. They are also self-similar with H D 1=˛. To see this, note
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that for every c > 0, the two processes in (3.71) are both Lévy motions, so we need
to check only that they have the same one-dimensional marginal distribution at time
t D 1. By (8.17),

Eei
X.c�1/ D e�c�˛ j
 j˛ D e�.cH�/˛ j
 j˛ D Eei.cH
/X.1/ ;

as required.

Let now 0 < � < 1. An S˛S Lévy motion with � < ˛ < 2 is a self-similar
process with stationary increments and a finite absolute moment of order � ; see
Example 4.2.8. The exponents of self-similarity H D 1=˛ in this family fill the
interval .1=2; 1=�/. The fractional Brownian motion of Example 3.5.1 is a Gaussian
process, and hence all of its absolute moments are finite. It is also an H-SSSI process
with exponent of self-similarity anywhere in the range .0; 1/. Since the union of the
intervals .1=2; 1=�/ and .0; 1/ is the interval .0; 1=�/, we conclude that for every
H in this interval, there is a nondegenerate H-SSSI process with a finite absolute
moment of order � . Therefore, the bounds on H in part (a) of Proposition 8.2.6 are
the best possible.

The fractional Brownian motion of Example 3.5.1 also provides an example of a
finite-mean H-SSSI process with any exponent of self-similarity in the range .0; 1/.
Part (b) of Proposition 8.2.6 allows the value H D 1 as well. Such an H-SSSI
process is the straight-line process in Example 8.2.9 below.

The bounds on H in Corollary 8.2.7 are also the best possible. The linear
fractional symmetric stable motion of Example 3.5.2 and harmonizable fractional
stable motion of Example 3.5.4 allow any H 2 .0; 1/, regardless of the value of ˛,
and the straight-line process of Example 8.2.9 below has H D 1, again regardless
of the value of ˛. Finally, if 0 < ˛ < 1, then the FBM-local time fractional stable
motion of Example 3.5.5 allows any H 2 .1; 1=˛/.
Example 8.2.9. Let X.1/ be an arbitrary random variable. Then the process X.t/ D
tX.1/; t � 0, is obviously an H-SSSI process with H D 1.

If X.1/ has a finite mean, then the straight-line process of Example 8.2.9, together
with the fractional Brownian motion, shows that the bounds on H in part (b) of
Proposition 8.2.6 are the best possible as well. The straight-line process is, however,
a degenerate process, so one may wonder whether there exist nondegenerate
examples of this type. It turns out that the answer is no, and the validity of this
statement does not even require finiteness of the mean of the process X. Only
existence of the mean is required, as was shown in Vervaat (1985).

Recall that a random variable X has a mean if either EXC < 1 or EX� < 1,
but not necessarily both.

Proposition 8.2.10. Let
�
X.t/; t � 0

�
be an SSSI process with H D 1 such that

X.1/ has a mean. Then X is a straight-line process.

Proof. By self-similarity, X.n/=n
dD X.1/ for all n � 1. Since the increment process

X is stationary and has a mean, it follows from the pointwise ergodic theorem (2.7)
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and Exercise 2.6.5 that

X.n/

n
D 1

n

nX

jD1

�
X.j/ � X.j � 1/� D 1

n

nX

jD1
Yj ! E

�
Y1
ˇ̌
ˇIY

�
D E

�
X.1/

ˇ̌
ˇIY

�

with probability 1, where IY is the invariant � -field for the increment process

Yj D X.j/ � X.j � 1/, j D 1; 2; : : :. We conclude that X.1/
dD E

�
X.1/

ˇ̌
IY
�
.

By Lemma 8.2.11 below, this implies that X.1/ is measurable with respect to the
completion of IY. Since the observation Y1 D X.1/ of the stationary process Y is
measurable with respect to the completion of the invariant � -field IY for the process
Y, it follows that Y1 D Y2 D : : : with probability 1, and so X.1/ D X.n/� X.n � 1/
a.s. for all n � 1. That is, X.n/ D nX.1/ a.s. for every n D 1; 2; : : :. Rewriting
this in the form X.n/=n � X.m/=m D 0 a.s. for all n;m D 1; 2; : : :, we can use the
self-similarity to see that X.n=m/ � .n=m/X.1/ D 0 a.s. for all n;m D 1; 2; : : :, and
so the relation X.t/ D tX.1/ a.s. holds for every rational t � 0. Since the process
X is, by Lemma 8.2.5, continuous in probability, we can extend this relation to an
arbitrary t > 0 by selecting a sequence of rational numbers converging to t. �

Lemma 8.2.11. Let X be a random variable with a mean on a probability space
�
�;F ;P

�
. Let G be a sub-� -field of F . If X

dD E
�
XjG�, then X is measurable with

respect to the completion of G.

Proof. Assume that EX� < 1. It follows from the assumptions that
ˇ̌
E
�
XjG�ˇ̌ < 1

a.s. For a 2 R, let

'a.x/ D
(
1 � 1

xCaC1 if x � �a;
x C a if x � �a:

Notice that 'a is a concave function that is, moreover, strictly concave on .�a;1/.
Moreover, E

ˇ̌
'a.X/

ˇ̌
< 1, and the assumption of the lemma shows that

'a.X/
dD 'a

�
E
�
XjG�

�
: (8.18)

By Jensen’s inequality for conditional expectations, we obtain

'a

�
E
�
XjG�

�
� E

�
'a.X/jG

�
a.s. (8.19)

for every a 2 R.
Suppose that there are s < t such that

P
�

w W P
�
X � sjG� > 0; P

�
X > tjG� > 0

�
> 0 : (8.20)
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By the continuity from below for conditional and unconditional probabilities, there
is �1 < b < s such that

P
�

w W P
�
b < X � sjG� > 0; P

�
X > tjG� > 0

�
> 0 : (8.21)

Let �b;s;t be the event of positive probability in (8.21), and choose a > �b. Let
�.�; !/ be the regular conditional distribution of X given G. It follows from (8.21)
that for almost every ! 2 �b;s;t, �.�; !/ assigns positive values to both .b; s/ and
.t;1/. Since the function 'a is strictly concave on .�a;1/ 
 .b;1/ and �.�; !/
assigns a positive value to that interval, and is not a point mass there, it follows that
Jensen’s inequality is strict: for almost every ! 2 �b;s;t,

'a

�
E
�
XjG�

�
D 'a

�Z 1

�1
x�.dx; !/

�

>

Z 1

�1
'a.x/ �.dx; !/ D E

�
'a.X/jG

�
:

That is, the inequality (8.19) is strict on a set of positive probability, and hence

E
h
'a

�
E
�
XjG�

�i
> E



E
�
'a.X/jG

�� D E'a.X/:

This contradicts (8.18), and hence there are no numbers s < t for which (8.20)
holds. This means that there is an event�0 2 G with P

�
�0

� D 0 such that for every
! … �0 and rational numbers �1 < �2, either P

�
X � �1jG

� D 0 or P
�
X > �2jG

� D 0.
The statement of the lemma will follow once we prove that for every rational

� , the event
˚
X � �

�
is in the completion of the � -field G. This last claim is an

immediate consequence of the following property, which we presently prove:

if A D ˚
w W X.!/ � �

�
and B D ˚

w W P
�
X � � jG�

!
> 0

�
;

then P
�
A4B

� D 0: (8.22)

Indeed, one the one hand,

P
�
A \ Bc

� D E
h
1P.X�� jG/D0P

�
X � � jG�

i
D 0:

On the other hand,

P
�
Ac \ B

� D P
�˚

X > �; P
�
X � � jG� > 0� \�c

0

�

D lim
n!1P

�˚
X > � C 1=n; P

�
X � � jG� > 0� \�c

0

�
:
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However, by the definition of the event �0, for every n � 1,

P
�˚

X > � C 1=n; P
�
X � � jG� > 0� \�c

0

�

D E
h
1P.X�� jG/>0 1�c

0
P
�
X > � C 1=njG�

i
D 0 :

Therefore, P
�
Ac \ B

� D 0, and (8.22) follows. �

Nondegenerate H-SSSI processes with a finite mean must therefore satisfy 0 <
H < 1. For such processes, we have the following easy statement.

Lemma 8.2.12. Let
�
X.t/; t � 0

�
be an H-SSSI process with 0 < H < 1 and a

finite mean. Then EX.1/ D 0.

Proof. The statement follows from the fact that EX.2/ is a finite number that is equal
to both 2HEX.1/ by self-similarity and to 2EX.1/ by the stationarity of increments.
�

The correlation function of a finite-variance H-SSSI process turns out to be
uniquely determined by the exponent of self-similarity H.

Proposition 8.2.13. Let
�
X.t/; t � 0

�
be a finite-variance H-SSSI process, 0 <

H < 1. Let �2 D EX.1/2. Then

Cov
�
X.s/;X.t/

� D �2

2



t2H C s2H � jt � sj2H

�
; s; t � 0 : (8.23)

Proof. By the stationarity of the increments and self-similarity, for 0 � s < t,

E
�
X.t/ � X.s/

�2 D EX.t � s/2 D .t � s/2H�2 :

Now (8.23) follows from the obvious identity

Cov
�
X.s/;X.t/

� D 1

2

h
EX.t/2 C EX.s/2 � E

�
X.t/ � X.s/

�2i
:

�

Since the covariance function uniquely determines the law of a centered Gaussian
process, it follows immediately that up to a scale factor, the law of a Gaussian H-
SSSI process is uniquely determined. We saw in Example 3.5.1 that a Gaussian
H-SSSI process in fact exists, and it is a fractional Brownian motion. Its covariance
function is, by necessity, given by (8.23). This shows, in particular, that the function
on the right-hand side of (8.23) is nonnegative definite.



8.3 SSSI Processes with Finite Variance 263

8.3 SSSI Processes with Finite Variance

We saw in Proposition 8.2.13 that all H-SSSI processes, 0 < H < 1, with finite
variance share the same covariance function, given by (8.23). This guarantees, of
course, that there is a unique H-SSSI Gaussian process for each 0 < H < 1, namely
the fractional Brownian motion. Are there non-Gaussian H-SSSI processes with
finite variance?

There are multiple ways by which such processes can be constructed; the
simplest is to take a fractional Brownian motion

�
BH.t/; t � 0

�
and a random

variable A independent of it. Then the process

X.t/ D ABH.t/; t � 0; (8.24)

is clearly an H-SSSI process. It has a finite variance if A does. In this section,
we will concentrate instead on a particular class of H-SSSI processes with finite
variance, those given as multiple integrals with respect to a Brownian motion; see
Section 10.6. Such processes are often constructed by starting with a representation
of the fractional Brownian motion as described in Example 3.5.1 and extending it
appropriately.

Let k � 1, and 0 < H < 1. Suppose that a family of kernels Q.k/
t W R

k ! R;

t � 0, has the following properties. For every t � 0, Q.k/
t 2 L2.Rk; �k/. Furthermore,

for all 0 � s < t and c > 0,

Q.k/
t .x1; : : : ; xk/ � Q.k/

s .x1; : : : ; xk/ D Q.k/
t�s.x1 � s; : : : ; xk � s/ ; (8.25)

and

Q.k/
ct .cx1; : : : ; cxk/ D cH�k=2Q.k/

t .x1; : : : ; xk/ (8.26)

for almost all .x1; : : : ; xk/. Let B be a standard Brownian motion, which we view as
a Gaussian random measure on R; see Examples 3.2.3 and 3.2.4. We define

X.k/.t/ D
Z 1

�1
: : :

Z 1

�1
Q.k/

t .x1; : : : ; xk/B.dx1/ : : :B.dxk/; t � 0 : (8.27)

Theorem 8.3.1. The process X.k/ in (8.27) is a well-defined H-SSSI process, and
its increment process Xi D X.k/.i/ � X.k/.i � 1/; i D 1; 2; : : : is a stationary mixing
process.

Proof. The fact that the process X.k/ is well defined follows from Proposition 10.6.1.
We will prove its self-similarity; the stationarity of the increments can be proven in
a similar manner. Let c > 0. We need to check that for every j D 1; 2 : : : and
0 � t1 < : : : < tj,

�
X.k/.ct1/; : : : ;X

.k/.ctj/
� dD �

cHX.k/.t1/; : : : ; c
HX.k/.tj/

�
: (8.28)
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To this end, choose for each i D 1; : : : ; j a sequence of simple functions
�
fi;n; n D

1; 2; : : :
�

vanishing on the diagonals such that fi;n ! Q.k/
ti in L2.Rk; �k/ as n ! 1.

Proposition 10.6.1 tells us that this is possible, and it also tells us that

Z 1

�1
: : :

Z 1

�1
fi;n.x1; : : : ; xk/B.dx1/ : : :B.dxk/

!
Z 1

�1
: : :

Z 1

�1
Q.k/

ti .x1; : : : ; xk/B.dx1/ : : :B.dxk/

in L2 as n ! 1 for i D 1; : : : ; j. Furthermore, each scaled function fi;n
��=c; : : : ; �=c

�

is also a simple function that vanishes on the diagonals. It is clear that we also have
fi;n
��=c; : : : ; �=c

� ! Q.k/
ti

��=c; : : : ; �=c
�

in L2.Rk; �k/, implying that

Z 1

�1
: : :

Z 1

�1
fi;n
�
x1=c; : : : ; xk=c

�
B.dx1/ : : :B.dxk/

!
Z 1

�1
: : :

Z 1

�1
Q.k/

ti

�
x1=c; : : : ; xk=c

�
B.dx1/ : : :B.dxk/

in L2 as n ! 1 for i D 1; : : : ; j.
For every i D 1; : : : ; j, we can use (8.26) to obtain

X.k/.cti/ D cH�k=2
Z 1

�1
: : :

Z 1

�1
Q.k/

ti

�
x1=c; : : : ; xk=c

�
B.dx1/ : : :B.dxk/

D cH�k=2 lim
n!1

Z 1

�1
: : :

Z 1

�1
fi;n
�
x1=c; : : : ; xk=c

�
B.dx1/ : : :B.dxk/:

Suppose that the simple function fi;n is given by

fi;n
�
x1; : : : ; xk

� D
ri;nX

l1D1
: : :

ri;nX

lkD1
ai;n.l1; : : : ; lk/1

�
x1 2 Ai;n

l1

�
: : : 1

�
xk 2 Ai;n

lk

�
;

for some ri;n � 1, some array
�
ai;n.l1; : : : ; lk/

�
, and some disjoint Borel sets

Ai;n
1 ; : : : ;A

i;n
ri;n

of finite Lebesgue measure. Then by Proposition 10.6.1 and the 1=2-
self-similarity of the Brownian motion, we have, with convergence in L2,

�
X.k/.ct1/; : : : ;X

.k/.ctj/
�

D cH�k=2 lim
n!1

 r1;nX

l1D1
: : :

r1;nX

lkD1
a1;n.l1; : : : ; lk/B

�
cA1;nl1

�
: : :B

�
cA1;nlk

�
; : : : ;
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rj;nX

l1D1
: : :

rj;nX

lkD1
aj;n.l1; : : : ; lk/B

�
cAj;n

l1

�
: : :B

�
cAj;n

lk

�
!

dD cH�k=2 lim
n!1

 r1;nX

l1D1
: : :

r1;nX

lkD1
a1;n.l1; : : : ; lk/ c1=2B

�
A1;nl1

�
: : : c1=2B

�
A1;nlk

�
; : : : ;

rj;nX

l1D1
: : :

rj;nX

lkD1
aj;n.l1; : : : ; lk/ c1=2B

�
Aj;n

l1

�
: : : c1=2B

�
Aj;n

lk

�
!

D cH
�
X.k/.t1/; : : : ;X

.k/.tj/
�
;

thus proving (8.28).
Since the stationarity of the increment process X follows from the stationarity of

the increments of the process X.k/, it remains only to prove mixing of the process
X. For n D 0;˙1;˙2; : : :, consider the increments of the Brownian motion

�n.i;m/ WD B
�
n C i2�m

� � B
�
n C .i � 1/2�m

�
;

m D 1; 2 : : :, and i D 1; : : : ; 2m. Choose positive constants
�
a.i;m/; m D

1; 2 : : : ; i D 1; : : : ; 2m
�

such that

1X

mD1

2mX

iD1
a.i;m/2�n.i;m/

2 < 1

a.s. for all n. By identifying
˚
.m; i/ W m D 1; 2; : : : ; i D 1; : : : ; 2m

�
with N, we can

view

a� D
��

a.i;m/�n.i;m/; m D 1; 2; : : : ; i D 1; : : : ; 2m
�
; n 2 Z

�

as a two-sided sequence of i.i.d. random vectors in l2.
Note that by (8.25),

Xn D
Z 1

�1
: : :

Z 1

�1
�
Q.k/

n .x1; : : : ; xk/ � Q.k/
n�1.x1; : : : ; xk/

�
B.dx1/ : : :B.dxk/

(8.29)

D
Z 1

�1
: : :

Z 1

�1
Q.k/
1 .x1 � .n � 1/; : : : ; xk � .n � 1//B.dx1/ : : :B.dxk/ ;

n D 1; 2; : : :. Select a sequence of simple functions .fm/ vanishing on the diagonals
such that fm ! Q.k/

1 in L2.Rk; �k/. Note that we can select the functions .fm/ in such
a way that each function is of the form

fm
�
x1; : : : ; xk

� D
rmX

l1D1
: : :

rmX

lkD1
am.l1; : : : ; lk/1

�
x1 2 Am

l1

�
: : : 1

�
xk 2 Am

lk

�
;
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and each set Al is a binary interval of the type
�
i2�k; j2�k

�
for some i < j in Z and

k � 1. Select a subsequence of .fm/ if necessary to achieve the a.s. convergence in

Z 1

�1
: : :

Z 1

�1
fm.x1 � .n � 1/; : : : ; xk � .n � 1//B.dx1/ : : :B.dxk/ (8.30)

!
Z 1

�1
: : :

Z 1

�1
Q.k/
1 .x1 � .n � 1/; : : : ; xk � .n � 1//B.dx1/ : : :B.dxk/

for each n 2 Z as m ! 1. Let 
 be the left shift on .l2/Z. For each m, because of
the form of the function fm, we have

Z 1

�1
: : :

Z 1

�1
fm.x1 � .n � 1/; : : : ; xk � .n � 1//B.dx1/ : : :B.dxk/ D 'm

�

n.a�/

�
;

where 'm W l2 ! R is a measurable function. It follows from (8.29) and (8.30) that
there is a measurable function ' W l2 ! R such that Xn D '

�

n.a�/

�
for every

n D 1; 2 : : :. The left shift on a sequence space with respect to a probability measure
generated by an i.i.d. sequence is mixing. We can now apply Proposition 2.2.4 to
conclude that the process Xn D '

�

n.a�/

�
, n 2 Z is mixing as well. �

Example 8.3.2. The Rosenblatt–Mori–Oodaira kernel. Let 0 < H < 1. For k D
1; 2; : : : and 1=2 < � < 1=2C 1=.2k/, H C k� 6D 1C k=2, let

Q.k/
t .x1; : : : ; xk/ D

Z 1

maxfx1;:::;xkg

kY

jD1
.v � xj/

��

�jvjHCk��1�k=2 � jv � tjHCk��1�k=2
�

dv ;

t � 0. It is elementary (if a bit tedious) to check that this kernel is in L2.Rk; �k/. The
fact that this kernel has the properties (8.25) and (8.26) is obvious.

More kernels satisfying the conditions of Theorem 8.3.1 can be created, starting
with the explicit form of one-dimensional kernels in (3.74) and (3.75) and extending
that to several dimensions. Our next examples are of this type.

Example 8.3.3. The Taqqu kernel. Let 1=2 < H < 1. For k � 1, set

Q.k/
t .x1; : : : ; xk/ D

Z t

0

kY

jD1

�
.v � xj/C

��.1=2C.1�H/=k/
dv ;

t � 0 (notice that the integral vanishes unless max.x1; : : : ; xk/ � t.) Once again,
Q.k/

t 2 L2.Rk; �k/ for all t � 0, and (8.25) and (8.26) hold.

One can define a version of the process X.k/ corresponding to the kernel in
Example 8.3.3 in the case 0 < H < 1=2 as well.
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Example 8.3.4. Let 0 < H < 1=2. For k � 1, set for t � 0,

Q.k/
t .x1; : : : ; xk/ D 1

�
max.x1; : : : ; xk/ < t

� Z 1

t

kY

jD1
.v � xj/

�.1=2C.1�H/=k/dv

� 1
�
max.x1; : : : ; xk/ < 0

� Z 1

0

kY

jD1
.v � xj/

�.1=2C.1�H/=k/dv :

Then Q.k/
t 2 L2.Rk; �k/ for all t � 0, and (8.25) and (8.26) hold. If k � 2, then this

kernel works in the entire range 0 < H < 1.

Like all other multiple Wiener–Itô integrals with respect to the Brownian motion,
the H-SSSI processes defined by (8.27) with kernels in L2.Rk; �k/ satisfying the
conditions (8.25) and (8.26) (such as given, for instance, in Examples 8.3.2, 8.3.3,
and 8.3.4) have finite moments of all orders. They must share with the fractional
Brownian motion its correlation function, but they are not Gaussian processes if k �
2. In fact, they can be viewed as polynomials of order k in the Brownian motion, and
are said to be in the kth Gaussian chaos, using the terminology of Wiener (1938).

Suppose now that we have, for each k � 1, a kernel .Q.k/
t / as above. Let .ak/ be

a sequence of real numbers such that

1X

kD1
a2k kŠ

Z 1

�1
: : :

Z 1

�1
e

Q.k/
t .x1; : : : ; xk/

2 dx1 : : : dxk < 1 ;

where
e

Q.k/
t is the symmetrization of Q.k/

t ; see Section 10.6. Then the series defining
the process

X.t/ D
1X

kD1
ak

Z 1

�1
: : :

Z 1

�1
Q.k/

t .x1; : : : ; xk/B.dx1/ : : :B.dxk/ ; (8.31)

t � 0, converges in L2; see Proposition 10.6.1.

Proposition 8.3.5. The process X in (8.31) is a well-defined second-order stochas-
tic process. It is H-SSSI, and its increment process is a stationary mixing process.

Proof. The fact that X has finite variance follows from the L2 convergence of the
series defining it. The rest of the statement can be established in a manner similar to
the argument in the proof of Theorem 8.3.1. �

Of course, the process in (8.31) can no longer be viewed as a polynomial
functional of the Brownian motion unless only finitely many of the numbers .ak/

are different from zero.
Even more versions of H-SSSI processes with finite variance can be introduced

by replacing some of the repeated Brownian motions in (8.27) with independent
Brownian motions or, more generally, with correlated Brownian motions. We will
not pursue this point here.
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8.4 SSSI Processes Without a Finite Variance

The most common SSSI processes without a finite variance are S˛S SSSI processes.
Examples in Section 3.6 provide three different classes of such processes: linear
fractional symmetric stable motions, harmonizable fractional stable motion, and
FBM-local time fractional stable motions. Recall that all these processes reduce
to the fractional Brownian motion in the Gaussian case, but are different processes
in the proper ˛-stable case, 0 < ˛ < 2. More classes of S˛S SSSI processes exist.
One more such class is described in the next example.

Example 8.4.1. A subordinator is a Lévy motion of Example 3.1.2 whose sample
paths are nondecreasing. The only stable processes among subordinators are those
with stability index strictly smaller than 1, the Lévy measure concentrated on the
positive half-line, and nonnegative shift. Strict stability requires the shift to vanish;
see Bertoin (1996). For 0 < ˇ < 1, let

�
Sˇ.t/; t � 0

�
be a strictly ˇ-stable

subordinator. It has a Laplace transform of the form

Ee�
Sˇ.t/ D expf�aˇt
ˇg; 
 � 0; t � 0 ; (8.32)

for a positive constant a. We define the inverse process of the subordinator by

Mˇ.t/ D S ̌.t/ D inf
˚
u � 0 W Sˇ.u/ � t

�
; t � 0 ; (8.33)

and call it the Mittag-Leffler process. Since the stable subordinator is obviously self-
similar with exponent 1=ˇ, it follows from Exercise 8.7.8 that the Mittag-Leffler
process is self-similar with exponent ˇ.

The marginal distributions of the Mittag-Leffler process are the Mittag-Leffler
distributions. They have all moments finite. Moreover, if we standardize the stable
subordinator by choosing the scaling constant in (8.32) to be a D 1, then

E expf
Mˇ.t/g D
1X

nD0

.
 tˇ/n

�.1C nˇ/
; 
 2 RI (8.34)

see Proposition 1(a) in Bingham (1971). The Mittag-Leffler process has a continu-
ous and nondecreasing version; we will always choose such a version.

We now introduce the process we call the ˇ-Mittag-Leffler fractional S˛S motion.
Once again, we start with a probability space .�0;F 0;P0/ supporting a Mittag-
Leffler process

�
Mˇ.t/; t � 0

�
. Let � be a � -finite measure on Œ0;1/ with

�.dx/ D .1 � ˇ/x�ˇ dx :



8.4 SSSI Processes Without a Finite Variance 269

Letting M˛;ˇ be an S˛S random measure on �0 � Œ0;1/ with modified control
measure P0 � �, we define

Y˛;ˇ.t/ D
Z

�0�Œ0;1/
Mˇ

�
.t � x/C; !0

�
M˛;ˇ.d!

0; dx/; t � 0 : (8.35)

This process is well defined, since by the monotonicity of the Mittag-Leffler process
and the fact that Mˇ.0/ D 0, we have

Z

Œ0;1/

Z

�0

Mˇ..t � x/C; !0/˛P0.d!/�.dx/ � t1�ˇE0Mˇ.t/
˛ < 1 :

Further, by the ˇ-self-similarity of the process Mˇ , we have for every k � 1,
t1 : : : tk � 0, and c > 0, for all real 
1; : : : ; 
k,

E exp

8
<

:
i

kX

jD1

jY˛;ˇ.ctj/

9
=

;

D exp

8
<

:
�
Z 1

0

E0
ˇ̌
ˇ

kX

jD1

jMˇ..ctj � x/C/

ˇ̌
ˇ
˛

.1 � ˇ/x�ˇdx

9
=

;

D exp

8
<

:
�c1�ˇC˛ˇ

Z 1

0

E0
ˇ̌
ˇ

kX

jD1

jMˇ..tj � y/C/

ˇ̌
ˇ
˛

.1 � ˇ/y�ˇdy

9
=

;

DE exp

8
<

:
i

kX

jD1

jc

ˇC.1�ˇ/=˛Y˛;ˇ.tj/

9
=

;
;

which shows that the ˇ-Mittag-Leffler fractional S˛S motion is self-similar with
H D ˇC.1�ˇ/=˛. This process also has stationary increments; see Exercise 8.7.9.

We will check next that the ˇ-Mittag-Leffler fractional S˛S noise, the increment
process of the ˇ-Mittag-Leffler fractional S˛S motion, like the increment process
the FBM-local time fractional stable motion, is generated by a conservative null
flow. The increment process of the ˇ-Mittag-Leffler fractional S˛S motion has the
representation

Xn D
Z

�0�Œ0;1/

�
Mˇ

�
.n C 1 � x/C; !0

� � Mˇ

�
.n � x/C; !0

��
M˛;ˇ.d!

0; dx/ ;

n D 0; 1; : : :. We begin by showing that for every x > 0, on a set of P0 probability 1,

lim sup
n!1

Mˇ

�
.n C 1 � x/C

� � Mˇ

�
.n � x/C

�
> 0 : (8.36)
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To see this, note that a positive stable random variable has positive density on
.0;1/, so the probability

P0
�
Sˇ.1/ 2 .a; a C 1=2/; Sˇ.2/ � Sˇ.1/ < 1=2/

�

is, as a function of 0 � a � 1, bounded from below by some strictly positive
number, say � . Translated to the language of the Mittag-Leffler process, this implies
that

P0
�
Mˇ.a C 1/ � Mˇ.a/ � 1

� � P0
�
Mˇ.a/ � 1; Mˇ.a C 1/ � 2

� � � (8.37)

for each 0 � a � 1. Fix now x > 0, and define recursively a sequence of random
positive integers, a sequence of random numbers in Œ0; 1�, and a sequence of events
.Ak/ as follows. Let n0 D dxe, a0 D dxe � x, and

A0 D ˚
Mˇ.a0 C 1/ � Mˇ.a0/ � 1

�
:

For k � 1, we let

nk D dSˇ
�
Mˇ.ak�1 C 1/

�C xe; ak D nk � x ;

Ak D ˚
Mˇ.ak C 1/ � Mˇ.ak/ � 1

�
;

with the stable subordinator and the Mittag-Leffler process related by (8.33). One
can interpret ak as follows. Take the value of the subordinator the first time the latter
exceeds ak�1C1. Then ak is the distance from that value to the nearest from the right
point of the type m � x, m an integer. The integer m is nk. Clearly, nk � nk�1 C 1,
and by (8.37) and the strong Markov property of the stable subordinator,

P
�
\nCm

kDnC1A
c
n

�
� .1 � �/m

for every n;m � 1. This implies (8.36). Now we can use Theorem 3.95 to conclude
that the ˇ-Mittag-Leffler fractional S˛S noise is generated by a conservative flow.
In order to prove that this process is generated by a null flow, choose ˇ < � < 1,
and let wn D n�� ; n D 0; 1; : : :. We will check that

E0
Z 1

0

1X

nD0
wn


Mˇ

�
.n C 1 � x/C

� � Mˇ

�
.n � x/C

��
e�x dx < 1 : (8.38)

In that case, it will follow by Theorem 3.95 that the ˇ-Mittag-Leffler fractional S˛S
noise is generated by a null flow if ˛ D 1, and hence by Proposition 3.6.8, the same
is true for every 0 < ˛ < 2. However, by the ˇ-self-similarity of the Mittag-Leffler
process, for some cˇ 2 .0;1/,



8.4 SSSI Processes Without a Finite Variance 271

E0
1X

nD0
wn


Mˇ

�
.n C 1 � x/C

� � Mˇ

�
.n � x/C

��

� cˇ

 

1C
1X

nD1

�
.n C 1/ˇ � nˇ

��
n C dxe���

!

� cˇ

 

1C
1X

nD1

�
.n C 1/ˇ � nˇ

�
n��

!

;

which proves (8.38) because of the choice of � .

Example 8.4.1 as well as Examples 3.5.2, 3.5.4, and 3.5.5 demonstrate the large
variety of different S˛S SSSI processes. One can also construct SSSI processes
without a finite variance that are not S˛S. One can, for example, follow the recipe
in (8.24) but choose the random factor A to have an infinite second moment. In that
case, we could also replace the fractional Brownian motion in (8.24) by any of the
H-SSSI processes defined previously, or any other H-SSSI process. In the remainder
of this section, we will consider instead SSSI processes without a finite variance that
are multiple integrals with respect to S˛S random measures. We will follow a path
similar to that used in Section 8.3 to construct processes with a finite variance.

Let k � 1 and H > 0. Suppose we are given a family of kernels Q.k/
t W R

k !
R; t � 0, satisfying the increment property (8.25). The scaling property (8.26) is
now replaced by the property

Q.k/
ct .cx1; : : : ; cxk/ D cH�k=˛Q.k/

t .x1; : : : ; xk/ (8.39)

for all t � 0, c > 0, and almost all .x1; : : : ; xk/. The integrability requirement Q.k/
t 2

L2.Rk; �k/ for every t � 0 has now to be replaced by the following requirement:
there is a measurable function  W S ! .0;1/ with

Z

S
 .s/˛ ds < 1 (8.40)

such that

Z

S
: : :

Z

S
jQt.s1; : : : ; sk/j˛

�
1C logC

jQt.s1; : : : ; sk/j
 .s1/ : : :  .sk/

�k�1
ds1 : : : dsk < 1

(8.41)
for each t � 0. See Section 10.6.

Let M be an S˛S Lévy motion, which we view as an S˛S random measure on R.
We define

X.k/.t/ D
Z 1

�1
: : :

Z 1

�1
Q.k/

t .x1; : : : ; xk/M.dx1/ : : :M.dxk/; t � 0 : (8.42)
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Analogously to Theorem 8.3.1, we have the following result.

Theorem 8.4.2. The process X.k/ in (8.42) is a well-defined H-SSSI process, and
its increment process Xi D X.k/.i/� X.k/.i � 1/; i D 1; 2; : : :, is a stationary mixing
process.

Proof. Repeat the steps in the proof of Theorem 8.3.1, using Proposition 10.6.2
instead of Proposition 10.6.1. �

Example 8.4.3. The Surgailis kernel. Assume that 1 < ˛ < 2 and H 2 .1=˛; 1/.
For k � 1, we let

Q.k/
t .x1; : : : ; xk/ D

Z t

0

kY

jD1

�
.v � xj/C

��.1=˛C.1�H/=k/
dv ; (8.43)

t � 0. It is not difficult (but tedious) to check that this kernel satisfies (8.41), with
 proportional to the Cauchy density, e.g.,  .x/ D 1=.1 C x2/; x 2 R. The fact
that (8.25) and (8.39) hold is elementary.

The resulting SSSI process, is, of course, a direct generalization of the SSSI
process with finite variance obtained using the Taqqu kernel of Example 8.3.3.

Example 8.4.4. The finite-variance SSSI process obtained using the kernel in
Example 8.3.4 can be generalized to the case of multiple integrals with respect to an
S˛S motion using

Q.k/
t .x1; : : : ; xk/ D 1

�
max.x1; : : : ; xk/ < t

� Z 1

t

kY

jD1
.v � xj/

�.1=˛C.1�H/=k/dv

� 1
�
max.x1; : : : ; xk/ < 0

� Z 1

0

kY

jD1
.v � xj/

�.1=˛C.1�H/=k/dv :

(8.44)

As in the finite-variance case, for k D 1, the resulting process is well defined only if
H < 1=˛, whereas for k � 2, the resulting process is well defined for all 0 < H < 1.
Once again, the condition (8.41) holds with  proportional to the Cauchy density,
while (8.25) and (8.39) are obvious.

It is clear that one can construct other SSSI processes without a finite variance.
For example, one can mimic the recipe (8.31), and construct SSSI processes in the
“infinite S˛S chaos.” One chooses a sequence .ak/ of real numbers and a family
.Q.k/

t /; k D 1; 2; : : :, that satisfies, for each k, conditions (8.41), (8.25), and (8.39).
With these ingredients, we can define

X.t/ D
1X

kD1
ak

Z 1

�1
: : :

Z 1

�1
Q.k/

t .x1; : : : ; xk/M.dx1/ : : :M.dxk/ ; (8.45)



8.5 What Is in the Hurst Exponent? Ergodicity and Mixing 273

assuming that the series converges in probability for each t � 0. There are no known
necessary and sufficient conditions on the sequence .ak/ for this to happen, but it
is clear that the convergence will hold if the sequence .ak/ converges to zero fast
enough. Under these conditions, a statement analogous to Proposition 8.3.5 will
hold, and the resulting process will also be H-SSSI, and its increment process will
be a mixing process.

8.5 What Is in the Hurst Exponent? Ergodicity and Mixing

In the previous two sections, we have seen a large number of self-similar processes
with stationary increments, with or without a finite variance. In particular, many of
these processes share the same Hurst exponent H. We would like to understand the
effect the Hurst exponent has on the memory of the increment processes. We will
see in Chapter 9 that this effect is important, but limited. In this section, we take
a preliminary step toward understanding this effect. Our goal here is very specific:
given an H-SSSI process

�
Y.t/; t � 0

�
, we would like to understand the effect of the

Hurst exponent H on the presence or absence of ergodicity and/or mixing properties
in the stationary increment process X D �

Y.n C1/� Y.n/; n D 0; 1; : : :
�
. This is an

important question, because we can view absence of ergodicity as infinite memory,
and, correspondingly, presence of ergodicity as finite memory; see Section 5.3. The
property of mixing is, of course, a related and stronger property, which can be
viewed as a link between ergodicity and the strong mixing properties. We will see
that the link between the Hurst exponent H on the one hand and ergodicity or mixing
of the increment process of an H-SSSI process on the other is not strong.

We begin with the example of the families of the H-SSSI processes that are
defined as multiple integrals of the kernels satisfying conditions (8.25) and (8.26)
in the finite-variance case, and conditions (8.25) and (8.39) in the infinite-variance
case. Recall that in the finite-variance case, the integrals are with respect to the
Brownian motion, as in (8.27), whereas in the infinite-variance case the integrals
are with respect to the S˛S Lévy motion, as in (8.42). In the finite-variance case, it
follows from Theorem 8.3.1 that the increment process X is mixing, regardless of
the value of 0 < H < 1. The special case of a single integral, d D 1, reduces to the
fractional Brownian motion, whose increment process is the fractional Gaussian
noise, and its mixing follows simply from the fact that its covariance function
asymptotically vanishes; see (1.16). In the infinite-variance case, the increment
process is mixing as well; see Theorem 8.4.2. The special case of d D 1 reduces
now to the linear fractional S˛S motion of Example 3.5.2. Therefore, the increment
process, linear fractional S˛S noise, is always mixing, regardless of the value of
0 < H < 1.

Not all H-SSSI processes have an increment process that is mixing. Since most
of the examples we have of SSSI processes with infinite variance are symmetric
˛-stable processes, we need to understand when an S˛S process is ergodic and/or
mixing. We begin with a more general problem of characterizing ergodicity and
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mixing of a stationary infinitely divisible process. Since we already know when
a stationary Gaussian process is ergodic or mixing (Examples 2.2.18 and 2.2.8),
we will concentrate on stationary infinitely divisible processes without a Gaussian
component.

Let X D �
Xn; n 2 Z

�
be a stationary infinitely divisible process with Lévy

measure � (on R
Z) and no Gaussian component.

Theorem 8.5.1. (i) The process X is ergodic if and only if it is weakly mixing,
and this happens if and only if the Lévy measure of the component X.p/ of X,
generated by a positive flow, vanishes.

(ii) Assume that the one-dimensional Lévy measure of X0 does not have an atom of
the form 2	k; k 2 Z. Then the process X is mixing if and only if

lim
n!1Eei.Xn�X0/ D EeiX0Ee�iX0

�D ˇ̌
EeiX0

ˇ̌2�
: (8.46)

(iii) If the process X is generated by a dissipative flow, then it is mixing.

Proof. We begin with part (ii) of the theorem. Observe that if a process is mixing,
then Theorem 2.2.7 says that (8.46) must hold regardless of infinite divisibility of
the process and of any of the features of its Lévy measure. We need to prove that
under our assumptions, (8.46), in turn, implies mixing. We claim that (8.46) implies
that for every complex-valued random variable Y 2 L2 (of the probability space on
which the process is defined),

lim
n!1E

�
eiXn NY� D EeiX0E NY : (8.47)

To see this, note that by (8.46) and stationarity, (8.47) holds for every Y 2 H,
the closure in L2 of the linear space spanned by the constant 1 and eiXk ; k 2 Z.
Therefore, it is enough to prove that (8.47) also holds for every Y 2 H?, the
orthogonal complement to H. However, such a Y is orthogonal to constants and
hence has mean zero. Since it is also orthogonal to each eiXn , the claim (8.47) is a
trivial statement that the limit of a sequence of zeros is zero.

We now use (8.47) with Y D e�iX0 to conclude that we also have

lim
n!1Eei.XnCX0/ D �

EeiX0
�2
: (8.48)

Armed with (8.46) and (8.48), we are ready to check that the conditions for mixing
in Theorem 2.2.7 hold. Fix k D 1; 2; : : :. By stationarity, the sequence of the laws
of the vectors on the left-hand side of (2.14) is clearly tight in R

2k, so we need to
prove only that every subsequential weak limit of that sequence coincides with the
law of the random vector on the right-hand side of (2.14). Let, therefore, fnmg be an
increasing sequence of positive integers, and suppose that

�
X1; : : : ;Xk;XnmC1; : : : ;XnmCk

� ) �
X1; : : : ;Xk;Y1; : : : ;Yk

�
(8.49)
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as m ! 1, and we need to prove that the vectors .X1; : : : ;Xk/ and .Y1; : : : ;Yk/ on
the right-hand side of (8.49) are independent. Since the family of infinitely divisible
distributions is closed under weak convergence, the 2k-dimensional random vector
on the right-hand side of (8.49) is infinitely divisible. Furthermore, it follows by
stationarity, (8.46), and (8.48) that for every j1; j2 D 1; : : : ; k, the random variables
on the right-hand side of (8.49) satisfy

Eei.Xj1�Yj2 / D EeiXj1Ee�iYj2 ; Eei.Xj1CYj2 / D EeiXj1EeiYj2 :

We conclude that Xj1 and Yj2 are independent; see Exercise 3.8.4. Since this is true
for any two components of the vectors .X1; : : : ;Xk/ and .Y1; : : : ;Yk/, we conclude
that the vectors themselves are independent; see Exercise 3.8.3. By Theorem 2.2.7,
we conclude that the process X is mixing.

We proceed to prove part (iii) of the theorem. We will prove that if X is generated
by a dissipative flow, then condition (8.46) is satisfied. Observe that by part (ii) of
the theorem, this will suffice for the statement if the one-dimensional Lévy measure
of X0 does not have an atom of the form 2	k; k 2 Z. In the general case, since that
Lévy measure has at most countably many atoms, there exists c > 0 such that there
are no atoms of the form 2c	k; k 2 Z. Then the one-dimensional Lévy measure of
the stationary process Y D X=c does not charge the set f2	k; k 2 Zg. Obviously,
the process Y is generated by a dissipative flow if the process X is. Therefore, we
conclude that the process Y is mixing, which implies that so is the process X.

It remains to prove that (8.46) holds if X is generated by a dissipative flow, which
is the same as proving that

Z

RZ

�
ei.xn�x0/ � 1 � i

�
ŒŒxn�� � ŒŒx0��

��
�.dx/

�
Z

RZ

�
eixn � 1 � iŒŒxn��

�
�.dx/ �

Z

RZ

�
e�ix0 � 1C iŒŒx0��

�
�.dx/

D
Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/ ! 0 (8.50)

as n ! 1. To this end, let " > 0 and set A D ˚
x 2 R

Z W jx0j > "
�
. Note that

�.A/ < 1, so by Theorem 2.40, 1A ı 
n ! 0 as n ! 1 m-a.e. Therefore,

�
�
x 2 R

Z W jx0j > "; jxnj > "� ! 0 as n ! 1. (8.51)

We can now use the obvious bound jeix � 1j � 2jŒŒx��j for a real x and the Cauchy–
Schwarz inequality to bound

ˇ
ˇ̌
ˇ

Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/

ˇ
ˇ̌
ˇ (8.52)
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� 4

Z

RZ

jŒŒx0��jjŒŒxn��j�.dx/

� 8

�Z

RZ

ŒŒx0��j2 �.dx/
�1=2 �Z

RZ

ŒŒx0��j21jx0j�" �.dx/
�1=2

C4��x 2 R
Z W jx0j > "; jxnj > "� :

It follows from (8.51) that for every " > 0,

lim sup
n!1

ˇ
ˇ̌
ˇ

Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/

ˇ
ˇ̌
ˇ

� 8

�Z

RZ

ŒŒx0��j2 �.dx/
�1=2 �Z

RZ

ŒŒx0��j21jx0j�" �.dx/
�1=2

;

and we obtain (8.50) by letting " ! 0.
We now turn to proving part (i) of the theorem. We first check the claimed

equivalence of ergodicity and weak mixing. We assume initially that the one-
dimensional Lévy measure of X0 does not have an atom of the form 2	k; k 2 Z.

Suppose that the process X is ergodic. It follows from (2.8) that

lim
n!1

1

n

nX

jD1
eiXj ! EeiX0 a.s.;

and hence by the bounded convergence theorem,

lim
n!1

1

n

nX

jD1
Eei.Xj�X0/ ! ˇ̌

EeiX0
ˇ̌2
:

The computation in (8.50) shows that we can rewrite this statement as

lim
n!1

1

n

nX

jD1
exp

	Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/

�
D 1 : (8.53)

Denote

hn D
Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/; n 2 Z :

We claim that the complex-valued sequence .hn/ is nonnegative definite. Indeed, by
stationarity, for every n D 1; 2; : : : and complex numbers a1; : : : ; an,
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nX

jD1

nX

kD1
aj Nakhj�k D

nX

jD1

nX

kD1
aj Nak

Z

RZ

�
eixj � 1��e�ixk � 1��.dx/

D
Z

RZ

ˇ
ˇ̌
ˇ̌
ˇ

nX

jD1
aj
�
eixj � 1�

ˇ
ˇ̌
ˇ̌
ˇ

2

�.dx/ � 0 :

By Theorem 10.1.2, there is a finite measure � on .�	; 	� such that

hn D
Z

.�	;	�
einx �.dx/; n 2 Z :

Define another finite measure on .�	; 	� by

exp.�/ D
1X

kD0

1

kŠ
��k;f ;

where ��k;f is the folded kth convolution power of �, k D 1; 2; : : :, defined in
Theorem 6.3.4. Since

Z

.�	;	�
einx exp.�/.dx/ D exp

	Z

.�	;	�
einx �.dx/

�

for each n 2 Z, we can rewrite (8.53) as

lim
n!1

1

n

nX

jD1

Z

.�	;	�
eijx exp.�/.dx/ D 1 :

By Exercise 6.5.2, this is the same as saying that the mass at zero of the measure
exp.�/ is equal to 1. Since

exp.�/.f0g/ � exp
˚
�.f0g/� ;

we conclude that �.f0g/ D 0. By Exercise 6.5.2, this means that

lim
n!1

1

n

nX

jD1

Z

RZ

�
eixj � 1��e�ix0 � 1��.dx/ D 0 : (8.54)

Concentrating on convergence of the real parts, we obtain

lim
n!1

1

n

nX

jD1

�Z

RZ

.1 � cos xj/.1 � cos x0/ �.dx/C
Z

RZ

sin xj sin x0 �.dx/
�

D 0 :
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The stationarity of the process once again tells us that each of the two integrals above
defines a nonnegative definite sequence, and appealing twice to Exercise 6.5.2, we
conclude that

lim
n!1

1

n

nX

jD1

Z

RZ

.1 � cos xj/.1 � cos x0/ �.dx/ D 0 :

Since this is a statement about averages of a nonnegative sequence, it follows from
Lemma 2.2.12 that

Z

RZ

.1 � cos xn/.1 � cos x0/ �.dx/ ! 0 as n ! 1 in density, (8.55)

as in Proposition 2.2.13. We will prove that (8.55) implies that

.X1;XnC1/ ) .X1;Y1/ in density, (8.56)

where Y1 is an independent copy of X1. Before doing so, we show that (8.56) implies
weak mixing of the process. To this end, we use Theorem 2.2.17. Let k D 1; 2; : : :.
It follows from (8.56) that there is a set Kk of positive integers of density zero such
that

.Xi;XnCj/ ) .X1;Y1/ in density (8.57)

for each i; j D 1; : : : ; k. We claim that convergence in (2.24) holds outside of the
set Kk. Indeed, suppose that this convergence statement is false. Then the tightness
of the sequence of the laws of the random vectors on the left-hand side of (2.24)
implies that there is an increasing sequence fnmg of positive integers outside of Kk

such that

�
X1; : : : ;Xk;XnmC1; : : : ;XnmCk

� ) �
X1; : : : ;Xk;Y1; : : : ;Yk

�

as m ! 1, and the random vectors .X1; : : : ;Xk/ and .Y1; : : : ;Yk/ on the right-
hand side are not independent. This is, however, impossible, as we noticed earlier:
these two random vectors are jointly infinitely divisible, and (8.57) shows that Xi

and Yj are independent for each i; j D 1; : : : ; k. By Exercise 3.8.3, the random
vectors .X1; : : : ;Xk/ and .Y1; : : : ;Yk/ on the right-hand side must be independent.
The obtained contradiction proves the claimed weak mixing, and so it remains only
to prove that (8.55) implies (8.56).

Let K be a set of density zero such that (8.55) holds outside of that set. Then for
every " > 0, we have

�
˚
x W 1 � cos x0 > " and 1 � cos xn > "

� ! 0 as n ! 1 outside of K

and hence also

�
˚
x W j sin x0j > " and j sin xnj > "� ! 0 as n ! 1 outside of K.
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Since these two statements hold for every " > 0, we conclude that

Z

RZ

�
eixn � 1��e�ix0 � 1��.dx/ ! 0 as n ! 1 outside of K.

By (8.50), this proves that (8.46) holds as n ! 1 outside of K. While proving
part (ii) of the theorem, we saw that this (together with the assumption that the
one-dimensional Lévy measure of X0 does not charge the set f2	k; k 2 Zg)
implies (8.56).

We have therefore established equivalence of ergodicity and weak mixing under
the assumption that the one-dimensional Lévy measure of X0 has no atoms of the
form 2	k; k 2 Z. In the general case, we proceed in the same manner as in the proof
of part (iii): Choose c > 0 such that the one-dimensional Lévy measure of X0 has
no atoms of the form 2c	k; k 2 Z. If the process X is ergodic, then so is the process
Y D X=c, which is then weakly mixing. This, in turn, implies weak mixing of the
process X.

We still have to prove that ergodicity (and weak mixing) are equivalent to absence
of the component X.p/ of X, generated by a positive flow. Suppose first that the Lévy
measure �p of X.p/ does not vanish. Then there exists a probability measure � on R

Z

equivalent to �p and invariant under the left shift. The Radon–Nikodym derivative
d�p=d� is then shift-invariant, and there is 0 < a < 1 such that �.Aa/ > 0, where

Aa D
	

x W d�p

d�
.x/ � a

�
:

Let �p;a be the restriction of �p to the invariant set Aa. Then X.p/ dD X.p;a/ C QX.p;a/,
where X.p;a/ and QX.p;a/ are independent stationary infinitely divisible processes, with
X.p;a/ having Lévy measure �p;a, and

E exp

(

i
X

n2Z

.n/X.p;a/n

)

D exp

	Z

RZ

�
ei.�;x/ � 1 � i

�
�; ŒŒx��

��
�p;a.dx/

�

for every � 2 R
.Z/. Since �p.Aa/ � a < 1, �p;a is a finite measure; hence the

process X.p;a/ can be represented, in law, as a shifted compound Poisson process,

X.p;a/n D
NX

iD1
Yi;n C b; n 2 Z ; (8.58)

where N is a Poisson random variable with mean � D �p;a.R
Z/, independent of the

sequence of i.i.d. stationary processes
�
Yi;n; n 2 Z

�
, i D 1; 2; : : :, with the common

law ��1�p;a. Here b D ��EŒŒY1;0��; see Exercise 3.8.9. It follows from (8.58)
that the process X.p;a/ can be represented as a nontrivial mixture of stationary
processes. Therefore, so can be the process X.p/ (it is the sum of the process X.p;a/
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and an independent stationary process), and hence so can be the process X. By
Proposition 2.1.6, the process X is not ergodic.

In the final stage of the proof, suppose that the left shift is null with respect to
the Lévy measure � of the process. We will prove that the process X is ergodic. We
may assume that the one-dimensional Lévy measure of X0 does not charge the set
f2	k; k 2 Zg. In this case, to prove ergodicity it is enough to show that (8.54) holds,
since we have already established that (8.54) implies weak mixing of the process.
By (8.52), it is enough to prove that for every " > 0,

lim
n!1

1

n

nX

jD1
�
�
x 2 R

Z W jx0j > "; jxjj > "
� D 0 : (8.59)

Let A D fx 2 R
Z W jx0j > "g. Then �.A/ < 1. For 
 > 0, we have

1

n

nX

jD1
�
�
x 2 A W jxjj > "

� D
Z

A

1

n

nX

jD1
1
�
x 2 A W jxjj > "

�
�.dx/

D
Z

A

0

@1
n

nX

jD1
1
�
x 2 A W jxjj > "

�
1

A 1

0

@1
n

nX

jD1
.x2j ^ 1/ > 


1

A �.dx/

C
Z

A

0

@1
n

nX

jD1
1
�
x 2 A W jxjj > "

�
1

A 1

0

@1
n

nX

jD1
.x2j ^ 1/ � 


1

A �.dx/

� �

0

@x 2 A W 1
n

nX

jD1
.x2j ^ 1/ > 


1

A

C ."2 ^ 1/�1
Z

A

1

n

nX

jD1
.x2j ^ 1/ 1

0

@1
n

nX

jD1
.x2j ^ 1/ � 


1

A �.dx/

� �

0

@x 2 A W 1
n

nX

jD1
.x2j ^ 1/ > 


1

AC 


"2 ^ 1�.A/: (8.60)

Since by the assumption, the left shift is null with respect to the Lévy measure �,
and the function f .x/ D x20 ^ 1 is in L1.�/ by (3.5), Exercise 2.6.13 tells us that

1

n

nX

jD1
.x2j ^ 1/ ! 0 �-a.e.

as n ! 1. Since the set A has finite measure, we conclude that the first term
in (8.60) vanishes as n ! 1 for every 
 > 0. Since we can take 
 as small as
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we wish, we can make the second term in (8.60) as small as we like, and so (8.59)
follows. This completes the proof. �

Applying the results of Theorem 8.5.1 to different classes of S˛S self-similar
processes with stationary increments, we obtain some immediate conclusions:

• The linear fractional S˛S noise is generated by a dissipative flow (Example 3.6.9)
and hence is a mixing process, regardless of the value of the Hurst exponent.

• The harmonizable fractional S˛S noise is generated by a conservative flow
(Example 3.6.10) and hence is not an ergodic process, regardless of the value
of the Hurst exponent.

• The FBM-H-local time fractional S˛S noise and the ˇ-Mittag-Leffler fractional
S˛S noise are generated by conservative null flows (Examples 3.6.11 and 8.4.1)
and hence are ergodic and weakly mixing processes, regardless of the value of
the Hurst exponent (which belongs, in these examples, to restricted ranges).

From this discussion, we see that at least as far as ergodicity and mixing of the
increment process of a stable self-similar process with stationary increments are
concerned, very little is determined by the value of the Hurst exponent, and the type
of the flow that generates the increment process is of a major importance.

8.6 Comments on Chapter 8

Comments on Section 8.1
The original Lamperti’s theorem with continuous scaling is in Lamperti (1962);

it allows an additional centering. An even more general situation is tackled in Laha
and Rohatgi (1982), where the original process U is vector-valued, and the scaling
is by a continuous parameter family of linear operators. The discrete scaling is
in Weissman (1975), with the conclusion stated in terms of the one-dimensional
marginal distributions.

Comments on Section 8.2
The foundations of the systematic study of self-similar processes, particularly

those with stationary increments, were laid by W. Vervaat and his collaborators; two
of the important papers are O’Brien and Vervaat (1983) and Vervaat (1985).

The statement of Lemma 8.2.11 had been formulated as a problem by D. Heath
and W. Vervaat, and a solution was published in Smit (1983).

Comments on Section 8.3
The process (8.27) corresponding to the kernel in Example 8.3.2 is mentioned

in Mori and Oodaira (1986), following a similar process introduced in Rosenblatt
(1979). The process corresponding to the kernel in Example 8.3.3 was introduced in
Taqqu (1978); it appeared as a limit in a “noncentral limit theorem” in Taqqu (1979)
and, in a more general situation, in Surgailis (1981a); see also Avram and Taqqu
(1987).
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Comments on Section 8.4
The ˇ-Mittag-Leffler fractional S˛S motion was introduced in Owada and

Samorodnitsky (2015a), where it is also shown that in the range 0 < ˇ � 1=2, this
process has the same law as the Ǒ-stable local time fractional S˛S motion introduced
and studied in Dombry and Guillotin-Plantard (2009), with Ǒ D .1 � ˇ/�1.

The multiple integral process of Example 8.4.3 was introduced in Surgailis
(1981b). In the case k D 2, this process appears as a limit in the “noncentral limit
theorem” setting, as shown in Astrauskas (1983).

Comments on Section 8.5
The equivalence of ergodicity and weak mixing for general stationary infinitely

divisible processes was proved in Rosiński and Żak (1997). Many ideas in The-
orem 8.5.1 are taken from Rosiński and Żak (1996), Rosiński and Żak (1997),
and Samorodnitsky (2005). A very general discussion of the relations between the
properties of stationary infinitely divisible processes and their Lévy measures is in
Roy (2007).

8.7 Exercises to Chapter 8

Exercise 8.7.1. Prove Theorem 8.1.6.

Exercise 8.7.2. (a) Prove that if X and Y are defined on the same probability

space, X
dD Y and X � Y a.s., then X D Y a.s.

(b) Let X be a stochastic process with stationary max-increments; see Defini-
tion 8.1.9. Prove that for every s � 0, X.s/ _ X.s/.0/ D X.s/ a.s.

(c) Prove that a stochastic process X with stationary max-increments satisfies
X.t2/ � X.t1/ a.s. for every 0 � t1 � t2.

Exercise 8.7.3. Complete the missing step at the beginning of the proof of Propo-
sition 8.1.10 and show that with A.�/ D an if n � 1 � � < n, n D 1; 2; : : :, the
process U satisfies the continuous scaling assumption (8.11).

Exercise 8.7.4. Use Exercise 8.7.2 to extend Lemma 8.2.2, Proposition 8.2.4, and
Lemma 8.2.5 from the case of self-similar processes with stationary increments
to the case of self-similar processes with stationary max-increments. Show that in
the latter case, an a priori assumption of measurability in Proposition 8.2.4 is not
required.

Exercise 8.7.5. Let
�
X.t/; t � 0

�
be H-self-similar with H > 0 and have stationary

increments. Let

p0 D P
�
X.�/ D 0 for all rational �

�
:
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Assume that p0 < 1. Show that there is an H-self-similar process with stationary
increments

�
Y.t/; t � 0

�
such that P.Y.t/ D 0/ D 0 for all t > 0 such that

X
dD
	

N with probability p0,
Y with probability 1 � p0,

where N is the null (identically zero) process.

Exercise 8.7.6. Use Exercise 8.7.5 to prove the following version of Proposi-
tion 8.2.6. Let

�
X.t/; t � 0

�
be an H-self-similar process with stationary max-

increments such that P.X.1/ 6D 0/ > 0. Suppose that EjX.1/j� < 1 for some
� > 0. Then H < 1=� .

Exercise 8.7.7. Show that the covariance function of the fractional Brownian
motion given in (8.23) remains a valid covariance function if one formally sets
H D 1 in (8.23), and that in this case, it is the covariance function of the straight-
line process X.t/ D tX; t � 0, with EX2 < 1. This is, of course, expected due to
Proposition 8.2.10.

Exercise 8.7.8. Let
�
X.t/; t � 0

�
be a right-continuous H-self-similar process with

H > 0 such that X.1/ > 0 a.s. Show that

Y.t/ D inf
˚
u � 0 W X.u/ � t

�
; t � 0;

is a well-defined stochastic process that is self-similar with exponent 1=H.

Exercise 8.7.9. Prove that the ˇ-Mittag-Leffler fractional S˛S motion of Exam-
ple 8.4.1 has stationary increments. The strong Markov property of the stable
subordinator is helpful for that purpose as well as the known distribution of the
overshoot ır D Sˇ

�
Mˇ.r/

� � r of the level r > 0 by the ˇ-stable subordinator�
Sˇ.t/; t � 0

�
related to

�
Mˇ.t/; t � 0

�
by (8.33). The law of ır is given by

P.ır 2 dx/ D sinˇ	

	
rˇ.r C x/�1x�ˇ dx; x > 0 I

see Exercise 5.6 in Kyprianou (2006).



Chapter 9
Long-Range Dependence as a Phase Transition

9.1 Why Phase Transitions?

Long-range dependence in a stationary process has been understood as cor-
responding to a particular second-order behavior, to a particular range of the
Hurst parameter, or of fractional integration. All these points of view on long-
range dependence really describe the situation in which the stationary process
under consideration is very different from “the norm,” and “normal behavior” is
understood as the behavior of the i.i.d. sequence with the same marginal distribution
as the stationary process being considered. A unified point of view would therefore
directly regard the phenomenon of long-range dependence as a phase transition, and
we proceed to describe such a direct approach.

Suppose that we are considering a family of laws of stationary stochastic
processes on Z; this is a family of shift-invariant probability measures

�
P
 ; 
 2 ‚�

on R
Z. That is, for each value of the parameter 
 2 ‚, the probability measure

P
 describes the finite-dimensional distributions of a stationary stochastic process
X D �

Xn; n 2 Z
�
. In general, as the parameter 
 varies, both the one-dimensional

marginal distribution of the process X changes, and so does the memory in the
process X. There are two basic assumptions.

1. We measure the memory in the process X through the behavior of a measurable
functional � W RZ ! R

1 under the probability measure P
 .
2. The one-dimensional marginal distributions of the process X do not change

significantly as 
 varies.

Some examples of the functional � in assumption 1 are the sequence of the partial
sums �n.x/ D Pn

jD1 xj for n � 1 and the sequence of the partial maxima, for which
�n.x/ D maxn

jD1 xj for n � 1. Among other possibilities, we may be interested in
weak limits associated with the functional �, or in large deviations associated with
this functional.

© Springer International Publishing Switzerland 2016
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As far as assumption 2 is concerned, as 
 varies, we may allow, for example, a
change in scale or another parameter not relevant to the behavior of the functional
� we are considering. Typically, we do not want to allow a serious change in the
marginal tails of the process X. For example, we do not want the variance to be
finite for 
 in one part of the set ‚ and infinite in another part. For example,�
P
 ; 
 2 ‚

�
might be the family of laws of zero-mean unit-variance stationary

Gaussian processes, in which case a change in the parameter 
 will change only the
correlation function of the process. Alternatively,

�
P
 ; 
 2 ‚� might be the family

of laws of infinite moving-average processes of Section 1.4. In this case, a change
in the parameter 
 corresponds to a change in the sequence of coefficients .'n/.

We denote by ‚0 the subset of the parameter space corresponding to the choices
of the parameter 
 such that under P
 , the process X is a sequence of i.i.d. random
variables; the set ‚0 may be a singleton, as is the case in the example of the family
of laws of zero-mean unit-variance stationary Gaussian processes parametrized by
their correlation function. Suppose that there is a partition ‚ D ‚1 [ ‚2 of the
parameter space into disjoint parts, with ‚0 	 ‚1, such that the behavior of the
functional � undergoes a major change as the parameter 
 crosses the boundary
between ‚1 and ‚2. This often means that as long as the parameter 
 stays within
‚1, the behavior of the functional � does not change much, and it remains similar to
the behavior of � in the i.i.d. case, 
 2 ‚0, perhaps “up to a multiplicative constant.”
Once the parameter 
 crosses the boundary into ‚2, there is a change “in the order
of magnitude” in the behavior of the functional �. Moreover, there continue to be
significant changes as the parameter 
 moves within ‚2.

In such a situation, we view the part ‚1 of the parameter space as corresponding
to short-memory models, and the part ‚2 of the parameter space as corresponding
to long-memory models. That is, if the law of a stationary process X is P
 with

 2 ‚2, we say that the process X has long-range dependence, whereas if the law
of X is P
 with 
 2 ‚1, then the process does not have long-range dependence.
From this point of view, the boundary between ‚1 and ‚2 is the boundary between
short and long memory, and so the appearance of long-range dependence is a phase
transition.

It is easy to criticize the point of view on long-range dependence we are offering.
We have clearly avoided rigorous definitions. Furthermore, we have tied the notion
of long-range dependence to a particular functional of the sample paths of the
process, and perhaps also to a particular aspect of the behavior of that functional.
Finally, it might be possible to identify additional significant boundaries within the
set ‚2 and hence additional significant phase transitions.

One defense of viewing long-range dependence as a phase transition is that some
ambiguity may be inevitable. Long-range dependence is really an entire group of
phenomena, and it may well be, in some cases, a hierarchical system. The reason it
has proven to be so difficult to define long-range dependence is that one has tried to
give a single definition to what is not a single phenomenon.

In the remainder of this chapter, we point out some of the critical boundaries
indicating long-range dependence in a number of interesting situations.
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9.2 Phase Transitions in Partial Sums

In this section, we investigate long-range dependence from the point of view of
possible phase transitions related to the behavior of the partial sums of a stationary
process. Let X D .Xn; n 2 Z/ be a stationary stochastic process. As in Chapter 5,
we use the notation

Sn D X1 C : : :C Xn; n D 0; 1; 2; : : : ; (9.1)

for the sequence of partial sums of the process. We will introduce certain assump-
tions on the one-dimensional marginal distribution of X (a generic representative
of the stationary process) and investigate when the behavior of the partial sums is
qualitatively different from the behavior of the corresponding partial sums of an
i.i.d. sequence with the same (or similar) marginal distribution. We will consider
two types of assumptions on the marginal distribution of the process.

Assumption 9.2.1. Either

• X has a finite variance, or
• X has balanced regularly varying tails with exponent ˛ 2 .0; 2/.
We will study not only the behavior of the partial sums Sn in (9.1) as n ! 1, but
even more informatively, the partial sum processes

Sn D �
SŒnt�; t � 0

�
: (9.2)

Under each of the situations in Assumption 9.2.1, we will investigate the order of
magnitude of the partial sums in (9.1). We will also investigate possible limiting
processes Y in weak limit results of the type

1

an

�
Sn � bn

� ) Y (9.3)

in some “reasonable topology” and with a nondegenerate limit Y, for some sequence
of real-valued functions .bn/ and a sequence an ! 1. Recall from Section 8.1 that
we expect the limiting process Y to be self-similar and have stationary increments.
We think of an in (9.3) as the “order of magnitude” of the partial sums of the
process X.

If a statement as strong as a functional central limit theorem of the type (9.3) is
not available, we can still try to measure the “size” of the partial sums, perhaps by
looking just at the sequence of partial sums Sn in (9.1). If, however, a functional
central limit theorem can be proved, then the limiting process Y in that theorem
can be used to detect more phase transitions: we will see that there are boundaries
such that different limiting processes are obtained on different sides of a boundary,
perhaps even with the same order of magnitude of the partial sums.
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We begin by considering the partial sums of finite-variance processes. Since the
common mean of the process is of no interest in our discussion of dependence, we
will simply assume that X D .Xn; n 2 Z/ is a stationary finite-variance zero-mean
stochastic process. Let us recall that in this case, the behavior of the partial sums
associated with the i.i.d. sequence is the invariance principle:

�
n�1=2Sn.t/; t � 0

� ) �
�B.t/; t � 0

�
as n ! 1 (9.4)

weakly in the Skorokhod J1 topology on DŒ0;1/. Here �2 D EX2 is the variance of
the process X, and .B.t/; t � 0/ is a standard Brownian motion; see, for example,
Billingsley (1999). Therefore, in the context of the behavior of the partial sums of
finite-variance stationary processes, we associate short memory with the order of
magnitude of the partial sums equal to the square root of the sample size, with the
limiting process in a functional limit theorem being the Brownian motion.

It is natural to measure the order of magnitude of the partial sums of a zero-mean
finite-variance process with the standard deviations .sn/ of the partial sums. That is,

s2n D VarSn D Var

 
nX

iD1
Xi

!

; n D 1; 2; : : : : (9.5)

Note, however, that the standard deviation is an imperfect tool for measuring the
distributional order of magnitude of Sn. The imperfection comes from the fact that
while the family of the laws of

�
Sn=sn; n D 1; 2; : : :

�
(assuming that sn does not

vanish) is clearly tight in R, it is possible that Sn=sn ! 0 in probability as n ! 1;
see Example 9.10.1. The appropriate behavior of the sequence of higher-order
moments can sometimes be used to eliminate this imperfection, as the following
proposition shows.

Proposition 9.2.2. Let X D .Xn; n 2 Z/ be a stationary finite-variance zero-mean
stochastic process. Assume that EjX0jp < 1 for some p > 2. If

lim inf
n!1

sp
n

EjSnjp > 0 ; (9.6)

then

lim inf
n!1 P

�jSnj=sn > "
�
> 0 (9.7)

for all 0 < " < 1.

Proof. We use Problem 9.10.2 with X D S2n and p=2 > 1 instead of p. For every
0 < " < 1,

�
P
�jSnj=sn > "

��p=2�1 � .1 � "2/p=2 .ES2n/
p=2

EjSnjp ;

and hence (9.7) follows immediately from (9.6). �
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A phase transition is transparent in the behavior of the partial sums of a process
if we consider the family of zero-mean stationary Gaussian processes. In that case,
we have the following easy result.

Proposition 9.2.3. Let X D .Xn; n 2 Z/ be a zero-mean stationary Gaussian
process. Then

�
s�1n Sn.t/; t � 0

� ) �
B.t/; t � 0

�
as n ! 1 (9.8)

weakly in the Skorokhod J1 topology on DŒ0;1/ if and only if the sequence .sn/ is
regularly varying with exponent 1=2. In particular, (9.4) holds for some � > 0 if
and only if s2n=n ! �2 as n ! 1.

Proof. Since the process s�1n Sn is a zero-mean Gaussian process for every n,
the finite-dimensional distributions convergence part of (9.8) is equivalent to
convergence of their covariance functions. Since all the processes start at zero, this
is, in turn, equivalent to convergence of the corresponding incremental variances.
However, for 0 � t1 < t2,

Var
�
s�1n SŒnt2� � s�1n SŒnt1�

� D s2Œnt2��Œnt1�

s2n
;

and it is clear that the ratio converges to the incremental variance of the Brownian
motion, t2 � t1, if and only if .s2n/ is regularly varying with exponent 1. To show that
in the latter case, tightness in the Skorokhod J1 topology holds as well, it is enough
to prove that there is c > 0 such that for all n large enough,

P
�jSn.t2/ � Sn.t1/j > �sn; jSn.t3/ � Sn.t2/j > �sn

� � c��4.t3 � t1/
2 (9.9)

for all 0 � t1 < t2 < t3 < 1 and all � > 0; see Theorem 15.6 in Billingsley (1968).
Note, however, that at least one of the differences, Sn.t2/�Sn.t1/ and Sn.t3/�Sn.t2/,
is a sum, of length smaller than n.t3 � t1/, of the consecutive values of the process
X. Letting G denote a standard normal random variable, we use (with � D 1=2)
the Potter bounds of Corollary 10.5.8 to show that the probability in (9.9) does not
exceed

P

�
maxk<n.t3�t1/ sk

sn
jGj > �

�
� P

�jGj > 2.t3 � t1/
�1=2�

�

for n large enough. Now (9.9) follows by applying Markov’s inequality of order 4.
�

Since the difference between a slowly varying sequence with exponent 1=2 and
the sequence an D n1=2 is not significant enough to qualify as a phase transition, it is
logical to interpret the result of Proposition 9.2.3 as saying that a stationary Gaussian
process has short memory from the point of view of the behavior of its partial sums
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if and only if the sequence of the variances of the partial sums is regularly varying
with exponent 1. This occurs, in particular, if the covariances of the process are
absolutely summable and add up to a positive number; see Proposition 6.1.1 and
the discussion following that proposition. From this point of view, we must regard
as long-range dependent any stationary Gaussian process for which the sequence of
the variances of the partial sums is not regularly varying with exponent 1. Note that
in this long-memory regime, the functional limit theorem of the type (9.3) exists
only in a narrow situation described in the following extension of Proposition 9.2.3.
The proof is identical to that of the former result.

Proposition 9.2.4. Let X D .Xn; n 2 Z/ be a zero-mean stationary Gaussian
process. Let 0 < H < 1. Then

�
s�1n Sn.t/; t � 0

� ) �
BH.t/; t � 0

�
as n ! 1 (9.10)

weakly in the Skorokhod J1 topology on DŒ0;1/ if and only if the sequence .sn/ is
regularly varying with exponent H.

Note that in Proposition 9.2.4, as in Proposition 9.2.3, regular variation of the
sequence of the standard deviations of the partial sums is required even for
convergence of the finite-dimensional distributions.

Remark 9.2.5. An interesting consequence of the above discussion is that from the
point of view of behavior of the partial sums, we view stationary Gaussian processes
for which the variance of the partial sums is regularly varying with exponent less
than 1=2 as being long-range dependent. Note, in particular, that according to
Proposition 9.2.4, a functional central limit theorem of the type (9.3) holds, and the
limit is different from a Brownian motion. In particular, fractional Gaussian noise
with Hurst exponent either H < 1=2 or H > 1=2 has, from this point of view, long
memory.

It is, however, common in the literature to state that only when the partial sums
of the process have a magnitude larger than the magnitude of the partial sums of
an i.i.d. sequence is the memory long. In the case of fractional Gaussian noise, this
claims long-range dependence only if H > 1=2.

Let us consider now phase transitions for partial sums in another situation, that of
fractional noises. The name simply extends the terminology we have used before:
if Y D �

Y.t/; t � 0
�

is a self-similar process with stationary increments, we call
the stationary process X obtained by taking the increments of the process Y (at lag
1) a fractional noise. That is, Xn D Y.n/ � Y.n � 1/; n D 1; 2; : : :. The following
proposition is elementary.

We remind the reader that the abbreviation “H-SSSI process” means “self-similar
process with stationary increments and Hurst exponent H”.

Proposition 9.2.6. Let X be a fractional noise corresponding to an H-SSSI process
Y with H > 0. Then

�
n�HSn.t/; t � 0

� ) �
Y.t/; t � 0

�
as n ! 1 (9.11)
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in finite-dimensional distributions. If Y has sample functions in DŒ0;1/, then the
convergence also holds as weak convergence in the Skorokhod J1 topology on that
space.

Proof. For all t1; : : : ; tk � 0, by the self-similarity of the process Y,

�
n�HSn.tj/; j D 1; : : : ; k

� D
�

n�HY
�
Œntj�

�
; j D 1; : : : ; k

�

dD
�

Y
�
n�1Œntj�

�
; j D 1; : : : ; k

�
:

Since the process Y is continuous in probability by Lemma 8.2.5, we conclude that

�
n�HSn.tj/; j D 1; : : : ; k

� ) �
Y.t1/; : : : ;Y.tk/

�
as n ! 1

as n ! 1.
Suppose now that Y has sample functions in DŒ0;1/, and write

�
n�HSn.t/; t � 0

� dD
�

Y
�
n�1Œnt�

�
; t � 0

�

in the sense of equality of two probability measures on DŒ0;1/. Now the statement
of the proposition follows from the fact that

�
Y
�
n�1Œnt�

�
; t � 0

�
! �

Y.t/; t � 0
�

a.s. in DŒ0;1/ as n ! 1; see Exercise 9.10.3. �

Remark 9.2.7. A conclusion from Proposition 9.2.6 is that the only fractional
noise process with a finite variance for which a Brownian motion appears as the
limit in a functional central limit theorem of the type (9.3) is the fractional noise
corresponding to the Brownian motion itself, that is, an i.i.d. sequence of Gaussian
random variables. Therefore, from the point of view of behavior of the partial sums,
all fractional noises with finite variance, apart from the i.i.d. sequence, are long-
range dependent. This is true in the entire range of the Hurst exponent, 0 < H < 1.
Recall from Section 8.3 that there exist multiple SSSI processes with finite variance
and H D 1=2. The fractional noise corresponding to such a process should also be
viewed as long-range dependent as long as it is not an i.i.d. sequence.

If, however, one insists that under long memory, the magnitude must be larger
than the magnitude of the partial sums of an i.i.d. sequence, then the only finite-
variance fractional noises with long-range dependence are those with 1=2 < H < 1.
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9.3 Partial Sums of Finite-Variance Linear Processes

We will now consider phase transition in the behavior of the partial sums of the
finite-variance linear processes of Section 1.4. Let ."n; n 2 Z/ be a sequence of i.i.d.
random variables with zero mean and finite variance, and let .'n/ be deterministic
coefficients satisfying

1X

jD�1
'2j < 1 : (9.12)

By Theorem 1.4.1, the process

Xn D
1X

jD�1
'n�j "j D

1X

jD�1
'j "n�j ; n 2 Z ; (9.13)

is a well-defined stationary process with zero mean and finite variance. For this
family of processes, we will consider phase transitions for the partial sums. In search
of such a phase transition, let us assume first that the coefficients .'n/ are absolutely
summable:

1X

jD�1
j'jj < 1 : (9.14)

Under this assumption, we have the following result.

Theorem 9.3.1. Let X be a finite-variance infinite-moving-average process with
coefficients .'n/ satisfying (9.14). Then

�
n�1=2Sn.t/; t � 0

� ) �
a'�"B.t/; t � 0

�
as n ! 1 (9.15)

weakly in the Skorokhod J1 topology on DŒ0;1/, where B is a standard Brownian
motion, �2" D Var."0/, and

a' D
1X

jD�1
'j : (9.16)

Proof. It is convenient to consider the symmetric sums

OSn D
nX

kD�n

Xk; n D 0; 1; 2; : : : ;

and prove the following statement, equivalent to (9.15):

�
.2n/�1=2 OSn.t/; t � 0

� ) �
a'�"B.t/; t � 0

�
as n ! 1 : (9.17)
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Note that

OSn D
1X

jD�1

 
nX

kD�n

'k�j

!

"j (9.18)

D
nX

jD�n

0

@
n�jX

kD�n�j

'k

1

A "j C
X

jjj>n

0

@
n�jX

kD�n�j

'k

1

A "j

D a'

nX

jD�n

"j �
nX

jD�n

0

@
X

kW jkCjj>n

'k

1

A "j C
X

jjj>n

0

@
n�jX

kD�n�j

'k

1

A "j

WD An � Bn C Cn :

By the invariance principle (9.4), we have, in the obvious notation,

�
.2n/�1=2An.t/; t � 0

� ) �
a'�"B.t/; t � 0

�
as n ! 1 :

Therefore, the statement (9.17) will follow once we prove that for every � > 0,

lim
n!1P

�
n�1=2 sup

0�t�1
ˇ̌
BŒnt�

ˇ̌
> �

�
D lim

n!1P
�

n�1=2 sup
0�t�1

ˇ̌
CŒnt�

ˇ̌
> �

�
D 0 : (9.19)

We begin with the first statement in (9.19). Since we are free to switch from the
sequence .'j/ to the sequence .'�j/, it is enough to prove that for every � > 0,

lim
n!1P

�
n�1=2 sup

0�t�1
ˇ̌ OBŒnt�

ˇ̌
> �

�
D 0 ; (9.20)

where

OBn D
nX

jD0

0

@
1X

kDn�jC1
'k

1

A "j; n D 0; 1; 2; : : : :

Let .dn/ be a sequence of positive integers growing to infinity, dn D o.n/. The
probability on the left-hand side of (9.20) can be rewritten in the form

P

0

@n�1=2 max
mD0;1;:::;n

ˇ̌
ˇ
ˇ̌
ˇ

mX

jD0

0

@
1X

kDm�jC1
'k

1

A "j

ˇ̌
ˇ
ˇ̌
ˇ
> �

1

A (9.21)

D P

0

@n�1=2 max
mD0;1;:::;n

ˇ̌
ˇ̌
ˇ̌
X

0�j�m�dn

0

@
1X

kDm�jC1
'k

1

A "j

ˇ̌
ˇ̌
ˇ̌ > �=2

1

A
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C P

0

@n�1=2 max
mD0;1;:::;n

ˇ̌
ˇ̌
ˇ̌

mX

jDmax.0;m�dn/C1

0

@
1X

kDm�jC1
'k

1

A "j

ˇ̌
ˇ̌
ˇ̌ > �=2

1

A :

The first term in (9.21) is

P

0

@n�1=2 max
mDdnC1;:::;n

ˇ̌
ˇ
ˇ̌
ˇ

1X

kDdnC1

0

@
m�dnX

jDmax.0;m�k/C1
"j

1

A'k

ˇ̌
ˇ
ˇ̌
ˇ
> �=2

1

A

� P

0

@n�1=2
1X

kDdnC1
max

mDdnC1;:::;n

ˇ̌
ˇ̌
ˇ̌

m�dnX

jDmax.0;m�k/C1
"j

ˇ̌
ˇ̌
ˇ̌ j'kj > �=2

1

A

� 2

�
n�1=2

1X

kDdnC1
j'kjE max

mDdnC1;:::;n

ˇ̌
ˇ̌
ˇ̌

m�dnX

jDmax.0;m�k/C1
"j

ˇ̌
ˇ̌
ˇ̌

� 2

�
n�1=2

1X

kDdnC1
j'kj

2

6
4E

0

@ max
mDdnC1;:::;n

ˇ
ˇ̌
ˇ̌
ˇ

m�dnX

jDmax.0;m�k/C1
"j

ˇ
ˇ̌
ˇ̌
ˇ

1

A

2
3

7
5

1=2

� 2

�
n�1=2

1X

kDdnC1
j'kj2�".n � dn/

1=2 � 4�"

�

1X

kDdnC1
j'kj ! 0;

since dn ! 1 (in the penultimate step, we have used Doob’s maximal inequality
for martingales). On the other hand, the second term in (9.21) does not exceed

P

0

@n�1=2 max
mD0;1;:::;n

mX

jDmax.0;m�dn/C1
j"jj > �

2
P1

kD�1 j'kj

1

A

� P

�
max

jD0;1;:::;n j"jj > c
n1=2

dn

�
D 1 �

�
1 � P

�j"0j > cn1=2=dn
��n ! 0

if we choose .dn/ such that

P
�j"0j > cn1=2=dn

� D o.1=n/ ;

which can be done, since "0 has a finite second moment. Here c D �=.2
P j'kj/.

This proves (9.20) and hence the first statement in (9.19).
The second statement in (9.19) can be proved in a similar way. We leave the

details to Exercise 9.10.4. �

Remark 9.3.2. We see from Theorem 9.3.1 that a finite-variance linear process with
coefficients .'n/ satisfying (9.14) and a' 6D 0 in (9.16) satisfies a functional central
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limit theorem of the type (9.3) with a Brownian limit. Such a process should be
viewed as a short-memory process from the point of view of behavior of the partial
sums.

We consider now a finite-variance infinite-moving-average process (9.13) whose
coefficients do not satisfy the summability condition (9.14). Instead, we will impose
a certain balanced regular variation assumption. Specifically, assume that there is a
regularly varying sequence .bn/ with exponent ˇ 2 .�1;�1=2/ such that

lim
n!1

'n

bn
D cC; lim

n!1
'�n

bn
D c�; (9.22)

for some cC; c� 2 R, at least one of which is different from zero. Clearly, such a
sequence of coefficients .'n/ satisfies the square summability assumption (9.12) but
not the absolute summability assumption (9.14). Now the limiting behavior of the
partial sums is different.

Theorem 9.3.3. Let X be a finite-variance infinite-moving-average process with
coefficients .'n/ satisfying (9.22), �1 < ˇ < �1=2. Then

�
1

n3=2bn
Sn.t/; t � 0

�
) �

c'�"BH.t/; t � 0
�

as n ! 1 (9.23)

weakly in the Skorokhod J1 topology on DŒ0;1/, where BH is the standard
fractional Brownian motion with H D 3=2 C ˇ, satisfying E

�
BH.t/2

� D t2H=2,
t � 0. Furthermore, �2" D Var."0/, and

c2' D 2.1C ˇ/�2
Z 1

�1

n
cC
h
.1C y/1CˇC � y1CˇC

i
� c�

h
.1C y/1Cˇ� � y1Cˇ�

io2
dy :

(9.24)

Proof. We begin by writing

Sn D X1 C : : :C Xn D
1X

jD�1

 
nX

iD1
'i�j

!

"j; n D 1; 2; : : : ; (9.25)

so that

s2n D VarSn D �2"

1X

jD�1

 
nX

iD1
'i�j

!2
:

We will show that

lim
n!1

s2n
n3b2n

D c2'=2 ; (9.26)
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with c2' given in (9.24). We postpone the proof of (9.26) for a moment to see how
this statement implies the claim of the theorem.

In order to prove convergence of the finite-dimensional distributions, we will use
the Lindeberg central limit theorem; see, e.g., Theorem 27.2 in Billingsley (1995),
the multivariate version of which follows immediately from the usual univariate
version by the Cramér–Wold device. Let 0 < t1 < t2 < : : : < td. In order to prove
that

�
1

n3=2bn
SŒnt1�; : : : ;

1

n3=2bn
SŒntd �

�
) �

c'�"BH.t1/; : : : ; c'�"BH.td/
�
; (9.27)

we use the representation (9.25) of the vector on the left-hand side of (9.27) as a
sum of independent random variables. Define


j;n D
nX

iD1
'i�j; j 2 Z; n D 1; 2; : : : :

Then (9.27) will follow once we check the incremental variance convergence

lim
n!1

Var
�
SŒnt� � SŒns�

�

n3b2n
D c2'�

2
" .t � s/2H=2 (9.28)

for every 0 � s < t < 1, as well as the Lindeberg condition

lim
n!1

1

n3b2n

1X

jD�1

2j;nE

�
"201

�
j"0j > n3=2jbnj

j
j;nj �

��
D 0 (9.29)

for every � > 0. However, once (9.26) has been proved, the incremental variance
property (9.28) is immediate, since

lim
n!1

Var
�
SŒnt� � SŒns�

�

n3b2n
D lim

n!1
Var

�
SŒnt��Œns�

�

n3b2n

D c2'�
2
"

2
lim

n!1

�
Œnt� � Œns�

�3
b2Œnt��Œns�

n3b2n
D c2'�

2
" .t � s/2H=2;

by the regular variation of the sequence .bn/. Furthermore, it follows easily by the
assumption (9.22) and Exercise 10.9.9 that there is C 2 .0;1/ such that for each
j 2 Z,

j
j;nj � C
nX

iD1
jbij � C.1C ˇ/�1njbnj
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as n ! 1. Therefore, as n ! 1,

1X

jD�1

2j;nE

�
"201

�
j"0j > n3=2jbnj

j
j;nj �

��
D o.1/

1X

jD�1

2j;n D o.1/s2n ;

and (9.29) will follow once (9.26) has been proved.
In order to prove tightness, we use, once again, Theorem 15.6 in Billingsley

(1968). Since H > 1=2, according to this theorem it is enough to prove that there is
c > 0 such that for all n large enough,

P
�jSn.t2/ � Sn.t1/j > �n3=2bn; jSn.t3/ � Sn.t2/j > �n3=2bn

� � c��2.t3 � t1/
2H

for all 0 � t1 < t2 < t3 < 1 and all � > 0. As in the proof of (9.9), this probability
does not exceed

max
m�n.t3�t1/

P
�jSmj > �n3=2bn

� � ��2 max
m�n.t3�t1/

s2m
n3b2n

:

Since by (9.26) and Exercise 10.9.9, maxm�n s2m � s2n as n ! 1, the required bound
follows from (9.26).

We finish the proof of the theorem with proving (9.26). We may assume that the
sequence .bn/ is eventually positive. Define


C;n D
nX

iD1
'i D 
0;n; 
�;n D

nX

iD0
'�i D 
nC1;nC1 ;

and note that by (9.22) and Theorem 10.5.6,

lim
n!1


˙;n
nbn

D c˙
1C ˇ

: (9.30)

We can write

s2n D �2"

2

4
0X

jD�1

2j;n C

n�1X

jD1

2j;n C

1X

jDn


2j;n

3

5 DWD �2"
�
V1.n/C V2.n/C V3.n/

�
:

The following three claims will imply (9.26):

lim
n!1

V1.n/

n3b2n
D .1C ˇ/�2c2C

Z 1

0

�
.1C y/1CˇC � y1CˇC

�2
dy ; (9.31)

lim
n!1

V2.n/

n3b2n
D .1C ˇ/�2

Z 1

0

�
cC.1 � y/1CˇC C c�y1CˇC

�2
dy ; (9.32)
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lim
n!1

V3.n/

n3b2n
D .1C ˇ/�2c2�

Z 1

0

�
.1C y/1CˇC � y1CˇC

�2
dy : (9.33)

We will prove (9.31). The statements (9.32) and (9.33) can be proved in a similar
way, and are left to the reader in Exercise 9.10.5.

For the purpose of proving (9.31), we will assume that cC > 0. If cC < 0, one can
multiply the entire process by �1. If cC D 0, one can use an obvious monotonicity
argument and prove that the limit in (9.31) is zero once the truth of that statement
for cC > 0 has been established. Let 0 < � < 1 be a small number. Write

V1.n/ D
1X

kD0

X

kn��j<.kC1/n�

�

C;nCj � 
C;j

�2
:

By the assumption, the moving-average coefficients .'n/ are eventually (as n ! 1)
positive, so that the sequence .
C;n/ is eventually increasing. Therefore, for all n
large enough,

V1.n/ � .1C n�/
1X

kD0

�

C;Œn.1C.kC1/�/� � 
C;Œnk��

�2 C O.1/ :

We claim that

lim
n!1

1X

kD0

�

C;Œn.1C.kC1/�/� � 
C;Œnk��

�2


2C;n
D
1X

kD0

�
.1C .k C 1/�/1Cˇ � .k�/1Cˇ�2 :

(9.34)
Once (9.34) has been verified, it will follow from (9.30) that for 0 < � < 1,

lim sup
n!1

V1.n/

n3b2n
� .1C ˇ/�2c2C�

1X

kD0

�
.1C .k C 1/�/1Cˇ � .k�/1Cˇ�2

� .1C ˇ/�2c2C�
Z 1

0

�
.1C 2� C x�/1Cˇ � .x�/1Cˇ�2 dx

.1C ˇ/�2c2C
Z 1

0

�
.1C 2� C x/1Cˇ � x1Cˇ

�2
dx :

Letting � ! 0 establishes then the upper bound part in (9.31).
In order to prove (9.34), we note that the sequence .
C;n/ is regularly varying

with exponent 1 C ˇ, so that each term in the sum on the left-hand side of (9.34)
converges, as n ! 1, to the corresponding term in the sum on the right-hand side.
Therefore, we need only to exhibit a dominating function. We use the Potter bounds
of Corollary 10.5.8. Let 0 < ı < �.ˇ C 1=2/. Denoting by C a finite positive
constant that is allowed to change from appearance to appearance, we have, for n
large enough, for all k � 1=�,
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C;Œn.1C.kC1/�/� � 
C;Œnk��


C;n
� Cn�1

Œn.1C.kC1/�/�X

iDŒnk��C1

ai

an

� Cn�1
Œn.1C.kC1/�/�X

iDŒnk��C1
.i=n/ˇCı

� CkˇCı :

By the choice of ı, the square of this function is summable. Hence, (9.34) holds.
Similarly, for all n large enough,

V1.n/ � .n� � 1/
1X

kD1

�

C;Œn.1Ck�/� � 
C;Œn.kC1/��

�2
;

and proceeding in the same manner as above, we obtain the lower bound part
of (9.31). �

Since a functional central limit theorem of the type (9.3) holds for a finite-
variance linear process with coefficients .'n/ satisfying the regular variation
assumption (9.22), but the limit is a fractional Brownian motion with exponent H >

1=2 (and a function of the exponent of the regular variation of the coefficients), such
an infinite-moving-average process should be viewed as a long-memory process
from the point of view of behavior of the partial sums.

As far as the behavior of the partial sums is concerned, long-range dependence
in finite-variance linear processes is also possible when the coefficients .'n/ are
summable but their sum a' is equal to zero. This possibility is similar to the case
of the Hurst exponent being in the range 0 < H < 1=2 for fractional noises
in Proposition 9.2.6, because now the “size” of the partial sums may be smaller
than that under the short-memory conditions of Theorem 9.3.1. Once again, we
will impose a balanced regular variation assumption. Specifically, we will assume
that (9.22) holds, but this time, the exponent of regular variation of the sequence
.bn/ is assumed to be in the range ˇ 2 .�3=2;�1/. This clearly implies that the
coefficients .'n/ satisfy the absolute summability assumption (9.14).

Theorem 9.3.4. Let X be a finite-variance infinite-moving-average process with
coefficients .'n/ satisfying (9.22), �3=2 < ˇ < �1. Assume that

a' WD
1X

jD�1
'j D 0 : (9.35)

Then, in the notation of Theorem 9.3.3,

�
1

n3=2bn
Sn.t/; t � 0

�
) �

c'�"BH.t/; t � 0
�

as n ! 1 (9.36)
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in finite-dimensional distributions. Furthermore, if we also have Ej"0jp < 1 for
some p > 2=.3 C 2ˇ/, then (9.36) also holds in the sense of weak convergence in
the Skorokhod J1 topology on DŒ0;1/.

The proof of the theorem is similar to that of Theorem 9.3.3 and is left to
Exercise 9.10.6.

Remark 9.3.5. One can summarize the results of Theorems 9.3.1, 9.3.4, and 9.3.3
and say that under the assumption (9.14) of the summability of coefficients and
nonvanishing sum a' of the coefficients, the finite-variance infinite moving average
has short memory from the point of view of the behavior of its partial sums, while
from the same point of view, the memory is long if the coefficients satisfy the regular
variation assumption (9.22) with either ˇ 2 .�1;�1=2/ or �3=2 < ˇ < �1, but
a' D 0. The presence of a phase transition is clear, even though we have not made
an effort to draw the exact boundary between the short- and long-memory cases. In
particular, it is clear that the arguments in Theorems 9.3.4 and 9.3.3 require little
beyond regular variation of certain partial sums of the coefficients, instead of the
regular variation of the coefficients themselves.

9.4 Partial Sums of Finite-Variance Infinitely Divisible
Processes

Our task in this section is to find phase transitions from the point of view of partial
sums for stationary infinitely divisible processes without a Gaussian component
given in the form (3.91). That is,

Xn D
Z

E
f ı �n.s/M.ds/; n 2 Z ; (9.37)

where
�
E; E ;m

�
is a � -finite measure space and M a homogeneous infinitely

divisible random measure on E without a Gaussian component with control measure
m and a constant local Lévy measure 
. We assume that the constant local shift of
M vanishes: b D 0. Furthermore, f 2 L0.M/, and � W E ! E is a nonsingular
measure-preserving map. For simplicity, we will assume that the local Lévy measure

 is symmetric. Recall that by Theorem 3.3.2, the assumption f 2 L0.M/means that

Z

E

�Z 1

�1
min

�
1; x2f .s/2

�

.dx/

�
m.ds/ < 1 : (9.38)

In this section, we will assume that the process X has finite variance. This is
equivalent to saying that

Z 1

�1
x2 
.dx/ < 1 and

Z

E
f .s/2 m.ds/ < 1 I (9.39)
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see, e.g., Sato (1999). This condition already implies (9.38), hence the integrability
of f .

The laws of stationary stochastic processes X we have defined by (9.37) are
thus determined by several parameters: the local Lévy measure 
, the kernel f , and
ergodic-theoretical properties of the map � with respect to the control measure m.
We will find in this section that for finite-variance processes, the behavior of the
partial sums is largely determined by the ergodic-theoretical properties of the map
� and by the “size” of the kernel f .

We begin with the case in which the map � is dissipative with respect to the
control measure m. In order to obtain behavior of the partial sums consistent with
short memory, we will impose additional “size” constraints on the function f .
Specifically, we assume that

Z

E
jf .s/j

1X

kD�1
jf j ı �k.s/m.ds/ < 1 : (9.40)

Notice that (9.40) implies that

1X

kD�1
jf j ı �k.s/ < 1 m-a.e., (9.41)

which would follow from the dissipativity of � by Theorem 2.4.5 if we had
f 2 L1.m/. The latter condition is not, however, guaranteed just by the assump-
tion (9.39). Moreover, by Theorem 2.4.5, (9.41) itself implies dissipativity of �, at
least on (the only relevant) �-invariant set

Ef D
n
s 2 E W f ı �k.s/ 6D 0 for some k 2 Z

o
: (9.42)

Theorem 9.4.1. Let X be a finite-variance stationary symmetric infinitely divisible
process without a Gaussian component given by (9.37). Suppose that the map � is
dissipative with respect to the measure m, and that (9.40) holds. Then

�
n�1=2Sn.t/; t � 0

� ) �
�XB.t/; t � 0

�
as n ! 1 (9.43)

in finite-dimensional distributions, where

�2X D
Z 1

�1
x2 
.dx/

 1X

kD�1

Z

E
f .s/f ı �k.s/m.ds/

!

: (9.44)

Proof. By the linearity of the integral (Theorem 3.3.2), we know that for n D
1; 2; : : :,

Sn D
Z

E

nX

kD1
f ı �k.s/m.ds/ ; (9.45)
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which is a symmetric infinitely divisible random variable without a Gaussian
component. A standard argument shows that it is enough to prove weak convergence
of the type

n�1=2
�
Sj1n; : : : ; Sjmn

� ) �X
�
B.j1/; : : : ;B.jm/

�
(9.46)

for every m D 1; 2; : : : and positive integers j1; : : : ; jm; see Exercise 9.10.7.
Conditions for convergence of a sequence of infinitely divisible random vectors to a
Gaussian limit are given, for example, in Theorem 13.14 in Kallenberg (1997). With
the representation (9.45), we need to verify two statements. First of all, we have to
check that for all nonnegative integers j1 < j2 and � > 0,

Z

E

Z 1

�1
x2
1

n

0

@
j2nX

kDj1nC1
f ı �k.s/

1

A

2

1

0

B
@x2

1

n

0

@
j2nX

kDj1nC1
f ı �k.s/

1

A

2

� �

1

C
A 
.dx/m.ds/

! �2X.j2 � j1/ (9.47)

as n ! 1, and we also have to check that for every positive integer j,

Z

E

Z 1

�1
1

0

@x2
1

n

 
jnX

kD1
f ı �k.s/

!2

> 1

1

A 
.dx/m.ds/ ! 0 (9.48)

as n ! 1. Since the map � is measure-preserving, it is clearly enough to consider
only the case j1 D 0, j2 D 1 in (9.47), and j D 1 in (9.48).

We begin by proving (9.48) (with j D 1). Let M be a large positive number.
We write the integral in (9.48) as I.M/1 .n/ C I.M/2 .n/, with the two terms given,
respectively, by

Z

E
1

0

@

 
nX

kD1
f ı �k.s/

!2
� n

M

1

A

 Z 1

�1
1

 

x2 >
n

�Pn
kD1 f ı �k.s/

�2

!


.dx/

!

m.ds/

and

Z

E
1

0

@
 

nX

kD1
f ı �k.s/

!2
>

n

M

1

A
 Z 1

�1
1

 

x2 >
n

�Pn
kD1 f ı �k.s/

�2

!


.dx/

!

m.ds/ :

Then (9.48) will follow from the following two claims:

lim
M!1 lim sup

n!1
I.M/1 .n/ D 0 (9.49)
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and

lim
n!1 I.M/2 .n/ D 0 for every M > 0. (9.50)

We prove (9.49) first. Note that

I.M/1 .n/ � 2

Z 1

M1=2

x2 
.dx/
Z

E

Z 1

�1
1

n

 
nX

kD1
f ı �k.s/

!2
m.ds/

D 2

Z 1

M1=2

x2 
.dx/

0

@1
n

n�1X

kD�.n�1/
.n � jkj/

Z

E
f .s/f ı �k.s/m.ds/

1

A

� 2

Z 1

M1=2

x2 
.dx/
n�1X

kD�.n�1/

ˇ̌
ˇ̌
Z

E
f .s/f ı �k.s/m.ds/

ˇ̌
ˇ̌ :

Now the claim (9.49) follows from (9.40) and (9.39).
In order to prove (9.50) for a fixed M, we write

I.M/2 .n/ � 2

�
.1;1/

� Z

E
1

0

@
 

nX

kD1
f ı �k.s/

!2
>

n

M

1

A m.ds/

C 2

Z

E
1

0

@
 

nX

kD1
f ı �k.s/

!2
> n

1

A 


  
n1=2

ˇ
ˇPn

kD1 f ı �k.s/
ˇ
ˇ ; 1

!!

m.ds/

WD I.M/21 .n/C I22.n/ :

For K > 0, let

AK D
(

s 2 E W
1X

kD�1
jf j ı �k.s/ > K

)

# ; up to an m-null set as K ! 1,

(9.51)
where the convergence follows from (9.41). Letting c be a finite (M-dependent)
constant that is allowed to change from appearance to appearance, we have for a
fixed K, for all n large enough,

I.M/21 .n/ D c
Z

AK

1

0

@

 
nX

kD1
f ı �k.s/

!2
>

n

M

1

A m.ds/

� c
Z

E
1AK .s/ n�1

 
nX

kD1
f ı �k.s/

!2
m.ds/ (9.52)
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� c
Z

E
1AK .s/jf .s/j

1X

kD�1
jf j ı �k.s/m.ds/ ;

and the last expression vanishes as K ! 1 by (9.40), (9.51), and the monotone
convergence theorem. Therefore, I.M/21 .n/ ! 0 as n ! 1.

For a large K > 0, we have

I22.n/ � 2

Z

E
1

0

@
 

nX

kD1
f ı �k.s/

!2
> Kn

1

A 


  
n1=2

ˇ̌Pn
kD1 f ı �k.s/

ˇ̌ ; 1

!!

m.ds/

C 2

�
.K�1=2; 1/

� Z

E
1

0

@
 

nX

kD1
f ı �k.s/

!2
> n

1

A m.ds/ :

We already know that the second term vanishes as n ! 1 for every K > 0. Using
the fact that x2


�
.x; 1/

� ! 0 as x # 0, we estimate the first term as

oK.1/

Z

E

1

n

 
nX

kD1
f ı �k.s/

!2
m.ds/ ;

where oK.1/ ! 0 as K ! 1. Since the integral is bounded by (9.40), we conclude
that I.M/22 .n/ ! 0 as n ! 1, which proves (9.50). Hence (9.48) holds.

We now prove (9.47) (with j1 D 0; j2 D 1). Write the integral in (9.47) as

Z 1

�1
x2 
.dx/

Z

E

1

n

 
nX

kD1
f ı �k.s/

!2
m.ds/

�
Z

E

Z 1

�1
x2
1

n

 
nX

kD1
f ı �k.s/

!2
1

0

@x2
1

n

 
nX

kD1
f ı �k.s/

!2
> �

1

A 
.dx/m.ds/ :

Since by (9.40), the first term converges, as n ! 1, to �2X, it remains to prove that
the second term vanishes as n ! 1. For M > 0, we write this term as

2

Z

E

Z 1

M
x2
1

n

 
nX

kD1
f ı �k.s/

!2
1

0

@x2
1

n

 
nX

kD1
f ı �k.s/

!2
> �

1

A 
.dx/m.ds/

C 2

Z

E

Z M

0

x2
1

n

 
nX

kD1
f ı �k.s/

!2
1

0

@x2
1

n

 
nX

kD1
f ı �k.s/

!2
> �

1

A 
.dx/m.ds/
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�2
Z 1

M
x2 
.dx/

Z

E

1

n

 
nX

kD1
f ı �k.s/

!2
m.ds/

C 2

Z M

0

x2 
.dx/
Z

E

1

n

 
nX

kD1
f ı �k.s/

!2
1

0

@

 
nX

kD1
f ı �k.s/

!2
>

n�

M2

1

A m.ds/

WD J.M/1 .n/C J.M/2 .n/ :

It follows from (9.40) that

lim
M!1 lim sup

n!1
J.M/1 .n/ D 0 ;

and the argument used in (9.52) shows that

lim
n!1 J.M/2 .n/ D 0 for any M > 0.

Therefore, (9.47) follows, and the proof of the theorem is complete. �

Remark 9.4.2. We have stated and proved Theorem 9.4.1 in terms of convergence of
finite-dimensional distributions. It is clear that under appropriate conditions on the
function f , the result will hold in the sense of weak convergence in the Skorokhod
J1 topology on DŒ0;1/. In order to keep the conditions of the theorem as simple as
possible, we have avoided additional conditions on f .

Remark 9.4.3. As long as the limiting variance �2X in (9.44) does not vanish, we
should view the stationary symmetric infinitely divisible process of the type (9.37)
as having short memory from the point of view of the behavior of its partial sums if
it satisfies (9.40).

The assumption (9.40) implies that the map � in (9.44) is dissipative, at least
on the set Ef in (9.42). In the remainder of this section, we will try to shed some
additional light on the role the dissipativity (or its opposite, conservativity) of �
play. Note that the condition (9.40) is essentially a condition on the rate of decay of
the function jf j over the trajectories of the flow .�n/. This condition may or may not
hold, even when the map � is dissipative.

Example 9.4.4. The linear process (9.13) is a special case of the stationary infinitely
divisible process (9.37) if the noise variables ."n; n 2 Z/ are themselves infinitely
divisible random variables. Assume that

Eei
"0 D exp

	Z 1

�1

�
ei
x � 1 � i
ŒŒx��

�

.dx/

�
; 
 2 R ; (9.53)

for a one-dimensional symmetric Lévy measure 
 satisfying the first condition
in (9.39). Then the linear process (9.13) is of the form (9.37) with E D Z, the
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control measure m of the symmetric infinitely divisible random measure M being
the counting measure on Z, and the function f given by f .j/ D 'j; j 2 Z. The
map � is, of course, the left shift on Z. It is easy to verify that in this special
case, the assumption (9.40) coincides with the assumption (9.14) of Theorem 9.3.1,
and the conclusion (9.43) of Theorem 9.4.1 coincides with the conclusion (9.15) of
Theorem 9.3.1 (apart from a different mode of convergence).

We can learn a lesson from Example 9.4.4. Namely, even when the map �

in (9.44) is dissipative, if the growth condition (9.40) on the kernel f fails, then
the partial sums of the stationary infinitely divisible process can converge to a
limit different from a Brownian motion. Theorem 9.3.3 shows, in particular, that
the partial sums of an infinitely divisible infinite-moving-average process as in
Example 9.4.4 can converge, with proper normalization, to a fractional Brownian
motion with H > 1=2. It is clear that in the more general situation described
by (9.37) and a dissipative map �, appropriate regular variation assumptions
on the kernel f will also lead to convergence to a fractional Brownian motion
with H > 1=2. We will not present such results here. Similarly, if the growth
condition (9.40) on the kernel f holds but the limiting variance �2X in (9.44) vanishes,
then under proper regular variation assumptions on the kernel f , the partial sums of
the stationary infinitely divisible process will converge to a fractional Brownian
motion with H < 1=2. Theorem 9.3.4 is an example of such a situation for an
infinitely divisible infinite-moving-average process as in Example 9.4.4. We will
not present more general results of this type here.

The above discussion shows that from the point of view of the behavior of the
partial sums, stationary symmetric infinitely divisible processes of the type (9.37)
can have either short memory or long memory if the map � is dissipative. The key,
in this case, is the “size” of the kernel f .

When the map � in (9.37) is conservative, the “size” of the kernel f alone can
no longer guarantee that the infinitely divisible process has short memory as far as
the behavior of the partial sums is concerned. The following proposition shows that
if the kernel f is nonnegative, then short memory according to the behavior of the
partial sums is impossible.

Proposition 9.4.5. Assume that the map � in (9.37) is conservative, and that f � 0

m-a.e. on the set Ef in (9.42). If m.Ef / > 0, then there is no � � 0 such that (9.4)
holds in terms of convergence of finite-dimensional distributions.

Proof. We may assume that E D Ef , and that 

�
.1;1/

�
> 0. Suppose, to the

contrary, that there is � � 0 such that (9.4) holds in terms of convergence of
finite-dimensional distributions. Then both (9.47) and (9.48) must hold (the former
statement has to hold with �X replaced by � ). For n � 1, let

An D
(

s 2 E W
ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ
> n1=2

)

:
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Note that the expression in (9.48) with j D 1 is at least m.An/

�
.1;1/

�
, so if m.An/

does not converge to zero as n ! 1, then (9.48) does not hold. Assume, therefore,
that m.An/ ! 0 as n ! 1. Let � > 0 be so large that 


�
.1; �/

�
> 0, and let k be a

large positive integer. Then the expression in (9.47) with j1 D 0; j2 D 1 cannot be
smaller than

2

�
.1; �/

�1
n

Z

E

 
nX

kD1
f ı �k.s/

!2
1
�
s 2 Ac

n

�
m.ds/

�2
�.1; �/�1
n

nX

j1DkC1

j1�1X

j2Dj1�k

Z

E
f ı � j1 .s/ f ı � j2 .s/ 1

�
s 2 Ac

n

�
m.ds/

D2
�.1; �/�
"

n � k

n

kX

iD1

Z

E
f .s/f ı � i.s/m.ds/

�1
n

nX

j1DkC1

j1�1X

j2Dj1�k

Z

E
f ı � j1 .s/ f ı � j2 .s/ 1

�
s 2�m.ds/

3

5 :

Since � preserves the measure m,

m
�
� j.An/

� D m.An/ ! 0 as n ! 1

for every j, and hence

Z

E
f ı � j1 .s/ f ı � j2 .s/ 1

�
s 2 An

�
m.ds/

D
Z

E
f .s/ f ı � j2�j1 .s/ 1

�
s 2 � j1 .An/

�
m.ds/

�
�Z

E
f .s/21

�
s 2 � j1 .An/

�
m.ds/

�1=2 �Z

E
f 2 ı � j2�j1 .s/m.ds/

�1=2

uniformly in j1; j2. Therefore, the lower limit of the expression in (9.47) with
j1 D 0; j2 D 1 is at least

2

�
.1; �/

� kX

iD1

Z

E
f .s/f ı � i.s/m.ds/ D 2


�
.1; �/

� Z

E
f .s/

kX

iD1
f ı � i.s/m.ds/ :

Since this is true for an arbitrarily large k, the lower limit cannot be smaller than

2

�
.1; �/

� Z

E
f .s/

1X

iD1
f ı � i.s/m.ds/ :
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However,

1X

iD1
f ı � i.s/ D 1 m-a.e.; (9.54)

since � is conservative and E D Ef ; just use Exercise 2.6.12 with

B D
n
s 2 E W f ı �k.s/ � " for some k 2 Z

o

with " > 0 becoming arbitrarily small. Therefore, (9.47) does not hold.
The resulting contradiction shows that there is no � � 0 such that (9.4) holds in

terms of convergence of finite-dimensional distributions. �

Remark 9.4.6. One can see from Proposition 9.4.5 that conservative maps tend to
produce stationary infinitely divisible processes that do not have short memory from
the point of view of the behavior of the partial sums. Of course, other factors are
present. With the assumption of a nonnegative kernel f made in Proposition 9.4.5,
for example, one can expect that if a functional central limit theorem of the type (9.3)
holds, then the limiting process Y may be a fractional Brownian motion with
H > 1=2, and hence the memory in the stationary infinitely divisible process
is long. Theorem 9.4.7 demonstrates this for a special type of conservative map.
Intuitively, this happens because the assumption that the kernel f is nonnegative
prevents certain cancellation effects in the partial sums of an infinitely divisible
process. Such cancellation effects may reduce the Hurst exponent of the limiting
process Y if a functional central limit theorem of the type (9.3) holds. In particular,
even with a conservative map �, cancellation effects can result in a Brownian motion
as a limit in (9.3) and hence in short memory from the point of view of the behavior
of the partial sums.

In the remainder of this section, we keep the assumption of a nonnegative kernel
f . In order to better understand how the properties of a conservative map � affect
a functional central limit theorem for the partial sums of the process, we present
a result about an infinitely divisible process in (9.37) corresponding to a particular
conservative map. We will see that in this special situation, even with a “very small”
but nonnegative kernel, a properly normalized partial sum process converges to a
fractional Brownian motion with H > 1=2, and hence the infinitely divisible process
has long-range dependence as far as the partial sums of the process are concerned.
We will consider a situation similar to that described in Example 2.4.12.

Let .pij; i; j 2 Z/ be a set of transition probabilities of an irreducible null
recurrent Markov chain on Z. Let .	i; i 2 Z/ be a � -finite invariant measure for
the Markov chain; it is necessarily unique up multiplication by a positive constant;
see, e.g., Resnick (1992). Note that

m.A/ D
X

i2Z
	iPi

�
the trajectory of the Markov chain is in A

�
(9.55)
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for a measurable subset A of E D Z
Z defines a � -finite measure on the cylindrical

� -field on E that is invariant under the left shift � on E. We choose a very simple,
and “small,” function f : let

f .x/ D 1.x0 D 0/ for x D .: : : ; x�1; x0; x1; x2; : : :/ 2 Z
Z. (9.56)

Note that
Z

E
f .s/2 m.ds/ D 	0 < 1 ;

so that the conditions (9.39) are satisfied, and (9.37) specifies a well-defined
symmetric infinitely divisible stochastic process with finite variance. In this case,
the left shift on E D Z

Z is conservative; see Exercise 9.10.8.
It turns out that the behavior of the partial sums of this stationary infinitely

divisible process is determined by how quickly the Markov chain returns to a given
state. For x D .: : : ; x�1; x0; x1; x2; : : :/ 2 Z

Z, define

�1 D �1.x/ D inf
˚
n � 1 W xn D 0

�
: (9.57)

For i 2 Z, we will use the notation Pi.�1 2 �/ to describe the law of the first hitting
time of the origin by the Markov chain after n D 0. For example,

Pi.�1 D n/ D 	i

X

j1 6D0
: : :

X

jn�1 6D0
pij1 : : : pjn�2jn�1pjn�10; n D 1; 2; : : : :

A useful property of the first return times used in the proof of the next theorem is in
Exercise 9.10.9.

Theorem 9.4.7. Assume that the sequence P0.�1 > n/; n D 1; 2; : : :, is regularly
varying with exponent �ˇ 2 .�1; 0/. Then

 �
P0.�1 > n/

n

�1=2
Sn.t/; t � 0

!

) �
cˇBH.t/; t � 0

�
as n ! 1 (9.58)

in the Skorokhod J1 topology on DŒ0;1/, where BH is the standard fractional
Brownian motion with H D .1 C ˇ/=2, satisfying E

�
BH.t/2

� D t2H=2, t � 0.
Here

c2ˇ D 	0

Z 1

�1
x2 
.dx/

�.1 � ˇ/�.1C 2ˇ/

�.2C ˇ/
E
�
Z�2ˇˇ

�
;

where Zˇ is a positive ˇ-stable random variable with characteristic triple .0; �; 0/,
and the Lévy measure is given by �.dx/ D ˇx�.1Cˇ/ dx for x > 0.
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Proof. As in the proof of Theorem 9.4.1, for the convergence of the finite-
dimensional distributions we need to prove two statements. First of all, for every
� > 0,

Z

E

Z 1

�1
x2

P0.�1 > n/

n

 
nX

kD1
f ı �k.s/

!2

1

0

@x2
P0.�1 > n/

n

 
nX

kD1
f ı �k.s/

!2
� �

1

A 
.dx/m.ds/ ! c2ˇ (9.59)

as n ! 1, and also

Z

E

Z 1

�1
1

0

@x2
P0.�1 > n/

n

 
nX

kD1
f ı �k.s/

!2
> 1

1

A 
.dx/m.ds/ ! 0 (9.60)

as n ! 1.
Let Nn be the number of times the Markov chain visits state 0 in the time interval

f1; : : : ; ng. Then the expression in (9.59) can be written in the form

Z 1

�1
x2 
.dx/

P0.�1 > n/

n

1X

iD�1
	iEi.N

2
n/

� P0.�1 > n/

n

Z 1

�1
x2
" 1X

iD�1
	iEi

�
N2

n 1
�

N2
n > �x�2

n

P0.�1 > n/

��#


.dx/

WD I1.n/ � I2.n/ :

By the strong Markov property of the Markov chain and Exercise 9.10.9,

1X

iD�1
	iEi.N

2
n/D

nX

kD1

1X

iD�1
	iPi.�1 D k/E0..1C Nn�k/

2/

D 	0

nX

kD1
P0.�1 � k/E0..1C Nn�k/

2/ :

By Exercise 9.10.10, the sequence E0.N2
n/, n D 1; 2; : : :, is regularly varying

with exponent 2ˇ. We can use now part (i) of Theorem 10.5.10 and, once again,
Exercise 9.10.10 to conclude that

I1.n/ ! �.1 � ˇ/�.1C 2ˇ/

�.2C ˇ/
	0

Z 1

�1
x2 
.dx/E

�
Z�2ˇˇ

� D c2ˇ (9.61)
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as n ! 1. We will prove that I2.n/ ! 0 for every � > 0. This will establish
both (9.59) and (9.60). Using, once again, Exercise 9.10.9, we can write, for every
a > 0,

I2.n/ D	o
P0.�1 > n/

n

nX

kD1
P0.�1 � k/

Z 1

�1
x2E0

�
.1C Nn�k/

21
�
.1C Nn�k/

2 > �x�2
n

P0.�1 > n/

��

.dx/

D	o
P0.�1 > n/

n

nX

kD1
P0.�1 � k/

�Z

jxj�a
� C

Z

jxj>a
�
�

WD I.a/21 .n/C I.a/22 .n/ :

Using Exercise 9.10.10 and Theorem 10.5.6, we see, for large n and for some
positive finite constant c, that

I.a/21 .n/ � cE0
h�

P0.�1 > n/Nn
�2

1
��

P0.�1 > n/Nn
�2
>

�

4a2
nP0.�1 > n/

�i
! 0

as n ! 1 for every a > 0, since nP0.�1 > n/ ! 1. On the other hand, the
argument leading to (9.61) immediately gives us

lim sup
n!1

I.a/21 .n/ � �.1 � ˇ/�.1C 2ˇ/

�.2C ˇ/
	0

Z

jxj>a
x2 
.dx/E

�
Z�2ˇˇ

�
;

and the expression on the right-hand sides vanishes as a ! 1. Therefore,
I2.n/ ! 0, and the proof of convergence of the finite-dimensional distributions
is complete. Since the limiting fractional Brownian motion satisfies H > 1=2, the
required tightness in the Skorokhod J1 topology on DŒ0;1/ follows as in the proof
of Theorem 9.3.3. We leave the details to Exercise 9.10.11. �

Remark 9.4.8. The normalizing sequence
�
n1=2P0.�1 > n/�1=2

�
in Theorem 9.4.7

is regularly varying with exponent .1 C ˇ/=2, where 0 < ˇ < 1 describes how
heavy the tail of the first return time �1 is. It is interesting to observe that as ˇ ! 0,
the Markov chain becomes closer to being transient, while the left shift � on Z

Z

becomes closer to being dissipative (see Example 2.4.12). At the same time, the
exponent of regular variation of the normalizing sequence becomes closer to 1=2,
and the fractional Brownian limit in Theorem 9.4.7 becomes closer to the Brownian
motion. That is, as ˇ ! 0, the stationary infinitely divisible process in the theorem
becomes closer to the boundary between long memory and short memory as far as
the behavior of the partial sums is concerned.
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9.5 Partial Sums of Infinite-Variance Linear Processes

In this section, we begin the detailed search for phase transitions in the behavior
of the partial sums of stationary stochastic processes with infinite variance. Recall
Assumption 9.2.1: in this context, we will consider stationary processes X D
.Xn; n 2 Z/ for which the marginal distributions have balanced regularly varying
tails with exponent ˛ 2 .0; 2/. We will assume, for simplicity, that the process X is

symmetric, i.e., that �X
dD X; without this assumption, partial sums of the process

X may require centering, in addition to scaling, in order to obtain convergence. The
necessity of such centering will complicate the discussion without helping us to
understand the phase transitions between short and long memory. In order to have
a benchmark for short memory in this case, let us recall the behavior of the partial
sums of an i.i.d. sequence with such balanced regularly varying tails. In this case,
the analogue of the invariance principle (9.4) takes the following form. As in (4.40),
the appropriate normalizing sequence is

an D inf
˚
x > 0 W P.X0 > x/ � 1=n

�
; n D 1; 2; : : : : (9.62)

Recall that the sequence .an/ is regularly varying with exponent 1=˛. Then, under
the assumption of symmetry,

�
a�1n Sn.t/; t � 0

� ) �
Y˛.t/; t � 0

�
as n ! 1 (9.63)

weakly in the Skorokhod J1 topology on DŒ0;1/. Here
�
Y˛.t/; t � 0

�
is a

symmetric ˛-stable Lévy motion with Lévy measure � satisfying

�.dx/ D ˛jxj�.˛C1/ dx I

see Gikhman and Skorohod (1996). Therefore, a different normalization from that
given in (9.62) or a limit different from a stable Lévy motion is an indication of
long-range dependence from the point of view of the behavior of the partial sums of
symmetric stationary processes whose marginal tails are balanced regularly varying
with exponent ˛ 2 .0; 2/.

Before we proceed to study the partial sums of infinite-variance linear processes,
which is the main topic of this section, we would like to mention a new general
phenomenon that appears when the marginal tails of a stationary process are
sufficiently heavy: the partial sums of the process can no longer grow faster than
the partial sums of an i.i.d. sequence with the same marginal distributions. This is
described in the following proposition.

Proposition 9.5.1. Let X be a random variable such that EjXjˇ D 1 for some

0 < ˇ < 1. Let X D .X1;X2; : : :/ be a stochastic process with each Xi
dD X, and
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let Y D .Y1;Y2; : : :/ be a sequence of independent copies of X. Let an " 1 be a
sequence of positive numbers such that

lim sup
n!1

anC1
an

< 1 :

If

lim inf
n!1 P.jX1 C X2 C : : :C Xnj > an/ > 0; (9.64)

then also

lim sup
n!1

P
�jY1 C Y2 C : : :C Ynj > an=5

�
> 0 : (9.65)

If X is symmetric, then

lim sup
n!1

P.jY1 C Y2 C : : :C Ynj > an/ > 0 : (9.66)

Proof. Note that

P.jX1 C X2 C : : :C Xnj > an/

� P
�

max
iD1;:::;n jXij > an

�C P
�ˇˇ̌

nX

iD1
Xi1.jXij � an/

ˇ
ˇ̌
> an

�

� nP.jXj > an/C nE
�jXj1.jXj � an/

�

an
;

using Markov’s inequality at the last step. Using Lemma 9.5.3 below and the growth
assumption on the sequence .an/ (in order to switch from the limit over a continuous
variable to a limit over a discrete variable), we see that

lim sup
n!1

anP.jXj > an/

E
�jXj1.jXj � an/

� > 0 ;

and therefore,

lim sup
n!1

nP.jXj > an/ > 0 :

Choose ı > 0 and a sequence nk " 1 such that

nkP
�
PjXj > ank

� � ı for all k � 1. (9.67)
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Suppose first that X is a symmetric random variable. By symmetry and indepen-
dence, we have

P.jY1 C Y2 C : : :C Ynk j > ank/ � 1

2
P
�

max
iD1;:::;nk

jYij > ank

�

D1

2

�
1 �

�
1 � P

�jXj > ank

��nk
�

(9.68)

�1
2

�
1 �

�
1 � ı

nk

�nk
�

! 1

2

�
1 � e�ı

�
> 0

as k ! 1. This proves (9.66).
Without assuming symmetry, suppose that to the contrary, (9.65) fails. By the

Lévy–Ottaviani inequality of Theorem 10.7.3 with s D t D an=5, we have

lim
n!1P

�
max

iD1;:::;n jY1 C Y2 C : : :C Ynj > 2an=5
� D 0 : (9.69)

For n D 1; 2 : : :, define Nn D inffk � 1 W jYkj > ang. With the sequence .nk/ as
in (9.67), we have

P
�jY1 C Y2 C : : :C Ynk j > ank=5

�

� P
�
Nnk � nk; max

i�Nnk

jY1 C : : :C Yij � 2ank=5; jYNnkC1 C : : :C Ynk j � 2ank=5
�

�
nkX

jD1
P.Nnk D j/P.jYjC1 C : : :C Ynk j � 2ank=5/

� P
�

max
iD1;:::;nk

jY1 C Y2 C : : :C Ynk j > 2ank=5
�

� P.Nnk � nk/
�
1 � P

�
max

iD1;:::;nk

jY1 C Y2 C : : :C Ynk j > 2ank=5
��

� P
�

max
iD1;:::;nk

jY1 C Y2 C : : :C Ynk j > 2ank=5
�
:

However, the computation in (9.68) and the assumption (9.69) imply that the above
expression cannot converge to zero. This contradicts our assumption that (9.65)
fails. �

The proof of the proposition uses Lemma 9.5.3 below. First we need a prelimi-
nary estimate.

Lemma 9.5.2. Let .an/ be a sequence of positive numbers such that

lim
n!1

an

1CPn�1
kD1 ak

D 0 : (9.70)
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Then for every 
 > 0,

lim
k!1 2

�
kak D 0 : (9.71)

Proof. If the statement of the lemma fails, then for some 
 > 0, we have

lim sup
k!1

2�
kak D 1 :

Fixing such a 
 , define, for B > 0,

nB D min
˚
k � 1 W 2�
kak > B

�
;

and note that nB " 1 as B " 1. Then

anB

1CPnB�1
kD1 ak

>
B2
nB

1CPnB�1
kD1 B2
k

� 2
 � 1
2

for every B � 2
 � 1, and this contradicts (9.70). �

Lemma 9.5.3. Let X be a positive random variable such that EXˇ D 1 for some
0 < ˇ < 1. Then

lim sup
x!1

xP.X > x/

E
�
X1.X � x/

� > 0 :

Proof. For m � 1,

E
�
X1.X � 2m/

� �
Z 2m

0

P.X > y/ dy

� 1C
m�1X

nD0
2nP

�
X > 2n

�
:

If the statement of the lemma fails, then we can use Lemma 9.5.2 with an D
2nP

�
X > 2n

�
for n � 1 to conclude that

P
�
X > 2n

� D o
�
2�ˇn

�
as n ! 1

for every 0 < ˇ < 1, which contradicts the assumption EXˇ D 1 for some 0 <
ˇ < 1. �

Remark 9.5.4. An immediate conclusion from Proposition 9.5.1 is as follows. Let
X be a symmetric stationary process whose marginal tails are balanced regularly
varying with exponent ˛ 2 .0; 1/. Then it is impossible that there is a sequence .bn/
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satisfying bn=an ! 1 (with an defined by (9.62)) such that a functional central
limit theorem of the type (9.3) holds with a nonzero limit process Y. That is, any
deviations of the rate of the growth of the partial sums of the process from the
rate of growth of the partial sums of the corresponding i.i.d. sequence (specified
by an) must be in the direction of a slower rate of growth. This is a point worth
keeping in mind when looking for phase transitions between short memory and long
memory. It is sometimes claimed that only a faster rate of growth of the partial sums
qualifies as an indication of long memory. We see now that this is impossible with
sufficiently heavy tails. From the point of view of a phase transition, a deviation in
the direction of a rate of growth of the partial sums slower than an should be viewed
as an indication of long memory as well.

Let us consider now the partial sums of the infinite-variance linear processes of
Section 1.4. We will assume that the noise variables ."n; n 2 Z/ are i.i.d. symmetric
random variables, with balanced regularly varying tails with exponent 0 < ˛ < 2.
Further, we assume that the coefficients .'n; n 2 Z/ satisfy

1X

nD�1
j'nj˛�" < 1 for some 0 < " < ˛ : (9.72)

It follows by Corollary 4.2.12 that the process (9.13) is a well-defined symmetric
stationary process such that

lim
x!1

P.X0 > x/

P.j"0j > x/
D 1

2

1X

nD�1
j'nj˛ : (9.73)

We begin a search for phase transitions in the behavior of the partial sums of such
processes by proving an analogue of Theorem 9.3.1.

Theorem 9.5.5. Let X be a symmetric infinite-variance infinite-moving-average
process as just defined. If 1 < ˛ < 2, assume that the coefficients .'n/ satisfy
the absolute summability assumption (9.14). Let an be defined by (9.62). Then

�
a�1n Sn.t/; t � 0

� )
�

a'
k'k˛ Y˛.t/; t � 0

�
as n ! 1 (9.74)

in finite-dimensional distributions, where Y˛ is the symmetric ˛-stable Lévy motion
in (9.63), a' is given by (9.16), and

k'k˛ D
 1X

nD�1
j'nj˛

!1=˛
:

Proof. Let

Oan D inf
˚
x > 0 W P."0 > x/ � 1=n

�
; n D 1; 2; : : : :
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It follows from (9.73) that an=Oan ! k'k˛ as n ! 1. Therefore, the state-
ment (9.74) is equivalent to the statement

�Oa�1n Sn.t/; t � 0
� ) �

a'Y˛.t/; t � 0
�

as n ! 1 (9.75)

in finite-dimensional distributions, which we now proceed to prove. We will use
the decomposition (9.18). By the central limit theorem (9.63), the claim (9.75) will
follow once we show that for every � > 0,

lim
n!1P

�
Oa�1n

ˇ
ˇBn

ˇ
ˇ > �

�
D lim

n!1P
�

Oa�1n

ˇ
ˇCn

ˇ
ˇ > �

�
D 0 : (9.76)

For the first statement in (9.76), we note that for every M D 1; 2; : : :,

lim sup
n!1

P
�

Oa�1n

ˇ
ˇBn

ˇ
ˇ > �

�
� lim sup

n!1
P

0

@Oa�1n

ˇ̌
ˇ
ˇ̌
ˇ

n�MX

jD�nCM


j;n"j

ˇ̌
ˇ
ˇ̌
ˇ
>
�

2

1

A ;

where


j;n D
X

kW jkCjj>n

'k :

The assumptions of the theorem imply that the absolute summability assump-
tion (9.14) holds regardless of the value of ˛. Therefore, for every � > 0, we have
j
j;nj � � for all n and all �n C M � j � n � M if M is large enough. By the
contraction principle in Theorem 10.7.5, we conclude that for such M,

lim sup
n!1

P
�

Oa�1n

ˇ̌
Bn

ˇ̌
> �

�
� 2 lim sup

n!1
P

0

@Oa�1n

ˇ̌
ˇ̌
ˇ̌

n�MX

jD�nCM

"j

ˇ̌
ˇ̌
ˇ̌ >

�

2�

1

A

D 2P

�ˇ̌
Y˛.2/

ˇ̌
>

�

2�

�
;

where at the last step we used (9.63). Letting � ! 0, we obtain the first statement
in (9.76).

For the second statement in (9.76), we write

Cn D
1X

jDnC1

0

@
n�jX

kD�n�j

'k

1

A "j C
�n�1X

jD�1

0

@
n�jX

kD�n�j

'k

1

A "j WD Cn;1 C Cn;2

and prove that for every � > 0,

lim
n!1P

�
Oa�1n

ˇ̌
Cn;j

ˇ̌
> �

�
D 0; j D 1; 2 : (9.77)
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We will consider only the case j D 1; the case j D 2 is similar. Note that

P
�

Oa�1n

ˇ
ˇCn;1

ˇ
ˇ > �

�
D P

0

@

ˇ̌
ˇ
ˇ̌
ˇ

1X

jD1

0

@
2nCjX

kDj

'�k

1

A "j

ˇ̌
ˇ
ˇ̌
ˇ
> � Oan

1

A

� P

0

@

ˇ̌
ˇ
ˇ̌
ˇ
"j

2nCjX

kDj

'�k

ˇ̌
ˇ
ˇ̌
ˇ
> Oan for some j D 1; 2; : : :

1

A

C P

0

@

ˇ̌
ˇ̌
ˇ̌

1X

jD1

0

@
2nCjX

kDj

'�k

1

A "j 1

0

@

ˇ̌
ˇ̌
ˇ̌"j

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌ � Oan

1

A

ˇ̌
ˇ̌
ˇ̌ > � Oan

1

A

WD pn;1 C pn;2 :

We now use the Potter bounds of Corollary 10.5.8 to check that for every 
 > 0, for
all n large enough,

pn;1 �
1X

jD1
P

0

@j"0j > Oanˇ̌
ˇ
P2nCj

kDj '�k

ˇ̌
ˇ

1

A

� .1C 
/

1X

jD1
P.j"0j > Oan/

ˇ̌
ˇ̌
ˇ̌

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌

˛�


� 3.1C 
/ n�1
1X

jD1

ˇ̌
ˇ̌
ˇ̌

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌

˛�


; (9.78)

with the definition of Oan being used in the last step. We will prove that if 
 > 0 is
small enough, the expression in (9.78) converges to zero as n ! 1.

Suppose first that 1 < ˛ < 2, and choose 0 < 
 < ˛ � 1 in (9.78). For every
M D 1; 2; : : :, we have

lim sup
n!1

n�1
1X

jD1

ˇ̌
ˇ̌
ˇ̌

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌

˛�


D lim sup
n!1

n�1
1X

jDM

ˇ̌
ˇ̌
ˇ̌

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌

˛�


�
0

@
�MX

jD�1
j'kj

1

A

˛�
�1

lim sup
n!1

n�1
1X

jD�1

2nCjX

kDj

j'�kj

D 2

0

@
�MX

jD�1
j'kj

1

A

˛�
�1 1X

jD�1
j'jj ;
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and the last expression converges to zero as M ! 1. If 0 < ˛ � 1, choose in (9.78)
0 < 
 < � for � > 0 for which (9.72) holds. Then for every M D 1; 2; : : :, we have

1X

jD1

ˇ̌
ˇ̌
ˇ̌

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌

˛�


�
1X

jD1

0

@
2nCjX

kDj

j'�kj˛��
1

A

˛�

˛��

;

and now we proceed as in the case 1 < ˛ < 2 above.
Finally, by the Cauchy–Schwarz inequality and Proposition 4.2.3, for large n,

pn;2 � ��2 Oa�2n

1X

jD1

0

@
2nCjX

kDj

'�k

1

A

2

E

2

4"0 1

0

@

ˇ̌
ˇ̌
ˇ̌"0

2nCjX

kDj

'�k

ˇ̌
ˇ̌
ˇ̌ � Oan

1

A

3

5

2

� 4

.2 � ˛/�2 Oa�2n

1X

jD1

0

@
2nCjX

kDj

'�k

1

A

2

Oa2n

0

@
2nCjX

kDj

'�k

1

A

�2

P

0

@

ˇ̌
ˇ
ˇ̌
ˇ
"0

2nCjX

kDj

'�k

ˇ̌
ˇ
ˇ̌
ˇ
> Oan

1

A

D 4

.2 � ˛/�2
1X

jD1
P

0

@j"0j > Oanˇ̌
ˇ
P2nCj

kDj '�k

ˇ̌
ˇ

1

A ;

reducing the problem to the situation already considered in (9.78). �

Remark 9.5.6. The conclusion from Theorem 9.5.5 is, to a certain extent, similar
to the conclusion from Theorem 9.3.1 discussed in Remark 9.3.2: if a symmetric
infinite-variance linear process with regularly varying tails with exponent 0 < ˛ < 2
has coefficients satisfying (9.14) and a' 6D 0, then it satisfies a functional central
limit theorem (9.3) with an ˛-stable Lévy process as a limit. Such a process
should, therefore, be regarded as having short memory from the point of view of
the behavior of the partial sums. Note, however, that the assumption (9.14) is an
additional assumption only in the case 1 < ˛ < 2, while in the case 0 < ˛ � 1, it is
already implied by the assumption (9.72) of the model. Therefore, in the latter case,
the only possible appearance of long-range dependence with respect to the behavior
of the partial sums is due to the presence of cancellations when a' D 0, and the
partial sums grow at a rate slower than that dictated by an in (9.62). We see, once
again, the phenomenon described in Remark 9.5.4.

If 1 < ˛ < 2, then the partial sums of the infinite-variance infinite-moving-
average process can grow at a rate faster than an given by (9.62) if the absolute
summability assumption (9.14) on the coefficients fails. As in the finite-variance
case considered in Section 9.3, we will impose a balanced regular variation
assumption. That is, we will assume that (9.22) holds, but this time, the exponent
of regular variation of the sequence .bn/ must be in the range ˇ 2 .�1;�1=˛/.
We should not be surprised that in this case, the properly normalized partial sums
converge to a limit different from the ˛-stable Lévy process as in (9.63). It is,
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perhaps, less clear what self-similar process with stationary increments one obtains
as a limit. The marginal tail behavior of the moving-average process leads us
to expect that the limiting process might itself be ˛-stable. However, there are
many different ˛-stable self-similar processes with stationary increments, some of
which are described in Section 3.5 and in Example 8.4.1. Interestingly, in the next
result, the linear fractional symmetric stable motion of Example 3.5.2 makes an
appearance.

Theorem 9.5.7. Let X be the symmetric infinite-variance infinite-moving-average
process of Theorem 9.5.5 with 1 < ˛ < 2. Suppose that the coefficients .'n/

satisfy (9.22), �1 < ˇ < �1=˛. Then as n ! 1,

�
1

nanbn
Sn.t/; t � 0

�
) �

C�1=˛˛ .1C ˇ/�1X.L/c
C

;�c
�

;1C1=˛Cˇ.t/; t � 0
�

(9.79)

weakly in the Skorokhod J1 topology on DŒ0;1/, where X.L/
c

C

;�c
�

;1C1=˛Cˇ is the
linear fractional symmetric stable motion defined by (3.81) with c1 D cC, c2 D �c�
and H D 1C 1=˛ C ˇ. Furthermore, the constant C˛ is given by (3.31).

Proof. We first prove convergence of the finite-dimensional distributions. Fix 0 <
t1 < t2 < : : : < td. We begin with the expression for the partial sum given
in (9.25) and proceed through two approximations. Let M and m be two large
positive integers. Let

T.m;M/l .n/ D
mM�1X

kD�mM

0

@
X

�kn=m�i<ntl�kn=m

'i

1

A
X

kn=m�j<.kC1/n=m

"j; l D 1; : : : ; d :

We begin by showing that as n ! 1,

�
1

nanbn
T.m;M/1 .n/; : : : ;

1

nanbn
T.m;M/d .n/

�
(9.80)

) �
C�1=˛˛ .1C ˇ/�1T.m;M/.t1/; : : : ;C�1=˛˛ .1C ˇ/�1T.m;M/.td/

�
;

where

T.m;M/.t/ D
Z M

�M

n
cC
h�
.t � �m.x//C

�1Cˇ � �
.��m.x//C

�1Cˇi

� c�
h�
.t � �m.x//�

�1Cˇ � �
.��m.x//�

�1Cˇio
L.dx/; t 2 R ;

and �m.x/ D k=m if k=m � x < .k C 1/=m. To this end, for t > 0 and � 2 R, let

An.t; �/ D
X

��n�i�.t��/n
'i;D n D 1; 2; : : : :
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An argument similar to the one we used to prove (9.26) shows that

lim
n!1

1

nbn
An.t; �/ D 1

1C ˇ

n
cC
h�
.t � �/C

�1Cˇ � �
.��/C

�1Cˇi
(9.81)

� c�
h�
.t � �/�

�1Cˇ � �
.��/�

�1Cˇio I

we leave the details to Exercise 9.10.12. Since

1

nanbn
T.m;M/l .n/ D

mM�1X

kD�mM

�
1

nbn
An.tl; k=m/

�
0

@ 1

an

X

kn=m�j<.kC1/n=m

"j

1

A ;

l D 1; : : : ; d, it follows from (9.81), the central limit theorem (9.63), the regular
variation of an, and the continuous mapping theorem that the random vector on the
left-hand side of (9.80) converges weakly, as n ! 1, to the random vector

m�1=˛
mM�1X

kD�mM

Yk a.k=m/ ;

where .Yk/ are i.i.d. S˛S random variables each distributed as the limiting process
Y˛ in (9.63) evaluated at time t D 1, and for � 2 R, a.�/ is a d-dimensional vector
whose lth component is given by

1

1C ˇ

n
cC
h�
.tl � �/C

�1Cˇ � �
.��/C

�1Cˇi� c�
h�
.tl � �/�

�1Cˇ � �
.��/�

�1Cˇio
;

l D 1; : : : ; d. Elementary properties of the integral of simple functions show that
this limit has the same law as the vector on the right-hand side of (9.80). Therefore,
the latter claim has been established.

We remove now one level of approximation and prove that

�
1

nanbn
T.M/1 .n/; : : : ;

1

nanbn
T.M/d .n/

�
(9.82)

) �
C�1=˛˛ .1C ˇ/�1T.M/.t1/; : : : ;C�1=˛˛ .1C ˇ/�1T.M/.td/

�
;

where

T.M/l .n/ D
nM�1X

jD�nM

0

@
X

1�j�i�ntl�j

'i

1

A "j; l D 1; : : : ; d ;
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and

T.M/.t/ D
Z M

�M

n
cC
h�
.t � x/C

�1Cˇ � �
.�x/C

�1Cˇi

� c�
h�
.t � x/�

�1Cˇ � �
.�x/�

�1Cˇio
L.dx/; t 2 R :

Since (9.80) has already been proved, we can let m ! 1 in order to use
Theorem 3.2 in Billingsley (1999). It follows from Theorem 3.3.2 that the random
vector on the right-hand side of (9.80) converges weakly, as m ! 1, to the random
vector on the right-hand side of (9.82). Therefore, in order to use Theorem 3.2 in
Billingsley (1999), we need to estimate the difference between the random vectors
on the left-hand sides of (9.80) and (9.82). Note that for � > 0 and l D 1; : : : ; d,

P

�ˇ̌
ˇ̌ 1

nanbn
T.m;M/l .n/ � 1

nanbn
T.M/l .n/

ˇ̌
ˇ̌ > �

�
D P

0

@

ˇ̌
ˇ̌
ˇ
ˇ

nM�1X

jD�nM

bj;m.n/"j

ˇ̌
ˇ̌
ˇ
ˇ
> �nanbn

1

A ;

where

bj;m.n/ D
0

@
X

1�j�i�ntl�j

'i �
X

�nŒmj=n�=m�i<ntl�nŒmj=n�=m

'i

1

A :

Since by Theorem 10.5.6, there is a constant C such that

sup
j2Z

ˇ̌
ˇ̌
ˇ̌

jCnX

iDjC1
'i

ˇ̌
ˇ̌
ˇ̌ � Cnbn for n � 1,

we see that for all j,

ˇ̌
bj;m.n/

ˇ̌ � 2C.n=m/bŒn=m� :

We write

P

0

@

ˇ̌
ˇ̌
ˇ̌

nM�1X

jD�nM

bj;m.n/"j

ˇ̌
ˇ̌
ˇ̌ > �nanbn

1

A

� P

 

j"jj > nanbnˇ̌
bj;m.n/

ˇ̌ for some �nM � j < nM

!

C P

0

@

ˇ̌
ˇ̌
ˇ
ˇ

nM�1X

jD�nM

bj;m.n/"j1

 

j"jj � nanbnˇ
ˇbj;m.n/

ˇ
ˇ

!ˇ̌
ˇ̌
ˇ
ˇ
> �nanbn

1

A :



9.5 Partial Sums of Infinite-Variance Linear Processes 323

As in the proof of (9.77) above, it is enough to consider the first term on the right-
hand side. This term can be bounded for large n by

nM�1X

jD�nM

P

 

j"0j > nanbnˇ̌
bj;m.n/

ˇ̌

!

� 2nMP
�j"0j > .2C/�1anm.bn=bŒn=m�/

�

� 2nMP
�j"0j > .4C/�1anm1Cˇ�

� 3M
P
�j"0j > .4C/�1anm1Cˇ�

P.j"0j > an/

� 4M
�
.4C/�1m1Cˇ��˛=2 ;

where at the last step, we used the Potter bounds of Corollary 10.5.8. Since ˇ > �1,
the last expression converges to zero as m ! 1. We conclude that

lim
m!1 lim sup

n!1
P

�ˇ̌
ˇ̌ 1

nanbn
T.m;M/l .n/ � 1

nanbn
T.M/l .n/

ˇ̌
ˇ̌ > �

�
D 0

for every � > 0, and so Theorem 3.2 in Billingsley (1999) applies. That is, (9.82)
follows.

In order to remove the second level of approximation and prove that

�
1

nanbn
Sn.t1/; : : : ;

1

nanbn
Sn.td/

�
(9.83)

)
�

C�1=˛˛ .1C ˇ/�1X.L/c
C

;�c
�

;1C1=˛Cˇ.t1/; : : : ;C
�1=˛
˛ .1C ˇ/�1X.L/c

C

;�c
�

;1C1=˛Cˇ.td/
�
;

we use, once again, Theorem 3.2 in Billingsley (1999). We know by Theorem 3.3.2
that the random vector on the right-hand side of (9.82) converges weakly, as m !
1, to the random vector in the right-hand side of (9.83), so it remains to compare
the vectors on the respective left-hand sides and prove that for every � > 0,

lim
M!1 lim sup

n!1
P

0

@

ˇ̌
ˇ̌
ˇ
ˇ

1X

jDnM

0

@
X

1�j�i�ntl�j

'i

1

A "j

ˇ̌
ˇ̌
ˇ
ˇ
> �

1

A (9.84)

D lim
M!1 lim sup

n!1
P

0

@

ˇ̌
ˇ̌
ˇ̌

�nM�1X

jD�1

0

@
X

1�j�i�ntl�j

'i

1

A "j

ˇ̌
ˇ̌
ˇ̌ > �

1

A D 0 :

The two statements are similar, so we prove only the first one. As we have seen in
the proof of (9.77) above, the argument reduces to proving that

lim
M!1 lim sup

n!1

1X

jDnM

P

0

@j"0j > nanbnˇ̌
ˇ
P

1�j�i�ntl�j 'i

ˇ̌
ˇ

1

A D 0 :
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Let 0 < � < ˛ C 1=ˇ. Using the Potter bounds of Corollary 10.5.8, the sum above
can be bounded for large n by

2n�1
1X

jDnM

1

P.j"0j > an/
P

0

@j"0j > nanbnˇ̌
ˇ
P

1�j�i�ntl�j 'i

ˇ̌
ˇ

1

A

� 4n�1
1X

jDnM

0

@ nbnˇ̌
ˇ
P

1�j�i�ntl�j 'i

ˇ̌
ˇ

1

A

�.˛��/

:

Using the regular variation assumption (9.22) and the comparison with a monotone
regularly varying function in Exercise 10.9.9 shows that for large n,

1X

jDnM

ˇ
ˇ̌
ˇ̌
ˇ

X

1�j�i�ntl�j

'i

ˇ
ˇ̌
ˇ̌
ˇ

˛��

�2max.c�; cC/
1X

jDnM

.nbj�n/
˛��

�2max.c�; cC/ n˛�� .nM/
�
bn.M�1/

�˛��

as n ! 1. Therefore,

lim
M!1 lim sup

n!1

1X

jDnM

P

0

@j"0j > nanbnˇ̌
ˇ
P

1�j�i�ntl�j 'i

ˇ̌
ˇ

1

A

� 8max.c�; cC/ lim
M!1 lim sup

n!1
M

�
bn.M�1/

bn

�˛��

D 8max.c�; cC/ lim
M!1M .M � 1/ˇ.˛��/ D 0

by the choice of � . Therefore, (9.84) follows, and we have proved convergence of
the finite-dimensional distributions.

Since ˇ > �1, the limiting process satisfies H > 1=˛, and one can prove
tightness in the Skorokhod J1 topology on DŒ0;1/ following a similar line of
argument as in the proof of Theorem 9.3.3. We leave the details to Exercise 9.10.13.
�

Since in the situation of Theorem 9.5.7, a functional central limit theorem of the
type (9.3) holds, but the limit is not a, S˛S Lévy motion but rather a linear fractional
S˛S motion with exponent H > 1=˛ (which is, further, a function of the exponent
of the regular variation of the coefficients, in addition to the tail parameter ˛), we
should view such an infinite-variance linear process as a long-memory process from
the point of view of behavior of the partial sums. Recall that this phenomenon is
possible only in the case 1 < ˛ < 2. In the case 0 < ˛ � 1, long-range dependence
from the point of view of the behavior of the partial sums is possible only in the
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case of “negative dependence,” when the coefficients .'n/ are summable but their
sum vanishes. This situation is possible in the entire range 0 < ˛ < 2. We will,
once again, assume balanced regular variation of the coefficients, but this time, the
exponent of regular variation will be in the range ˇ 2 .�1�1=˛;�1/. The following
theorem can be proved in the same way as Theorem 9.5.7, and its proof is left to
Exercise 9.10.14. Note that a linear fractional S˛S motion still appears, but this
time, we have H < 1=˛.

Theorem 9.5.8. Let X be the symmetric infinite-variance infinite-moving-average
process of Theorem 9.5.5 with 0 < ˛ < 2. Suppose that the coefficients .'n/

satisfy (9.22), �1 � 1=˛ < ˇ < �1. Then as n ! 1, (9.79) holds in terms of
convergence of finite-dimensional distributions.

Remark 9.5.9. We can summarize the results of Theorems 9.5.5, 9.5.7, and 9.5.8
in a way similar to the discussion in Remark 9.3.5 in the finite-variance case.
Summability of the coefficients (9.14) and nonvanishing sum a' of the coefficients
lead to short memory as far as the behavior of its partial sums of the process
is concerned, while the regular variation (9.22) of the coefficients with ˇ 2
.�1;�1=˛/, or with �1 � 1=˛ < ˇ < �1 but a' D 0, leads, from the same
point of view, to long memory. Once again, we have not attempted to draw the exact
boundary between short and long memory.

9.6 Partial Sums of Infinite-Variance Infinitely Divisible
Processes

In this section, we investigate phase transitions in the behavior of the partial sums
of symmetric stationary infinitely divisible processes X given in the form (9.37). As
in Section 9.5, we will assume that the marginal distributions of the process X have
balanced regularly varying tails with exponent ˛ 2 .0; 2/. Under the assumption
of the symmetry of the Lévy measure 
 in the integral representation (9.37) of the
process, this regular variation of the marginal tails of X is equivalent to the following
condition:

the function H.y/ D .m � 
/
�˚
.s; x/ 2 E � R W xf .s/ > y

��
(9.85)

is regularly varying with exponent �˛ 2 .�2; 0/.

Moreover, under this condition,

lim
y!1

P.X0 > y/

H.y/
D 1 (9.86)



326 9 Phase transitions

(this is a special case of equivalence results between the tails of functionals of
infinitely divisible processes and the corresponding tails with respect to the Lévy
measure of Rosiński and Samorodnitsky (1993)).

As in the case of the finite-variance stationary infinitely divisible processes
considered in Section 9.4, the length of memory of the process X is determined
by the local Lévy measure 
, the kernel f , and ergodic-theoretical properties of the
map � with respect to the control measure m. It turns out that for stationary processes
with regularly varying tails with exponent ˛ 2 .0; 2/, an important ingredient is the
tail behavior of the local Lévy measure 
, which itself is often regularly varying with
exponent �˛. The “size” of the function f and the ergodic-theoretical properties of
the map � are still of crucial importance as far as the length of the memory is
concerned.

Once again, we begin with the case that the map � is dissipative with respect to
the control measure m. As in the finite-variance case considered in Section 9.4, for
the partial sums of the process to behave in a way consistent with short memory,
additional “size” constraints on the function f may be required. As we have already
seen in the previous section, additional constraints are needed, mostly in the case
1 < ˛ < 2.

In order to see clearly what happens in the case of a dissipative map �, we will
consider the case in which the process X is already S˛S with 0 < ˛ < 2. This
corresponds to the situation in which the local Lévy measure 
 has the form


.dx/ D ˛jxj�.˛C1/ dx :

In this case, the condition (9.38) for the function f to be in L0.M/, and hence for the
process X to be a well-defined stationary process, is f 2 L˛.m/; see Example 3.3.8.
Moreover, in this case, the function H in (9.85) is given by

H.y/ D y�˛
Z

E
jf .s/j˛ m.ds/; y > 0 ;

so (9.85) holds. The statement (9.86) then describes a fact already known to us,
namely the power decay of the tail of a symmetric stable random variable. This
also says that in this case, the sequence .an/ defined in (9.62) can be taken to be
an D n1=˛kf k˛ .

The following theorem is an infinite-variance analogue of Theorem 9.4.1. Note
the difference in the conditions required in the cases 0 < ˛ � 1 and 1 < ˛ < 2.

Theorem 9.6.1. Let X be a stationary S˛S process given by (9.37) with some f 2
L˛.m/. Suppose that the map � is dissipative with respect to the measure m.

(i) Suppose that 0 < ˛ � 1. Then the limit

b˛ D lim
n!1

1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ 2 Œ0;1/ (9.87)
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exists and is finite, and

�
n�1=˛Sn.t/; t � 0

� ) .b Y˛.t/; t � 0/ as n ! 1 (9.88)

in the sense of convergence of finite-dimensional distributions.
(ii) Suppose that 1 < ˛ < 2. Assume that

Z

E
jf .s/j

 1X

kD�1
jf j ı �k.s/

!˛�1
m.ds/ < 1 : (9.89)

Then the limit b in (9.87) exists and is finite, and (9.88) holds in terms of
convergence of finite-dimensional distributions.

Proof. We consider the case 0 < ˛ � 1 first. Let

gn D
Z

E

ˇ
ˇ̌
ˇ̌

nX

kD1
f ı �k.s/

ˇ
ˇ̌
ˇ̌

˛

m.ds/; n D 1; 2; : : : :

Notice that for n;m � 1,

gnCm D
Z

E

ˇ̌
ˇ
ˇ̌
nCmX

kD1
f ı �k.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/

�
Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/C
Z

E

ˇ̌
ˇ̌
ˇ

nCmX

kDnC1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

D
Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/C
Z

E

ˇ̌
ˇ̌
ˇ

mX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ D gn C gm ;

using the fact that the measure m is �-invariant. Therefore, the sequence .gn; n � 1/

is subadditive, and by Exercise 2.6.14, the limit b in (9.87) exists and is finite. Note
that this argument has nothing to do with the fact that � is a dissipative map.

In order to prove (9.88), it is, once again, enough to show that for every m D
1; 2; : : : and positive integers j1; : : : ; jm, we have

n�1=˛
�
Sj1n; : : : ; Sjmn

� ) b
�
Y˛.j1/; : : : ;Y˛.jm/

� I (9.90)

see Exercise 9.10.7. We may assume that jk D k; k D 1; : : : ;m. It follows
from (9.87) and the form of the characteristic functions of integrals with respect
to S˛S random measures in (3.55) that for every k D 1; : : : ;m, we have

n�1=˛
�
Skn � S.k�1/n

� ) b
�
Y˛.k/ � Y˛.k � 1/� :
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Since for integrals with respect to infinitely divisible random measures, pairwise
independence implies full independence (this facts follows immediately from part
(i) of Corollary 3.3.11), in order to prove (9.90), we need to show only that for every
1 � k1 < k2 � m,

n�1=˛
�
Sk1n � S.k1�1/n; Sk2n � S.k2�1/n

�
(9.91)

) b
�
Y˛.k1/ � Y˛..k1 � 1//; Y˛.k2/ � Y˛..k2 � 1//� :

By stationarity, it is enough to consider the case k1 D 1, and we replace k2 by k.
Since the marginal convergence of the increments has already been established, we
need to prove only that the random vector on the left-hand side of (9.91) converges
weakly to a limit with independent components. By Theorem 13.14 in Kallenberg
(1997), we need to prove that the bivariate Lévy measure �n of the S˛S random
vector on the left-hand side of (9.91) converges vaguely in Œ�1;1�2 n f0g to a
measure concentrated on the axes. By symmetry, we need to check that for every
a > 0,

lim
n!1�n

�
.a;1/ � .a;1/

� D lim
n!1�n

�
.�1;�a/ � .a;1/

� D 0 : (9.92)

We will prove the first statement in (9.92). The second statement can be checked in
the same way. By Theorem 3.3.10,

�n
�
.a;1/ � .a;1/

�
(9.93)

D
Z

E

"Z 1

�1
1

 

xn�1=˛
nX

iD1
f ı � i.s/ > a;

xn�1=˛
knX

iD.k�1/nC1
f ı � i.s/ > a

1

A˛jxj�.1C˛/ dx

3

5m.ds/

� a�˛
1

n

Z

E
min

0

@

ˇ
ˇ̌
ˇ̌

nX

iD1
f ı � i.s/

ˇ
ˇ̌
ˇ̌

˛

;

ˇ̌
ˇ̌
ˇ̌

knX

iD.k�1/nC1
f ı � i.s/

ˇ̌
ˇ̌
ˇ̌

˛1

A m.ds/ :

Let � > 0. For m D 1; 2; : : :, let

A.�/m D ˚
s 2 E W jf j ı � i.s/ > �; jf j ı � j.s/ > � for some ji � jj � m

�
:

Clearly, A.�/m is a �-invariant set. Furthermore, since � is dissipative,

A.�/m # ; as m ! 1 (9.94)



9.6 Partial Sums of Infinite-Variance Infinitely Divisible Processes 329

for every fixed � > 0. We can write for j � 1,

1

n

Z

E
min

0

@

ˇ̌
ˇ̌
ˇ

nX

iD1
f ı � i.s/

ˇ̌
ˇ̌
ˇ

˛

;

ˇ̌
ˇ
ˇ̌
ˇ

knX

iD.k�1/nC1
f ı � i.s/

ˇ̌
ˇ
ˇ̌
ˇ

˛1

A m.ds/

D 1

n

Z

A
.�/
j

min

0

@

ˇ̌
ˇ
ˇ̌

nX

iD1
f ı � i.s/

ˇ̌
ˇ
ˇ̌

˛

;

ˇ̌
ˇ
ˇ̌
ˇ

knX

iD.k�1/nC1
f ı � i.s/

ˇ̌
ˇ
ˇ̌
ˇ

˛1

A m.ds/

C 1

n

Z

.A
.�/
j /c

min

0

@

ˇ̌
ˇ
ˇ̌

nX

iD1
f ı � i.s/

ˇ̌
ˇ
ˇ̌

˛

;

ˇ̌
ˇ
ˇ̌
ˇ

knX

iD.k�1/nC1
f ı � i.s/

ˇ̌
ˇ
ˇ̌
ˇ

˛1

A m.ds/

WD I.j;�/1 .n/C I.j;�/2 .n/ :

Since 0 < ˛ � 1, we have

I.j;�/1 .n/ �
nX

iD1

1

n

Z

A
.�/
j

jf j˛ ı � i.s/m.ds/ D
Z

A
.�/
j

jf .s/j˛ m.ds/;

since the set A.�/m is �-invariant. Since f 2 L˛.m/, it follows from (9.94) that

lim
j!1 lim sup

n!1
I.j;�/1 .n/ D 0 : (9.95)

Suppose now that n > j. On the event .A.�/j /
c, one of the two sums

n�jX

iD1
f ı � i.s/ and

knX

iD.k�1/nC1
f ı � i.s/

has all terms not exceeding � in absolute value. Therefore,

I.j;�/2 .n/ � 1

n

Z

E

nX

iDn�jC1
jf j˛ ı � i.s/m.ds/

C 2

n

Z

E

nX

i1

jf j˛ ı � i.s/1
�jf j˛ ı � i.s/ � �

�
m.ds/

D j

n

Z

E
jf .s/j˛ m.ds/C 2

Z

E
jf .s/j˛1

�jf .s/j � �
�

m.ds/ :
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We conclude by (9.95) that for every � > 0,

lim sup
n!1

1

n

Z

E
min

0

@

ˇ̌
ˇ̌
ˇ

nX

iD1
f ı � i.s/

ˇ̌
ˇ̌
ˇ

˛

;

ˇ̌
ˇ
ˇ̌
ˇ

knX

iD.k�1/nC1
f ı � i.s/

ˇ̌
ˇ
ˇ̌
ˇ

˛1

A m.ds/

� 2

Z

E
jf .s/j˛1

�jf .s/j � �
�

m.ds/ :

Now the first statement in (9.92) follows by letting � ! 0. This completes the proof
of part (i) of the theorem.

We begin proving part (ii) by establishing the existence of the limit in (9.87).
Since the map � is dissipative, by part (ii) of Theorem 2.4.3 there exists a wandering
set W such that E D [1kD�1�k.W/ modulo a null set. We will prove that the limit
in (9.87) exists and is given by

b D
 Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛

: (9.96)

Notice that the assumption (9.89) guarantees that the expression on the right-hand
side of (9.96) is finite.

Suppose first that the function f is supported by finitely many translates of W.
That is, suppose that there are integers m1 < m2 such that

f .s/ D 0 m-a.e. on
�[m2

iDm1
� i.W/

�c
: (9.97)

We have

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ D
1X

iD�1

Z

�i.W/

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

D
1X

iD�1

Z

W

ˇ̌
ˇ
ˇ̌

nX

kD1
f ı �kCi.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/ D
1X

iD�1

Z

W

ˇ̌
ˇ
ˇ̌

iCnX

kDiC1
f ı �k.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/ :

It follows from (9.97) that if n > m2 � m1, then in the last sum above, the terms
corresponding to i D m2 � n;m2 � n C 1; : : : ;m1 � 1 are all equal to

Z

W

ˇ̌
ˇ
ˇ̌

m2X

kDm1

f ı � i.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/ D
Z

W

ˇ̌
ˇ
ˇ̌
1X

kD�1
f ı � i.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/ ;

while for i D m1;m1 C 1; : : : ;m2 � 1 and i D m1 � n;m1 � n C 1; : : : ;m2 � n � 1,
the corresponding terms do not exceed this quantity. We conclude that
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ˇ̌
ˇ̌
ˇ

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ � .n � m2 C m1 � 1/
Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
f ı � i.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

ˇ̌
ˇ̌
ˇ

� 2.m2 � m1/

Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
f ı � i.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ :

This clearly implies that the limit in (9.87) exists, and b is given by (9.96).
For an f not necessarily supported by finitely many translates of W, we define,

for j D 1; 2; : : :, fj D f 1.[j
iD�j�

i.W/. Clearly, each fj satisfies (9.97). We have

ˇ̌
ˇ̌
ˇ̌

 
1

n

Z

E

ˇ̌
ˇ
ˇ̌

nX

kD1
f ı �k.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/

!1=˛

�
 Z

W

ˇ̌
ˇ
ˇ̌
1X

kD�1
f ı �k.s/

ˇ̌
ˇ
ˇ̌

˛

m.ds/

!1=˛ ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌

 
1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛

�
 
1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
fj ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛ ˇ̌
ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
ˇ
ˇ

 
1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
fj ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛

�
 Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
fj ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛ ˇ̌
ˇ̌
ˇ
ˇ

C
ˇ̌
ˇ̌
ˇ
ˇ

 Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
fj ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛

�
 Z

W

ˇ̌
ˇ̌
ˇ

1X

kD�1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

!1=˛ ˇ̌
ˇ̌
ˇ
ˇ
:

Note that for each j, the middle term on the right-hand side converges to zero as
n ! 1, since the function fj satisfies (9.97). Furthermore, by the triangle inequality
in L˛.m/, the last term on the right-hand side can be bounded from above by

 Z

W

 1X

kD�1
jf � fjj ı �k.s/

!˛
m.ds/

!1=˛

:

Since jf �fjj is less than or equal to jf j and goes to zero as j ! 1, the last expression
converges to zero as j ! 1. Similarly, the first term on the right-hand side can be
bounded from above by

 
1

n

Z

E

 
nX

kD1
jf � fjj ı �k.s/

!˛
m.ds/

!1=˛

�
0

@1
n

Z

E

nX

kD1
jf � fjj ı �k.s/

 1X

iD�1
jf � fjj ı � i.s/

!˛�1
m.ds/

1

A

1=˛
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D
0

@
Z

E
jf � fjj

 1X

iD�1
jf � fjj ı � i.s/

!˛�1
m.ds/

1

A

1=˛

;

which, by (9.89), converges to zero as j ! 1. This proves that the limit in (9.87)
exists, and b is given by (9.96) in full generality.

In order to complete the proof of the theorem in the case 1 < ˛ < 2, one can use
an argument similar to the argument we used above in the case 0 < ˛ � 1. As in
the latter case, one needs to prove only that (9.92) holds. We leave the verification
to Exercise 9.10.16. �

Remark 9.6.2. Note that the expression (9.96) for the limiting scaling constant
b in (9.87) is valid for all 0 < ˛ < 2; see Exercise 9.10.15. As long as that
limiting scaling constant does not vanish, we should view the stationary S˛S process
satisfying the conditions of Theorem 9.6.1 as having short memory from the point
of view of the behavior of its partial sums. Notice that the theorem does not require
anything additional from the kernel f (besides the condition f 2 L˛.m/ necessary
for the process to be well defined) if 0 < ˛ � 1. Therefore, if ˛ is in that range,
the only possibility for a stationary S˛S process, corresponding to a dissipative map
�, to have long-range dependence as far as its partial sums are concerned, is the
possibility of cancellations resulting in the case b D 0. The situation is, therefore,
similar to that in Remark 9.5.6, where infinite-variance infinite-moving-average
processes were considered.

In the case 1 < ˛ < 2, the short-memory conclusion of Theorem 9.6.1 requires
a “size” condition (9.89) on the values of the function jf j over the trajectories of the
flow .�n/. In this sense, the situation is similar to our discussion of finite-variance
infinitely divisible processes in Section 9.4. Condition (9.89) may or may not hold
when the map � is dissipative, and when that condition does not hold, properly
normalized partial sums of the process may have a limit different from the ˛-stable
Lévy process as in (9.63). One example of this is the infinite-variance linear process
considered in Section 9.5. We have seen in Example 9.4.4 that when the noise
variables are infinitely divisible, then the linear process is itself infinitely divisible.
If the noise variables are S˛S, then the linear process is itself S˛S. Theorem 9.5.7
shows that in this case, the linear fractional symmetric stable motion can appear as
the limit. There exist, however, stationary S˛S processes with a dissipative map �
such that their normalized partial sums converge to other S˛S self-similar processes
with stationary increments.

Example 9.6.3. Dilated fractional stable motions This class of processes was
introduced in Pipiras and Taqqu (2002b). Let E D G�R�.0;1/, where .G;G/ is a
measurable space. We equip E with the product � -field. Let � be a � -finite measure
on .G;G/. If M is an S˛S random measure on E with modified control measure Qm
given by

Qm.dy; du; dx/ D �.dy/ du x�1 dx; .y; u; x/ 2 E ;
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and H > 0 is a number satisfying the restrictions (8.16) of Corollary 8.2.7, then
for a measurable function F W G � R ! R satisfying the appropriate integrability
condition, we can define

Y.t/ D
Z

G

Z

R

Z 1

0

x�.H�1=˛/
�
F.y; x.t C u// � F.y; xu/

�
M.dy; du; dx/ ; (9.98)

t 2 R. The integrability condition on F for the process Y to be well defined is

Z

G

Z

R

Z 1

0

x�˛H�1 ˇ̌F.y; x C u/ � F.y; u/
ˇ̌˛
�.dy/ du dx < 1 I (9.99)

see Example 3.3.8. Under this condition, the process Y is an S˛S process. Moreover,
for every k D 1; 2; : : :, real numbers t1; : : : ; tk, real numbers 
1; : : : ; 
k, and c > 0,
we have, by (3.55),

E exp

8
<

:
i

kX

jD1

jY.ctj/

9
=

;
(9.100)

D exp

8
<

:
�
Z

G

Z

R

Z 1

0

x�˛H

ˇ
ˇ̌
ˇ̌
ˇ

kX

jD1

j
�
F.y; x.ctj C u// � F.y; xu/

�
ˇ
ˇ̌
ˇ̌
ˇ

˛

�.dy/ du dx

9
=

;

D exp

8
<

:
�c˛H

Z

G

Z

R

Z 1

0

x�˛H

ˇ̌
ˇ̌
ˇ̌

kX

jD1

j
�
F.y; x.tj C u// � F.y; xu/

�
ˇ̌
ˇ̌
ˇ̌

˛

�.dy/ du dx

9
=

;

D E exp

8
<

:
i

kX

jD1
cH
jY.tj/

9
=

;
:

Therefore, the process Y is self-similar with exponent H. It is equally simple to
check that it has stationary increments. Therefore, the increment process Xn D
Y.n/�Y.n�1/, n 2 Z, is a stationary S˛S process. This process is of the form (9.37)
with

f .y; u; x/ D x�.H�1=˛/
�
F.y; xu// � F.y; x.u � 1//�; .y; u; x/ 2 E ;

and � W E ! E given by �.y; u; x/ D .y; u C 1; x/. This is a dissipative map,
since the set W D G � .0; 1� � R is wandering and E D [n�

n.W/. We saw in
Example 3.6.9 that the increment process of the linear fractional stable motion also
corresponds to a dissipative flow. Nonetheless, the two processes are different.

If X is the increment process of a dilated fractional stable motion, then according
to Proposition 9.2.6, its partial sums satisfy a functional central limit theorem (9.11).
The limit is, of course, the dilated fractional stable motion itself. This both tells us
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that the process X has long-range dependence from the point of view of the behavior
of its partial sums and shows that limits other than a linear fractional symmetric
stable motion can appear.

An example of a dilated fractional stable motion is the telecom process. It is
defined for 1 < ˛ < 2 and 1=˛ < H < 1. Here G D f0g is a singleton (with � a
unit point mass at the single element), and F.0; u/ D �

min.u; 0/C 1
�
C, u 2 R. We

leave checking the integrability condition to the reader (Exercise 9.10.17).

As in the finite-variance case of Section 9.4, a conservative map in (9.37) makes
it hard for a stationary infinitely divisible process to have short memory from the
point of view of the behavior of its partial sums. The following result goes in the
same direction as Proposition 9.4.5.

Proposition 9.6.4. Let X be a stationary S˛S process given by (9.37) with some
f 2 L˛.m/. Assume that the map � is conservative with respect to the measure m.

(i) Suppose that 0 < ˛ < 1. Then (9.87) holds with a zero limit, and hence
the normalized partial sums process on the left-hand side of (9.88) converges
weakly to the zero process.

(ii) Suppose that 1 < ˛ < 2. Assume that f � 0 m-a.e. on the set Ef in (9.42).
If m.Ef / > 0, then (9.87) holds with an infinite limit, and hence the finite-
dimensional distributions of the normalized partial sums process on the left-
hand side of (9.88) are not tight.

Proof. For both parts of the theorem, we may assume that Ef D E modulo a null
set. We begin with the case 0 < ˛ < 1. It is clearly enough to show that (9.87)
holds with a zero limit. If f D 0modulo a null set, then this is trivial, so assume that
m.Ef / > 0. For K D 1; 2; : : : and M > 0, define

BK;M D
(

s 2 S W
KX

kD�K

jf j ı �k.s/ � M

)

: (9.101)

As in the proof of Proposition 9.4.5, it follows from the fact that � is conservative
that (9.54) holds, so that

BK;M # ; as K ! 1 for every M > 0. (9.102)

Suppose first that the function f is bounded. Let M > 0 be a large number. Write

1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

D 1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

1

 
nX

kD1
jf j ı �k.s/ > M

!

m.ds/
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C 1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

1

 
nX

kD1
jf j ı �k.s/ � M

!

m.ds/

� M�.1�˛/
1

n

Z

E

nX

kD1
jf j ı �k.s/m.ds/

C 1

n

nX

jD1

Z

E
jf .s/j˛1

 
nX

kD1
jf j ı �k�j.s/ � M

!

m.ds/ :

Since we have assumed that f is bounded, the assumption f 2 L˛.m/ implies that
f 2 L1.m/, and the first term on the right-hand side is M�.1�˛/kf k1 ! 0 as M ! 1.
We now show that for every M > 0,

lim
n!1

1

n

nX

jD1

Z

E
jf .s/j˛1

 
nX

kD1
jf j ı �k�j.s/ � M

!

m.ds/ D 0 : (9.103)

To this end, let K D 1; 2; : : :. For n > 2K, we can write

1

n

nX

jD1

Z

E
jf .s/j˛1

 
nX

kD1
jf j ı �k�j.s/ � M

!

m.ds/

�2K

n

Z

E
jf .s/j˛ m.ds/C 1

n

n�KX

jDKC1

Z

E
jf .s/j˛1

 
KX

kD�K

jf j ı �k.s/ � M

!

m.ds/

!
Z

E
jf .s/j˛1 .s 2 BK;M/ m.ds/

as n ! 1. Since f 2 L˛.m/, we can let K ! 1 and use (9.102) to check
that (9.103) holds.

We have proved that (9.87) holds with a zero limit if the function f is bounded.
In the general case, for D > 0 we can write

1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/

� 1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f 1
�jf j � D

� ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/C 1

n

Z

E

ˇ̌
ˇ̌
ˇ

nX

kD1
f 1
�jf j > D

� ı �k.s/

ˇ̌
ˇ̌
ˇ

˛

m.ds/ :

Since the function f 1
�jf j � D

�
is bounded, the first term on the right-hand side

vanishes in the limit. Furthermore,

lim sup
n!1

1

n

Z

E

ˇ
ˇ̌
ˇ̌

nX

kD1
f 1
�jf j > D

� ı �k.s/

ˇ
ˇ̌
ˇ̌

˛

m.ds/ �
Z

E
jf .s/j˛1

�jf .s/j > D
�

m.ds/ ;
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which converges to zero as D ! 1. This completes the proof of part (i) of the
proposition.

The proof of part (ii) is similar to the proof of part (i) and is left to Exer-
cise 9.10.18. �

A variety of limits can be obtained in the functional central limit theorem
for partial sums of heavy-tailed stationary symmetric infinitely divisible processes
defined by (9.37) in which the map � is conservative. This variety is greater than for
the corresponding finite-variance processes because of the large number of different
S˛S self-similar processes with stationary increments. We finish this section by
demonstrating one such situation. We consider the partial sums of a heavy-tailed
version of a symmetric stationary infinitely divisible process defined by (9.37) in
which the representation corresponds to a null recurrent Markov chain of the setup
of Theorem 9.4.7. We will no longer assume that the process is S˛S. Instead, we
will assume that the tail of the Lévy measure 
 of the infinitely divisible random
measure M in (9.37) is regularly varying. The following theorem, which we state
without proof, shows that in this case, one obtains, as a limit, a process not yet seen
in the limit theorems of this section.

Theorem 9.6.5. Let X be a stationary symmetric infinitely divisible process given
in the form (9.37). Assume that the local Lévy measure 
 satisfies



�
.x;1/

�
is regularly varying with exponent �˛ 2 .�2; 0/ as x ! 1 (9.104)

and that for some 
 < 2,

x


�
.x;1/

� ! 0 as x ! 0.

Let E D Z
Z, and let m be a shift-invariant measure on E generated by an invariant

measure of an irreducible null recurrent Markov chain on Z given in (9.55), and
f the indicator function given by (9.56). Let � be the left shift on E. Assume that
the sequence P0.�1 > n/; n D 1; 2; : : :, is regularly varying with exponent �ˇ 2
.�1; 0/. Then the partial sums of the process X satisfy

�
c�1n Sn.t/; t � 0

� ) �
c˛;ˇY˛;ˇ.t/; t � 0

�
as n ! 1 (9.105)

in the Skorokhod J1 topology on DŒ0;1/, where Y˛;ˇ is the ˇ-Mittag-Leffler
fractional S˛S motion of Example 8.4.1. The normalizing sequence is given by

cn D 
 
�
.nP0.�1 > n//�1

�

P0.�1 > n/
; n D 1; 2; : : : ;

with


 .u/ D inf
˚
x > 0 W 
�.x;1/

� � u
�
; u > 0 :
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Furthermore,

c˛;ˇ D 	0
�.1 � ˇ/
.1 � ˇ/1=ˇ C1=˛

˛ ;

where C˛ is given by (3.31).

We refer the reader to Owada and Samorodnitsky (2015a) for a proof. We also
note that under the conditions of the theorem, the statement (9.85) holds, and hence
the marginal distributions of the process X are regularly varying with exponent
�˛ 2 .�2; 0/. See Exercise 9.10.19.

Remark 9.6.6. Since the limiting process in Theorem 9.6.5, the ˇ-Mittag-Leffler
fractional S˛S motion, is different from the S˛S Lévy motion in (9.63), the
symmetric stationary infinitely divisible process in the theorem should be regarded
as having long-range dependence from the point of view of the behavior of its
partial sums. It is also interesting to compare the effect of the tail of the first return
time of the Markov chain on the normalizing constant .cn/ in the theorem with
the analogous situation in the finite-variance case considered in Remark 9.4.8. The
sequence .cn/ is, of course, regularly varying with exponent .1 � ˇ/=˛ C ˇ, and
0 < ˇ < 1 describes how heavy the tail of the first return time �1 is. This exponent
is smaller than 1=˛ (recall that in the short-memory case, the exponent of regular
variation of the normalizing constants is equal to 1=˛) if 0 < ˛ < 1 and larger
than 1=˛ if 1 < ˛ < 2. In both cases, the exponent of regular variation of .cn/

approaches 1=˛ as ˇ ! 0, the Markov chain becomes closer to being transient, and
the left shift � on Z

Z becomes closer to being dissipative. It is also interesting to
note that in the case ˛ D 1, the exponent of regular variation of the sequence .cn/

is equal to 1 D 1=˛ regardless of the value of ˇ. In spite of this fact, we should
still view the process in Theorem 9.6.5 as being long-range dependent as far as its
partial sums are concerned, because the limiting process is different from the S˛S
Lévy motion. It is useful to recall at this point that the increment process of the
ˇ-Mittag-Leffler fractional S˛S motions is generated by a conservative flow, while
the increment process of the S˛S Lévy motion is generated by a dissipative flow.

9.7 Phase Transitions in Partial Maxima

In this section, we will address the question of long-range dependence by studying
the partial maxima of a stationary process and looking for possible phase transitions.
Both the notation and the approach are similar here and in our study of the partial
sums in Section 9.2. Let X D .Xn; n 2 Z/ be a stationary stochastic process. We
will use the notation

Mn D max.X1; : : : ;Xn/; n D 0; 1; 2; : : : (9.106)
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(with M0 D 0) for the sequence of partial sums of the process. We will introduce
certain assumptions on the marginal distributions of the process X and investigate
whether the behavior of the partial maxima is qualitatively different from the
behavior of the corresponding partial maxima of an i.i.d. sequence with the same
(or similar) marginal distributions. As in the case of the partial sums, by qualitative
difference we mean a change in the order of magnitude of the partial maxima, or a
different limit obtained in a limit theorem.

We would like to allow the partial maximum Mn of the process to have a chance
to become large as n becomes large. This requires assuming that the right endpoint
of the support of the distribution of X is infinite: P.X > x/ > 0 for all x 2 R. We
will consider two specific assumptions on the marginal distribution of the process
X. They are easiest to state in terms of the partial maxima of an i.i.d. sequence with
the same marginal distribution as X, so let . QXn; n 2 Z/ be an i.i.d. sequence such

that QX0 dD X0.

Assumption 9.7.1. Either

• for some positive sequences .an/ and .bn/ with bn ! 1 and bn=an ! 1 as
n ! 1,

P

�
1

an

�
max. QX1; : : : ; QXn/ � bn

� � x

�
! exp f�e�xg WD G0.x/ (9.107)

as n ! 1 for x 2 R, or
• for some ˛ > 0 and a positive sequence .an/ that is regularly varying with

exponent 1=˛,

P

�
1

an
max. QX1; : : : ; QXn/ � x

�
! exp f�x�˛g WD ˆ˛.x/ (9.108)

as n ! 1 for x > 0.

The limiting distribution G0 on the right-hand side of (9.107) is the standard
Gumbel distribution, and one-dimensional distributions (of QX) that satisfy (9.107)
are said to be in the maximum domain of attraction of the Gumbel distribution. The
limiting distribution ˆ˛ on the right-hand side of (9.108) is the standard Fréchet (or
˛-Fréchet) distribution, and distributions that satisfy (9.108) are said to be in the
maximum domain of attraction of the Fréchet distribution. Details on this and other
facts from the one-dimensional extreme value theory can be found, for example, in
deHaan and Ferreira (2006).

A necessary and sufficient condition for the distribution of a random variable X
to belong to the Gumbel domain of attraction is existence of a positive differentiable
function f with f 0.t/ ! 0 as t ! 1 such that

lim
t!1

P
�
X > t C xf .t/

�

P.X > t/
D e�x for all x 2 R. (9.109)
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Notice that (9.109) is satisfied by both the standard exponential distribution (f � 1)
and the standard normal distribution (f .t/ D 1=t). If the distribution of a random
variable X is in the Gumbel domain of attraction, and a function f satisfies (9.109)
for that random variable, then convergence in (9.107) holds with an D f .Qan/, bn D
Qan, where

Qan D inf
˚
x > 0 W P.X > x/ � 1=n

�
; n D 1; 2; : : : (9.110)

(this is the same sequence as in (9.62) in a different notation).
A necessary and sufficient condition for the distribution of a random variable X

to belong to the Fréchet domain of attraction is

the right tail P.X > t/ is regularly varying with exponent �˛. (9.111)

If the distribution of a random variable X is in the Fréchet domain of attraction, then
convergence in (9.108) holds with an given by (9.62).

Remark 9.7.2. The “size” of the partial maxima is one of the important characteris-
tics of a stationary process in which we will be interested when we study long-range
dependence. In this connection, it is important to note that under (9.107), the “size”
of the partial maxima is described by the sequence .bn/, while the sequence .an/

describes the second-order behavior of the partial maxima. On the other hand,
under (9.108), the “size” of the partial maxima is clearly given by the sequence
.an/.

As in the case of our discussion of phase transitions in the behavior of the partial
sums of stationary processes, we are also interested in functional limit theorems for
the partial maxima of stationary processes. Versions of the functional central limit
theorems (9.4) and (9.63) for partial maxima hold as long as one-dimensional limit
theorems of the type (9.107) and (9.108) hold. For a one-dimensional distribution F,
one can define a consistent system of finite-dimensional distributions on .0;1/ by

Ft1;t2;:::;tk.x1; x2; : : : ; xk/ (9.112)

D �
F
�
min.x1; x2; : : : ; xk/

��t1�F
�
min.x2; : : : ; xk/

��t2�t1
: : :
�
F.xk/

�tk�tk�1

for 0 < t1 < t2 < : : : < tk and real numbers x1; x2; : : : ; xk, so we can
define a stochastic process

�
YF.t/; t > 0

�
with finite-dimensional distributions

given by (9.112). This process is called an F-extremal process. It is continuous
in probability and has a version with nondecreasing sample paths that are right
continuous and have left limits; see Dwass (1964) and Resnick and Rubinovitch
(1973). If xL WD inffx 2 R W F.x/ > 0g > �1, then the domain of the F-extremal
process can be extended to t D 0 by setting YF.0/ D xL.

For a stationary process X, we define the nth partial maxima process by Mn.t/ D
MŒnt� for t � 0. It was shown in Lamperti (1964) that if X is an i.i.d. sequence
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and (9.107) holds (i.e., the marginal distribution of the process is in the Gumbel
domain of attraction), then as n ! 1,

�
1

an
.Mn.t/ � bn/; t > 0

�
) �

YG0 .t/; t > 0
�

(9.113)

weakly in the Skorokhod J1-topology on D.0;1/ (recall that the latter topology is
defined as the J1-topology on each compact subinterval of .0;1/). On the other
hand, if X is an i.i.d. sequence and (9.108) holds (i.e., the marginal distribution of
the process is in the ˛-Fréchet domain of attraction), then as n ! 1,

�
1

an
Mn.t/; t � 0

�
) �

Yˆ˛ .t/; t � 0
�

(9.114)

weakly in the Skorokhod J1-topology on DŒ0;1/.
When studying the behavior of the partial sums of stationary processes, we

looked for limits in a functional central limit theorem different from a Brownian
motion as in (9.4), or from an ˛-stable Lévy motion as in (9.63). The presence of
such a limit can be viewed as a phase transition, and hence it indicates long-range
dependence from the point of view of the behavior of the partial sums. Similarly,
when studying the behavior of the partial maxima of a stationary processes, we can
look at functional limit theorems for the maxima. The presence of a limit different
from an extremal process as in (9.113) or in (9.114) can be viewed as an indication of
long-range dependence from the point of view of the behavior of the partial maxima.

Let X D .Xn; n 2 Z/ be a stationary stochastic process, whose sequence .Mn/

of partial maxima we would like to study with the purpose of detecting possible
long-range dependence. We begin by describing a general phenomenon: the partial
maxima of a stationary process cannot grow faster than the partial maxima of an
i.i.d. sequence with the same marginal distributions. This phenomenon is similar
to what we observed in Proposition 9.5.1 for the partial sums of very heavy tailed
stationary processes.

Proposition 9.7.3. Let X D .X1;X2; : : :/ be a stochastic process with each Xi
dD X,

for some random variable X. Let Y D .Y1;Y2; : : :/ be a sequence of independent
copies of X. Let .an/ be a sequence of positive numbers. If

lim sup
n!1

P
�
max.X1;X2; : : : ;Xn/ > an

�
> 0; (9.115)

then also

lim sup
n!1

P
�
max.Y1;Y2; : : : ;Yn/ > an

�
> 0 : (9.116)
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Proof. We have

P
�
max.Y1;Y2; : : : ;Yn/ > an

� D 1 � �
1 � P.X > an/

�n

� 1 � exp f�nP.X > an/g
� 1 � exp

˚�P
�
max.X1;X2; : : : ;Xn/ > an

��
;

and (9.116) follows from (9.115). �

An immediate conclusion from Proposition 9.7.3 is that every deviation of the
rate of growth of the partial maxima of a stationary process from the rate of growth
of the partial maxima of the corresponding i.i.d. sequence (specified by an) must be
in the direction of a slower rate of growth. We will need to keep this in mind when
we investigate phase transitions between short and long memory from the point of
view of the behavior of the partial maxima.

In general, the boundary between short memory and long memory from the point
of view of the behavior of the partial maxima is different from the boundary between
short memory and long memory from the point of view of the behavior of the partial
sums. This point is already visible when we consider stationary Gaussian processes.

Let X D .Xn; n 2 Z/ be a zero-mean stationary Gaussian process with
covariance function RX . Recall that by Proposition 9.2.3, a necessary and sufficient
condition for the process to have short memory from the point of view of the
behavior of the partial sums is that the sequence .s2n/ of the variances of the partial
sums of the process be regularly varying with exponent 1. We will show now that
much weaker conditions imply short memory from the point of view of the behavior
of the partial maxima of a stationary Gaussian process. We begin with the following
result.

Proposition 9.7.4. Let X D .Xn; n 2 Z/ be a zero-mean unit-variance stationary
Gaussian process satisfying RX.n/ ! 0 as n ! 1. Then

1p
2 log n

Mn ! 1 in probability as n ! 1. (9.117)

Proof. Let .Yn; n D 1; 2; : : :/ be a sequence of i.i.d. standard normal random
variables, and set M.Y/

n D max.Y1; : : : ;Yn/ for n D 1; 2; : : :. The standard normal
random variable is in the Gumbel domain of attraction, it satisfies (9.107), and hence
as n ! 1,

1

bn
M.Y/

n ! 1

in probability. Since bn D Qan given by (9.110), we see that bn � p
2 log n as n ! 1,

and hence (9.117) holds for the i.i.d. sequence .Yn; n D 1; 2; : : :/ (i.e., with Mn

replaced by M.Y/
n ). We immediately conclude by Proposition 9.7.3 that as n ! 1,

P

�
1p
2 log n

Mn > 1C "

�
! 0
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for every " > 0. Therefore, it remains to prove that for every 0 < " < 1,

P

�
1p
2 log n

Mn > 1 � "
�

! 1 (9.118)

as n ! 1. To this end, for 0 < 
 < 1, let

k
 D inf
˚
k D 0; 1; 2; : : : W RX.m/ � 
 for all m � k

�
:

Since the covariance function is assumed to converge to zero, we see that k
 < 1
for all 0 < 
 < 1. Fix 0 < 
 < 2" � "2. We begin with an obvious observation that
for every x 2 R,

P.Mn > x/ � P

�
max

iD1;:::;bn=k
 c
Xik
 > x

�
:

By definition, the Gaussian vector
�
Xik
 ; i D 1; : : : ; bn=k
c

�
has a covariance

matrix will all off-diagonal terms not exceeding 
 . We now use the Slepian lemma
of Theorem 10.7.9. To this end, let Y0 be a standard normal random variable
independent of the i.i.d. sequence .Yn; n D 1; 2; : : :/. Note that the random vector

.1 � 
/1=2Yi C 
1=2Y0; i D 1; : : : ; bn=k
c

is a centered Gaussian random vector with unit variance and covariance matrix
whose off-diagonal elements equal 
 . By the Slepian lemma,

P

�
1p
2 log n

Mn > 1 � "
�

� P

�
1p
2 log n

max
iD1;:::;bn=k
 c

Xik
 > 1 � "
�

� P

�
1p
2 log n

�

1=2Y0 C .1 � 
/1=2M.Y/

bn=k
 c
�
> 1 � "

�
! 1

as n ! 1, since (9.117) holds for the i.i.d. sequence .Yn; n D 1; 2; : : :/ and by the
choice of 
 . Therefore, (9.118) holds, and the proposition has been proved. �

Remark 9.7.5. We see that the size of the partial maxima of a stationary Gaussian
sequence is exactly the same as that of the partial maxima of an i.i.d. Gaussian
sequence, as long as the covariance function of the Gaussian sequence converges
to zero as the lag goes to infinity. Therefore, it is reasonable to say that every
stationary Gaussian process whose covariance function asymptotically vanishes has
short memory from the point of view of the behavior of the partial maxima. Recall,
on the other hand, that certain stationary Gaussian processes with an asymptotically
vanishing covariance function should be viewed as long-range dependent as far as
the behavior of their partial sums is concerned; see, for example, Proposition 9.2.4.
This provides examples of processes that have long-range dependence from the
point of view of partial sums but not partial maxima.
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It turns out that just slightly stronger assumptions on a stationary Gaussian
process ensure even greater similarity between the behavior of its partial maxima
and the behavior of those of an i.i.d. Gaussian sequence. This is the message of the
following result, which we present without proof, which can be found in Berman
(1964). Recall that the standard normal satisfies (9.107), where we can choose

an D .2 log n/�1=2; (9.119)

bn D .2 log n/1=2 � 1

2
.2 log n/�1=2

�
log log n C log 4	

�
; n � 2 I

see Exercise 9.10.20.

Proposition 9.7.6. Let X D .Xn; n 2 Z/ be a zero-mean unit-variance stationary
Gaussian process satisfying RX.n/ log n ! 0 as n ! 1. Then with the sequences
.an/ and .bn/ given in (9.119), we have

P

�
1

an
.Mn � bn/ � x

�
! exp f�e�xg (9.120)

as n ! 1 for x 2 R.

Remark 9.7.7. We see that as long as the covariance function of a stationary
Gaussian process converges to zero faster than .log n/�1, the asymptotic behavior
of its partial maxima is nearly unchanged from the case of an i.i.d. Gaussian
sequence. The situation is, of course, very different if we consider the behavior
of the partial sums instead. This shows that the boundary between short memory
and long memory for stationary Gaussian processes is very different if we look at
the behavior of the partial sums of the process from what we see if we look at the
behavior of the partial maxima of the process.

9.8 Partial Maxima of Stationary Stable Processes

The phenomenon described in Remark 9.7.7 occurs in other families of stationary
processes. In order to observe this phenomenon in the case of heavy tails, we will
consider, as in Section 9.6, stationary S˛S processes given in the form (9.37). We
will see that for these processes, the boundary between short memory and long
memory from the point of view of the behavior of the partial maxima is also different
from the boundary between short memory and long memory from the point of view
of the behavior of the partial sums. Specifically, from the point of view of the partial
maxima, the length of memory turns out to be determined exclusively by whether the
map � in (9.37) is dissipative or conservative. In comparison, we saw in Section 9.6
that while whether the map � is dissipative or conservative is also relevant for the
length of memory from the point of view of the partial sums, the properties of the
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kernel f play a role as well, particularly in the case 1 < ˛ < 2. The properties of the
kernel play no role in the behavior of the partial maxima.

Recall that an S˛S random variable is in the maximum domain of attraction of
the Fréchet distribution. Moreover, the normalizing constants .an/ in (9.108) can
be taken to be proportional to n1=˛ . Specifically, if an S˛S random variable is an
observation of an S˛S process given by (9.37), then one can take an D n1=˛kf k˛ .
The next theorem shows that if the map � in (9.37) is dissipative, then the S˛S
process has short memory from the point of view of the behavior of the partial
maxima.

Theorem 9.8.1. Let X be a stationary S˛S process given by (9.37) with some f 2
L˛.m/. Suppose that the map � is dissipative with respect to the measure m.

(i) Let W be a wandering set such that E D [1kD�1�k.W/ modulo a null set. Then

lim
n!1

1

n

Z

E

�
max

kD1;:::;n f ˛C ı �k.s/

�
m.ds/

D
Z

W

�
sup
k2Z

f ˛C ı �k.s/

�
m.ds/ 2 Œ0;1/ : (9.121)

(ii) Denote by mC.f / the limit in (9.121), and define

m˙.f / D 1

2

�
mC.f /C mC.�f /

�
:

Then

�
n�1=˛Mn.t/; t � 0

� )
��

m˙.f /
�1=˛

Yˆ˛ .t/; t � 0
�

as n ! 1 (9.122)

in the sense of convergence of finite-dimensional distributions, where Yˆ˛ is the
extremal process corresponding to the standard Fréchet distribution.

Proof. For part (i), we begin by noticing that the expression in (9.121) is finite,
because f 2 L˛.m/. The proof of (9.121) is very similar to the proof of (9.96) in
Theorem 9.6.1. We leave checking the details to Exercise 9.10.21.

In order to prove the convergence in (9.122), we have to prove that for every
k D 1; 2; : : : and 0 D t0 < t1 < : : : < tk,

�
n�1=˛ max

ntj�1<i�ntj
Xi; j D 1; : : : ; k

�
(9.123)

)
��

m˙.f /
�1=˛

.tj � tj�1/1=˛ Yj; j D 1; : : : ; k
�

as n ! 1, where Y1; : : : ;Yk on the right-hand side are i.i.d. standard Fréchet
random variables. It is not hard to notice that it is enough to prove that (9.123)
holds if tj D j; j D 1; : : : ; k. Indeed, if (9.123) holds for tj D j; j D 1; : : : ; k, then it
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also holds for all choices of .tj/ that are nonnegative integers. This will then imply
just by a change of notation that (9.123) holds for .tj/ that are nonnegative rational
numbers, and then, using the obvious approximation, for all 0 D t0 < t1 < : : : < tk.

We will prove now (9.123) with tj D j; j D 1; : : : ; k. We begin by assuming
that the function f is supported by finitely many translates of W, i.e., by assuming
that (9.97) holds for some m2 D �m1 D 1; 2; : : :. Write

Xi D
�m2�1X

dDm2�nk

Z

�d.W/
f ı � i.s/M.ds/

C
"

m2�nk�1X

dD�m2�nk

Z

�d.W/
f ı � i.s/M.ds/C

m2�1X

dD�m2

Z

�d.W/
f ı � i.s/M.ds/

#

;

i D 1; : : : ; nk. Define

Zi;d D
Z

�d.W/
f ı � i.s/M.ds/; i; d 2 Z :

The claim (9.123) with tj D j; j D 1; : : : ; k, will follow once we prove the following
two statements. As n ! 1,

 

n�1=˛ max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d; j D 1; : : : ; k

!

(9.124)

)
��

m˙.f /
�1=˛

Yj; j D 1; : : : ; k
�
;

n�1=˛ max
0<i�n

m2�n�1X

dD�m2�n

Zi;d ! 0; n�1=˛ max
0<i�n

m2�1X

dD�m2

Zi;d ! 0 : (9.125)

We will begin with the first claim in (9.125). For �m2 � n � d � m2 � n � 1, let
Id D Œ1; : : : ; n� \ Œ�m2 � d; : : : ;m2 � d�. Note that Id contains at most 2m2 C 1

integers, and Zi;d D 0 for i D 1; : : : ; n unless i 2 Id. Therefore,

ˇ
ˇ̌
ˇ̌max
0<i�n

m2�n�1X

dD�m2�n

Zi;d

ˇ
ˇ̌
ˇ̌ �

m2�n�1X

dD�m2�n

max
0<i�n

jZi;dj (9.126)

is bounded by a sum of at most 2m2.2m2C1/ random variables each of which is the
absolute value of an S˛S random variable with the scale not exceeding kf k˛ . This
clearly establishes the first claim in (9.125), and the second claim can be proved in
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the same way. It remains, therefore, to prove (9.124), and to do so, we will prove
that for every x1 > 0; : : : ; xj > 0,

lim
n!1P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d � n1=˛xj; j D 1; : : : ; k

!

D exp

8
<

:
�m˙.f /

kX

jD1
x�˛j

9
=

;
; (9.127)

and the first step toward doing so is to prove that

lim
n!1P

�
max

n.j�1/<i�nj
Zi;d � n1=˛xj; j D 1; : : : ; k; d D m2 � nk; : : : ;�m2 � 1

�

D exp

8
<

:
�m˙.f /

kX

jD1
x�˛j

9
=

;
: (9.128)

Since the set W is wandering, the sets �d.W/ are disjoint for different d. Therefore,
the stochastic processes

�
Zi;d; i 2 Z

�
, d 2 Z, are independent. We conclude that the

probability on the left-hand side of (9.128) is equal to

�m2�1Y

dDm2�nk

P

�
max

n.j�1/<i�nj
Zi;d � n1=˛xj; j D 1; : : : ; k

�

D
�m2�1Y

dDm2�nk

P

�
max

n.j�1/<i�nj
ZiCd;0 � n1=˛xj; j D 1; : : : ; k

�
;

with the last step following from the fact that the control measure m of the S˛S
random measure M is preserved under the map �. Since (9.97) is assumed to hold,
we know that Zi;0 D 0 for jij > m2. Set

Dn D fm2 � nk; : : : ;�m2 � 1g n
k[

jD1
fm2 � nj; : : : ;�m2 � 1 � n.j � 1/g

and notice that the set Dn has 2m2k elements. Furthermore, for all j D 1; : : : ; k and
d 2 fm2 � nj; : : : ;�m2 � 1� n.j � 1/g, all such i that ji C dj � m2 are in the interval
n.j � 1/ < i � nj. We conclude that the probability on the left-hand side of (9.128)
can be written in the form

kY

jD1

�
P

�
max
jij�m2

Zi;0 � n1=˛xj

��n�2m2

Y

d2Dn

P

�
max

n.j�1/<i�nj
ZiCd;0 � n1=˛xj; j D 1; : : : ; k

�
:
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Note that the second product above converges to 1 as n ! 1, since the number
of terms in the product is constant, and each probability in that product cannot be
smaller than the probability

P

�
max
jij�m2

Zi;0 � n1=˛ min
jD1;:::;k xj

�
;

which converges to 1 as n ! 1. Therefore, in order to prove (9.128), it is enough
to check that

lim
x!1 x˛P

�
max
jij�m2

Zi;0 > x

�
D m˙.f / :

This, however, is also a special case of equivalence results between the tails of
functionals of infinitely divisible processes and the corresponding tails with respect
to the Lévy measure of Rosiński and Samorodnitsky (1993). Therefore, (9.128)
follows.

The second ingredient for the proof of (9.127) is the claim that for every " > 0,

lim
n!1P

�
for some i D 1; : : : ; nk, Zi;d > n1=˛"

for more than one d
�

D 0 : (9.129)

This follows immediately by noticing that the probability in (9.129) does not exceed

nkX

iD1
P
�

Zi;d > n1=˛" for more than one d
�

D nk P
�

Z0;d > n1=˛" for more than one d
�

D nk P
�

Z0;d > n1=˛" for at least 2 different d 2 f�m2; : : : ;m2g
�

� nk

 
2m2 C 1

2

!

max
d2f�m2;:::;m2g

�
P
�

Z0;d > n1=˛"
��2 ! 0

as n ! 1, where we have taken into account the fact that Z0;d D 0 for jdj > 2m2.
Let 
 > 0 be a small number (smaller than minj xj), and let " > 0 be an even

smaller number. Define the event

Bn;
;" D
n

max
n.j�1/<i�nj

Zi;d � n1=˛.xj � 
/; j D 1; : : : ; k; d D m2 � nk; : : : ;�m2 � 1;

and for each i D 1; : : : ; nk, Zi;d > n1=˛" for at most one d
o
:
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It follows from (9.129) that

P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

!

(9.130)

� P

�
max

n.j�1/<i�nj
Zi;d > n1=˛.xj � 
/ for some j D 1; : : : ; k;

C P

 	
max

n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

�
\ Bn;
;"

!

:

Note that on the event described in the second term on the right-hand side of (9.130),
we necessarily have

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d1
�
0 � Zi;d � n1=˛"

�
> n1=˛
 for some j D 1; : : : ; k :

Therefore, by (9.128),

lim sup
n!1

P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

!

� 1 � exp

8
<

:
�m˙.f /

kX

jD1
.xj � 
/�˛

9
=

;

C lim sup
n!1

P

 

max
iD1;:::;nk

�m2�1X

dDm2�nk

Zi;d1
�
0 � Zi;d � n1=˛"

�
> n1=˛


!

:

The last term above does not exceed

nk P

 
m2X

dD�m2

Z0;d1
�
0 � Z0;d � n1=˛"

�
> n1=˛


!

� nk
m2X

dD�m2

P
�

Z0;d1
�
0 � Z0;d � n1=˛"

�
> n1=˛
=.2m2 C 1/

�

� n1�2=˛
k.2m2 C 1/˛


˛

m2X

dD�m2

E
�

Z20;d1
�
0 � Z0;d � n1=˛"

��

� n1�2=˛
k.2m2 C 1/˛


˛

m2X

dD�m2

˛

2 � ˛
�
n1=˛"

�2
P
�
Z0;d > n1=˛"

�

! ck;m2

�˛"2�˛ ;
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where ck;m2 is a constant depending only on k and m2. In this computation we used
Proposition 4.2.3 to estimate a truncated second moment of an S˛S random variable.
Therefore,

lim sup
n!1

P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

!

� 1 � exp

8
<

:
�m˙.f /

kX

jD1
.xj � 
/�˛

9
=

;
C ck;m2


�˛"2�˛ :

Letting first " ! 0 and then 
 ! 0 shows that

lim sup
n!1

P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

!

� 1 � exp

8
<

:
�m˙.f /

kX

jD1
x�˛j

9
=

;
:

The matching lower bound,

lim inf
n!1 P

 

max
n.j�1/<i�nj

�m2�1X

dDm2�nk

Zi;d > n1=˛xj for some j D 1; : : : ; k

!

� 1 � exp

8
<

:
�m˙.f /

kX

jD1
x�˛j

9
=

;
; (9.131)

can be proved in essentially the same way. We leave the details to Exercise 9.10.22.
This proves (9.124), and hence we have established (9.123) (with tj D j; j D
1; : : : ; k) in the case that the function f is supported by finitely many translates
of W.

In the case of a general f 2 L˛.m/, we define for m2 D 1; 2; : : : a function in
L˛.m/ that satisfies (9.97) by fm2 D f 1.[m2

iD�m2
� i.W//. Notice that kf � fm2k˛ ! 0

as m2 ! 1. With the same S˛S random measure M as in (9.37) that defined the
process X, we define a new stationary S˛S process by

X.m2/n D
Z

E
fm2 ı �n.s/M.ds/; n 2 Z :
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Let 0 < " < 1. Obviously,

P

�
n�1=˛ max

n.j�1/<i�nj
X.m2/i > xj.1C "/ for some j D 1; : : : ; k

�

� P

�
n�1=˛ max

n.j�1/<i�nj

�
X.m2/i � Xi

�
> xj" for some j D 1; : : : ; k

�

� P

�
n�1=˛ max

n.j�1/<i�nj
Xi > xj for some j D 1; : : : ; k

�

� P

�
n�1=˛ max

n.j�1/<i�nj
X.m2/i > xj.1 � "/ for some j D 1; : : : ; k

�

C P

�
n�1=˛ max

n.j�1/<i�nj

�
Xi � X.m2/i

�
> xj" for some j D 1; : : : ; k

�
:

Since m˙
�
fm2
� ! m˙.f / as m2 ! 1 by the monotone convergence theo-

rem, (9.123) (with tj D j; j D 1; : : : ; k) will follow once we prove that for every
0 < " < 1,

lim
m2!1

lim sup
n!1

P

�
n�1=˛ max

n.j�1/<i�nj

ˇ̌
Xi � X.m2/i

ˇ̌
> xj" for some j D 1; : : : ; k

�
D 0 :

However, the probability above does not exceed

P

�
max
1�i�nk

ˇ̌
Xi � X.m2/i

ˇ̌
> n1=˛ min

jD1;:::;k xj"

�

�
nkX

iD1
P
�ˇ̌

Xi � X.m2/i

ˇ̌
> n1=˛ min

jD1;:::;k xj"
�
:

As n ! 1, this bound converges to

k
�

min
jD1;:::;k xj"

��˛kf � fm2k˛˛ ;

and this expression converges to 0 as m2 ! 1. Therefore, the proof of the theorem
is complete. �

Theorem 9.8.1 says that from the point of view of the partial maxima, all
stationary S˛S processes of the form (9.37) with a dissipative map � have short
memory. We show next that if the map � is conservative, then the S˛S process
has long memory from the point of view of the partial maxima. Recall that by
Proposition 9.7.3, long-range dependence can result only in a slower rate of increase
of the partial maxima.
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Theorem 9.8.2. Let X be a stationary S˛S process given by (9.37) with some f 2
L˛.m/. Suppose that the map � is conservative with respect to the measure m. Then

n�1=˛ max
iD1;:::;n jXij ! 0 in probability (9.132)

as n ! 1.

Proof. We begin with the case that f is an indicator function. Let A 2 E , with
0 < m.A/ < 1, and let f D 1A. Define

Bn D [n
iD1��i.A/; n D 1; 2; : : : :

We claim that

lim
n!1

1

n
m.Bn/ D 0 : (9.133)

To see this, let

Ak D ˚
x 2 E W �k.x/ 2 A; � j.x/ … A; j D 1; : : : ; k � 1�; k D 1; 2; : : : :

Since these sets are disjoint and Bn D [n
kD1Ak, we need to show only that

lim
k!1m.Ak/ D 0 : (9.134)

Let  W E ! E be the inverse map,  D ��1. Clearly,  is conservative if � is.
Since � and  preserve the measure m, we have m.Ak/ D m. QAk/, where

QAk D ˚
x 2 A W  i.x/ … A; i D 1; : : : ; k � 1� :

However, since  is a conservative map, it follows by Exercise 2.6.12 that QAk # ;
modulo a null set. Since QAk 	 A for all k, we conclude that m. QAk/ ! 0 as k ! 1,
and so (9.134) follows.

Set QMn D maxiD1;:::;n jXij, n D 1; 2; : : :. For " > 0, we write

P
� QMn > "n

1=˛
� D

nX

kD1
P
�
jXkj > "n1=˛; jXij � "n1=˛; i D 1; : : : ; k � 1

�
:

Since f D 1A, we know that Xk D M
�
��k.A/

�
, k D 1; : : : ; n, and we can write for

k D 1; : : : ; n,

P
�
jXkj > "n1=˛; jXij � "n1=˛; i D 1; : : : ; k � 1

�

D P
�
jXkj > "n1=˛; jXij � "n1=˛; i D 1; : : : ; k � 1;
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ˇ̌
M
�
Bk�1 n ��k.A/

�ˇ̌ � "n1=˛=3;
ˇ̌
M
�
Bn n Bk

�ˇ̌ � "n1=˛=3
�

C P
�
jXkj > "n1=˛; jXij � "n1=˛; i D 1; : : : ; k � 1;
ˇ
ˇM
�
Bk�1 n ��k.A/

�ˇˇ > "n1=˛=3 or
ˇ
ˇM
�
Bn n Bk

�ˇˇ > "n1=˛=3
�

WD p1;k;n C p2;k;n :

Since the S˛S random measure M assigns independent values to disjoint sets, it
follows that

p2;k;n �P
�ˇ̌

M
�
��k.A/

�ˇ̌
> "n1=˛

�
P
�ˇ̌

M
�
Bk�1 n ��k.A/

�ˇ̌
> "n1=˛=3

�

CP
�ˇ̌

M
�
��k.A/

�ˇ̌
> "n1=˛

�
P
�ˇ̌

M
�
Bn n Bk

�ˇ̌
> "n1=˛=3

�

� 2P
�jX1j > "n1=˛

�
P
�jM.Bn/j > "n1=˛=3

�
;

and hence

nX

kD1
p2;k;n �2nP

�jX1j > "n1=˛
�
P
�jM.Bn/j > "n1=˛=3

�

�2n
�
"�˛n�1m.A/

� ��
"=3

��˛
n�1m.Bn/

�

! 0

as n ! 1 by (9.133). On the other hand,

p1;k;n � P
�
jXkj > "n1=˛; jXij � "n1=˛; i D 1; : : : ; k � 1; jM.Bn/j > "n1=˛=3

�
;

and hence

nX

kD1
p1;k;n � P

�jM.Bn/j > "n1=˛=3
�

� �
"=3

��˛
n�1m.Bn/ ! 0

as n ! 1, once again by (9.133). Therefore,

P
� QMn > "n

1=˛
� ! 0

as n ! 1 for every " > 0. That is, we have proved (9.132) in the case that f is an
indicator function.
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If the function f is a simple function of the type f D Pk
1 aj1Aj , with ai 2 R and

0 < m.Aj/ < 1 for j D 1; : : : ; k, then by the linearity of the integral,

max
iD1;:::;n jXij D max

iD1;:::;n

ˇ̌
ˇ̌
ˇ̌

kX

jD1
aj

Z

E
1Aj ı � i.s/M.ds/

ˇ̌
ˇ̌
ˇ̌

�
kX

jD1
jajj max

iD1;:::;n

ˇ
ˇ̌
ˇ

Z

E
1Aj ı � i.s/M.ds/

ˇ
ˇ̌
ˇ ;

and hence (9.132) follows from its validity in the case that f is an indicator function.
Finally, in the case of a general f 2 L˛.m/, for every ı > 0 we can find a simple

function fı as above with kf � fık˛ � ı. Then for every " > 0,

lim sup
n!1

P
�

max
iD1;:::;n jXij > "n1=˛

�

� lim sup
n!1

P

�
max

iD1;:::;n

ˇ̌
ˇ̌
Z

E
fı ı � i.s/M.ds/

ˇ̌
ˇ̌ > "n1=˛=2

�

C lim sup
n!1

P

�
max

iD1;:::;n

ˇ̌
ˇ̌
Z

E
.f � fı/ ı � i.s/M.ds/

ˇ̌
ˇ̌ > "n1=˛=2

�

D lim sup
n!1

P

�
max

iD1;:::;n

ˇ
ˇ̌
ˇ

Z

E
.f � fı/ ı � i.s/M.ds/

ˇ
ˇ̌
ˇ > "n

1=˛=2

�
;

since (9.132) holds when f is a simple function. Since the probability in the last line
does not exceed

nX

iD1
P

�ˇ̌
ˇ̌
Z

E
.f � fı/ ı � i.s/M.ds/

ˇ̌
ˇ̌ > "n1=˛=2

�
;

we conclude that

lim sup
n!1

P
�

max
iD1;:::;n jXij > "n1=˛

�

� n
�
."=2/�˛n�1kf � fık˛˛

� � ."=2/�˛ı˛ ;

and we obtain (9.132) by letting ı ! 0. �

Remark 9.8.3. Theorems 9.8.1 and 9.8.2 provide a clear classification of stationary
S˛S processes into those with short memory according to the behavior of the partial
maxima and those with long-range dependence in the same sense. Indeed, if X is
a stationary S˛S process given by (9.37) with some f 2 L˛.m/, then X has long-
range dependence according to the behavior of the partial maxima if and only if the
dissipative part in the Hopf decomposition of the map � (i.e., the dissipative part
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of �) vanishes. To see this, note that we can write

Xn D X.d/n C X.c/n ; n 2 Z ;

where X.d/ and X.c/ are two independent stationary processes, the former corre-
sponding to a dissipative map, and the latter corresponding to a conservative map. If
the dissipative part of � does not vanish, then the process X.d/ is a nonzero process,
and it follows from Theorems 9.8.1 and 9.8.2 that

�
n�1=˛Mn.t/; t � 0

� )
��

m˙.f /
�1=˛

Yˆ˛ .t/; t � 0
�

as n ! 1

in the sense of convergence of finite-dimensional distributions, where Yˆ˛ is the
extremal process corresponding to the standard Fréchet distribution. Here m˙.f / is
as in Theorem 9.8.1, but now [1kD�1�k.W/ D D.�/. On the other hand, if the
dissipative part of � does vanish, then the process X corresponds to a conservative
map, and Theorem 9.8.2 applies. In this case, the partial maxima grow at a rate
strictly lower than the rate of n1=˛ , which is an indication of long-range dependence
with respect to the partial maxima.

It is important to consider for a moment what happens when both the dissipative
part of � and the conservative part of � do not vanish. In that case, both processes
X.d/ and X.c/ are nontrivial stationary S˛S processes. Our discussion in this section
shows that the process X.d/ has short memory with respect to the behavior of the
partial maxima, while the process X.c/ has long memory. In this situation, the
process X, which is the sum of X.d/ and X.c/, still has short memory with respect to
the behavior of the partial maxima, even though it may be counterintuitive that the
long memory of the process X.c/ disappears in the sum.

We will demonstrate what limits may be obtained for partial maxima of stationary
S˛S processes defined by (9.37) in which the map � is conservative by considering
the partial maxima of a stationary S˛S process with a representation in (9.37) given,
once again, by the null recurrent Markov chain of the setup of Theorem 9.4.7. In the
next theorem, which we do not prove, the limit is no longer the extremal process
corresponding to the Fréchet distribution. However, the marginal distributions of
the limiting process are still Fréchet.

Theorem 9.8.4. Let X be a stationary S˛S process given in the form (9.37), with
E D Z

Z, m a shift-invariant measure on E generated by an invariant measure of an
irreducible null recurrent Markov chain on Z given in (9.55), and f the indicator
function given by (9.56). Let � be the left shift on E. Assume that the sequence
P0.�1 > n/; n D 1; 2; : : :, is regularly varying with exponent �ˇ 2 .�1=2; 0/. Then
the partial maxima of the process X satisfy

�
b�1n Mn.t/; t � 0

� ) �
C1=˛
˛ Yˆ˛

�
t1�ˇ

�
; t � 0

�
as n ! 1 (9.135)
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in the Skorokhod J1 topology on DŒ0;1/, where Yˆ˛ is the extremal process
corresponding to the standard Fréchet distribution. Here C˛ is given by (3.31), and
the normalizing sequence satisfies

b1=˛n D
X

i2Z
	iPi.�1 � n/; n D 1; 2; : : : ;

with .	i/ being the invariant law of the Markov chain defining the measure m. It is
regularly varying with exponent .1 � ˇ/=˛.

We refer the reader to Owada and Samorodnitsky (2015b) for a proof. Note that
the assumptions of Theorem 9.8.4 restrict the parameter ˇ to the subinterval .0; 1=2/
of the full interval .0; 1/ allowed both in Theorem 9.4.7 and in Theorem 9.6.5.

9.9 Comments on Chapter 9

Comments on Section 9.1
The phase transition approach to long-range dependence was proposed in

Samorodnitsky (2004).

Comments on Section 9.2
The classical invariance principle for a sequence of i.i.d. random variables with

finite variance was proved in Donsker (1951).
For general stationary processes with a finite variance, drawing a precise

boundary between short and long memory, as far as the behavior of the partial
sums is concerned, is not easy. A number of results have been proved establishing
functional central limit theorems with a Brownian limit under various strong mixing
conditions. This is the source of common association between strong mixing and
short memory. The following result is in Merlevéde et al. (2006), Proposition 34.

Theorem 9.9.1. Assume that X is a zero-mean strongly mixing process such that
EjX0jp < 1 for some p > 2, and (9.7) holds. If the variance of the partial sums
satisfies sn ! 1 as n ! 1, then

�
s�1n Sn.t/; t � 0

� ) �
B.t/; t � 0

�
as n ! 1

weakly in the Skorokhod J1 topology on DŒ0;1/.

It follows from Theorem 8.1.5 that the sequence .sn/ in Theorem 9.9.1 must
be regularly varying with exponent 1=2. Because of this and the Brownian limit,
we should view a process satisfying the assumptions of Theorem 9.9.1 as having
short memory. Under certain strong mixing conditions (some of which are stronger
than the mixing conditions considered in Section 2.3), one can get rid of the extra
moment assumption in Theorem 9.9.1, and the sequence .s2n/ of the variances of the
partial sums grows linearly, so that (9.4) holds. See Peligrad (1998) and Bradley
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(1993) for a discussion of the so-called interlaced strongly mixing condition. For
a stationary Gaussian process to be strongly mixing, it is necessary that its spectral
measure be absolutely continuous with respect to the Lebesgue measure on .�	; 	�.
If the spectral density (i.e., the derivative of the spectral measure with respect to
the Lebesgue measure on .�	; 	�) is continuous and positive, then the process
is interlaced strong mixing (see Kolmogorov and Rozanov (1960) and Rosenblatt
(1985)).

An interesting phase transition phenomenon was discovered in a series of papers
published in the 1970s and 1980s treating the partial sums of stationary processes of
the type considered in Section 6.3. Recall that those are stationary processes of the
type Yn D g.Xn/; n D 1; 2; : : :, where X is a stationary centered Gaussian process
with unit variance, and g W R ! R is a measurable function such that Eg.Xn/

2 < 1.
Let kg be the Hermite index of g; assume it to be finite. Let RX be the covariance
function of the Gaussian process X. It was proved in Breuer and Major (1983) that
if

1X

nD0
jRX.n/jkg < 1 ; (9.136)

then (9.4) holds (in terms of convergence of the finite-dimensional distributions)
with some � � 0. If (9.136) holds and � > 0, then the process Y has short memory
with respect to the behavior of its partial sums.

On the other hand, suppose that the covariance function RX is regularly varying,
i.e., that (6.9) holds with �1 < d < 0. The following result was proved (separately)
in Dobrushin and Major (1979) and in Taqqu (1979). Assume that

kg < �1
d
: (9.137)

Then the partial sum process of the stationary process Y satisfies

�
1

nRX.n/kg=2
Sn.t/; t � 0

�
) �

�Z.t/; t � 0
�
;

as n ! 1, in terms of convergence of the finite-dimensional distributions, where
� > 0 and Z is the self-similar process with stationary increments corresponding
to the Taqqu kernel of Example 8.3.3 with H D 1 � dkg=2. That is, under the
assumption of the regular variation of RX and condition (9.137), the process Y has
long-range dependence with respect to the behavior of its partial sums.

Comments on Section 9.3
A setup that is supposed to contain finite-variance infinite-moving-average

processes with both Brownian and non-Brownian limits in the functional central
limit theorem situation is in Davydov (1970). Functional limit theorems with
Brownian limits for such processes were subsequently derived a number of times,
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in situations in which the noise process ."n; n 2 Z/ is not necessarily an i.i.d.
sequence but may be a more general process, often a martingale difference (see,
e.g., Hannan (1979), Merlevéde and Peligrad (2006), and Merlevéde et al. (2006)),
under conditions that are sometimes weaker than the summability of the coefficients
(9.14). On the long-memory side, a functional central limit theorem under the
regular variation assumption (9.22) with ˇ 2 .�1;�1=2/, for one-sided infinite
moving averages, was proven in Peligrad and Sang (2012) (this theorem even allows
an infinite second moment of the noise variables, as long as the truncated second
moment is slowly varying).

Comments on Section 9.5
Rigorous topological convergence in the heavy-tailed invariance principle (9.63)

was established in Skorohod (1957). Extending convergence in Theorem 9.5.5 to
weak convergence in DŒ0;1/ requires additional assumptions on the coefficients of
the moving-average process. If more than one of the coefficients is different from
zero (i.e., if the process X is not an i.i.d. sequence), then weak convergence in the
J1 topology on DŒ0;1/ is impossible, as was shown in Avram and Taqqu (1992),
in which it was also shown that if the coefficients are nonnegative and only finitely
many of them are different from zero, then convergence in Theorem 9.5.5 holds
as weak convergence in DŒ0;1/ with the Skorokhod M1 topology. The fact that
M1 weak convergence holds even if infinitely many coefficients are different from
zero (but all are still nonnegative) was proved in Louhichi and Rio (2011). If the
coefficients are not necessarily nonnegative, than an even weaker topology on the
space DŒ0;1/ is needed, and weak convergence in the so-called S topology was
shown in Balan et al. (2014).

Comments on Section 9.6
In a series of papers beginning with Pipiras and Taqqu (2002a) and Pipiras and

Taqqu (2002b), the authors studied S˛S processes of the form

Y.t/ D
Z

G

Z

R

�
F.y; t C u/ � F.y; u/

�
M.dy; du/; t 2 R ; (9.138)

where M is an S˛S random measure on the space E D G � R, .G;G; �/ is a � -
finite measure space, and the control measure of M is �� Leb (the function F has to
satisfy the appropriate integrability condition). Under this setup, the process Y has
stationary increments, and the stationary increment process

Xn D Y.n/ � Y.n � 1/ D
Z

G

Z

R

�
F.y; n C u/ � F.y; n � 1C u/

�
M.dy; du/; n 2 Z

always corresponds to a dissipative map � W E ! E given by �.y; u/ D .y; u C 1/.
In some cases, the process Y in (9.138) is also self-similar, and Pipiras and Taqqu
classified the self-similar processes with stationary increments that can be obtained
in this way. They accomplished this by studying the multiplicative flows appearing
naturally through the self-similarity of the process Y in its integral representation,
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similarly to the classification of stationary S˛S processes of Rosiński (1995). The
notions of a dissipative map and a conservative map appear once again, but this
time, they are applied to the multiplicative action related to self-similarity. In
particular, the linear fractional stable motion of Example 3.5.2 turns out to be of the
form (9.138), with a conservative multiplicative action, while the dilated fractional
stable motions of Example 9.6.3 are also of the form (9.138), but with a dissipative
multiplicative action. The latter processes are studied in detail in Pipiras and Taqqu
(2004a). The telecom process was introduced in Pipiras and Taqqu (2000). Further
details on self-similar processes with stationary increments of the form (9.138) are
in Pipiras and Taqqu (2004b, 2007, 2008).

The statement of Theorem 9.6.5 is a special case of a more general result in
Owada and Samorodnitsky (2015a). Another functional central limit theorem for
the partial sums of an infinite-variance stationary infinitely divisible process with
regularly varying tails and corresponding to a conservative map � in (9.37) is in Jung
et al. (2016). In that case, the limiting process is yet another self-similar stationary
increments S˛S process.

Comments on Section 9.7
The classical extreme value theory studies limit theorems of the type

1

an

�
max.X1; : : : ;Xn/ � bn

� ) Y (9.139)

for an i.i.d. sequence X1;X2; : : :, a positive sequence .an/, and a real sequence
.bn/. If the distribution of the limiting random variable Y is nondegenerate, then
up to a linear transformation of the type Y ! aY C b, a > 0 and b real, this
limiting distribution can take one of the three possible forms (Fisher and Tippett
1928; Gnedenko 1943). Two of the possible limiting distributions are the Gumbel
distribution in (9.107) and the Fréchet distribution in (9.108). The third possible
type of limiting distribution is the reverse Weibull distribution

‰˛.x/ D
	

exp f�.�x/˛g if x < 0;
1 if x � 0 ;

˛ > 0. The distributions in the domain of attraction of the reverse Weibull
distribution have support bounded on the right. Since we are interested in the “size”
of the maxima of a process, we are not considering the case of the Weibull domain of
attraction. Some distributions in the Gumbel domain of attraction also have support
bounded on the right, and our main interest lies in those distributions in the Gumbel
domain of attraction whose support is unbounded on the right. There are many texts
on the classical extreme value theory; two of them are Resnick (1987) and deHaan
and Ferreira (2006).

The fact that for an i.i.d. sequence, the weak convergence in (9.139) implies
functional weak convergence

�
1

an
.Mn.t/ � bn/; t > 0

�
) �

YF.t/; t > 0
�
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(where F is the law of Y in (9.139)) weakly in the Skorokhod J1-topology on
D.0;1/ was proved in Lamperti (1964), with several subsequent additions and
clarifications, including Resnick (1975) and Weissman (1975).

Comments on Section 9.8
The restriction of the parameter ˇ to the interval .0; 1=2/ in Theorem 9.8.4 is a

consequence of the fact that the result in Owada and Samorodnitsky (2015b) applies
only in this case. We expect the memory in the process X to become longer as ˇ
increases from 0 to 1; see Remark 9.4.8. Therefore, Theorem 9.8.4 does not address
the behavior of the partial maxima when the memory in the process X is the longest.

9.10 Exercises to Chapter 9

Exercise 9.10.1. Let Y D �
Y.t/; t 2 R

�
be the standard Ornstein–Uhlenbeck

process, i.e., a centered stationary Gaussian process with covariance function
RY.t/ D e�jtj (see Example 1.2.4). Let V be a gamma random variable independent
of Y with unit scale and shape 0 < ˛ < 1. Define Xn D Y.nV/; n 2 Z.

(a) Prove that X is a stationary zero-mean finite-variance process with covariance
function R.n/ D .n C 1/�˛; n D 0; 1; 2; : : :.

(b) Prove that the standard deviations (9.5) of the partial sums of X satisfy sn �
c˛n1�˛=2 for some c˛ 2 .0;1/ as n ! 1.

(c) Prove that

n�1=2Sn ) Y.0/

�
eV C 1

eV � 1
�1=2

as n ! 1,

so that Sn=sn ! 0 in probability.

Exercise 9.10.2. Let X be a nonnegative random variable such that EXp < 1 for
some p > 1. Prove the inequality

�
P
�
X > ıEX

��p�1 � .1 � ı/p .EX/p

EXp

for 0 < ı < 1.

Exercise 9.10.3. Let f 2 DŒ0;1/, and for n D 1; 2; : : :, define fn 2 DŒ0;1/ by

fn.t/ D f
�
n�1Œnt�

�
; t � 0 :

Prove that fn ! f as n ! 1 in the Skorokhod J1 topology. Hint: A useful property
of functions in DŒ0;1/ is that they can be approximated uniformly, on compact
intervals, by piecewise constant functions. That is, for every T 2 .0;1/ and " > 0,
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there are points 0 D t0 < t1 < : : : < tm D T such that jf .t/ � f .ti/j � " for every
ti � t < tiC1; i D 0; : : : ;m � 1. See, e.g., Whitt (2002).

Exercise 9.10.4. Prove the second part of (9.19):

lim
n!1P

�
n�1=2 sup

0�t�1
ˇ
ˇCŒnt�

ˇ
ˇ > �

�
D 0 :

Exercise 9.10.5. Prove (9.32) and (9.33).

Exercise 9.10.6. Proof Theorem 9.3.4. Hint: Use the assumption (9.35) to reduce
the sums of the coefficients to infinite sums of the type

P�
�1 and

P1
� . To prove

tightness under a stronger moment assumption, use the Marcinkiewicz–Zygmund
inequalities of Theorem 10.7.2.

Exercise 9.10.7. Consider the partial sums of a stationary process X. Let .an/ be
a sequence of positive numbers with an ! 1. Assume that for every m D 1; 2; : : :

and positive integers j1; : : : ; jm,

a�1n

�
Sj1n; : : : ; Sjmn

� ) �
Y.j1/; : : : ;Y.jm/

�
;

where
�
Y.t/; t � 0

�
is a continuous in probability process. Prove that

�
a�1n Sn.t/; t � 0

� ) �
Y.t/; t � 0

�
as n ! 1

in finite-dimensional distributions.

Exercise 9.10.8. Prove that the left shift on the space E D Z
Z is conservative with

respect to the measure m defined by (9.55).

Exercise 9.10.9. Prove that the first return time defined in (9.57) satisfies

1X

iD�1
	iPi.�1 D n/ D 	0P0.�1 � n/; n D 1; 2; : : : :

Exercise 9.10.10. In the Markov chain setup of Theorem 9.4.7, let Nn be the number
of times the Markov chain visits state 0 in the time interval f1; : : : ; ng. Prove that
starting in state 0 (and hence in any other initial state), the Markov chain satisfies

P0.�1 > n/Nn ) Z�ˇˇ as n ! 1,

where Zˇ is a positive ˇ-stable random variable with characteristic triple .0; �; 0/,
where the Lévy measure is given by �.dx/ D ˇx�.1Cˇ/ dx for x > 0. Moreover,
prove that

E0
h�

P0.�1 > n/Nn
�p
i

! E
�
Z�pˇ
ˇ

�
as n ! 1

for every p > 0.
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Exercise 9.10.11. Still in the Markov chain setup of Theorem 9.4.7, use Exer-
cise 3.8.2 to show that

Var.Sn/ D
Z 1

�1
x2 
.dx/

1X

iD�1
	iEi.N

2
n/ :

Use an argument similar to the one used in the proof of Theorem 9.3.3 to establish
the tightness claim of the theorem.

Exercise 9.10.12. Prove (9.81).

Exercise 9.10.13. Prove tightness in Theorem 9.5.7.

Exercise 9.10.14. Prove Theorem 9.5.8.

Exercise 9.10.15. In the proof of Theorem 9.6.1, we proved that the limit b in (9.87)
is given by (9.96) in the case 1 < ˛ < 2. Prove that (9.96) is valid in the case
0 < ˛ � 1 as well.

Exercise 9.10.16. Prove that (9.92) holds in the case 1 < ˛ < 2 under the
conditions of Theorem 9.6.1.

Exercise 9.10.17. Prove that the telecom process in Example 9.6.3 is well defined.

Exercise 9.10.18. Prove part (ii) of Proposition 9.6.4.

Exercise 9.10.19. Check that (9.85) holds under the conditions of Theorem 9.6.5.
Conclude that

lim
x!1

P.X0 > x/



�
.x;1/

� D 	0 :

Exercise 9.10.20. Prove that the standard normal random distribution satis-
fies (9.107) with the sequences .an/ and .bn/ given by (9.119).

Exercise 9.10.21. Prove that (9.121) holds by following the lines of the argument
for (9.96).

Exercise 9.10.22. Prove the lower bound (9.131) in Theorem 9.8.1, assuming that
the function f is supported by finitely many translates of the set W.



Chapter 10
Appendix

The main reason for this chapter is to give the reader easy access to some of the
notions and the results used throughout this book. Most of the material can be found
in book form elsewhere. The reader will notice that the quantity of detail is different
from topic to topic, depending on how accessible the alternative references are.

10.1 Topological Groups

For more details on the notions presented in this section, see Chapter 1 in Rudin
(1962) and Chapter 6 in Hewitt and Ross (1979).

Let G be a group whose group operation is written multiplicatively. Suppose that
G, viewed as a set, is given a topology such that both

the mapping P W G � G ! G W P.x; y/ D xy is continuous, and

the mapping I W G ! G W I.x/ D x�1 is continuous.

Then G is called a topological group. This name is often further modified both by
the properties of the group and those of the topology. For example, if the group
is abelian, then G is an abelian topological group. If the topology is generated
by a complete separable metric, making G, as a set, into a complete separable
metric space, otherwise known as a Polish space, then G is called a Polish group.
A topological isomorphism of two topological groups G1 and G2 is a group
isomorphism � W G1 ! G2 such that both � and its inverse ��1 are continuous.

Let G be a locally compact abelian group. A character of G is a function � W
G ! C such that j�.x/j D 1 for every x 2 G, and �.x C y/ D �.x/�.y/ for every
x; y 2 G (we have switched to the additive notation, as is usual with abelian groups).
The set � of all continuous characters of G equipped with the product of complex-
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valued functions is called the dual group of G. It is clearly an abelian group. The
dual group of G is itself a locally compact abelian group when it is equipped with a
sort of weak topology, called the Gelfand topology.

Example 10.1.1. 1. Let G D R
d, d � 1. Then the continuous characters of G are

of the form �.x/ D ei.a;x/; x 2 R
d, for some a 2 R

d, and the dual group is
topologically isomorphic to R

d, with the usual topology (see Example (f), in
Hewitt and Ross (1979, p. 368)).

2. Let G D Z
d, d � 1. Then the continuous characters of G are of the form �.x/ DQd

jD1 z
xj

j ; x D .x1; : : : ; xd/ 2 Z
d, for some complex numbers z1; : : : ; zd of norm

1. The dual group of G is topologically isomorphic to the d-dimensional torus,
which is, in turn, topologically isomorphic to .�	; 	�d, with the usual topology
(see Example (b), p. 366, and Theorem 23.18 in Hewitt and Ross (1979)).

The following theorem is an important characterization of nonnegative definite
functions on locally compact abelian groups; see Rudin (1962, p. 19).

Theorem 10.1.2. Let G be a locally compact abelian group, with dual group � . Let
' W G ! C be a continuous function. Then ' is nonnegative definite if and only if
there is a finite measure � on � such that

'.x/ D
Z

�

�.x/ �.d�/; x 2 G :

Furthermore, this measure is unique.

10.2 Weak and Vague Convergence

This section presents certain basic facts related to the two important notions of con-
vergence of measures on metric spaces: weak convergence and vague convergence.
The classical introduction to weak convergence is in Billingsley (1999).

Let .S; 
/ be a metric space, and let S be the Borel � -field on S.

Definition 10.2.1. A sequence .Pn/ of probability measures on
�
S;S

�
is said to

converge weakly to a probability measure P on
�
S;S

�
if for every bounded and

continuous function f on S,

lim
n!1

Z

S
f .x/Pn.dx/ D

Z

S
f .x/P.dx/ : (10.1)

The typical notation is

Pn ) P or Pn
w! P :
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A sequence .Xn/ of S-valued random variables is sometimes said to converge weakly
to an S-valued random variable X if the sequence of the laws on

�
S;S

�
of the random

variables .Xn/ converges weakly to the law of X in the sense of Definition 10.2.1.
One sometimes writes

Xn ) X or Xn
w! X :

It is important to keep in mind that even when weak convergence is stated in the
language of random variables, it is not necessary for the random variables to be
defined on the same probability space.

If S is the real line equipped with its usual topology, then weak convergence
Xn ) X is the same as the usual convergence in distribution

Fn.x/ WD P.Xn � x/ ! F.x/ WD P.X � x/ as n ! 1

for every x 2 R at which the distribution function F is continuous. In the case of a
general metric space S, weak convergence can also be characterized by the limiting
behavior of certain sequences of probabilities.

The following theorem is a collection of such characterizations. It is usually
called the portmanteau (i.e., containing several things in one package) theorem.

Theorem 10.2.2. Each of the following three assertions is equivalent to the weak
convergence Pn ) P:

(a) lim supn Pn.F/ � P.F/ for every closed set F;
(b) lim infn Pn.G/ � P.G/ for every open set G;
(c) limn Pn.A/ D P.A/ for every P-continuity set A.

Recall that a subset A 	 S is called a P-continuity set if P does not charge the
boundary of A, that is, if P.@A/ D 0. See Exercise 10.9.1.

An important tool for establishing weak convergence of probability measures is
the notion of relative compactness. We say that a set H of probability measures on
S is relatively compact if every sequence of probability measures in H has a weakly
convergent subsequence. The following criterion is known as Prokhorov’s theorem.

Theorem 10.2.3. (i) Suppose that for every " > 0, there is a compact set K" such
that P.K"/ � 1� " for each P 2 H (this property of H is called tightness). Then
the set H is relatively compact.

(ii) Suppose that the metric space S is complete and separable. If a set H of
probability measures on S is relatively compact, then it is also tight.

One can use weak convergence of a sequence of probability measures on one
metric space to establish weak convergence of sequences of probability measures
on other metric spaces via the following theorem, usually called the continuous
mapping theorem.

Theorem 10.2.4. Let S and S1 be metric spaces, and h W S ! S1 a Borel
measurable map. Let .Pn/; P be probability measures on the Borel � -field in S.
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If Pn ) P in S and P does not charge the set of the discontinuities of h, then
Pn ı h�1 ) P ı h�1 in S1.

The set of discontinuities of h is always measurable (even if h is not); see
Exercise 10.9.1.

Vague convergence of measures is a counterpart of weak convergence that is
sometimes natural to use in dealing with measures whose total mass is not a priori
bounded. It applies to sequences of Radon measures on a metric space S. For
discussion of vague convergence, we assume that the metric space S is a complete
separable metric space and in addition, that it is locally compact. That is, for every
point x 2 S, there is an " D ".x/ > 0 such that the closed ball centered at x with
radius ".x/ is compact. It is not difficult to check that every such metric space is also
� -compact (i.e., is a union of countably many compact sets). Section 3.4 of Resnick
(1987) can be consulted for more details on the discussion presented below.

Definition 10.2.5. A measure m on
�
S;S

�
is said to be Radon if m.K/ < 1 for

every compact set K.

In particular, every finite measure is Radon. Since the space S is � -compact, every
Radon measure is necessarily � -finite.

Definition 10.2.6. A sequence .mn/ of Radon measures on
�
S;S

�
is said to

converge vaguely to a Radon measure m on
�
S;S

�
if for every continuous function

f on S with compact support,

lim
n!1

Z

S
f .x/mn.dx/ D

Z

S
f .x/m.dx/ : (10.2)

Note that a continuous function with compact support is automatically bounded.
The common notation is

mn
v! m :

Let .Pn/ be a sequence of probability measures .Pn/ on a complete separable
locally compact metric space S. It is obvious from the definitions that weak

convergence Pn
w! P to some probability measure P implies also vague convergence

Pn
v! P. The converse statement also turns out to be true; see Exercise 10.9.2.

The following is a version of the portmanteau theorem corresponding to the
vague convergence.

Theorem 10.2.7. Each of the following two assertions is equivalent to the vague

convergence mn
v! m:

(a) lim supn mn.K/ � m.K/ for every compact set K and lim infn mn.G/ � m.G/
for every open relatively compact set G;

(b) limn mn.A/ D m.A/ for every m-continuity set A relatively compact in S.
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Note that the two equivalent conditions (a) and (b) in the portmanteau theorem
for weak convergence (Theorem 10.2.2) have become a single condition (i.e., both
have to be assumed separately) in the portmanteau theorem for vague convergence
(Theorem 10.2.7).

Relative compactness in the vague topology of a set of measures is defined
analogously to its weak convergence counterpart. The following is a criterion for
relative compactness for vague convergence.

Theorem 10.2.8. Relative compactness of a set H of Radon measures on a com-
plete separable locally compact metric space is equivalent to each of the following
conditions:

(i) For each compact set B 	 S, supm2H m.B/ < 1.
(ii) For each nonnegative continuous function f on S with compact support,

supm2H
R

f dm < 1.

There is also a version of the continuous mapping theorem suitable for vague
convergence.

Theorem 10.2.9. Let S and S1 be complete separable locally compact metric
spaces, and h W S ! S1 a Borel measurable map, such that

h�1.K1/ is relatively compact in S whenever K1 is compact in S1.

Let .mn/; m be Radon measures on the Borel � -field in S. Then .mn ı h�1/; m ı h�1

are Radon measures on the Borel � -field in S1. Further, if mn
v! m in S and m does

not charge the set of the discontinuities of h, then mn ı h�1 v! m ı h�1 in S1.

Let MRC.S/ be the space of all Radon measures on a locally compact complete
separable metric space S. There is a metric dv on MRC.S/ under which this space is a
complete separable metric space and is such that for measures .mn/;m in MRC.S/,

mn
v! m if and only if dv.mn;m/ ! 0 : (10.3)

The metric dv can be chosen to be of the following form. One can find a countable
family .hi/ of nonnegative continuous functions S ! R with compact support such
that for m1;m2 2 MRC.S/,

dv.m1;m2/ D
1X

iD1
2�i

�
1 � exp

	
�
ˇ̌
ˇ̌
Z

S
hi.x/m1.dx/ �

Z

S
hi.x/m2.dx/

ˇ̌
ˇ̌
��

:

(10.4)
This is Proposition 3.17 in Resnick (1987), which can also be consulted for much
of the discussion below.

A random Radon measure is a measurable map from some probability space
into MRC.S/ equipped with the Borel � -field corresponding to any metric satisfy-
ing (10.3). The following proposition gives an alternative characterization of this
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Borel � -field; it is useful in checking measurability of certain mappings, such as
certain infinitely divisible random measures of Section 3.2.

Proposition 10.2.10. The Borel � -field on MRC.S/ coincides with the � -field gener-
ated by the evaluation maps MRC.S/ ! Œ0;1/ given by m ! m.K/, K a compact
subset of S.

Proof. Denote the Borel � -field on MRC.S/ by B, and the � -field generated by the
evaluation maps by E . Let K be a compact set in S. By the portmanteau theorem
for the vague convergence in Theorem 10.2.7, the mapping m ! m.K/ is upper
semicontinuous on MRC.S/, hence measurable with respect to the Borel � -field on
MRC.S/. Therefore, E � B.

In the other direction, for every nonnegative continuous function h with compact
support on S, the mapping MRC.S/ ! Œ0;1/, m ! R

h dm, is E-measurable, as
can be easily seen by approximating h by simple functions. Therefore, for a fixed
m2 2 MRC.S/, the distance dv.m1;m2/ in (10.4) is an E-measurable function of m1 2
MRC.S/. Therefore, every open ball in MRC.S/ is E-measurable, and hence B � E . �

Example 10.2.11. Poisson random measure as a random Radon measure
We construct a version of a Poisson random measure of Example 3.2.5 that is

a random Radon measure. Let m be a Radon measure on S. Let .Si/ be a partition
of S into measurable relatively compact sets; then the restriction mi of m to each
set Si is finite. Restricting ourselves to those i for which mi.Si/ > 0, begin with a
double array of independent S-valued random variables,

�
X.i/j

�
, such that for each i,

the random variables in the ith row are i.i.d., with a common law mi=mi.Si/. Let .Ki/

be a sequence of independent Poisson random variables, independent of the double
array, with E.Ki/ D mi.Si/, i � 1. For every measurable set B � S, define

M.B/ D
X

i

KiX

jD1
1
�
X.i/j 2 B

�
: (10.5)

Letting S0 be the collection of all measurable sets of finite measure m, it follows
from Exercise 3.8.19 that

�
M.B/; B 2 S0

�
is a Poisson random measure in the sense

of Example 3.2.5.
On the other hand, (10.5) clearly defines, for every ! 2 �, a � -finite measure on

S. In order to guarantee that this measure is actually Radon, let .ci/ be a countable
dense subset of S, and let .ri/ be positive numbers such that each of the open balls
Bci.ri/ has a compact closure, and their union is S. By construction, for each i,
M
�
Bci.ri/

�
is a Poisson random variable, hence a.s. finite. Let �0 be the subset of

� on which all these Poisson random variables are finite. Then P.�0/ D 1, and
we restrict the definition of M in (10.5). If K is a compact set, then there is a finite
subcollection of the open balls

�
Bci.ri/

�
that covers it. Since each of these balls has

finite M-measure, so does K. Therefore, this version of M is a Radon measure.
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Finally, by definition, for each measurable set B with compact closure, M.B/ is
a well-defined random variable. By Proposition 10.2.10, we conclude that M is a
random Radon measure.

The following definition introduces in the realm of random Radon measures
an object analogous to the Laplace transform of a nonnegative finite-dimensional
random vector.

Definition 10.2.12. The Laplace functional of a random Radon measure M is

‰M.f / D E exp

	
�
Z

S
f .x/M.dx/

�
;

f a nonnegative continuous function S ! R with compact support.

Since M is Radon, it assigns a finite mass to the support of f , which is, in turn,
automatically bounded. Therefore, the integral in the exponent is a.s. finite. By
the definition of vague convergence, the integral is a continuous, hence Borel
measurable, function of M, and so the Laplace functional of a random Radon
measure is well defined. The Laplace functional of a Poisson random measure of
Example 10.2.11 is calculated in Exercise 10.9.4.

Weak convergence of nonnegative finite-dimensional random vectors is equiv-
alent to convergence of their Laplace transforms. Similarly, weak convergence of
random Radon measures (i.e., weak convergence in the vague topology) turns out to
be equivalent to convergence of their Laplace functionals.

Theorem 10.2.13. Let .Mn/, M be random Radon measures on a locally compact

complete separable metric space S. Then Mn
w! M if and only if ‰Mn.f / ! ‰M.f /

for every nonnegative continuous function f on S with compact support.

10.3 Signed Measures

This section contains a brief description of signed measures taking values in
Œ�1;1�. Most texts prohibit one of the two infinite values (e.g., Billingsley (1995),
Dudley (1989)).

Let
�
S;S

�
be a measurable space. Recall that a signed measure is a � -additive

finite-valued set function on S .
Let .Bn/ be events in S such that Bn " S. Let .�n/ be a sequence of signed

measures on
�
S;S

�
such that

• for every n � 1, the signed measure �n is supported on the event Bn, i.e., �n.A/ D
0 for each A 2 S such that A \ Bn D ;;

• the sequence .�n/ is consistent in the sense that for each n � 1, the restriction of
�nC1 to Bn coincides with �n.
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The Hahn decomposition of signed measures (see, e.g., Theorem 32.1 in
Billingsley (1995)) says that for each n � 1, there exist a measurable partition of
Bn D BCn [B�n and finite measures mCn and m�n supported by BCn and B�n respectively
such that �n D mCn � m�n . By consistency of the sequence .�n/, we see that the two
sequences of measures

�
mCn

�
and

�
m�n
�

are consistent as well. Therefore, there are � -
finite measures mC and m� on

�
S;S

�
such that for each n � 1, mCn is the restriction

of mC to Bn, and m�n is the restriction of m� to Bn. By construction, the measures
mC and m� are mutually singular (i.e., have disjoint supports) as well.

Let

S0 D
n
B 2 S W min

�
mC.B/;m�.B/

�
< 1:

o
:

For every set B 2 S0, we define

�.B/ D mC.B/ � m�.B/ ;

and we call � a Œ�1; 1�-valued � -finite measure on
�
S;S

�
generated by the

sequence .�n/. We call the measure mC the positive part of �, and the measure
m� the negative part of �. The � -finite measure k�k D m1Cm2 is the total variation
measure of �. Note that even though � is not, in general, defined on the entire � -field
S , its restriction to each event Bn is the signed measure �n, which is defined on the
restriction of S to Bn.

Note that the specific collection of events Bn " S used to define a Œ�1; 1�-
valued � -finite measure is not important. In fact, given mutually singular � -finite
measures mC and m�, any sequence Bn " S such that mC.Bn/ < 1; m�.Bn/ <

1 leads to the same family S0 and the same set function � on that family. In the
sequel we will refer to � simply as a signed measure, but it may be both � -finite and
Œ�1; 1�-valued.

Clearly, the family S0 has the following property: B 2 S0 and A 2 S , A 	 B
implies A 2 S0, which allows us to make the following definition.

Definition 10.3.1. A set B 2 S0 is called a null set of a signed measure � if �.A/ D
0 for each A 2 S , A 	 B.

Obviously, a set B is a null set of a signed measure if and only if both its positive
and negative parts vanish on B.

If f W S ! R is a measurable function such that the integrals
R

f dmC andR
f dm� exist, and

max

�Z

S
f .s/mC.ds/;

Z

S
f .s/m�.ds/

�
> �1;

min

�Z

S
f .s/mC.ds/;

Z

S
f .s/m�.ds/

�
< 1;
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then we say that the integral
R

f d� exists, and

Z

S
f .s/ �.ds/ D

Z

S
f .s/mC.ds/ �

Z

S
f .s/m�.ds/ :

As usual, if f W S ! R is a measurable function and B 2 S , then we use the notation

Z

B
f .s/ �.ds/ WD

Z

S
f .s/1

�
s 2 B

�
�.ds/ ;

assuming that the integral on the right-hand side exists.
Let � be a signed measure with positive part mC and negative part m�, and let

f W S ! R be a measurable function. We can define another signed measure as
follows. Define � -finite measures on

�
S;S

�
by

OmC.B/ D
Z

B
f .s/CmC.ds/C

Z

B
f .s/�m�.ds/;

Om�.B/ D
Z

B
f .s/�mC.ds/C

Z

B
f .s/Cm�.ds/ ;

and notice that the two measures are mutually singular. Let OBn " S be any sequence
of events such that OmC.Bn/ < 1; Om�.Bn/ < 1 for each n � 1, and construct a
signed measure � that is finite on each OBn and for which OmC is the positive part and
Om� the negative part. If

OS0 D
n
B 2 S W min

� OmC.B/; Om�.B/� < 1:
o

is the set of B 2 S for which the signed measure � is defined, then it is
straightforward to check that

OS0 D
n
B 2 S W

Z

B
f .s/ �.ds/ is well defined

o

and for every B 2 OS0,

�.B/ D
Z

B
f .s/ �.ds/ : (10.6)

If � and � are two signed measures connected via (10.6), we will say, by
analogy with positive measures, that f is the derivative of � with respect to �. This
terminology is justified by the fact that if both f1 and f2 satisfy the relation (10.6),
then f1 D f2 a.e. with respect to the total variation measure k�k (see Exercise 10.9.6).
We write d�=d� D f .
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By analogy with absolute continuity of positive measures, we introduce the
following definition.

Definition 10.3.2. Let � and � be two signed measures on
�
S;S

�
. If every null set

of � is also a null set of�, we say that the signed measure � is absolutely continuous
with respect to the signed measure � and write � � �.

Clearly, absolute continuity � � � of signed measures is equivalent to absolute
continuity k�k � k�k of the corresponding total variation measures.

If � and � are two signed measures satisfying (10.6), then it follows immediately
from the above discussion that � is absolutely continuous with respect to �. A
version of the Radon–Nikodym theorem also holds for signed measures.

Theorem 10.3.3. Let � and � be two signed measures on
�
S;S

�
, and assume that

� � �. Then there is a measurable function f W S ! R such that (10.6) holds.

Proof. The assumptions of the theorem imply absolute continuity k�k � k�k
of the positive � -finite measures, and therefore, by the Radon–Nikodym theorem
for such measures (see, e.g., Theorem 32.2 in Billingsley (1995)), there exists a
measurable function g W S ! R

C such that

k�k.B/ D
Z

B
g.s/ k�k.ds/ for every B 2 F . (10.7)

Let mC and m� be the positive and negative parts of the signed measure �, and
mC1 and m�1 the positive and negative parts of the signed measure � (so that k�k D
mCCm� and k�k D mC1 Cm�1 ). Let S D SC[S� be a measurable partition of S such
that mC is supported by SC and m� is supported by S�, and let S D SC1 [ S�1 be a
similar partition of S into supports of the measures mC1 and m�1 . Define a measurable
function f W S ! R by

f .s/ D
	

g.s/ if s 2 SC \ SC1 or s 2 S� \ S�1 ;
�g.s/ if s 2 SC \ S�1 or s 2 S� \ SC1 :

Let O� be the signed measure such that d O�=d� D f . We will prove that O� D �.
Let Bn " S be a sequence of measurable sets such that both k�k.Bn/ < 1 and

k�k.Bn/ < 1 for every n � 1, and for k � 1, let Ak D ˚
s W g.s/ � k

�
. Take

any increasing sequence .In/ of finite collections of pairs .m; k/; m; k � 1 such that
In " N

2, and define

OBn D
[

.m;k/2In

�
Bm \ Ak

�
; n � 1 :

Clearly, OBn " S, and both signed measures � and O� are finite on each set OBn.
The claim of the theorem will follow once we check that � and O� coincide on the
measurable subsets of OBn for each n � 1.
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Let B � OBn be measurable. Using (10.7) and the definition of f , we have

�.B/ D mC1 .B/ � m�1 .B/

D mC1
�
B \ SC1

� � m�1
�
B \ S�1

� D k�k�B \ SC1
� � k�k�B \ S�1

�

D
Z

B\SC

1

g.s/ k�k.ds/ �
Z

B\S�

1

g.s/ k�k.ds/

D
Z

B\SC

1 \SC

g.s/mC.ds/C
Z

B\SC

1 \S�

g.s/m�.ds/

�
Z

B\S�

1 \SC

g.s/mC.ds/ �
Z

B\S�

1 \S�

g.s/m�.ds/

D
Z

B\SC

1 \SC

f .s/mC.ds/ �
Z

B\SC

1 \S�

f .s/m�.ds/

C
Z

B\S�

1 \SC

f .s/mC.ds/ �
Z

B\S�

1 \S�

f .s/m�.ds/

D
Z

B\SC

f .s/mC.ds/ �
Z

B\S�

f .s/m�.ds/ D O�.B/ ;

as required. �

10.4 Occupation Measures and Local Times

Let
�
X.t/; t 2 R

d
�

be a measurable stochastic process. For a Borel set D 2 R
dC1 D

R
d � R, we define

�X.D/ D �d

�n
t 2 R

d W �t;X.t/� 2 D
o�
: (10.8)

Clearly, �X is a � -finite measure on R
dC1; it is the occupation measure of the

stochastic process
�
X.t/; t 2 R

d
�
. For Borel sets A 2 R

d and B 2 R, the value
of �X.A � B/ describes, informally, the amount of time in the set A the process
spends in the set B.

Fix a “time set” A 2 R
d of a finite positive Lebesgue measure and consider the

measure on R defined by

�X;A.B/ D �X.A � B/; B 2 R; Borel.

By the definition of the occupation measure, we have the following identity, valid
for every measurable nonnegative function f on R:

Z

A
f
�
X.t/

�
�d.dt/ D

Z

R

f .x/ �X;A.dx/ : (10.9)
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If on an event of probability 1, �X;A.B/ is absolutely continuous with respect to
the Lebesgue measure �, we say that the process has a local time over the set A. A
local time is a version of the Radon–Nikodym derivative

lX;A.x/ D d�X;A

d�
.x/; x 2 R : (10.10)

A local time is otherwise known as an occupation density. The basic property of the
local time follows from (10.9): for every measurable nonnegative function f on R,

Z

A
f
�
X.t/

�
�d.dt/ D

Z

R

f .x/lX;A.x/ dx : (10.11)

If a process has a local time over a set A, the local time can also be computed by

lX;A.x/ D lim
"#0

1

2"

Z

A
1Œx�";xC"�.X.t// �d.dt/ ; (10.12)

and the limit exists for almost every x 2 R. This useful representation of the local
time has also an attractive intuitive meaning. It implies, in particular, that one can
choose a version of a local time such that lX;A.x/ D lX;A.!I x/ is a measurable
function � � R ! R. In particular, for every x 2 R, lX;A.x/ is a well-defined
random variable.

An immediate conclusion from (10.12) is the following monotonicity property
of the local times: if a process

�
X.t/; t 2 R

d
�

has local times over sets A and B, then

A 	 B implies that lX;A.x/ � lX;B.x/ a.s. (10.13)

Let
�
X.t/; t 2 R

�
be a measurable stochastic process with a one-dimensional

time. If the process has a local time over each interval Œ0; t� in some range t 2 Œ0;T�,
then it is common to use the two-variable notation

lX.x; t/ D lX;Œ0;t�.x/; 0 � t � T; x 2 R :

Using (10.12) shows that there is a version of
�
lX.x; t/

�
that is jointly measurable in

all three variables, !; x; t.
As expected, existence and finite-dimensional distributions of a local time are

determined by the finite-dimensional distributions of the underlying process.

Proposition 10.4.1. (i) The finite-dimensional distributions of the local time are
determined by the finite-dimensional distributions of the process. That is, let�
X.t/; t 2 R

d
�

and
�
Y.t/; t 2 R

d
�

be measurable stochastic processes with the
same finite-dimensional distributions. If

�
X.t/; t 2 R

d
�

has a local time over a
set A, then so does the process

�
Y.t/; t 2 R

d
�
. Moreover, there is a Borel set

S 	 R of null Lebesgue measure such that the finite-dimensional distributions
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of
�
lX;A.x/; x 2 Sc

�
coincide with the finite-dimensional distributions of�

lY;A.x/; x 2 Sc
�
.

(ii) If
�
X.t/; t 2 R

�
and

�
Y.t/; t 2 R

�
are measurable stochastic processes with

the same finite-dimensional distributions, and if
�
X.t/; t 2 R

�
has a local time

over each interval Œ0; t� in some range t 2 Œ0;T�, then so does the process�
Y.t/; t 2 R

�
. Moreover, for every t1; : : : ; tk in Œ0;T�, there is a Borel set

S 	 R of null Lebesgue measure such that the finite-dimensional distributions
of
�
lX;A.x; tj/; x 2 Sc; j D 1; : : : ; k

�
coincide with the finite-dimensional

distributions of
�
lY;A.x; tj/; x 2 Sc; j D 1; : : : ; k

�
.

We first prove a useful lemma.

Lemma 10.4.2. Let
�
X.t/; t 2 R

d
�

and
�
Y.t/; t 2 R

d
�

be measurable stochastic
processes with the same finite-dimensional distributions. Let A 	 R

d be a
measurable set of finite positive Lebesgue measure, and f W A ! R a bounded
measurable function. Then

Z

A
f
�
X.t/

�
�d.dt/

dD
Z

A
f
�
Y.t/

�
�d.dt/ :

Proof. Suppose that the process
�
X.t/; t 2 R

d
�

is defined on some probability space�
�1;F1;P1

�
, while the process

�
Y.t/; t 2 R

d
�

is defined on some other probability
space

�
�2;F2;P2

�
. Let T1;T2; : : : be a sequence of i.i.d. random vectors in R

d

whose common law is the normalized Lebesgue measure on A, and suppose that
the sequence is defined on yet another probability space

�
�3;F3;P3

�
. Note that for

every !1 2 �1,

1

n

nX

jD1
f
�
X.Tj/

� !
Z

A
f
�
X.t/

�
�d.dt/ (10.14)

as n ! 1 P3-a.s. by the law of large numbers. By Fubini’s theorem, we see that
on the product probability space

�
�1 � �3;F1 � F3;P1 � P3

�
, there is an event

�
.1/
3 2 F3 of full P3-probability such that (10.14) holds P1-a.s. for every !3 2 �.1/

3 .

Repeating the argument, we see that there is an event �.2/
3 2 F3 of full P3-

probability such that for every !3 2 �.2/
3 ,

1

n

nX

jD1
f
�
Y.Tj/

� !
Z

A
f
�
Y.t/

�
�d.dt/ (10.15)

as n ! 1 P2-a.s. The event �.1/
3 \ �

.2/
3 has full P3-probability, so it must

contain a point !3, which we fix. This gives us a fixed sequence
�
Tj
�
, and for

this sequence, the expressions on the left-hand sides of (10.14) and (10.15) have
the same distributions. Since we have convergence in both (10.14) and (10.15), the
claim of the lemma follows. �
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Proof of Proposition 10.4.1. For part (i), let A 2 R
d be a set of finite positive

Lebesgue measure. It follows from Lemma 10.4.2 applied to indicator functions
of Borel sets and linear combinations of such indicator functions that

�
�X;A.B/; B Borel

� dD �
�Y;A.B/; B Borel

�
(10.16)

in the sense of equality of finite-dimensional distributions. Suppose that
�
X.t/, t 2

R
d
�

has a local time over the set A. Then on an event of probability 1, the probability
measure �X;A is absolutely continuous with respect to the Lebesgue measure on R.
This implies that on that event, for every m1 � 1 there is m2 � 1 such that for
all k D 1; 2; : : : and rational numbers �1 < � 01 < �2 < � 02 < : : : < �k < � 0k withPk
�D1.� 0i � �i/ < 1=m2, we have

kX

iD1
�X;A

�
.�i; �

0
i �
�
< 1=m1 :

Then (10.16) implies that the same is true for the probability measure �Y;A, and so
on an event of probability 1, the probability measure �Y;A is absolutely continuous
with respect to the Lebesgue measure on R as well; see, e.g., Royden (1968). This
means that the process

�
Y.t/; t 2 R

d
�

has a local time over the set A.
Next, suppose that the process

�
X.t/; t 2 R

d
�

is defined on some probability
space

�
�1;F1;P1

�
, while the process

�
Y.t/; t 2 R

d
�

is defined on some other

probability space
�
�2;F2;P2

�
, and let �.1/

i 2 F1, i D 1; 2, be events of full
probability on which

�
X.t/; t 2 R

d
�

and
�
Y.t/; t 2 R

d
�

have local times over the
set A. Let S 	 R be a Borel set of null Lebesgue measure such that for every x 2 Sc,
the relation (10.12) holds for P1-almost every !1 2 �.1/

i , and the version of (10.12)

written for the process
�
Y.t/; t 2 R

d
�

holds for P2-almost every !2 2 �
.2/
i . Then

the fact that the finite-dimensional distributions of
�
lX;A.x/; x 2 Sc

�
coincide with

the finite-dimensional distributions of
�
lY;A.x/; x 2 Sc

�
follows from Lemma 10.4.2.

This proves part (i) of the proposition.
For part (ii) of the proposition, the fact that the process

�
Y.t/; t 2 R

�
has a local

time over each interval Œ0; t� in the range t 2 Œ0;T� follows from part (i), while the
equality of the finite-dimensional distributions follows from (10.12) in the same way
as the corresponding statement in part (i). �

The next, and basic, property of the local time follows from its definition.

Proposition 10.4.3. (i) Suppose that a process
�
X.t/; t 2 R

d
�

has a local time
over a set A. Let B 	 R be a Borel set. If �0 2 F is an event such that for
every ! 2 �0, X.t/ 2 Bc for each t 2 A, then for every ! 2 �0, lX;A.x/ D 0 for
almost every x 2 B.

(ii) Let t > 0 and suppose that the local time lX.�; t/ of the process
�
X.t/; t 2 R

�

over the interval Œ0; t� exists. Let y > 0. If �0 2 F is an event such that for
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every ! 2 �0, sups2Œ0;t� jX.s/j < y, then for every ! 2 �0, lX.x; t/ D 0 for
almost every x with jxj � y.

Proof. Letting f be the indicator function of the set B and appealing to (10.11)
proves the first statement of the proposition. The second statement follows from the
first with B D .�1;�y� [ Œy;1/. �

When do local times exist? An easy-to-check criterion for existence of a local
time is due to Berman (1969). It is based on the following classical result on
characteristic functions of random vectors.

Lemma 10.4.4. (i) Let X be a random vector, and let 'X.�/ D Eei.�;X/; � 2 R
d

be its characteristic function. Then X has a square integrable density if and
only if

Z

Rd
j'X.�/j2 �d.d�/ < 1 :

(ii) If

Z

Rd
j'X.�/j�d.d�/ < 1 ;

then X has a bounded uniformly continuous density.

Proof. The second part of the lemma appears in about every book on probability;
see, e.g., Corollary 2, p. 149, in Laha and Rohatgi (1979)). The statement of the
first part of the lemma is less common in the probabilistic literature, so we include
a proof.

Suppose that 'X is square integrable. The general theory of L2 Fourier transforms
tells us that the function

f .x/ D lim
h"1

1

.2	/d=2

Z

k�k�h
ei.�;x/'X.�/ �d.d�/; x 2 R

d

exists in L2.�d/, and moreover, the function

f1.x/ D
Z x1

0

: : :

Z xd

0

f .y1; : : : ; yd/ dy1 : : : dyd; x D .x1; : : : ; xd/ 2 .0;1/d

satisfies the relation

f1.x/ D 1

.2	/d=2

Z

Rd
'X.�/

dY

jD1

e�itj
j � 1
�itj

�d.d�/; x D .x1; : : : ; xd/ 2 .0;1/d I

see Section VI.2 in Yosida (1965). On the other hand, by the inversion theorem for
characteristic functions (see, e.g., Theorem 3.3.3 in Laha and Rohatgi (1979)) we
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know that for every x D .x1; : : : ; xd/ 2 .0;1/d such that each xj is a continuity
point of the marginal distribution of the jth component of X,

1

	d

Z

Rd
'X.�/

dY

jD1

e�itj
j � 1
�itj

�d.d�/ D P
�

X 2
dY

jD1
.0; xj�

d
�
:

We conclude that

P
�

X 2
dY

jD1
.0; xj�

d
�

D
�	
2

�d=2
Z x1

0

: : :

Z xd

0

f .y1; : : : ; yd/ dy1 : : : dyd

a.e. on .0;1/d. This means that the function f is real and nonnegative a.e. on
.0;1/d, the law of X is absolutely continuous on this set, and its density is square
integrable. Since this argument can be repeated with only notational changes for
other quadrants of Rd, this proves the “if” part of the lemma. The other direction is
easy, since the usual Fourier transform of a function in L1.�d/\L2.�d/ is in L2.�d/;
see once again Section VI.2 in Yosida (1965). �

The following proposition, due to Berman (1969), is an easy consequence of the
lemma.

Proposition 10.4.5. Let
�
X.t/; t 2 R

d
�

be a measurable stochastic process. Let
A 2 R

d be a measurable set of a finite d-dimensional Lebesgue measure. A sufficient
condition for the process to have a local time over the set A satisfying

Z

R

lX;A.x/
2 dx < 1 with probability 1

is
Z

R

Z

A

Z

A
Eei
.X.t/�X.s// �d.dt/ �d.ds/ d
 < 1 : (10.17)

A sufficient condition for the process to have a bounded and uniformly continuous
local time over the set A is

Z

R

�Z

A

Z

A
Eei
.X.t/�X.s// �d.dt/ �d.ds/

�1=2
d
 < 1 : (10.18)

Proof. For a fixed ! 2 �, consider X D X.t/; t 2 A as a random variable on
the probability space A with the Borel � -field restricted to A, and the probability
measure Q D .�d.A//�1�d. Then the occupation measure �X;A.�/ is, up to a
constant, the probability law of X, and the existence of a square integrable local
time over the set A is equivalent to the existence of a square integrable density of
the probability law of X. Since the characteristic function of X at a point 
 2 R is
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given by

1

�d.A/

Z

A
ei
X.t/ �d.dt/ ;

by part (i) of Lemma 10.4.4, the existence of such a square integrable density is
equivalent to the finiteness of the expression

Z

R

ˇ̌
ˇ̌
Z

A
ei
X.t/ �d.dt/

ˇ̌
ˇ̌
2

d
 :

The expectation of this expression coincides with the left-hand side of (10.17), and
if the expectation is finite, then the expression itself is finite on a set of probability
1. This proves the first statement.

Similarly, the existence of a bounded and uniformly continuous local time over
the set A is equivalent to the existence of a bounded and uniformly continuous
density of the probability law of X above. By part (ii) of Lemma 10.4.4, the existence
of such a density follows from the a.s. finiteness of the integral

Z

R

ˇ̌
ˇ̌
Z

A
ei
X.t/ �d.dt/

ˇ̌
ˇ̌ d
 :

Taking the expectation and using the Cauchy–Schwartz inequality

E

ˇ̌
ˇ̌
Z

A
ei
X.t/ �d.dt/

ˇ̌
ˇ̌ �

 

E

ˇ̌
ˇ̌
Z

A
ei
X.t/ �d.dt/

ˇ̌
ˇ̌
2
!1=2

proves the second statement. �

Even the simple tools of Proposition 10.4.5 already guarantee the existence and
regularity of the local times of certain self-similar S˛S processes with stationary
increments; see Exercise 10.9.7. Stronger results have been obtained for certain
Gaussian processes using the theory of local nondeterminism introduced in Berman
(1973), and later extended to non-Gaussian stable processes in Nolan (1982). The
following proposition shows the existence of jointly continuous local times for
certain self-similar processes with stationary increments.

Proposition 10.4.6. Let
�
X.t/; t 2 R

�
be a fractional Brownian motion, or the real

harmonizable S˛S motion with exponent of self-similarity 0 < H < 1, or a linear
fractional S˛S motion with ˛ > 1, 1=˛ < H < 1, and c2 D 0. Then the process
has a local time over every interval Œ0; t�; t > 0, and moreover, there is a version of
the local time that is jointly continuous in time and space. That is, there is a random
field

lX.x; t/ D lX.x; t; !/; 0 � t � T; x 2 R; ! 2 �
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such that every ! 2 �, lX.x; t/, is jointly continuous in x 2 R and t � 0 (with
lX.x; 0/ D 0 for all x 2 R), and for each t > 0, lX.x; t/; x 2 R is a version of the
local time lX;Œ0;t�.x/; x 2 R.

Proof. For the fractional Brownian motion, the claim follows from Section 7 in Pitt
(1978) and Theorem 8.1 in Berman (1973). For the real harmonizable S˛S motion,
the claim follows from Theorem 4.11 in Nolan (1989). For the linear fractional S˛S
motion, the claim follows from Ayache et al. (2008). �

Very precise estimates on the size of the time increments of the local time of the
fractional Brownian motion are due to Xiao (1997). Some of them are summarized
in the following proposition.

Proposition 10.4.7. (i) Let
�
lX.x; t/; x 2 R; t � 0

�
be the jointly continuous

local time of a fractional Brownian motion with exponent 0 < H < 1 of self-
similarity. Then the supremum

sup
x2R

0�s<t�1=2

l.x; t/ � l.x; s/

.t � s/1�H
�
log 1

t�s

�H

is a.s. finite and has finite moments of all orders.
(ii) For every t > 0 and p > 0,

E sup
x2R

l.x; t/p < 1 :

Proof. The finiteness of the supremum in the first part of the proposition follows
from Corollary 1.1 in Xiao (1997). The finiteness of the moments is a very slight
modification of the argument leading to the above corollary. The second part of the
proposition follows from the first part by breaking the interval Œ0; t� into parts of
length less than 1=2. �

It is, perhaps, not surprising that certain properties of a stochastic process, such
as self-similarity, stationarity, and stationarity of the increments, are reflected in an
appropriate way in the properties of the local time, assuming that the latter exists.
In order to simplify the formulation of these relationships, we will assume that the
local time is continuous.

Proposition 10.4.8. Let
�
X.t/; t 2 R

�
be a measurable stochastic process, and

assume that it has local time
�
lX.x; t/; x 2 R; t � 0

�
that is jointly continuous in

time and space.

(i) If the process is self-similar with exponent H of self-similarity, then for every
c > 0,

�
lX.c

Hx; ct/; x 2 R; t � 0
� dD �

c1�HlX.x; t/; x 2 R; t � 0
�
: (10.19)
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(ii) If the process is stationary, then for every h > 0,

�
lX.x; t C h/ � lX.x; h/; x 2 R; t � 0

� dD �
lX.x; t/; x 2 R; t � 0

�
: (10.20)

(iii) Suppose that the process
�
X.t/; t 2 R

�
is defined on some probability space�

�;F ;P
�
. Suppose that the process has stationary increments and sample

paths that are bounded on compact intervals satisfying

E sup
0�t�T

jX.t/j < 1 :

Then for every h > 0, the infinite “law” of

�
lX.x C u; t C h/.!/ � lX.x C u; h/.!/; x 2 R; t � 0

�

under the infinite measure P � � does not depend on the shift h.

Proof. Note, first of all, that when the local times are continuous, the exceptional
set S in Proposition 10.4.1 may be taken to be the empty set, and we will do that
throughout this proof.

For part (i), let c > 0, and define a new stochastic process by

Y.t/ D c�HX.ct/; t 2 R :

By self-similarity, the new process has the same finite-dimensional distributions as
the original process

�
X.t/; t 2 R

�
. Let f be a nonnegative measurable function on

R. For t > 0, we change the variable of integration twice, using in between (10.11)
for A D Œ0; ct�, to write

Z t

0

f .Y.s// ds D
Z t

0

f
�
c�HX.cs/

�
ds

D c�1
Z ct

0

f
�
c�HX.s/

�
ds D c�1

Z

R

f
�
c�Hx

�
lX.x; ct/ dx

D cH�1
Z

R

f
�
x
�

lX.c
Hx; ct/ dx :

Therefore,
�
cH�1lX.cHx; ct/; x 2 R; t � 0

�
is a version of the local time�

lY.x; t/; x 2 R; t � 0
�
. By Proposition 10.4.1, the latter has the same finite-

dimensional distributions as the local time
�
lX.x; t/; x 2 R; t � 0

�
, and this

proves (10.19).
In a similar manner, for part (ii) we take h > 0, define a new stochastic process

by Y.t/ D X.t C h/; t 2 R, and write for a nonnegative measurable function f and
t > 0,
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Z t

0

f .Y.s// ds D
Z t

0

f
�
X.s C h/

�
ds

D
Z tCh

h
f
�
X.s/

�
ds D

Z tCh

0

f
�
X.s/

�
ds �

Z h

0

f
�
X.s/

�
ds

D
Z

R

f .x/lX.x; t C h/ dx �
Z

R

f .x/lX.x; h/ dx

D
Z

R

f .x/
�
lX.x; t C h/ � lX.x; h/

�
dx ;

so that

�
lX.x; t C h/ � lX.x; h/; x 2 R; t � 0

�

is a version of the local time
�
lY.x; t/; x 2 R; t � 0

�
. Now another appeal to

Proposition 10.4.1 proves (10.20).
The proof of part (iii) of the proposition, which we now commence, has the same

idea as the proof of part (ii), except that now we have to deal with infinite measures.
Fix h > 0. Let f be a nonnegative measurable function. As before, there is an event
of full probability such that on this event, for every u 2 R and t > 0,

Z t

0

f
�
u C X.s C h/

�
ds D

Z

R

f .x/
�
lX.x � u; t C h/ � lX.x � u; h/

�
dx :

Applying this to a function f D 1Œx�";xC"�=2" for " > 0 and using the continuity of
the local times gives us

lX.x � u; t C h/� lX.x � u; h/ D lim
"!0

1

2"

Z t

0

1Œx�";xC"�
�
u C X.s C h/

�
ds (10.21)

for every u 2 R, t > 0, and x 2 R.
Denote the expression on the left-hand side of (10.21) by Ah.x; tI u; !/ and the

expression under the limit on the right-hand side of (10.21) by Ah;".x; tI u; !/.
Choose pairs .xj; tj/; j D 1; : : : ; k. Fix !, and note that by Fubini’s theorem,
there is a measurable set F 2 .0;1/k of full Lebesgue measure such that for all
.a1; : : : ; ak/ 2 F, we have

1
�

Ah;".xj; tjI u; !/ > aj; j D 1; : : : ; k
�

! 1
�

Ah.xj; tjI u; !/ > aj; j D 1; : : : ; k
�

for almost every u 2 R. Let now M > jx1j C 1 C suph�s�t1Ch jX.s/j. We have, by
the dominated convergence theorem,

�
˚
u 2 R W Ah;".xj; tjI u; !/ > aj; j D 1; : : : ; k

�
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D �
˚
u 2 Œ�M;M� W Ah;".xj; tjI u; !/ > aj; j D 1; : : : ; k

�

! �
˚
u 2 Œ�M;M� W Ah.xj; tjI u; !/ > aj; j D 1; : : : ; k

�

for every .a1; : : : ; ak/ 2 F.
Further, for every " > 0,

�
˚
u W Ah;".xj; tjI u; !/ > aj; j D 1; : : : ; k

�

� �
˚
u W Ah;".x1; t1I u; !/ > a1

�

� 1

2a1"

Z

R

Z t1

0

1Œx1�";x1C"�
�
u C X.s C h/

�
ds du;D t1

a1
;

where at the last step we used Fubini’s theorem. Finally, using once again the
dominated convergence theorem, we conclude that

P � �˚.!; u/ 2 � � R W Ah;".xj; tjI u; !/ > aj; j D 1; : : : ; k
�

(10.22)

! P � �˚.!; u/ 2 � � R W Ah.xj; tjI u; !/ > aj; j D 1; : : : ; k
�

for every .a1; : : : ; ak/ 2 F. In particular, the “law” of
�
Ah.xj; tj/; j D 1; : : : ; k

�
under

P � � is � -finite on .0;1/k.
Suppose that we show that for every " > 0, the “law” of

�
Ah;".xj; tj/; j D

1; : : : ; k
�

under P � � is independent of h > 0. Then for every h1; h2 > 0, we
can find a subset of .0;1/k of full Lebesgue measure such that (10.22) holds for
h1; h2 and all .a1; : : : ; ak/ in that set. This means that for such .a1; : : : ; ak/,

P � �˚.!; u/ 2 � � R W Ah1 .xj; tjI u; !/ > aj; j D 1; : : : ; k
�

D P � �˚.!; u/ 2 � � R W Ah2 .xj; tjI u; !/ > aj; j D 1; : : : ; k
�
;

and hence the equality holds for all a1 > 0; : : : ; ak > 0. This will establish the claim
of part (iii) of the proposition.

It remains to show that for every " > 0, the “law” of
�
Ah;".xj; tj/; j D 1; : : : ; k

�

under P � � is independent of h > 0. It is, of course, enough to consider there laws
restricted to the “punctured” set Œ0;1/d n f0g. Assume without loss of generality
that t1 < t2 < : : : < td, and notice that only those pairs .!; u/ for which

u C inf
0�s�td

X.s C h/ � x C " and u C sup
0�s�td

X.s C h/ � x � "

contribute to the values of
�
Ah;".xj; tj/; j D 1; : : : ; k

�
in the set Œ0;1/d n f0g.

Call this set Vh. It follows from the assumption that the supremum of the process
over compact intervals is integrable that the measure P � � restricted to Vh is
finite. Moreover, it follows from Proposition 1.1.11 that the total mass of this
restricted measure is independent of h > 0. Normalizing this restricted measure
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to be a probability measure, the required independence of h > 0 of the “law”
of
�
Ah;".xj; tj/; j D 1; : : : ; k

�
follows from Proposition 1.1.11 and Lemma 10.4.2

applied to the linear combinations of
�
Ah;".xj; tj/; j D 1; : : : ; k

�
. �

10.5 Karamata Theory for Regularly Varying Functions

This section contains a brief exposition of regularly varying functions of a single
variable.

Definition 10.5.1. A measurable function f W Œ0;1/ ! R is called regularly
varying at infinity with exponent ˇ 2 R if f is either eventually positive or eventually
negative, and for each b > 0,

lim
x!1

f .bx/

f .x/
D bˇ : (10.23)

It is not immediately obvious exactly what role the requirement of measurability
plays in the definition of a regularly varying function. We will see that it provides
a modicum of regularity necessary for developing Karamata theory, beginning with
the uniform convergence statement in Proposition 10.5.5 below.

Remark 10.5.2. Our discussion in this section concerns only functions that are
regularly varying at infinity. Regular variation at other points can be defined
analogously, and much of the theory of functions regularly varying at infinity
has obvious counterparts for functions that are regularly varying elsewhere. Such
connections can be easily established, for example, by changing the variable. For
example, a function f is regularly varying with exponent ˇ as x # 0 if and only if
the function f .1=�/ is regularly varying at infinity with exponent �ˇ.

The next statement is obvious.

Lemma 10.5.3. Let f1; f2 be two positive regularly varying functions with expo-
nents ˇ1 and ˇ2 respectively. Then for any two real numbers a1; a2, the function
g D f a1

1 f a2
2 is regularly varying with exponent a1ˇ1 C a2ˇ2.

A regularly varying function L with exponent ˇ D 0 is called slowly varying.
An immediate consequence of Lemma 10.5.3 is the following representation of a
regularly varying function.

Corollary 10.5.4. Every regularly varying function f with exponent ˇ can be
represented in the form f .x/ D xˇL.x/; x > 0, where L is a slowly varying function.

The pointwise convergence assumption in the definition of regular variation
plus the measurability assumption turns out to guarantee certain uniformity of this
convergence. For slowly varying functions, this convergence is uniform on compact
intervals in .0;1/, as shown in the following proposition.
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Proposition 10.5.5. Let L be a slowly varying function. Then for every 0 < a <
b < 1 and ı > 0, there is x0 2 .0;1/ such that for all x � x0,

ˇ̌
ˇ̌L.cx/

L.x/
� 1

ˇ̌
ˇ̌ � ı (10.24)

for every a � c � b.

Proof. It is enough to consider the case in which L is eventually positive. Since the
proposition describes the behavior of L for large values of its argument, we are free
to change L arbitrarily on bounded sets, so we may assume that L is strictly positive
on Œ0;1/.

Things are more transparent in the additive form as opposed to the multiplicative
form, so we define

g.x/ D log L.ex/; x 2 R :

The function g is a measurable function, and the slow variation assumption on L
translates into the following statement for g: for every y 2 R,

lim
x!1

�
g.x C y/ � g.x/

� ! 0 (10.25)

as x ! 1. It is clear that if convergence in (10.25) is uniform on compact y-
intervals, then convergence in (10.24) is uniform on compact c-intervals in .0;1/.
We will therefore prove that convergence in (10.25) is uniform on compact y-
intervals. For this purpose, it is enough to check that this convergence is uniform
for y 2 Œ0; 1�. Indeed, if for every ı > 0, there is x0 2 R such that for all x � x0,

ˇ
ˇg.x C y/ � g.x/

ˇ
ˇ � ı for each y 2 Œ0; 1�, (10.26)

then for every k D 1; 2; : : : and y 2 Œ0; 1�,
ˇ̌
g.x C y � k/ � g.x/

ˇ̌

� ˇ̌
g.x C y � k/ � g.x � k/

ˇ̌C
kX

jD1

ˇ̌
g.x � j/ � g.x � j C 1/

ˇ̌ � .k C 1/ı

for x � x0 C k. That is, convergence in (10.25) is uniform on intervals of the form
Œ�k;�k C 1� for k D 1; 2; : : :. We can similarly show uniform convergence on
intervals of the form Œk; k C 1� for k D 1; 2; : : :. Since every compact interval can
be covered by a finite number of intervals of the above form, this will show that
convergence in (10.25) is uniform on all compact y-intervals.
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For the purpose of proving (10.26), let ı > 0 and note that by (the pointwise version
of) (10.25) and the bounded convergence theorem, for every x 2 R,

w.x/ WD
Z xC2

x
1
�jg.t/ � g.x/j > ı=2� dt

D
Z 2

0

1
�jg.t C x/ � g.x/j > ı=2� dt ! 0

as x ! 1, so that there is x0 2 R such that w.x/ < 1=2 for all x � x0. For such x
and any y 2 Œ0; 1�,

�
�
Œx; xC 2�\ ŒxC y; xC yC 2�� D 2� y � 1 > w.x/C w.xC y/

�
n
t 2 Œx; xC 2� W jg.t/� g.x/j > ı=2

o
[
n
t 2 ŒxC y; xC yC 2� W jg.t/� g.xC y/j > ı=2

o
:

Therefore, the difference of the sets

�
Œx; x C 2� \ Œx C y; x C y C 2�

�

and
n
t 2 Œx; xC2� W jg.t/�g.x/j > ı=2

o
[
n
t 2 ŒxCy; xCyC2� W jg.t/�g.xCy/j > ı=2

o

has positive Lebesgue measure, hence contains a point, say z. By definition, both
jg.z/� g.x/j � ı=2 and jg.z/� g.x C y/j � ı=2, so that jg.x/� g.x C y/j � ı. This
proves (10.26). �

According to Corollary 10.5.4, a regularly varying function can be viewed as a
power function “contaminated” by a slowly varying function. The next theorem says
that regularly varying functions behave like power functions under integration.

Theorem 10.5.6. Let f be a positive function regularly varying at infinity with
exponent ˇ � �1. Assume that f is locally integrable, i.e.,

R a
0

f .x/ dx < 1 for
every 0 < a < 1. Then the function F.x/ D R x

0
f .t/ dt; x � 0, is regularly varying

with exponent ˇ C 1 and satisfies

lim
x!1

F.x/

xf .x/
D 1

ˇ C 1
; (10.27)

with 1=0 defined as C1.

Proof. Clearly, for ˇ > �1, the regular variation of F follows from (10.27). We
nonetheless begin by proving this regular variation. It will be used later in the proof
of (10.27).
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For n D 1; 2; : : :, we set

an D
Z 2n

2n�1

f .t/ dt :

Note that by the regular variation of f ,

anC1
an

D 2
R 2n

2n�1 f .2t/ dt
R 2n

2n�1 f .t/ dt
! 2ˇC1 as n ! 1.

Therefore, in the case ˇ > �1,
R1
0

f .t/ dt D 1, while in the case ˇ D �1, the
integral may be either infinite or finite. In the latter case, if the integral is finite,
F.x/ converges, as x ! 1, to a finite positive constant and hence is trivially slowly
varying. Suppose now that the integral is infinite (either with ˇ > �1 or ˇ D �1).
Fix b > 1. For a given 0 < " < 1, there is t" 2 .0;1/ such that for all t > t",
f .bt/=f .t/ 2 Œbˇ�"; bˇC"�. Therefore, for every x > t",

R bx
bt"

f .t/ dt
R x

t"
f .t/ dt

D b
R x

t"
f .bt/ dt

R x
t"

f .t/ dt
2 Œb1Cˇ�"; b1CˇC"� ;

implying that

b1Cˇ�" � lim inf
x!1

R bx
bt"

f .t/ dt
R x

t"
f .t/ dt

� lim sup
x!1

R bx
bt"

f .t/ dt
R x

t"
f .t/ dt

� b1CˇC" :

Since
R1
0

f .t/ dt D 1, we conclude that

b1Cˇ�" � lim inf
x!1

F.bx/

F.x/
� lim sup

x!1
F.bx/

F.x/
� b1CˇC":

Since " > 0 can be taken arbitrarily close to zero, we conclude that F.bx/=F.x/ !
b1Cˇ for every b > 1, which implies the regular variation of F.

In particular, the function

l.x/ D xf .x/

F.x/
; x > 0 ;

is, by Lemma 10.5.3, slowly varying. By Fatou’s lemma,

lim sup
x!1

l.x/ � 1
R 1
0

lim infx!1.f .tx/=f .x// dt
� 1
R 1
0

tˇ dt
D 1C ˇ (10.28)
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(which actually already proves (10.27)). Note that the function F is absolutely
continuous, with derivative f . Therefore, so is the function h.x/ D log F.x/, x > 1,
with derivative

h0.x/ D f .x/

F.x/
D l.x/

x
; (10.29)

in the sense of absolute continuity. Hence

h.x/ D h.1/C
Z x

1

l.t/

t
dt

for x > 1, and in the same range,

F.x/ D F.1/ exp

	Z x

1

l.t/

t
dt

�
: (10.30)

By the regular variation of F,

2ˇC1 D lim
x!1

F.2x/

F.x/
D exp

	
lim

x!1

Z 2x

x

l.t/

t
dt

�
:

Consequently,

.ˇ C 1/ log 2 D lim
x!1

Z 2x

x

l.t/

t
dt D lim

x!1

Z 2

1

l.xt/

t
dt

D lim
x!1

�
l.x/ log 2C

Z 2

1

l.xt/ � l.x/

t
dt

�
:

However, by (10.28), .l.xt/� l.x//=t is uniformly bounded over x large enough and
1 � t � 2. Furthermore, for every fixed 1 � t � 2,

l.xt/ � l.x/

t
D l.xt/ � l.x/

l.x/

l.x/

t
! 0

as x ! 1 by the slow variation of l and its eventual boundedness, as guaranteed
by (10.28). By the bounded convergence theorem, we conclude that l.x/ ! ˇ C 1

as x ! 1, which establishes (10.27). �

It turns out that while proving Theorem 10.5.6, we have (almost) established
another very useful result, the Karamata representation of slowly varying functions.

Theorem 10.5.7 (Karamata representation). For every slowly varying function
L, there exist a measurable function a W Œ0;1/ ! R such that a.x/ ! a 2 R n f0g
as x ! 1 and a bounded measurable function " W Œ0;1/ ! R such that ".x/ ! 0

as x ! 1 such that
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L.x/ D a.x/ exp

	Z x

1

".t/

t
dt

�
; x � 1. (10.31)

Proof. It is enough to prove the claim in the case that L is eventually positive, and
by modifying the function a on a finite interval, we see that it is enough to prove
the theorem in the case that L is strictly positive on Œ0;1/. By Proposition 10.5.5,
the function L is bounded on every interval of the kind Œx; 2x� for x � x0, for some
x0 > 0, and hence it is bounded on every compact interval with left endpoint x0. By
modifying, if necessary, the function L on Œ0; x0�, we may assume that L is locally
bounded, hence integrable.

We are therefore in the situation described in Theorem 10.5.6, with ˇ D 0.
Combining (10.29) with (10.30) (and writing L.x/ instead of f .x/) gives us

L.x/ D l.x/

x
F.1/ exp

	Z x

1

l.t/

t
dt

�
:

Since l.x/ ! 0C 1 D 1 as x ! 1, we obtain the Karamata representation (10.31)
with a.x/ D l.x/F.1/ and ".x/ D l.x/ � 1, x � 1. �

An immediate corollary of the Karamata representation is the following result
on the ratio of two values of a regularly varying function. It is known as the Potter
bounds.

Corollary 10.5.8. Let f be regularly varying at infinity with exponent ˇ. For every
0 < � < 1, there is x0 2 .0;1/ such that for every x � x0 and b � 1,

.1 � �/bˇ�� � f .bx/

f .x/
� .1C �/bˇC�: (10.32)

Proof. By Corollary 10.5.4, it is enough to establish the bounds in the slowly vary-
ing case ˇ D 0. The claim (10.32) follows from the Karamata representation (10.31)
by choosing x0 so large that for all x � x0, we have both

1

.1C �/1=2
� a.x/

a
� .1C �/1=2 and j".x/j � � :

�

We can now add new angles to our previous comments that a regularly varying
function is similar to a power function. First of all, it follows from the Potter bounds
that an eventually positive regularly varying function with exponent ˇ satisfies

lim
x!1

f .x/

xˇ��
D 1 and lim

x!1
f .x/

xˇC�
D 0 (10.33)
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for every � > 0. Furthermore, the following counterpart of Theorem 10.5.6 shows
that regularly varying functions integrate like power functions near infinity as well.

Theorem 10.5.9. Let f be a positive function regularly varying at infinity with
exponent ˇ � �1. Then if ˇ < �1, the function G.x/ D R1

x f .t/ dt is eventually
finite. If ˇ D �1, assume that this function is eventually finite. Then G is regularly
varying with exponent ˇ C 1 and satisfies

lim
x!1

G.x/

xf .x/
D �1
ˇ C 1

; (10.34)

with �1=0 defined as C1.

Proof. The eventual finiteness of the function G in the case ˇ < �1 is, of course,
clear from (10.33). The fact that G is regularly varying in the case ˇ < �1
will follow from (10.34). Regardless of whether ˇ < �1 or ˇ D �1, as in
Theorem 10.5.6, we can choose, for b > 1 and 0 < " < 1, a t" 2 .0;1/ such
that for all t > t", f .bt/=f .t/ 2 Œbˇ�"; bˇC"�. Then for all x > t",

G.bx/

G.x/
D b

R1
x f .bt/ dt
R1

x f .t/ dt
2 Œb1Cˇ�"; b1CˇC"� ;

which shows that G is regularly varying with exponent ˇ C 1.
In order to prove (10.34), consider first the case ˇ < �1. As usual, we may

assume that the function x�ˇf .x/; x > 0, is locally integrable, so we can define a
function Fˇ.x/ D R x

0
t�ˇf .t/ dt, x � 0. By Theorem 10.5.6,

Fˇ.x/ � x1�ˇf .x/ as x ! 1. (10.35)

Integrating by parts and taking (10.33) into account, we see that

G.x/ D �xˇFˇ.x/ � ˇ
Z 1

x
Fˇ.t/t

ˇ�1 dt : (10.36)

According to (10.35),

Z 1

x
Fˇ.t/t

ˇ�1 dt � G.x/ as x ! 1,

so that by (10.36) and (10.35),

G.x/ � �xˇFˇ.x/

1C ˇ
� �xf .x/

1C ˇ
:
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Finally, in the case ˇ D �1, the statement (10.34) follows from Fatou’s lemma:

lim inf
x!1

G.x/

xf .x/
D lim inf

x!1

Z 1

1

f .tx/

f .x/
dt

�
Z 1

1

lim inf
x!1

f .tx/

f .x/
dt D

Z 1

1

t�1 dt D 1 :

�

The following theorem complements the results in Theorems 10.5.6 and 10.5.9.
It deals with two regularly varying functions in a convolution-like situation.

Theorem 10.5.10. Let f and g be positive functions regularly varying at infinity
with exponents ˛ and ˇ. Assume that f and g are locally bounded.

(a) Suppose that ˛ > �1 and ˇ > �1. Then

lim
x!1

R x
0

f .x � y/g.y/ dy

xf .x/g.x/
D �.˛ C 1/�.ˇ C 1/

�.˛ C ˇ C 2/
: (10.37)

(b) Suppose that ˇ > �1 and ˛ C ˇ < �1. Then

lim
x!1

R1
0

f .x C y/g.y/ dy

xf .x/g.x/
D �.�.˛ C ˇ C 1//�.ˇ C 1/

�.�˛/ : (10.38)

Proof. For part (a), let 0 < " < 1=2, and write

Z x

0

f .x � y/g.y/ dy D
Z "x

0

f .x � y/g.y/ dy (10.39)

C
Z .1�"/x

"x
f .x � y/g.y/ dy C

Z x

.1�"/x
f .x � y/g.y/ dy :

By the uniform convergence in Proposition 10.5.5,

Z .1�"/x

"x
f .x � y/g.y/ dy � f .x/g.x/

Z .1�"/x

"x

�x � y

x

�˛ �y

x

�ˇ
dy

D xf .x/g.x/
Z 1�"

"

.1 � z/˛zˇ dz

as x ! 1. Letting " ! 0 and noticing that

Z 1

0

.1 � z/˛zˇ dz D B.˛ C 1; ˇ C 1/ D �.˛ C 1/�.ˇ C 1/

�.˛ C ˇ C 2/
;
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we see that it remains to prove that the remaining two terms on the right-hand side
of (10.39) are small. We use the Potter bounds of Corollary 10.5.8. Let ı > 0 be so
small that ˇ � ı > �1. With x0 as in Corollary 10.5.8, for all x large enough,

Z "x

0

f .x � y/g.y/ dy �
Z "x

x0

f .x � y/g.y/ dy

� .1C ı/2f .x/g.x/
Z "x

x0

�x � y

x

�˛�ı �y

x

�ˇ�ı
dy

� .1C ı/2xf .x/g.x/
Z "

0

.1 � z/˛�ızˇ�ı dz :

We conclude that

lim
"!0 lim sup

x!1

R "x
0

f .x � y/g.y/ dy

xf .x/g.x/
D 0 :

In a similar way, one can show that

lim
"!0 lim sup

x!1

R x
.1�"/x f .x � y/g.y/ dy

xf .x/g.x/
D 0 :

For part (b), we proceed similarly. Let 0 < " < 1, and write

Z 1

0

f .x C y/g.y/ dy D
Z "x

0

f .x C y/g.y/ dy (10.40)

C
Z x="

"x
f .x C y/g.y/ dy C

Z 1

x="
f .x C y/g.y/ dy :

Now we use the fact that by Proposition 10.5.5, as x ! 1,

Z x="

"x
f .x C y/g.y/ dy � xf .x/g.x/

Z 1="

"

.1C z/˛zˇ dz ;

and as " ! 0,

Z 1="

"

.1C z/˛zˇ dz !
Z 1

0

.1C z/˛zˇ dz

D B
��.˛ C ˇ C 1/; ˇ C 1

� D �.�.˛ C ˇ C 1//�.ˇ C 1/

�.�˛/ :

Furthermore, we can show in the same way as in part (i) that the remaining two
terms on the right-hand side of (10.40) are appropriately small. �
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Sometimes it is useful to talk about certain subclasses of slowly varying
functions.

Definition 10.5.11. A measurable function g W RC ! RC that is eventually
nonvanishing is said to be of the Zygmund class if for every ı > 0, the function�
xıg.x/; x > 0

�
is eventually nondecreasing and the function

�
x�ıg.x/; x > 0

�
is

eventually nonincreasing.

Definition 10.5.11 refers to nonnegative functions. We extend it automatically
to nonpositive functions by saying that g is of the Zygmund class if �g is of that
class. Functions of the Zygmund class are automatically slowly varying; however,
not every slowly varying function is of the Zygmund class; see Exercise 10.9.10. In
fact, the following proposition shows that slowly varying functions of the Zygmund
class have a special type of the Karamata representation.

Proposition 10.5.12. Let g be a slowly varying function of the Zygmund class. Then
there exist a 2 R n f0g and a bounded measurable function " W Œ0;1/ ! R such
that ".x/ ! 0 as x ! 1 such that for some x0 2 .0;1/,

g.x/ D a exp

	Z x

1

".t/

t
dt

�
; x � x0. (10.41)

Conversely, every function with a representation (10.41) is of the Zygmund class.

Proof. It is enough to prove that a function of the Zygmund class has a represen-
tation (10.41) when g is nonnegative, so we will consider that case. The function g
has, as a slowly varying function, the general Karamata representation (10.31); let Qa
and Q" be the two functions appearing in that representation (we use the tilde notation
because we are going to modify these functions to obtain the representation (10.41)).
Then Qa.x/ ! a > 0 as x ! 1. Let x0 > 0 be such that on Œx0;1/, Qa.x/ > 0,
the function xg.x/ is nondecreasing, and the function x�1g.x/ is nonincreasing. Let
b.x/ D log

�Qa.x/=a
�
; x � x0.

We begin by checking that the function b is absolutely continuous. Indeed, by
monotonicity, for x2 > x1 � x0,

b.x2/ � b.x1/ D log
�
x2 Qa.x2/

� � log
�
x1 Qa.x1/

�C �
log x1 � log x2

�

� �
log x1 � log x2

�
;

and similarly,

b.x2/ � b.x1/ D log
�
x�12 Qa.x2/

� � log
�
x�11 Qa.x1/

�C �
log x1 � log x2

�

� �
log x2 � log x1

�
:
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This implies the absolute continuity of b. If b0 is the derivative of b in the sense
of absolute continuity, we already know that jb0.x/j � 1=x a.e. on Œx0;1/. Define

".t/ D
	 Q".t/ if 1 � t <� x0;

Q".t/C tb0.t/ if t � x0.

Then the representation (10.41) is automatically satisfied, so we need to show only
that we can modify the function " on a set of measure zero to ensure the property
".x/ ! 0 as x ! 1.

For each 0 < ı < 1 we can choose xı � x0 such that on Œxı;1/, the function
xıg.x/ is nondecreasing and the function x�ıg.x/ is nonincreasing. Repeating the
above calculation, we see that for x2 > x2 � xı , we have

ˇ
ˇb.x2/ � b.x1/

ˇ
ˇ � ı

�
log x2 � log x1

�
:

Therefore, jb0.x/j � ı=x a.e. on Œxı;1/. This means that we can choose a version
of the derivative b0 such that for every n � 1, jb0.x/j � n�1=x for all x large enough.
Obviously, using this version of the derivative ensures the property ".x/ ! 0 as
x ! 1.

The fact that every function with a representation (10.41) is of the Zygmund class
is easy, and is left as an exercise. �

Remark 10.5.13. Slowly varying functions for which there exists a Karamata
representation of the type (10.41) are also called normalized slowly varying; see
Bingham et al. (1987).

One can also talk about regularly varying sequences.

Definition 10.5.14. An eventually positive sequence .an/ is called regularly vary-
ing with exponent ˇ 2 R if the function f .x/ D adxe; x > 0, f .0/ D 0, is regularly
varying at infinity with exponent ˇ.

Versions of the following lemma are used in the proof of a number of limit
theorems in probability.

Lemma 10.5.15. Let h; g W .0;1/ ! Œ0;1/ be two nonincreasing functions, with
g strictly positive in a neighborhood of the origin and g.x/ ! 0 as x ! 1. Assume
that there is a sequence an " 1 such that nh.anx/ ! g.x/ as n ! 1 for all
continuity points x > 0 of g. Then there is ˇ > 0 such that the sequence .an/ is
regularly varying with exponent ˇ.

Proof. Let c > 0. We begin by showing that the limit

 .c/ WD lim
n!1

adnce
an

(10.42)
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exists. Indeed, suppose that to the contrary, the limit does not exist. Then there are
two sequences nk ! 1 and mk ! 1 and numbers 0 < r1 < r2 < 1 such that

adnkce
ank

� r1 < r2 � admkce
amk

for all k. Let I be a neighborhood of the origin over which g is strictly positive, and
let C be the set of discontinuity points of g. For every x … C [C=r1[C=r2, we have

g.x/ D lim
k!1 cnkh

�
adnkcex

� D lim
k!1 cnkh

��
adnkce=ank

�
ank x

�

� c lim sup
k!1

nkh
�
ank r1x

� D cg.r1x/ :

A similar argument with the sequence .mk/ gives us g.x/ � cg.r2x/, so that we have,
by the monotonicity of g, g.r1x/ D g.r2x/ for all x … C [ C=r1 [ C=r2. Note that
the set

1[

jD1

�
.r2=r1/

jC [ r1.r2=r1/
jC
�

is at most countable, so there is x 2 I not in this set. For such x, we have

g
�
.r2=r1/

jx
� D g.x/; j D 1; 2; : : : :

Letting j ! 1, we obtain g.x/ D 0, which contradicts the fact that g takes positive
values on I.

Therefore, the limit in (10.42) exists. Note that the function  is nondecreasing,
 .c/ � 1 if c � 1, and  .c/ � 1 if c � 1. We claim that 0 <  .c/ < 1 for all
c > 0. Indeed, suppose that  .c/ D 1 for some c > 1. Then for every M > 0, we
have adnce=an � M for all n large enough. For x … C [ C=M, as above,

g.x/ D lim
n!1 cnh

�
adncex

� � c lim inf
n!1 nh

�
anMx

� D cg.Mx/ :

Choosing x 2 I, x … [n2NC=n, and letting M ! 1 over the integers, we conclude
g.x/ D 0, which is, once again, a contradiction. Therefore,  .c/ < 1 for all c > 0,
and a similar argument shows that  .c/ > 0 for all c > 0. A similar argument also
shows that  is continuous at c D 1. Indeed, suppose, for example, that  .1C/ D
b > 1, and let b1 D .1C b/=2 > 1. Let x … C [ C=b1. Then for all c > 1,

g.x/ D lim
n!1 cnh

�
adncex

� � c lim inf
n!1 nh

�
anb1x

� D cg.b1x/ :

Letting c # 1 and using the monotonicity of g, we see that g.x/ D g.b1x/. Repeating
the argument used to prove existence of the limit in (10.42) provides now the
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necessary contradiction. Similarly impossible is the assumption  .1�/ < 1. Hence
we have continuity at c D 1.

Next, let c > 0. For x … C [ C=c, we have

g.x/ D lim
n!1 cnh

�
adncex

�
(10.43)

D c lim
n!1 cnh

��
adne=an

�
anx
�

D cg
�
 .c/x

�
;

since .c/x is a continuity point of g. If now c1; c2 > 0, then we can use (10.43) with
c D c1, c D c2, and c D c1c2 to obtain, for every x … C [ C=c1 [ C=c2 [ C=.c1c2/,

c1c2g
�
 .c1c2/x

� D g.x/ D c1g
�
 .c1/x

� D c1c2g
�
 .c1/ .c2/x

�
:

We have already seen that this implies that

 .c1c2/ D  .c1/ .c2/; c1 > 0; c2 > 0 : (10.44)

Let ˇ D log
�
 .e/

�
. Then a repeated application of (10.44) shows first that the

relation

 .c/ D cˇ (10.45)

holds for c of the type c D ek, k an integer, then for c of the type c D eq, q rational,
and finally, by monotonicity, for all c > 0. It follows now from (10.42) that

lim
x!1

adxce
adxe

D cˇ

for all c > 0, so the sequence .an/ is regularly varying with exponent ˇ.
Clearly, ˇ � 0, and ˇ D 0 is impossible, since in this case,  � 1,

contradicting (10.43). This completes the proof. �

We finish this section by mentioning several useful formulas that are frequently
used in Fourier analysis of regularly varying functions. The first two can be found,
for example, in Section 4.3 of Bingham et al. (1987):

Z 1

0

sin x

xˇ
dx D 	=2

�.ˇ/ sin.	ˇ=2/
for 0 < ˇ < 2 (10.46)

(the integral is only conditionally convergent if 0 < ˇ � 1) and

Z 1

0

cos x

xˇ
dx D 	=2

�.ˇ/ cos.	ˇ=2/
for 0 < ˇ < 1, (10.47)

with the integral, once again, converging only conditionally.
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Integrating by parts, using (10.46), as well as the following property of the
gamma function,

�.z/�.1 � z/ D 	

sin.	z/
; z 2 R n Z ; (10.48)

we obtain the following formula:

Z 1

0

1 � cos x

xˇ
dx D

(
�.3�ˇ/

.2�ˇ/.ˇ�1/ sin.	ˇ=2/ for 1 < ˇ < 3, ˇ 6D 2,

	=2 for ˇ D 2.
(10.49)

10.6 Multiple Integrals with Respect to Gaussian
and S˛S Measures

In this section, we present certain basic facts on multiple stochastic integrals. For
details on multiple integration in the Gaussian case, see Nualart (1995); for the S˛S
case, see Rosiński et al. (1991).

We begin with the Gaussian case. Let M be a centered Gaussian random measure
on .S;S/ with a � -finite control measure m; see Example 3.2.4. Assume that the
control measure m is atomless. Let k � 1. The k-tuple integral

Ik.f / D
Z

S
: : :

Z

S
f .s1; : : : ; sk/M.ds1/ : : :M.dsk/ ; (10.50)

can be defined for each measurable function f W Sk ! R such that

kf k2L2.mk/
D
Z

S
: : :

Z

S
f .s1; : : : ; sk/

2 m.ds1/ : : :m.dsk/ < 1 ;

i.e., for f 2 L2.Sk;mk/. If k D 1, the integral coincides with the usual integral with
respect to a Gaussian random measure, as in Example 3.3.6, and I1.f / is a zero-mean
Gaussian random variable. For a general k � 1, the basic properties of the integral
are described in the following proposition.

Proposition 10.6.1. (i) The integral is invariant under a permutation of the argu-
ments of the function f : for every permutation � D .�1; : : : ; �k/ of f1; : : : ; kg
and every f 2 L2.Sk;mk/, one has Ik.f� / D Ik.f /, where f� .t1; : : : ; tk/ D
f .t�1 ; : : : ; t�k/.

(ii) For every f 2 L2.Sk;mk/, Ik.f / is a random variable with zero mean and finite
variance. If f 2 L2.Sk;mk/ and g 2 L2.Sl;ml/, then

E.Ik.f /Il.g// D 1.k D l/ kŠ.Qf ; Qg/L2.mk/ :
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Here Qf ; Qg are the symmetrizations of the functions f ; g. That is,

Qf D 1

kŠ

X

�

f� ;

with the sum taken over all permutations � of f1; : : : ; kg.
(iii) The integral is linear: for every f ; g 2 L2.Sk;mk/ and real numbers a; b, one

has Ik.af C bg/ D aIk.f /C bIk.g/ a.s.
(iv) Let f be a simple function of the form

f .t1; : : : ; tk/ D ai1;:::;ik if t1 2 Ai1 ; : : : ; tk 2 Aik

for i1; : : : ; ik D 1; : : : ; d, d D 1; 2; : : :, where A1; : : : ;Ad are disjoint sets of
finite measure m, and .ai1;:::;ik/ is an array of real numbers that vanishes on the
diagonals. That is, ai1;:::;ik D 0 if any two of the numbers i1; : : : ; ik coincide.
The function f vanishes if its argument is not in the above range. Then

Ik.f / D
dX

i1;:::;ikD1
ai1;:::;ik M.Ai1 / : : :M.Aik/ :

Furthermore, simple functions of this type are dense in L2.Sk;mk/.

Note that it follows from the proposition that for k � 2, the integral Ik.f / is
no longer a Gaussian random variable. In fact, it can be viewed as a homogeneous
polynomial of order k in the Gaussian random measure M.

The situation is similar in the S˛S case, 0 < ˛ < 2. Let now M be an S˛S random
measure on .S;S/ with a � -finite modified control measure m; see Example 3.2.6.
Once again, assume that the control measure m is atomless. For k � 1, we still use
the notation (10.50) for the k-tuple integral of f with respect to M. The integral is
now defined for every measurable function f W Sk ! R with the following property:
there is a measurable function  W S ! .0;1/ with

Z

S
 .s/˛ m.ds/ < 1

such that N .f / < 1, where

N .f / D
Z

S
: : :

Z

S
jf .s1; : : : ; sk/j˛

�
1C log

C

jf .s1; : : : ; sk/j
 .s1/ : : :  .sk/

�k�1

m.ds1/ : : :m.dsk/ :

Here logC a D max.0; log a/ for a � 0. We call the class of such functions f ,
L˛ logk�1 L�. It is easily seen to be a linear space. The subclass of L˛ logk�1 L� for
which N .f / < 1 for a fixed  is also a linear space, which we call L˛ logk�1 L .



10.7 Inequalities, Random Series, and Sample Continuity 399

One can introduce a notion of convergence in L˛ logk�1 L by saying that fm ! f if
N .f � fn/ ! 0. Similar to Proposition 10.6.1, we have the following result.

Proposition 10.6.2. The integral is invariant under a permutation of the arguments
of the function f and is linear. Furthermore, for every simple function of the form of
part (iv) of Proposition 10.6.1, we have

Ik.f / D
dX

i1;:::;ikD1
ai1;:::;ik M.Ai1 / : : :M.Aik/ :

Furthermore, simple functions of this type are dense in L˛ logk�1 L for a fixed  .
If N .f � fn/ ! 0, then Ik.fn/ ! Ik.f / in probability.

10.7 Inequalities, Random Series, and Sample Continuity

This last section is a collection of general inequalities and results on series of
random variables and on sample continuity of stochastic processes used throughout
the book. These results are available in many other texts. They are collected in one
place here for easier reference.

The first inequality is a useful combination of Hölder’s inequality and Fubini’s
theorem.

Theorem 10.7.1. Let
�
Ei;Fi;mi

�
be two � -finite measure spaces, and let f W E1 �

E2 ! Œ0;1/ be a measurable function. Then for every 0 < q � p < 1,

 Z

E2

�Z

E1

f .x1; x2/
q m1.dx1/

�p=q

m2.dx2/

!1=p

�
 Z

E1

�Z

E2

f .x1; x2/
p m2.dx2/

�q=p

m1.dx1/

!1=q

:

Proof. See Lemma 3.3.1 in Kwapień and Woyczyński (1992). �

The following two results deal with sums of independent random variables.

Theorem 10.7.2 (Marcinkiewicz-Zygmund inequalities). For each p � 1, there
exists a finite constant Bp � 1 such that for every n D 1; 2; : : : and independent
random variables X1; : : : ;Xn such that EjXjjp < 1 and EXj D 0 for each j D
1; : : : ; n,

B�1p E

0

@
nX

jD1
X2j

1

A

p=2

� E

ˇ
ˇ̌
ˇ̌
ˇ

nX

jD1
Xj

ˇ
ˇ̌
ˇ̌
ˇ

p

� BpE

0

@
nX

jD1
X2j

1

A

p=2

:

Proof. See Theorem 8.1 in Gut (2005). �
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Theorem 10.7.3 (Lévy–Ottaviani inequalities). Let X1; : : : ;Xn be independent
random variables. Then for every s; t � 0,

P

0

@ max
iD1;:::;n

ˇ̌
ˇ̌
ˇ̌

iX

jD1
Xj

ˇ̌
ˇ̌
ˇ̌ > t C s

1

A �
P
� ˇ̌
ˇ
Pn

jD1 Xj

ˇ̌
ˇ > t

�

1 � maxiD1;:::;n P
�ˇ̌
ˇ
Pn

jDi Xj

ˇ̌
ˇ > s

� :

Proof. See Proposition 1.1.1 in Kwapień and Woyczyński (1992). �

A related inequality is the following maximal inequality for discrete-time mar-
tingales. Let X1;X2; : : : be a sequence of square integrable martingale differences
with respect to some filtration .Fn; n D 0; 1; 2 : : :/; that is, Xn is Fn-measurable and
E.XnjFn�1/ D 0 a.s. for every n D 1; 2; : : :.

Theorem 10.7.4. For every � > 0 and n D 1; 2; : : :,

�P

0

@ sup
kD1;:::;n

ˇ̌
ˇ̌
ˇ
ˇ

kX

jD1
Xj

ˇ̌
ˇ̌
ˇ
ˇ
> �

1

A � 2E

0

@
nX

jD1
X2j

1

A

1=2

:

Proof. See Theorem 5.6.1 in Kwapień and Woyczyński (1992). �

The result of the next theorem is sometimes referred to as a contraction principle
for probabilities.

Theorem 10.7.5. Let E be a normed space, and X1; : : : ;Xn independent symmetric
random variables with values in E. Then for all real numbers a1; : : : ; an 2 Œ�1; 1�,

P

 






nX

iD1
aiXi







> t

!

� 2P

 






nX

iD1
Xi







> t

!

for every t > 0.

Proof. See Corollary 1.2.1 in Kwapień and Woyczyński (1992). �

Necessary and sufficient conditions for convergence of series of independent
random variables are given in the following theorem, often called the three series
theorem. The equivalence between a.s. and weak convergence in this case is known
as the Itô–Nisio theorem.

Theorem 10.7.6. Let .Xn/ be a sequence of independent random variables. Then
the series

P1
nD1 Xn converges a.s. (equivalently, in distribution) if and only if the

following three series converge for some (equivalently every) c > 0:

1X

nD1
P.jXnj > c/;

1X

nD1
E
�
Xn1.jXnj � c/

�
;

1X

nD1
Var

�
Xn1.jXnj � c/

�
:
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Proof. The equivalence between the modes of convergence (the Itô–Nisio part) can
be found in Theorem 2.1.1 in Kwapień and Woyczyński (1992). The necessity and
sufficiency of the three series criterion is in Theorem 22.8 in Billingsley (1995). �

The next theorem is usually referred to as the Kolmogorov continuity criterion.

Theorem 10.7.7. Let X D �
X.t/; t 2 R

d
�

be a stochastic process. Suppose that for
some a; b;C > 0,

EjX.t/ � X.s/ja � Ckt � skdCb for all t; s 2 R
d. (10.51)

Then the process X has a continuous version, which is in addition Hölder continuous
with Hölder exponent � for every � < b=a.

Proof. See Theorem 3.23 in Kallenberg (2002).

We finish this section with two bounds from the Gaussian world. The next
theorem says that the tail of the supremum of a bounded Gaussian process is not
much heavier that the tail a single normal random variable whose variance equals
the maximal variance of the Gaussian process. It is sometimes referred to as the
Borell–TIS inequality.

Theorem 10.7.8. Let
�
X.t/; t 2 T

�
be a zero-mean Gaussian process on a

countable set T. Assume that X� WD supt2T kX.t/k < 1 a.s. Then �� WD
supt2T

�
Var

�
X.t/

��1=2
< 1, and for every x > 0,

P
�ˇ̌

X� � m
ˇ̌
> x

� � 2‰
�
x=��

�
; (10.52)

where m is a median of X�, and

‰.x/ D
Z 1

x

1p
2	

e�y2=2 dy; x 2 R

is the tail of the standard normal random variable. In particular, EX� < 1.
Furthermore, (10.52) remains true with the median m replaced by EX�.

Proof. The finiteness of �� is obvious. The version of (10.52) with the median is
Theorem 3.1 in Borell (1975). The version with the expectation is in Theorem 2.1.1
in Adler and Taylor (2007). �

The following theorem, sometimes called the Slepian lemma, allows one to
compare the distribution functions of two centered Gaussian random vectors with
the same variances when one covariance matrix dominates the second covariance
matrix pointwise.

Theorem 10.7.9. Let .X1; : : : ;Xn/ and .Y1; : : : ;Yn/ be centered Gaussian vectors.
Assume that EX2i D EY2i for all i D 1; : : : ; n and that E.XiXj/ � E.YiYj/ for all
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i; j D 1; : : : ; n. Then for all real numbers u1; : : : ; un,

P
�
X1 � u1; : : : ;Xn � un

� � P
�
Y1 � u1; : : : ;Yn � un

�
:

Proof. See Slepian (1962). �

10.8 Comments on Chapter 10

Comments on Section 10.2
The classical text on weak convergence is Billingsley (1999). A very informative

presentation of vague convergence and weak convergence in the vague topology is
in Resnick (1987). Much of the second part of Section 10.2 is based on the latter
text. In particular, Theorem 10.2.13 is Proposition 3.19 there.

Comments on Section 10.4
In the one-dimensional case, the statement of Lemma 10.4.4 is in Problem 11,

p. 147, in Chung (1968).
The theory of local times was originally developed for Markov processes,

beginning with Lévy (1939). Extending the idea of local times to non-Markov
processes is due to Berman (1969), which considers mostly Gaussian processes.
The existence of “nice” local times requires certain roughness of the sample paths
of a stochastic process, and the powerful idea of local nondeterminism introduced in
Berman (1973) can be viewed as exploiting this observation in the case of Gaussian
processes. This approach was extended in Pitt (1978) to Gaussian random fields
(with values in finite-dimensional Euclidian spaces), and to stable processes in
Nolan (1982). Many details on local times of stochastic processes and random fields
can be found in Geman and Horowitz (1980) and Kahane (1985).

Estimates similar to those in Proposition 10.4.7 (but with a slightly worse power
of the logarithm) were also obtained in Csörgo et al. (1995).

Comments on Section 10.5
The modern theory of regular variation began with the paper Karamata (1930).
An encyclopedic treatment of regularly varying functions is in Bingham et al.

(1987), following the earlier monograph Seneta (1976). A very readable exposition
is in Section 0.4 in Resnick (1987).

The notion of functions of the Zygmund class was introduced in Bingham et al.
(1987) with a reference to Zygmund (1968).

Comments on Section 10.6
Multiple integrals with respect to Gaussian measures were introduced in Wiener

(1938). The definition used today is due to Itô (1951).
Multiple integrals with respect to S˛S random measures have been introduced

and studied in a series of papers, including Rosiński and Woyczyński (1986),
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McConnell and Taqqu (1984), Kwapień and Woyczyński (1987), Krakowiak and
Szulga (1988).

Comments on Section 10.7
The name “Borell–TIS” of the inequality in Theorem 10.7.8 is due to the fact

that the version of (10.52) using the median of the supremum was proved at about
the same time in Borell (1975) and Tsirelson et al. (1976).

10.9 Exercises to Chapter 10

Exercise 10.9.1. (i) Let A be a subset of a metric space S. Show that the boundary
@A is always a closed, hence Borel measurable, set.

(ii) Let S and S1 be metric spaces, and h W S ! S1 a map. Let

Dh D
n
x 2 S W h is not continuous at x

o

be the set of discontinuities of h. Show that Dh can be written as a countable
union of closed sets and hence is Borel measurable.

Exercise 10.9.2. Let .Pn/; P be probability measures on a complete separable
locally compact metric space S. Prove that if Pn converges vaguely to P, then Pn

also converges to P weakly.

Hint: you may find it useful to appeal to Prokhorov’s theorem (Theorem 10.2.3)
as well as to the following lemma, known as Urysohn’s lemma (see Kallenberg
(1983)).

Lemma 10.9.3. Let S be a complete separable locally compact metric space.

(i) Let K 	 S be a compact set. Then there exist a sequence of compact sets Kn # K
and a nonincreasing sequence fn of continuous functions with compact support
such that for every n,

1K.x/ � fn.x/ � 1Kn.x/; x 2 S :

(ii) Let G 	 S be an open set relatively compact in S. Then there exist a sequence
of open relatively compact sets Gn " G and a nondecreasing sequence gn of
continuous functions with compact support such that for every n,

1G.x/ � gn.x/ � 1Gn.x/; x 2 S :

Exercise 10.9.4. Let M be a Poisson random measure on a locally compact
complete separable metric space with Radon mean measure m. Prove that the
Laplace functional of M is given by

‰M.f / D exp

	
�
Z

S

�
1 � e�f .s/

�
m.ds/

�
;

f a nonnegative continuous function S ! R with compact support.
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Exercise 10.9.5. Let � and � be two signed measures on
�
S;S

�
. Construct the

signed measure � C � on
�
S;S

�
. Is it true that the positive and negative parts of

the new measure are equal to the sums of the corresponding parts of the original
measure?

Exercise 10.9.6. Prove that if � and � are two signed measures on
�
S;S

�
and fi W

S ! R, i D 1; 2, are measurable functions such that (10.6) holds with both f D f1
and f D f2, then f1 D f2 a.e. with respect to the total variation measure k�k.

Exercise 10.9.7. Let
�
X.t/; t � 0

�
be an H-self-similar S˛S process with stationary

increments, 0 < ˛ � 2 (a fractional Brownian motion in the case ˛ D 2). Use
Proposition 10.4.5 to show that over each compact interval the process has square
integrable local time if 0 < H < 1, and a bounded and uniformly continuous local
time if 0 < H < 1=2.

Exercise 10.9.8. Theorems 10.5.6 and 10.5.9 show that integrals of regularly
varying functions are themselves regularly varying. This exercise explores to what
extent the derivatives of regularly varying functions are themselves regularly
varying.

(i) Let ˇ 2 R. Construct an example of a continuously differentiable function f that
is regularly varying with exponent ˇ such that the derivative f 0 is not regularly
varying.

(ii) Let f be an absolutely continuous function with a derivative f 0 (in the sense of
absolute continuity) that is eventually monotone. If f is regularly varying with
exponent ˇ 6D 0, show that f 0 is regularly varying with exponent ˇ � 1.

Exercise 10.9.9. Regularly varying functions can often be made nice! Let f be a
positive function. Show that if f is regularly varying with exponent ˇ > 0, we can
find a monotone increasing absolutely continuous function g such that f .x/=g.x/ !
1 as x ! 1. Show that the same can be achieved if f is regularly varying with
exponent ˇ < 0, except that now g is monotone decreasing.

Exercise 10.9.10. (i) Prove that every function of the Zygmund class is slowly
varying.

(ii) Construct a slowly varying function that is not of the Zygmund class. Hint:
Start with the Karamata representation of a slowly varying function and choose
a function a that is not eventually continuous.

Exercise 10.9.11. Show by example that there are measurable functions g1 and g2
with g1.x/=g2.x/ ! 1 as x ! 1 such that g1 is of the Zygmund class, while g2 is
not.

Exercise 10.9.12. Prove the converse part of Proposition 10.5.12.
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M. Jacobsen, T. Mikosch, J. Rosiński, G. Samorodnitsky, Inverse problems for regular variation

of linear filters, a cancellation property for �-finite measures, and identification of stable laws.
Ann. Appl. Probab. 19, 210–242 (2008)

L. Jones, U. Krengel, On transformations without finite invariant measure. Adv. Math. 12, 275–295
(1974)

P. Jung, T. Owada, G. Samorodnitsky, Functional central limit theorem for a class of negatively
dependent heavy-tailed stationary infinitely divisible processes generated by conservative
flows. Ann. Probab. (2016), to appear

Z. Kabluchko, S. Stoev, Stochastic integral representations and classification of sum- and max-
infinitely divisible processes. Bernoulli 22, 107–142 (2016)

J.P. Kahane, Some Random Series of Functions, 2nd edn. (Cambridge University Press, Cambridge,
1985)



408 Bibliography

O. Kallenberg, Series of random processes without discontinuities of the second kind. Ann. Probab.
2, 729–737 (1974)

O. Kallenberg, Random Measures, 3rd edn. (Akademie-Verlag, Berlin, 1983)
O. Kallenberg, Foundations of Modern Probability (Springer, New York, 1997)
O. Kallenberg, Foundations of Modern Probability, 2nd edn. (Springer, New York, 2002)
J. Karamata, Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 38–53

(1930)
A. Kolmogorov, Wienersche Spiralen und einige andere interessante kurven in Hilbertschen raum.

C.R. (Doklady) Acad. Sci. USSR (N.S.) 26, 115–118 (1940)
A. Kolmogorov, Y. Rozanov, On a strong mixing condition for a stationary Gaussian process.

Teoria Veroyatnostei i Primeneniya 5, 222–227 (1960)
W. Krakowiak, J. Szulga, A multiple stochastic integral with respect to a strictly p-stable measure.

Ann. Probab. 16, 764–777 (1988)
U. Krengel, Classification of states for operators, in Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, vol. II (University of California Press, Berkeley,
1967), pp. 415–429

U. Krengel, Ergodic Theorems (De Gruyter, Berlin, New York, 1985)
H. Künsch, Discrimination between monotonic trends and long-range dependence. J. Appl. Probab.

23, 1025–1030 (1986)
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J. Rosiński, T. Żak, The equivalence of ergodicity and weak mixing for infinitely divisible
processes. J. Theor. Probab. 10, 73–86 (1997)

E. Roy, Ergodic properties of Poissonian ID processes. Ann. Probab. 35, 551–576 (2007)
H. Royden, Real Analysis, 2nd edn. (Macmillan, London, 1968)
W. Rudin, Fourier Analysis on Groups (Interscience Publishers, New York, 1962)
G. Samorodnitsky, Extreme value theory, ergodic theory, and the boundary between short memory

and long memory for stationary stable processes. Ann. Probab. 32, 1438–1468 (2004)
G. Samorodnitsky, Null flows, positive flows and the structure of stationary symmetric stable

processes. Ann. Probab. 33, 1782–1803 (2005)
G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes (Chapman and Hall, New

York, 1994)
K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press,

Cambridge, 1999)
E. Seneta, Regularly Varying Functions. Lecture Notes in Mathematics, vol. 508 (Springer, Berlin,

1976)
A. Skorohod, Limit theorems for stochastic processes with independent increments. Theor. Probab.

Appl. 2, 137–171 (1957)
D. Slepian, The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41, 463–501

(1962)
J. Smit, Solution to problem130. Stat. Neerlandica 37, 87 (1983)



Bibliography 411

D. Surgailis, Convergence of sums of nonlinear functions of moving averages to selfsimilar
processes. Sov. Math. Dokl. 23, 247–250 (1981a)

D. Surgailis, On L2 and non-L2 multiple stochastic integration, in Stochastic Differential Systems.
Lecture Notes in Control and Information Sciences, vol. 36 (Springer, New York, 1981b),
pp. 212–226

M. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31, 287–302 (1975)

M. Taqqu, A representation for self-similar processes. Stoch. Process. Appl. 7, 55–64 (1978)
M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für

Wahrscheinlichkeitstheorie und verwandte Gebiete 50, 53–83 (1979)
J. Teugels, The class of subexponential distributions. Ann. Probab. 3, 1000–1011 (1975)
E. Titchmarsh, Introduction to the Theory of Fourier Integrals, 3rd edn. (Chelsea, New York, 1986)
B. Tsirelson, I. Ibragimov, V. Sudakov, Norms of Gaussian sample functions, in Proceedings of

the 3d Japan-USSR Symposium on Probability Theory. Lecture Notes in Mathematics, vol. 550
(Springer, Berlin, 1976), pp. 20–41

W. Vervaat, On a stochastic difference equation and a representation of non-negative infinitely
divisible random variables. Adv. Appl. Probab. 11, 750–783 (1979)

W. Vervaat, Sample paths of self-similar processes with stationary increments. Ann. Probab. 13,
1–27 (1985)

P. Walters An Introduction to Ergodic Theory (Springer, New York, 1982)
I. Weissman, On location and scale functions of a class of limiting processes with application to

extreme value theory. Ann. Probab. 3, 178–181 (1975)
W. Whitt, Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their

Applications to Queues (Springer, New York, 2002)
N. Wiener, The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)
Y. Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of

Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997)
A. Yaglom, Correlation theory of processes with stationary random increments of order n. Mat.

Sb. 37, 141–196 (1955); English translation in Am. Math. Soc. Translations Ser. 2 8, 87–141
(1958)

K. Yosida, Functional Analysis (Springer, Berlin, 1965)
P. Zaffaroni, Stationarity and memory of ARCH.1/ models. Econ. Theory 20, 147–160 (2004)
A. Zygmund, Trigonometric Series, vols. I, II (Cambridge University Press, Cambridge, 1968)



Index

Symbols
˛-mixing, 54
ˇ-mixing, 58
�-mixing, 59

A
absolutely regular, 58
Allen long memory, 195
ARMA process, 20

B
backward shift, 229
balanced regularly varying, 151
Birkhoff theorem, 29, 32
Bochner theorem, 7
Borell–TIS inequality, 401

C
character, 363
characteristic triple, 74–76
compatible mapping, 35
compound Poisson, 74
conservative map, 60, 306, 334, 350
contraction principle, 400
control measure, 86
convergence in density, 45

D
dilated stable motion, 332, 358
dissipative map, 61, 301, 326, 344

E
ergodic, 188
ergodicity, 29, 274
extremal process, 339, 340, 344, 355

F
FARIMA process, 245
FBM , see fractional Brownian motion
FBM-local time stable motion, 117, 127, 281
FGN , see fractional Gaussian noise
Fréchet distribution, 338
fractional Brownian motion, 110, 180, 204,

290, 295, 299, 309, 379, 404
fractional Gaussian noise, 11, 180, 204
fractionally integrated process, 231

G
Gaussian chaos, 267
Gaussian measure, 87, 94
G-stationarity, 2
Gumbel distribution, 338

H
harmonizable stable motion, 115, 126, 281,

379
Hergoltz theorem, 7
Hermite expansion, 219
Hermite index, 221, 226, 356
Hermite polynomial, 217, 227
Hermite rank, see Hermite index
Hopf decomposition, 61
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Hurst exponent, 11
Hurst phenomenon, 175

I
infinitely divisible process, 73, 274, 300, 325
invariant �-field, 29, 32, 70
invariant set, 29
isotropic process, 3
Itô–Nisio theorem, 400

J
Joseph effect, 182

K
Karamata representation, 388, 393
Kolmogorov continuity criterion, 401

L
Lévy motion, 75, 86, 258, 268
Lévy–Khinchine representation, 73
Lévy–Ottaviani inequality, 400
Lamperti transformation, 248
Lamperti’s theorem, 249, 252, 281
Laplace functional, 369
left shift, 27
linear process, 15, 154, 227, 292, 316
linear stable motion, 113, 126, 281, 320, 325,

358, 379
local characteristics, 86
local time, 374
long tail, 135, 142

M
Marcinkiewicz-Zygmund inequality, 399
measurable process, 13
Mittag-Leffler distribution, 268
Mittag-Leffler process, 268
Mittag-Leffler stable motion, 268, 281, 283,

336
mixing, 37, 189, 274
modified control measure, 88
moving average, 15
multiple stable integral, 271, 398

multiple Wiener integral, 263, 397
multivariate regularly varying, 154

N
Noah effect, 182
noncentral limit theorem, 281
nonnegative definite function, 364
nonsingular map, 29, 70
null map, 65, 71

P
Poisson component, 81
Poisson measure, 87, 94, 132, 368, 403
portmanteau theorem, 365, 366
positive map, 63
Potter bounds, 389

R
Radon measure, 366
random measure, 81
regularly varying, 134, 146, 384
right shift, 27
Rosenblatt–Mori–Oodaira kernel, 266
R=S statistic, 175

S
self-similar process, 109, 247, 380
series representation, 107, 109
shot noise, 128
simple random walk, 66
Slepian lemma, 401
slowly varying, 384
spectral density, 8
spectral measure, 7, 155
stable measure, 87, 94
stable motion, 312, 316, 326
stable process, 79, 124, 343
stationary increments, 3, 381
stationary max-increments, 254
stationary process, 1, 120, 274, 381
stochastic integral, 89
strongly mixing, 54, 189, 355
subadditive sequence, 71
subexponential, 133, 144
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subordinator, 268
Surgailis kernel, 272

T
tail �-field, 30, 43, 54
tail empirical measure, 170
tail measure, 159
Taqqu kernel, 266
telecom process, 334
three series theorem, 400

W
wandering set, 60, 330
weak charachteristic triple, 78
weak mixing, 45, 274
weakly wandering, 65
Weibull distribution, 358

Z
Zygmund class, 207, 393, 404
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