
Anonymous Attestation Using the Strong Diffie
Hellman Assumption Revisited

Jan Camenisch1, Manu Drijvers1,2(B), and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. Direct Anonymous Attestation (DAA) is a cryptographic
protocol for privacy-protecting authentication. It is standardized in the
TPM standard and implemented in millions of chips. A variant of DAA is
also used in Intel’s SGX. Recently, Camenisch et al. (PKC 2016) demon-
strated that existing security models for DAA do not correctly capture all
security requirements, and showed a number of flaws in existing schemes
based on the LRSW assumption. In this work, we identify flaws in secu-
rity proofs of a number of qSDH-based DAA schemes and point out that
none of the proposed schemes can be proven secure in the recent model
by Camenisch et al. (PKC 2016). We therefore present a new, provably
secure DAA scheme that is based on the qSDH assumption. The new
scheme is as efficient as the most efficient existing DAA scheme, with sup-
port for DAA extensions to signature-based revocation and attributes.
We rigorously prove the scheme secure in the model of Camenisch et al.,
which we modify to support the extensions. As a side-result of indepen-
dent interest, we prove that the BBS+ signature scheme is secure in the
type-3 pairing setting, allowing for our scheme to be used with the most
efficient pairing-friendly curves.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic authentication protocol
that lets a platform, consisting of a secure element and a host, create anony-
mous attestations. These attestations are signatures on messages and convince
a verifier that the message was signed by a authorized secure element, while
preserving the privacy of the platform. DAA was designed for the Trusted Plat-
form Module (TPM) by Brickell, Camenisch, and Chen [9] and was standardized
in the TPM 1.2 specification in 2004 [34]. Their paper inspired a large body of
work on DAA schemes [4,10,11,13,15,22–24,26], including more efficient scheme
using bilinear pairings as well as different security definitions and proofs. One
result of these works is the recent TPM 2.0 specification [31,35] that includes
support for multiple pairing-based DAA schemes, two of which are standardized
by ISO [30].

This work has been supported by the ERC under Grant PERCY #321310.

c© Springer International Publishing Switzerland 2016
M. Franz and P. Papadimitratos (Eds.): TRUST 2016, LNCS 9824, pp. 1–20, 2016.
DOI: 10.1007/978-3-319-45572-3 1

2 J. Camenisch et al.

DAA is widely used in the area of trusted computing. Over 500 million TPMs
have been sold1, making DAA probably the most complex cryptographic scheme
that is widely implemented. Additionally, an extension of DAA is used in the
Intel Software Guard Extensions (SGX) [27], the most recent development in
the area of trusted computing.

A number of functional extensions to DAA have been proposed. Brickell and
Li [12,14] introduced Enhanced Privacy ID (EPID), which extends DAA with
signature-based revocation. This extension allows one to revoke a platform based
on a previous signature from that platform. This is an improvement over the
private key revocation used in DAA schemes, where a TPM cannot be revoked
without knowing its secret key.

Chen and Urian [25] introduced DAA with attributes (DAA-A), in which
the membership credential can also contain attributes. These attributes might
include more information about the platform, such as the vendor or model, or
other information, such as an expiration date of the credential. When signing,
the platform can selectively disclose attributes, e.g., reveal that the signature was
created by a TPM of a certain manufacturer, or create more advanced proofs,
such as proving that the expiration date of the credential lies in the future.

Unfortunately, in spite of being used in practice, many of the existing schemes
are not provably secure. Recently, Camenisch et al. [15] showed that previous
security definitions of DAA are not satisfactory, meaning that security proofs
using these security models do not guarantee security. They further point out
that many of the DAA schemes based on the LRSW assumption [32] are flawed.
They finally provide a comprehensive security model and provide a LRSW-based
scheme that is provably secure in their model. However, there is to date no
scheme based on the qSDH assumption [6] that is secure in their model.

Indeed, in this work we show that also many of the DAA schemes based on
the qSDH assumption are flawed. The most efficient qSDH-based schemes [13,
22,25] use a credential which is not provably secure against adaptive chosen
message attacks, leaving room for an attacker to forge credentials. Moreover,
these schemes use a flawed proof-of-knowledge of credentials, which in fact does
not prove possession of such a credential. Finally, the security of all existing
qSDH-based schemes has only been analyzed in the type-2 pairing setting [29].
However, these schemes are often used in the more efficient type-3 setting, where
there is no efficient isomorphism from G2 to G1, As the security proofs rely on
such an isomorphism, they do not apply to a type-3 setting, meaning there is no
evidence of security.

Apart from pointing out flaws in the existing qSDH-based DAA schemes,
this paper provides two more main contributions. Second, we fix the issues and
present a qSDH-based DAA scheme with support for attributes and signature-
based revocation. Like previous work, we use the BBS+ signature [1] for creden-
tials, but unlike previous work we move to the more efficient and flexible type-3
pairing setting. Third, we extend the security model by Camenisch et al. [15] to

1 http://www.trustedcomputinggroup.org/solutions/authentication.

http://www.trustedcomputinggroup.org/solutions/authentication

Anonymous Attestation Using the qSDH Assumption Revisited 3

capture signature-based revocation and support attributes, and rigorously prove
our scheme secure in this model.

2 Flaws in Existing qSDH-based Schemes

The first DAA scheme by Brickell et al. [9] is based on the strong RSA assump-
tion. Due to the large keys required for RSA, this protocol was inefficient and
hard to implement. A lot of research has gone into designing more efficient DAA
schemes using bilinear pairings and improving the security model of DAA. The
work on efficient DAA schemes can be split in two chains of work, one based on
the LRSW assumption [32], and one on the qSDH assumption [6]. The schemes
based on the LRSW assumption have recently been studied by Camenisch
et al. [15]. In this section we now discuss the existing qSDH-based schemes
and their proofs of security. We start by giving an overview of existing security
models for DAA and DAA with extensions, and then show that none of the
existing qSDH-based are efficient and provably secure.

2.1 Security Models for DAA

One of the most challenging tasks in cryptography is to formally define a security
model that allows for rigorous security proofs. Before we discuss security models,
we give some intuition on the required security properties of DAA. First, sig-
natures must be unforgeable, meaning only platforms that the issuer allowed to
join can create signatures. Second, signatures must be anonymous. A basename
is used to control anonymity, and an adversary given two signatures valid with
respect to two distinct basenames must not be able to decide whether the sig-
natures were created by the same platform. Third, we require non-frameability.
When a platform signs with respect to the same basename multiple times, a
verifier can link these signatures, meaning it realizes both signatures stem from
the same platform. No adversary should be able to frame a platform, mean-
ing it cannot create a signature on a message m that links to some platform’s
signatures, while that platform never signed m.

There are multiple ways to define a security model. Property-based defini-
tions are a set of security games, where every game defines a security property,
and a scheme is secure when every property holds. Simulation-based definitions
consist of a trusted third party. In a so-called ideal world, every protocol par-
ticipant hands their inputs to the trusted third party rather than executing the
protocol, and outputs are generated by the trusted third party. As the trusted
third party performs the task in a way secure by design, the ideal world performs
the desired task securely. A protocol is considered secure if the real world, in
which protocol participants execute the protocol, is as secure as the ideal world.

The first security model for DAA as introduced by Brickell et al. [9] follows
the simulation-based paradigm. Therein, signature generation and verification
is modeled as an interactive process, meaning a signature must always be ver-
ified immediately and cannot be used further. Camenisch et al. [15] define a

4 J. Camenisch et al.

simulation-based security model for DAA that outputs signatures and allows
them to be used in any way.

In an attempt to simplify the security model of DAA, Brickell et al. [11]
introduce a property-based definition for DAA. Unfortunately, this definition
does not cover non-frameability, and the notion for unforgeability allows forge-
able schemes to be proven secure: A scheme in which one value is a signature
on every message can fulfill the security model, while clearly being insecure.
Chen [22] extends this definition with a property for non-frameability, but the
other issues remain. Brickell and Li create a property-based security model for
enhanced privacy ID (EPID) [14] very similar to the model of Brickell et al. [11],
and containing the same flaws.

Camenisch et al. [15] give a more detailed overview of the security models
for DAA.

2.2 qSDH-Based DAA Schemes and Proofs

Chen and Feng [26] introduce the first DAA scheme based on the qSDH assump-
tion. The scheme requires the TPM to work in the target group GT , which is
inefficient and makes implementation more involved. Chen [22] improves the
efficiency of the previous schemes by removing one element of the membership
credential. Brickell and Li [13] further improve the efficiency by changing the
distribution of work between the host and TPM such that the TPM only per-
forms computations in G1. Being the most efficient scheme, it is supported by
the TPM 2.0 standard and ISO standardized [30].

All three schemes come with proofs of security using the security models by
Brickell et al. [11] and Brickell and Li [14]. However, as these models allow one
to prove insecure schemes secure, proofs in these models are not actual evidence
of security. Furthermore, the proofs of the two most efficient schemes [13,22] are
invalid, as the membership credential is not proven to be existentially unforgeable
against adaptive chosen message attacks. The proof aims to reduce a credential
forgery to breaking the qSDH assumption, meaning that the issuer private key
is an unknown value defined by the qSDH instance. They start by using the
Boneh-Boyen trick [6] to create q − 1 weak BB signatures under the issuer key,
on previously chosen ei values. From every weak BB signature, one membership
credential on a (potentially adversarial) platform key can be created. For one
randomly selected honest platform joining, it returns a credential on a key cho-
sen during the parameter selection of the scheme. It can create this credential
without consuming a BB04 signature due to the special selection of parameters.
Since the key is chosen like an honest platform would, this simulation is valid
for honest platforms. Finally, the authors claim that when a credential forgery
occurs that reuses part of an issued credential, with probability 1

q , it is reusing
part of the specially crafted credential. This is not true, as there may not even
be honest platforms joining, or the adversary may disregard credentials issued
to honest platforms. To fix the proof, one must be able to issue the special cre-
dential also to corrupt platforms, i.e., on a key chosen by the adversary, but this
does not seem possible.

Anonymous Attestation Using the qSDH Assumption Revisited 5

Related to this issue, the proofs of knowledge proving knowledge of a cre-
dential in these schemes do not prove the correct statement. The prover proves
knowledge of TPM secret gsk and of values a, b. The proof only proves knowledge
of a valid credential when b = a · gsk , but this structure of b is not proven. This
means that from a signature that passes verification, one cannot always extract
a valid signature, which prevents proving unforgeability. This could be fixed by
also proving b = a · gsk in zero knowledge.

Finally, the security proofs of all the pairing-based schemes mentioned here
make use of an isomorphism from G2 to G1 in the security proof. This prevents
the schemes from being used with the more efficient type-3 curves [29]. However,
the TPM 2.0 standard [31,35], designed to support the DAA scheme by Brickell
and Li [13], uses such type-3 curves. As there is no efficient isomorphism in this
setting, any security proof requiring an isomorphism is not applicable, leaving
the security of the scheme unproven.

DAA with Extensions. Two extensions of DAA have been proposed. Brickell
and Li [14] present EPID based on the qSDH assumption. This extends DAA
with signature-based revocation, allowing revocation of platforms based on a
signature from that platform. Unfortunately, they do not show how the work
of the platform can be split between a TPM and host. Chen and Urian [25]
introduce DAA with attributes (DAA-A), where the membership credential does
not only contain the TPM key, but also attribute values. This allows for many
new use cases, such as showing that a signature was created by a platform of a
certain vendor, or adding expiration dates to credentials. The authors present
two instantiations, one based on the LRSW assumption and one based on the
qSDH assumption. Unfortunately, the schemes do not come with security proofs.
The qSDH scheme suffers from the same flaws as the most recent qSDH DAA
schemes discussed above, i.e., the credential is not proven to be unforgeable.
Worse, the LRSW scheme is forgeable using the trivial credential A = B = C =
D = E1 = . . . = EL = 1G1 that signs all attributes and keys, so anyone can sign
with respect to any desired set of attributes.

3 A New Security Model for DAA with Extensions

In this section we present our security model for DAA with attributes and
signature-based revocation, which is defined as an ideal functionality F l

daa+ in
the UC framework [21]. In UC, an environment E passes inputs and outputs
to the protocol parties. The network is controlled by an adversary A that may
communicate freely with E . In the ideal world, the parties forward their inputs
to the ideal functionality F, which then (internally) performs the defined task
and creates outputs that the parties forward to E . Roughly, a real-world protocol
Π is said to securely realize a functionality F, if the real world is indistinguish-
able from the ideal world, meaning for every adversary performing an attack in
the real world, there is an ideal world adversary (often called simulator) S that
performs the same attack in the ideal world.

6 J. Camenisch et al.

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic (i).

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
3. Join Request. On input (JOIN, sid , jsid , Mi) from host Hj .

– Create a join session record 〈jsid , Mi, Hj , ⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid , Mi, Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid , Mi, Hj , ⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists (ii).

– Output (JOINPROCEED, sid , jsid , Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . . ×
AL

– Update the session record 〈jsid , Mi, Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid , Mi, Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 (iii) if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 (iv) if Mi is corrupt.

– Insert 〈Mi, Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Fig. 1. The Setup and Join related interfaces of F l
daa+. (The roman numbers are labels

for the different checks made within the functionality and will be used as references in
the analysis of the functionality and the proof.)

3.1 Ideal Functionality F l
daa+

We now formally define our ideal functionality F l
daa+, which is a modification of

F l
daa as defined by Camenisch et al. [15]. The modifications extend the function-

ality to support signature-based revocation and attributes.
The UC framework allows us to focus our analysis on a single protocol

instance with a globally unique session identifier sid. Here we use session iden-
tifiers of the form sid = (I, sid′) for some issuer I and a unique string sid ′. To
allow several sub-sessions for the join and sign related interfaces we use unique
sub-session identifiers jsid and ssid . Our ideal functionality F l

daa+ is parame-
trized by a leakage function l : {0, 1}∗ → {0, 1}∗, that we need to model the
information leakage that occurs in the communication between a host Hi and
TPM Mj . As our functionality supports attributes, we have parameters L and
{Ai}0<i≤L, where L is the amount of attributes every credential contains and Ai

the set from which the i-th attribute is taken. A parameter P is used to describe
which proofs over the attributes platforms can make. This generic approach
lets the functionality capture both simple protocols that only support selective

Anonymous Attestation Using the qSDH Assumption Revisited 7

Sign
7. Sign Request. On input (SIGN, sid , ssid , Mi, m, bsn, p, SRL) from Hj with p ∈ P

– If Hj is honest and no entry 〈Mi, Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.

– Create a sign session record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL), Mi, Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid , m, bsn, p, SRL) to Mi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi, Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′, m′, bsn′) ∈ SRL, find all (gsk i, Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′, m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′ (v).
• Check that no pair (gsk i, Mi) was found (vi).

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1 (vii), and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk , m, bsn, p, SRL), check ver(σ, m, bsn, p, SRL) = 1 (viii).

• Check identify(σ, m, bsn, gsk) = 1 (ix) and that there is no M′
i �= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ, m, bsn, gsk ′) = 1 (x).

– If Mi is honest, store 〈σ, m, bsn, Mi, p, SRL〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
11. Verify. On input (VERIFY, sid , m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i, Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ, m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found (xi).

• I is honest and no pair (gsk i, Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1 (xii).

• There is an honest Mi but no entry 〈∗, m, bsn, Mi, p, SRL〉 ∈ Signed exists (xiii).

• There is a gsk ′ ∈ RL where identify(σ, m, bsn, gsk ′) = 1 and no pair (gsk i, Mi) for an
honest Mi was found (xiv).

• For some matching gsk i and (σ′, m′, bsn′) ∈ SRL, identify(σ′, m′, bsn′, gsk i) = 1 (xv).

– If f �= 0, set f ← ver(σ, m, bsn, p, SRL) (xvi).

– Add 〈σ, m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
12. Link. On input (LINK, sid , σ, m, p, SRL, σ′, m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ, m, bsn, p, SRL) or (σ′, m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅) (xvii).

– For each gsk i in Members and DomainKeys compute bi ← identify(σ, m, bsn, gsk i) and
b′
i ← identify(σ′, m′, bsn, gsk i) and do the following:

• Set f ← 0 if bi �= b′
i for some i (xviii).

• Set f ← 1 if bi = b′
i = 1 for some i (xix).

– If f is not defined yet, set f ← link(σ, m, σ′, m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 2. The Sign, Verify, and Link related interfaces of F l
daa+

8 J. Camenisch et al.

disclosure and more advanced protocols that support arbitrary predicates. Every
element p ∈ P is a predicate over the attributes: A1 × . . . × AL → {0, 1}.

The full definition of F l
daa+ is presented in Figs. 1 and 2. Two macros are

used to simplify the presentation of the functionality:

CheckGskHonest(gsk) =
∀〈σ,m, bsn,M〉 ∈ Signed : identify(σ,m, bsn, gsk) = 0 ∧

∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, gsk) = 0

CheckGskCorrupt(gsk) =	 ∃σ,m, bsn :((
〈σ,m, bsn, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃gsk ′ :
(
gsk 	= gsk ′ ∧ (〈∗, ∗, gsk ′〉 ∈ Members ∨ 〈∗, ∗, gsk ′〉 ∈ DomainKeys

)

∧ identify(σ,m, bsn, gsk) = identify(σ,m, bsn, gsk ′) = 1
))

Camenisch et al. [15] give an extensive argumentation of why their function-
ality guarantees the desired properties. We now argue that our changes indeed
allow for attributes and signature-based revocation and that they do not have a
negative impact on the other properties guaranteed by the functionality.

Attributes. The issuer is in charge of the attributes, and must explicitly allow
a platform to be issued certain attributes with the JOINPROCEED output and
input. The verification interface now checks whether the signer has the correct
attributes, fulfilling the attribute predicate (Check (xii)). This guarantees that
no platform can create valid signatures with respect to attribute predicates that
do not hold for the attributes of this platform.

Signature-based Revocation. The sign interface now takes a signature-based revo-
cation list SRL as input. The functionality does not sign for platforms that are
revoked by SRL, which it enforces via Check (vi). Further, the verification inter-
face will reject signatures from platforms revoked in SRL by checking whether
any of those signatures is based on the key gsk from the signature being verified.

Our functionality enforces that every signature matches to only one gsk value.
To ensure this also for the signatures specified in SRL, Check (v) has been added
and the CheckGsk macros have been extended to also take the SRL values into
consideration.

4 Building Blocks

In this section we introduce the building blocks used by our construction. In
addition to the standard building blocks such as bilinear pairings and the qSDH

Anonymous Attestation Using the qSDH Assumption Revisited 9

assumption, we introduce the BBS+ signature without requiring an isomorphism
between the bilinear groups. Up to now, this signature has only been proven
secure using such an isomorphism, limiting the settings in which the signature
can be used.

4.1 Bilinear Maps

Let G1, G2, and GT be groups of prime order p. A map e : G1 × G2 → GT

must satisfy bilinearity, i.e., e(gx
1 , gy

2) = e(g1, g2)xy; non-degeneracy, i.e., for all
generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there
exists an efficient algorithm G(1τ) that outputs the bilinear group (p,G1,G2,
GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.

Galbraith et al. [29] distinguish three types of pairings: type-1, in which
G1 = G2; type-2, in which G1 	= G2 and there exists an efficient isomorphism
ψ : G2 → G1; and type-3, in which G1 	= G2 and no such isomorphism exists.

Type-3 pairings currently allow for the most efficient operations in G1 given
a security level using BN curves with a high embedding degree [2]. Therefore it
is desirable to describe a cryptographic scheme in a type-3 setting, i.e., without
assuming G1 = G2 or the existence of an efficient isomorphism from G2 to G1.

4.2 q-Strong Diffie-Hellman Assumption

The q-Strong Diffie-Hellman (qSDH) problem has two versions. The first ver-
sion by Boneh and Boyen is defined in a type-1 and type-2 pairing setting [6].
This version, to which we refer as the Eurocrypt version, is informally stated as
follows:

Given a q+2-tuple (g1, g2, gx
2 , g

(x2)
2 , . . . , g

(xq)
2) ∈ G1 × G

q+1
2 with g1 =

ψ(g2), output a pair (c, g1/(x+c)
1) ∈ Z

∗
p × G1.

Boneh and Boyen created a new version of the qSDH problem to support type-3
settings [7]. The so-called JOC version is informally stated as follows:

Given a q+3-tuple (g1, gx
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2) ∈ G

q+1
1 × G

2
2, output a

pair (c, g1/(x+c)
1) ∈ Zp \ {−x} × G1.

4.3 BBS+ Signatures

We recall the BBS+ signature, as described by Au et al. [1], which is inspired
by the group signature scheme by Boneh et al. [8].

Key Generation. Take (h0, . . . , hL) ←$
Z

L+1
p , x ←$

Z
∗
p, w ← gx

2 , and set sk = x
and pk = (w, h0, . . . , hL).

Signature. On input message (m1, . . . ,mL) ∈ Z
L
p and secret key x, pick e, s ←$

Zp and compute A ← (g1hs
0

∏L
i=1 hmi

i)
1

e+x . Output signature σ ← (A, e, s).

10 J. Camenisch et al.

Verification. On input a public key (w, h0, . . . , hL) ∈ G2 × G
L+1
1 , message

(m1, . . . ,mL) ∈ Z
L
p , and purported signature (A, e, s) ∈ G1 × Z

2
p, check

e(A,wge
2) = e(g1hs

0

∏L
i=1 hmi

i , g2).

Au et al. prove the BBS+ signature secure under the Eurocrypt version of
the qSDH assumption, making use of the isomorphism between the groups in
the security proof. As in type-3 pairings no such isomorphism exists, this means
the proof is not valid when this isomorphism does not exist and we do not
know whether the signature is secure in this setting. We modify the proof by
Au et al. to use the JOC version of the qSDH assumption and no longer rely on
an isomorphism in the proof, allowing us to use BBS+ signatures with type-3
pairings.

Theorem 1. The BBS+ signature scheme is existentially unforgeable against
adaptive chosen message attacks under the JOC version of the qSDH assump-
tion and the DL assumption, in particular in pairing groups where no efficient
isomorphism between G2 and G1 exists.

Due to space contraints, the proof is presented in the full version of the paper [16].

4.4 Proof Protocols

When referring to the zero-knowledge proofs of knowledge of discrete logarithms
and statements about them, we will follow the notation introduced by Camenisch
and Stadler [19] and formally defined by Camenisch, Kiayias, and Yung [17].

For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge
proof of knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃ and h̃ are elements of some groups G = 〈g〉 = 〈h〉
and G̃ = 〈g̃〉 = 〈h̃〉. Given a protocol in this notation, it is straightforward to
derive an actual protocol implementing the proof [17]. Indeed, the computational
complexities of the proof protocol can be easily derived from this notation: for
each term y = gahb, the prover and the verifier have to perform an equivalent
computation, and to transmit one group element and one response value for each
exponent.

SPK denotes a signature proof of knowledge, that is a non-interactive trans-
formation of a proof with the Fiat-Shamir heuristic [28] in the random oracle
model [3]. From these non-interactive proofs, the witness can be extracted by
rewinding the prover and programming the random oracle. Alternatively, these
proofs can be extended to be online-extractable, by verifiably encrypting the
witness to a public key defined in the common reference string (CRS). A practi-
cal instantiation is given by Camenisch and Shoup [18] using Paillier encryption,
secure under the DCR assumption [33].

5 Construction

In this section, we present our DAA protocol with attributes and signature-
based revocation called Πdaa+. On a high level, it is similar to previous work on

Anonymous Attestation Using the qSDH Assumption Revisited 11

qSDH-based DAA. A platform, consisting of a TPM and a host, must once run
the join protocol before it can create signatures. In the join protocol, the TPM
authenticates to the issuer. The issuer can decide whether the TPM is allowed
to join, and if so, it creates a credential for the platform. The credential is BBS+
signature on a commitment to the TPM chosen secret key gsk , and on attribute
values as determined by the issuer. Note that the issuer can choose the attribute
values, as we expect the issuer to issue only credentials containing attributes
where it knows the ‘correct’ attribute values, such as the model or vendor of
the TPM (which it knows as the TPM authenticated), or an expiration date
of the credential. After receiving a credential, the platform can sign a message
m by creating a signature proof-of-knowledge proving that it has a credential.
A basename bsn controls linkability. Choosing a fresh bsn yields a signature
that cannot be linked to any signature that the platform previously generated,
meaning the platform can be fully anonymous. Only when it chooses to reuse
a basename, the signatures based on the same basename can be linked, i.e., a
verifier can notice that they stem from the same platform. The platform also
chooses which attributes it will disclose to a verifier.

Our protocol is parametrized by L, the amount of attributes a credential
contains, attribute sets A1, . . . ,AL, and l, the leakage of the secure channels
used. For simplicity of the presentation, we describe our construction supporting
only selective disclosure as attribute predicates, although it is simple to see how
the construction can be extended to allow for more advanced predicates using
standard proof techniques. We describe the predicates using a set D ⊆ {1, . . . , L}
indicating which attributes are disclosed, and a tuple I = (a1, . . . , aL) setting the
desired attribute values. For example, the predicate D ← {2}, I = (⊥, 123,⊥)
is only true for platforms with credentials in which the second attribute value
equals 123. Let D̄ = {1, . . . , L} \ D be the set of undisclosed attributes.

We assume that a common reference string functionality Fcrs and a certifi-
cate authority functionality Fca are available to all parties. Fcrs will be used
to provide the protocol participants with the system parameters consisting of
a security parameter τ , a bilinear group G1,G2,GT of prime order p with gen-
erators g1, h0, . . . , hL of G1 and g2 of G2 and bilinear map e, generated via
G(1τ). Fca allows the issuer to register his public key. We further use random
oracles H1 : {0, 1}∗ → G1 that is used for the computation of pseudonyms
and H : {0, 1}∗ → {0, 1}τ which is used for the Fiat-Shamir heuristic in the
zero-knowledge proofs.

The TPM and issuer must have an authenticated communication channel in
the join protocol. This can be achieved in multiple ways, we abstract away from
this by using an ideal functionality for this authenticated channel. As the host
forwards messages, it can block the communication, so the standard Fauth does
not capture the desired security. Instead we use Fauth∗ which was introduced
by Camenisch et al. [15] specifically for this type of authenticated channel. The
communication between a TPM and host is modeled using secure message trans-
mission functionality F l

smt. For definitions of the standard functionalities Fcrs,Fca

and F l
smt we refer to [20,21].

12 J. Camenisch et al.

For the sake of readability, we will not explicitly call F l
smt for communi-

cation between a TPM and host, nor write down that parties query Fcrs and
Fca to retrieve the system parameters and the issuer public key. When a party
receives an input or message it does not expect, e.g., protocol messages received
out of order, or any of the protocol checks fails, the protocol outputs with fail-
ure message ⊥. For efficiency, a host should precompute values e(g1, g2) and
e(h0, w) after joining and a verifier should in addition precompute e(hi, g2) for
i = 0, . . . , L to minimize the number of pairing computations, but for readability
we write the full pairing function.

5.1 Our DAA Protocol with Extensions Πdaa+

Issuer Setup. In the setup phase, the issuer I creates a key pair of the BBS+-
signature scheme and registers the public key with Fca.

1. I upon input (SETUP, sid) generates his key pair:
– Check that sid = (I, sid ′) for some sid ′.
– Choose x ←$

Zp and set w ← gx
2 . Prove knowledge of the private key by

creating π ←$ SPK{x : w = gx
2}. Initiate LJOINED ← ∅.

– Register the public key w, π at Fca, and store the secret key x.
– Output (SETUPDONE, sid).

Join Request. The join protocol runs between the issuer I and a platform,
consisting of a TPM Mi and a host Hj . The platform authenticates to the issuer
and, if the issuer allows the platform to join with certain attributes, obtains a
credential that subsequently enables the platform to create signatures. A unique
sub-session identifier jsid distinguishes several join sessions that might run in
parallel.

1. Hj upon input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends the mes-
sage (JOIN, sid , jsid) over I.

2. I upon receiving (JOIN, sid , jsid) from a party Hj chooses a fresh nonce
n ←$ {0, 1}τ and sends (sid, jsid, n) back to Hj .

3. Hj upon receiving (sid , jsid , n) from I, sends (sid , jsid , n) to Mi.
4. Mi upon receiving (sid , jsid , n) from Hj , generates its secret key:

– Check that no key record exists.
– Choose gsk ←$

Zp and store the key as (sid ,Hj , gsk ,⊥).
– Set Q ← hgsk

1 and compute π1 ←$ SPK{(gsk) : Q = hgsk
1 }(n).

– Store key record (sid ,Hj , gsk).
– Send (Q, π1) via the host to I using Fauth∗.

5. Hj notices Mi sending (Q, π1) over Fauth∗ to the issuer, it appends its own
identity in the unauthenticated part of the message and forwards the full
message to the issuer. It also keeps state as (jsid , Q).

6. I upon receiving (Q, π1) authenticated by Mi and identity Hj unauthen-
ticated over Fauth∗, it verifies π1 and checks that Mi /∈ LJOINED. It stores
(jsid , Q,Mi,Hj) and outputs (JOINPROCEED, sid , jsid ,Mi).

Anonymous Attestation Using the qSDH Assumption Revisited 13

Join Proceed. The join session is completed when the issuer receives an explicit
input telling him to proceed with join session jsid and issue attributes attrs =
(a1, . . . , aL).

1. I upon input (JOINPROCEED, sid , jsid , attrs) generates the BBS+ credential:
– Retrieve the record (jsid , Q,Mi,Hj) and add Mi to LJOINED.
– Choose random e, f ∈ Zp.
– A ← (g1 · hf

0 · Q · ∏L
i=1 hai

i+1)
1/(e+x)

– Send the credential to the host by sending (sid , jsid , A, e, f, attrs) to Hj

over Fsmt.
2. Hj upon receiving (sid , jsid , A, e, f, attrs) from I verifies and stores the cre-

dential.
– Check that e(A,wge

2) = e(g1 · hf
0 · Q · ∏L

i=1 hai
i+1, g2).

– Store (sid ,Mi, (A, e, f), attrs) and output (JOINED, sid , jsid).

Sign Request. The sign protocol runs between a TPM Mi and a host Hj .
After joining, together they can sign a message m with respect to a basename
bsn, attribute predicate (D, I), and signature-based revocation list SRL. Again,
we use a unique sub-session identifier ssid to allow for multiple sign sessions.

1. Hj upon input (SIGN, sid , ssid ,Mi,m, bsn, (D, I), SRL) checks whether his
attributes fulfill the predicate and randomizes the BBS+ credential:

– Retrieve the join record (sid ,Mi, (A, e, f), attrs).
– Check that the attributes fulfill the predicate: Parse I as (a′

1, . . . , a
′
L) and

attrs as (a1, . . . , aL) and check that ai = a′
i for every i ∈ D.

– Choose a ←$
Zp and set A′ ← A · ha

0 .
– Send (sid , ssid ,m, bsn, (D, I), SRL) to Mi and store (sid , ssid , a)

2. Mi upon receiving (sid , ssid ,m, bsn, (D, I), SRL) from Hj asks for permission
to proceed.

– Check that a join record (sid ,Hj , gsk) exists.
– Store (sid , ssid ,m, bsn, (D, I), SRL) and output (SIGNPROCEED, sid ,

ssid ,m, bsn, (D, I), SRL).

Sign Proceed. The signature is completed when Mi gets permission to proceed
for ssid .

1. Mi upon input (SIGNPROCEED, sid , ssid) computes the pseudonym nym and
starts the computation of the following zero knowledge proof.

SPK{(gsk , {ai}i∈D̄, e, a, b) :
e(A′, w)

e(g1, g2)
∏

i∈D e(hi+1, g2)ai
= e(A′, g2)−ee(h0, g2)be(h1, g2)gske(h0, w)a

·
∏
i∈D̄

e(hi+1, g2)ai ∧ nym = H1(bsn)gsk}(m)

14 J. Camenisch et al.

– Retrieve join record (sid ,Hj , gsk) and sign record (sid , ssid ,m, bsn,
(D, I), SRL).

– Set nym ← H1(bsn)gsk .
– Take rgsk ←$

Zp and compute E ← h
rgsk

1 and L ← H1(bsn)rgsk .
– Send (sid , ssid , E, L, nym) to Hj .

2. Hj upon receiving (sid , ssid , E, L, nym) from Mi, completes the commitment
phase of the zero-knowledge proof.

– Take rai
←$

Zp for i ∈ D̄, and re, ra, rb ←$
Zp.

– Compute t-value

t ← e(A′, g2)ree(h0, g2)rbe(E, g2)e(h0, w)ra

∏
i∈D̄

e(hi+1, g2)rai

= e(A′re · hrb
0 · E ·

∏
i∈D̄

h
rai

i+1 , g2)e(h0, w)ra

– Compute c′ ← H(A′, nym, t, L, g1, h0, . . . , hL, w).
– Send (sid , ssid , c′) to Mi.

3. Mi upon receiving (sid , ssid , c′) from Hj .
– Take a nonce n ←$ {0, 1}τ .
– Compute c ← H(n, c′,m, bsn, (D, I), SRL).
– Set sgsk ← rgsk + c · gsk .
– Send (sid , ssid , sgsk) to Hj .

4. Hj upon receiving (sid , ssid , sgsk) from Mi, completes the zero-knowledge
proof.

– Set b ← f + a · e, sai
← rai

+ cai for i ∈ D̄, se ← re − ce, sa ← ra + ca,
sb ← rb + cae.

– Set π ← (c, sgsk , {sai
}i∈D̄, se, sa, sb, n).

5. As signature-based revocation is used, a revocation list SRL containing tuples
(bsni, nymi) is given, and the platform must prove that H1(bsni)gsk 	= nymi.
It does so using the Camenisch-Shoup proof of inequality of discrete log-
arithms [18]: take a random γ, compute C ← (H1(bsni)gsk/nymi)

γ , and
prove SPK{(α, β) : C = H1(bsni)α(1

nymi
)β ∧ 1 = H1(bsn)α(1

nym
)β}. For every

(bsni, nymi) ∈ SRL, the platform takes the following steps.
(a) Host Hj sends (sid , ssid , bsni) to Mi.
(b) Upon receiving (sid , ssid , bsni), the TPM Mi starts the commitment

phase of this proof of non-revocation.
– Take ri,α ←$

Zp and compute t′i,1 ← H1(bsni)ri,α , t′i,2 ← H1(bsn)ri,α ,
K ← H1(bsni)gsk .

– Send (sid , ssid , t′i,1), t
′
i,2,K) to Hj .

(c) Upon receiving (sid , ssid , t′i,1), t
′
i,2,K), Hj completes the commitment

phase of the non-revocation proof.
– Take γi ←$

Zp and set Ci ← (K/nymi)
γi .

– Check Ci 	= 1G1 .
– Take ri,β ←$

Zp and set ti,1 ← t′i,βi,1 · (1
nymi

)ri,β and ti,2 ← t′γi

i,2 · (1
nym

)ri,β .
– Compute c′ ← H(C, bsni, bsn, nymi, nym, n, ti,1, ti,2)

Anonymous Attestation Using the qSDH Assumption Revisited 15

– Send (sid , ssid , c′) to Mi.
(d) Mi upon receiving (sid , ssid , c′) from Hj

– Take nonce ni ←$ {0, 1}τ and compute c ← H(ni, c).
– Set s′

i,α ← ri,α + c · gsk and send (sid , ssid , s′
i,α, ni) to Hj .

(e) Upon receiving (sid , ssid , s′
i,α, ni) from Mi, host Hj finishes the non-

revocation proof.
– Compute c ← H(ni, c

′).
– Set si,α ← γ · s′

i,gsk and si,β ← ri,β + c · γ.
– Set πi ← (c, ni, Ci, si,α, si,β).

6. The host outputs (SIGNATURE, sid , ssid , (A′, nym, π, {πi})).

Verify. The verify algorithm allows one to check whether a signature σ on
message m with respect to basename bsn, attribute disclosure (D, I), private
key revocation list RL, and signature revocation list SRL is valid.

1. V upon input (VERIFY, sid ,m, bsn, σ, (D, I), RL, SRL) verifies the signature:
– Parse σ as (A′, nym, π, {πi}).
– Verify π with respect to A′ and nym:

• Parse π as (c, sgsk , {sai
}i∈D̄, se, sa, sb, n).

• Set L̂ ← h
sgsk

1 · nym−c and

t̂ ← e(A′, gse
2 · w−c)e(h0, g2)sbe(h1, g2)sgsk e(h0, w)sa

∏
i∈D̄

e(hi+1, g2)sai

· e(g1, g2)c
∏
i∈D

e(hi+1, g2)ai·c

• Check
c = H(n,H(A′, nym, t, L, g1, h0, . . . , hL, w),m, bsn, (D, I), SRL).

– For every (bsni, πi) ∈ SRL:
• Parse πi as (c, ni, Ci, si,α, si,β).
• Check C 	= 1G1 .
• Set t̂i,1 ← H(bsni)si,α 1

nymi

si,β and t̂i,2 ← H(bsn)si,α 1
nym

si,β .

• Check c = H(ni,H(C, bsni, bsn, nymi, nym, n, t̂i,1, t̂i,2)).
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

Link. The verify algorithm allows one to check whether two signatures σ, σ′,
on messages m,m′ respectively, that were generated for the same basename bsn
were created by the same TPM.

1. V upon input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) verifies the signa-
tures and compares the pseudonyms contained in σ, σ′:

– Check that both signatures σ, σ′ are valid with respect to m, bsn, p, SRL
and m′, bsn, p′, SRL′ respectively. Output ⊥ if they are not both valid.

– Parse the signatures as (A′, nym, π, {πi}) ← σ, (A′′, nym′, π′, {π′
i}) ← σ′.

– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).

16 J. Camenisch et al.

5.2 Comparison with Previous DAA Schemes

Our protocol is very similar to the most recent qSDH-based DAA schemes [13,
22,25]. However, a few key changes were needed to achieve provable security and
address the problems mentioned in Sect. 2. First, we use a BBS+ signature for
the membership credential, instead of the simplified credential where the s-value
is ommited as used in the recent schemes [13,22,25]. The BBS+ is proven to be
unforgeable, and with this extra element, the proof of knowledge which is part
of DAA signatures allows one to extract valid credentials, whereas in the most
recent schemes one could not.

Compared to the most recent EPID scheme by Brickell and Li [14], we intro-
duce a way to split the workload between a TPM and host, and add basenames
steering linkability. The usage of basenames is required to prevent the TPM from
serving as a static Diffie-Hellman oracle towards the host. For non-revocation
proofs, the platform must prove that its pseudonym nym = Bgsk is based on a
different key than a pseudonym in a revoked signature nym′ = B′gsk ′

. A host
proving the inequality of the keys with the help of a TPM using the method by
Camenisch and Shoup will learn B′gsk , for any B′ of its choosing. By requiring
basenames, i.e., B = H1(bsn), learning B′gsk = H1(bsn)gsk does not give a cor-
rupt host any information, as in the random oracle model this can be simulated
without knowing gsk .

For the reason mentioned above, the fully anonymous option bsn = ⊥ from
previous DAA schemes is not supported by our scheme, but we argue that this
does not affect privacy: A platform can choose a fresh basename it only uses once
to be fully anonymous. Any verifier that accepts fully anonymous signatures can
simply accept signatures with respect to any basename.

Compared to the existing DAA-A scheme [25], we store all attributes except
the secret key on the host for efficiency. This still guarantees unforgeability with
an honest TPM and corrupt host. Anonymity is not affected either, as in either
case, the host must be trusted for anonymity.

In Table 1 we compare the computational efficiency of our scheme with the
other qSDH-based DAA schemes. In particular, we show the computational cost
for the TPM in the sign algorithm, for the host in the sign algorithm, and for
the verifier in the verify algorithm, as these are the algorithms that will be used
frequently. We denote k exponentiations in group Gi by kGi, kGj

i denotes k j-
multi-exponentiations, and kP denotes k pairing operations. Table 2 we compare
the size of credentials and signatures with other DAA schemes. Here, kG denotes
the bits required to represent k elements of G, and H denotes the bit length of
the hash output. CU15-1 denotes the LRSW-based DAA-A scheme by Chen
and Urian [25], and CU15-2 the qSDH-based instantiation. We analyzed both
schemes for signatures with only the secret key on the TPM, which is used to
create a pseudonym, and all other attributes held by the host. We let L denote
the amount of attributes, with D the amount of disclosed attributes and U
the amount of undisclosed attributes. Revocation lists and revocation checks are
omitted for these efficiency numbers. To compare this scheme with previous DAA
schemes, we consider the efficiency without attributes, i.e., L = D = U = 0. In

Anonymous Attestation Using the qSDH Assumption Revisited 17

computation, our scheme is as efficient as the scheme by Brickell and Li [13],
which is currently the most efficient DAA scheme. Our credentials contain one
extra element of Zp to achieve provable security. Signatures in our scheme are
one element of G1 smaller than signatures in the Brickell and Li scheme, which
follows from the fact that we always use a basename, so we do not need to
transmit the base for the computation of the pseudonym.

We stress that many of the listed schemes are not provably secure, whereas
we rigorously prove our scheme secure.

Table 1. A comparison of the efficiency of DAA schemes.

M Sign H Sign Verify

CF08 [26] 2G1, 1GT 1G1, 2G
2
1, 1GT , 1P 1G2

1, 2G
3
1, 1G

5
T , 3P

Che10 [22] 2G1, 1GT 1G1,G
3
T 1G2

1, 1G
2
2, 1G

4
T , 1P

BL10 [13] 3G1 1G1, 1G
2
1, 1GT , 1P 1G2

1, 1G
2
2, 1G

4
T , 1P

CPS10 [24] 3G1 4G1 2G2
1, 2P

CU15-1 [25] 3G1 (4 + L + U)G1 2G1, 2G
L
1 , 2G

D
1 , 2GU

1 , 6P

CU15-2 [25] 3G1 2G1, 1G
U+2
1 , 2P 1G2

1, 1G
4+L
1 , 2P

CDL16 [15] 5G1 4G1 2G2
1, 4P

This work 3G1 1G1, 1G
2+U
1 , 1GT , 1P 1G2

1, 1G
2
2, 1G

4+L
T , 1P

Table 2. A comparison of the credential and signature size of DAA schemes.

Cred. size Signature size

CF08 [26] 2Zp 1G1 6Zp 2G1 2GT 1H

Che10 [22] 1Zp 1G1 4Zp 3G1 1H

BL10 [13] 1Zp 1G1 4Zp 3G1 1H

CPS10 [24] 4G1 1Zp 4G1 1H

CU15-1 [25] (5 + L)G1 (2 + U)Zp (7 + L)G1 1H

CU15-2 [25] 1Zp 1G1 (5 + U)Zp 3G1 1H

CDL16 [15] 4G1 1Zp 4G1 1H

This work 2Zp 1G1 (5 + U)Zp 2G1 1H

6 Security Analysis

Theorem 2. The protocol Πdaa+ presented in Sect. 5 securely realizes F l
daa+ in

the (Fauth∗,Fca,F l
smt,FD

crs)-hybrid model using random oracles and static corrup-
tions, if the DL, DDH and JOC version of the qSDH assumptions hold, and the
proofs-of-knowledge are online extractable.

Due to space constraints, the proof is given in the full version of the paper [16].

18 J. Camenisch et al.

7 Conclusion

DAA is one of the most complex cryptographic protocols deployed in practice.
It is implemented in multiple platforms for trusted computing, including the
Trusted Computing Group’s TPM and Intel’s SGX. A number of functional
extensions to DAA have been proposed, including signature-based revocation
and embedding of attributes. However, as we have shown in this paper, the secu-
rity models and security proofs of the proposed DAA schemes based on the qSDH
assumptions are not satisfactory. This includes the extended DAA schemes and
the standardized DAA schemes. Bleichenbacher’s attack [5] on PKCS#1 demon-
strates the importance of rigorous security proofs, in particular for cryptographic
standards. It remains as future work, to revisit the concerned standards to elim-
inate the schemes’ flaws and ensure that they are provably secure.

As a first step towards this, we have in this paper proposed a new DAA
scheme with support for attributes and signature-based revocation. Our scheme
is as efficient as the most efficient existing DAA scheme. While the existing
schemes do not have valid security proofs, our scheme is proven secure in the
model by Camenisch et al. [15], extended to support attributes and signature-
based revocation. As a side result, we have proven the BBS+ signature scheme
to be secure in type-3 pairing settings, meaning our scheme can be used with
the most efficient pairing-friendly elliptic curve groups.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993 (1993)

4. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2007)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004
(2004)

10. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

Anonymous Attestation Using the qSDH Assumption Revisited 19

11. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)

12. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: WPES 2007 (2007)

13. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
Cryptology ePrint Archive, Report 2010/067 (2010)

14. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integrity 1(1), 3–33 (2011)

15. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49387-8 10

16. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous Attestation Using the
Strong Diffie Hellman Assumption Revisited. Cryptology ePrint Archive, Report
2016/663 (2016)

17. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

18. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

19. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

20. Canetti, R.: Universally composable signature, certification, and authentication.
In: Computer Security Foundations Workshop (2004)

21. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

22. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010)

23. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer,
Heidelberg (2008)

24. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

25. Chen, L., Urian, R.: DAA-A: direct anonymous attestation with attributes. In:
Conti, M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015. LNCS, vol. 9229, pp.
228–245. Springer, Heidelberg (2015)

26. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J.
Comput. 3(12), 43–50 (2008)

27. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016)

28. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

29. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

30. International Organization for Standardization. ISO/IEC 20008: Information tech-
nology - Security techniques - Anonymous digital signatures (2013)

http://dx.doi.org/10.1007/978-3-662-49387-8_10
http://dx.doi.org/10.1007/978-3-662-49387-8_10

20 J. Camenisch et al.

31. International Organization for Standardization. ISO/IEC 11889: Information tech-
nology - Trusted platform module library (2015)

32. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended
Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

34. Trusted Computing Group: TPM main specification version 1.2 (2004)
35. Trusted Computing Group. TPM library specification, family “2.0” (2014)

	Anonymous Attestation Using the Strong Diffie Hellman Assumption Revisited
	1 Introduction
	2 Flaws in Existing qSDH-based Schemes
	2.1 Security Models for DAA
	2.2 qSDH-Based DAA Schemes and Proofs

	3 A New Security Model for DAA with Extensions
	3.1 Ideal Functionality [daa+]l

	4 Building Blocks
	4.1 Bilinear Maps
	4.2 q-Strong Diffie-Hellman Assumption
	4.3 BBS+ Signatures
	4.4 Proof Protocols

	5 Construction
	5.1 Our DAA Protocol with Extensions daa+
	5.2 Comparison with Previous DAA Schemes

	6 Security Analysis
	7 Conclusion
	References

