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Preface

This volume contains the proceedings of the 9th International Conference on Trust and
Trustworthy Computing (TRUST), held in Vienna, Austria, on August 29–30, 2016.
TRUST 2016 was hosted and organized by SBA Research.

Continuing the tradition of the previous conferences, held in Villach (2008), Oxford
(2009), Berlin (2010), Pittsburgh (2011), Vienna (2012), London (2013), and Herak-
lion (2014 and 2015), TRUST 2016 provided a unique interdisciplinary forum for
researchers, practitioners, and decision makers to explore new ideas and discuss
experiences in building, designing, using, and understanding trustworthy computing
systems.

The conference program of TRUST 2016 shows that research in trust and trust-
worthy computing is active, at a high level of competency, and spans a wide range of
areas and topics. Topics discussed in this year’s research contributions included
anonymous and layered attestation, revocation, captchas, runtime integrity, trust net-
works, key migration, and PUFs.

We received 25 valid submissions in response to the Call for Papers. All submis-
sions were carefully reviewed by at least three Program Committee members or
external experts according to the criteria of scientific novelty, importance to the field,
and technical quality. After an online discussion of all reviews, 8 papers were selected
for presentation and publication in the conference proceedings. This amounts to an
acceptance rate of less than one third. Furthermore, the conference program included
keynote presentations by Prof. Virgil Gligor (Carnegie Mellon University, USA) and
Prof. Stefan Katzenbeisser (Technische Universität Darmstadt, Germany).

We would like to express our gratitude to those people without whom TRUST 2016
would not have been this successful, and whom we mention now in no particular order:
the publicity chairs, Drs. Somayeh Salimi and Moritz Wiese, the members of the
Steering Committee, the local Organizing Committee (and especially Yvonne Poul),
and the keynote speakers. We also want to thank all Program Committee members and
their external reviewers; their hard work made sure that the scientific program was of
high quality and reflected both the depth and diversity of research in this area. Our
special thanks go to all those who submitted papers, and to all those who presented
papers at the conference.

July 2016 Michael Franz
Panos Papadimitratos
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Anonymous Attestation Using the Strong Diffie
Hellman Assumption Revisited

Jan Camenisch1, Manu Drijvers1,2(B), and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. Direct Anonymous Attestation (DAA) is a cryptographic
protocol for privacy-protecting authentication. It is standardized in the
TPM standard and implemented in millions of chips. A variant of DAA is
also used in Intel’s SGX. Recently, Camenisch et al. (PKC 2016) demon-
strated that existing security models for DAA do not correctly capture all
security requirements, and showed a number of flaws in existing schemes
based on the LRSW assumption. In this work, we identify flaws in secu-
rity proofs of a number of qSDH-based DAA schemes and point out that
none of the proposed schemes can be proven secure in the recent model
by Camenisch et al. (PKC 2016). We therefore present a new, provably
secure DAA scheme that is based on the qSDH assumption. The new
scheme is as efficient as the most efficient existing DAA scheme, with sup-
port for DAA extensions to signature-based revocation and attributes.
We rigorously prove the scheme secure in the model of Camenisch et al.,
which we modify to support the extensions. As a side-result of indepen-
dent interest, we prove that the BBS+ signature scheme is secure in the
type-3 pairing setting, allowing for our scheme to be used with the most
efficient pairing-friendly curves.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic authentication protocol
that lets a platform, consisting of a secure element and a host, create anony-
mous attestations. These attestations are signatures on messages and convince
a verifier that the message was signed by a authorized secure element, while
preserving the privacy of the platform. DAA was designed for the Trusted Plat-
form Module (TPM) by Brickell, Camenisch, and Chen [9] and was standardized
in the TPM 1.2 specification in 2004 [34]. Their paper inspired a large body of
work on DAA schemes [4,10,11,13,15,22–24,26], including more efficient scheme
using bilinear pairings as well as different security definitions and proofs. One
result of these works is the recent TPM 2.0 specification [31,35] that includes
support for multiple pairing-based DAA schemes, two of which are standardized
by ISO [30].

This work has been supported by the ERC under Grant PERCY #321310.

c© Springer International Publishing Switzerland 2016
M. Franz and P. Papadimitratos (Eds.): TRUST 2016, LNCS 9824, pp. 1–20, 2016.
DOI: 10.1007/978-3-319-45572-3 1



2 J. Camenisch et al.

DAA is widely used in the area of trusted computing. Over 500 million TPMs
have been sold1, making DAA probably the most complex cryptographic scheme
that is widely implemented. Additionally, an extension of DAA is used in the
Intel Software Guard Extensions (SGX) [27], the most recent development in
the area of trusted computing.

A number of functional extensions to DAA have been proposed. Brickell and
Li [12,14] introduced Enhanced Privacy ID (EPID), which extends DAA with
signature-based revocation. This extension allows one to revoke a platform based
on a previous signature from that platform. This is an improvement over the
private key revocation used in DAA schemes, where a TPM cannot be revoked
without knowing its secret key.

Chen and Urian [25] introduced DAA with attributes (DAA-A), in which
the membership credential can also contain attributes. These attributes might
include more information about the platform, such as the vendor or model, or
other information, such as an expiration date of the credential. When signing,
the platform can selectively disclose attributes, e.g., reveal that the signature was
created by a TPM of a certain manufacturer, or create more advanced proofs,
such as proving that the expiration date of the credential lies in the future.

Unfortunately, in spite of being used in practice, many of the existing schemes
are not provably secure. Recently, Camenisch et al. [15] showed that previous
security definitions of DAA are not satisfactory, meaning that security proofs
using these security models do not guarantee security. They further point out
that many of the DAA schemes based on the LRSW assumption [32] are flawed.
They finally provide a comprehensive security model and provide a LRSW-based
scheme that is provably secure in their model. However, there is to date no
scheme based on the qSDH assumption [6] that is secure in their model.

Indeed, in this work we show that also many of the DAA schemes based on
the qSDH assumption are flawed. The most efficient qSDH-based schemes [13,
22,25] use a credential which is not provably secure against adaptive chosen
message attacks, leaving room for an attacker to forge credentials. Moreover,
these schemes use a flawed proof-of-knowledge of credentials, which in fact does
not prove possession of such a credential. Finally, the security of all existing
qSDH-based schemes has only been analyzed in the type-2 pairing setting [29].
However, these schemes are often used in the more efficient type-3 setting, where
there is no efficient isomorphism from G2 to G1, As the security proofs rely on
such an isomorphism, they do not apply to a type-3 setting, meaning there is no
evidence of security.

Apart from pointing out flaws in the existing qSDH-based DAA schemes,
this paper provides two more main contributions. Second, we fix the issues and
present a qSDH-based DAA scheme with support for attributes and signature-
based revocation. Like previous work, we use the BBS+ signature [1] for creden-
tials, but unlike previous work we move to the more efficient and flexible type-3
pairing setting. Third, we extend the security model by Camenisch et al. [15] to

1 http://www.trustedcomputinggroup.org/solutions/authentication.

http://www.trustedcomputinggroup.org/solutions/authentication
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capture signature-based revocation and support attributes, and rigorously prove
our scheme secure in this model.

2 Flaws in Existing qSDH-based Schemes

The first DAA scheme by Brickell et al. [9] is based on the strong RSA assump-
tion. Due to the large keys required for RSA, this protocol was inefficient and
hard to implement. A lot of research has gone into designing more efficient DAA
schemes using bilinear pairings and improving the security model of DAA. The
work on efficient DAA schemes can be split in two chains of work, one based on
the LRSW assumption [32], and one on the qSDH assumption [6]. The schemes
based on the LRSW assumption have recently been studied by Camenisch
et al. [15]. In this section we now discuss the existing qSDH-based schemes
and their proofs of security. We start by giving an overview of existing security
models for DAA and DAA with extensions, and then show that none of the
existing qSDH-based are efficient and provably secure.

2.1 Security Models for DAA

One of the most challenging tasks in cryptography is to formally define a security
model that allows for rigorous security proofs. Before we discuss security models,
we give some intuition on the required security properties of DAA. First, sig-
natures must be unforgeable, meaning only platforms that the issuer allowed to
join can create signatures. Second, signatures must be anonymous. A basename
is used to control anonymity, and an adversary given two signatures valid with
respect to two distinct basenames must not be able to decide whether the sig-
natures were created by the same platform. Third, we require non-frameability.
When a platform signs with respect to the same basename multiple times, a
verifier can link these signatures, meaning it realizes both signatures stem from
the same platform. No adversary should be able to frame a platform, mean-
ing it cannot create a signature on a message m that links to some platform’s
signatures, while that platform never signed m.

There are multiple ways to define a security model. Property-based defini-
tions are a set of security games, where every game defines a security property,
and a scheme is secure when every property holds. Simulation-based definitions
consist of a trusted third party. In a so-called ideal world, every protocol par-
ticipant hands their inputs to the trusted third party rather than executing the
protocol, and outputs are generated by the trusted third party. As the trusted
third party performs the task in a way secure by design, the ideal world performs
the desired task securely. A protocol is considered secure if the real world, in
which protocol participants execute the protocol, is as secure as the ideal world.

The first security model for DAA as introduced by Brickell et al. [9] follows
the simulation-based paradigm. Therein, signature generation and verification
is modeled as an interactive process, meaning a signature must always be ver-
ified immediately and cannot be used further. Camenisch et al. [15] define a
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simulation-based security model for DAA that outputs signatures and allows
them to be used in any way.

In an attempt to simplify the security model of DAA, Brickell et al. [11]
introduce a property-based definition for DAA. Unfortunately, this definition
does not cover non-frameability, and the notion for unforgeability allows forge-
able schemes to be proven secure: A scheme in which one value is a signature
on every message can fulfill the security model, while clearly being insecure.
Chen [22] extends this definition with a property for non-frameability, but the
other issues remain. Brickell and Li create a property-based security model for
enhanced privacy ID (EPID) [14] very similar to the model of Brickell et al. [11],
and containing the same flaws.

Camenisch et al. [15] give a more detailed overview of the security models
for DAA.

2.2 qSDH-Based DAA Schemes and Proofs

Chen and Feng [26] introduce the first DAA scheme based on the qSDH assump-
tion. The scheme requires the TPM to work in the target group GT , which is
inefficient and makes implementation more involved. Chen [22] improves the
efficiency of the previous schemes by removing one element of the membership
credential. Brickell and Li [13] further improve the efficiency by changing the
distribution of work between the host and TPM such that the TPM only per-
forms computations in G1. Being the most efficient scheme, it is supported by
the TPM 2.0 standard and ISO standardized [30].

All three schemes come with proofs of security using the security models by
Brickell et al. [11] and Brickell and Li [14]. However, as these models allow one
to prove insecure schemes secure, proofs in these models are not actual evidence
of security. Furthermore, the proofs of the two most efficient schemes [13,22] are
invalid, as the membership credential is not proven to be existentially unforgeable
against adaptive chosen message attacks. The proof aims to reduce a credential
forgery to breaking the qSDH assumption, meaning that the issuer private key
is an unknown value defined by the qSDH instance. They start by using the
Boneh-Boyen trick [6] to create q − 1 weak BB signatures under the issuer key,
on previously chosen ei values. From every weak BB signature, one membership
credential on a (potentially adversarial) platform key can be created. For one
randomly selected honest platform joining, it returns a credential on a key cho-
sen during the parameter selection of the scheme. It can create this credential
without consuming a BB04 signature due to the special selection of parameters.
Since the key is chosen like an honest platform would, this simulation is valid
for honest platforms. Finally, the authors claim that when a credential forgery
occurs that reuses part of an issued credential, with probability 1

q , it is reusing
part of the specially crafted credential. This is not true, as there may not even
be honest platforms joining, or the adversary may disregard credentials issued
to honest platforms. To fix the proof, one must be able to issue the special cre-
dential also to corrupt platforms, i.e., on a key chosen by the adversary, but this
does not seem possible.
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Related to this issue, the proofs of knowledge proving knowledge of a cre-
dential in these schemes do not prove the correct statement. The prover proves
knowledge of TPM secret gsk and of values a, b. The proof only proves knowledge
of a valid credential when b = a · gsk , but this structure of b is not proven. This
means that from a signature that passes verification, one cannot always extract
a valid signature, which prevents proving unforgeability. This could be fixed by
also proving b = a · gsk in zero knowledge.

Finally, the security proofs of all the pairing-based schemes mentioned here
make use of an isomorphism from G2 to G1 in the security proof. This prevents
the schemes from being used with the more efficient type-3 curves [29]. However,
the TPM 2.0 standard [31,35], designed to support the DAA scheme by Brickell
and Li [13], uses such type-3 curves. As there is no efficient isomorphism in this
setting, any security proof requiring an isomorphism is not applicable, leaving
the security of the scheme unproven.

DAA with Extensions. Two extensions of DAA have been proposed. Brickell
and Li [14] present EPID based on the qSDH assumption. This extends DAA
with signature-based revocation, allowing revocation of platforms based on a
signature from that platform. Unfortunately, they do not show how the work
of the platform can be split between a TPM and host. Chen and Urian [25]
introduce DAA with attributes (DAA-A), where the membership credential does
not only contain the TPM key, but also attribute values. This allows for many
new use cases, such as showing that a signature was created by a platform of a
certain vendor, or adding expiration dates to credentials. The authors present
two instantiations, one based on the LRSW assumption and one based on the
qSDH assumption. Unfortunately, the schemes do not come with security proofs.
The qSDH scheme suffers from the same flaws as the most recent qSDH DAA
schemes discussed above, i.e., the credential is not proven to be unforgeable.
Worse, the LRSW scheme is forgeable using the trivial credential A = B = C =
D = E1 = . . . = EL = 1G1 that signs all attributes and keys, so anyone can sign
with respect to any desired set of attributes.

3 A New Security Model for DAA with Extensions

In this section we present our security model for DAA with attributes and
signature-based revocation, which is defined as an ideal functionality F l

daa+ in
the UC framework [21]. In UC, an environment E passes inputs and outputs
to the protocol parties. The network is controlled by an adversary A that may
communicate freely with E . In the ideal world, the parties forward their inputs
to the ideal functionality F, which then (internally) performs the defined task
and creates outputs that the parties forward to E . Roughly, a real-world protocol
Π is said to securely realize a functionality F, if the real world is indistinguish-
able from the ideal world, meaning for every adversary performing an attack in
the real world, there is an ideal world adversary (often called simulator) S that
performs the same attack in the ideal world.
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Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic (i).

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
3. Join Request. On input (JOIN, sid , jsid , Mi) from host Hj .

– Create a join session record 〈jsid , Mi, Hj , ⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid , Mi, Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid , Mi, Hj , ⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists (ii).

– Output (JOINPROCEED, sid , jsid , Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1 × . . . ×
AL

– Update the session record 〈jsid , Mi, Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid , Mi, Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 (iii) if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 (iv) if Mi is corrupt.

– Insert 〈Mi, Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Fig. 1. The Setup and Join related interfaces of F l
daa+. (The roman numbers are labels

for the different checks made within the functionality and will be used as references in
the analysis of the functionality and the proof.)

3.1 Ideal Functionality F l
daa+

We now formally define our ideal functionality F l
daa+, which is a modification of

F l
daa as defined by Camenisch et al. [15]. The modifications extend the function-

ality to support signature-based revocation and attributes.
The UC framework allows us to focus our analysis on a single protocol

instance with a globally unique session identifier sid. Here we use session iden-
tifiers of the form sid = (I, sid′) for some issuer I and a unique string sid ′. To
allow several sub-sessions for the join and sign related interfaces we use unique
sub-session identifiers jsid and ssid . Our ideal functionality F l

daa+ is parame-
trized by a leakage function l : {0, 1}∗ → {0, 1}∗, that we need to model the
information leakage that occurs in the communication between a host Hi and
TPM Mj . As our functionality supports attributes, we have parameters L and
{Ai}0<i≤L, where L is the amount of attributes every credential contains and Ai

the set from which the i-th attribute is taken. A parameter P is used to describe
which proofs over the attributes platforms can make. This generic approach
lets the functionality capture both simple protocols that only support selective
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Sign
7. Sign Request. On input (SIGN, sid , ssid , Mi, m, bsn, p, SRL) from Hj with p ∈ P

– If Hj is honest and no entry 〈Mi, Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members, abort.

– Create a sign session record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL), Mi, Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid , m, bsn, p, SRL) to Mi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid , Mi, Hj , m, bsn, p, SRL, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi, Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′, m′, bsn′) ∈ SRL, find all (gsk i, Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′, m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′ (v).
• Check that no pair (gsk i, Mi) was found (vi).

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1 (vii), and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk , m, bsn, p, SRL), check ver(σ, m, bsn, p, SRL) = 1 (viii).

• Check identify(σ, m, bsn, gsk) = 1 (ix) and that there is no M′
i �= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ, m, bsn, gsk ′) = 1 (x).

– If Mi is honest, store 〈σ, m, bsn, Mi, p, SRL〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
11. Verify. On input (VERIFY, sid , m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i, Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ, m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found (xi).

• I is honest and no pair (gsk i, Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1 (xii).

• There is an honest Mi but no entry 〈∗, m, bsn, Mi, p, SRL〉 ∈ Signed exists (xiii).

• There is a gsk ′ ∈ RL where identify(σ, m, bsn, gsk ′) = 1 and no pair (gsk i, Mi) for an
honest Mi was found (xiv).

• For some matching gsk i and (σ′, m′, bsn′) ∈ SRL, identify(σ′, m′, bsn′, gsk i) = 1 (xv).

– If f �= 0, set f ← ver(σ, m, bsn, p, SRL) (xvi).

– Add 〈σ, m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
12. Link. On input (LINK, sid , σ, m, p, SRL, σ′, m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ, m, bsn, p, SRL) or (σ′, m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅) (xvii).

– For each gsk i in Members and DomainKeys compute bi ← identify(σ, m, bsn, gsk i) and
b′
i ← identify(σ′, m′, bsn, gsk i) and do the following:

• Set f ← 0 if bi �= b′
i for some i (xviii).

• Set f ← 1 if bi = b′
i = 1 for some i (xix).

– If f is not defined yet, set f ← link(σ, m, σ′, m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 2. The Sign, Verify, and Link related interfaces of F l
daa+
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disclosure and more advanced protocols that support arbitrary predicates. Every
element p ∈ P is a predicate over the attributes: A1 × . . . × AL → {0, 1}.

The full definition of F l
daa+ is presented in Figs. 1 and 2. Two macros are

used to simplify the presentation of the functionality:

CheckGskHonest(gsk) =
∀〈σ,m, bsn,M〉 ∈ Signed : identify(σ,m, bsn, gsk) = 0 ∧

∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, gsk) = 0

CheckGskCorrupt(gsk) =	 ∃σ,m, bsn :((
〈σ,m, bsn, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃gsk ′ :
(
gsk 	= gsk ′ ∧ (〈∗, ∗, gsk ′〉 ∈ Members ∨ 〈∗, ∗, gsk ′〉 ∈ DomainKeys

)

∧ identify(σ,m, bsn, gsk) = identify(σ,m, bsn, gsk ′) = 1
))

Camenisch et al. [15] give an extensive argumentation of why their function-
ality guarantees the desired properties. We now argue that our changes indeed
allow for attributes and signature-based revocation and that they do not have a
negative impact on the other properties guaranteed by the functionality.

Attributes. The issuer is in charge of the attributes, and must explicitly allow
a platform to be issued certain attributes with the JOINPROCEED output and
input. The verification interface now checks whether the signer has the correct
attributes, fulfilling the attribute predicate (Check (xii)). This guarantees that
no platform can create valid signatures with respect to attribute predicates that
do not hold for the attributes of this platform.

Signature-based Revocation. The sign interface now takes a signature-based revo-
cation list SRL as input. The functionality does not sign for platforms that are
revoked by SRL, which it enforces via Check (vi). Further, the verification inter-
face will reject signatures from platforms revoked in SRL by checking whether
any of those signatures is based on the key gsk from the signature being verified.

Our functionality enforces that every signature matches to only one gsk value.
To ensure this also for the signatures specified in SRL, Check (v) has been added
and the CheckGsk macros have been extended to also take the SRL values into
consideration.

4 Building Blocks

In this section we introduce the building blocks used by our construction. In
addition to the standard building blocks such as bilinear pairings and the qSDH
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assumption, we introduce the BBS+ signature without requiring an isomorphism
between the bilinear groups. Up to now, this signature has only been proven
secure using such an isomorphism, limiting the settings in which the signature
can be used.

4.1 Bilinear Maps

Let G1, G2, and GT be groups of prime order p. A map e : G1 × G2 → GT

must satisfy bilinearity, i.e., e(gx
1 , gy

2 ) = e(g1, g2)xy; non-degeneracy, i.e., for all
generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there
exists an efficient algorithm G(1τ ) that outputs the bilinear group (p,G1,G2,
GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.

Galbraith et al. [29] distinguish three types of pairings: type-1, in which
G1 = G2; type-2, in which G1 	= G2 and there exists an efficient isomorphism
ψ : G2 → G1; and type-3, in which G1 	= G2 and no such isomorphism exists.

Type-3 pairings currently allow for the most efficient operations in G1 given
a security level using BN curves with a high embedding degree [2]. Therefore it
is desirable to describe a cryptographic scheme in a type-3 setting, i.e., without
assuming G1 = G2 or the existence of an efficient isomorphism from G2 to G1.

4.2 q-Strong Diffie-Hellman Assumption

The q-Strong Diffie-Hellman (qSDH) problem has two versions. The first ver-
sion by Boneh and Boyen is defined in a type-1 and type-2 pairing setting [6].
This version, to which we refer as the Eurocrypt version, is informally stated as
follows:

Given a q+2-tuple (g1, g2, gx
2 , g

(x2)
2 , . . . , g

(xq)
2 ) ∈ G1 × G

q+1
2 with g1 =

ψ(g2), output a pair (c, g1/(x+c)
1 ) ∈ Z

∗
p × G1.

Boneh and Boyen created a new version of the qSDH problem to support type-3
settings [7]. The so-called JOC version is informally stated as follows:

Given a q+3-tuple (g1, gx
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2 ) ∈ G

q+1
1 × G

2
2, output a

pair (c, g1/(x+c)
1 ) ∈ Zp \ {−x} × G1.

4.3 BBS+ Signatures

We recall the BBS+ signature, as described by Au et al. [1], which is inspired
by the group signature scheme by Boneh et al. [8].

Key Generation. Take (h0, . . . , hL) ←$
Z

L+1
p , x ←$

Z
∗
p, w ← gx

2 , and set sk = x
and pk = (w, h0, . . . , hL).

Signature. On input message (m1, . . . ,mL) ∈ Z
L
p and secret key x, pick e, s ←$

Zp and compute A ← (g1hs
0

∏L
i=1 hmi

i )
1

e+x . Output signature σ ← (A, e, s).



10 J. Camenisch et al.

Verification. On input a public key (w, h0, . . . , hL) ∈ G2 × G
L+1
1 , message

(m1, . . . ,mL) ∈ Z
L
p , and purported signature (A, e, s) ∈ G1 × Z

2
p, check

e(A,wge
2) = e(g1hs

0

∏L
i=1 hmi

i , g2).

Au et al. prove the BBS+ signature secure under the Eurocrypt version of
the qSDH assumption, making use of the isomorphism between the groups in
the security proof. As in type-3 pairings no such isomorphism exists, this means
the proof is not valid when this isomorphism does not exist and we do not
know whether the signature is secure in this setting. We modify the proof by
Au et al. to use the JOC version of the qSDH assumption and no longer rely on
an isomorphism in the proof, allowing us to use BBS+ signatures with type-3
pairings.

Theorem 1. The BBS+ signature scheme is existentially unforgeable against
adaptive chosen message attacks under the JOC version of the qSDH assump-
tion and the DL assumption, in particular in pairing groups where no efficient
isomorphism between G2 and G1 exists.

Due to space contraints, the proof is presented in the full version of the paper [16].

4.4 Proof Protocols

When referring to the zero-knowledge proofs of knowledge of discrete logarithms
and statements about them, we will follow the notation introduced by Camenisch
and Stadler [19] and formally defined by Camenisch, Kiayias, and Yung [17].

For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge
proof of knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃ and h̃ are elements of some groups G = 〈g〉 = 〈h〉
and G̃ = 〈g̃〉 = 〈h̃〉. Given a protocol in this notation, it is straightforward to
derive an actual protocol implementing the proof [17]. Indeed, the computational
complexities of the proof protocol can be easily derived from this notation: for
each term y = gahb, the prover and the verifier have to perform an equivalent
computation, and to transmit one group element and one response value for each
exponent.

SPK denotes a signature proof of knowledge, that is a non-interactive trans-
formation of a proof with the Fiat-Shamir heuristic [28] in the random oracle
model [3]. From these non-interactive proofs, the witness can be extracted by
rewinding the prover and programming the random oracle. Alternatively, these
proofs can be extended to be online-extractable, by verifiably encrypting the
witness to a public key defined in the common reference string (CRS). A practi-
cal instantiation is given by Camenisch and Shoup [18] using Paillier encryption,
secure under the DCR assumption [33].

5 Construction

In this section, we present our DAA protocol with attributes and signature-
based revocation called Πdaa+. On a high level, it is similar to previous work on
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qSDH-based DAA. A platform, consisting of a TPM and a host, must once run
the join protocol before it can create signatures. In the join protocol, the TPM
authenticates to the issuer. The issuer can decide whether the TPM is allowed
to join, and if so, it creates a credential for the platform. The credential is BBS+
signature on a commitment to the TPM chosen secret key gsk , and on attribute
values as determined by the issuer. Note that the issuer can choose the attribute
values, as we expect the issuer to issue only credentials containing attributes
where it knows the ‘correct’ attribute values, such as the model or vendor of
the TPM (which it knows as the TPM authenticated), or an expiration date
of the credential. After receiving a credential, the platform can sign a message
m by creating a signature proof-of-knowledge proving that it has a credential.
A basename bsn controls linkability. Choosing a fresh bsn yields a signature
that cannot be linked to any signature that the platform previously generated,
meaning the platform can be fully anonymous. Only when it chooses to reuse
a basename, the signatures based on the same basename can be linked, i.e., a
verifier can notice that they stem from the same platform. The platform also
chooses which attributes it will disclose to a verifier.

Our protocol is parametrized by L, the amount of attributes a credential
contains, attribute sets A1, . . . ,AL, and l, the leakage of the secure channels
used. For simplicity of the presentation, we describe our construction supporting
only selective disclosure as attribute predicates, although it is simple to see how
the construction can be extended to allow for more advanced predicates using
standard proof techniques. We describe the predicates using a set D ⊆ {1, . . . , L}
indicating which attributes are disclosed, and a tuple I = (a1, . . . , aL) setting the
desired attribute values. For example, the predicate D ← {2}, I = (⊥, 123,⊥)
is only true for platforms with credentials in which the second attribute value
equals 123. Let D̄ = {1, . . . , L} \ D be the set of undisclosed attributes.

We assume that a common reference string functionality Fcrs and a certifi-
cate authority functionality Fca are available to all parties. Fcrs will be used
to provide the protocol participants with the system parameters consisting of
a security parameter τ , a bilinear group G1,G2,GT of prime order p with gen-
erators g1, h0, . . . , hL of G1 and g2 of G2 and bilinear map e, generated via
G(1τ ). Fca allows the issuer to register his public key. We further use random
oracles H1 : {0, 1}∗ → G1 that is used for the computation of pseudonyms
and H : {0, 1}∗ → {0, 1}τ which is used for the Fiat-Shamir heuristic in the
zero-knowledge proofs.

The TPM and issuer must have an authenticated communication channel in
the join protocol. This can be achieved in multiple ways, we abstract away from
this by using an ideal functionality for this authenticated channel. As the host
forwards messages, it can block the communication, so the standard Fauth does
not capture the desired security. Instead we use Fauth∗ which was introduced
by Camenisch et al. [15] specifically for this type of authenticated channel. The
communication between a TPM and host is modeled using secure message trans-
mission functionality F l

smt. For definitions of the standard functionalities Fcrs,Fca

and F l
smt we refer to [20,21].
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For the sake of readability, we will not explicitly call F l
smt for communi-

cation between a TPM and host, nor write down that parties query Fcrs and
Fca to retrieve the system parameters and the issuer public key. When a party
receives an input or message it does not expect, e.g., protocol messages received
out of order, or any of the protocol checks fails, the protocol outputs with fail-
ure message ⊥. For efficiency, a host should precompute values e(g1, g2) and
e(h0, w) after joining and a verifier should in addition precompute e(hi, g2) for
i = 0, . . . , L to minimize the number of pairing computations, but for readability
we write the full pairing function.

5.1 Our DAA Protocol with Extensions Πdaa+

Issuer Setup. In the setup phase, the issuer I creates a key pair of the BBS+-
signature scheme and registers the public key with Fca.

1. I upon input (SETUP, sid) generates his key pair:
– Check that sid = (I, sid ′) for some sid ′.
– Choose x ←$

Zp and set w ← gx
2 . Prove knowledge of the private key by

creating π ←$ SPK{x : w = gx
2}. Initiate LJOINED ← ∅.

– Register the public key w, π at Fca, and store the secret key x.
– Output (SETUPDONE, sid).

Join Request. The join protocol runs between the issuer I and a platform,
consisting of a TPM Mi and a host Hj . The platform authenticates to the issuer
and, if the issuer allows the platform to join with certain attributes, obtains a
credential that subsequently enables the platform to create signatures. A unique
sub-session identifier jsid distinguishes several join sessions that might run in
parallel.

1. Hj upon input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends the mes-
sage (JOIN, sid , jsid) over I.

2. I upon receiving (JOIN, sid , jsid) from a party Hj chooses a fresh nonce
n ←$ {0, 1}τ and sends (sid, jsid, n) back to Hj .

3. Hj upon receiving (sid , jsid , n) from I, sends (sid , jsid , n) to Mi.
4. Mi upon receiving (sid , jsid , n) from Hj , generates its secret key:

– Check that no key record exists.
– Choose gsk ←$

Zp and store the key as (sid ,Hj , gsk ,⊥).
– Set Q ← hgsk

1 and compute π1 ←$ SPK{(gsk) : Q = hgsk
1 }(n).

– Store key record (sid ,Hj , gsk).
– Send (Q, π1) via the host to I using Fauth∗.

5. Hj notices Mi sending (Q, π1) over Fauth∗ to the issuer, it appends its own
identity in the unauthenticated part of the message and forwards the full
message to the issuer. It also keeps state as (jsid , Q).

6. I upon receiving (Q, π1) authenticated by Mi and identity Hj unauthen-
ticated over Fauth∗, it verifies π1 and checks that Mi /∈ LJOINED. It stores
(jsid , Q,Mi,Hj) and outputs (JOINPROCEED, sid , jsid ,Mi).
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Join Proceed. The join session is completed when the issuer receives an explicit
input telling him to proceed with join session jsid and issue attributes attrs =
(a1, . . . , aL).

1. I upon input (JOINPROCEED, sid , jsid , attrs) generates the BBS+ credential:
– Retrieve the record (jsid , Q,Mi,Hj) and add Mi to LJOINED.
– Choose random e, f ∈ Zp.
– A ← (g1 · hf

0 · Q · ∏L
i=1 hai

i+1)
1/(e+x)

– Send the credential to the host by sending (sid , jsid , A, e, f, attrs) to Hj

over Fsmt.
2. Hj upon receiving (sid , jsid , A, e, f, attrs) from I verifies and stores the cre-

dential.
– Check that e(A,wge

2) = e(g1 · hf
0 · Q · ∏L

i=1 hai
i+1, g2).

– Store (sid ,Mi, (A, e, f), attrs) and output (JOINED, sid , jsid).

Sign Request. The sign protocol runs between a TPM Mi and a host Hj .
After joining, together they can sign a message m with respect to a basename
bsn, attribute predicate (D, I), and signature-based revocation list SRL. Again,
we use a unique sub-session identifier ssid to allow for multiple sign sessions.

1. Hj upon input (SIGN, sid , ssid ,Mi,m, bsn, (D, I), SRL) checks whether his
attributes fulfill the predicate and randomizes the BBS+ credential:

– Retrieve the join record (sid ,Mi, (A, e, f), attrs).
– Check that the attributes fulfill the predicate: Parse I as (a′

1, . . . , a
′
L) and

attrs as (a1, . . . , aL) and check that ai = a′
i for every i ∈ D.

– Choose a ←$
Zp and set A′ ← A · ha

0 .
– Send (sid , ssid ,m, bsn, (D, I), SRL) to Mi and store (sid , ssid , a)

2. Mi upon receiving (sid , ssid ,m, bsn, (D, I), SRL) from Hj asks for permission
to proceed.

– Check that a join record (sid ,Hj , gsk) exists.
– Store (sid , ssid ,m, bsn, (D, I), SRL) and output (SIGNPROCEED, sid ,

ssid ,m, bsn, (D, I), SRL).

Sign Proceed. The signature is completed when Mi gets permission to proceed
for ssid .

1. Mi upon input (SIGNPROCEED, sid , ssid) computes the pseudonym nym and
starts the computation of the following zero knowledge proof.

SPK{(gsk , {ai}i∈D̄, e, a, b) :
e(A′, w)

e(g1, g2)
∏

i∈D e(hi+1, g2)ai
= e(A′, g2)−ee(h0, g2)be(h1, g2)gske(h0, w)a

·
∏
i∈D̄

e(hi+1, g2)ai ∧ nym = H1(bsn)gsk}(m)
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– Retrieve join record (sid ,Hj , gsk) and sign record (sid , ssid ,m, bsn,
(D, I), SRL).

– Set nym ← H1(bsn)gsk .
– Take rgsk ←$

Zp and compute E ← h
rgsk

1 and L ← H1(bsn)rgsk .
– Send (sid , ssid , E, L, nym) to Hj .

2. Hj upon receiving (sid , ssid , E, L, nym) from Mi, completes the commitment
phase of the zero-knowledge proof.

– Take rai
←$

Zp for i ∈ D̄, and re, ra, rb ←$
Zp.

– Compute t-value

t ← e(A′, g2)ree(h0, g2)rbe(E, g2)e(h0, w)ra

∏
i∈D̄

e(hi+1, g2)rai

= e(A′re · hrb
0 · E ·

∏
i∈D̄

h
rai

i+1 , g2)e(h0, w)ra

– Compute c′ ← H(A′, nym, t, L, g1, h0, . . . , hL, w).
– Send (sid , ssid , c′) to Mi.

3. Mi upon receiving (sid , ssid , c′) from Hj .
– Take a nonce n ←$ {0, 1}τ .
– Compute c ← H(n, c′,m, bsn, (D, I), SRL).
– Set sgsk ← rgsk + c · gsk .
– Send (sid , ssid , sgsk ) to Hj .

4. Hj upon receiving (sid , ssid , sgsk ) from Mi, completes the zero-knowledge
proof.

– Set b ← f + a · e, sai
← rai

+ cai for i ∈ D̄, se ← re − ce, sa ← ra + ca,
sb ← rb + cae.

– Set π ← (c, sgsk , {sai
}i∈D̄, se, sa, sb, n).

5. As signature-based revocation is used, a revocation list SRL containing tuples
(bsni, nymi) is given, and the platform must prove that H1(bsni)gsk 	= nymi.
It does so using the Camenisch-Shoup proof of inequality of discrete log-
arithms [18]: take a random γ, compute C ← (H1(bsni)gsk/nymi)

γ , and
prove SPK{(α, β) : C = H1(bsni)α( 1

nymi
)β ∧ 1 = H1(bsn)α( 1

nym
)β}. For every

(bsni, nymi) ∈ SRL, the platform takes the following steps.
(a) Host Hj sends (sid , ssid , bsni) to Mi.
(b) Upon receiving (sid , ssid , bsni), the TPM Mi starts the commitment

phase of this proof of non-revocation.
– Take ri,α ←$

Zp and compute t′i,1 ← H1(bsni)ri,α , t′i,2 ← H1(bsn)ri,α ,
K ← H1(bsni)gsk .

– Send (sid , ssid , t′i,1), t
′
i,2,K) to Hj .

(c) Upon receiving (sid , ssid , t′i,1), t
′
i,2,K), Hj completes the commitment

phase of the non-revocation proof.
– Take γi ←$

Zp and set Ci ← (K/nymi)
γi .

– Check Ci 	= 1G1 .
– Take ri,β ←$

Zp and set ti,1 ← t′i,βi,1 · ( 1
nymi

)ri,β and ti,2 ← t′γi

i,2 · ( 1
nym

)ri,β .
– Compute c′ ← H(C, bsni, bsn, nymi, nym, n, ti,1, ti,2)
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– Send (sid , ssid , c′) to Mi.
(d) Mi upon receiving (sid , ssid , c′) from Hj

– Take nonce ni ←$ {0, 1}τ and compute c ← H(ni, c).
– Set s′

i,α ← ri,α + c · gsk and send (sid , ssid , s′
i,α, ni) to Hj .

(e) Upon receiving (sid , ssid , s′
i,α, ni) from Mi, host Hj finishes the non-

revocation proof.
– Compute c ← H(ni, c

′).
– Set si,α ← γ · s′

i,gsk and si,β ← ri,β + c · γ.
– Set πi ← (c, ni, Ci, si,α, si,β).

6. The host outputs (SIGNATURE, sid , ssid , (A′, nym, π, {πi})).

Verify. The verify algorithm allows one to check whether a signature σ on
message m with respect to basename bsn, attribute disclosure (D, I), private
key revocation list RL, and signature revocation list SRL is valid.

1. V upon input (VERIFY, sid ,m, bsn, σ, (D, I), RL, SRL) verifies the signature:
– Parse σ as (A′, nym, π, {πi}).
– Verify π with respect to A′ and nym:

• Parse π as (c, sgsk , {sai
}i∈D̄, se, sa, sb, n).

• Set L̂ ← h
sgsk

1 · nym−c and

t̂ ← e(A′, gse
2 · w−c)e(h0, g2)sbe(h1, g2)sgsk e(h0, w)sa

∏
i∈D̄

e(hi+1, g2)sai

· e(g1, g2)c
∏
i∈D

e(hi+1, g2)ai·c

• Check
c = H(n,H(A′, nym, t, L, g1, h0, . . . , hL, w),m, bsn, (D, I), SRL).

– For every (bsni, πi) ∈ SRL:
• Parse πi as (c, ni, Ci, si,α, si,β).
• Check C 	= 1G1 .
• Set t̂i,1 ← H(bsni)si,α 1

nymi

si,β and t̂i,2 ← H(bsn)si,α 1
nym

si,β .

• Check c = H(ni,H(C, bsni, bsn, nymi, nym, n, t̂i,1, t̂i,2)).
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

Link. The verify algorithm allows one to check whether two signatures σ, σ′,
on messages m,m′ respectively, that were generated for the same basename bsn
were created by the same TPM.

1. V upon input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) verifies the signa-
tures and compares the pseudonyms contained in σ, σ′:

– Check that both signatures σ, σ′ are valid with respect to m, bsn, p, SRL
and m′, bsn, p′, SRL′ respectively. Output ⊥ if they are not both valid.

– Parse the signatures as (A′, nym, π, {πi}) ← σ, (A′′, nym′, π′, {π′
i}) ← σ′.

– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).
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5.2 Comparison with Previous DAA Schemes

Our protocol is very similar to the most recent qSDH-based DAA schemes [13,
22,25]. However, a few key changes were needed to achieve provable security and
address the problems mentioned in Sect. 2. First, we use a BBS+ signature for
the membership credential, instead of the simplified credential where the s-value
is ommited as used in the recent schemes [13,22,25]. The BBS+ is proven to be
unforgeable, and with this extra element, the proof of knowledge which is part
of DAA signatures allows one to extract valid credentials, whereas in the most
recent schemes one could not.

Compared to the most recent EPID scheme by Brickell and Li [14], we intro-
duce a way to split the workload between a TPM and host, and add basenames
steering linkability. The usage of basenames is required to prevent the TPM from
serving as a static Diffie-Hellman oracle towards the host. For non-revocation
proofs, the platform must prove that its pseudonym nym = Bgsk is based on a
different key than a pseudonym in a revoked signature nym′ = B′gsk ′

. A host
proving the inequality of the keys with the help of a TPM using the method by
Camenisch and Shoup will learn B′gsk , for any B′ of its choosing. By requiring
basenames, i.e., B = H1(bsn), learning B′gsk = H1(bsn)gsk does not give a cor-
rupt host any information, as in the random oracle model this can be simulated
without knowing gsk .

For the reason mentioned above, the fully anonymous option bsn = ⊥ from
previous DAA schemes is not supported by our scheme, but we argue that this
does not affect privacy: A platform can choose a fresh basename it only uses once
to be fully anonymous. Any verifier that accepts fully anonymous signatures can
simply accept signatures with respect to any basename.

Compared to the existing DAA-A scheme [25], we store all attributes except
the secret key on the host for efficiency. This still guarantees unforgeability with
an honest TPM and corrupt host. Anonymity is not affected either, as in either
case, the host must be trusted for anonymity.

In Table 1 we compare the computational efficiency of our scheme with the
other qSDH-based DAA schemes. In particular, we show the computational cost
for the TPM in the sign algorithm, for the host in the sign algorithm, and for
the verifier in the verify algorithm, as these are the algorithms that will be used
frequently. We denote k exponentiations in group Gi by kGi, kGj

i denotes k j-
multi-exponentiations, and kP denotes k pairing operations. Table 2 we compare
the size of credentials and signatures with other DAA schemes. Here, kG denotes
the bits required to represent k elements of G, and H denotes the bit length of
the hash output. CU15-1 denotes the LRSW-based DAA-A scheme by Chen
and Urian [25], and CU15-2 the qSDH-based instantiation. We analyzed both
schemes for signatures with only the secret key on the TPM, which is used to
create a pseudonym, and all other attributes held by the host. We let L denote
the amount of attributes, with D the amount of disclosed attributes and U
the amount of undisclosed attributes. Revocation lists and revocation checks are
omitted for these efficiency numbers. To compare this scheme with previous DAA
schemes, we consider the efficiency without attributes, i.e., L = D = U = 0. In
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computation, our scheme is as efficient as the scheme by Brickell and Li [13],
which is currently the most efficient DAA scheme. Our credentials contain one
extra element of Zp to achieve provable security. Signatures in our scheme are
one element of G1 smaller than signatures in the Brickell and Li scheme, which
follows from the fact that we always use a basename, so we do not need to
transmit the base for the computation of the pseudonym.

We stress that many of the listed schemes are not provably secure, whereas
we rigorously prove our scheme secure.

Table 1. A comparison of the efficiency of DAA schemes.

M Sign H Sign Verify

CF08 [26] 2G1, 1GT 1G1, 2G
2
1, 1GT , 1P 1G2

1, 2G
3
1, 1G

5
T , 3P

Che10 [22] 2G1, 1GT 1G1,G
3
T 1G2

1, 1G
2
2, 1G

4
T , 1P

BL10 [13] 3G1 1G1, 1G
2
1, 1GT , 1P 1G2

1, 1G
2
2, 1G

4
T , 1P

CPS10 [24] 3G1 4G1 2G2
1, 2P

CU15-1 [25] 3G1 (4 + L + U)G1 2G1, 2G
L
1 , 2G

D
1 , 2GU

1 , 6P

CU15-2 [25] 3G1 2G1, 1G
U+2
1 , 2P 1G2

1, 1G
4+L
1 , 2P

CDL16 [15] 5G1 4G1 2G2
1, 4P

This work 3G1 1G1, 1G
2+U
1 , 1GT , 1P 1G2

1, 1G
2
2, 1G

4+L
T , 1P

Table 2. A comparison of the credential and signature size of DAA schemes.

Cred. size Signature size

CF08 [26] 2Zp 1G1 6Zp 2G1 2GT 1H

Che10 [22] 1Zp 1G1 4Zp 3G1 1H

BL10 [13] 1Zp 1G1 4Zp 3G1 1H

CPS10 [24] 4G1 1Zp 4G1 1H

CU15-1 [25] (5 + L)G1 (2 + U)Zp (7 + L)G1 1H

CU15-2 [25] 1Zp 1G1 (5 + U)Zp 3G1 1H

CDL16 [15] 4G1 1Zp 4G1 1H

This work 2Zp 1G1 (5 + U)Zp 2G1 1H

6 Security Analysis

Theorem 2. The protocol Πdaa+ presented in Sect. 5 securely realizes F l
daa+ in

the (Fauth∗,Fca,F l
smt,FD

crs)-hybrid model using random oracles and static corrup-
tions, if the DL, DDH and JOC version of the qSDH assumptions hold, and the
proofs-of-knowledge are online extractable.

Due to space constraints, the proof is given in the full version of the paper [16].
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7 Conclusion

DAA is one of the most complex cryptographic protocols deployed in practice.
It is implemented in multiple platforms for trusted computing, including the
Trusted Computing Group’s TPM and Intel’s SGX. A number of functional
extensions to DAA have been proposed, including signature-based revocation
and embedding of attributes. However, as we have shown in this paper, the secu-
rity models and security proofs of the proposed DAA schemes based on the qSDH
assumptions are not satisfactory. This includes the extended DAA schemes and
the standardized DAA schemes. Bleichenbacher’s attack [5] on PKCS#1 demon-
strates the importance of rigorous security proofs, in particular for cryptographic
standards. It remains as future work, to revisit the concerned standards to elim-
inate the schemes’ flaws and ensure that they are provably secure.

As a first step towards this, we have in this paper proposed a new DAA
scheme with support for attributes and signature-based revocation. Our scheme
is as efficient as the most efficient existing DAA scheme. While the existing
schemes do not have valid security proofs, our scheme is proven secure in the
model by Camenisch et al. [15], extended to support attributes and signature-
based revocation. As a side result, we have proven the BBS+ signature scheme
to be secure in type-3 pairing settings, meaning our scheme can be used with
the most efficient pairing-friendly elliptic curve groups.
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Abstract. One of the key features that must be supported by every
modern PKI is an efficient way to determine (at verification) whether the
signing key had been revoked. In most solutions, the verifier periodically
contacts the certificate authority (CA) to obtain a list of blacklisted, or
whitelisted, certificates. In the worst case this has to be done for every
signature verification. Besides the computational costs of verification,
after revocation all signatures under the revoked key become invalid.
In the solution by Boneh et al. at USENIX ’01, the CA holds a share
of the private signing key and contributes to the signature generation.
After revocation, the CA simply denies its participation in the interactive
signing protocol. Thus, the revoked user can no longer generate valid
signatures. We extend this solution to also cover privacy, non-trusted
setups, and time-stamps. We give a formal definitional framework, and
provide elegantly simple, yet provably secure, instantiations from efficient
standard building blocks such as digital signatures, commitments, and
partially blind signatures. Finally, we propose extensions to our scheme.

1 Introduction

Digital signatures [24] provide meaningful security as long as the signing key
stays secret. However, in the real-world, signing keys can be compromised very
easily, e.g., through hacker attacks, lost hardware tokens, or simply by acci-
dent. Furthermore, it is often required to revoke signing rights, e.g., when an
employee leaves a company. Consequently, deployed solutions such as X.509,
and related standards, always allow for revocation of certificates [12,19]. Here,
two main approaches (and potentially combinations thereof) are deployed. First,
in a white-list approach, the certificate authority (CA) vouches for the fact that
a given certificate is not revoked. Alternatively, the CA can publish a black-list
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containing all revoked certificates. Now, a verifier directly rejects a signature if
the used key has been black-listed. Thus, if one requires up-to-date information,
this means that the lists must be retrieved for every signature verification, caus-
ing a high — and sometimes too high — computational and communicational
overhead. Thus, in either case, the verifiers contact the CA to determine whether
a given certificate is still valid. Thus, every verifier must periodically update the
published lists in both approaches to have meaningful security guarantees.

Moreover, as noted by Boneh et al. [9], these total revocation mechanisms
have several drawbacks. For example, as mentioned previously, to check the
revocation status of a given certificate, the verifier must have access to an up-
to-date certificate revocation list (CRL), or the CA has to be queried for each
signature verification. The latter may not be possible, however, as the verifier
may not have a network connection, or communication is too costly. Furthermore,
if a certificate is revoked, all signatures corresponding to the contained public
key pk, including the ones that were generated honestly, become invalid after
revocation. However, it is desirable that all signatures under a secret key sk that
were generated prior to the corruption of sk (or prior to the revocation of the
corresponding certificate) remain valid, while the generation of new signatures
under sk is not possible. For example, consider Spider-Man sending the message
m=“I admit that you, Iron Man, are more powerful than me.”1 Clearly, if m is
signed with Spider-Man’s secret key sk, Iron Man can publish the signature to
prove to the public that he is more powerful than Spider-Man. However, if Spider-
Man revokes his certificate, the signature becomes invalid, and there is no way
for Iron Man to prove that the statement is valid. This is because if the secret key
sk is corrupted, it cannot be proven that Iron Man is not the adversarial party
generating new bogus signatures on behalf of Spider-Man. The problem is that
signatures are not associated with their generation time, i.e., a new signature
is as good as an old one, if no further means such as time-stamping services
are involved. Thus, all signatures have to be revoked in this setting. Refer to
Gutmann for additional problems of PKIs in their current form [25].

Our Contribution. We address the aforementioned unsatisfactory situation by
introducing the notion of CA-assisted signature generation with time-stamping,
message privacy, and non-trusted setup. In a nutshell, our scheme requires that
a partially trusted CA blindly signs the message m in question plus potentially a
time-stamp (and some other technical values such as keys, etc.), while a trusted
setup is not required. In particular, the CA checks whether the corresponding
user’s pk is revoked, and signs m only if pk not revoked. The signature generated
by the CA is then additionally signed with a standard digital signature scheme
by the user. Both signatures are subsequently sent to, and verified, by the veri-
fier. Signatures can be generated as long as the corresponding public key is not
revoked. Therefore, all generated signatures remain valid after revocation as the
CA simply stops assisting the signer after the key gets revoked.

1 For all Spider-Man fans: please reverse the roles of Spider-Man and Iron Man.
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Fig. 1. Revocation of certificates.

While technically being relatively simple, our construction solves most of
the mentioned problems, and, interestingly enough, is even more efficient than
most deployed solutions, as the CAs are no longer queried for each verification.
Moreover, we want that our solution can be added “on-top” of the existing PKI,
i.e., the users do not require new keys, while the existing method can co-exist.
If a time-stamping authority and traditional revocation lists are näıvely used
to solve the problem, the signing process needs to be interactive similar to our
construction (because the time-stamp needs to be bound to the signed message).
However, our solution does not require any interactivity upon verification, which
is needed in the näıve solution in order to update revocation information. More-
over, our construction paradigm is elegantly simple, yet versatile. We show how
it can easily be extended to cover additional application scenarios. Interestingly,
when one tries to close the remaining gap between corruption and revocation
(cf. Fig. 1), the resulting construction becomes very similar to the näıve solution
again (cf. Sect. 4.1). However, in this case it is easy to see that interactivity is
needed for signing (because of the time-stamp) as well as for verification (to
check whether a signature key has been revoked “into the past”).

Even though the CA is only partially trusted, we do not lose anything, as
some kind of trust anchor is always required for a PKI anyway. Our approach
actually requires less trust: for white-lists, the CA learns if signatures for a
specific public key are verified, while in a black-list approach everyone sees which
certificates are revoked. In our solution, the CA only learns when a signature is
generated, which happens less frequently. Moreover, we have a fall-back mode,
which allows to revert to standard signatures.

State-of-the-Art. The idea to let a (semi-)trusted entity such as a CA also
contribute to signature generation has been introduced by Boneh et al. [9] and
Rivest [34], but neither present a formalization. The approach by Boneh et al. is
based on standard 2-out-of-2 threshold signatures [8,21]. In particular, the secret
key sk is split between the CA and the signer. The server denies its contribution
to signature generation, if the presented certificate is marked as revoked. How-
ever, their approach requires trusted setup (the suggested mitigation strategy
of using a distributed key generation algorithm here is too inefficient in prac-
tice), new keys for each participant, and cannot add time-stamps to generated
signatures. Moreover, an adversarial server may also learn the message to be
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signed, i.e., in contrast to our solution no privacy guarantees are given to the
user. A similar approach is deployed in anonymous credentials such as Iden-
tity Mixer [12,16], where the credential holder proves that it is not revoked at
presentation of the credential, e.g., using accumulators [6,13,20,33]. Here, the
prover has to prove knowledge of a witness (in zero-knowledge) such that its
revocation handle is contained in the accumulator, which resembles a white-list
approach. Clearly, the witnesses have to be updated for each revocation, while
credentials are, compared to digital signatures, only valid once at presentation.

Blind signatures have been introduced by Chaum [17]. In a nutshell, blind
signatures allow an external entity to receive a signature σ on a message m (of its
own choice) such that the signer learns nothing about the message m, and cannot
link a signing transcript to the final signature. Chaum’s work was later formalized
and proven secure [4,27]. Later, constructions in the standard model [14], based
on different assumptions other than RSA [8], additional security guarantees [22],
but also some impossibility results were published [23]. The initial idea was also
extended to cover some form of partial blindness, where the signature is issued
on the blinded message m, but also some public information info known to both
parties [1,18]. These partially blind signatures are mostly used to prevent misuse
of blind signatures. We use this possibility to bind a signature to a public key,
and add time-stamps.

There is also the notion of certificate-less cryptography [2,26]. In our case
we only require a certificate, there are no ephemeral keys, and no identity man-
agement. However, the ideas are very similar, and can thus be seen as related.
Likewise, the concept of virtual smart cards [15] is related. However, in contrast
to our approach, the additional server is not trusted by outsiders and the signer
has to provide an additional password. Moreover, for an outsider (i.e., verifier), a
signature generated with their scheme is indistinguishable from a traditional sig-
nature. This is not what we want, i.e., a verifier must be able to decide whether
a signature was generated using out method.

There are also other primitives which may be used in our context, e.g., thresh-
old signatures [21], proxy signatures [29], server-assisted signatures [7], multi sig-
natures [5], aggregate signatures [10], or sanitizable signatures [3,11,28]. How-
ever, all these approaches do not offer privacy (i.e., they reveal the message to
the server) without further modifications. We therefore chose to use primitives
which directly give us the required guarantees.

2 Preliminaries and Building Blocks

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly
take 1λ as an additional input. We write a ← A(x) if a is assigned the output
of algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. The algorithms may return a
special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. For the remainder of
this paper, all algorithms are ppt if not explicitly mentioned otherwise. If we have
a list, we require that we have an injective, and efficiently reversible encoding



Practical Signing-Right Revocation 25

mapping the list to {0, 1}∗. If we have a set S, we assume a lexicographical
ordering on the elements. A message space M, and the randomness space R,
may implicitly depend on a corresponding public key. If not otherwise stated, we
assume that M = {0, 1}∗ to reduce unhelpful boilerplate notation. A function
ν : N → [0, 1] is negligible, if it vanishes faster than every inverse polynomial,
i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

Non-interactive Commitments. Non-interactive commitment schemes allow
one party to commit itself to a value without revealing it. Later, the committing
party can give some opening information to the receiver, which can then “open”
the commitment.

Definition 1 (Non-Interactive Commitments). A non-interactive commit-
ment scheme COM consists of three ppt algorithms {ParGen,Commit,Open}, such
that:

ParGen. This algorithm takes as input a security parameter λ and outputs the
public parameters pp, i.e., pp ← ParGen(1λ).

Commit. This algorithm takes as input a message m and outputs a commit-
ment C together with corresponding opening information O, i.e., (C,O) ←
Commit(pp,m).

Open. This deterministic algorithm takes as input a commitment C with cor-
responding opening information O and outputs message m ∈ M, i.e., m ←
Open(pp, C,O).

Definition 2 (Binding). A non-interactive commitment scheme is binding, if
for all ppt adversaries A there is a negligible function ν(·) such that

Pr
[
pp ← ParGen(1λ), (C∗, O∗, O′∗) ← A(pp),m ← Open(pp, C∗, O∗),

m′ ← Open(pp, C∗, O′∗) : m 	= m′ ∧ m 	= ⊥ ∧ m′ 	= ⊥
]

≤ ν(λ).

Definition 3 (Perfectly Hiding). A non-interactive commitment scheme is
perfectly hiding, if for all unbounded adversaries A we have

Pr

⎡
⎣ (pp,m0,m1, state) ← A(1λ), b ← {0, 1},

(C,O) ← Commit(pp,mb), b∗ ← A(C, state) :
b = b∗

⎤
⎦ − 1

2
= 0.

We say that a commitment scheme COM is correct, if for all λ ∈ N, all
pp ← ParGen(1λ), for all messages m, for all (C,O) ← Commit(pp,m), we have
Open(pp, C,O) = m.

A non-interactive commitment scheme COM is secure, if it is correct, bind-
ing, and perfectly hiding. An example for such a commitment-scheme are
Pedersen-Commitments [32]. We stress that the message space of the Pedersen-
Commitments can be extended using collision-resistant hash-functions.
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Digital Signatures. Digital signatures allow the holder of a secret key sk to sign
a message m, while with knowledge of the corresponding public key pk everyone
can verify whether a given signature was actually endorsed by the signer.

Definition 4 (Digital Signatures). A standard digital signature scheme DSIG
consists of three algorithms {KGen,Sign,Verify} such that:

KGen. The algorithm KGen outputs the public and private key of the signer, where
λ is the security parameter: (pk, sk) ← KGen(1λ).

Sign. The algorithm Sign gets as input the secret key sk, and the message m ∈ M
to sign. It outputs a signature σ ← Sign(sk,m).

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, indicating
if the signature σ is valid, w.r.t. pk, and m: d ← Verify(pk,m, σ).

For each DSIG we require the correctness properties to hold. In particular,
we require that for all λ ∈ N, for all (pk, sk) ← KGen(1λ), for all m ∈ M we have
Verify(pk,m,Sign(sk,m)) = true. This definition captures perfect correctness.

Unforgeability. Now, we define unforgeability of digital signature schemes, as
given in [24]. In a nutshell, we require that an adversary A cannot (except with
negligible probability) come up with a signature σ∗ for a new message m∗. The
adversary A can adaptively query for signatures on messages of its own choice.

Fig. 2. Unforgeability

Definition 5 (Unforgeability). A signature scheme DSIG is unforgeable,
if for any ppt adversary A there exists a negligible function ν such that
Pr[eUNF − CMADSIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted
in Fig. 2.

We call a digital signature scheme DSIG secure, if it is correct, and unforgeable.

Partially Blind Signatures. Blind Signatures [17,27] allow the holder of a
secret key to sign a message m for a second entity. The signer does not learn
what message it signs, and also cannot link a signature generation transcript
against the final signature. Partially Blind Signatures [1] also allow to add some
piece of “public” information, known to both parties, to the final signature. Note,
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for the following definition, we omit the case where some “public parameters”
are generated, as it depends on the underlying scheme whether this algorithm is
required. An extension is straightforward.

Definition 6 (Partially Blind Signatures). A partially blind signature
scheme BSIG consists of two algorithms (KGen,Verify), and an interactive pro-
tocol 〈B,U〉 such that:

KGen. The algorithm KGen outputs the public and private key of the signer, where
λ is the security parameter: (pk, sk) ← KGen(1λ).

〈B,U〉. The algorithm 〈B,U〉 is interactive. The user U receives input m,
public information info, and pk. The signer B inputs the secret key sk,
and some string info, while the user U inputs a public key pk, a mes-
sage m, and the string info. At the end of the protocol, only the user U
receives a signature σ, while B receives nothing. We denote this as (⊥, σ) ←
〈B(sk, info),U(pk,m, info)〉. We write 〈·,U(·, ·, ·)〉∞ if the adversary plays the
role of the signer B, can start a new signing session with U as often as it
wants to, and can arbitrarily schedule the interactions. Likewise, if we write
〈B(·, ·), ·〉1, the adversary acts as the user, and can interact with the signer
only once. We also require that every entity is able to decide to what step of
which “session” a given protocol message corresponds, and also when a given
“signing session” is finished, and was successful. In particular, we say a sign-
ing session is finished once B sends its last message to U , and U can actually
extract a valid signature.

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, indi-
cating the validness of the signature σ, w.r.t. pk, info, and m: d ←
Verify(pk,m, info, σ).

For each BSIG we require the correctness properties to hold. In particular, we
require that for all λ ∈ N, for all (pk, sk) ← KGen(1λ), for all m ∈ M, for
all info ← {0, 1}∗ we have Verify(pk,m, info, σ) = true, where σ is taken from
(⊥, σ) ← 〈B(sk, info),U(pk,m, info)〉. This captures perfect correctness.

We now introduce the security requirements needed for our construction.

Unforgeability. Now, we define unforgeability of partially blind signature
schemes, as given in [1,31], but adjusted for our notation. In a nutshell, we
require that an adversary A cannot (except with negligible probability) come
up with more signatures for different message/information pair (m, info) than
successful, i.e., completed, signing queries. Note, the adversary can interleave
signing queries.

Definition 7 (Unforgeability). A signature scheme BSIG is unforgeable,
if for any ppt adversary A there exists a negligible function ν such that
Pr[omUNF − CMABSIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 3.

Note, we define “weak” unforgeability, i.e., once a signature for a given mes-
sage/information pair (m, info) becomes known, the adversary may be able to
derive new signatures.
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Fig. 3. Unforgeability

Blindness. Now, we define blindness of partially blind signature schemes, derived
from [31]. In a nutshell, we require that an adversary A cannot (except with
negligible probability) decide what message is signed, and cannot link a signing
transscript against the final signature. This must even be true, if it can generate
the public key, chose the messages to be signed, and also the public string info.

Fig. 4. Blindness

Definition 8 (Blindness). A partially blind signature scheme BSIG is blind,
if for any ppt adversary A there exists a negligible function ν such that
Pr[BlindnessBSIGA (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 4.

We call a partially blind signature scheme BSIG secure, if it is correct, unforge-
able, and blind. Jumping ahead, we use the public information to embed the
current time-stamp, and the signer’s public key into the signature.

3 CA-Assisted Signatures

We now introduce CA-Assisted Signatures. As already discussed in the intro-
duction, the main idea is that a CA helps generating a signature.
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3.1 Syntax

In the following we now give a formal specification of the algorithms and their
interfaces in such schemes. We require that each party has access to a common
clock which is synchronized across all parties. In practice, this can be realized,
e.g., by using the Network Time Protocol [30], and checking that the time-stamp
is in an acceptable range, say, e.g., 30 s.

Definition 9 (CA-Assisted Signatures). A CA-assisted digital signature
scheme CASIG consists of four algorithms {KGenu,KGenc,Revoke,Verify} and
one interactive protocol 〈CA,U〉 such that:

KGenu. The algorithm KGenu outputs the public and private key of each user,
where λ is the security parameter: (pku, sku) ← KGen(1λ).

KGenc. The algorithm KGenc outputs the public and private key of a CA, where
λ is the security parameter: (pkc, skc) ← KGen(1λ).

〈CA,U〉. The protocol 〈CA,U〉 is interactive. The user U receives input m,
pks, time, and sku. The CA inputs the secret key skc, time, and pku. At
the end of the protocol, only the user U receives a signature σ (which
may be ⊥ for a revoked user), while CA receives nothing: (⊥, σ) ←
〈CA(sks, pku, time)),U(sku, pku,m, time)〉. As for partially blind signatures,
we assume that each party knows to which signing session, and which pro-
tocol step a received message belongs to, and is successful.

Revoke. The algorithm Revoke allows to revoke a given public key pku. In a
nutshell, the CA no longer agrees to start a signing protocol for revoked pku.
Thus, revocation of a pku does not affect already ongoing signing sessions for
this pku. This algorithm outputs nothing.

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, indicating
the validness of the signature σ, with respect to pkc, pks, time, and m: d ←
Verify(pkc, pku,m, time, σ).

3.2 Definitional Framework for CA-Assisted Signatures

We now define the formal requirements for CA-assisted signatures. In a nut-
shell, those are correctness, unforgeability against malicious users and CAs, and
blindness/privacy against CAs and outsiders.

Correctness. As usual, we require correctness of any CASIG. In particu-
lar, we require that with overwhelming probability in the security para-
meter it holds that Verify(pkc, pku,m, time, σ) = true, where (pku, sku) ←
KGenu(1λ), (pkc, skc) ← KGenc(1λ), m ∈ M, time ∈ N, (⊥, σ) ←
〈CA(skc, pks, time),U(sks, pku,m, time)〉, and pku was not revoked before the sig-
nature generation request. The probability space is here given by all random
coins in all involved algorithms. The scheme is said to be perfectly correct, if σ
verifies correctly with probability 1.
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Unforgeability. Unforgeability of CA-assisted signatures covers two aspects. On
the one hand, a malicious user must not be able to fake signatures of the CA.
On the other hand, a malicious CA must not be able to impersonate a user.
Together, those two definitions clearly also imply that an outsider is not able to
forge any valid signatures.

For signer unforgeability, we allow an adversary to obtain arbitrarily many
signatures on arbitrary messages, and public keys, of its choice. Furthermore,
for every signature, the adversary may define the current time (except that it
may not turn back the time). Also, he can generate and revoke user keys at
convenience. Similarly to Definition 7, the adversary now wins if it can output
more message/signature pairs than he queried from the oracle; furthermore, each
of those pairs must only verify for a public key and time that have been used
in a signing query. Finally, signatures may only verify if the corresponding user
public key has not been revoked before starting the respective signing session.
For simplicity, we define that if a signing oracle is tagged as “non-called”, if
the corresponding public key was revoked before the current time. In the case
that revocation and signing were done at the very same point in time, we do not
consider the signature a forgery even if the revocation request was submitted first
in the experiment; one the one hand, this is a purely academic issue anyways,
and on the other hand “before” and “after” do not have any semantics within a
fixed point in time.

Definition 10 (Signer Unforgeability). A CA-assisted signature scheme
CASIG is signer unforgeable, if for any ppt adversary A there exists a negligible
function ν such that Pr[seUNF − CMACASIG

A (1λ) = 1] ≤ ν(λ). The corresponding
experiment is depicted in Fig. 5.

Fig. 5. Signer unforgeability

Complementary to signer unforgeability, we also require that the CA cannot
generate valid signatures for a specific user without its contribution. We therefore
let the adversary (controlling the CA) obtain arbitrarily many signatures for a
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user public key pku, where again A has full control over time. The adversary
now wins if he can output a signature on a message that was not asked for that
specific define point in time. This definition is similar to the standard definition
of unforgeability, cf. Definition 5.

Note that as before, the adversary is allowed to interleave signing queries.
Further note that the given definition is only presented in its weak formula-
tion, i.e., the adversary is allowed to output fresh signatures for message/time
pairs for which it obtained honest signatures. Extending the definition to strong
unforgeability is straightforward.

Definition 11 (CA Unforgeability). A CA-assisted signature scheme CASIG
is CA unforgeable, if for any ppt adversary A there exists a negligible function ν
such that Pr[ceUNF − CMACASIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment
is depicted in Fig. 6.

Fig. 6. CA unforgeability

Blindness. Blindness is concerned with the privacy of the user towards the
CA. While a secure CA-assisted signature scheme must satisfy both aspects of
unforgeability, blindness comes in two flavors giving different privacy guarantees.

The first flavor, called CA blindness, is similar in spirit to Definition 8. There,
the CA (controlled by the adversary) may trigger signing protocols on two mes-
sages of its choice in a random order, gets the resulting signatures, and then
needs to link the transcripts to the messages.

In the second flavor, called CA weak-blindness, we only require that the
adversary does not learn which message it signed. In particular, the adversary
does not gain access to the signatures, and may only trigger a single signing
query. It is easy to see that CA blindness implies CA weak-blindness, but not
vice versa. The decision which level of blindness/privacy is required must be
made on a case-to-case basis, depending on the concrete use case.

Similar to Definition 8, the adversary is restricted to a single interaction
with each oracle in our blindness definitions. However, blindness against multiple
protocol runs directly follows from a simple hybrid argument.

Definition 12 (CA Blindness). A CA-assisted signature scheme CASIG is
CA blind, if for any ppt adversary A there exists a negligible function ν such
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Fig. 7. CA blindness

that Pr[CA − BlindnessCASIGA (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 7.

Definition 13 (CA Weak-Blindness). A CA-assisted signature scheme
CASIG is weakly CA-blind, if for any ppt adversary A there exists a negligible
function ν such that Pr[CA − WBlindnessCASIGA (1λ) = 1] ≤ ν(λ). The correspond-
ing experiment is depicted in Fig. 8.

Fig. 8. Weak CA blindness

We call a CA-assisted signature scheme CASIG secure and (weakly) blind, if
it is correct, signer unforgeable, CA unforgeable, and CA (weakly) blind.

4 Constructions

We now show how to come up with constructions achieving what we want. First,
we present a generic construction, which, depending on the used building blocks,
achieves weaker, or stronger resp., privacy notions. We stress that our reductions
are tight, i.e., we have no reduction losses, and thus omit a probability analysis
in the proofs.
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Generic Construction Idea. Let us introduce the generic idea of our con-
struction first. We then give two different derivations of the generic construc-
tions, but instantiated with different building blocks. Both constructions offer
the same unforgeability guarantees, but offer a different level of privacy.

In a nutshell, we let a CA contribute to signature generation, but only if
the public key of the requester is not revoked at the time time of the signature
request. The CA can then also add some additional information to the final
signature such as certificates, and the like. However, from a privacy point of
view, it is also required that the CA does not learn which messages are signed,
which reflects blindness.

On the one hand, we let the signer commit to a message, and the let the
CA sign this commitment, and the signer’s public key, if, and only if, the given
public key is not revoked. The user, on the other hand, creates an additional
signature around the received signature from the CA to protect against bogus
CAs. Clearly, there is no joint setup, and thus key generation can be done offline,
which is not possible in current schemes. We stress that revoking a public key is
simply sending the CA a message “My pk has been revoked”, possibly containing
a proof of knowledge, which is not necessarly zero-knowledge.

Note, the parties do not need to communicate using a secure channel.

Construction 1 (Weakly-Blind Construction). Let CASIG := (KGenu,
KGenc, 〈CA,U〉,Revoke,Verify) such that:

KGenu. Generate a key-pair of a standard digital signature scheme, i.e., return
(pku, sku) ← DSIG.KGen(1λ).

KGenc. Generate a key-pair of a standard digital signature scheme (pkc, skc) ←
DSIG.KGen(1λ), and the public parameters pp ← COM.ParGen(1λ) of a com-
mitment scheme. Return ((pkc, pp), skc).

〈CA,U〉. See Fig. 9.
Verf. To verify a signature σ = (σ′, σc, C,O, time) w.r.t. m, pkc, and pku, check

that m = COM.Open(pp, C,O), and DSIG.Verify(pkc, (C, time, pku), σc) =
true, DSIG.Verify(pku, (σc, time,m,C,O, pkc, pku), σ′) = true. If all checks
pass, output true, and false otherwise.

Theorem 1. If DSIG and COM are secure, then our construction is secure and
weakly blind.

Proof. Correctness follows from inspection. Thus, we only consider signer
unforgeability, CA unforgeability, weak blindness. We prove each property on
its own.

Signer Unforgeability. Let A be an adversary which can break the signer
unforgeability of our construction. We can then construct an adversary B which
either breaks the binding property of COM, or the unforgeability of the sig-
nature scheme DSIG used by the CA. Assume that there is a signature σ on
the message (σc, time,m,C,O, pkc, pk

∗), where σc is a signature on the mes-
sage (C, time), but also a signature σ′ for (σc, time′,m′, C,O, pkc, pk

′∗), where
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Fig. 9. CA-Assisted signing with weak blindness

(m, time, pk∗) 	= (m′, time′, pk′∗). Hence, we have two different messages which
“are in” the same commitment. Clearly, this breaks the binding property of the
commitment scheme used. In the second case, i.e., there is a new commitment
C ′ for (m, time) 	= (m′, time′) never signed by the CA, the adversary must have
been able to forge a signature σ′

c. This also accounts for a revoked public key. In
both cases a reduction for B is trivial, and therefore omitted.

CA Unforgeability. This case is trivial as well. If the adversary A can come up
with a signature on a message (σc, time,m,C,O, pk∗, pku), where (m, time, pk∗)
was never signed, then it can break the unforgeability of the used signature
scheme. Again, a reduction is straightforward.

CA Weak-Blindness. Trivial, as COM is perfectly hiding, and therefore σu is
independent of m, which is the only information sent to the CA, i.e., A. �
Construction 2 (Blind Construction). Let CASIG′ := (KGenu,KGenc,
〈CA,U〉,Revoke,Verify) such that:

KGenu. Generate a key-pair of a standard digital signature scheme, i.e., return
(pku, sku) ← DSIG.KGen(1λ).

KGenc. Generate a key-pair of a partially blind signature scheme, i.e., return
(pkc, skc) ← BSIG.KGen(1λ).

〈CA,U〉. See Fig. 10.
Verf. To verify a signature σ = (σ′, σc, time) w.r.t. m, pkc, and pku, check that

DSIG.Verify(pkc, (σc, time,m, pkc, pku), σ′) = true, and BSIG.Verify(pkc,m,
(pku, time), σc) = true. If all checks pass, output true, and false otherwise.

Theorem 2. If DSIG and BSIG are secure, then our construction is secure and
blind.

Proof. Again, correctness follows by inspection. It remains to prove CA unforge-
ability, signer unforgeability, and blindness.
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Fig. 10. CA-Assisted signing with blindness

Signer Unforgeability. Let A be an adversary which can break the signer unforge-
ability of our construction. We can then construct an adversary B which breaks
the unforgeability of the partially blind signature scheme. B receives pk from
the BSIG to forge, and embeds the received pk into the public key pkc. It sim-
ply follows the protocol, and uses its own oracle to get signatures. If a given
pki is revoked, B no longer accepts new signing sessions. Eventually, A outputs
((m1, σ1, info1, pk1), . . . , (m�, σ�, time�, pk�)). Clearly, if pk1 was revoked, B never
asked its own oracle to generate a signature for (m1, (pk1, time1)), and can thus
return all successful runs, and (m1, σ1, time1, pk1), as for (m1, time1) is fresh by
assumption, as B never queries its own oracle any longer for fresher time.

CA Unforgeability. Essentially the same reduction as for the weakly blind
scheme.

CA Blindness. Let A be an adversary which breaks the CA blindness of our
scheme. We can then construct an adversary which breaks the blindness of the
used BSIG. B proceeds as follows. It generates pku honestly, which it also gives to
A, receiving (pk∗, {m0,m1}, time, state1). It then gives state1 to A, and interacts
with its own oracles like A does with his using m0 and m1, but uses (pku, time)
as info. If A is finished it returns state2, and B subsequently receives (σ1, σ2)
from its own challenger. Then, B gives A state2, and (σ1, σ2) to A. Whatever A
then outputs, is also output by B. �

Efficiency. We want to stress that in the first protocol message the user essen-
tially proves knowledge of the secret key. If the signature on time is not valid,
the protocol can directly be aborted. This prohibits that outsiders use the CA to
check whether a given certificate is revoked. If this is not wanted for performance
reasons, leaving this step out is also possible.

Clearly, both constructions require that a verifier needs to verify two signa-
tures, while the CA has to generate a signature. However, considering that the
CA has to vouch that a given certificate was not revoked, it has to generate a
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signature anyway, if the revocation information needs to be up-to-date, which
clearly needs to be verified as well. In other words, our construction is already
more efficient after the first signature verification. Moreover, compared to the
approach by Boneh et al. [9], an outsider can trivially derive whether our pro-
tocol was used to generate the signature, which in turn increases trust in the
signature itself, as the verifier can also decide whether it accepts a given pkc as
trustworthy.

4.1 Extensions

We now discuss informally how our basic constructions can be extended to
account for additional use-cases. We omit full details and proofs due to space
limitations, however the intuition should still become clear.

Signer-Anonymity. While both our constructions give message-privacy guaran-
tees to the user, they reveal the identity of the signing party to the CA. If this
poses a potential privacy problem, it can be mitigated as follows, for instance
for the weakly-blind construction, cf. Fig. 9. The commitment is extended to
also commit to pku. Then, instead of signing the tuple in Fig. 9 in the first step,
one computes a signature proof of knowledge proving in zero-knowledge that
one knows the secret key corresponding to the public key in the commitment,
and that this public key is not on the blacklist. This can be done using similar
techniques as Idemix [16].

Revocation into the Past. Our constructions are well-suited for situations where
signing keys should simply be deactivated, e.g., when an employee leaves a com-
pany. However, in certain situations, it is also necessary to revoke “into the past”
in order to also invalidate signatures issued between key leakage and revocation,
cf. Fig. 1. In this case, the CA has to publish a list of revoked keys together with
time-stamps of their revocation moment; upon verification, only signatures issued
before this point in time would be accepted. From a complexity point of view this
solution is similar to the combination of black-list based PKIs and time-stamping
authorities, i.e., interaction is needed upon signing and verification.

Message Policies. One could also require that the signer proves (in zero-
knowledge) that the message to be signed follows certain restrictions, e.g., that
a company policy is followed. Only if the proof is valid, and the public key is not
revoked, the server contributes to signature-generation. For example, a policy
may be that a normal employee can only sign contracts below $1,000. This can
even be done on a per-public-key basis. The size of signatures does not grow by
this extension, and also the verification costs do not increase. Furthermore, the
policy trivially remains hidden from the verifier.

Further extending the scheme efficiently such that also the CA does not learn
any information about the policy remains a challenging open problem.
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Robustness. Even though our security model is fixed for one signer and one CA,
one can of course switch to a different CA on-the-fly. This protects against offline
CAs, as one can simply use another one. In particular, a user can use a single
signing key with different CAs, who act as revocation authorities for different
domains (e.g., across different companies). Revocation by one CA does not affect
other CAs. Security follows by a simple hybrid-argument.

Threshold Scheme. Related to the prior idea is an extension to threshold-
cryptography. Namely, one could require that at least n-out-of-m servers need
to participate in order to achieve robustness against offline servers.

5 Conclusion and Future Work

We have introduced the notion of CA-Assisted Signatures. These signatures
enable the revocation of signing-rights if a secret is corrupted. This is achieved
by letting a CA contribute to signature generation, vouching that the used public
key was not revoked. Thus, signatures remain valid even after revocation of the
certificate. Moreover, the CA can add timestamps, while neither the verifier
nor the CA need to be online for verification. This has the additional benefit
that verification requires less effort to check the validity of the signature. We
furthermore propose various extensions increasing the privacy guarantees of our
basic constructions.

Our construction does not pose any non-standard requirements to the sig-
nature scheme used by the user. In particular, existing signing infrastructures
could thus easily be adapted to our design without the users having to change
their key material.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryp-
tology 16(3), 185–215 (2003)

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS, pp. 390–399 (2006)

6. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)



38 M.T. Beck et al.

7. Bicakci, K., Baykal, N.: Server assisted signatures revisited. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 143–156. Springer, Heidelberg (2004)

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)

9. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public
key certificates and security capabilities. In: USENIX (2001)

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

11. Brzuska, C., et al.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

12. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Lehmann, A., Neven, G.,
Paquin, C., Preiss, F.: Concepts and languages for privacy-preserving attribute-
based authentication. J. Inf. Sec. Appl. 19(1), 25–44 (2014)

13. Camenisch, J., van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: CCS, pp. 21–30 (2002)

14. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

15. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. ePrint 2015, 1101 (2015)

16. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, New
York (1982)

18. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind
signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.)
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1 Horst Görtz Institute for IT-Security (HGI),
Ruhr-University, Bochum, Germany

thomas.hupperich@rub.de
2 SBA Research, Vienna, Austria

Abstract. A CAPTCHA is a challenge-response test often used on the
Web to determine whether a Web site’s visitor is a human or an auto-
mated program (so called bot). Existing and widely used CAPTCHA
schemes are based on visual puzzles that are hard to solve on mobile
devices with a limited screen. We propose to leverage movement data
from hardware sensors to build a CAPTCHA scheme suitable for mobile
devices. Our approach is based on human motion information and the
scheme requires users to perform gestures from everyday life (e. g., ham-
mering where the smartphone should be imagined as a hammer and
the user has to hit a nail five times). We implemented a prototype of
the proposed method and report findings from a comparative usability
study with 50 participants. The results suggest that our scheme out-
performs other competing schemes on usability metrics such as solving
time, accuracy, and error rate. Furthermore, the results of the user study
indicate that gestures are a suitable input method to solve CAPTCHAs
on (mobile) devices with smaller screens and hardware sensors.

Keywords: CAPTCHAs · Motion-based liveliness test · Device sensors

1 Introduction

CAPTCHAs1 (Completely Automated Public Turing tests to tell Computers and
Humans Apart) are challenge-response tests used to distinguish human users
from automated programs masquerading as humans. Due to the increasing abuse
of resources on the Web (e.g., automated creation of web site accounts that
are then used to perform nefarious actions), captchas have become an essen-
tial part of online forms and the Internet ecosystem. They typically consist of
visual puzzles intended to be easy to solve for humans, yet difficult to solve
for computers [17]. The same idea can also be applied to audio puzzles such
that visually impaired persons can also prove that they are humans and not

1 For better readability, we write the acronym in lowercase in the following.
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computer programs. In reality, however, these puzzles are often time-consuming
and sometimes hard to solve for human users [6]. Furthermore, visual pattern
recognition algorithms gradually improved in the last years and this makes auto-
mated captcha solving feasible. For example, Burzstein et al. [3,4] highlighted
that due to the arms race between captcha designers and OCR algorithms, we
must reconsider the design of (reverse) Turing tests from ground up. As such,
there is a continous arms race to design captcha schemes that are secure against
automated attacks, but still useable for humans.

In the last few years, mobile devices have become a primary medium for
accessing online resources. While most web content has already been adjusted
to smaller screens and touchscreen interactions, most captcha schemes still suf-
fer from these usability constraints and are perceived as error-prone and time-
consuming by their users: several studies demonstrated that captcha usability
in the mobile ecosystem is still an unsolved challenge [3–6,15,20], According
to Reynaga et al. [14], captchas are primarily evaluated on their security and
limited usability work has been carried out to evaluate captcha schemes for
mobile device usage. With the emerging proliferation of wearable devices such
as smartwatches, it becomes inevitable to re-think user interactions with capt-
chas in order to successfully tell humans and computers apart, without placing
the burden on users that struggle with hard-to-solve visual or audio puzzles.

In this paper, we present Sensor Captchas, a captcha scheme designed for
mobile devices. Based on previously published findings, we collected a set of
design recommendations to tie our design decisions to. We propose motion fea-
tures from hardware sensors as a novel input paradigm for mobile captchas.
A user is expected to perform gestures from everyday actions which might either
be know or imagined easily, such as for example hammering where the smart-
phone should be imagined as a hammer and the user has to hit a nail five times,
or drinking, where a user is asked to drink from the smartphone, imagining it is a
glass of water. Our approach is solely based on state-of-the-art sensors available
in most smartphones and wearables such as gyroscope and accelerometer, and
obviates the need for users to solve complex graphical puzzles on small screens.

We implemented a prototype of the proposed scheme and present a repeated
measures user study to compare our approach to state-of-the-art visual captcha
schemes (namely reCAPTCHA and noCAPTCHA2) as well as an innovative
mechanism called Emerging Image captcha [18].

Our findings show that sensor data is a suitable input for captcha challenges
with high success rate and low solving time when leveraging gestures. While some
gestures are easier to solve than other movements, the overall rate of solving suc-
cesses shows the feasibility of our approach. Users rated our captcha mechanism
comparable to established captcha schemes and we are able to show a learning
effect within the first 15 challenges.

In summary, we make the following contributions:

– We design an extensible captcha scheme using accelerometer and gyroscope
data as user input and machine learning classification for challenge validation.

2 noCAPTCHA is also referred to as new reCAPTCHA [9].
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– Based on a prototype implementation of the proposed scheme, we conduct
a thorough user study with 50 participants to evaluate the usability of our
approach, including a survey for direct user feedback.

– We compare our approach to well-known, established captcha methods
(reCAPTCHA and noCAPTCHA) as well as another innovative scheme
(Emerging Images) regarding success rates, solving times, and user experi-
ence.

2 Related Work

Captchas are a controversial topic discussed amongst researchers and practition-
ers. The main reason for this observation is the fact that captchas put a lot of
burden on a user, while they are often not reliable when it comes to distin-
guishing human users from automated programs. Many approaches have been
presented in scientific literature and by companies such as Google, but most of
these schemes are still susceptible to different types of attacks.

Bursztein et al. identified major shortcomings of text captchas and proposed
design principles for creating secure captchas [4]. They focus on interaction with
desktop computers and do not consider usability shortcomings of captcha inter-
actions on mobile devices. Fidas et al. validated visual captchas regarding their
solvability based on empirical evidence from an online survey [6]. They found
that background patterns are a major obstacle to correctly identify characters,
but provide little to no additional security. Reynaga et al. presented a compar-
ative study of different captcha systems and their performance when accessed
via a smartphone [14]. They argue that visual captchas are hard to solve on
mobile devices and that usability could be increased by limiting the number of
tasks and by presenting simpler and shorter challenges with little or no obfus-
cation. Furthermore, distraction from the main task should be minimized by
presenting unobtrusive captchas that are isolated from the rest of the web form.
These factors highlight the need to develop novel captcha schemes that overcome
the limitations of visual captchas. Reynaga et al. also conducted a comparative
user study of nine captcha schemes and provided a set of ten specific design
recommendations based on their findings [15]. Bursztein et al. reported findings
from designing two new captcha schemes at Google and presented findings from
a consumer survey [5]. Xu et al. [19] explored the robustness and usability of
moving-image video captchas (emerging captchas) to defeat the shortcomings
of simple image captchas and discussed potential attacks. Jiang et al. proposed
gesture-based captchas that obviates the need to type letters by using swipe
gestures and other touch-screen interactions additionally [12]. However, such
complex methods may state a high burden to users. Gao et al. proposed a capt-
cha scheme utilizing emerging images as a game [7]. Such game-based captchas
are solved and validated client-side making them vulnerable to replay attacks.

reCAPTCHA and noCAPTCHA by Google Inc. are field-tested, estab-
lished mechanisms [8]. However, both methods disclose unapparent downsides:
reCAPTCHA is used to digitalize street view addresses as well as books and
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magazines. noCAPTCHA implements behavioral analysis and browser finger-
printing. Information that is used for fingerprinting includes but is not limited
to: installed browser plugins, user agent, screen resolution, execution time, time-
zone, and number of user actions – including clicks, keystrokes and touches – in
the captcha frame. It also tests the behavior of many browser-specific functions
as well as CSS rules and checks the rendering of canvas elements [1]. While these
information are used for liveliness detection and therefore fit the aim of captchas,
it can also be used for thorough user tracking, raising privacy concerns [11].

3 Sensor Captchas

Modern mobile devices contain a multitude of hardware sensors, including
accelerometers and gyroscopes which are accessible via Web techniques like Java-
Script and HTML5. These sensors are so accurate that it is possible to detect
steps of a walking person [16] and to distinguish between certain user actions [10].
As a main difference to existing captcha schemes, we utilize these hardware sen-
sors as input channel for solving a challenge. The benefit of this input channel is
that a user does not need to type text on a small softkeyboard on a smartphone,
but he can use a simple movement to prove liveliness.

In practice, a Web site provider aims to distinguish a human user from an
automated bot and therefore utilizes a captcha challenge. In our approach, this
challenge is represented by a gesture a user has to perform. We explored possible
gestures for such challenges as they need to satisfy several requirements:

– Understandable: Users need to be able to understand the challenges and
what they are supposed to do immediately.

– Accurate: The challenge needs to enable a precise differentiation between
human users and automated bots.

– Deterministic: The choice whether a human or a bot is currently visiting a
Web site needs to be deterministic.

– Solvable: It must be possible to solve the challenge within a reasonable
amount of time.

3.1 Gesture Design

In an early stage of our research, we chose very simple gestures like moving a
device in a circle clockwise. While these movements were easy to understand by
a user, it was hardly possible to precisely distinguish between gestures due to too
much variance: we did not include any precise statements about size and speed
of the movement, so users were not able to solve these challenges accurately.
Learning from these findings, we chose five gestures for our user study which are
derived from everyday actions a user might either know or imagine easily:

– Hammering: The smartphone should be imagined as hammer and a user
has to hit a nail five times.

– Bodyturn: A user is challenged to turn all around counter-clockwise.
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– Fishing: The smartphone should be imagined as fishing rod which is to cast.
– Drinking: A user is asked to drink from the smartphone, imagining it is a

glass of water.
– Keyhole: The smartphone is an imaginary key which is to be put in a door

lock and rotated left and right like unlocking a door.

Note that these gestures can be easily extended, e. g., by randomly choosing the
number of times the “hammer” has to hit the imaginary nail or by taking a
clockwise bodyturn into account. With such variations, more gestures are possi-
ble so that in a practical use not only five movements are available, but a great
variety of different challenges can be designed. The gestures can be presented
to users in different ways. For our prototype and user study, we described all
gestures to perform in short texts. Pictures showing a drawing of a human per-
forming the asked movement or even an animated image or a short video clip
can alternatively present the challenge.

When a user performs a gesture, accelerometer and gyroscope readings are
recorded and afterwards transferred to the Web server. On the server side, we
use a machine learning classifier to determine whether the sensor data matches
the challenged gesture. If the data can be classified as the demanded gesture, the
captcha has been solved successfully. If it is rejected by the classifier or matches a
wrong gesture, the captcha has failed. Using machine learning technology in our
captcha scheme is based on the following observation: If a captcha is based on
text input, the challenge text is generated first and held by the server. When the
user enters the text, this input can be compared to the generated text imme-
diately. In our scenario, there is no challenge data generated first which the
user input can be compared to. It is not usable to generate three-dimensional
acceleration data and challenge a user to perform exactly this movement with a
smartphone. Hence, we need a decider which is capable of distinguishing charac-
teristics of one movement from another and ultimately determine whether given
data matches a specific gesture. A machine learning classifier is an appropriate
mechanism for this task as it describes a classification problem.

3.2 Satisfaction of Requirements

We ground our captcha scheme in design principles suggested in existing sci-
entific work on captcha usability, such as Reynaga et al. [14], Fidas et al. [6],
and Bursztein et al. [3]. In the following, we present a collection of design prin-
ciples and recommendations from these publications and argue how our design
addresses these features.

Challenges

– Deploy one task only. Optional features hinder usability on small screens
where captcha solving is already more time-consuming than on desktop com-
puters. Challenges should be designed with a one-task only focus.
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– Leverage complexity. Visual puzzles suffer from an arms race between captcha
providers and pattern recognition algorithms that sometimes even perform
better than human beings. Although finding a more difficult problem in com-
puter vision will increase the cognitive load on the user side, captchas need
to be challenging and of a complex domain.

– Using cognitive behavior. Everyday life movements such as the one used for
our challenges are capable of shifting captcha interactions to a domain beyond
visual puzzles and touchscreen interaction. As the gestures are found in every-
day life, we believe it is an easy task for humans to perform them, yet hard
to fake for automated programs.

– Strive for a minimalistic interface. An interface should focus on the essential
and be minimalistic. Our captcha challenges can be displayed and solved even
from wearables such as smartwatches.

Environment of Use

– Expect common conditions. Features which may fail in commonly expected
environmental conditions should be avoided. Our design fulfils this recom-
mendation although the performance of gestures may be conspicuous.

– Minimize load. For our approach, bandwidth usage is minimized as challenge
descriptions are provided verbatim. Also, the data transmitted to the server
consists of raw sensor data, as the decision whether the captcha was solved
directly is performed on the server side to prevent attacks on the client.

– Rely on default software. For correct operation, a scheme should not rely on
technologies that cannot be assumed obligatory. Our implementation is based
on JavaScript which is supported by standard mobile browsers.

Engineering

– Ensure compatability. To reach a majority of users, input mechanisms should
be cross-platform compatible and not interfere with normal operations. Our
approach is solely based on input from motion sensors which are state-of-the-
art in smartphones and smartwatches.

– Aim for high robustness. Errors must not interfere with normal operations of
the browser. Our scheme does not interfere with other operations.

– Support isolation. The captcha challenge should be separated from the rest
of the Web form. Our captchas may even be shown on another site of a form.

– Enable consistency. Orientation and size of the captcha should be kept consis-
tent with the rest of the web form. As our challenge description is text-based
or image-based, its presentation can easily be adjusted.

Privacy

– Maximize user privacy. Additionally to the design principles listed above, we
aim to spotlight user privacy. A user input should not be replaced by user
fingerprinting as seen in [1]. Our goal is to propose a scheme that minimizes
the impact on user privacy and works without collecting sensitive information
on the users and their devices.
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4 User Study

We implemented a prototype of the proposed scheme and conducted a compara-
tive evaluation to assess the usability of our new captcha scheme against already
existing solutions. In the following, we provide details on both aspects.

4.1 Design and Procedure

Our user study is divided into two phases: first, a preliminary study was car-
ried out to determine a suitable time frame for gesture performance, the best
parameters for the machine learning classifier as well as the ground truth for
the main user study. Both phases are described in more detail below. Figure 1
illustrates the complete user study setup.

Ground Truth 
Data

Training Model Testing

reCaptcha

SensorCaptcha

Solving 
Data

Preliminary Study  User Study

noCaptcha

Machine Learning

Emerging Img

Fig. 1. User study setup

Preliminary Study. Sensor Captchas rely on motion input from hardware
sensors and machine learning techniques to prove that the user is human. In
order to train a model, we conducted a preliminary study. We built a data
set of ground truth by instructing 20 participants to perform the movements
and gestures described in Sect. 3. Then, we let them solve the challenges in a
controlled environment under the following two conditions:

1. The challenges were not chosen randomly but assigned to the participants.
Every user had to perform the same number of challenges. More precisely,
every user performed every gesture three times.

2. We observed the users solving the challenges and instructed them if they
made mistakes to ensure the correct performance.
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The sensor data obtained in this preliminary study is used as ground truth
for further processing. As the data collection was performed in a controlled
environment and under the supervision of two experimenters, we assume that
the gestures have been performed correctly.

To find the best-performing classifier, we conducted cross validations and
classification experiments with algorithms from different families, including sup-
port vector machines, k-Nearest Neighbor, and different ensemble methods. Our
results suggest that a Random Forest classifier performs best on our ground
truth and thus we used this algorithm to generate a model that was then used
in the actual user study.

Main User Study. We include three other captcha mechanisms besides Sensor
Captchas in our main study: two schemes are well-known and commonly used in
practice, while the other one is an experimental approach from a recent research
paper:

1. reCAPTCHA is a well-proven text-based input mechanism. A user is asked
to type words or numbers shown in an often distorted or blurred image.

2. noCAPTCHA is the field-tested successor of reCAPTCHA and challenges the
user to select from nine images all these showing specific items, e. g., trees. It
also instruments behavioral analysis.

3. Emerging Images relies on moving image recognition. A user has to type
letters which are shown in an animated image series. This method has been
proposed by Xu et al. [18].

While reCAPTCHA and noCAPTCHA are established mechanisms already
used by Internet users and website providers every day, Emerging Images and
Sensor Captcha represent scientific approaches and have not yet been deployed
in a real-world environment.

We chose a repeated measures design for our lab study, i.e., every participant
had to solve puzzles from every captcha scheme in a controlled environment at
our university campus. It was important to us to observe sources of errors in
order to improve our design. Each participant was asked to solve a minimum of
15 challenges per scheme. We designed our study to present the challenges in
randomized order to reduce any bias or fatigue effects. As all participants were
asked to solve captchas of all four types, we were able to gather comprehensive
solving data, including the number of correctly solved captchas and failures as
well as the amount of time needed to solve each captcha. As our implementation
was written in JavaScript, the participants were encouraged to use their own
devices to avoid bias and distractions from the study tasks due to unfamiliarity
with the device. Even though we had two backup devices with us, all participants
used their own devices.

After completing the captcha challenges, the participants filled out a short
questionnaire (see Sect. 5.3 for a complete listing of these questions). In addition,
one experimenter took notes in order to collect qualitative in-situ reactions and
comments. This information was collected to understand particular difficulties
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and misunderstandings about the presented puzzles and the way of solving them.
We believe these explorative findings are valuable to improve the usability of our
captcha scheme.

4.2 Implementation

reCAPTCHA as well as noCAPTCHA are operated by Google Inc. and provide
an API which we used to include these methods in our study. The Emerging
Images technique has been provided and hosted by Gerardo Reynaga, School of
Computer Science at Carleton University, Ottawa Canada for the duration of
our test. We implemented our Sensor Captchas and a survey site from which
the participants accessed the different captcha challenges and the questionnaire.
The web site was implemented in JavaScript and contained a general informa-
tion page and a separated page for every captcha method. Each of these pages
contained a short description on how to solve this captcha and a start button.
After tapping the start button, a form containing the captcha challenge and
a submit button were displayed. For every captcha, we measured the solving
time as duration between tapping the start button and tapping the form submit
button. Hence we only measured the time it took the user to mentally process
the captcha challenge and to input a correct solution. This way, we managed to
measure the solving time irrespective of network delays, implementation issues
and other technical factors. After a captcha challenge was completed, we stored
the following information: A name every user could choose freely, the current
date, the captcha result which is either success or failure, the duration a user
needed for the solving attempt, and a unique user key which was generated
automatically and stored in the browser’s local storage as anonymous identifier.

reCAPTCHA and noCAPTCHA provide an API, so this information could
be obtained and stored automatically except for one limitation: noCAPTCHA
does not provide a way to check the result of a single challenge. If a challenge has
not been solved correctly, the next challenge is displayed to the user automat-
ically without triggering a Javascript event. Hence, it is not possible to record
noCAPTCHA failures without interfering with Google’s API and violating the
way it works which may have voided results and measurements. As there is no
API available for Emerging Images Captcha, we manually kept track of successes,
failures, and solving durations and entered this data by hand.

Regarding Sensor Captchas, we additionally stored the following information:
The sensor data, including accelerometer and gyroscope readings as arrays (of
the dimensions x, y, and z as well as α, β, and γ), the original challenge
which was displayed to the user, and the classification result which leads to
a captcha success only if it matches the original challenge.

After tapping the submit button on the Sensor Captcha page, sensor events
were measured for five seconds which we set as time frame to perform the ges-
ture. We designed the gesture movements in such way that they are practical
to perform within this time and tested every gesture beforehand. Our prelimi-
nary study showed that five seconds are a reasonable amount of time to make
all required movements. Though, this parameter can be analyzed and adjusted



Sensor Captchas: On the Usability of Instrumenting Hardware Sensors 49

in future studies. After this time, all data was submitted automatically, so that
users did not have to tap another submit button in addition. The sensor data was
sent to a socket parsing the data to our machine learning classifier, retrieving
the classification result and finally storing all these information in the data-
base. This functionalities were programmed in Python, implementing a Random
Forest classifier from scikit-learn [2].

4.3 Recruitment and Participants

We recruited 50 participants between December 2015 and February 2016 at
the university campus and a major computer security conference. Most partici-
pants were students at our university from different branches of study, including
information technology, medicine, arts and science. While the youngest partici-
pant was 18 years old and the oldest 55, the majority was aged between 20 and
35 years; male and female in approximately equal shares. All participants were
familiar with the purpose of captchas on websites and reported to have used
established methods before. To comply with ethical guidelines from our univer-
sity, we did not collect any personal identifiable information. We only collected
information on age, gender and whether the participants had a background in
information technology. Every session lasted about 20 min per participant and
they were compensated for their time with a voucher of a major online shop.

5 Evaluation

In the following, we compare the different captcha schemes regarding successfull
solving of challenges and amount of time needed to solve challenges. Concerning
Sensor Captchas, we analyze the suitability of gestures as well as the survey
included in our user study. Finally, we investigate whether a habituation effect
can be asserted and shed light on the precision of our machine learning classifier.

5.1 Comparison of Mechanisms

To compare the solvability among all considered captcha mechanism, we mea-
sured the successes and failures. A success represents the correct solution of a
captcha, while a failure represents a wrong input.

In our study, about 85 % of all reCAPTCHA challenges were successfully
solved by the participants. As discussed in Sect. 4.2, it is not possible to catch
success and failure cases of noCAPTCHA without interfering. Emerging Images
seem to constitute a rather hard challenge, as only about 44 % of all challenges
could be solved correctly. In contrast, Sensor Captchas achieve a high success
rate: Of all provided gesture challenges, the participants were able to correctly
solve about 92 % , making this mechanism to be reckoned with. These prelimi-
nary results of our study suggest that users were able to solve more Sensor Capt-
chas correctly than challenges of any other type. Note that for Sensor Captchas,
a failure may not only redound upon a wrong user input – namely not performing
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Table 1. Success rates (SR)

Mechanism SR Mean SD

reCAPTCHA 0.8463 0.8698 0.3356

Emerging images 0.4396 0.4491 0.4976

Sensor captcha 0.9160 0.4813 0.4997

SR = success rate,
SD = standard deviation

Table 2. Average solving times

Mechanism S F Total Mean SD

reCAPTCHA 12.22 26.36 14.39 12.4260 18.5934

noCAPTCHA - - 26.99 24.1814 17.8862

Emerging images 21.91 24.29 23.24 26.1504 29.4114

Sensor captchas 12.35 8.85 12.05 12.2519 7.10444

S = successes, F = failures,
SD = standard deviation

the challenge gesture – but also upon a misclassification by our machine learning
algorithm. This factor will be discussed below.

As described in Sect. 4.2, we measured the time users needed to solve every
single challenge. Hence, we can analyze how much time is needed on average
to succeed at every mechanism. Table 2 shows the average amount of time per
mechanism and captcha result.

We observe that in general failures take more time for reCAPTCHA as well
as Emerging Images. The reason for this lies probably in the way of user input:
Users have to read and decipher letters or numbers first. Depending on the
specific challenge, this may be difficult so that hard challenges are more likely
to fail but also take more time. We observed these cases to annoy many users
as they first needed to invest high effort to recognize the challenge’s letters or
numbers and then fail anyway. For Sensor Captchas, we can see a lower solving
time for failures than for successes, indicating that users may have failed to solve
the challenge because they did not read the description text carefully enough.

We found noCAPTCHA to take generally more time than reCAPTCHA,
which may be explained by the fact that reCAPTCHA applies browser finger-
printing first and then displays the challenge. Comparing the total time users
were taken to solve captchas, reCAPTCHA is the fastest mechanism – probably
because it is a practical method many users are already familiar with. Never-
theless, reCAPTCHA is directly followed by Sensor Captchas, suggesting that
this approach is practicable and showing that users are able to perform the
challenge’s gestures in a reasonable amount of time. Please note that Sensor
Captchas’ solving time can be influenced by adjusting the time window for per-
forming a gesture. We based an interval of five seconds upon our preliminary
study but increasing this time would result in higher solving durations while
decreasing could make it impossible to perform a gesture thoroughly.

Our study has a repeated-measures design, so every participant was exposed
to every condition. Therefore, we analyzed our data with repeated measures
analyses of variance (ANOVAs). Table 1 shows not only the success rates of the
captcha mechanisms but also their mean and standard deviation of successes,
represented by 1 for success and 0 for failure. We see that the mean of Sensor
Captchas resides within the standard deviation of reCAPTCHA and vice versa.
Hence, differences between these two schemes are statistically not significant
and may represent random errors. In contrast, the correct solving rate of Sensor
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Captchas is significantly higher as of the Emerging Images mechanism, meaning
that even if the random error is considered, the succcess rate of Sensor Captchas
is superior. Similar trends can be observed regarding the solving times of each
mechanism in Table 2: There is no statistically significant difference between
Sensor Captchas and reCAPTCHA regarding the time a user takes to solve a
captcha. Though, the mean solving times of these two mechanisms are signifi-
cantly lower compared to noCAPTCHA and Emerging Images. We can conclude
that Sensor Captchas and reCAPTCHA can be solved faster than noCAPTCHA
and Emerging Images, even if the random error is taken into account.

5.2 Gesture Analysis

After comparing Sensor Captchas to other captcha mechanisms regarding success
rates and solving times, we aim to analyze the gestures in detail. We conducted
experiments to ascertain which gestures are accurate to perform and which move-
ments happen to be related to other gestures. Table 3 shows the solving rates and
error rates per gesture. We see that bodyturn and keyhole challenges were in
general solved correctly, meaning that the sensor events measured during a user’s
gesture performance could be matched to the challenged gesture. Bodyturn and
keyhole were correctly solved by about 97 % and 96 % in total. For both, the
highest mismatching was to the hammering gesture, meaning if a user input could
not be related to the challenge, it was classified as hammering. For the drinking
movement, still about 92 % of the challenges were solved correctly. The gestures
fishing and hammering seem to be prone for errors: Of all hammering chal-
lenges, about 85 % could be solved correctly and in case of the fishing gesture
only about 79 % . We also see that fishing and hammering are the least precise
gestures as about 14 % of all fishing challenges were classified as hammering and
about 5 % of all hammering challenges were mistakenly related to the fishing
gesture. This confusion can be explained by the movement itself: For hammering,
users had to move their devices in one axis up and down, so this gesture is not
very complex. For fishing applies the same as this movement also involves
only one axis and although there are differences like the number of accelerations
(hammering requires several acceleration moves in order to hit the imaginary
nail five times while the fishing rod is casted only once), this low complexity

Table 3. Solving rates and error rates per gesture

Gesture Categorized as

bodyturn drinking keyhole fishing hammering

Bodyturn 0.9720 0.0 0.0 0.0 0.0279

Drinking 0.0 0.9174 0.0642 0.0091 0.0091

Keyhole 0.0065 0.0130 0.9608 0.0 0.0196

Fishing 0.0222 0.0444 0.0 0.7889 0.1444

Hammering 0.0162 0.0 0.0813 0.0487 0.8537
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leads to confusion about these two gestures. For the same reason, the fishing
gesture was sometimes classified as drinking, although this happened only in
about 4 % of all fishing challenges. In about 8 % of all hammering challenges, the
sensor data was related to the keyhole gesture. The reason for this might be
that users may have slightly turned their phones while hammering their devices
on an imaginary nail. This resulted in movements in the z dimension which is
an essential part of the keyhole gesture. The gestures drinking, keyhole, and
bodyturn show only negligible errors and mistaken relations to other gestures.
In general, only the hammering gesture yields potential for errors and should
be excluded or enhanced in further studies. If this is fixed, the fishing gesture
may presumably perform better as well because there will no confusion with the
hammering movement any more.

5.3 Survey Results

As a part of our study, users had to participate in a survey, rating all four
captcha mechanisms regarding nine aspects. We leveraged a ten-levelled Likert
scale for every item, adopted and extended statements from previous research
by Reynaga et al. [15] to allow a direct comparison to this work. In detail, we
let the users rate the following statements (* represents inverted items):

– Accuracy: It was easy to solve the challenges accurately.
– Understandability: The challenges were easy to understand.
– Memorability: If I did not use this method for several weeks, I would still

be able to remember how to solve challenges.
– Pleasant: The captcha method was pleasant to use.
– Solvability*: It was hard to solve captcha challenges.
– Suitability: This method is well suitable for smartphones.
– Preference: On a mobile, I would prefer this captcha method to others.
– Input Mechanism*: This method is more prone to input mistakes.
– Habituation: With frequent use, it get easier to solve the challenges.

Figure 2 reports the mean Likert scale responses from strongly disagree = 1 to
strongly agree = 10. Also, the colors in the figure represent the scale, from red
representing strongly disagree to green as strongly agree.

The established captcha mechanisms in our study – namely noCAPTCHA
and reCAPTCHA – were in general rated high regarding accuracy, understand-
ability, memorability, pleasant use, and suitability for mobile devices. Many users
stated that they were familiar with these methods and therefore could easily solve
the given challenges as the task was immediately clear. For understandability
and memorability, we observe a low standard deviation among the ratings. In
contrast, high standard deviation among participant ratings can be seen regard-
ing the preferred captcha mechanism. This item holds a deviation of 2.99 for
noCAPTCHA and 2.74 for reCAPTCHA, showing that users are at odds if
they preferred these established methods which is substantiated by high stan-
dard deviation regarding input mistakes (“input mechanism”) showing 2.67 for
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Fig. 2. Mean Likert-scores and standard deviations from survey

noCAPTCHA and 2.92 for reCAPTCHA. For some users, these captchas seem
to work well and are easy to use. Anyway, other users are not comfortable with
them and would not prefer these methods on mobile devices.

Although Sensor Captcha holds the highest solving rate, users are not accus-
tomed to this mechanism which results in a generally lower rating compared to
the established captcha methods reCAPTCHA and noCAPTCHA. Sensor Capt-
chas keeps up with established mechanisms regarding accuracy, understandabil-
ity, memorability, suitability, preference and input mechanism – differences of
these ratings are smaller than one. Significant differences can be seen regarding
the ratings “pleasant” which may be rooted in the fact that the participants were
not used to Sensor Captcha and the gestures require movement of body(parts)
which users may be uncomfortable with in public environments and “solvabil-
ity”. This is contradictory to the high solving rates and shows that users find it
hard to solve Sensor Captchas although they were able to do so in most cases.
The high rating of habituation shows that participants adjudge a high learnabil-
ity to Sensor Captchas, hence long term studies may improve the perception of
solvability as well. We also shed light on habituation aspects in the next section.
The items of our questionnaire which were rated with a low value also show a
high deviations: While “pleasant”, “preference”, and “input mechanism” show
the lowest user ratings, the standard deviations are rather high with 2.88, 3.1,
and 2.75. This shows that there is a wide array of user opinions and while some
participants found Sensor Captcha not pleasant and would not prefer this mech-
anism, other users indeed stated the opposite and would prefer our mechanism
to established captcha methods. Furthermore, the lowest standard deviation of
1.55 holds “habituation” which states that the majority of users think that con-
tinuous use would increase the solvability and easy-of-use of Sensor Captcha.

Emerging Images as another innovative captcha mechanism was rated well
regarding understandability and memorability showing that users are familiar
with text inputs and understand the task of typing letters from a sequence of
images easily. Anyway, participants found it hard to solve these challenges, given
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a low rating of accuracy, solvability, and pleasant-of-use. This might be the reason
why most users would not prefer this method and stated that it is prone to errors
(“input mechanism”). In contrast to Sensor Captcha, users are not optimistic
whether a continuous use of Emerging Images may improve the solvability and
handling, though, “habituation” holds the highest standard deviation of 2.85 for
Emerging Images which shows that some users may get familiar with it.

Informal Participant Statements. Participants were free to leave comments,
so we could get a more detailed feedback on our study and scheme. Many users
demanded animations for the description of gestures. As this may probably
improve the understandability, accuracy, and solvability of Sensor Captchas, we
will implement this feature in the future.

A few users stated that the chosen gestures were not suitable for everyday use.
Indeed, for Sensor Captchas to evolve into an established captcha method, the
available gestures need to be reassessed. We abstracted gestures from everyday
actions because simple movements were prone to errors and misunderstandings
(see Sect. 3). Still, casting an imaginary fishing rod may be imaginable but not
an action users want to perform in public environments.

Some users stated that it is hard to solve text-based and image-based capt-
chas – reCAPTCHA and noCAPTCHA – on a smartphones screen because it
may be too small to comfortably display all images or the softkeyboard addition-
ally to the challenge. This supports our original motivation for Sensor Captcha.

5.4 Habituation

According to the survey results, many users think that solving Sensor Captchas
will get more and more comfortable and easy by using the scheme. Although the
long term habituation to Sensor Captcha is left for future work, we investigate
if users were able to improve their success rates during our user study. Like
described in Sect. 4.1, every user tried to solve at least 15 Sensor Captchas.
While only about 49 % of all participants were able to solve the very first Sensor
Captcha correctly, we notice a clear trend that more gestures could be performed
successfully the more captchas have been tried to solve. The average success rate
among all users for the 15th Sensor Captcha is about 84 % which supports the
assumption that users may probably habituate to this captcha mechanism fast.
To test a possible correlation between the number of solving attempts and the
number of successes, we calculate the Pearson correlation coefficient ρ. Taking
all user data into account, ρ = 0.7238, which proves a strong positive linear
relationship statistically and verifies that with increasing number of challenges
the number of successes also increases in our user study.

5.5 Classification

There exist two possible factors for captcha failure: Not only humans may fail
at solving a captcha challenge, but the machine learning classifier may fail at
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matching correct gesture data. To shed light on possible false classifications, we
calculated precision and recall for different machine learning algorithms. In our
scenario, a false positive is represented by the case that sensor data not belonging
to a specific gesture will be accepted as correct solution for this gesture; in
extreme case random sensor data is wrongly classified as correct solution to a
challenge.

Fig. 3. Classification precision and recall

Consequently, if a correct sensor data input is mistakenly rejected by the
classifier, this case states a false negative. Note that in context of captchas, false
positives are worse compared to false negatives: If users were sporadically not
recognized as human, they would have to solve a second captcha at worst. But if
a bot was mistakenly accepted as human, it could circumvent the captcha pro-
tection. Correct classification of sensor data to the right gesture is a true positive,
while a correct rejection of non-matching data constitutes a true negative. On
this basis, we are able to calculate precision and recall of all data obtained in
the user study. Figure 3 illustrates precision recall graphs of different classifiers
which were to be considered.

Given the data set of our user study, including accelerometer and gyroscope
data of all performed gestures, the classifiers Random Forest, Extra Trees, and
Bagging Tree yield a very high precision in distinguishing the gestures. Only the
kNearestNeighbor algorithm (testing k = 1, k = 5, k = 10) was not capable of
precisely classifying the gestures. While this one achieves an AUC of only 0.7899,
Bagging Tree achieved an AUC of 0.9917, Extra Trees of 0.9972 and finally
Random Forest of 0.9989. This confirms our choice to implement a Random
Forest classifier in our user study back end. As shown in Fig. 3, the classifier is
capable of determining whether given sensor data satisfies a specific gesture at
high precision. Hence, misclassifications are negligible in our study and we are
able to ascribe most captcha failures to user input errors.

6 Discussion

The proposed mechanism meets the common requirements to captcha schemes:
the main goal of telling computers and human apart by a challenge as simple
as possible is achieved. We also satisfy common design principles for captcha
methods as discussed in Sect. 3.2. In this section, we discuss security as well was
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potential limitations of our approach, and ideas for future work. Although our
survey results indicate that users feel Sensor Captchas to be less accurate and
solvable than established methods, our approach achieved the highest success
rate and took users the least time to solve challenges. It thus might break the
arms race in computer vision powered by more and more captcha mechanisms
based on visual puzzles. The fact that the decision about success or failure is
made server-side raises the bandwidth use in contrast to captcha schemes which
work client-side only. However, the size of transferred sensor data is reasonable
and deciding about a challenge’s solution server-side is more secure. On average,
the sensor readings of accelerometer and gyroscope take 5 KB in total.

6.1 Security Considerations

Basing liveliness determination on hardware sensor data enables new attack
vectors aiming at data manipulating. An attacker may record sensor data and
provide it as solution to a given challenge. As our captcha scheme currently
supports five gestures only, a replay attack succeeds with a theoretic probability
of 0.2 which needs to be reduced by more varieties of gesture challenges. Thus,
even with such extensions, the entropy of our approach will not exceed the
entropy of text-based captchas. A bot could solve Sensor Captcha challenges if
correct input data is available for every single gesture and if the automated solver
furthermore is able to recognize the challenge presented. As this applies to all
common captcha schemes, it also applies to our approach. While an attacker may
perform all gestures once and record the corresponding sensor data, the hardness
of challenge recognition is essential for most captcha schemes. The security of
text-based captchas especially relies on the assumption that the challenge is hard
to identify. To harden a scheme against this attack vector, the way of presenting
challenges could be randomly chosen to complicate automated detection.

Alternatively, an attacker could try to exploit the machine learning classi-
fication by replaying data of a different challenge than the presented. To test
this behavior, we conducted a replay attack experiment choosing sensor mea-
surements including accelerometer data and gyroscope data from the user study
and attempt to solve a given challenge. We repeat this procedure 500 times to
simulate such replay attacks under the same conditions like in our user study.
Note that we do not use random sensor data but real-world sensor readings
we obtained in our user study before. Leveraging completely random data may
also be a possible scenario, but a less sophisticated attack. As a result, in two
cases a sensor data replay of an original fishing challenge was misclassified as
hammering leading to a false positive. One replay of a hammering gesture was
accepted as solution to the keyhole challenge. As we already know, hammering
tends to be misclassified (see Sect. 5), so diversifying this gestures may harden
our system against this type of attack. All the other attacks – making a share
of 99.4 % – were correctly rejected by our machine learning algorithm.

If a user’s mobile is treated as untrusted or maliciously infected device it may
falsify sensor data. This would enable to tamper user input used for solving the
presented challenge. However, if malware is able to change the input – e. g., by
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manipulating system drivers requiring root access or by tampering the browser
environment –, no captcha scheme can guarantee a correctly transferred input.

We designed our system in a way that the decision whether or not a captcha
is solved successfully is made server-side. If it was made client-side like in game-
based captchas [7], replay attacks might be more feasible as the attacker would
only have to replay the decision instead of determining the challenge and provide
previously recorded data for solving.

Finally, we focussed our studies on the general feasibility of sensor-based
motion captchas and especially on usability aspects.

6.2 Limitations

Our work builds on existing captcha designs and lessons learned from previ-
ous studies. As we focussed on usability aspects of captchas, we assume that
the implementations of our captcha schemes are secure and best-case implemen-
tations. A limitation of our prototype implementation is that it is a proof-of-
concept and was first tested on users in the course of this study. Also the set of
challenges our system provides is not sufficient to be resilient to replay attacks
in practice.

For our comparative user study, we recruited participants around the univer-
sity campus, hence our sample is biased towards this particular user group. Also,
the participants solved the captcha puzzles in a controlled environment while an
experimenter was present. We did not deploy our captcha scheme in the wild
and therefore do not have data on the captcha performance in a real-world set-
ting where users have to deal with environmental constraints. Also, we did not
collect any evidence on whether the our scheme is applicable in all real-world
situations, such as when a user performs a task on the phone while in a meeting.
Due to the fact that sensor captchas require the user to move their device, they
are potentially not applicable in some situations where a less obtrusive approach
would be preferred by most users. We still believe that our results provide valu-
able insights to how users interact with the different types of captchas. We found
that metrics like solving time, memorability, and error rate do not necessarily
correspond to the perceived usefulness and user satisfaction.

7 Conclusion

In this work, we demonstrated that motion information from hardware sensors
available in mobile devices can be used to tell computers and humans apart. Due
to several limitations such as smaller screens and keyboards, traditional captcha
schemes designed for desktop computers are often difficult to solve on smart-
phones, smartwatches, and other kinds of mobile devices. In order to tackle the
challenges implied by these constraints, we designed a novel captcha scheme and
evaluated it against already existing approaches found in the Internet ecosystem
and in scientific literature. Our results indicate that sensor-based captchas are
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a suitable alternative when deployed on mobile devices as they perform well on
usability metrics such as user satisfaction, accuracy, error rate, and solving time.

As our scheme requires users to perform gestures with a device in their hand,
we plan to conduct a longitudinal field study to collect evidence on the feasibility
of motion input in the wild (i. e., in situations where users are constrained by
environmental conditions and unobtrusive interactions with their device) as well
as involving wearables as input devices. For future work, we aim to iteratively
improve the design and number of challenges. Although most gestures of user
study were suitable, their movements need to be revised for everyday use and the
entropy need to be increased by new gestures. Additionally, users would benefit
from images or animations showing the challenge. Participants of our study
agreed with Kluever et al. [13] that images and animations presenting a challenge
are more enjoyable. Finally, conducting a long term study with participants using
our mechanism regularly may confirm our findings on habituation effects.
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Abstract. Entering the age of the Internet of things, embedded devices
are everywhere. They are built using common hardware such as RISC-
based ARM and MIPS platforms, and lightweight open software com-
ponents. Because of their limited resources, such systems often lack the
protection mechanisms that have been introduced to the desktop and
server world. In this paper, we present BINtegrity, a novel approach for
exploit mitigation that is specifically tailored towards embedded systems
that are based on the common RISC architecture. BINtegrity leverages
architectural features of RISC CPUs to extract a combination of static
and dynamic properties relevant to OS service requests from executa-
bles, and enforces them during runtime. Our technique borrows ideas
from several areas including system call monitoring, static analysis, and
code emulation, and combines them in a low-overhead fashion directly in
the operating system kernel. We implemented BINtegrity for the Linux
operating system. BINtegrity is practical, and restricts the ability of
attackers to exploit generic memory corruption vulnerabilities in COTS
binaries. In contrast to other approaches, BINtegrity does not require
access to source code, binary modification, or application specific con-
figuration such as policies. Our evaluation demonstrates that BINtegrity
incurs a very low overhead – only 2 % on whole system performance,
– and shows that our approach mitigates both code injection and code
reuse attacks.

1 Introduction

Modern embedded devices are built using common hardware such as RISC-
based ARM and MIPS platforms and open software components such as Linux.
Thanks to their relatively high spread, constant uptime and common compo-
nents, embedded devices have become an attractive target for attackers. Routers,
in particular, have been regularly abused as hosts for botnets in the past
years [3,18,19]. Similar to traditional desktop and server environments, embed-
ded systems are attacked mostly through exploitation of software vulnerabilities
such as memory corruptions.
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Memory corruption vulnerabilities and attacks that exploit them remain one
of the major issues in computer security [17,22]. There is an ongoing arms race
as defenders build new mitigations, and attackers discover ways to bypass these
defenses. For example, Data Execution Prevention (DEP) was created to defend
against code injection attacks. However, attack techniques such as generic code
reuse (e.g., return-to-libc) and return-oriented-programming (ROP) were then
developed that allowed attacks to be launched without the need to inject code. As
a remedy for code reuse attacks, Address Space Layout Randomization (ASLR)
was proposed. However, ASLR can also be bypassed if the attacker can leak
addresses from a target process. Recent work [4,13] started using hardware fea-
tures to mitigate ROP attacks on desktop computers and servers running on the
x86 platform.

Note that previous advancements on exploit mitigation focused mainly on
desktop computers and servers, and have neglected securing embedded devices
against software vulnerabilities. There is even a gap within the embedded sys-
tems world where CPUs for high-end applications contain security features such
as DEP while the (cheaper and more common) low-end versions do not and thus
leave the majority of embedded devices vulnerable to even simple attacks that
have been eradicated in the desktop and server world.

This paper presents, BINtegrity, a practical, low-overhead system to miti-
gate memory corruption attacks that is specifically tailored towards embedded
systems. Our approach aims to protect against state of the art attacks while still
being practical. We specifically target platforms based on RISC architectures
and systems where we only have access to program binaries.

The fundamental insight we gained from looking at previous work (Sect. 2) is
the need to combine multiple techniques and aspects in a novel way to practically
mitigate exploitation attempts. BINtegrity ensures that system calls are only
invoked in a legitimate way by checking the runtime integrity of a program.
Integrity means that the runtime state of a program has to be coherent with its
binary executable. Coherence is given if the following conditions are met: (i) the
invoked system call is actually used by the binary (ii) the system call arguments
match the ones specified in the binary (iii) the observed call chain is reflected
by the binary.

Our approach (Sects. 4 and 5) leverages several common design features found
on all RISC CPUs to reconstruct part of the call chain and extract properties
from a binary executable in an efficient way. To the best of our knowledge, we
are the first to leverage these fundamental architectural features of RISC CPUs
to build a security system. Our method is lightweight and allows our system to
execute all operations at runtime.

BINtegrity is designed to be transparent to legacy binary code and works
for arbitrary programs without requiring access to source code, prior training
phases, or binary modifications. Note that previous approaches (e.g., intrusion
detection based on system call monitoring and full control flow integrity) do
not offer similar flexibility and are, thus, not practical for embedded systems.
The only requirement for our approach is the presence of a kernel-based runtime
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component that – on-demand – extracts properties directly from program bina-
ries and checks them against runtime behavior. Our technique guarantees that
only system calls that are actually used by a program can ever be invoked by
a corresponding process. BINtegrity enforces strong restrictions on how system
calls can be invoked. When combined, these two features significantly reduce the
attack surface available to code reuse attacks, and vastly limit the options for
successful code injection attacks.

We built a prototype implementation (Sect. 6) of BINtegrity as an exten-
sion to the Linux operating system for the ARM and MIPS architectures and
evaluated it on two common and popular off-the-shelf devices: a MIPS-based
router, and an ARM-based smartphone. Our evaluation (Sect. 7) demonstrates
that BINtegrity effectively mitigates code injection and code reuse attacks while
incurring an extremely low performance overhead of only 2 %.

The paper makes the following contributions:

– We present a new practical method to efficiently extract and leverage process
runtime information on RISC architectures. The extracted information is used
to create and check properties against the program’s binary file on disk.

– We propose a lightweight technique for restricting memory corruption attacks
for COTS binary programs. Our system is the first to specifically target the
RISC architecture leveraging some of its unique features.

– We developed a prototype implementation of this technique called BINtegrity
as an extension to the Linux operating system for the ARM and MIPS
architectures. The source code of BINtegrity is publicly available at www.
bintegrity.org.

– We evaluated BINtegrity on two real-world systems, and show that our tech-
nique effectively defends against code injection and reuse attacks. We also
show that it incurs a low performance overhead and, therefore, represents a
practical, generic defense for embedded systems.

2 State of the Art

Mitigation of memory corruption attacks is a well-studied problem in literature.
A wide range of approaches tackle the problem from various angles and at dif-
ferent stages during exploitation. Since preventing memory corruption in the
first place is fairly difficult, most approaches focus on hindering an attacker in
successful exploitation of a memory corruption vulnerability. After having cor-
rupted the memory, the exploit has to redirect the control flow to either plain
shellcode or a series of ROP gadgets. Basic defenses try to prevent shellcode
injection or finding the desired code in memory while more advanced techniques
such as Control Flow Integrity (CFI) aim at preventing malicious control flow
redirection. Finally, an exploit has to invoke system calls to use functionality
beyond pure computation. This fact led to a large body of research in the area
of system call monitoring to detect malicious system calls.

www.bintegrity.org
www.bintegrity.org
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Basic Defenses. Data execution prevention (DEP) [2], prohibits instruction fetch
from data-only memory regions. While DEP proved to be an effective mitiga-
tion of straightforward code injection exploits, it relies on hardware support
that is not necessarily available on embedded devices, depriving them of the
benefits of this basic defense technique. Address space layout randomization
(ASLR) places the text segments of a process at random memory locations. This
probabilistic technique hinders the attacker in determining target addresses for
code reuse attacks. The drawback of this technique is that unless the executable
itself is compiled as a so-called PIE, randomization is limited to the dynami-
cally linked libraries. In addition, the effectiveness of ASLR is limited on 32 bit
platforms. Current deployments of ASLR also only perform randomization at
program startup, which makes it less effective with long-running applications.

Mitigating Code Pointer Corruption. Code-Pointer Integrity [11] hides code
pointers from being accessed by an attacker by storing them in a “safe”, inaccessi-
ble memory region. While CPS, a relaxed variant of their solution, has relatively
low overhead, it requires access to source code and is ineffective against attacks
that do not require code pointer modifications [15].

Control Flow Integrity. The property of CFI [1] describes whether a program’s
execution flow has deviated from its intended path. Provided that it can be
both measured and enforced to full extent, attacks based on control flow hijack-
ing could be completely prevented. The problem with CFI is that solutions that
can operate on binaries [25] have been shown to be too coarse grained to be effec-
tive [8]. Recent approaches use context-sensitive CFGs for higher precision [21],
but achieve low-performance overhead only by relying on hardware features cur-
rently not present on embedded devices [6].

System Call Monitoring and Policy Enforcement. Early approaches on exploit
mitigation entirely focused on the inspection of system call properties. Starting
from writing policies for system call execution [14,20,23], these approaches even-
tually evolved to full-fledged mandatory access control systems such as SELinux1

or AppArmor2 that require a corresponding configuration effort.
A different line of work tries to detect anomalous system calls that would

deviate from normal program behavior [7,10]. These systems rely on a runtime
learning phase to model normal behavior. However, mimicry attacks [24] that
hide their malicious system calls in a valid sequence or change the parameters
to system calls have soon shown the limitations of such approaches. Recent
work [16] claims to be resilient against mimicry attacks by working on extremely
long execution paths.

1 SELinux http://www.selinuxproject.org.
2 AppArmor http://apparmor.net.

http://www.selinuxproject.org
http://apparmor.net


64 M. Neugschwandtner et al.

3 Threat Model

Our threat model covers memory corruption exploits such as buffer overflows on
binary programs running on the device. We assume that the attacker has access
to the target application, and that she can launch local or remote attacks against
it. We note that in order to have an effect on the system, the attack code has
to request operating system services at some point, i.e. perform a system call.
Without being able to perform a system call, its possibilities are limited to pure
computational tasks while operations like file or network I/O as well as process
control are impossible.
In summary, we assume that:

– The operating system kernel and the underlying hardware are trusted, and
have not been compromised by the attacker.

– The application binary on disk is trusted, and cannot be modified by the
attacker. We assume the same holds true for the shared libraries used by the
application.

– The process memory is untrusted, since the attacks we mitigate are based on
memory corruption. We assume that the attacker might be able to execute
a limited number of instructions without being detected. Also, we assume
that the attacker has the ability to modify and overwrite arbitrary memory
locations, including regions that contain executable code.

Based on our threat model, an attacker can manipulate the control flow of
a process to the attacker’s benefit through targeted memory manipulation. We
do not cover memory corruption attacks that only change program data (e.g.
file names in a write operation) and do not redirect control flow. This allows for
two classes of attacks: code injection and code reuse. In case of code injection,
the attacker introduces completely new code into memory and redirects control
flow to it. Code reuse attacks on the other hand leverage code already existing
in a process. They can operate at different levels of granularity, either targeting
whole library functions (commonly referred to as “return-to-library”) or small
code chunks of the program that are stitched together (i.e., “gadgets”).

4 Approach

Our goal is to create a practical, efficient and effective defense to mitigate
exploitation of memory corruption attacks on RISC platforms for embedded
systems.

We designed BINtegrity around the fact that code that has an effect on the
system does so by making use of the operating system through system calls.
The same principle is true for exploits. Hence, our approach is centered around
system calls. Whenever a system call is invoked, we ensure that this is done in
a legitimate way by checking the integrity of a program’s runtime state. To this
end, we extract several properties from the program’s executable on disk that are
relevant to the system call invocation at hand. We then compare these properties
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with the actual runtime state. In case the comparison succeeds, the program is
allowed to perform the system call. Figure 1 shows a high-level overview of this
process.

BINtegrity

binary

runtime process

kernel
OS servicelaunch

program

system call

in
te

rceptinspect
Fig. 1. A high-level overview of our approach. BINtegrity intercepts system calls and
inspects both the runtime state and the binary executable image of a process. In case
it detects a mismatch, the process is terminated.

The properties used in the comparison are extracted from the corresponding
binary executable. Based on the origin of the last two items in the call stack
before the system call invocation, we first check the existence of corresponding
control flow instructions at the respective locations in the binary. We proceed
by evaluating the targets of these control flow instructions and ensure that they
match the call chain. As a next step, we compare the arguments of the sys-
tem call with the instructions in the binary that precede the invocation and
ensure that they do not contradict the actual arguments. Finally, we evaluate
the import tables of the executables corresponding to the call stack, and ensure
that all required import-export dependencies are indeed met. In case the runtime
state’s integrity has been violated, i.e. a mismatch is detected, the program is
terminated.

The integrity checks based on these properties can effectively mitigate code
injection and reuse exploits. To begin with, system call requests coming from
injected code are predestined to originate from an unusual code location. Mit-
igating such attacks by checking code origins forces attacks to be constructed
using only code reuse methods such as return-oriented-programming (ROP). In
theory return-oriented programs are Turing-complete, but real-world ROP-based
exploits are harder to construct since they require a significant higher skill level
and more time. An attack that reuses existing code naturally comes from the
right origin, but will have to differ in its control flow and function arguments to
use system calls in a way that deviates from their regular invocation. By enforc-
ing properties of the original code, BINtegrity restricts this most important step
of code reuse attacks, thus effectively mitigating code reuse attacks.

For our design, we leverage common properties of RISC architectures. Specif-
ically, we leverage the fixed-length instruction set to implement static analysis
and code emulation in a very efficient way. Further, we utilize registers that are
used during control flow transfer to efficiently construct a program’s call chain.
In contrast to related work, we do not rely on hardware features specific to
certain processor families [4,13,26].
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BINtegrity is transparent to existing applications, and can handle arbitrary
binary programs. As a consequence, it does neither require access to source
code nor binary instrumentation or any other pre-analysis stage. Finally, the
on-demand fashion of BINtegrity ensures that it only causes overhead whenever
a system call is actually invoked, making it applicable to existing device and
software configurations.

Looking from a different angle, our approach provides functionality similar
to policy enforcement systems such as SELinux and AppArmor. In contrast,
though, BINtegrity provides this functionality implicitly as it does not require
any policy configuration – restrictions are automatically derived from the binary.

5 Ensuring Runtime Integrity

In this section, we present how we check and enforce adherence of a program’s
runtime execution to its executable image with respect to system calls. The
technique executes completely at runtime as a kernel extension for arbitrary
program binaries on any RISC architecture that supports the equivalent of a
link register. Ensuring the integrity comprises four steps: (i) identification of a
trusted application code base; (ii) extraction of the runtime state at the time of
a system call invocation; (iii) invariant extraction from the original executable
image given the runtime state; and, iv) invariant enforcement to ensure integrity.
Figure 2 depicts an overview of this technique. In the following, we describe each
of its components.

Invariant Extraction

Runtime State
S1 S2 .. Sn

Binary

Library 1..N

Match + Enforce

Fig. 2. Diagram depicting a high-level overview of ensuring runtime integrity. The key
idea is to enforce security restrictions by matching a process’ runtime state against
invariants extracted from both the runtime state and facts from the corresponding
executable image.

5.1 Trusted Application Code Base

The first requirement to ensure runtime integrity is to define a trusted application
code base (TACB). This TACB refers to the program text of an application to
be protected. The TACB is defined when a process is created by first allowing
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the runtime linker (e.g., ld.so on Linux) to load the executable image and any
shared libraries it depends on into the process address space. At the point when
control is transferred to the program itself, all mapped memory segments marked
as executable – i.e., program text from the executable image and shared libraries
– is taken as comprising the TACB.

5.2 Process Runtime State Extraction

Once a TACB has been established, the main part of the technique occurs at
the time a system call is invoked. When a program invokes a system call and
control transfers to the kernel, a runtime state is extracted from the process.
This runtime state consists of the following information:

– The return address of the system call, which points to the successor instruc-
tion of the program call site. We denote it as retsc.

– The link address, which refers to the value that is stored in the LR (ARM) or
RA (MIPS) register. This points to the successor instruction of the enclosing
procedure call site before the system call invocation. We denoted it as retlr.

– The register that contains the system call number.
– All registers containing system call arguments.
– On MIPS, the jump target register.

Taken together, this state provides full information about the system call that
is to be performed, its arguments, and a call chain of depth 2 in the program.

5.3 Invariant Extraction

Given a state, the next step of the technique is to extract invariants. These
invariants are recovered by performing a lightweight static analysis of the pro-
gram code referenced by the return and link addresses. We distinguish between
two classes of actions performed during this procedure: (i) code invariant extrac-
tion refers to analysis of the executed instructions leading to the invocation of
the system call, while (ii) symbol invariant extraction refers to resolution of the
symbols for the last two entries in the program call chain.

Code Invariant Extraction. To derive control flow information and invariants,
code invariant extraction uses a combination of static analysis and lightweight
execution emulation. First, BINtegrity performs backwards disassembly from
the offsets into the binary given by ret(·). Disassembly continues until either a
control flow transfer instruction or a function prologue is found for the enclos-
ing function F (ret(·)). Starting from the point where backwards disassembly has
stopped, BINtegrity emulates instruction execution. As an execution state, we
use a lightweight abstraction consisting solely of registers. We note that on RISC
architectures that traditionally provide a large number of registers, we did not
find the lack of a memory abstraction to impair the effectiveness of this app-
roach. Focusing on registers also limits the number of instructions that must
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be supported. Once the execution reaches ret(·), the current emulation state is
collected; concrete values in this state are taken as state invariants. We also add
the kind of control flow instruction that precedes ret(·), and attempt to derive
its target in case it is an indirect call.

Symbol Invariant Extraction. Every program that uses an external library func-
tion needs some means to refer to that function. Executables refer to the func-
tions they offer or use by means of symbols S(F ) encoded as simple charac-
ter strings. The set of required functions are referred to as imports IM(E) of
an executable E, while the set of available functions are the exports EX(E).
After loading the executable objects into memory, the linker matches all exports
against the imports and resolves the symbols to actual addresses. Symbol invari-
ant extraction resolves the symbol S(F (ret(·))) in the binary executable associ-
ated with ret(·) and looks up whether it is exported or imported by this binary.
It then adds this information to the set of collected invariants.

5.4 Invariant Enforcement

Given the extracted runtime state and collected invariants, the final step is to
check the collected invariants against the state. That is, the approach checks
for contradictions that indicate violation of a safety condition. In particular, the
technique checks the following properties:

1. Code provenance
2. Call chain integrity
3. System call argument integrity
4. Symbol integrity

For a runtime state to be accepted as safe, all of these properties need to be
verified successfully. In the following, we describe each of them in detail.

Code Provenance. Code provenance enforces that only code from the TACB
invokes system calls or their wrappers. Checks against the TACB are straightfor-
ward: both the system call return address as well as the link address have to point
to code contained in the TACB to succeed – i.e., retsc ∈ TACB∧retlr ∈ TACB.
The link address will either point to a location in the application binary, or to
a location in one of the libraries that are used by the application. TACB checks
are fast, as they do not require examination of the binary.

Call Chain Integrity. To check call chain integrity on retsc, we verify whether the
preceding instruction Pred(retsc) is indeed an instruction that invokes a system
call. Figure 3a shows the system call wrapper for the write system call, with the
system call return address pointing to retsc. In addition, we compare the system
call number that is stored in a dedicated register of the state to check whether
the correct system call handler has been invoked. For call chain integrity on retlr,
we check that Pred(retlr) is a branch instruction to begin with. Depending on
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whether the emulation step provides us with the target of the branch, we also
ensure that only the corresponding function F (retsc) is called by Pred(retlr).
In Fig. 3b this corresponds to the bl instruction calling the wrapper for write.

Argument Integrity. Argument integrity enforces that the parameters of a sys-
tem call invocation from the runtime state matches the results of the emulation.
Of course, this can only be enforced if invariants are recovered for those reg-
isters – that is, an assignment derived from a constant value must have been
observed during emulation. A further requirement for performing this match
is that the parameters are not changed by a system call wrapper F (retsc).
Section 5.5 describes argument integrity in more detail.

Symbol Integrity. Symbol checks against the mapping established by the import
and export tables of the code in the TACB prevent unauthorized use of functions.
The intuition is that if a return address ret(·) falls into the address range of
an exported function of an executable, the symbol of the function has to be
imported by some other executable. More formally, given a call stack of depth
k with return addresses retk, retk−1, . . ., two consecutive return addresses that
point to different executables have to be linked by their exports, respectively
imports.

retk−j ∈ Ea∧
retk−j−1 ∈ Eb∧

Ea �= Eb

⎫⎬
⎭ ⇒ S(F (retk−j)) ∈ EX(Ea)

IM(Eb)
(1)

Furthermore, if retk−j is known and S(F (retk−j) is exported, but retk−j−1 is
unknown, S(F (retk−j)) has to be imported by an executable that is not Ea.

S(F (retk−j)) ∈ EX(Ea) ⇒ S(F (retk−j)) ∈ IM(x), x �= Ea (2)

The runtime state provides us with retsc and retlr, which are equivalent to
the last two entries in the call chain before the system call invocations, retk
and retk−1. In the typical case, retk will point to a system call wrapper in a
library Ea, which is imported by and called from the main program executable
Eb, with retk−1 ∈ Eb. This allows us to enforce a strong match between two
executables Ea and Eb based on Eq. 1. If this implication holds, we continue
with inspecting retlr. If it points to the main executable, there is nothing more
to check. However, Eb might also be yet another library that provides some
higher-level functionality. In case F (retlr) is exported as well, we can check it
against the imports of all other mapped executables based on Eq. 2. In theory
this could be an issue if F (retlr) is both exported and used internally by Eb,
but not imported by any other executable. However, we did not encounter such
a case in practice.

5.5 Function Call Arguments

A critical component of the execution emulation is deriving invariants on sys-
tem call arguments. The specific idea is based on the observation that para-
meters to system calls are often composed of both static and dynamic values.
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Dynamic values are often memory addresses, while static values often specify
length values and flags. By extracting statically assigned arguments from the
application binary and comparing them against observed values, it is possible
to infer whether execution actually proceeded along the expected path through
the binary to the system call invocation.

Figure 3 shows the instructions that are involved in a call to write. Figure 3a
shows the system call wrapper in the libc (bionic) and Fig. 3b shows a call to
write carried out in the application binary. The write system call takes three
arguments. In our example, the first and third arguments are assigned statically,
while the second argument is based on the content of another register. The
second argument of write points to a buffer that holds the data that is to be
written, while the first and third argument are a file descriptor (in this case,
standard out) and the number of bytes that should be written.

During execution emulation we record static values for the first and third
function argument because they were specified as constants in the executable
image. These then become invariants that can be checked when that particular
system call at that location in the executable is invoked. As a result no code
reuse attack could abuse this write call to modify an arbitrary file. The second
argument is marked as do-not-compare, as its value cannot be determined.

Fig. 3. Example of critical code regions that are analyzed at runtime by our system.

Some system call wrappers perform more operations besides invoking the
system call. If these additional operations include modifications of arguments
passed from the application to the system call, our argument integrity check
would fail. Our system takes this behavior into account, and analyzes the instruc-
tions preceding the system call instruction to determine if argument registers are
modified. One example of a system call wrapper that modifies arguments before
invoking the actual system call is the wrapper for open64 in uClibc compiled for
MIPS. This wrapper modifies the second argument before invoking the system
call by applying a bitmask to the second argument. In this case, our static analy-
sis concludes that the second argument cannot be matched against the runtime
state even if we are able to determine a statically assigned value in the applica-
tion binary. The information about what arguments are modified by a system
call wrapper is stored as part of the execution emulation procedure.
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5.6 Dynamic Code Loading

While the TACB often does not change during execution, some processes do
make use of interfaces like dlopen to dynamically load code. For this interface, an
application can call dlopen to load a library, dlsym to resolve a function exported
by that library, and invoke that function as any other. Internally, dlopen uses
mmap and a small number of other system calls to load the library code into
memory. BINtegrity handles dynamic code loading by tracking uses of mmap.
Each time mmap is invoked by a process, our technique checks whether dlopen
was called prior to calling mmap. This check is possible because of the invariant
extraction mechanism we described above. If it is determined that mmap was
executed on behalf of the dlopen function, the dynamically loaded library is
added to the TACB.

BINtegrity Kernel Module

Process

TACB
Invariant
Cache

Emulation Engine

Library 1..N

Binary

Disassembler EmulatorELF parser

Runtime Information

Integrity Enforcer

Fig. 4. Overview of the BINtegrity system.

6 The BINtegrity System

In this section, we present the BINtegrity prototype implementation, which is
publicly available at www.bintegrity.org. BINtegrity is written as an extension
to the Linux kernel, and is activated every time a process invokes a system call.
The rationale behind this approach is that a program must always resort to
services offered by the kernel to perform security critical actions such as file and
network I/O, or to spawn new processes. Therefore, the system call boundary
is an ideal location to collect process state information, and to enforce security
policies.

6.1 Implementation

We developed BINtegrity as a loadable kernel module that is compatible with the
Linux 3.x series. Since BINtegrity’s operation has to be completely transparent
to user mode programs, we do not introduce new techniques or modify existing
ways to interact with the kernel. With support for different architectures in

www.bintegrity.org
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mind, we kept platform-specific code at a necessary minimum. That is, only
components that require assembly-level support are platform-specific, and are
easily ported to new architecture. Figure 4 shows an overview of BINtegrity’s
design, which is composed of the following.

Emulation Engine. The emulation engine contains all components that extract
invariants from the program’s runtime state and executable image on disk. This
includes a parser for ELF files to infer symbol information, as well as a dis-
assembler and instruction emulator for both the ARM and MIPS instruction
set.

TACB and Invariant Cache. The per-process information BINtegrity maintains
consists of the TACB and the invariant cache. The TACB keeps track of a
process’ memory pages that contain executable code, and serves as a reference
when mapping addresses to binary files on the disk. The process of invariant
extraction includes file parsing, disassembly, and instruction emulation – all
relatively expensive operations. Therefore, we added a caching mechanism to
our system that stores extracted invariants, thus limiting the number of actual
extraction operations executed per process.

Integrity Enforcer. The integrity enforcer performs invariant checks and acts
upon their result. It is a lightweight component, as it is the most frequently
invoked part of BINtegrity. After checking code provenance, this component
queries the invariant cache. If it does not contain the invariants for the current
state, it invokes the emulation engine to produce them. Subsequently, the invari-
ant checks are performed. In case any of them fail, the process is terminated.

System Call Interposition. System call interposition has been implemented as
detour trampolines that invoke BINtegrity’s main functionality before the system
call handler is executed. BINtegrity intercepts execution immediately after the
kernel’s dispatcher has performed basic context-switch duties. As soon as all
checks have passed successfully, the execution of the system call handler routine
commences as usual. In case one of the checks fails, the task that issued the
system call is terminated.

Disassembler and Emulator. The disassemblers in BINtegrity operate in a lin-
ear sweep fashion. They support the instruction sets of the MIPS32 and ARM
architectures, including the Thumb and Thumb2 instruction sets. The instruc-
tion set supported by the code emulator is reduced to the subset that operates
on registers and immediate values.

6.2 Integrity Checking Levels

In order to improve performance, BINtegrity only interposes on a subset of the
system call interface. Some system calls are invoked more frequently and thus
more sensitive to enforcement overhead. Furthermore, system calls such as write
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are used by virtually every program and therefore do not require symbol checks.
In contrast, system calls such as execve are rarely called and thus heavyweight
checking can be performed without an observable performance impact.

BINtegrity therefore implements three distinct integrity checking levels, with
each level adding additional checks to the previous level. The lowest checking
level is the TACB check. Here, we only perform code provenance checks for the
return address and link address using our TACB. The second checking level adds
the checks for call chain integrity as well as system call argument integrity. The
third checking level adds symbol checking. Naturally, the checking level directly
affects which invariants need to be extracted. For instance, if symbol checking
is not enabled, less extensive file parsing has to be performed.

In our prototype, we selected 33 security critical system calls that are used
by BINtegrity. Of these 33 system calls, we configured 11 for checking level 2,
and 22 for checking level 3. Checking level 1 is not used by itself. The list of
system calls we perform checks on are listed in Table 2. We note that assigning
checking levels to system calls is the only configuration our systems needs.

6.3 Invariant Caching

Emulated execution requires a considerable effort: reading files from the disk,
parsing ELF information, disassembling machine code, and actually emulating
execution. These operations would incur a severe performance overhead if they
were executed for every system call invocation. Therefore, we implemented a
caching mechanism that stores extracted invariants such that they can be reused
in an efficient way during enforcement.

In particular, invariants are cached for the return address and link address
individually. Splitting up the caching improves memory efficiency as system call
wrappers are likely called from many program locations, while the system calls
themselves are usually only invoked from a comparably small number of loca-
tions.

7 Evaluation

In this section, we evaluate the security characteristics and performance of BIN-
tegrity. For the performance, we both take a look at BINtegrity’s internal work-
ings as well as application-level benchmarks.

7.1 Security Evaluation

In the following, we describe why BINtegrity effectively defends against both
code injection and code reuse attacks.
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Code Injection. BINtegrity mitigates code injection attacks with early steps in
the enforcement process. Code provenance checks of return and link addresses
against the TACB prevent attackers from invoking system calls or their library
wrappers from untrusted memory regions. Call chain integrity checking prevents
the attacker from invoking system calls or library wrappers from memory areas
that contain the application and library binary code, but have been overwritten
with other code.

Code Reuse. BINtegrity restricts the capabilities of code reuse attacks from
different angles. Call chain integrity checking defends against abusing indirect
jump targets to invoke library wrappers. System call argument integrity checking
prevents the attacker from manipulating arguments of code that invokes library
wrappers with static function arguments. Symbol integrity checking prevents calls
to library functions that are not used by the application binary itself.

Table 1 shows an overview of the attacks covered by BINtegrity compared to
other defense mechanisms. While we do not prevent code reuse, we greatly limit
code reuse attack capabilities to resort to library functions or system calls. In
summary, we provide a more fine grained protection against code injection than
both DEP (which relies on hardware features not available on many RISC plat-
forms) as well as approaches that strictly enforce write-or-executable memory
pages such as grsecurity3. In addition, we provide a restricted form of control flow
integrity at the system call boundary without the need for recompilation of the
source code or rewriting the binary, and can achieve this with less performance
overhead.

Table 1. Attacks handled by various protection mechanisms. DS = data segment only,
L = library only, G = gadget only

Attack DEP ASLR LBR CFI BINtegrity

Injection � (DS) � �
Reuse � (L) � (G) � (�)

Case Studies. OSVDB-86824 describes a buffer overflow vulnerability on the D-
Link DIR-605L router. The router’s web server that handles login data processes
user-supplied POST data without sufficient checks. Hence, remote exploitation
is possible, leading to full system compromise as the web server runs with root
privileges. Proof-of-concept exploits [5] inject shellcode on the stack that spawns
a remote shell. BINtegrity’s code provenance checks detect and prohibit such
behavior.

As another example, the recent CVE-2013-4659 describes multiple buffer
overflow vulnerabilities on the ASUS RT-AC66U router. In particular, the ACSD
service’s command processing routine is vulnerable and, again, can be used

3 GRsecurity http://grsecurity.net.

http://grsecurity.net


Runtime Integrity Checking for Exploit Mitigation 75

to completely compromise the router as the service runs with root privileges.
Advanced proof-of-concept exploits [9] use code reuse techniques to first flush
the data cache and subsequently invoke the system function in libc. As the lat-
ter function is not imported by the ACSD service binary, BINtegrity’s symbol
integrity enforcement effectively prevents this attack.

7.2 Performance

To evaluate BINtegrity’s performance, we deployed it on a Samsung Galaxy
Nexus (ARM) running Android and a Buffalo WZR-HP-G450H (MIPS) run-
ning OpenWRT. All results were obtained using the software (i.e., libraries and
programs) as it was deployed on these systems. Table 2 lists all security-critical
system calls with the integrity checking level that we used during the evaluation.
For some less critical and frequently invoked system calls, we chose to only check
for code integrity.

Table 2. Integrity checking levels used for the evaluation of BINtegrity.

Checking level System calls

Code integrity creat, write(v), fork, sendfile, unlink, open, send, sendmsg,
sendto

Code + Symbol integrity execve, mmap, mprotect, ioctl, connect, socket,
delete module, init module, symlink, chmod, chown,
kill, reboot, accept, dup, pipe, socketpair, socketcall, ipc

We first provide an insight into the cost of BINtegrity’s internal operations
before we evaluate BINtegrity’s impact on these systems using benchmarks.

Internal Operation. The evaluation of BINtegrity’s internal operation, specifi-
cally the invariant extraction, is based on both micro-benchmarks and real-world
scenarios. For the micro-benchmark, we used lmbench’s [12] system call latency
measurement on the WZR-HP-G450H for the write system call. For the real-
world scenarios, we picked two typical applications, a web server and a web
browser, each running on a different system that is protected by BINtegrity.
We had BINtegrity collect statistical data for each process running in the sys-
tem. During a two-minute evaluation time period, the web server received two
requests on a page, and the web browser loaded a single page to simulate a
typical usage scenario.

Invariant Extraction and Caching. Invariant extraction is time consuming. It
requires costly operations such as file parsing as well as disassembling and emu-
lating code. To alleviate its impact on BINtegrity’s performance, we attempted
to reduce invariant extraction to a necessary minimum. On one hand, we allow
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Fig. 5. Effect of invariant caching measured in system call latency. Once cached, check-
ing invariants only incurs marginal overhead.

fine-tuning of BINtegrity to a specific platform’s performance requirements by
setting the checking levels. On the other hand, invariant extraction is only per-
formed once per program state by caching its result. The drastic effect of caching
is shown in Fig. 5. As can be seen, checks based on the results of the code
invariants as well as both code and symbol invariants only add little additional
overhead once they are cached.

Frequency and Distribution of Invariant Extraction. As mentioned before, the
number of invariant extractions during program execution is critical to BIN-
tegrity’s performance. Table 3 shows how often code (for L2 checks) as well as
code and symbol invariant extractions (for L3 checks) were performed. In spite
of the complexity of the applications tested and the usage scenario, the numbers
are quite low. In combination with caching, BINtegrity only has to carry out
fewer than 100 performance-critical invariant extractions in each case.

Table 3. Number of invariant extractions executed for two typical applications. Args
refers to the number of static argument assignments that were enforced.

Invariant extractions Code Code + Symbol Args

Android browser 21 53 0

Nginx web server 19 24 10

Figure 6 shows the distribution of invariant extractions over time. We can see
that a large number of extractions are executed at process startup, with the next
spike occurring when the application first executes its main functionality. After
a few seconds, the main code paths have been executed at least once. Hence,
they do not require any further extractions during normal operation and, thus,
unnecessary overhead is avoided.
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Fig. 6. Invariant extractions over the lifetime of two typical applications. For both
applications, we show that extractions are executed at program startup and at the
point where the application performs typical activity for the first time. After a code
path has been executed once it causes no further extractions.

Memory Overhead. For each process in the system, BINtegrity reserves space to
cache invariants for up to 257 code points. Every code point requires 40 bytes of
storage for statistics thatwe use tomeasure our runtimeperformance.Thememory
requirement for this cache is 10 KB per process. During our evaluation, we never
encounteredmore than 74 code points being cached for a process. The unused cache
space provides enough storage to handle applications that require caching invari-
ants for more code points while not wasting resources as the the overall memory
usage is relatively small. We consider tuning the size of the cache as part of spe-
cializing BINtegrity for a specific platform. We further require a small amount of
memory to store our per process TACB. The memory requirement for each TACB
entry is 16 bytes. During our evaluation, we never encountered a process with more
than 100 entries stored in its TACB, thus staying below 2 KB per process. In total,
BINtegrity adds a memory overhead of around 12 KB for each process. This mem-
ory overhead is negligible if compared with the memory required through the use
of shared libraries, some of which easily occupy a few hundred kilobytes.

Benchmarks. To measure BINtegrity’s impact on system performance, we ran
various benchmarks covering both specific metrics (e.g., disk I/O) and overall
performance.

Disk I/O. For the disk I/O performance evaluation, we used Bonnie++, config-
ured to use a filesize of 500 MB for access, and 16,348 files for creation/deletion
benchmarks. Being platform independent, we ran it on both ARM and MIPS.
For the ARM implementation, the worst-case overhead is 10 % for random seeks.
On MIPS, the worst-case overhead is 20 % for block write operations.

Network I/O. For the WZR-HP-G450H, we used the Apache benchmark from
a separate computer on the LAN to request a 128 KB document. The document
was served by the default nginx installation running on the router. The average
overhead measured over 1000 requests was 2.03 %.
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Whole-System Performance. On the Galaxy Nexus Android phone, we used the
popular AnTuTu benchmark4 to measure performance overhead introduced by
BINtegrity. The AnTuTu benchmark measures a variety of system components
such as the Android runtime and the I/O subsystem. The benchmark result
shows that BINtegrity only incurs an overhead of 1.2 % compared to the baseline.

8 Discussion and Limitations

In general, BINtegrity does not prevent code execution from arbitrary mem-
ory locations, but restricts the invocation of kernel services. Hence, BINtegrity
mitigates attacks that interact with the operating system, but does not prevent
attacks against the application logic itself. In the following, we discuss both how
BINtegrity deals with certain code constructs and which aspects could hamper
its effectiveness.

Call Stack Depth. The call stack BINtegrity relies on to extract data from the
binary is only two levels deep. Undoubtedly, a deeper call stack would enable us
to perform more thorough integrity checks. However, a deeper call stack would
require keeping track of return addresses in the process’ memory, which both
contradicts our threat model and in addition slows down analysis.

A study of two lightweight C library implementations that are popular in the
embedded world, uClibc and bionic, shows that only a relatively small subset of
the library functions use indirection, i.e. call another function before invoking
the system call (Table 4). Besides, these indirections can be removed entirely by
recompiling the C library with inlining.

Forward Emulation. BINtegrity’s effectiveness is determined by the information
provided by the forward emulation. Some system call wrappers will degrade
information on system call arguments by performing operations that our register-
based code emulation cannot track. While for uClibc, the number of wrappers
that modify might seem high, we note that only five out of them are security-
critical. We plan to address this issue in future work by enhancing our static
analysis with a lightweight memory model.

Forging the Link Address. An attacker who is aware of BINtegrity could try to
set retlr to another value. However, only valid values would pass all steps of
the invariant enforcement, i.e. stemming from a correct origin, adhering to call
chain integrity and argument integrity and be imported based on the rules of
symbol integrity. If the attacker succeeds in finding such an address, she would
lose control flow control after the function returns and thus be limited to a single
function invocation.

4 AnTuTu https://play.google.com/store/apps/details?id=com.antutu.ABenchMark.

https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
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Table 4. Characteristics of C library system call wrappers that degrade the detail
level of the extracted invariants. The numbers were derived from the binaries we found
on Android (Bionic) and OpenWRT (uClibc). Indirections can be reduced to zero by
recompiling the library.

System call wrappers Bionic uClibc

Total 194 243

Using indirections 71 31

Modifying arguments 1 69

Just-In-Time Compilation. Just-In-Time (JIT) compilation, best known for
speeding up Javascript and ActionScript, is rarely found on embedded devices.
Although, in theory, JIT compiled code directly violates BINtegrity’s fundamen-
tal idea of only executing code that is present in the binary on disk, BINtegrity
does not break JIT. The reason is that JIT compiled code never directly inter-
acts with the standard C library. At the same time, BINtegrity prevents JIT-ed
code from direct interaction with the standard C library or the system call
interface.

9 Conclusions

In this paper, we presented BINtegrity, a novel approach to exploit mitigation
that is specifically tailored towards embedded systems that are based on com-
mon RISC architectures. BINtegrity works by extracting a combination of static
and dynamic properties relevant to OS service requests from executables and
enforcing them during runtime.

We leverage common properties of the RISC architecture to design and build
an exploit mitigation system that is practical and low-overhead and thus lends
itself specifically for the use in systems with limited resources.
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Abstract. Given the increasing volume and impact of online social
interactions in various aspects of life, inferring how a user should be
trusted becomes a matter of crucial importance, which can strongly bias
any decision process. Existing trust inference algorithms are based on
the propagation and aggregation of trust values. However, trust opinions
are subjective and can be very different from one user to another. Conse-
quently, inferred trust values can lose significance or even be unavailable
if there is a strong disagreement among the original values. In this work,
we discuss the trust controversy problem. We analyze to what extent
existing trust inference algorithms are robust with respect to controver-
sial situations, and propose a novel trust controversy measure to sup-
port trust inference in controversial cases. Experimental results on real
world datasets demonstrate that controversial cases should be explicitly
taken into account and that the controversy level of inferred trust values
is highly related to the prediction error. Our trust controversy measure
can serve as an integrated and unsupervised estimator for trust inference
accuracy.

1 Introduction

The volume and importance of online social interactions have followed a strong
increasing trend in the last few years. Sharing of knowledge, personal informa-
tion, experiences and opinions is nowadays a natural act, which occurs in several
everyday situations. Since they allow easy access to a massive crowd, online
social platforms are being exploited by individuals and companies for different
purposes, including marketing and political campaigns, personnel recruitment
and selection, public administration services, real-time support to customers
and so on. In all these contexts, the concept of trust becomes of crucial impor-
tance, since it implies interaction with and/or spreading of information towards
a large number of users. These may not be directly known by the initiator of the
process, which naturally has no control over the spreading process. From this
perspective, limiting the access to information and services to a subset of trusted
users is fundamental, e.g., for security reasons and brand protection purposes.

Several solutions have been proposed to address trust-related tasks in online
social contexts, such as trust ranking [3,11,15], trust prediction [6,7] and trust
inference [2,4]. Online social networks can be easily managed as trust networks,

c© Springer International Publishing Switzerland 2016
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where trust edges can be retrieved directly or indirectly from users relation-
ships [5,10]. In this context, trust inference methods are conceived to determine
the level of trust between any pair of users not directly linked to each other in
the network, which, in most real world situations, represents the great major-
ity of all possible couples in a network. The mechanism behind trust inference
algorithms is generally based on the propagation and aggregation of the original
trust scores (i.e., trust values explicitly assigned by the users). However, trust
is naturally subjective, because it is driven by personal experiences, prejudice,
misunderstandings or circumstantial events. Consequently, trust values assigned
to a specific target user can be very different from one to another, leading to
inferred trust values which can lose significance or even be unavailable if there
is a strong disagreement among the original values.

This paper focuses on the concept of controversy in trust networks. Whenever
there is a strong disagreement among users, a controversial condition can arise
and the trust inference process can become ambiguous. In literature [8,13,14],
there have been some attempts to define controversy, but they have focused on
the concept of controversial user rather than on the definition of controversial
trust, i.e., defining as controversial a user who is judged by other users in very
diverse ways. Though starting from similar observations, these works do not
provide any technique to measure the level of controversy of an inferred trust
value, which hence remains an open problem.

In this paper, we propose a novel measure for evaluating the level of contro-
versy of an inferred trust. Our proposal is supported by an extensive analysis over
existing trust inference methods [2,4], aimed at showing how these algorithms
are not robust to controversial cases. In our setting, the concept of controversy in
trust networks is related to the concept of reliability of trust inference, and radi-
cally differs from tasks such as identification of controversial users, controversial
items or controversial reviews. The proposed controversial score is designed to be
a qualifier for the trust value inferred for a specific pair of nodes in a trust net-
work, indicating how much agreement or disagreement is hidden in the inferred
trust, under the hypothesis that high levels of controversy in the inferred trust
values can make these values ambiguous and unreliable.

The rest of the paper is organized as follows. Section 2 overviews related work,
Sect. 3 discusses several examples of controversial situation in trust networks,
Sect. 4 presents our novel trust controversy measure, Sect. 5 presents experi-
mental evaluation, Sect. 6 concludes the paper and provides pointers for future
research.

2 Related Work

We organize discussion on related work into two parts: the first is devoted to
trust inference algorithms, the second concerns existing definitions of controversy
in trust contexts.
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2.1 Trust Inference Algorithms

Trust inference is a well known task in the context of network analysis, and
a variety of algorithms have been proposed in literature [12]. Trust inference
algorithms are usually classified into two main categories: local trust methods
and global trust methods. Given a trust network, local trust methods infer the
trust from a source node to a sink node, i.e., the inferred local trust can be
considered as an edge feature, since it represents the personalized opinion of one
user with respect to another user. Conversely, global methods calculate a trust
score (also referred to as reputation) for each user, i.e., the inferred trust is a
user feature, which can be used to produce a trust-oriented global ranking of
the users. In this work, we will focus on the analysis of local trust inference
algorithms, since their personalized nature leads to more intuitive controversial
cases, as we will discuss in Sect. 3. The analysis of controversial cases in global
trust ranking scenarios is left as future work.

Local trust inference algorithms compute the trust by considering the dif-
ferent paths from a source node to a sink node, by defining a rule for trust
propagation and a rule for aggregating the propagated trust values through the
different available trust paths. In order to analyze the effects of controversy,
two state-of-the-art local trust inference algorithms are taken as case in point:
TidalTrust [2] and TISoN [4].

TidalTrust [2] is a local trust inference algorithm in which the trust between
non-adjacent nodes is inferred by considering only shortest paths through trusted
neighbors. Trust values are determined in the discrete range [0..10], where a
trust value of zero means that no information is available about a specific trust
relation. The trust from a source node to a sink node is calculated by calling
a recursive trust function on the trusted neighbors, which terminates when the
sink is reached. When the trust is back propagated to the source, it is averaged
and rounded among the different trusted paths. As a refinement step, TidalTrust
can filter paths based on a fixed edge-weight threshold (thres). The choice of
selecting the shortest path derives from the hypothesis that reliability of trust
values progressively decays proportionally to their distance from the source node.
TidalTrust calculates the inferred trust IT (X,Y ) from the source node X to the
sink node Y as in Eq. 1, where the trust is propagated and averaged only through
the adjacent nodes which can effectively reach the sink.

IT (X,Y ) =

∑
K∈adj(X)

T (X,K)>thres

T (X,K) × T (K,Y )
∑

K∈adj(X)
T (X,K)>thres

T (X,K)
(1)

TISoN (Trust Inference within online Social Networks) local trust inference
model is proposed in [4]. In the Trust Paths Searching (TPS) step, a selection of
the trust paths from a source node to a sink node is performed with respect to two
criteria: the maximum allowed depth of the path, and the minimum threshold
level allowed for the trust edges in the path. Among the TPS subset of selected
paths, only the most trustable path (MTP ) is used by a trust inference measure
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called TIM to compute the inferred trust. The MTP path is the strongest path,
with the strength defined as a function of the path average (the average of the
trust edges in the path), the path variance of the trust edges w.r.t. the average,
and the path weight measured as the fraction between the length of the shortest
path in TPS and the length of the current path. Finally, the inferred trust is
computed as a product of the direct trust obtained by the sink and the strength
of MTP .

2.2 Controversy in Trust Contexts

Our work is, to the best of our knowledge, the first to address the problem of
measuring the controversy level of inferred local trust values. Indeed, a couple of
works exist which addresses the problem of controversy in trust contexts from
perspectives different than ours.

In [8], a controversial user is defined as a user that is judged by others users
in very different ways. In order to measure the controversy of a user in a trust
network, only the in-neighbors of the user are taken into consideration. In this
way, a single label of controversy value is assigned to each user. Two different
definitions of controversy are given. In the first one, the controversy level of a
user is defined as the number of users who disagree with the majority in issuing
a statement about that user. Formally the controversy level is defined as the
minimum between the number of trust evaluations and the number of distrust
evaluations. In the second definition, a controversy percentage is calculated as
the difference in the number of trust and distrust judgments with respect to the
total number of judgments.

In [13], controversy was analyzed in the context of recommender systems,
focusing on the formalization of the concept of Controversial Item (CI), i.e., an
item which received a variety of high and low scores from its reviewing users. In
order to identify CIs, the authors combine standard deviation of the ratings with
a level-of-disagreement measure. This measure determines how often adjacent
disagreeing scores in a certain time window appear w.r.t. the total number of
received ratings, based on the intuition that different scores that are close to each
other reflect less disagreement than different scores that are on opposite ends of
the window. The authors then compare the performance of collaborative filtering
and trust-enhanced recommendation algorithms for controversial and random
items, also testing a combination of existing techniques in order to enhance
coverage and accuracy performances. The same authors extended their work
in [14], performing a similar analysis w.r.t. the concept of Controversial Review
(CR), i.e., reviews which receive contrasting helpfulness rating.

It is straightforward to see that the existing definitions of controversy above
discussed are both totally different from ours, and address totally different tasks.
Indeed, the definition of controversy given in [8] is considered as a qualifier of
the single user and not of the inferred trust evaluation (i.e., the task is the
identification of controversial users and not of controversial trust values, as in
our case). Moreover, it is based on a binary classification of statements in trust
and distrust values (i.e., signed networks), while we take into account trust values
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in the continuous range [0,1]. The comparative studies in [13,14] are strictly tied
to the specific domain of recommender systems, therefore the proposed level-of-
disagreement measure is based on hypotheses which do not hold in our domain
(e.g., closeness of disagreeing ratings of an item/review), making its use in our
analysis inappropriate.

Fig. 1. Social network, trust network, trust graph

3 Controversy in Trust Networks

3.1 Modeling Trust Networks

Figure 1 shows the typical steps performed for modeling a trust network. The
trust network extracted from the original social network can be represented as
a directed graph G = 〈V,E, T 〉, consisting of a set V of n nodes (users), a set of
links (edges) that represent relations between couples of users, and the weighting
function T : E → R for specifying the trust level corresponding to each edge.
Then the trust network can be mathematically expressed as a square matrix T
of size n × n, here called trust matrix, where each generic element T (i, j) is the
level of trust from node i to node j, with i, j ∈ V . Here we consider real trust
values in the range [0, 1], i.e., T (i, j) ∈ [0, 1] ∀(i, j) ∈ E. T (i, j) = 1 means that
the user i fully trusts the user j, while T (i, j) = 0 means lack of trust.

A generic trust inference algorithm is represented by the function IT (i, j)
reported in Eq. 2. A trust inference algorithm calculates a trust value t ∈ [0, 1]
between two generic nodes i and j not directly connected in the trust network
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((i, j) /∈ E). When a trust edge between nodes i and j exists in the network,
the inferred trust assumes the same value of the trust weight, i.e., IT (i, j) =
T (i, j) ∀ (i, j) ∈ E. If there are no paths connecting the source node with the
sink node, it is not possible to infer the trust, thus a placeholder value (e.g., −1)
can be assigned in this case. Formally, IT (i, j) is defined as:

IT (i, j) =

⎧⎪⎨
⎪⎩

T (i, j) if(i, j) ∈ E

−1 if there are no paths from i to j

t ∈ [0, 1] if (i, j) /∈ E

(2)

3.2 Controversial Cases in Trust Networks

A detailed analysis of controversial situations is here reported by presenting a set
of controversy cases that can be originated by disagreement in trust networks.
We will first describe a basic controversial situation, namely the ToTrustOrNot-
ToTrust case, which serves as a simple introduction to the problem of controversy
in trust networks. We will then discuss an Asymmetric Controversy case, which
extends the previous one by taking into account paths of different length, lever-
aging the fact that considering the shortest paths as the most reliable may lead to
ambiguous results in presence of controversial cases. Finally, we will discuss how
taking into account trust values in the continuous range [0,1] leads to even more
complex cases. We conclude with a discussion on how these controversial cases
motivate the necessity of defining a clear and precise measure for determining
the controversy level when inferring trust values in social networks.

The ToTrustOrNotToTrust Case. The basic controversial trust situation is
here called ToTrustOrNotToTrust case. This case is shown in Fig. 2(a), where a
node A fully trusts both nodes B and C (T (A,B) = T (A,C) = 1), but nodes B
and C have opposite trust opinions about node Z (T (B,Z) = 1 and T (C,Z) = 0).
The question: “Should A trust Z or should not?” remains an open problem if the
answer depends solely on the recommendations from B and C. In any case, a rea-
sonable average inferred trust value IT (A,Z) = 0.5 cannot be useful to take any

Fig. 2. The ToTrustOrNotToTrust case (a) and an uncontroversial case (b) which leads
to the same trust inference value
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decision, because it results from the aggregation of two opposite trust values.More-
over, the inferred trust valuewouldnotbe representative of thehiddencontroversial
situation. In fact, the same value of trust inference could be derived in absolutely
uncontroversial conditions, as in the example reported in Fig. 2(b), where both B
and C trust Z with the same trust level equal to 0.5 (T (B,Z) = T (C,Z) = 0.5).
The two situations are completely different: in the first case there are two opposite
opinions about the user Z that reflect different experiences, while in the second
case, the opinions by B and C are exactly the same, thus the inferred trust should
be considered more significant, based on the fact that both B and C agree about Z.

Fig. 3. The generalized balanced ToTrustOrNotToTrust case

This example let us consider that the inferred trust should be considered
as more reliable when there is agreement among the recommender users, while
ambiguity can be originated by disagreement. In the ToTrustOrNotToTrust case,
node A would not be able to infer any precise information about the trustwor-
thiness of user Z, being only the opinions by user B and user C available. In
the uncontroversial case, it would be trivial for user A to infer that user Z is
moderately trustworthy (i.e., it has a trust value of 0.5 in the range [0,1]).

The basic example shown in the ToTrustOrNotToTrust case can be general-
ized to take into account an arbitrary number of paths of any length between
the source node A and the sink node Z. The generalized case reported in Fig. 3
depicts a situation where several longer paths from the source A to the sink Z
are grouped into two balanced opposite factions. It is easy to see that, as in the
simple version of the ToTrustOrNotToTrust case, the ambiguity about whether
or not Z should be trusted by A persists, as long as trust is equally propagated
from the predecessors of Z up to node A.

The Asymmetric Controversy Case. Another example of controversial sit-
uation is shown in Fig. 4(a), namely the Asymmetric Controversy case (where
the ”asymmetry” refers to the presence of paths of different length). In this
case, two opposite controversial paths exist from A to Z, with different length.
Since trust inference algorithms usually assume the shortest paths to be more
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reliable [2,4], in most cases only the trust opinion by node B will be considered.
As a consequence, A will fully trust Z, even if there is a strong opposition from
other trusted nodes.

)b()a(

Fig. 4. The Asymmetric Controversy case in its standard (a) and unbalanced (b) vari-
ants.

The problem is even more evident in the unbalanced variant of the case shown
in Fig. 4(b). In this example, there is a majority of longer paths in contrast with
a single shortest path. It is straightforward to note that if the trust decision is
based solely on the shortest path, the presence of a majority of longer paths
leading to opposite conclusions is completely neglected.

Controversy in the Continuous Trust Range. In real-world scenarios,
unfolding of controversial situations may become critical, since often a user trusts
his/her neighbors at different levels (i.e., the finer the scale, the greater the com-
plexity of controversial situations to be managed).

Consider the trust network in Fig. 5(a), where trust values are in the contin-
uous range [0,1]. The difference between the trust values T (A,C) and T (A,B)
has a strong bias on the controversy level of the inferred trust T (A,Z), i.e., the
greater the gap between T (A,C) and T (A,B), the lower should be the level of
controversy of T (A,Z), since paths containing low trust values should have lower
influence in the trust inference process.

A first naive solution to ease the interpretation of these situations corresponds
to the introduction of a trust threshold th, above which a certain user can be
considered trustworthy. Nevertheless, controversial situation can still arise. Take
as case in point the networks in Fig. 5(b), where trust statements below the trust
threshold th are indicated with symbol ≤ th. If the number of low trusted nodes
with agreeing trust statements about node Z increases, the inferred trust value
T (A,Z) can be considered more and more controversial, if it is based solely on
the value of T (B,Z) (as B is the only node which receives a trust statement
above th by A).
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(a) (b)

Fig. 5. Controversy in the continuous trust range (a) and controversy increasing with
the number of low trusted nodes (b)

Discussion. The cases presented in this section highlight how the presence of
controversial situations in a trust network leads to inferred trust values which can
be counter-intuitive or poorly significant. Discovering and handling controversial
situations is a challenging task which is worth studying, since inferring trust
without taking into account controversy could result in misleading conclusions,
thus having a considerable impact on several scenarios (e.g., negatively affecting
a decision process). Based on these observations, in the following we introduce a
measure for determining the controversy level, which can be used as an effective
tool to assess the reliability of a trust inference process.

3.3 Trust Inference Algorithms in Controversial Conditions

We begin with a detailed analysis of the behavior of two state-of-the-art local
trust inference algorithm, TidalTrust [2] and TISoN [4], in presence of contro-
versial situations. For TISoN we use a uniform setting of the parameters, i.e.,
α = β = γ = 1/3, as indicated by the authors in [4]. For this analysis, we take
as case in point some of the examples of controversial situations discussed in
Sect. 3.2: the ToTrustOrNotToTrust (Fig. 2(a)) case and the Asymmetric Con-
troversy case in its simple (Fig. 4(a)) and unbalanced (Fig. 4(b)) variants.
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In the ToTrustOrNotToTrust case (Fig. 2(a)), TidalTrust infers the trust
IT (A,Z) as:

IT (A,Z) =
T (A,B) × T (B,Z) + T (A,C) × T (C,Z)

T (A,B) + T (A,C)
(3)

If node A assigns equal trust to its two neighbors (T (A,B) = T (A,C)), the
inferred trust can be calculated as:

IT (A,Z) =
T (B,Z) + T (C,Z)

2
(4)

Let us consider that A will take the decision to trust Z only for inferred trust
values above a fixed threshold th. This means that, whenever nodes B and C
trust Z with a difference ±δ respect to the given threshold (T (B,Z) = th ± δ
and T (C,Z) = th ∓ δ), A will not be able to take any decision whether to
trust or not to trust Z, because the inferred trust T (A,Z) is exactly equal to
the threshold (T (A,Z) = th). The uncertainty of the ToTrustOrNotToTrust case
naturally persists in its generalized version (Fig. 3), where a symmetric condition
of opposite trust edges makes the inferred trust unreliable. In both the variants
of the Asymmetric Controversy case (Fig. 4), TidalTrust takes into account only
the shortest path (e.g., Z would be trusted by A), thus neglecting the presence
of a majority of longer paths which would lead to an opposite result (e.g., a
majority of paths through trusted neighbors indicating that Z should not be
trusted by A).

The behavior of the TiSoN inference algorithm cannot univocally be deter-
mined in the ToTrustOrNotToTrust case (Fig. 2(a)). In fact, the two paths,
{A,B,Z} and {A,C,Z} have the same strength, thus, the maximum is not
unique and the inferred trust T (A,Z) will depend on the specific implementa-
tion. In fact, the inferred trust will be calculated according to the selected maxi-
mum path strength (the first or the last occurrence of the maximum value). The
same problem persists in its generalized variant (Fig. 3), which contains multiple
controversial paths having the same value of maximum strength. It should be
observed that inference algorithms like TiSoN, which are based on the search
for the maximum strength, show high sensitivity to variations, which can cause
instability and lead to critical situations. In controversial conditions, the sensi-
tivity of the TiSoN algorithm is critically high. In fact, a minimum difference
in the strength of different paths propagating opposite trust values has a strong
bias in the final result, i.e., the trust will be inferred from the strongest path
(ignoring the information coming from other paths showing significant strength,
e.g., close to the maximum). In both the variants of the Asymmetric Contro-
versy case (Fig. 4), where controversy resides in paths of different lengths, in the
computation of the inferred trust by TiSoN there will be always a bias towards
the shortest path. (Recall that path length is one of the three terms involved in
the calculation of path strength, together with the average and variance of trust
values in the path.)
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4 A Novel Measure for Trust Controversy

Our analysis performed in Sect. 3 has demonstrated how controversial cases are
quite common in trust networks, and how existing trust inference algorithms
are not able to correctly handle these situations. Based on this observation, in
this section we define a novel measure for determining the level of controversy
associated with inferred trust values. The proposed measure is defined to support
trust inference processes, by assessing the significance of inferred trust values.

The basic hypothesis here is that a measure for determining controversy
should take into account how much nodes agree in their assigned trust statements
opinions, being able to differentiate between values deriving from a common
shared opinion and values deriving by disagreeing statements at different levels.
To this aim, we define a trust controversy measure accounting for all paths
propagating trust opinions from a source node A to a sink node Z, and measuring
the differences among all the propagated trust values.

Given a source node A and a sink node Z, we define the mean trust TM(A,Z)
as the weighted average of the propagated trust from the predecessors of node
Z back to the source node, which is calculated as follows:

TM(A,Z) =

∑
Pi∈Pred(Z) IT (A,Pi) × T (Pi, Z)∑

Pi∈Pred(Z) IT (A,Pi)
(5)

where Pred(Z) is the set of predecessors of the node Z, IT indicates inferred
trust values and T original trust weights.

According to Eq. 5, trust values assigned by the predecessors Pi of node Z
are averaged by considering the inferred trust from the source node A to the
predecessor nodes Pi as a weight. We define Trust Controversy TC(A,Z) as the
weighted variance of the inferred trust paths:

TC(A,Z) =

∑
Pi∈Pred(Z)

IT (A,Pi) × (T (Pi, Z) − TM(A,Z))2

∑
Pi∈Pred(Z)

IT (A,Pi)
(6)

A small value of TC(A,Z) indicates that the predecessors of node Z agree
in trusting Z with a value close to the mean trust TM(A,Z). Conversely, a high
value of TC(A,Z) indicates that the predecessors of Z disagree. It should be
noted that the deviation of the edge weights in each path Pi from the mean
trust TM(A,Z) is here weighted based on its inferred trust IT (A,Pi). Note
that this definition of controversy takes into account the locality characteristic
of trust inference algorithms, thus preserving the personalized fashion both in
inferred trust values and in their associated controversy levels.

Evaluation of Trust Controversy. We will now show the behavior of the proposed
Trust Controversy measure on the ToTrustOrNotToTrust case (Fig. 2(a)). This
case is particularly representative, since the value of controversy of the inferred
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trust IT (A,Z) is independent from the trust inference algorithm used to com-
pute the trust (i.e., there are no inferred trust values in the paths from A to Z).
Based on Eq. 6, we have:

TM(A,Z) =
T (A,B) × T (B,Z) + T (A,C) × T (C,Z)

T (A,B) + T (A,C)
(7)

TC(A,Z) =
T (A,B) × (T (B,Z) − TM(A,Z))2

T (A,B) + T (A,C)

+
T (A,C) × (T (C,Z) − TM(A,Z))2

T (A,B) + T (A,C)

(8)

(a) (b)

Fig. 6. Graph of the trust controversy in the ToTrustOrNotToTrust case when (a)
T (A, B) = T (A, C) and (b) δ = 0.5 (maximum disagreement between T (B, Z) and
T (C, Z))

Since the numerical value of TC(A,Z) depends on the trust values in the
network (i.e., edge weights), the variation of TC(A,Z) with respect to the vari-
ation of these values is shown in Fig. 6. To ease readability of the plots, we fixed
the value of a couple of parameters in each figure (i.e., T (A,B) and T (A,C)
in Fig. 6(a), T (B,Z) and T (C,Z) in Fig. 6(b)). Figure 6(a) shows the values
assumed by TC(A,Z) for varying values of T (B,Z) and T (C,Z), for fixed equal
trust values of A towards its neighbors (i.e., T (A,B) = T (A,C)). As a first
expected remark, TC(A,Z) = 0 when T (B,Z) = T (C,Z) (which fully reflects
our definition of controversy). Further observation can be drawn considering the
following example. If we call μ the average between T (B,Z) and T (C,Z) (so
that in this case TM = μ), and δ the offset of T (B,Z) and T (C,Z) w.r.t. the
central value μ (so that T (B,Z) = μ±δ , T (C,Z) = μ∓δ), the trust controversy
TC(A,Z) will be equal to the square of the offset, i.e., TC = δ2. In the case
reported in Fig. 6(a) the most controversial condition happens when A trusts
equally B and C (i.e., T (A,B) = T (A,C)), but B and C completely disagree
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in their trust assignment to Z, i.e., max(δ) = (Tmax − Tmin)/2 (where Tmin
and Tmax are respectively the left and right extremes of the trust range, in our
case [0, 1]).

Figure 6(b) shows the values assumed by TC(A,Z) for varying values of
T (A,B) and T (A,C), with fixed δ = 0.5 for T (B,Z) and T (C,Z) (i.e., maxi-
mum disagreement between T (B,Z) and T (C,Z)). In this case B and C com-
pletely disagree with each other w.r.t. the trust assignment to Z, then the contro-
versy reaches the maximum when T (A,B) = T (A,C). The controversy decreases
inversely proportionally to the difference between T (A,B) and T (A,C). Based
on these observations, we can state that also in this case, the behavior of
TC(A,Z) fully reflects our desired concept of controversy.

Normalized Trust Controversy. From the previous analysis, we can find that
when the trust range is [0, 1], max(δ) = 0.5 and the maximum controversy is
TC(A,Z) = 0.25, for any couple of nodes (A,Z) in a directed network. To ease
comparability and readability of Trust Controversy values we then define the
Normalized Trust Controversy NTC as reported in Eq. 9:

NTC(A,Z) =
TC(A,Z)

((Tmax − Tmin)/2)2
(9)

so that, when trust varies in the range [0, 1], NTC also varies in the same range.

5 Experiments on Social Network Datasets

The proposed trust controversy measure was evaluated through experiments con-
ducted on real social networks. The subsequent experimental analysis is divided
into two phases: (i) study of the relation between the proposed controversy mea-
sure and the performance of selected trust inference algorithms and (ii) analysis
of the overall level of controversy in a trust network from a qualitative point of
view. Details about the experimental setting will be discussed next.

5.1 Experimental Setting

For our experiments we selected three publicly available, directed weighted trust
networks: Advogato, Residence hall [1] and Adolescent health [9]. The main
structural characteristics of the evaluation datasets are summarized in Table 1.
The Advogato network is a de-facto benchmark for trust analysis tasks, where

Table 1. Main structural characteristics of the evaluation network datasets

Data # nodes # links Avg. degree Avg. path length Cluster. coef. Assortativ.

Adolescent Health 2, 539 12, 969 10.216 4.52 0.142 0.251

Advogato 7, 422 56, 508 7.61 3.79 0.093 −0.069

Residence Hall 217 2, 672 24.627 2.33 0.304 0.096
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edges are labeled according to three different levels of certifications (trust links),
namely master, journeyer, apprentice; a user without any trust certificate is
called an observer. We built our Advogato network dataset by aggregating the
daily-snapshot graph files available at the www.trust\discretionary-let.org site,
which cover the period Jan 1, 2008–Apr 2, 2014. For each link from user u to user
v, in the final aggregated graph we kept the last certification given by u to v.
Residence hall [1] is a directed network containing friendship ratings between 217
residents living in a residence hall located at the Australian National University
campus. Nodes represent persons and edges represent the strength of friendship
ties in the range [1..5]. Adolescent health is a directed network created from a
survey that took place in 1994/1995. Each student was asked to list her/his 5 best
female and her/his 5 best male friends. Nodes represent students and directed
edges represent listed friendships, where higher edge weights indicate higher
levels of interactions. Edge weights are in the range [1..6]. The edge weights
(i.e., trust values) in the selected datasets were normalized in the continuous
range [0, 1] for comparability reasons. Trust values inferred by TidalTrust and
TiSoN algorithms (cf. Sect. 2) were taken as case in point to measure trust
controversy. For TISoN we used a uniform setting of the parameters, i.e., α =
β = γ = 1/3, as indicated by the authors in [4]. For reasons of comparability and
readability, we will always use the Normalized Trust Controversy NTC (Eq. 9)
in our experiments.

As previously stated, we divided our experimental analysis into two phases.
The first phase aims at studying to what extent the level of controversy of
the inferred trust values are related to the performance of a trust inference
algorithm, i.e., in terms of prediction error. The basic hypothesis here is that
low levels of controversy in the inferred trust values should correspond to a lower
prediction error rate, and vice versa (higher disagreement among the original
trust values should lead to more ambiguous inferred trust values, and thus to an
higher error rate). The focus of the first phase is then on the study of hidden
relations between controversy and error in trust inference processes. In order to

Fig. 7. Frequency vs. NTC (a) and MAE vs. NTC (b) distribution of trust edges in
Advogato

www.trustdiscretionary {-}{}{}let.org
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measure the prediction error, we performed a classic leave-one-out evaluation
method [4,5]: a random trust edge between two nodes (A,B) is removed from
the network, than the trust inference algorithm is used to calculate the inferred
trust value IT (A,B), than calculating the prediction error comparing IT (A,B)
to the original trust value of the removed edge T (A,B). The process is then
repeated for each edge in the network. The well-known MAE (Mean Absolute
Error) measure is used to represent the prediction error of a set of trust edges in
a trust network. The second phase is focused on the analysis of overall network
controversy. This analysis aims at showing in detail how much a certain trust
network is affected by controversial trust values, analyzing how there can be a
relation between certain domains and an high trust controversy.

5.2 Results

Frequency and MAE Distributions. Figures 7, 8 and 9 show the histograms
of Frequency vs. NTC (left side) and MAE vs. NTC (right side) distributions
of trust edges for the Advogato, Residence hall and Adolescent health datasets,
respectively. As regards the Frequency vs. NTC histograms, the range of NTC
values was divided in intervals of size 0.1, where each bin represents the per-
centage of trust edges falling in the specific NTC interval (so that all frequency
values sum up to 100%). In the MAE vs. NTC histograms, we show the distri-
bution of trust prediction error w.r.t. the level of NTC, i.e., the average error
for the edges showing an NTC in each specified interval.

It can be noted that the distribution trends of Frequency vs. NTC are very
similar for all datasets. Also, percentage of controversial trust edges decreases
when the controversy level grows up, i.e., there are a very few edges showing an
NTC value over 0.5 in all datasets. More in detail, in Residence hall (Fig. 8(a))
there are no trust edges with NTC higher than 0.3. It is worth noting that most
of the trust edges have a relatively low value of controversy (i.e., below 0.1), while
only a low percentage of trust edges are highly controversial. This phenomenon is
also evident for Advogato (Fig. 7(a)), where more than 80% of trust edges can be
inferred with NTC ≤ 0.2. This indicates that in these networks the trust edges
are supported by a strong agreement. The edge distribution is more balanced for
Adolescent Health (Fig. 9(a)), where there is a significant presence of trust edges
in all the ranges for NTC ≤ 0.5.

As regards the distribution trend of MAE vs. NTC, the MAEs distribution
generally grows with the level of controversy. This phenomenon is more evident
for Advogato (Fig. 7(b)), where the value of MAE increases of almost the 100%
(i.e., it doubles) when the NTC reaches a value of 0.3, hinting a strong relation
of inverse proportionality between controversy level and trust prediction accu-
racy. This analysis highlights an important correlation between the prediction
error and the controversy measure. In fact, when the value of inferred trust is
supported by the NTC controversy level, extra information is revealed about
how much the inferred trust is supported by the agreement from the network.
This can serve as an integrated and unsupervised estimator for trust inference
accuracy, e.g., using NTC to estimate the average error on inferred trust values.
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Fig. 8. Frequency vs. NTC (a) and MAE vs NTC (b) distribution of trust edges in
Residence hall dataset

Fig. 9. Frequency vs. NTC (a) and MAE vs NTC (b) distribution of trust edges in
Adolescent health dataset

Overall Network Controversy. Table 2 reports on the mean value of NTC
controversy of each trust network for different trust inference algorithms. The
mean value of NTC is an important indicator of the level of controversy in a
trust network, which indicates the level of agreement in a group.

We observe that average NTC values are relatively low in all datasets, with
a minimum of 0.09 for Residence Hall and a maximum of 0.22 in Adolescent
Health. However, this is not surprising, since we expect each network to contain
a significant group of users on which there is a general trust agreement (as
shown in the previous frequency distributions analysis). At the same time, the
percentage of highly controversial trust values has a strong bias on the overall
prediction error (as shown in the previous MAE distributions analysis): this
suggests that trust controversy is worth studying to support trust inference and
to gain a wider knowledge on the nature of a trust network.

As a first remark, it can be noted that mean NTC values are very similar
for Tidal Trust and TiSoN algorithms, indicating that different trust inference
algorithms can lead to inferred trust values which are controversial at the same
level. We also observe from Table 2 that mean NTC values have a strong relation
with the data domain and the original network structure. The Residence hall
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Table 2. NTC values on different trust networks, based on the trust values inferred
by TidalTrust and TiSoN algorithms.

Dataset TidalTrust TiSoN

Advogato 0.12 0.13

Residence Hall 0.09 0.09

Adolescent Health 0.22 0.20

dataset shows a very low level of controversy, meaning that there is a very high
level of agreement among the user nodes. This is probably due to the fact that it
is related to a small group of individuals living at the same residence, indicating
that a relatively small group with a high level of interaction tends to have similar
trust judgments about the single members of the group.

Conversely, Adolescent Health is characterized by the highest mean NTC,
with a wider distribution of controversial trust edges, meaning that there is a
higher disagreement among nodes. Also in this case, this reflects the nature of
the original group: the network was built by asking each student to list his/her
5 best female and 5 best male friends. The limitation on the number of trust
statements, and the tendency of adolescents to group in small well-separated
communities, make inferred trust values highly controversial in this dataset.

Finally, mean NTC value on Advogato is also relatively low, which can be
explained by the fact that it is a relatively big and active online community,
focused on a specific topic (i.e., open source software). In this case, the very
specific domain probably makes trust statements more homogeneous, i.e., when
a community is focused on a specific topic, it is expected that each member of the
community has a knowledge on the domain which allows him to give judgments
with a certain level of objectivity. Moreover, the relatively high size of network
should make trust inference algorithms more reliable (since the inferred trust is
based on a greater amount of information).

6 Conclusions

In this work, we addressed the problem of controversy in trust inference algo-
rithms, i.e., inferred trust values which are originated by discordant trust state-
ments. We observed that several cases of controversial situations can be often
found in trust networks and showed how existing trust inference algorithm can-
not handle these cases correctly. We proposed a novel trust controversy measure
to support trust inference in controversial cases. We conducted experimentation
on three real world trust networks, which showed how the controversy level of
inferred trust values is highly related to the prediction error, suggesting that our
trust controversy measure can serve as an integrated and unsupervised estimator
for trust inference accuracy. We also conducted a qualitative analysis based on
the overall mean value of controversy of each network, finding evident relations
between different data domains and controversy levels.
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Since this is a first step towards the study of controversy in trust networks,
several directions for future research remain open. First, based on the results
of our qualitative analysis, we aim to study how the level of controversy can
change when studied in community-based subnetworks, in order to highlight this
social aspect in a specific group. Second, we would like to extend our analysis
to a larger group of trust inference algorithms and trust network datasets, in
order to confirm our findings about the hidden relation of trust controversy with
different data domains and inference algorithms. Finally, it would be interesting
to define a measure for trust controversy also in global trust ranking scenarios.
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Abstract. We consider the problem of migrating keys from TPM 1.2
to the backwards incompatible TPM 2.0. The major differences between
the two versions introduce several challenges for deployed systems when
support for TPM 2.0 is introduced. We show how TPM 2.0 support can
be introduced while still maintaining the functionality specified by TPM
1.2, allowing a smoother transition to the newer version. Specifically, we
propose a solution such that keys can be migrated from TPM 1.2 to TPM
2.0, while retaining behavior with regard to e.g. authorization, migration
secrets, PCR values and CMK functionality. This is achieved by utilizing
new functionality, such as policies, in TPM 2.0. The proposed solution
is implemented and verified using TPM emulators to ensure correctness.

Keywords: Trusted computing · TPM · Migration

1 Introduction

There are different versions of the TPM, which differ from one another in several
ways. In this paper we consider TPM 1.2, introduced in 2003, and TPM 2.0 which
was introduced in 2012. TPM 2.0 is not backwards compatible with TPM 1.2,
but nevertheless TPM 2.0 chips are now available [4] and have started to ship
in devices [5].

We consider the process of migrating from the TPM 1.2 generation chips,
to the newer TPM 2.0. As new equipment comes with TPM 2.0 chips, we want
to be able to move or copy keys from TPM 1.2 to the new chips, while still
maintaining the same functionality. However, because of the lack of backwards
compatibility, there is no such support built into the TPM specifications. This
presents a problem when we would like to use the same keys even when moving
to a newer TPM, for example to be able to decrypt previously encrypted data. In
addition, we may want to continue to use these keys with the same functionality,
despite the differences between the specifications.

The lack of backwards compatibility means that this migration has to be done
manually. Keys have to be converted between different formats, and adapted to
the different feature sets of the two standards. Some features in TPM 1.2 have no
direct equivalent in TPM 2.0, but identical or similar behavior can be achieved
c© Springer International Publishing Switzerland 2016
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by using new features of TPM 2.0. The goal of this paper is to give a solution for
how to achieve this for all different key types and migration alternatives in TPM
1.2. As an example, in TPM 1.2 there is a concept of a migration secret, which
authorizes the migration of a key to another TPM. This migration secret has no
direct counterpart in TPM 2.0, but the same behavior can be implemented using
functionality only available in the TPM 2.0 specifications. Another example is
the use of Certifiable Migratable Keys (CMKs) in TPM 1.2, which also requires
a non-trivial design by expressing the functionality as policies in TPM 2.0.

We describe a process which allows us to migrate keys from a TPM 1.2 to a
TPM 2.0. We start by determining a set of requirements, and present a solution
which performs migration according to the presented requirements. We start
by implementing the equivalent functionality of TPM 1.2’s migration secret in
TPM 2.0, using constructions only available in the newest TPM version. We
then look at keys bound to Platform Configuration Register (PCR) values, and
present a way to handle the incompatibilities in key format between TPM 1.2 and
TPM 2.0. We also present a solution for CMKs, such that equivalent behavior is
achieved in both TPM versions. We do not consider the case of TPM 2.0 to 1.2
migration, since it is not likely that new TPM 1.2 equipment will be deployed
once equipment with TPM 2.0 has been deployed.

The paper is organized as follows. Section 2 presents a brief overview of TPM
1.2 and 2.0. In Sect. 3 we present our goals and requirements. In Sect. 4 we
describe our proposed solution for different relevant scenarios, which are then
extended to the case of CMKs in Sect. 5. Section 6 describes the implementation.
Finally in Sect. 7, we discuss some related work. Section 8 concludes the paper.

2 Overview of TPM 1.2 and TPM 2.0

This section will give a short introduction to TPM 1.2 and 2.0, with focus on issues
related to key migration. For a complete review, consult the specifications [15,16].

2.1 Overview of TPM 1.2 and Certifiable Migratable Keys

A TPM 1.2 provides a key hierarchy of asymmetric keys. Keys can be of different
types, for example storage keys, signing keys, or decryption keys (the last called
binding key in TPM 1.2). Since the keys are asymmetric, they consist of two
parts: one public and one private part. The private part of every key is encrypted
with the public part of the parent key. Only a storage key can be the parent of
another key.

Certain operations on the TPM, e.g. some commands related to migration,
must only be performed by the TPM owner. These operations are authorized by
proving knowledge of an owner secret, which is set when someone takes ownership
of the TPM. To be able to use the private part of a key, e.g. to decrypt or sign
data, the user must provide a usage secret. This secret is stored inside the key
in the TPM, and can be unique for each key.



Enabling Key Migration Between Non-compatible TPM Versions 103

Copying keys between different TPMs is called migration, and was intro-
duced in TPM 1.1 [13]. To authorize such an operation the TPM owner must first
authorize the destination using the command TPM AuthorizeMigrationKey. We
note that the TPM owner can authorize any destination, thus making it pos-
sible to migrate the key to any TPM, or even to a keypair generated outside
any TPM. In addition, the user performing the migration must prove knowl-
edge of the migration secret, which is a secret set on key creation. If this secret
is not known, the key is not migratable. This is verified during execution of
TPM CreateMigrationBlob, which outputs a data blob which can be trans-
ferred to the destination TPM. At the destination, the key can be loaded by
TPM LoadKey2, possibly after conversion by TPM ConvertMigrationBlob.

In TPM 1.2, CMKs were introduced. Their migration is further restricted,
such that instead of the migration secret above, an authorization from a trusted
entity, called the Migration Selection Authority (MSA), is required. The MSAs
are chosen at key creation time. During the migration, the MSA must approve
the destination, either implicitly by migrating the key to the MSA itself, or
by signing a ticket containing the destination. The signature is done using the
private key of the MSA. By signing the ticket, the MSA approves the migration
of the specified key to a specific destination. This signature is required by the
source TPM to actually perform the migration.

2.2 Overview of TPM 2.0

In TPM 2.0 the asymmetric key hierarchy has been generalized, and has been
replaced with an object hierarchy. Objects can be asymmetric or symmetric
keys, or data blobs. The type of the object is determined by a set of flags on
the object: sign, decrypt, and restricted. An object with the flags decrypt and
restricted set is a storage key, since it can be used to encrypt and decrypt the
private parts of child keys, and the restricted bit tells the TPM to operate only
on data prepared by the TPM (for example keys). However, the storage keys
in TPM 2.0 protect its child keys by using symmetric encryption instead of
asymmetric. The symmetric key is derived from a seed included in the key itself.
In addition to this, TPM 2.0 allows for a wide range of ciphers and algorithms,
including different symmetric ciphers and hash functions.

In TPM 2.0, migration has been renamed to duplication. Indeed, this is a
more appropriate terminology, since keys are not removed from the source when
performing a migration. Instead the key will exist in both TPMs. There are two
flags connected to the duplicability of a key: fixedTPM and fixedParent. A key
with fixedTPM set can never leave the TPM, and can thus not be duplicated.
The other flag, fixedParent, tells us if the key is fixed to its parent. If the flag is
set, the key cannot be explicitly duplicated, but it may still be loaded in another
TPM if it is possible to duplicate its parent.

Just like in TPM 1.2, use of the private part of a key requires a usage secret,
but there is no direct equivalent of the migration secret. Instead, a more general
authorization mechanism has been introduced in TPM 2.0, namely policies.
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2.3 Policies in TPM 2.0

A major addition in TPM 2.0 is the introduction of policies. A policy can be
used to authorize different operations on an object in the hierarchy. The policy is
set at creation time, by including a value authPolicy in the object. This value is
created by repeatedly hashing different values from different policy commands.
Possible commands are for example policies based on time, signatures, or secret
values. Different policies can also be combined using OR.

Before executing a command using the object, a policy hash must be built
in a policy session. The session also includes context specific values which are
checked during command execution, for example if we are authorizing duplication
or usage of the object, or what authorization method to use. The resulting policy
hash of the policy session is then compared to the authPolicy in the object to
authorize the command execution.

In this paper we are mostly concerned with duplication and authorization.
Thus, we are only interested in a subset of the different policy commands:

– TPM2 PolicyAuthValue requires the usage secret of the object being autho-
rized, and does the authorization using a HMAC.

– TPM2 PolicyAuthorize allows us to modify an existing policy. A new policy
is signed using the private key of an authority, and if this signature is valid,
the policy is included in the policy session.

– TPM2 PolicyCommandCode limits the authorization to a certain command, for
example to authorize duplication only. This is done by setting a command
code in the current policy session.

– TPM2 PolicyDuplicationSelect limits the allowed destination parent when
performing a duplication.

– TPM2 PolicyOR is a logical OR policy, true if the current policy hash matches
any of the conditions in this policy.

– TPM2 PolicyPassword requires the usage secret of the object being authorized,
and does the authorization using the password in clear.

– TPM2 PolicyPCR requires the PCRs (see Sect. 2.4) to have a specific set of
values.

– TPM2 PolicySecret requires the usage secret of another object on the TPM.
– TPM2 PolicySigned requires a digital signature.

2.4 Platform Configuration Registers

Both TPM 1.2 and 2.0 have a number of Platform Configuration Registers
(PCRs). Each PCR stores a hash value, which is created by repeatedly call-
ing TPM Extend or TPM2 Extend. The extend operation depends both on the
previous PCR value, and on the new data. This can be used to store measure-
ments of hardware configuration and software on the host. Keys in both TPM
1.2 and 2.0 can be bound to PCR values, such that the use of a key requires
certain PCRs to be in a specified state. This ensures that such keys are only
usable in a known environment. In addition, the PCR values can be read by
using the commands TPM PCRRead and TPM2 PCR Read.
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2.5 Comparing Migration in TPM 1.2 and TPM 2.0

From the descriptions above we see that when it comes to migration, there are
several differences between the two TPM versions.

To perform a migration of a (non-CMK) TPM 1.2 key, the following criteria
must be fulfilled:

1. The key must have been created with the key flag migratable set to TRUE.
2. The migration secret must be known.
3. The TPM owner must authorize the migration destination.
4. The usage secret of the parent key on the source TPM must be known.
5. The usage secret of the parent key on the destination TPM must be known.

In comparison, the following criteria must be fulfilled when migrating a TPM
2.0 key:

1. The key must have fixedParent CLEAR.
2. The command code of the policy session must be TPM CC Duplicate, i.e. the

key must have a policy which allows for duplication.
3. The usage secret of the parent key on the source TPM must be known.
4. The usage secret of the parent key on the destination TPM must be known.

We first note the similarities, namely that for both TPM versions, the usage
secret of the parent key on the source TPM must be known, such that the key
to be migrated can be loaded into the TPM. In addition, the usage secret of
the destination TPM’s parent key must also be known, such that the key to be
migrated can be added as a child key.

In TPM 1.2 there is an explicit flag which tells whether or not the key is
migratable. This is not the case in TPM 2.0, where there are two flags which
control the migratability of a key. If fixedParent is SET, then the key has a
fixed parent, and cannot be migrated directly (however, it could still be migrated
if its parent is migratable). If fixedTPM is SET, the key can never be migrated.
We note that it is not possible to create a key with fixedParent CLEAR and
fixedTPM SET, so a sufficient condition is that fixedParent is CLEAR.

Another difference is the authorization of the migration. In TPM 1.2 this is
done by proving knowledge of the migration secret. In TPM 2.0, it is done with
a policy session that authorizes the migration. We note that the policy session
is a more generic approach, which supports multiple ways of authorizing the
migration through the use of any policy command. The only requirement is that
there exists a command in the chain of policy commands that explicitly sets the
commandCode to TPM CC Duplicate, since duplication is a special authorization
role in TPM 2.0.

Finally, we note that there is no requirement for owner authorization when
performing a migration in TPM 2.0.

Looking at the migration of a CMK in TPM 1.2, the following criteria must
be fulfilled:

1. The MSA must authorize the migration destination.
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2. The TPM owner must authorize the migration destination.
3. The usage secret of the parent key on the source TPM must be known.
4. The usage secret of the parent key on the destination TPM must be known.

Compared to the non-CMK criteria described above, the migration secret
criterion is replaced by the approval of the MSA. TPM 2.0 does not have the
concept of CMKs, but the behavior can be implemented by the use of policies.
Details will be presented later in Sect. 5.

3 Goals

We want to migrate a migratable key from a source TPM (TPM 1.2), hereafter
called TPMS, to a destination TPM (TPM 2.0), denoted TPMD. The key to be
migrated from TPMS to TPMD is denoted K.

If the source key is a CMK, then the migration must also be approved by an
already existing trusted third-party, called the authority/MSA. This third party
may, or may not, have a TPM module installed, but let’s assume that this is the
case, and call this party TPMA.

When migrating a key between two TPMs of the same version (i.e. either
1.2 → 1.2, or 2.0 → 2.0) we can immediately import the binary migration blobs
produced by the source TPM into the destination TPM. We can also be sure that
all features are supported. However, when we do a migration from 1.2 → 2.0 the
migration blob must be converted manually, taking into account the differences
between the two versions.

We introduce a conversion authority which is a trusted entity that performs
the actual binary conversion between 1.2 and 2.0, and denote this with TPMC.

Introducing this trusted entity does not lower the security of our proposed
solution. If the key K is a CMK, there is already a trusted third-party (the
authority/MSA). If a new, separate, conversion authority is undesirable, it would
be possible to extend the MSA to also be the conversion authority.

In the case of a non-CMK, the source key owner is in full control of K. This
means that the owner may migrate it to any destination, including a destina-
tion outside of a TPM. Thus the owner has full responsibility and opportunity
to choose a trusted conversion authority. It is possible to have the conversion
authority on either the source or destination, a separate third system is not
required. Seeing the conversion authority as a separate entity does however pro-
vide a clear separation of concerns, and simplifies reasoning in this paper.

3.1 Requirements

We want our solution to maintain the same functionality with respect to autho-
rization when moving from TPM 1.2 to TPM 2.0. Thus, if an entity is authorized
to migrate or use a key at the source TPM, it should have the possibility and
authorization to do so also at the destination TPM.

To maintain the functionality when moving between the different TPMs, we
identify a number of requirements which must be supported by the conversion
authority.
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R1. Keep the same private and public part of the RSA key, such that it can be
used to decrypt previously encrypted data, or create identical signatures.

R2. Keep the same authorization requirements for key usage.
R3. Keep the same authorization requirements for key migration.
R4. If a key requires a certain state (PCR values) of the TPM, the same state

should be required after migration.
R5. Support all key types of the TPM 1.2, i.e., signing, decryption, and storage

keys. Both non-CMK and CMK keys should be supported.
R6. Once migrated to a TPM 2.0, it should be possible (if authorized) to further

migrate the key to another TPM 2.0.
R7. The migration should be deterministic, such that if the same key is migrated

twice, the result at the destination TPM should be identical after both
migrations.

The motivation for R7 is that when migrating a storage key in TPM 1.2
or TPM 2.0, its child keys are implicitly migrated as well, since they can just
be loaded at the destination TPM with the respective Load-commands. This
allows a hierarchy to be moved incrementally, simply by moving the child keys
to the destination. However, when migrating keys between TPM 1.2 and 2.0,
we will have to perform a conversion step. To be able to perform the migration
incrementally at different occasions, the steps involved must be deterministic.

4 Migration Scenarios

We will look at the following different migration scenarios:

1. Migration of a simple, single, key from TPMS to TPMD. Only signing keys
and decryption keys, without considering PCR values.

2. Migration of a simple, single, key requiring specific values of the PCRs.
3. Migration of a storage key, including its child keys.
4. All of the scenarios above, for CMKs.

4.1 Signing or Decryption Key

In this case we want to migrate a signing or decryption key from TPMS to
TPMD. Clearly we must retain both the private and public portions of the key
when migrating to TPMD. Furthermore we assume that this key is the child key
of the storage root key (SRK), but the steps will be identical for any parent key.

Because of the differences between TPM 1.2 and 2.0, both in functionality and
in the actual binary migration blob format, we must do a conversion of the binary
migration blob before importing it into TPMD. This means that we cannot
simply perform the migration to the SRK of TPMD. If we did, the migration
blob could only be decrypted by the destination TPM, which would also have to
perform the actual conversion. This is not possible, since the conversion cannot
be performed inside the destination TPM. Rather, we must use the previously
introduced conversion authority, TPMC. The conversion authority has its own
RSA keypair, which will act as an intermediate destination during the migration.
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Fig. 1. Overview of migration using the conversion authority.

The outline of the conversion is as follows, also depicted in Fig. 1.

1. The owner of TPMS, and the owner of K authorize the migration of K
to TPMC, by proving knowledge of the owner secret and migration secret
respectively.

2. A migration blob is created by the command TPM CreateMigrationBlob.
3. The migration blob is first decrypted by TPMC, and then converted to a

TPM 2.0-format, and migrated to the final destination TPMD.
4. TPMD imports the migration blob and now has its own copy of K.

Conversion. The conversion authority will perform the conversion of the key.
The following are some important steps in this process.

TPM 2.0 supports a wide range of hash functions, and each key has a property
nameAlg which stores the algorithm for the key. We set nameAlg of the TPM
2.0 key to be SHA-1, since that is the only supported hash algorithm in TPM
1.2. After this, the usageAuth in the TPM 1.2 key (which is the SHA-1 hash of
some secret) can be moved as-is to the TPM 2.0 formatted key.

Next, we want to move the public and private part of the source key. The
public part of the key, which is simply a structure from the TPM 1.2 specification,
must be sent separately to TPMC, since it is not included in the migration blob.
This contains the public modulus and exponent.

The private part of the key, which we obtained by manually decrypting the
migration blob with the key of TPMC, can be copied directly to the sensitive
structure in TPM 2.0, since both TPM specifications states that the private part
of RSA keys is one of the two RSA primes.

Migration of the Migration Secret. In TPM 1.2, each key has a migration
secret, in addition to usage secret. If the value of this secret is tpmProof, no
migration is possible since tpmProof is a value internal to the TPM. However,
if the migration secret is the hash of a secret known to the user, migration is
possible.
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In TPM 2.0 there is no direct equivalent of the migration secret (called
migrationAuth) in TPM 1.2. An analysis of the migration secret functional-
ity provides the following four options.

1. Disallow any further migration, that is, once migrated to TPM 2.0, no more
migrations will be possible. This violates requirement R6.

2. Always allow migration, that is, anyone can migrate the key. This violates
requirement R3.

3. Only allow migration if the user knows the usageAuth. This can be imple-
mented through a simple policy. However, this violates requirement R3.

4. Construct a more complex policy, which emulates the migrationAuth behav-
ior of TPM 1.2.

Of these options, option 4 is the only one which fulfills our requirements, and
most closely resembles the original behavior of TPMS. Thus, when migrating K
to TPMD, we wish to keep the same migration secret, such that only entities
with knowledge of the migration secret can migrate the key further.

In TPM 2.0, migration authorization is performed using policies. Thus, to
keep the same migration secret, we must find a policy scheme that mimics the
behavior of TPM 1.2.

An initial thought may be to utilize the commands TPM2 PolicyAuthValue
or TPM2 PolicyPassword command in combination with setting the command
code with TPM2 PolicyCommandCode(TPM CC DUPLICATION), which would allow
migration to any destination as long as a secret is known. However, both
TPM2 PolicyAuthValue and TPM2 PolicyPassword use the authValue of the
key, which is the same secret which is required for regular usage of the key. This
would correspond to our discarded option 3 in the list above.

In the general case, the migration and usage secret will be different, and thus
these two policy commands do not offer a solution to our problem. Another pos-
sibility is to use TPM2 PolicySecret. This policy command uses the authValue
of another entity in the TPM. Thus we could imagine a scenario where we
could create a new, separate entity whose only purpose is to keep the previous
migrationAuth as its own usage auth. In this way, we could create a policy with
TPM2 PolicySecret which uses this extra entity.

However, we have chosen another approach, which somewhat mimics the
scenario where we have an MSA that approves our migration. This makes our
proposed solution more consistent when we later on start considering CMKs.
The proposed solution is depicted in Fig. 2.

The usageAuth from our TPM 1.2 key is copied directly to the authValue
field of the TPM 2.0 key. We also copy the migrationAuth from the TPM 1.2
key to the authValue field of a separate, newly created, signing key, called the
sibling key (Ksib), on the TPM 2.0. Thus, to be able to create signatures using
the sibling key, we must know the authValue of this key (which is the original
migrationAuth).

Now, to control the migration of the key, we include a policy in the
authPolicy field of the key K at the destination TPM. We construct the policy
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Fig. 2. Migration secret in TPM 2.0

such that a signature from the sibling key is required for a migration to suc-
ceed. To construct such a signature, the user clearly must have knowledge of the
migration secret.

Constructing a policy which validates a signature can be done by using the
policy command TPM2 PolicySigned. The policy will require the TPM user to
present a signature from the sibling key (thus proving possession of the migration
secret), and if valid, TPM2 PolicyCommandCode(TPM CC Duplicate) is used to
authorize a migration to any destination, mimicking the behavior of TPM 1.2.

Furthermore, in the authPolicy field of the sibling key we include a policy
which allows migration of the sibling key as long as the authValue is known. This
allows us to migrate both the sibling key and K to another TPM 2.0 destination,
which fulfills requirement R6.

When creating Ksib, care must be taken to ensure that we get a deterministic
creation. Simply creating a new, random, RSA keypair would violate require-
ment R7, since every migration of K would result in different Ksib, and thus
different authPolicy in K. Instead, we must base the generation of Ksib on K,
to ensure that the generation is deterministic, yet unique for all keys. Assuming
that the original private part of K, the pair of primes (p, q), is random, we use
a hash of (p, q) as the seed to the prime number generator to construct new
primes for the sibling key. This is similar to how TPM 2.0 generates primary
objects (such as the SRK) using the primary seeds in the TPM. The process is
depicted in Fig. 3. Since we assumed that the original (p, q) were random primes,
our derived seed can also be considered random, thus giving a deterministic, but
still secure Ksib. Clearly, if someone has knowledge of (p, q) of K, they would be
able to derive Ksib, and authorize a migration. However, if (p, q) of K is already
known, there is no reason for an attacker to do a migration, since the private
part of K is already compromised.

Owner Secret. In TPM 1.2 the TPM owner is also required to authorize the
migration. However this is not the case in TPM 2.0. We propose a solution where
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Fig. 3. Generating the primes for Ksib based on (p, q) of K.

an extra signing key is introduced, similar to the sibling key above. However, dif-
ferent from the owner secret, this key is not unique per TPM, but rather per key.
In a sense, it becomes an extra migration secret. It does deviate slightly from the
behavior in TPM 1.2 since this owner signing key will have to be identical on all
TPM 2.0 chips. The secret of the owner signing key is selected during the initial 1.2
to 2.0 migration, and the key will be created by the conversion authority. Just like
for the migration key, the actual verification of the signature is done by including
a TPM2 PolicySigned in the policy chain.

4.2 PCR Bound Keys

In TPM 1.2, key usage can be restricted such that both certain PCR values
(through pcrSelection) and knowledge of the usageAuth is required. In TPM
2.0, this must be implemented through the use of policies. As can be seen in [16,
Part 1, Annex A], this can be realized by combining the use of TPM2 PolicyPCR
and TPM2 PolicyAuthValue. When converting the key to TPM 2.0-format, it
is important to set the userWithAuth-attribute to CLEAR, since otherwise the
user could circumvent the PCR requirement by only providing the authValue.

When migrating and converting from 1.2 to 2.0, the PCR values need to
be moved from the pcrSelection structure and instead be included in the
TPM2 PolicyPCR policy.

However, it is not possible for TPMC to extract the PCR values from the TPM
1.2migration blob.This is because theTPM1.2PCR structure present in theTPM
1.2key only contains thehash over a structure containingmultiplePCRvalues.The
exact steps to calculate this hash is described in [15, Part 2, Sect. 5.4.1].

To be able to convert the PCR values to a format suitable for TPM 2.0, we
would require access to each individual PCR value. In TPM 2.0 we will use the
hash of the concatenation of all PCR values in the TPM2 PolicyPCR command,
which is not the same structure that were used in TPM 1.2.

Thus, since we cannot extract each individual PCR value from the compos-
ite hash of the key in TPM 1.2, we cannot reconstruct a TPM 2.0 key bound to
the exact same PCR values, at least not given only a migration blob. Therefore,
the PCR values from TPMS must be provided separately to the TPMC during the
conversion step.

A migration using TPM CreateMigrationBlob does not require that the PCR
values of the TPM are in the expected state. This means that we cannot be sure
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that reading PCR values using TPM PCRRead returns the PCR values required to
use the key. Instead, this must be verified by the conversion authority. Assum-
ing that the PCR values, and the corresponding PCR index, are sent to the
conversion authority, it can verify that these are indeed the correct values by
calculating the hash in the same way as the TPM 1.2, and then compare it to
the hash in the migration blob. If they match, TPMC can then use the PCR
values when converting the key for TPM 2.0.

Assuming the correct PCR values are sent to the conversion authority, we can
construct a policy using TPM2 PolicyPCR followed by TPM2 PolicyAuthValue,
which when combined will require both the correct PCR values and the correct
usage secret.

However, we must also combine this with the policy for migration authoriza-
tion in Sect. 4.1, such that we both can have PCR requirements and migration
requirements. This does not mean that a migration requires correct PCR values
(this is not required in TPM 1.2 either), but that one of the two policy branches
is satisfied.

Thus, we create a policy with two branches, combined with TPM2 PolicyOR,
as in Fig. 4. Either of the two branches can be satisfied, if the left branch is
satisfied, key usage is granted (if the PCR values are correct). If the right branch
is satisfied, migration is authorized.

TPM2 PolicySigned

TPM2 PolicyPCR TPM2 PolicySigned

TPM2 PolicyAuthValue TPM2 PolicyCommandCode

TPM2 PolicyOR

Fig. 4. Policy for PCR combined with migration authorization.

4.3 Key Hierarchies

Up until now, we have only considered the case where K is either a signing or a
decryption key. If K is a storage key with child keys, we must be able to migrate
the complete hierarchy as well.

Normally, when migrating keys either from 1.2 to 1.2, or from 2.0 to 2.0,
there is no need to explicitly migrate the child keys. If the parent key is migrated
and thus available in the destination TPM, all child keys can simply be loaded
directly with TPM LoadKey2 or TPM2 Load, using the same encrypted private part
on both the source and destination, without any migration.

However, due to the difference in encryption and overall key storage format
between 1.2 and 2.0, a more elaborate scheme is required when migrating a
hierarchy from 1.2 to 2.0.
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Recall that in TPM 1.2, the parent’s public key is used to encrypt the child
key’s private part. Thus, asymmetric encryption is used. However, in TPM 2.0,
symmetric encryption is used instead. The child key’s private part is encrypted
using a symmetric key derived from a seed in the parent key. Normally, this
seed is generated upon key creation, and is based on data from the RNG in
the TPM. However, due to requirement R7, we require a deterministic seed.
Otherwise, subsequent migrations of the same hierarchy would yield different
seeds, and child keys would be encrypted with different symmetric keys, even
though they share the same parent.

When migrating a complete key hierarchy, we introduce extra requirements
on our solution:

1. When migrating a hierarchy, only the migration secret of the hierarchy’s root
key should be required to migrate the root and all of its descendant keys.

2. It should be possible to migrate parts of a hierarchy at different occasions.

Assume the hierarchy of keys given in Fig. 5. If we want to migrate K, includ-
ing its child keys C1 and C2, we first perform a migration of K as usual, i.e. just
like if it was a signature or decryption key. However, TPMC can see that K is a
storage key, and if this is the case we include a seed inside the TPM 2.0-version
of the key.

SRK

K

C1 C2

Fig. 5. Key hierarchy

We calculate the seed as seed = SHA1(p‖q). The reason for using SHA-1 is
because the seed must be of the same size as the nameAlg of the key, which is
set to SHA-1 to be able to use the same usageAuth as in TPM 1.2.

When migrating a hierarchy, we also provide TPMC with the encrypted pri-
vate parts of the child keys of K, which we wish to migrate to TPMD. When
TPMC receives this bundle of keys, it can use the private parts of K to decrypt
all the other encrypted private parts of the child keys. The child keys can then be
converted to TPM 2.0-format, and re-encrypted using the symmetric key derived
from the seed.

This approach will work for hierarchies of any depth. However, the hierarchy
must be preserved inside the bundle, since TPMC must have access to the parent
of a child key to be able to decrypt it. We can also migrate only parts of a deep
hierarchy, as long as all relevant parents leading to K are included.
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When migrating keys in the hierarchy, their migration secret must be pre-
served just as before. This means that in addition to converted child keys, we
will also get sibling keys for each converted child key. The sibling keys are placed
so that they share parent with the key that they correspond to, see Fig. 6.

SRK

K

C1 C2

TPM 1.2 (TPMS)

SRK

K Ksib

C1 C1sib C2 C2sib

TPM 2.0 (TPMD)

Fig. 6. Key hierarchy and sibling keys

5 Certifiable Migratable Keys

In TPM 1.2, a CMK can only be migrated with the approval of both the TPM
owner and a third-party Migration Selection Authority (MSA).

In TPM 2.0, there is no direct equivalent of CMK, but the behavior can
be achieved by using policies as in Fig. 7. TPM2 PolicyAuthorize allows us to
replace the previous commands in the policy chain, in this case, it allows us to
replace TPM2 PolicyDuplicationSelect with another destination, as long as
we can present a valid signature of the policy hash. This signature is done by
the authority (MSA in TPM 1.2 terminology).

In this way the MSA must approve the destination before any migration can
be performed, and the approval is only valid for a specific destination.

TPM2 PolicyDuplicationSelect

TPM2 PolicyAuthorize

Fig. 7. Policy for CMK.

A complication introduced by CMKs is that TPM 1.2 introduces restrictions
on the place of CMKs in the key hierarchy. A CMK cannot be the child of a
migratable key, nor can it be the child of another CMK. When we convert a
CMK into TPM 2.0 format, we must ensure that these restrictions still hold.
Otherwise we would violate requirement R3, since we would be able to further
migrate the child CMK if we were authorized to migrate the migratable parent.
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Thus, when migrating a CMK, we must ensure that the destination parent is
not a migratable key. This is the responsibility of the MSA, and is not discussed
any further.

We consider the three cases in the previous section, and construct the
required policy for each case.

5.1 Signing or Decryption Key

When using CMKs, there is no migration secret that the key owner needs to
present. In Sect. 4.1 we presented a solution where two TPM2 PolicySigned com-
mands were included in the authPolicy of K. In the CMK case, we can remove
one of the signatures, since there is no migration secret. This also means that
no sibling key is required, we can consider the key of the MSA as our (remote)
sibling key.

Since there is no built-in requirement in TPM 2.0 for the owner to authorize
a migration, we introduced an owner signing key. This signature is still required
in the CMK case.

We can do this by simply adding the TPM2 PolicySigned command to the
end of the chain. Note that adding it to the start of the chain would make it
possible for the authority to override the owner authorization, which we want to
avoid. Thus the chain now look like in Fig. 8. TPM2 PolicyDuplicationSelect
will set the command code to TPM CC Duplicate, so no explicit call to set the
command code is required after TPM2 PolicySigned.

TPM2 PolicyDuplicationSelect

TPM2 PolicyAuthorize

TPM2 PolicySigned

Fig. 8. Policy for CMK, with owner authorization.

5.2 PCR Bound Keys

We start with the policy from the previous section, and add a PCR policy, similar
to what we did in Sect. 4.2. Again, we get two different branches of the policy,
one for usage, and one for migration, see Fig. 9. Just like before, either of the two
branches can be satisfied. If the left branch is satisfied, key usage is granted (if the
PCR values are correct). If the right branch is satisfied, migration is authorized,
because TPM2 PolicyDuplicationSelect will set the correct command code for
migration.
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TPM2 PolicyDuplicationSelect

TPM2 PolicyPCR TPM2 PolicyAuthorize

TPM2 PolicyAuthValue TPM2 PolicySigned

TPM2 PolicyOR

Fig. 9. Policy for PCR combined with migration authorization and CMK.

5.3 Storage Keys

Recall the restrictions on CMKs in the key hierarchy. A CMK may not have a
migratable parent, neither a regular migratable key nor a CMK. The effect is
the only possible key hierarchy which includes CMKs is a hierarchy where the
root node is a CMK. This means that we can proceed as in Sect. 4.3, with the
additional requirement that the root CMK key gets a policy just like in Sect. 5.1.

6 Implementation

To ensure that our conversion process works as intended, we have implemented
all the above test cases, and verified their behavior. The TPMs have been emu-
lated in software. For TPM 1.2, IBM’s Software TPM version 4720 [3] has been
used. For TPM 2.0, Microsoft’s TPM2 Simulator version 1.1 [7] has been used.

To simplify the implementation, we have assumed the following:

– All TPM 1.2 keys are in the TPM KEY12-key format.
– K is 2048 bit RSA, two primes. Two primes and RSA is a requirement for

migratable keys according to [15, Part 2, Sec. 10.7].
– The default RSA exponent (216 + 1) is used for all keys. For storage keys this

is also required by the TPM 1.2 specification.

The TPM 1.2 specification in [15] has no defined formats on how to send
migration packages between the different entities. It does, however, exist a spec-
ification [14] which describes an XML schema for supplying information about
keys during the migration phase. This specification is, however, not fully updated
for TPM 1.2, but rather based on TPM 1.1, and thus we have not used this
XML-based approach in our implementation.

Instead, since our implementation was primary meant for testing and eval-
uation purposes, we have simply passed files with binary content between the
different entities.

7 Related Work

While there are few widespread applications that rely on the functionality pro-
vided by the TPM, there are examples of existing pieces of software, and some
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other proposed use cases. From Microsoft we have both Bitlocker [6], used for
full-disk encryption, and Virtual Smart Cards [8], which uses the TPM instead
of physical smart cards to store private keys. Examples of proposed use cases for
the newer TPM 2.0 are for example the use of TPM for tamper-proof logging
[11], or the use of TPM 2.0 for electronic identities [9].

Related to the challenge of providing consistent behavior between the two
TPM versions, in [2], the authors design a unified API which implements their
functionality on both TPM 1.2 and 2.0. In contrast to this work, they consider
the functionality for a certain use case, and then create two different and separate
implementations, one for each TPM version, with no possibility of key migration
between them.

The use of TPMs to provide trusted computing functionality within cloud
computing is an area where there also has been development and research. In [10]
the use of trusted computing in cloud platforms is discussed, and in [12] trusted
snapshots of running virtual machines is discussed. Related to migrating keys
between TPMs are ways of sharing keys between different TPMs. A cloud-based
solution is proposed in [1].

8 Conclusions

We have proposed a solution to make it possible to move or copy key material
from TPM 1.2 to TPM 2.0. Even though the two TPM versions differ signifi-
cantly in functionality, and offer no backward compatibility, we have presented a
design which allows the migration of keys between different versions, while still
maintaining the same functionality. This allows users of the current TPM 1.2
version to start using the newer TPM 2.0 chips, still keeping the same encryption
keys and functionality. In this way, previously encrypted data can be decrypted
with the same set of authorization requirements as before. The required func-
tionality was first identified and organized as a set of requirements. After this
we looked at several different cases, where each case corresponded to different
properties of the source key on the TPM 1.2.

We presented a way to provide the migration secret functionality of TPM
1.2 also in TPM 2.0. By introducing sibling keys and using policies, we can
maintain the same authorization requirements in both TPM versions. We also
handle migration of PCR bound keys from TPM 1.2 to TPM 2.0. Because of the
differences in key format between the two versions, the migration requires PCR
values to be sent to the conversion authority. The conversion authority can then
verify the values against the source key before including them in the destination
key. In addition to this, we showed how the TPM 1.2 CMK functionality can
be expressed in terms of TPM 2.0 policies, and combined this with the previous
results so that migration of all key types of TPM 1.2 are covered. Finally the
different proposed solutions were implemented and tested using TPM emulators.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful and valuable comments.
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Bundling Evidence for Layered Attestation
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Abstract. Systems designed with measurement and attestation in mind
are often layered, with the lower layers measuring the layers above them.
Attestations of such systems, which we call layered attestations, must
bundle together the results of a diverse set of application-specific mea-
surements of various parts of the system. Some methods of layered attes-
tation are more trustworthy than others especially in the presence of an
adversary that can dynamically corrupt system components. It is there-
fore important for system designers to understand the trust consequences
of different designs. This paper presents a formal framework for reason-
ing about layered attestations. We identify inference principles based on
the causal effects of dynamic corruption, and we propose a method for
bundling evidence that is robust to such corruptions.

1 Introduction

Security decisions often rely on trust. Many computing architectures have been
designed to help establish the trustworthiness of a system through remote attes-
tation. They gather evidence of the integrity of a target system and report it to a
remote party who appraises the evidence as part of a security decision. A simple
example is a network gateway that requests evidence that a target system has
recently run antivirus software before granting it access to a network. If the virus
scan indicates a potential infection, or does not offer recent evidence, the gate-
way might decide to deny access, or perhaps divert the system to a remediation
network. Of course the antivirus software itself is part of the target system, and
the gateway may require integrity evidence for the antivirus for its own security
decision. This leads to the design of layered systems in which deeper layers are
responsible for generating integrity evidence of the layers above them.

A simple example of a layered system is one that supports “trusted boot” in
which a chain of boot-time integrity evidence is generated for a trusted comput-
ing base that supports the upper layers of the system. A more complex example
might be a virtualized cloud architecture. The virtual machines (VMs) at the
top are supported at a lower layer by a hypervisor or virtual machine monitor.
Such an architecture may be augmented with additional VMs at an intermedi-
ate layer that are responsible for measuring the main VMs to generate integrity
evidence. These designs offer exciting possibilities for remote attestation. They
allow for specialization and diversity of the components involved, tailoring the
capabilities of measurers to their targets, and composing them in novel ways.
c© Springer International Publishing Switzerland 2016
M. Franz and P. Papadimitratos (Eds.): TRUST 2016, LNCS 9824, pp. 119–139, 2016.
DOI: 10.1007/978-3-319-45572-3 7
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An important fact about such layered systems is that the trustworthiness of the
system is not simply a function of the evidence produced by measurement; the rel-
ative order of the measurement events is crucial. In particular, a strong intuition
that is manifest in the literature is that it is better to build trust “bottom-up” by
first gathering evidence for components lower in the system before theymeasure the
higher level components. A measurer is more likely to be uncorrupted at the time
it takes its measurements if this order is respected. This intuition for “bottom-up”
measurement underlies many architectures, most notably trusted boot [9] and the
integrity measurement architecture (IMA) [15]. In a companion paper [14] we char-
acterize the guarantees provided by a bottom-up measurement scheme in the pres-
ence of an adversary that can dynamically corrupt system components. Namely, if
an adversary successfully corrupts a target component t without being discovered
by measurements, then the adversary must have either performed a recent corrup-
tionof one of t’s immediatedependencies, or else the adversarymusthave corrupted
one of t’s indirect dependencies deeper in the system. Thus bottom-up measure-
ments confine undetectable corruptions to be either recent or deep. We schematize
the main theorem of [14] in Eq. (1).

Bottom-up measurement =⇒ Detectable, Recent or Deep (1)

Such a result is not enough, however. Since a remote appraiser cannot directly
observe the order of measurements on a system, this information must be part
of what is conveyed in the bundle of evidence during the attestation. In order to
apply the result, the appraiser needs a way of inferring that the measurements
were indeed taken bottom-up. If an adversary could make it look like measure-
ments were taken in the desired order when they weren’t then he could avoid
the consequences of the theorem.

Much of the work on measurement and attestation relies on a Trusted Plat-
form Module (TPM) to protect and report the evidence generated by measure-
ment components. It is common to invoke the use of a TPM as sufficient for
these purposes. Unfortunately, there are many natural ways to use a TPM that
fail to accurately reflect the order of measurement. The ability of an adversary to
dynamically corrupt components at runtime makes the problem all the more pro-
nounced. This paper begins to address the issues surrounding the use of TPMs
to bundle evidence in the presence of dynamic adversaries. We summarize our
main contributions as follows:

1. We introduce a formalism for reasoning about the causal effects of dynamic
corruption and repair of system components on the process of bundling mea-
surement evidence for attestation using a TPM.

2. We prove correct a set of reusable principles for inferring the structure of sys-
tem activity given that a certain structure of bundled evidence was produced
by a TPM. Failure of these principles to prove some desirable property may
indicate that the desirable property was not met.

3. We propose a particular method for using a virtualized TPM to bundle evi-
dence, and we show (Theorem 2) that under some assumptions about the
behavior of uncompromised components, a remote appraiser can infer that
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either the measurements were taken bottom-up, or else the adversary per-
formed a recent or deep corruption in the sense described above. Letting Q
denote a set of quotes conforming to our method, we schematize this theorem
in Eq. (2).

Q =⇒ Bottom-up, Recent, or Deep (2)

The first two contributions are quite general, and, we believe, could be applied
to the design and analysis of many systems. The third suggests a particular
design recommendation. It says, roughly, that if our recommendation is fol-
lowed, then either the hypothesis of Eq. (1) is satisfied, or else its conclusion
is satisfied. The particular assumptions required might limit its applicability.
In particular, it assumes some flexible access control to TPM registers which
is hard to achieve in physical TPMs. Thus it is naturally applicable to virtual-
ized systems incorporating virtualized TPMs (vTPMs) [1] that could allow for
such access control. Although no industry standard currently exists for securing
vTPMs, architectural designs and specifications for such systems are beginning
to emerge [2,5,12,13].

Paper Structure. The rest of the paper is structured as follows. We begin
in Sect. 2 by reviewing some basic facts about TPMs and introducing some
notation. In Sect. 3 we build up some intuition about what types of inference
an appraiser is justified in making and what types of problems can arise when
using a TPM to bundle evidence from a layered system. Section 4 contains the
description of our formal model which we will use to justify our intuitions. We
develop our reusable principles and present our bundling strategy in Sect. 5,
characterizing the guarantees provided by our strategy. We address related work
in Sect. 6 before concluding.

2 Preliminaries

The results of this paper depend on some features of Trusted Platform Modules
(TPMs). For reasons of space, a full review of the relevant features of TPMs
is impractical. We present here only the most basic explanation of the notions
necessary to proceed.

TPMs are stateful devices with a collection of platform configuration reg-
isters (PCRs) that contain information about the state of the system. These
registers are isolated from the rest of the system and are thus protected from
direct modification. They can only be updated in constrained ways, namely by
extending a register or by resetting it. We explain below how this works. An
additional restriction is imposed by a form of access control known as locality.
This access control ensures that, for certain PCRs, only certain components with
special privileges can extend or reset them. A TPM can also quote the state of
a set of PCRs by emitting a digital signature over the contents of those PCRs.
We will assume the signing key has not been compromised, as it never leaves the
TPM unencrypted.
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In order to describe how the state is updated and reported, we use elements
of a term algebra. Terms are constructed from some base V of atomic terms
using constructors in a signature Σ. The set of terms is denoted TΣ(V ). We
assume Σ includes at least some basic constructors such as pairing (·, ·), signing
[[ (·) ]](·), and hashing #(·). The set V is partitioned into public atoms P, random
nonces N , and private keys K.

Our analysis will sometimes depend on what terms an adversary can derive
(or construct). We say that term t is derivable from a set of term T ⊆ V iff
t ∈ TΣ(T ), and we write T � t. We assume the adversary knows all the public
atoms P, and so can derive any term in TΣ(P) at any time. We also assume
the set of measurement values is public, so an adversary can forge acceptable
evidence. We denote the set of potential measurement values for a target t by
MV(t).

We represent both the values stored in PCRs and the quotes as terms in
TΣ(V ). Extending a PCR by value v amounts to replacing its contents c with
the hash #(v, c). Resetting a PCR sets its contents to a fixed, public value, say
rst. Since PCRs can only be updated by extending new values, their contents
form a hash chain #(vn,#(...,#(v1, rst))). We abbreviate such a hash chain as
seq(v1, . . . , vn). So for example, seq(v1, v2) = #(v2,#(v1, rst)). We say a hash
chain seq(v1, . . . , vn) contains vi for each i ≤ n. Thus the contents of a PCR
contain exactly those values that have been extended into it. We also say vi is
contained before vj in seq(v1, . . . , vn) when i < j ≤ n. That is, vi is contained
before vj in the contents of p exactly when vi was extended before vj .

A quote from TPM t is a term of the form [[n, (pi)i∈I , (vi)i∈I ]]sk(t). It is a
signature over a nonce n, a list of PCRs (pi)i∈I and their respective contents
(vi)i∈I using sk(t), the secret key of t. We always assume sk(t) ∈ K the set of
non-public, atomic keys. That means the adversary does not know sk(t) and
hence cannot forge quotes.

3 Examples of Weak Bundling

Before jumping into the technical details, we start with an example that illus-
trates some potential pitfalls of using TPMs for bundling evidence. Consider
an enterprise that would like to ensure that systems connecting to its network
provide a fresh system scan by the most up-to-date virus checker. The network
gateway should ask systems to perform a system scan on demand when they
attempt to connect. We may suppose the systems all have some component A1

that is capable of accurately reporting the running version of the virus checker.
Because this enterprise values high assurance, the systems also come equipped
with another component A2 capable of measuring the runtime state of the ker-
nel. This is designed to detect any rootkits that might try to undermine the
virus checker’s system scan, for example by hiding part of the file system that
contains malicious files. We may assume that A1 and A2 are both measured by
a root of trust for measurement (rtm) such as Intel’s TXT as part of a trusted
boot process.
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Fig. 1. Example Attestation System

Figure 1 is a notional depiction of an architecture supporting this use case.
In this architecture, the primary user virtual machine (VM) hosts the kernel,
the virus checker vc and the file system sys. A sibling VM hosts the two mea-
surement components A1 and A2. These virtual machines are managed by some
hypervisor that runs on the underlying hardware containing the root of trust
for measurement (rtm). We have depicted a virtualized TPM (vTPM) for each
VM while the hardware contains a physical TPM, although we might consider
the possibility that the VMs only use the physical TPM. Such an architecture
is reminiscent of those found, for example, in [4] or [2].

If the gateway is to appraise the system, it might expect the measurements
to be taken according to the order depicted in Fig. 2 (in which time flows down-
ward). The event of om measuring ot is represented by msoc

(om, ot), where we
include the subscript oc only when it provides a clean runtime context for the
measurer om. This order of events represents the intuitive “bottom-up” app-
roach to measurement. It ensures that if sys is corrupted but not detected by the
measurement event msker(vc, sys) then the adversary must have either recently
corrupted vc or ker or else he must have corrupted one of the more protected
components A1 or A2 [14]. The att-start(n) event indicates a moment in time in
which the gateway chooses a random nonce n. “Recent” corruptions are those
that occur after this event. The bullet after the first three events is inserted only
for visible legibility, to avoid crossing arrows.

Fig. 2. Bottom-up order for measurement
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Of course, the gateway cannot directly observe these events taking place.
Rather, it must infer the order and outcome of measurements from evidence that
is extended into a TPM and quoted for integrity protection. We now consider a
couple natural ways one might think of doing this and point out some potential
pitfalls in which the presence and order of the measurement events cannot be
inferred from the quote structure.

Strategy 1: A Single Hash Chain. Since PCRs contain an ordered history
of the extended values, the first natural idea is for all the components to share a
PCR p, say in the physical TPM, each extending their measurements into p. The
intuition is that the contents of p should represent the order in which the mea-
surements occurred on the system. To make this more concrete, assume the mea-
surement events of S1 have the following results: ms(rtm, A1) = v1,ms(rtm, A2) =
v2,ms(A1, vc) = v3,ms(A2, ker) = v4,ms(vc, ker) = v5. Then this strategy
would produce a single quote Q = [[n, p, seq(v1, v2, v3, v4, v5) ]]sk(t). To satisfy the
order of Fig. 2, any linearization of the measurements would do, so the appraiser
should also be willing to accept Q′ = [[n, p, seq(v2, v1, v3, v4, v5) ]]sk(t) in which
v1 and v2 were generated in the reverse order.

Figure 3 depicts an execution that produces the expected quote Q, but does
not satisfy the desired order. Since all the measurement components have access
to the same PCR, if any of those components is corrupted, it can extend values to
make it look as though other measurements were taken although they were not.
Since the bottom-up order of measurement was not respected, the conclusions
from [14] cannot be applied. Indeed, neither of the corruptions in Fig. 3 are
recent. It is also troublesome since the adversary does not need to corrupt the
relatively deep components A1 or A2. The corrupted vc, having access to p can
extend the expected outcomes of measurement by A1 and A2 without those
components even being involved.

Fig. 3. Defeating Strategy 1
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Strategy 2: Disjoint Hash Chains. The problem with Strategy 1 seems
to be that PCR p is a shared resource for many components of the system
that should be trusted to varying degrees. The corruption of any component
that can extend into the PCR can affect the results. This motivates a desire to
separate access to the relevant PCRs, so that, in the extreme case, there is only
a single component with the authority to extend each PCR. This could be done
by making use of the virtualization architecture and vTPMs to ensure that each
VM can only interact with its corresponding vTPM. Indeed, this separation
may be much more natural for the architecture described above. The vTPM
may further impose access control in the form of locality constraints for PCRs.
Although locality is a relatively limited form of access control for physical TPMs,
one opportunity provided by vTPMs is a more flexible notion of locality.

A natural next attempt given this assumption would be to produce three
quotes, one from each (v)TPM over the set of PCRs that contain the measure-
ment evidence. This would produce the quotes Q1 = [[n, pr, seq(v1, v2) ]]sk(t),
Q2 = [[n, (p1, p2), (seq(v2), seq(v3)) ]]sk(vt1), Q3 = [[n, pvc, seq(v4) ]]sk(vt2).
Figure 4 demonstrates that the appraiser is not justified in inferring a bottom-up
order of measurement from this set of quotes. The problem, of course, is that,
since the PCRs may be extended concurrently, the relative order of events is not
captured by the structure of the quote. An adversary may thus be able to alter
the order in which these events take place, taking advantage of the different order
to avoid detection by measurement. For example he could repair a corrupted vc
just in time for it to be measured by A1 so that it appears uncorrupted, when in
fact it was previously corrupted when it performed its own measurement of sys.

Fig. 4. Defeating Strategy 2

4 Attestation Systems

In this section we formalize the notions we used for the example in Sect. 3.

System Architecture. We start with a definition of attestation systems that
focuses on the relevant dependencies among components.

Definition 1. An attestation system is a tuple AS = (O,M,C, P, L), where O
is a set of objects (e.g. software components) with a distinguished element rtm.
M and C are binary relations on O. We call
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M the measures relation, and
C the context relation.

P = T ×R for some set T of TPMs and some index set R of their PCR registers,
and L is a relation on O × P .

M represents who can measure whom, so that M(o1, o2) iff o1 can measure
o2. rtm represents the root of trust for measurement. C represents the kind of
dependency that exists between ker and vc in the example from the previous
section. In particular, the vc depends on ker to provide it a clean runtime con-
text. We can thus capture the fact that a corrupted ker can interfere with the
vc’s ability to correctly perform measurements, for example by hiding a portion
of the filesystem from vc. Many assumptions one might make about M and C
affect the dynamics of corruption on the outcome of measurement. This current
paper instead focuses on the bundling of evidence, and so we make only a minor
assumption that M ∪ C is acyclic. This ensures that the combination of the two
dependency types does not allow an object to depend on itself. Such systems are
stratified, in the sense that we can define an increasing set of dependencies as
follows.

D1(o) = M−1(o) ∪ C−1(M−1(o))
Di+1(o) = D1(Di(o))

So D1(o) consists of the measurers of o and their context. Elements of P have
the form p = t.i for t ∈ T and i ∈ R. The relation L represents the access control
constraints for extending values into TPM PCRs. We assume each component
in O can only access a single TPM, so that if L(o, t.i) and L(o, t′.i′), then t = t′.
As discussed in the example of Sect. 3, it may be desirable to have a relatively
strict access control policy L. We can represent the extreme case in which each
component has access to its own PCR by adding the assumption that L is
injective. That is, if L(o, p) and L(o′, p) then o = o′. Of course relaxations of
this strict policy are also expressible.

Events, Outputs, and Executions. The components o ∈ O perform actions
on the system. In particular, as we have seen, components can measure each
other, extend values into PCRs and the TPM can produce quotes. Additionally,
an adversary on the system can corrupt and repair components with the aim of
affecting the behavior of the other actions. Finally, an appraiser has the ability
to inject a random nonce n ∈ N into an attestation in order to control the
recency of events.

Definition 2 (Events). Let AS be a target system. An event for AS is a node e
labeled by one of the following.

a. A measurement event is labeled by msC−1(o2)(o2, o1) such that M(o2, o1). We
say such an event measures o1, and we call o1 the target of e. When C−1(o2)
is empty we omit the subscript and write ms(o2, o1).
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b. An extend event is labeled by ext(o, v, p), such that L(o, p) and v is a term.
c. A quote event is labeled by qt(v, tI), where v is a term, and tI = {t.i | i ∈ I}

is a sequence of PCRs belonging to the same TPM t. We say a quote event
reports on p, or is over p, if p ∈ tI .

d. An adversary event is labeled by either cor(o) or rep(o) for o ∈ O\{rtm}.
e. The attestation start event is labeled by att-start(n), where n is a term.

The second argument to extend events and the first argument to quote events is
called the input.

An event e touches object o (or PCR p), iff o (or p) is an argument or
subscript to the label of e.

When an event e is labeled by � we will write e = �. We will often refer to
the label � as an event when no confusion will arise.

A few observations about this definition: Measurement and extend events
are constrained by the dependencies of the underlying system. So, for example,
a component cannot extend a value into any PCR not allowed by the policy
L. Notice that quote events have no component o ∈ O as an argument. This is
because (v)TPMs may produce quotes in response to a request by any component
that has access to it. The only constraint on adversary events is that they do not
affect the rtm. This is not essential, but it simplifies the statements and proofs of
some theorems later on. We also do not consider the (v)TPMs as objects in O,
so they are also immune from corruption. As for the att-start(n) event, since n
is randomly chosen, extend or quote events that incorporate n must occur after
att-start(n). We expect ms(rtm, o) events not to occur after att-start(n) because
they typically represent boot-time measurements of a system.

As we saw in the example from Sect. 3, an execution can be described as a
partially ordered set (poset) of these events. We choose partially ordered sets
rather than totally ordered sets because the latter unnecessarily obscure the
difference between causal orderings and coincidental orderings. However, if we
allow arbitrary posets of events we lose the causal structure. In particular, we
need to ensure that in executions we can unambiguously identify (a) whether
or not a component is corrupted at measurement and extension events, and (b)
the contents of PCRs at extension and quote events. In the following, we thus
impose two constraints on the posets of interest.

When no confusion arises, we often refer to a poset (E,≺) by its underlying
set E and use ≺E for its order relation. Given a poset E, let e↓= {e′ | e′ ≺E e},
and e↑= {e′ | e ≺E e′}. Given a set of events E, we let adv(E), meas(E), ext(E),
and qt(E) denote respectively the set of adversary, measurement, extension,
and quote events of E. For any poset (E,≺) of events over attestation system
AS = (O,M,C, P, L), let (Eo,≺o) denote the substructure consisting of all and
only events that touch o ∈ O. Similarly we define (Ep,≺p) for p ∈ P .

Definition 3 (Poset restrictions). We say (E,≺) is adversary-ordered iff for
every o ∈ O, (Eo,≺o) has the property that if e and e′ are incomparable events,
then neither e nor e′ are adversary events.
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We say (E,≺) is extend-ordered iff for every p ∈ P , (Ep,≺p) has the prop-
erty that if e and e′ are incomparable events, then they are both quote events.

Adversary-ordered posets ensure that we can unambiguously define the cor-
ruption state of a component at an event that touches it. Extend-ordered posets
ensure that we can unambiguously identify the contents of a PCR at events that
touch it. Both these claims require justification.

Lemma 1. Let (E,≺) be a finite, adversary-ordered poset for MS, and let
(Eo,≺o) be its restriction to some o ∈ O. Then for any non-adversarial event
e ∈ Eo, the set adv(e↓) (taken in Eo) is either empty or has a unique maximal
element.

This lemma (proved in [14]) ensures the following conditions are well-defined.

Definition 4 (Corruption state). Let (E,≺) be a finite, adversary-ordered
poset for MS. For each event e ∈ E and each object o the corruption state
of o at e, written cs(e, o), is an element of {⊥, r, c} and is defined as follows.
cs(e, o) = ⊥ iff e �∈ Eo. Otherwise, we define cs(e, o) inductively:

cs(e, o) =

⎧⎪⎪⎨
⎪⎪⎩

c : e = cor(o)
r : e = rep(o)
r : e ∈ meas(E) ∧ adv(e↓) ∩ Eo = ∅

cs(e′, o) : e ∈ meas(E) ∧ e′ maximal in adv(e↓) ∩ Eo

When cs(e, o) takes the value c we say o is corrupt at e; when it takes the value
r we say o is uncorrupt or regular at e; and when it takes the value ⊥ we say
the corruption state is undefined.

The above definition also allows us to define the result of a measurement
event. In this work, to simplify the analysis, we assume there are no false positives
or negatives as long as the measurer and its context are uncorrupted. However,
we assume a corrupted measurer (or its context) can always produce evidence
indicating that the target of measurement is uncorrupted.

Assumption 1 (Measurement accuracy). Let G(o) and B(o) be a partition
for MV(o). Let e = ms(o2, o1). The output of e, written out(e), is defined as
follows.

out(e) =

{
v ∈ B(o1) cs(e, o1) = c and ∀o ∈ {o2} ∪ C−1(o2) . cs(e, o) = r

v ∈ G(o1) otherwise

If out(e) ∈ B(o1) we say e detects a corruption. If out(e) ∈ G(o1) but
cs(e, o1) = c, we say the adversary avoids detection at e.

Assumption 1 can be used to reason in two ways. The first is to determine the
result of measurement given the corruption states of the relevant components.
It can also be used to infer the corruption states of some components given
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the corruption states of others and the result of measurement. That is, suppose
we know the adversary avoids detection at e = msC−1(o)(o, ot). Then we can
conclude that at least one member of {o}∪C−1(o) is corrupt at e. This fact will
be used in the proof of our main result.

Lemma 2. Let (E,≺) be a finite extend-ordered poset for AS, and let (Ep,≺p)
be its restriction to some p ∈ P . Then for every event e ∈ Ep, ext(e↓) is either
empty, or it has a unique maximal event e′.

This lemma allows us to unambiguously define the value in a PCR at any
event that touches the PCR.

Definition 5 (PCR value). We define the value in a PCR p at event e touch-
ing p to be the following, where e↓ is taken in Ep.

val(e, p) =

⎧⎪⎪⎨
⎪⎪⎩

rst : ext(e↓) = ∅, e = qt(n, tI)
#(v, rst) : ext(e↓) = ∅, e = ext(o, v, p)

state(e′, p) : e′ = max(ext(e↓)), e = qt(n, tI)
#(v, state(e′, p)) : e′ = max(ext(e↓)), e = ext(o, v, p)

When e = ext(o, v, p) we say e is the event recording the value v.

Lemma 2 and Definition 5 also allow us to determine the contents of a quote
at a quote event. Recall that, to ensure the signature cannot be forged, we must
assume the signing key is not available to the adversary.

Definition 6 (Quote outputs). Let e = qt(n, tI). Then its output is out(e) =
[[n, (t.i)i∈I , (vi)i∈I ]]sk(t), where for each i ∈ I, val(e, t.i) = vi, and sk(t) ∈ K
(the set of atomic, non-public keys). We say a quote Q indicates a corruption
iff some vi contains a v ∈ B(o) for some o.

Finally, we formally define executions of a measurement system.

Definition 7 (Executions, specifications). Let AS be an attestation system.

1. An execution of AS is any finite, adversary-ordered, extend-ordered poset E
for AS such that whenever e has input v, then v is derivable from the set
P ∪ {out(e′) | e′ ≺E e}, i.e. the public terms together with the output of
previous events.

2. A specification for AS is any execution that contains no adversary events.

We denote by E(S) the set of executions E that contain S as a substructure,
and we say S admits E. When S consists only of quote events outputting a
set Q of quotes, we say E produces Q. We sometime abuse notation and write
E ∈ E(Q).

We thus further restrict executions to ensure that all inputs to extension
and quote events are derivable at the time of the event. This reflects natural
limitations on the adversary that he cannot, for example, break cryptography.
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5 Bundling Evidence for Attestation

When evaluating evidence from a set of quotes Q, the only information an
appraiser has about the execution E that produced them is that E ∈ E(Q).
According to [14], the appraiser should have a “bottom-up” specification S in
mind, and she would like know whether E ∈ E(S). Thus, ideally, we could
develop a strategy for bundling that would ensure E(Q) ⊆ E(S), at least for
bottom-up specifications S. However, this is too much to ask for in the presence
of dynamic corruptions. If the adversary completely owns the system, he can
always create an E ∈ E(Q)\E(S). The best we can do is ensure that it is difficult
for the adversary to force the execution to be in E ∈ E(Q)\E(S). In particular,
we will aim to force the adversary to perform corruptions in small time windows,
or to corrupt deeper (and presumably better protected) components (so-called
“recent or deep” corruptions). This section develops the core set of inferences
for characterizing executions in E ∈ E(Q)\E(S), and proposes a particular strat-
egy for bundling evidence relative to bottom-up measurements. The net result
is that if an adversary would like to convince the appraiser the measurements
were taken bottom-up when in fact they weren’t, then he must perform recent
or deep corruptions. That is, in order to avoid the hypothesis of the main result
from [14] he must nonetheless subject himself to its conclusion!

5.1 Principles for TPM-based Bundling

For the remainder of this section we fix an arbitrary attestation system AS =
(O,M,C, P, L). The proofs of these lemmas can be found in the appendix. Our
first lemma allows us to infer the existence of some extend events in an execution.

Lemma 3. Let e be a quote event in execution E with output Q. For each PCR
p reported on by Q, and for each v contained in val(e, p) there is some extend
event ev ≺E e recording v.

Lemma 4. Let e ∈ E be an event with input parameter v. If v ∈ N or if v is
a signature using key sk(t) ∈ K, then there is a prior event e′ ≺E e such that
out(e′) = v.

Lemma 5. Let E be an execution producing quote Q. Assume vi is contained
before vj in PCR p reported on by Q, and let ei and ej be the events recording
vi and vj respectively. Then ei ≺E ej.

Proof. This is an immediate consequence of Definition 5. ��
Corollary 1. Let E be an execution producing quotes Q, and Q′ where Q reports
on PCR p. Suppose Q′ is contained in p before v. Then every event recording
values contained in Q′ occurs before the event recording v.

These results form the core of what an appraiser is justified in inferring about
an execution on the basis of a TPM quote Q. Notice that the conclusions are only
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about extend events, and not about measurement events. This is due to one of
the fundamental limitations of a TPM: Its isolation from the rest of the system
causes it not to have very much contextual information about the measurement
events. We are therefore very careful in what follows to identify the additional
assumptions we must make about components in order to justify the inferences
about measurements we would like to make.

5.2 Formalizing and Justifying a Bundling Strategy

With these results in mind, we revisit the example of Sect. 3 to develop a strat-
egy for bundling the evidence created by the measurers. In order to combine
the benefits of the two strategies we considered, we are looking for a strategy
that reflects the history of the events (in particular, their relative orders) while
providing exclusive access for each component to its own PCR. The idea is to
follow Strategy 2, but to ensure the evidence from lower layers is incorporated
into the PCRs of the higher layers in a way that cannot be forged. This results
in a layered, nested set of quotes of the following form.

Q1 = [[n, pr, seq(v1, v2) ]]sk(t)

Q2 = [[n, (p1, p2), (seq(Q1, v3), seq(Q1, v4)) ]]sk(vt1)

Q3 = [[n, pvc, seq(Q2, v5) ]]sk(vt2)

The quote Q1 provides evidence that rtm has measured A1 and A2. This quote is
itself extended into the PCRs of A1 and A2 before they take their measurements
and extend the results. Q2 thus represents evidence that rtm took its measure-
ments before A1 and A2 took theirs. Similarly, Q3 is evidence that vc took its
measurement after A1 and A2 took theirs since Q2 is extended into pvc before
the measurement evidence.

This quote structure is an instance of a more general strategy for bundling
evidence from measurements that are taken bottom-up. The idea is that bottom-
up measurements create temporal dependencies that reflect the M and C depen-
dencies of the system. So each measurement agent o extends a quote containing
measurements of M−1(o) ∪ C−1(o) before extending the evidence it gathers.
This is why we assume M ∪C is acyclic; this strategy would not be well-defined
otherwise.

We formalize this strategy by giving a criterion for recognizing when a set of
quotes conforms to the strategy. But first, we must finally formalize the as-yet
intuitive notion of bottom-up measurement.

Definition 8. A measurement event e = ms(o2, o1) in execution E is well-
supported iff either

i. o2 = rtm, or
ii. for every o ∈ D1(o1), there is a measurement event e′ ≺E e such that o is the

target of e′.



132 P.D. Rowe

When e is well-supported, we call the set of e′ from Condition ii above the support
of e. An execution E measures bottom-up iff each measurement event e ∈ E is
well-supported.

Bundling strategy criterion. Let Q be a set of quotes. We describe
how to create a measurement specification S(Q). For each Q ∈ Q, and
each p that Q reports on, and each v ∈ MV(o2) contained in p, S(Q)
contains an event ev = ms(o1, o2) where M(o1, o2) and L(o1, p). Similarly,
for each distinct n in the nonce field of some Q ∈ Q, S(Q) contains the
event att-start(n). Let SQ denote the set of events derived in this way
from Q ∈ Q. Then e ≺S(Q) ev iff Q is contained before v and e ∈ SQ. Q
complies with the bundling strategy iff S(Q) measures bottom-up.

Using the results from the start of this section, we can prove that executions
producing quotes that conform to the strategy contain a bottom-up extension
structure that “shadows” the desired bottom-up measurement structure.

Definition 9. Let e = ext(o, v, p) be an extend event in execution E such that
v ∈ MV(ot) for some ot ∈ O. We say e is well-supported iff either

i. o = rtm, or
ii. for every o ∈ D1(ot) there is an extend event e′ ≺E e such that e′ =

ext(o′, v′, p′) with v′ ∈ MV(o).

We call the set of such e′ the support of e. A collection of extend events X
extends bottom-up iff each e ∈ X is well-supported.

Lemma 6. Suppose E ∈ E(Q) where S(Q) measures bottom-up. Then E con-
tains an extension substructure XQ that extends bottom-up.

Proof. Let XQ be the subset of events of E guaranteed by Lemma 3. That is,
XQ consists of all the events e = ext(o, v, p) that record measurement values
v reported in Q. For any such event e, if o = rtm then e is well-supported by
definition. Otherwise, since S(Q) measures bottom-up, Lemma 3 and Corollary 1
ensure XQ contain events e′ = ext(o′, v′, p′) for every o′ ∈ D1(o) where e′ ≺E e.
Thus e is also well supported in that case. ��

Unfortunately, based on the lemmas from the start of the section, this is
as far as we can go. Those lemmas do not allow us to infer the existence of
any measurement events based only on the existence of extension events. In
fact, this seems to be an important fundamental limitation of TPMs. Due to
their isolation from the rest of the system, they have virtually no view into
the activities of the system. Rather, we must rely on the trustworthiness of the
components interacting with the TPM and knowledge of their specified behavior
to infer facts about the behavior of the rest of the system.

We thus identify two assumptions about the behavior of uncorrupted measur-
ers that will be useful in recreating the desired bottom-up measurement structure
from the bottom-up extend structure.
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Our first assumption is that uncorrupted measurers extend measurement
values for only the most recent measurement of a given target. This translates
to the following formal condition on executions.

Assumption 2. If E contains an event e = ext(o, v, p) with v ∈ MV(t), where
o is regular at that event, then there is an event e′ = ms(o, t) such that e′ ≺E e.
Furthermore, the most recent such event e′ satisfies out(e′) = v.

Our second assumption is that when uncorrupted measurers extend a quote
from a lower layer followed by measurement evidence it generates, it always gen-
erates the measurement evidence between those two extensions. This similarly
translates to the following formal condition on executions.

Assumption 3. Suppose E has events e ≺E e′ with e = ext(o,Q, p) and e′ =
ext(o, v, p), where Q contains evidence for M−1(o) ∪ C−1(o), and v ∈ MV(t).
If o is regular at e′ then there is an intervening event e ≺E e′′ ≺E e′ such that
e′′ = ms(o, t).

The first assumption allows us to infer the existence of measurement events
from extension events as long as the component is not corrupted. The second
assumptions provides a way of inferring extra ordering information useful for
reconstructing a bottom-up measurement structure.

The second assumption in particular is crafted to correspond closely to our
proposed strategy for bundling evidence, and so we should not expect every
architecture to satisfy these assumptions. While they may not be necessary for
our purposes, we will show that they are jointly sufficient to guarantee that
either the measurements were taken bottom-up, or else the adversary must have
performed a recent or deep corruption relative to some component.

Theorem 1. Let E ∈ E(Q) where S(Q) measures bottom-up, and suppose it sat-
isfies Assumptions 2 and 3. Suppose that vt ∈ G(ot) for each measurement value
vt contained in Q. Then for each extension event e recording a measurement
value, either

1. e reflects a measurement event that is well-supported by measurement events
reflected by the support of e.

2. a. some o2 ∈ D2(ot) gets corrupted in E, or
b. some o1 ∈ D1(ot) gets corrupted in E after being measured.

Proof. First note that we can immediately apply Lemma 6 to infer that the
extension events represented by Q form a bottom-up extension structure. The
rest of the proof considers an exhaustive list of cases, demonstrating that each
one falls into one of Conditions 1, 2a, or 2b. The following diagram summarizes
the proof by representing the branching case structure and indicating which
clause of the conclusion (C1, C2a, or C2b) each case satisfies.
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Consider any extend event e = ext(o1, vt, p1) of X extending a measurement
value for some ot ∈ O. The first case distinction is whether or not o1 = rtm.

Case 1: Assume o1 = rtm. Since rtm cannot be corrupted, it is regular at e, and
by Assumption 2, e reflects the measurement event ms(rtm, ot) which is trivially
well-supported, so Condition 1 is satisfied.

Case 2: Assume o1 �= rtm. Since X extends bottom-up, it has events ei =
ext(oi

2, v
i
2, p

i
2) extending measurement values vi

2 for every oi ∈ D1(ot), and for
each i, ei ≺E e. Furthermore, by Corollary 1, there is an extend event eq =
ext(o1, Q, p) with ei ≺E eq ≺E e where Q is a quote containing the values
recorded at each ei. Now either some oi

2 is corrupt at ei (Case 2.1), or each oi
2

is regular at ei (Case 2.2).

Case 2.1: Assume some oi
2 is corrupt at ei. Then there must have been a prior

corruption of oi
2 ∈ D2(ot), and hence we are in Condition 1.

Case 2.2: Assume each oi
2 is regular at ei. Then Assumption 2 applies to each ei,

so each one reflects a measurement event e′
i. In this setting, either o1 is regular

at e (Case 2.2.1), or o1 is corrupt at e (Case 2.2.2).

Case 2.2.1: Assume o1 is regular at e. Then since the events eq and e satisfy
the hypothesis of Assumption 3, we can conclude that e reflects a measurement
event e′ = ms(o1, ot) such that eq ≺E e′ ≺E e. Thus, e′ is well-supported by the
e′
i events which are reflected by the support of e, putting us in Condition 1.

Case 2.2.2: Assume o1 is corrupt at e. Since o1 ∈ D1(ot) one of the e′
i is a

measurement event of o1 with output v1 ∈ G(o1) since X only extends measure-
ment values that do not indicate corruption. Call this event e′

∗. The final case
distinction is whether o1 is corrupt at this event e′

∗ (Case 2.2.2.1) or regular at
e′
∗ (Case 2.2.2.2).

Case 2.2.2.1: Assume o1 is corrupt at e′
∗. Since the measurement outputs a

good value, some element o2 ∈ D1(o1) ⊆ D2(ot) is corrupt at e′
∗. This satisfies

Condition 1.

Case 2.2.2.2: Assume o1 is regular at e′
∗. By the assumption of Case 2.2.2, o1

is corrupt at e with e′
∗ ≺E e. Thus there must be an intervening corruption of

o1. Since e′
∗ is a measurement event of o1, this satisfies Condition 1. ��

Theorem 1 guarantees that if there are no recent or deep corruptions, then we
can infer the existence of a collection of measurement events reflected by the values
in the quotes. It remains to show that this measurement substructure is precisely
the one we want, namely that it is equal to S(Q). Unfortunately, this may not be
the case. S(Q) may contain orderings that are not strictly necessary to ensure S(Q)
measures bottom-up. However, Assumption 3 can guarantee only that the order-
ings necessary to be bottom-up are present. For this reason we introduce the notion
of the core of a bottom-up specification. The core of a bottom-up specification S is
the result of removing any orderings between measurement events ei ≺S ej when-
ever ei is not in the support of ej . That is, the core of S ignores all orderings that do
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not contribute toS measuring bottom-up.We can then show that themeasurement
structure inferred from Theorem 1 is (isomorphic to) the core of S(Q).

Theorem 2. Let E ∈ E(Q) such that S(Q) measures bottom-up, and let S′ be its
core. Suppose that Q detects no corruptions, and that E satisfies Assumptions 2
and 3. Then one of the following holds:

1. E ∈ E(S′),
2. there is some ot ∈ O such that

a. some o2 ∈ D2(ot) is corrupted, or
b. some o1 ∈ D1(ot) is corrupted after being measured.

6 Related Work

There has been much research into measurement and attestation. While a com-
plete survey is infeasible for this paper, we mention the most relevant highlights
in order to describe how the present work fits into the larger body of work.

Building on the early work of Trusted Boot [9], there have been numer-
ous attempts to bring trust further up the software stack. Most notably, Sailer
et al. [15] introduced an integrity measurement architecture (IMA) in which each
application is measured as it is launched. More recently, this body of work on
static measurement has been augmented with attempts to measure dynamic sys-
tem properties that give a clearer picture of the current state of the system (e.g.
[6–8,17]). Most of these focus on the low-level details of what to measure and
how to implement it without considering how runtime corruption can affect the
attestation process itself. In particular, it is common to invoke the use of Trusted
Boot and IMA as a way to build a chain of trust from the hardware which the
proposed measurement agent can extend. Our work could be applied to sys-
tems that incorporate these integrity measurers in order to better understand
how they respond to dynamic corruption of the trusted computing base and
measurement agents themselves.

We are not the first to discuss the dependencies that emerge in a layered
system. Some work [10,16] builds on the notion of a tree of trust [11] to tease
out a structure for the integrity evidence required of an attestation. The focus in
these papers is on ensuring the integrity of the system can be correctly inferred
from the structure of the evidence. While we focus on only a subset of the
trust dependencies considered in, say, [10], they do not take full account of
the effects dynamic corruption of components might have on the bundling of
the evidence. Rather they explicitly bracket out the problem of guaranteeing
the trustworthiness of the integrity information itself. An interesting line of
future work would be to investigate the causal effects of dynamic corruption
on the wider variety of dependencies they consider.

Layered dependencies are also implicit in the design of many systems intended
to support attestation of their runtime properties. Coker et al. [4] present 5 prin-
ciples for remote attestation and propose a layered system designed from those
principles. They do not investigate the low-level structure of evidence that must
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be created in order to attest to the layered dependencies or how to bundle such
evidence using the TPM. Cabuk et al. [3] present a hierarchical system with a
software-based root of trust for measurement that is connected to a lower-level
chain of trust rooted in hardware. They demonstrate the variety of hierarchical
dependencies that can naturally arise and propose ways to manage this com-
plexity. Finally, in [2], Berger et al. propose a way to manage the complexity of
appraising systems with layered dependencies as the systems scale. In all of these
examples, to the extent that runtime corruptions are considered seriously, the
problem of understanding how such corruptions break the chain of trust is not
examined. Within our formalism we should be able to represent all these systems
and characterize the ways in which runtime corruptions can occur without being
reflected in the final bundle of evidence. Particular designs may enable bundling
strategies that are tailored to the design which require weaker assumptions than
those we used in this paper.

7 Conclusion

In this paper we have developed a formalism for reasoning about layered attes-
tations. Within the framework we have identified some potential pitfalls when
using a TPM to bundle measurement evidence. These pitfalls arise due to a
fundamental limitation of TPMs. Namely, by virtue of being isolated from the
main system, TPMs have very limited contextual information about the events
occurring on that system. This means further assumptions must be made about
uncompromised components in order for an appraiser to infer desired behavior.

We also identified a core set of inference principles that can help system
designers determine the consequences of a particular strategy for bundling evi-
dence. Finally, we applied those principles to prove the robustness of a new
layered approach to bundling evidence. We believe this new proposal gives easy
to explain design advice. Namely, after identifying the temporal dependencies
required for an attestation, the evidence should be extended into a TPM one
layer at a time, ensuring the quotes from lower layers are incorporated into the
quotes from higher layers as you go. This will remain robust as long as uncor-
rupted components can be trusted to take fresh measurements after receiving
the results from below.

Although this proposal is most applicable to systems designed around the use
of vTPMs, we believe the core idea illuminates the problems with certain naive
ways of using a TPM to report evidence. In any case, we make no claims that
this proposal represents a complete solution for all cases. Rather, we consider it
the first attempt to seriously account for the possibility of runtime corruption
during an attestation, and we would encourage others to develop complementary
strategies. The formalism introduced here together with the inference principles
would be a good way to evaluate such proposals.
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A Proof of Lemmas

The following is a proof of Lemma3

Proof. By definition, the values contained in a PCR are exactly those that were
previously extended into it. Thus, since ext events are the only way to extend
values into PCRs, there must be some event ev = ext(o, v, p) with ev ≺E e. ��

The following is a proof of Lemma4

Proof. Definition 7 requires v to be derivable from the public terms P and the
output of previous messages. Call those outputs O.

First suppose v ∈ N . Since v is atomic, the only way to derive it is if v ∈ P∪O.
Since P ∩ N = ∅, v �∈ P, hence v ∈ O as required.

Now suppose v is a signature using key sk(t) ∈ K. Then v can be derived in
two ways. The first is if v ∈ P ∪ O. In this case, since v �∈ P it must be in O
instead as required. The other way to derive v is to construct it from the key
sk(t) and the signed message, say m. That is, we must first derive sk(t). Arguing
as above, the only way to derive sk(t) is to find it in O, but there are no events
that output such a term. ��

We conclude with the complete proof of Theorem 2.

Proof. By Lemma 6, E contains a substructure XQ of extend events that extends
bottom-up. Thus by Theorem 1, Conditions 2a and 2b are possibilities. So sup-
pose instead that E satisfies Condition 1 of Theorem 1. We must show that
E ∈ E(S′). In particular, we construct α : S′ → E and show that it is label- and
order-preserving.

Consider the measurement events es
i of S′. By construction, each one comes

from some measurement value vi contained in Q. Similarly, the well-supported
measurement events em

i of E guaranteed by Theorem1 are reflected by extend
events ei of E which are, in turn, those events that record each vi in Q. We need
to show that es

i = em
i for each i (i.e. that the labels agree), and that the orders

among the es
i are reflected by corresponding orders among the em

i .
Consider first the label of es

i . It corresponds to a measurement value vi con-
tained in some pi of Q. So es

i is labeled ms(o, o′) where M(o, o′), vi ∈ MV(o′),
and L(o, pi). The event em

i also corresponds to the same vi. Lemma 3 ensures
that ei = ext(o, v, pi) with L(o, pi), and so the measurement event it reflects is
em
i = ms(o, o′) with M(o, o′) and vi ∈ MV(o′). Thus es

i and em
i have the same

label.
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We now show that if es
i ≺S(Q) es

j then em
i ≺E em

j . The former ordering exists
in S′ because some quote Q ∈ Q is contained in pj before vj and vi is contained
in Q, and because es

i is in the support of es
j . By Corollary 1 ei ≺E ej and ei is in

the support of ej and therefore Theorem1 ensures that the measurements they
reflect are also ordered, i.e. em

i ≺E em
j .

Finally, consider any events e = att-start(n) in S′. They come from nonces n
found as inputs to quotes Q ∈ Q. By Lemma 4, E also has a corresponding event
e∗ with out(e∗) = n. Since att-start(n) events are the only ones with output of
the right kind, e∗ = att-start(n) as well. Thus we can extend α by mapping each
such e to the corresponding e∗. The rules for S(Q) say that e ≺S(Q) e′ only
when Q has n in the nonce field, and Q occurs before the value recorded by e′.
In E, e∗ precedes the event producing Q (by Lemma 4) which in turn precedes
e′ by Lemmas 4 and 5. Thus the orderings in S(Q) involving att-start(n) events
are also reflected in E. ��
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Abstract. We present a practical and highly secure method for the
authentication of chips based on a new concept for implementing strong
Physical Unclonable Function (PUF) on field programmable gate arrays
(FPGA). Its qualitatively novel feature is a remote reconfiguration in
which the delay stages of the PUF are arranged to a random pattern
within a subset of the FPGA’s gates. Before the reconfiguration is per-
formed during authentication the PUF simply does not exist. Hence even
if an attacker has the chip under control previously she can gain no useful
information about the PUF. This feature, together with a strict renunci-
ation of any error correction and challenge selection criteria that depend
on individual properties of the PUF that goes into the field make our
strong PUF construction immune to all machine learning attacks pre-
sented in the literature. More sophisticated attacks on our strong-PUF
construction will be difficult, because they require the attacker to learn or
directly measure the properties of the complete FPGA. A fully functional
reference implementation for a secure “chip biometrics” is presented. We
remotely configure ten 64-stage arbiter PUFs out of 1428 lookup tables
within a time of 25 s and then receive one “fingerprint” from each PUF
within 1 ms.

Keywords: Strong Physical Unclonable Functions (PUFs) · Biometrics
of chips · Silicon biometrics · Field programmable gate arrays

1 Introduction

“Physical unclonable functions” (PUFs) are innovative hardware devices that
shall be hard to reproduce physically because their functionality depends on
variance in the production or configuration process (e.g. in dopant levels) [2,14].
They promise to enable qualitatively novel security mechanisms e.g. for authen-
tication and key generation and distribution and have consequently become an
important research area of hardware security [17,21,22].

Secure authentication of a chip when its responses are obtained from a remote
location, i.e. when its physical properties cannot be directly examined, is an impor-
tant security objective. In order to reach this objective, the chip’s functionality
c© Springer International Publishing Switzerland 2016
M. Franz and P. Papadimitratos (Eds.): TRUST 2016, LNCS 9824, pp. 140–158, 2016.
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must be unclonable not only physically but in general (“mathematical unclonabil-
ity” [8]). This property is highly desirable e.g. for chips in banking cards and pass-
ports, but has proven to be very difficult to ensure against well-equipped attackers
on the authentication secrets in chips [19]. Mathematical unclonability with PUFs
can be reached with so called “strong PUF” which possesses a number of challenge-
response (C-R) pairs that is so large that an attacker with temporary access to
the PUF cannot evaluate them all. PUF constructions with an exponentially large
number of C-R pairs have been constructed, e.g. the arbiter PUF [2]. It has proved
possible to construct models of such PUFs based on a relatively small number of
C-R pairs by using machine-learning programs [15,16,20]. With such a model, a
simple piece of software can emulate the remote PUF, thus breaking its security,
completely. It is the major aim of our contribution to present a qualitatively novel
solution to this fundamental vulnerability of strong PUFs. The origin of the prob-
lem is that the true information stored in arbiter PUFs is not exponentially large
but relatively small. The attacker only has to determine the relative delays of all
stages in order to build a complete model. If we estimate that the delay in one stage
can be quantified by 1 byte even an XOR PUF with 10 arbiter PUFs and 128 stages
each has a true information content only about 1.3 kbyte. It is true that this infor-
mation is harder to extract than information stored in a conventional unsecured
memory. But because it is a straightforward exercise to construct simple models in
which this information appears as parameters it proves to be too easy to extract it.
Hence we need to require a qualitatively more difficult extraction methodology and
to increase the amount of stored information in the form of manufacturing varia-
tions scalable and by a large factor.

The basic idea to meet this requirement is to employ a “second challenge”
which specifies how the PUF is to be reconstructed with a subset of gates of
an FPGA chip. If the power of this subset is large enough, there is an super-
exponentially large number of possible PUF constructions, whose properties the
attacker cannot all learn. Even if the attacker is in physical possession of the chip
on which the PUF will be realized, she thus remains deprived of the possibility
to examine the PUF which is finally used for authentication.

The security mechanism we employ for authentication is to compare a string
of single bit responses from a PUF, its “fingerprint”, with a previously recorded
one from the same PUF. We prefer this “chip biometrics” to authentication
methods based on secret keys, because it does not require to store any helper
data for error correction on the chip or to select challenges based on properties
derived from the chip. These practices reveal information about properties of the
PUF. Such information has been shown to allow very effective learning attacks on
the PUF employed in the authentication [1]. Because our security mechanism is
to deprive the attacker of any chance to learn anything about the authenticated
PUF, it reaches its full security potential.

Reconfigurable PUFs have been proposed before. Katzenbeisser et al. [4] and
Lao and Parhi [5] studied architectures in which the challenge-response behav-
iour is changed without modifying the PUF itself. Lao and Parhi [5] also pro-
posed constructions in which the underlying PUF is modified in its properties.
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Zhang and Lin [23] presented a scheme against replay attacks in which PUFs
are completely reconfigured on 16 different locations on an FPGA. Gehrer and
Sigl [3] reconfigured PUFs on an FPGA repeatedly to generate keys efficiently.
Majzoobi et al. [9] suggested the use of a “one time PUF” realized as a recon-
figured arbiter PUF on an FPGA that is used for a single authentication as a
measure against man in the middle attacks. Reconfiguration was not used as a
measure against machine-learning attacks before.

Contribution. Our main contribution is a highly practical and efficient PUF
based authentication system that we hope reaches a security level that rivals the
best alternative technologies for authentication. Our contributions and insights
are:

1. We develop a qualitatively new security mechanism that prevents in principle
that an attacker with temporary direct access to the FPGA has access to
the PUF that is later used for authentication. We thus present a strong PUF
immune to all machine learning attacks presented up to now in the literature.

2. We demonstrate that, contrary to widespread belief, an FPGA based arbiter
PUF with delay stages based on switched multiplexers offers a viable and
simple alternative to the more complex constructions based on delay lines
that have programmable lengths;

3. For the first time we employ a machine learning program as a tool for the
quantitative characterization of properties of arbiter PUFs, rather than only
for predicting its responses;

4. We completely avoid all risks from attacks on helper data or specially selected
subsets of challenges by strictly only using challenges that are random relative
to the chip for which they are chosen and employing no error correction
(i.e. we perform a true “biometrics of the chip”).

Structure. In Sect. 2 we supply the necessary background information on compo-
nents of our PUF construction and methods used for the characterization of our
PUF. Section 3 presents first our arbiter PUF design and then our authentication
architecture. The results of an experimental characterization of our implemen-
tation are presented in Sect. 4. The discussion in Sect. 5 analyses the security of
our construction and Sect. 6 concludes.

2 Background

2.1 Arbiter PUFs

An arbiter PUF [1,2,7] consists of a chain of N pairs of multiplexers (with an
“upper” and “lower” multiplexer) through which pass two signals that started
at the same time. Each multiplexer pair is controlled by one bit of a challenge
of N bits. If the challenge bit is 0 the upper (lower) signal is passed through the
upper (lower) multiplexer and if the challenge bit is 1 the upper (lower) signal
is passed through the lower (upper) multiplexer. The response bit is 0 (1) if the
lower (upper) signal arrives first at an arbiter at the end of the chain.
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Construction of Arbiter PUFs on FPGAs. The construction of arbiter
PUFs faces the demand to balance out crossing times for the two paths averaged
over the manufacturing induced fluctuations [10,13]. On FPGAs the detailed
routing on the fabric usually has to be balanced. Compared to PUF imple-
mentations in ASICs, where routing is done by fixed circuit path connections,
routing in FPGAs has much more influence on the path delays. Due to their flex-
ible design, a complex switching matrix is used to connect the logic elements to
each other. Hence the routing delay is mostly defined by the number of switches
involved and much less by the process variances of the gates. While it proved
possible to roughly balance the delay within and among the delay stages by
placing them symmetrically, the delays to the first delay stage and from the last
stage to the arbiter turn out to have imbalances due to a different routing that
are always at least an order of magnitude larger than the one due to manufactur-
ing variance [13]. If this demand is not met, the responses are no longer unique
to the individual PUF because the routing differences are of course the same on
different chips1 for the same PUF. Two solutions to this timing problem have
been found. The first one is to configure the lookup tables typically provided
by FPGAs as programmable delays lines instead of multiplexers and to tune an
individual arbiter PUF by placing delay elements only in one of the paths so that
it is perfectly balanced [10,11]. The other is to duplicate the PUF on different
slices of the FPGA and to compare the output of these PUFs with identical
routing (“double arbiter PUF”) [7]. It seems difficult to apply these solutions to
our basic approach of an arbiter PUF whose delay stages are placed at random
positions of the FPGA fabric. The former would require to balance each individ-
ual arbiter for the large number of PUFs that need to be constructed. The latter
solution is not applicable if the PUF must be distributed over a considerable
fraction of the FPGA fabric as necessary for our approach. We therefore present
another solution to the routing problem in Sect. 3.1.

Learning Attacks on Arbiter PUFs. The simplest topological timing model
of an arbiter PUF is the following [20]. The parameters δ0 and δ1 are the differ-
ences in delay time between the multiplexers of one pair for a challenge bit of
0 and 1 respectively. The total delay time of in a n-stage arbiter PUF ΔDn is
then given as:

ΔDn = ωTΦ (1)

Here Φ a vector with the challenge bits as entry and ω is the following recursive
parameter:

ω1 = δ0,1 − δ1,1

ωi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i

ωn+1 = δ0,n − δ1,n (2)

1 Below “chip” will be a shorthand our FPGA and “PUF” for one instance of our
arbiter PUF construction.
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Here i in δ0,i stands for the i-th delay stage. It is possible to employ programs
for machine learning to estimate the vector of ω values. The estimate is often
good enough to predict the response values of an arbiter PUF which is then
completely broken as a strong PUF because it can be emulated with a piece
of software. We used a learning program based on logistic regression together
with the RPROP optimization (Sect. 3 in Tobisch and Becker [20]), to analyse
our implementation. Because the meaning of ω is not intuitive we calculated the
time difference of the delay difference of the upper and lower path for a challenge
bit 0 and a challenge bit 1 in each delay stage i:

Δδi = δ0,i − δ1,i (3)

This set of all Δδi quantifies the functionality of the arbiter PUF. We obtained
Δδi by setting all δ0,i to 0. Then we inferred 64 Δδi values and the value of
δ0,64 from Eq. (2). Δδi remains dimensionless, because the absolute values of
the delay times have no influence on the responses.

2.2 Chip Biometrics

Here we authenticate chips with a protocol that is roughly analogous to protocols
for biometric authentication, e.g. with a fingerprint. A “basic protocol” was
discussed and realized with several types of ASIC-based PUFs by Maes [8]. This
protocol consists of two phases, enrolment and verification. During the enrolment
phase the verifier records a subset of responses to randomly chosen challenges
(analogous to a subset of biometric features chosen) for each chip to be deployed
and stores them in a database together with an ID that identifies the chip.
During the verification a chip in the field sends its identifier to the verifier. The
verifier sends one of the stored challenges. The chip determines the response to
the challenge and sends it to the verifier. The chip is verified if this response
differs by less bits than a verification threshold t from the response stored in the
database.

According to Maes the main drawback of the basic protocol is that it can
only be employed in PUFs which cannot be cloned mathematically, i.e. which
functionality cannot be cloned in principle. Our main contribution is such a PUF,
and therefore we will present a realization of the basic protocol in Sect. 3.2.
Rather than inventing a new nomenclature (like e.g. “FPGA signature”) we
continue to use the term “fingerprint” for our authenticating characteristic, but
keep the quotation marks to emphasize that this merely expresses the conceptual
similarity to biometrics.

2.3 The Smartfusion2 Chip

We used the SmartFusion2 SoC from Microsemi Corp. for our project [12]. It
combines a 166 MHz ARM Cortex M3 microprocessor, a system controller for a
variety of hardware tasks and interfaces, embedded non-volatile memory (eNVM)
and an FPGA fabric on the same chip. Because our construction needs both a
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microprocessor and FPGA fabric this SoC is ideally suited, because the housing
of these components on the same chip eliminates many possible attack vectors
among these components. We used SmartFusion2 M2S-FG484 SOM starter kits
from Emcraft Systems for our investigations. The FPGA of this starter kit has
12084 “logic units” each of which consists of a look-up table (LUT) with four
inputs, a flip-flop and a carry signal from the neighbouring logic element. While
most of the characterizations of our implementation was performed in JTAG pro-
gramming mode, the authentication was also tested in the so called “in-system”
programming mode (ISP) in which the microprocessor receives data from an
interface (e.g. Ethernet and USB) and transfers it to the system controller which
then programs the FPGA and/or the eNVM.

3 Design of a Biometric Authentication System
Based on Remote Random Reconfiguration

3.1 Design of a Random Arbiter PUF

In our implementation we realized an arbiter PUF with 64 delay stages. We first
present our solution to the problem of balanced timing announced in Sect. 2.1.
From a set of randomly chosen challenges we simply selected those challenges for
which the delay-time difference between the two signals happens to be close to
0 fortuitously. We call these challenges “m-challenges” (m for metastable). We
employed two methods:

1. We selected challenges with metastable responses (i.e. responses that flip
between 0 and 1 when the same challenge is repeatedly applied) on a “refer-
ence chip” that will never leave the customer’s security lab.
For the m-challenges the delay difference induced by routing and by manu-
facturing variance exactly balance on the reference chip. Therefore on other
chips the m-challenges will also lead to delay times that are expected to be
balanced up to time differences induced by manufacturing variance.

2. We modelled the reference chip with the machine-learning model explained in
Sect. 2.1. We then used this model to calculate the predicted delay difference
d for a given challenge. Then we selected those challenges for which d was
smaller then a maximal bound b.

These two methods did not select the same challenges (i.e. our learning program
was not precise enough to always predict the challenges leading to metastability).
When we chose b = 0.22 the sets selected by the two different methods had
about equal power and were both suitable for the selection of m-challenges for
production. Figure 2 illustrates the distribution of delay-time differences and the
selection of the bounded sample.

2 The upper limit has no units because one cannot measure the absolute delay times
with machine learning programs.
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Fig. 1. Layout of arbiter PUF #1 on the region of 1428 logical units on the FPGA.
The positions of the LUTs used to implement the multiplexers for the delay lines and
the interconnections between them are displayed.

Our construction is non-ideal because it just balances the routing delays
(these delays will be referred to as “routing induced delay” below) with the
delays due to manufacturing variance (“manufacturing induced delay”).

In order to allow for a very large number of possible arbiter PUF construc-
tions we selected a region of the FPGA fabric which includes of 84× 17 = 1428
lookup tables. We chose only a small subset of all available lookup tables to make
our scheme practical: the rest of the FPGA could still be used for other pur-
poses. The 128 lookup tables used for the 64 delay stages of our arbiter PUF are
selected randomly from this set. The positions of the selected LUTs are stored in
the “core-cell-constraint” file. Figure 1 displays the layout of random PUF #1.

The decision of the response was performed in an arbiter which was not realized
as a flip-flop but with a LUT that evaluates the response R as (U AND L) OR (U
AND R), where U and L are the signal from the upper and low path of the arbiter
PUF. This construction yields a more symmetric and less temperature dependent
response of the arbiter.TheVHDLcode of our arbiterPUF is given in the appendix.

3.2 Architecture and Protocol of Authentication System

Our authentication system works analogous to conventional biometrics and
Maes’ basic protocol [8] (see Sect. 2.2). In the enrolment phase a set of refer-
ence templates, consisting of the responses to a number of arbiter-PUF random
layouts as “2nd challenges”, together with 100 randomly chosen m-challenges,
is determined and stored in a data base. Both these challenge-response pairs
and the random layouts the PUFs must be kept secret. The number of 2nd-
challenge/100 m challenge pairs must be sufficiently large for the intended
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Fig. 2. The distribution of delay times calculated with a learning program for 50000
randomly chosen challenges. The delay times are dimensionless because the responses
do not depend on the absolute speed of the signals that determine them. The full curve
is a Gaussian fit to the data which has a mean value of −0.15 and a standard deviation
of 6.78. The region marked in red (light shaded) indicates the challenges that were
chosen as “m-challenges” because they lead to a small delay between the paths of the
arbiter PUF. (Color figure online)

application for the chip authentication. Creating and maintaining such a data-
base before the deployment of the chip is a significant effort.

When a chip in the field is to be authenticated, two challenges are sent:

1. A novel type of challenge, which consist of the compiled VHDL code that
determines the configuration of the FPGA. This challenge, which always has
a size of 556 kbyte for our FPGA3, is transferred by the M3 microprocessor
to the system controller which then programs the FPGA within a time of at
most 28 s4.

2. 100 conventional 64 bit long m-challenges that decide the multiplexers’ set-
tings. The 100 responses are defined to be the “fingerprint” of the chip and
are sent to the authenticating party. It took about 10µs to obtain a single
response to an m-challenge.

This procedure is sketched in Fig. 3. It is identical to Maes’ basic protocol
except that instead of challenge-response pairs, 2nd-challenge and m-challenge-
response pairs have to be sent. The authenticating party calculates the Hamming
distance between the template and the “fingerprint”. Only if this Hamming
distance is smaller than a certain threshold t, the chip is authenticated.

Both the novel and the m-challenge are analogous just to the information on
which part of the human body (e.g. which finger) is to be used for authentication.

3 The SmartFusion2 chip does not support a partial reconfiguration of the FPGA.
4 With JTAG programming the total programming cycle took 25 s.
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Fig. 3. Authentication procedure of a SmartFusion2 chip.

4 Experimental Results of Tests with the Implementation

4.1 Characterization of Arbiter PUFs

We characterized the properties of ten different randomly placed arbiter PUFs
in a climate chamber at different temperatures. Firstly we verified that our
construction is really a functional arbiter PUF:

1. By applying the learning program discussed in Sect. 2.1 in order to test if our
designs can be modelled as arbiter PUFs which show manufacturing variances.

2. By directly testing if m-challenges that lead to metastable responses on the
reference chip do mostly not lead to metastability bits in other chips instances
due to manufacturing variance.

Figure 4 shows the difference of delay differences of the 64 stages of ten arbiter
PUFs obtained with about 20–30 iterations of their machine-learning program.
One recognizes that, as expected, the difference of delays differences vary strongly
among the PUFs because the routing depends strongly on the random positions
of the delay stages on the FPGA fabric. We succeeded to predict the responses
to random challenges with an error rate of about 1.4 %. Figure 5 shows the dif-
ference of delay differences (see Eq. (3)) of the 64 stages of one randomly placed
arbiter PUF in three different chips, relative to the mean of the delay differences.
Even though we are sure that the derived delay differences are correct, because
they enable a correct prediction of responses, we did not achieve a deeper under-
standing of their distribution, e.g. of the surprisingly strong correlation of the
delay values in consecutive stages5. The inter-chip differences in Fig. 5 are mainly
due to manufacturing variance. Their mean absolute values were found to be a
5 We will argue below (Sect. 5) that the difficulty of understanding the routing

enhances the security of our design by obfuscation.
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Fig. 4. The difference of delay differences with a challenge bit 0 and 1 of the 64 stages
of ten randomly placed arbiter PUFs. The time is in dimensionless units because it is
derived from a machine learning program. See Eq. (3) for a precise definition of the
difference of delay differences.

factor of 29.6 smaller than the differences among chips with a different layout
in Fig. 4. This confirms the well known fact that in a multiplexer based arbiter
PUF design the delays are dominated by differences in the routing (Morozov
et al. [13] found that they dominate by a factor of 25.6 in their FPGA.)

Table 1 shows the fractions of ones for 10 randomly chosen m-challenges on
two further chips. An analysis of 1000 m-challenges found that only about 10 %
of all m-challenges on chip A also lead to metastable bits on chip B and C. Here
a metastable bit is defined as a bit that flips at least once when the challenge
is applied 100000 times. This confirms that the responses of m-challenges are
strongly influenced by manufacturing variance. Moreover this fraction is much
larger than the one for randomly chosen challenges which we found to be 0.72 %6.

The randomness of the responses of our PUFs was found to depend on the
placement strategy. Therefore we needed to test uniformity, uniqueness and reli-
ability of our PUF with the finally chosen placement strategy that is described in
Sect. 3.1. Uniformity was determined as the bias7 of our construction displayed
(Fig. 6). The data shown in Fig. 6 have a mean bias of 4.9 %, that is clearly larger
than the one expected from statistical fluctuations for our test of 0.3 % but still
acceptable for fingerprints that do not have to be perfectly random. Moreover
the bias is in a range commonly considered to be acceptable for physical random
number generators [6].

The uniqueness of our PUF was quantified as the mean Hamming distance
of a “fingerprint” of different chips in the same configuration (Fig. 7). It has a

6 Therefore our PUF construction has 0.0072× 264 =1.3× 1017 m-challenges.
7 Here we define the bias as (# of ones)−(# of zeros)

(# of ones)+(# of zeros)
.
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Fig. 5. The difference of delay differences of the 64 stages of one randomly placed
arbiter PUF in three different chips. The delay difference are plotted relative to the
mean of the three values, i.e. only the deviation relative to the mean value is shown.

Table 1. The fraction of ones for 10 m-challenges that lead to a metastable response on
chip A. Due to manufacturing variance the r-responses mostly do not lead to metastable
responses on chip B and C. The first 10 bits of the fingerprint of chip B and C can be
read from the table. If the fraction lies between 0 and 100 % the respective bits will be
noisy.

Challenge Fr Fr B Fr C
7323654688874139733 45,92% 100% 0% 
11845416167999726454 6,66% 0% 100% 
2814503641960336764 53,16% 100% 100% 
670509234023467077 5,24% 48,61% 100% 
14797980534726803933 53,59% 100% 100% 
16595764706100376029 63,21% 0% 16,13% 
1887583556430087243 15,29% 100% 0% 
1116720592540295842 83,56% 0% 0% 
18126161473406108233 68,83% 0,01% 0% 
11508568743664487972 53,34% 98,39% 100% 

value of 29.7 which is significantly different from the maximal value of 50, i.e.
the relative entropy among two bits from different chips is only 0.88. This is not
a problem for our application, as the bits in biometric templates commonly have
an entropy smaller than 1. The reduced value can be understood as an effect of
our method to choose challenges that yield a metastable response on a reference
chip. On the reference chip (see Sect. 3.1) metastability means that routing and
manufacturing variation induced delay are exactly balanced. On the chips that
are compared, the routing delay will be the same as on the reference chip but the
manufacturing induced delay will be different in general. There is a 50 % chance
that manufacturing induced delay between the paths will have the same sign as
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Fig. 6. The bias of 10 randomly placed arbiter PUFs displayed for 100000 randomly
chosen challenges.

the one of the routing induced delay on the chips to be compared. In this case
their response will always be identical. If the delay has an opposite sign on both
chips there is a 50 % chance that this will lead to a different response because
the distribution of manufacturing and routing induced delays in our selected
sample of challenges must be the same by design. This argument predicts a
mean Hamming distance of 25 and the value we found is similar. The agreement
of the Hamming distances induced by manufacturing variations in delay times
in Fig. 7 with a Gaussian distribution is excellent. This suggests that the bits in
our “fingerprints” are distributed randomly, because for the mean value of 29.7
a Gaussian is an excellent approximation to the binomial distribution that is
expected if the matching probabilities are described by a Bernoullie process.

The reliability was tested by measuring the noise in the “fingerprint” as
a function of temperature. We found that the noise is caused exclusively by
a metastability of the arbiter that develops when the transit times are nearly
exactly balanced so that the both input pulses occur simultaneously. We identi-
fied all metastable bits in a sample of 10000 challenges and its fraction of ones
f1. The probability P that metastable bit i induces a noise bit, i.e. different
responses to consecutive identical challenges is:

Pi = 2fi(1 − fi) (4)

The total noise fraction N determined with j metastable bits is then:

N =
∑

i Pi

j
(5)

In this manner we obtained N = 1.04 % and 1.59 % for two chips. N did not
change significantly with temperature in the range 5 ◦C–60 ◦C. However we found
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Fig. 7. The distribution of 4000 Hamming distances of “fingerprint” of chip B and
C. The continuous curve is a Gauss curve with the same mean (29.71) and standard
deviation (4.57) as the data points.

that even though its power remained roughly constant the set of metastable bits
changed with temperature because some bits became stable and others became
metastable. While the mean Hamming distance between consecutively taken
responses with random challenges on the same PUF was 0.08 ± 0.026 % it rose
to 0.35 ± 0.058 % when responses taken at 5 ◦C and 60 ◦C are compared.

4.2 FAR (Interchip Comparison) and FRR (Intrachip Comparison)

Analogously to the common definition in biometrics, the false acceptance rate
(FAR) is the probability that the biometric system authenticates a chip incor-
rectly and the false rejection rate (FRR) is the probability that the system does
not authenticate incorrectly. We had seen in the previous Sect. 4.1 that the distri-
bution of matching bits in “fingerprint” taken from two different chips is random
and the probability for a non-match has a certain value p (p = 0.297 in our case).
Under these circumstances we obtain:

FAR =
t∑

i=0

(
n

i

)
(1 − p)(n−i)pi (6)

where t is the threshold for the number of bits up to which two “fingerprints” that
are classified a belonging to the same chip can differ. If we choose t = 12 we find
that for our construction FAR = 2.4× 10−5. The FRR is the probability that more
than t bit non-matches occur in two “fingerprints” of the same chip. We estimated
theFRRbydetermining the 10000Hammingdistances among “fingerprints” of the
same arbiter PUF. Their distribution is plotted in Fig. 8. We then performed a fit
of these data to a binomial probability distribution and used this fit to determine
the FRR in a manner analogous to Eq. (6) to FRR = 7.2 × 10−9. The underlying
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Fig. 8. The distribution of 10000 Hamming distances of “fingerprint” of chip B with
each other. The continuous curve is a fit to a binomial distribution with the same mean
(1,28) as the data points.

extremely conservative assumption of using abinomial distribution tofit these data
is that each bit has a mean probability of 1.3 % to have a different value in two con-
secutive measurements. In reality we found that the noise for the 100 m-challenges
we employed to obtain the “fingerprint” comes from six metastable bits with a frac-
tion of ones different from 1 or 0 by more than 0.1 %. It is then much less probable
to obtain a Hamming distance larger than 6 than expected by a binomial distribu-
tion. As a detailed noise model is beyond the scope of the present paper we contend
ourselves with the above conservative upper bound on the FRR.

5 Discussion of the Security of Our Design

As a first attempt to break our construction the attacker could try to use the
100 challenge-response pairs that were sent to obtain the “fingerprint” and could
be intercepted by her to model the PUF. However we found that it took at
least about 2000 challenge-response training pairs for a successful model. It is
conceivable that a smaller number might suffice to construct a model, however
it seems certain that 100 C-R pairs are not sufficient, because they contain an
information content not larger than 100 bits which is insufficient to encode the
64 difference of delay difference values that constitute the model.

Another obvious attack on our construction would be an attempt to model all
arbiter PUFs that can be constructed when the PUF is under physical control
of the attacker. A conservative estimate of the number of PUFs that can be
constructed with our implementation defines PUFs to be different only if they
contain different gates, i.e. all PUFs with identical gates that are only put into
a different configuration are counted as a single PUF. We then estimate the
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number of PUFs NPUF as:

NPUF =
(

1428
128

)
≈ 4.7 × 10185 (7)

Clearly such a number of PUFs cannot even be configured on the FPGA. Even if
(theoretically) each reconfiguration could somehow be accelerated to take only a
pico-second this would still take 1.6× 10166 years. Therefore the only promising
possibility is an attack that faithfully models the timing of the subset of lookup
tables selected from the FPGA and the gates used for the routing between them.
There are two security mechanisms that make this attack difficult. The first one
is largely due to the need for reverse engineering: It will be more difficult to con-
struct a model of a complex dynamical FPGA system than of the simple static
arbiter PUF system. It seems likely that as a first step the attacker needs to
reverse engineer the FPGA in order to obtain a topological model of the FPGA
fabric. This model enables the attacker to identify all components that influence
the delays and to predict how these components are combined in the connec-
tions between delay elements, the switching matrix for routing and the arbiter.
Only equipped with such a construction model she will be able to understand
the distribution of the delay times of the stages we determined (but did not
understand, yet) in Sect. 4. Without such a model she would need to learn or
measure the delays between each delay element and all other delay elements, a
number of delays that increases y with the already large number of components.
This reverse engineering step is analogous to the one necessary in attacks on
authentication secrets stored in conventional memories and protected by sensors
or other protection mechanisms. Once the reverse engineering is completed, this
security mechanism is broken and further chips can be attacked with relatively
little effort. At this point a second, PUF specific, protection mechanism kicks
in: Even on a reverse engineered FPGA the attacker needs to find out about the
manufacturing variations of the delays of all elements of the PUF that are used
in our construction. In our implementation she needs to determine the properties
of 1428 lookup tables, i.e. the individual delays of each of them and of all gates
that are used in interconnecting them. This makes a complete and linear char-
acterization directly in the hardware (e.g. with techniques developed by Tajik
et al. [18]) or with the use of learning programs a time-consuming task on each
individual chip that is to be modelled. This security mechanism is easily scaled:
if an attacker will succeed to break our security mechanism in an unacceptably
short time, one can increase the number of lookup tables out of which the PUFs
are constructed. In this manner our PUF construction promises to make cloning
impossible based on physical principles rather than lack of knowledge about the
protection method and technical skill to break it. Our second protection mecha-
nism requires a level of effort to clone a chip that does not significantly decrease
when the protection mechanism is fully understood by the attacker.
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6 Conclusion

We presented a qualitatively novel concept to increase the security of strong
PUFs. Up to now most attempts to make PUFs more secure aimed at mak-
ing the individual PUF construction more complex, e.g. by performing an XOR
between several PUFs. This strategy is limited by the need to keep the final out-
put sufficiently reliable. Our strategy was to keep the individual PUF simple but
to force the attacker to model not only the static PUF but a part of a dynamical
FPGA system. This concept enabled a qualitative increase the complexity of the
system that has to be modelled compared to previous constructions. The only
fundamental limit to increasing it further is the available size of the FPGA fabric.
Our FPGA-based arbiter PUF design itself is simpler than the ones proposed
up to now. The price one has to pay for the gain in security is an additional
overhead for the sending of the “2nd challenge” that specifies a reconfiguration
of the PUF. However, it is not necessary to introduce this overhead for each
authentication. From the 1428 LUTs assigned to our construction in our imple-
mentation it is possible to construct 10 arbiter PUFs with one second challenge,
so that only every 10th authentication needs the additional overhead.

Acknowledgements. We thank Georg Becker, Shahin Tajic, Jean-Pierre Seifert and
Marco Winzker for helpful discussions. Georg Becker kindly provided a copy of his
machine-learning program to us.

Appendix

VHDL Code for our arbiter PUF construction. “above” and “below” stand for
the upper and lower signal pathes. [...] stands for the insertion of 62 additional
consecutive, identical sub-parts of the code.

----------------------------------------------------------------------------

----

-- Company: XXX

-- File: Arbiter_PUF.vhd

-- Description:

-- Arbiter Physical Unclonable Function (PUF)

-- Submodul to evaluate response from Arbiter PUF.

-- The input challenge defines the connection of a row of different gates.

-- An Arbiter at the end of this gates evaluates which of the two signals

arrived first

-- and sets the corresponding response.

-- Targeted device: <Family::SmartFusion2> <Die::M2S150> <Package::FG1152>

-- Author: XXX

-- Date: 12.2015

----------------------------------------------------------------------------

----

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;
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entity Arbiter_PUF is

port (

c : IN std_logic_vector(63 downto 0); -- challenge

enable : IN std_logic; -- enable signal for arbiter puf

dc : IN std_logic; -- don’t care input for LUTs

ready : OUT std_logic; -- ready signal

r : OUT std_logic -- response

);

end Arbiter_PUF;

architecture architecture_Arbiter_PUF of Arbiter_PUF is

-- signal, component etc. declarations

attribute syn_keep : boolean;

signal above : std_logic := ’0’;

signal c0 : std_logic := ’0’;

signal above0,above1, [...],above64 : std_logic := ’0’; --

top arbiter puf signals

signal below : std_logic := ’0’;

signal below0,below1, [...] ,below64 : std_logic := ’0’; --

bottom arbiter puf signals

-- set syn_keep for PUF signals to prevent removing in synthesis optimization

attribute syn_keep of above,above0,above1, [...] ,above64,

below,below0,below1, [...]

,below64,c0 : signal is true;

begin

-- architecture body

above0 <= above when (c0= ’0’ and dc = ’0’) else below;

below0 <= below when (c0= ’0’ and dc = ’0’) else above;

-- challenge 0

above1 <= above0 when (c(0)= ’0’ and dc = ’0’) else below0;

below1 <= below0 when (c(0)= ’0’ and dc = ’0’) else above0;

-- challenge 1

above2 <= above1 when (c(1)= ’0’ and dc = ’0’) else below1;

below2 <= below1 when (c(1)= ’0’ and dc = ’0’) else above1;

[...]

-- challenge 63

above64 <= above63 when (c(63)= ’0’ and dc = ’0’) else

below63;

below64 <= below63 when (c(63)= ’0’ and dc = ’0’) else

above63;

---- Arbiter to generate response

r <= (below64 and not(above64)) or (below64 and r);

-- ENABLE PROCESS

process--(enable)

begin

wait on enable;

if(enable = ’1’) then

above <= ’1’;

below <= ’1’;

-- wait until response is generated

wait on r;

ready <= ’1’;

else -- enable = ’0’
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above <= ’0’;

below <= ’0’;

ready <= ’0’;

end if;

end process;

end architecture_Arbiter_PUF;
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