
The BF-TOPSIS Approach for Solving
Non-classical MCDM Problems

Jean Dezert1(B), Deqiang Han2, Jean-Marc Tacnet3, Simon Carladous3,4,5,
and Hanlin Yin2

1 The French Aerospace Lab, 91761 Palaiseau, France
jean.dezert@onera.fr

2 CIESR, Xi’an Jiaotong University, Xi’an 710049, China
deqhan@gmail.com, iverlon1987@stu.xjtu.edu.cn

3 UGA, Irstea, UR ETGR,
2 rue de la Papeterie-BP 76, 38402 St-Martin-d’Hères, France

{jean-marc.tacnet,simon.carladous}@irstea.fr
4 AgroParisTech, 19 avenue du Maine, 75732 Paris, France

5 ENSMSE - DEMO, 29, rue Ponchardier, 42100 Saint-Etienne, France

Abstract. In this paper we show how the Belief-Function based Tech-
nique for Order Preference by Similarity to Ideal Solution (BF-TOPSIS)
approach can be used for solving non-classical multi-criteria decision-
making (MCDM) problems. We give simple examples to illustrate our
presentation.
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1 Introduction

Classical Multi-Criteria Decision-Making (MCDM) consists in choosing an alter-
native among a known set of alternatives based on their quantitative evaluations
(numerical scores) obtained with respect to different criteria. A typical example
could be the selection of a car to buy among a given set of cars based on different
criteria (cost, engine robustness, fuel economy, CO2 emission, etc.). The classical
MCDM problem, although easily formulated, have no solution at all in general
due to the fact that no alternative exists that optimizes all criteria jointly. Thus
MCDM problems are generally not solved, but a decision is found by means
of ranking, compromises etc. The difficulty of MCDM problems is also because
the scores are usually expressed in different (physical) units with different scales
which generally necessitates an ad-hoc choice of a normalization step that may
lead to many problems, e.g. rank reversal.

Many methods have been developed to address the classical MCDM. AHP1

[1] and its extensions in belief function frameworks [2–6], ELECTRE2 [7],
1 Analytic hierarchy process.
2 Elimination and choice translating reality.
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TOPSIS3 [8,9] methods are the most well-known and widely used MCDM meth-
ods in applications. These methods have already been extended in the belief func-
tion framework in our previous works [2,10,11] to take into account epistemic
uncertainty, missing scores’ values as well as conflicting information between
sources4. In this work, we show how the BF-TOPSIS methods proposed recently
in [11] (with application in [12]), can be directly used for solving also non-
classical multicriteria decision-making problems where not only alternatives are
scored (with possibly missing values), but also any element of the power set of
alternatives.

In the sequel, we assume the reader to be familiar with the theory of belief
functions [13] and its definitions and notations, mainly the basic belief assign-
ment (BBA) m(·), the belief function Bel(·) and the plausibility function Pl(·)
defined with respect to a discrete finite frame of discernment (FoD).

2 Non-classical MCDM Problem Formulation

We consider a given set of alternatives A � {A1, A2, . . . , AM} (M > 2) rep-
resenting the FoD of our problem under consideration, and we denote 2A the
power set5 of A. In our approach, we work with Shafer’s classical model of FoD
and we do not allow the empty set to be a focal element6 because in our opinion
it does not make sense to compare an alternative with respect to the empty
set from the decision-making standpoint. The cardinality of the (non empty)
elements of the power set varies from 1 to 2M − 1. We also consider a given
set of criteria C � {C1, C2, . . . , CN} (N ≥ 1), where each criterion Cj is char-
acterized by a relative importance weighting factor wj ∈ [0, 1], j = 1, . . . , N

such that
∑N

j=1 wj = 1. The set of normalized weighting factors is denoted by
w = {w1, w2, . . . , wN}. The score7 value is a number Sij = Sj(Xi) related to the
evaluation of an element Xi ∈ 2A \ {∅} from a given criterion Cj . If the score
value Sj(Xi) is not available (or missing), we denote it by the “varnothing” sym-
bol ∅. The non-classical MCDM problem can be formulated as follows in the
worst case (i.e. when scores apply to all elements of 2A): given the (2M −1)×N
score matrix S = [Sj(Xi)] whose elements take either a numerical value or a
∅ value (if the value is not available) and knowing the set w of the relative
importance weights of criteria, how to rank the elements of 2A \{∅} to make the
final decision?

3 Technique for order preference by similarity to ideal solution.
4 In the MCDM context, a source of information consists in the list of scores values

of alternatives related to a given criterion.
5 The power set 2A is the set of all subsets of A, empty set ∅ and A included.
6 As proposed in Smets Transferable Belief Model for instance.
7 Depending on the context of the MCDM problem, the score can be interpreted either

as a cost/expense or as a reward/benefit. In the sequel, by convention and with-
out loss of generality, we will interpret the score as a reward having monotonically
increasing preference. Thus, the best alternative with respect to a given criterion
will be the one providing the highest reward/benefit.
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Example: Let us consider the ranking of five students A1, . . . , A5 based on two
criteria C1 and C2. The criterion C1 is their long jump performance (in meters),
and the criteria C2 is a realization of a small project to collect funds (in euros) to
help a bigger nature protection project. Highest scores values mean better results
in this particular context. Let us assume that students were allowed to realize
their project in joint collaboration (no more than three students are allowed in
a group), or alone. At the end term of the project, suppose that one has the two
following evaluations (scoring)

SC1 =

⎛

⎜
⎜
⎝

C1

A1 3.7m
A3 3.6m
A4 3.8m
A5 3.7m

⎞

⎟
⎟
⎠ and SC2 =

⎛

⎝

C2

A5 640e
A1 ∪ A2 600e
A3 ∪ A4 650e

⎞

⎠ (1)

The scores’ values listed in SC1 indicate in fact that the student A2 has
not been able to pass the long jump test for some reason (medical, familial or
whatever), so his score is missing. The scores’ values listed in SC2 indicate that
A5 did choose to realize his project alone with a pretty good performance, and
the project realized by the collaboration of students A3 with A4 has obtained the
best performance (the highest amount of collected funds). In this very simple
example, one sees that the score evaluation can be done not only on single
alternatives (as for criterion C1) but also on a subset of elements of 2A (as for
criterion C2). All the elements having a score are called scoring focal elements. In
general, these focal elements can differ from one criterion Cj to another criterion
Ck for k �= j and the score matrix cannot be built by a simple (horizontal)
stacking of scoring lists. In general, one must identify all focal elements of each
scoring list to determine the minimum number of rows necessary to define the
scoring matrix. As mentioned, we use the symbol ∅ to identify all values that
are missing in the scoring matrix. Note that we do not set missing values to zero
number (or any other chosen number) to make explicit distinction between the
known precise numerical value zero and a missing value. In this example, the
scoring matrix will be defined as

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2

A1 3.7m ∅

A3 3.6m ∅

A4 3.8m ∅

A5 3.7m 640e
A1 ∪ A2 ∅ 600e
A3 ∪ A4 ∅ 650e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

The question we want to address is how to rank the students based on such
a kind of scoring information including disjunctions of alternatives and missing
values, taking into account the relative importance weight of each criterion. Is
it possible to solve such type of non-classical MCDM problems, and how?



78 J. Dezert et al.

3 The BF-TOPSIS Approach

The BF-TOPSIS approach has been proposed recently in [11] in a classi-
cal MCDM context where the focal elements of the scoring function Sj(·)
(j = 1, . . . , N) are only the singletons Ai (i = 1, . . . , M) of the frame of dis-
cernment A. BF-TOPSIS is initially based on belief functions for MCDM sup-
port which exploits only the M × N score matrix S = [Sj(Ai)] and the relative
importance weighting factors of criteria. The first main step of BF-TOPSIS is
the construction of an M × N BBA matrix M = [mij(·)] from the score matrix
S, and then the combination of components of M to make a final decision thanks
to the Euclidean belief interval distance, denoted by dBI , defined in [14,15].

In fact, the BF-TOPSIS approach can also be directly applied to solve the
non-classical MCDM problems because the belief interval [Belij(Xi), P lij(Xi)]
of each proposition (i.e. each focal element which is not necessarily a singleton)
Xi based on a criteria Cj can be established in a consistent manner8 from the
score matrix S = [Sj(Xi)] as follows

[Belij(Xi);Plij(Xi)] � [
Supj(Xi)

Xj
max

; 1 − Infj(Xi)
Xj

min

] (3)

where the Supj(Xi) and Infj(Xi) are computed from the score matrix S by

Supj(Xi) �
∑

Y ∈2A|Sj(Y )≤Sj(Xi)

|Sj(Xi) − Sj(Y )| (4)

Infj(Xi) � −
∑

Y ∈2A|Sj(Y )≥Sj(Xi)

|Sj(Xi) − Sj(Y )| (5)

Supj(Xi) is called the “positive support” of Xi because it measures how much Xi

is better than other propositions according to criterion Cj , and Infj(Xi) is called
the “negative support” of Xi because it measures how much Xi is worse than
other propositions according to criterion Cj . The length of interval [0, Supj(Xi)]
measures the support in favor of Xi as being the best proposition with respect
to all other ones, and the length of [Infj(Xi), 0] measures the support against
Xi based on the criterion Cj .

The denominators involved in (3), are defined by Xj
max � maxi Supj(Xi)

and Xj
min � mini Infj(Xi), and they are supposed different from zero9. From

the belief interval [Belij(Xi);Plij(Xi)], we obtain the BBA mij(·) defined by

mij(Xi) � Belij(Xi) (6)

mij(X̄i) � Belij(X̄i) = 1 − Plij(Xi) (7)

mij(Xi ∪ X̄i) � Plij(Xi) − Belij(Xi) (8)
8 Indeed, Belij(Xi) and Belij(X̄i) (where X̄i is the complement of Xi in the FoD A)

belong to [0, 1] and they are consistent because the equality Plij(Xi) = 1−Belij(X̄i)
holds. The proof is similar to the one given in [11].

9 If Xj
max = 0 then Belij(Xi) = 0, and if Xj

min = 0 then Plij(Xi) = 1, so that
Belij(X̄i) = 0.
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If a numerical value Sj(Xi) is missing in the score matrix S (it is equal to ∅),
one chooses mij(·) equals (0, 0, 1), i.e., one takes a vacuous belief assignment.
In [11], we have proposed four methods (called BF-TOPSIS1, . . . , BFTOPSIS4)
to make a decision from the BBA matrix M = [mij(·)]. Due to space restric-
tion constraint, we just recall the principle of the BF-TOPSIS1 method because
it is the simplest one. Applications of BFTOPSIS2–BFTOPSIS4 methods to
non-classical MCDM problems is also possible without difficulty. The proposed
transformation of score values to BBAs and basis of BF-TOPSIS method are
theoretically justified in [11].

Before presenting succinctly the BF-TOPSIS1 method, we need to recall the
definition of Belief Interval-based Euclidean distances dBI(m1,m2) introduced
in [14] between two BBAs m1(·) and m2(·) defined on a same FoD Θ. Mathe-
matically, dBI(m1,m2) is defined by

dBI(m1,m2) �
√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (9)

where Nc = 1/2|Θ|−1 is a normalization factor to have dBI(m1,m2) ∈ [0, 1], and
dW (BI1(X), BI2(X)) is the Wassertein distance [16] between belief intervals
BI1(X) � [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) � [Bel2(X), P l2(X)] =
[a2, b2]. More specifically,

dW ([a1, b1], [a2, b2]) �

√[
a1 + b1

2
− a2 + b2

2

]2

+
1
3

[
b1 − a1

2
− b2 − a2

2

]2

(10)

In [14], we have proved that dBI(x, y) is a true distance metric.

Principle of BF-TOPSIS1: From the BBA matrix M and for each proposition
(focal element) Xi, one computes the Belief Interval-based Euclidean distances
dBI(mij ,m

best
ij ) defined in (9) between the BBA mij(·) and the ideal best BBA

defined by mbest
ij (Xi) = 1, and the distance dBI(mij ,m

worst
ij ) between mij(·) and

the ideal worst BBA defined by mworst
ij (X̄i) = 1.

Then, one computes the weighted average of dBI(mij ,m
best
ij ) values with

relative importance weighting factor wj of criteria Cj . Similarly, one computes
the weighted average of dBI(mij ,m

worst
ij ) values. More specifically, one computes

dbest(Xi) �
N∑

j=1

wj · dBI(mij ,m
best
ij ) (11)

dworst(Xi) �
N∑

j=1

wj · dBI(mij ,m
worst
ij ) (12)

The relative closeness of the proposition Xi with respect to ideal best solution
Xbest defined by

C(Xi,X
best) � dworst(Xi)

dworst(Xi) + dbest(Xi)
(13)
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is used to make the preference ordering according to the descending order of
C(Xi,X

best) ∈ [0, 1], where a larger C(Xi,X
best) value means a better proposi-

tion Xi.
Note that once the BBA matrix is computed from Eqs. (6), (7) and (8), we can

also apply (if we prefer) BF-TOPSIS2, BF-TOPSIS3 or BFTOPSIS4 methods
to make the final decision. Their presentation is out of the scope of this paper.

4 Apply BF-TOPSIS to Non-classical MCDM Problems

Due to space limitation restriction, we present the results of the BF-TOPSIS1
method only for two simple non-classical MCDM problems.

Example 1: This example is given by the score matrix of Eq. (2). We consider
the relative importance weights w1 = 1/3 and w2 = 2/3 of criteria C1 and
C2 respectively. Applying BBA construction formulas (6), (7) and (8) for this
example10, we get the BBA matrix M = [(mij(Xi),mij(X̄i),mij(Xi ∪X̄i))] with

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2

A1 (0.25, 0.25, 0.50) (0, 0, 1)
A3 (0, 1, 0) (0, 0, 1)
A4 (1, 0, 0) (0, 0, 1)
A5 (0.25, 0.25, 0.50) (0.6667, 0.1111, 0.2222)
A1 ∪ A2 (0, 0, 1) (0, 1, 0)
A3 ∪ A4 (0, 0, 1) (1, 0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

From this matrix M, we compute the distances dBI(., .) with respect to ideal
best and worst solutions shown in Table 1. Table 2 provides dbest(Xi), dworst(Xi)
and C(Xi,X

best) values computed from the formulas (11), (12) and (13). Based
on C(Xi,X

best) values sorted in descending order, we finally get the preference
order (A3 ∪A4) � A5 � A4 � A1 � (A1 ∪A2) � A3. If we restrict the preference
order to only singletons, we will get A5 � A4 � A1 � A3 (i.e. student A5 is the
best one). Note that student A2 alone cannot be ranked with respect to the other
students, which is normal based on the non-specific input (scoring) information
one has for him. Of course ad-hoc ranking solutions to rank all five students
can always be developed11, but without necessarily preserving the compatibility
with the rank obtained previously.

Example 2: In mountains, protecting housing areas against torrential floods is
based on a lot of alternatives at the watershed scale such as check dams’ series,
sediment traps, dikes, and individual protections [12]. Moreover, alternatives
can be the maintenance of existing structures or the construction of new ones to

10 When a score value is missing for some proposition Xi (i.e. if Sj(Xi) = ∅), then we
take the vacuous BBA mij(Xi ∪ X̄i) = 1.

11 For instance by normalizing the C(Xi, X
best) values (the most right column of

Table 2) and interpret it as a BBA, and then apply a decision method described
in [15].
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Table 1. Distances to ideal best and worst solutions.

Focal elem. Xi dBI(mi1,m
best) dBI(mi1,m

worst) dBI(mi2,m
best) dBI(mi2,m

worst)

A1 0.6016 0.2652 0.7906 0.2041

A3 0.8416 0 0.7906 0.2041

A4 0 0.8416 0.7906 0.2041

A5 0.6016 0.2652 0.2674 0.5791

A1 ∪ A2 0.5401 0.3536 0.6770 0

A3 ∪ A4 0.5401 0.3536 0 0.6770

Table 2. Average distances and relative closeness indicators.

Focal elem. Xi dbest(Xi) dworst(Xi) C(Xi, X
best) Ranking

A1 0.7276 0.2245 0.2358 4

A3 0.8076 0.1361 0.1442 6

A4 0.5270 0.4166 0.4415 3

A5 0.3788 0.4745 0.5561 2

A1 ∪ A2 0.6314 0.1179 0.1573 5

A3 ∪ A4 0.1800 0.5692 0.7597 1

increase the protection level. Final propositions generally involve several of pre-
vious individual alternatives. We propose here a simplified case of application.
Within a given watershed, a check-dams’ series already exists. Older than one
century years old, its maintenance (alternative A1) is questioned. Some experts
propose to abandon it and to build a sediment trap upstream the alluvial fan
(alternative A2) or to limit damage on buildings through individual protections
(alternative A3). The Decision-Maker (DM), here the local municipality, must
decide the best proposition taking into account several criteria: the investment
cost (C1 in e, in negative values), the risk reduction in 50 years between the
current situation and the expected situation after each proposition implemen-
tation (C2 in e), the impact on environment (C3 is a grade from 1 to 10), and
the land-use areas needed in privates (C4 in m2, in negative values). For each
criterion, the higher is the score, the better is the proposition. The DM gives
the same importance weight to C1 and C2 (w1 = w2 = 0.33), but they are more
important than C3 (w3 = 0.20) which is more important than C4 (w4 = 0.14).
The score matrix is given in Eq. (15). In this case, the problem is not to have no
knowledge on some scores but is that they are not cumulative in the same way
for each criterion. For C1 and C4, the score of the disjunction of two alternatives
is the sum of individual scores whereas it is not the case for C2 and C3.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 C3 C4

A1 −150000 100000 10 0
A2 −500000 200000 2 −20000
A3 −550000 250000 10 −5000
A1 ∪ A2 −650000 230000 2 −20000
A1 ∪ A3 −700000 250000 10 −5000
A2 ∪ A3 −1050000 250000 2 −25000
A1 ∪ A2 ∪ A3 −1200000 250000 2 −25000

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)
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The BBA matrix based on S using (3), (4), (5), (6), (7) and (8) (rounded to 2
decimal points) is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 C3 C4

A1 (1, 0, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
A2 (0.44, 0.10, 0.46) (0.45, 0.28, 0.27) (0, 1, 0) (0.10, 0.67, 0.23)
A3 (0.37, 0.13, 0.50) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)
A1 ∪ A2 (0.27, 0.21, 0.52) (0.73, 0.10, 0.17) (0, 1, 0) (0.10, 0.67, 0.23)
A1 ∪ A3 (0.23, 0.26, 0.51) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)
A2 ∪ A3 (0.04, 0.75, 0.21) (1, 0, 0) (0, 1, 0) (0, 1, 0)
A1 ∪ A2 ∪ A3 (0, 1, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16)

The weighted distances to the ideal best and worst solutions and the relative
closeness indicator are listed in Table 3. Based on relative closeness indicator
sorted in descending order, the final preference order is (A1 ∪ A3) � A3 � A1 �
(A1 ∪ A2) � (A2 ∪ A3) � A2 � (A1 ∪ A2 ∪ A3): maintaining the existing check
dams’ series and implementing individual protections is the best option. If the
preferences are restricted to single alternatives, one will get as final preference
order A3 � A1 � A2, i.e. option A3 (only individual protections) should be
preferred by the DM.

Table 3. Average distances and relative closeness indicators.

Focal elem. Xi dbest(Xi) dworst(Xi) C(Xi, X
best) Ranking

A1 0.3012 0.6116 0.6700 3

A2 0.5668 0.3677 0.3935 6

A3 0.1830 0.7483 0.8035 2

A1 ∪ A2 0.4476 0.4901 0.5226 4

A1 ∪ A3 0.1555 0.7775 0.8333 1

A2 ∪ A3 0.5562 0.3614 0.3938 5

A1 ∪ A2 ∪ A3 0.8328 0.2694 0.2444 7

5 Conclusions

In this paper, we have shown how the BF-TOPSIS approach can be exploited
to solve non-classical MCDM problems. This method is relatively easy to use. It
does not require the normalization of data and offers a consistent construction of
basic belief assignments from the available scoring values. It can also deal with
missing scoring values and different criteria weights as well. In this paper only
the BF-TOPSIS1 method has been presented, but other more sophisticate BF-
TOPSIS methods could be also used to solve non-classical problems, but at the
price of a higher complexity. The application of this new BF-TOPSIS approach
to solve non-classical MCDM problems for natural risk prevention is currently
under evaluation, and it will be reported in a forthcoming publication.
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