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Abstract. The Evidential Reasoning for Multi Criteria Decision Analy-
sis (ER-MCDA) is based on a mapping process transforming a possibility
distribution into a Bayesian basic belief assignment (BBA) related to a
qualitative frame of discernement (FoD). Each element of the FoD is a
fuzzy set. A new improved mapping method is proposed to get a final
potentially non-Bayesian BBA on the FoD. We apply it to assess the
stability of protective check dams against torrential floods given their
imprecise scouring rate.

Keywords: Fuzzy sets · Possibility theory · Belief functions · Mapping ·
ER-MCDA

1 Introduction

Evidential Reasoning for Multi-Criteria Decision-Analysis (ER-MCDA) is a
multi-criteria decision method which is able to take into account both imperfect
evaluation of quantitative and qualitative criteria and multiple more or less reli-
able sources [1]. The principle is first to represent imperfect evaluation of each
criterion through a possibility distribution. As it uses fusion, those evaluations
must be transformed into a common Frame of Discernment (FoD). Therefore, a
mass of belief is assigned to consonant intervals with a confidence level which
correspond to the possibility distribution. The mapping process establishes the
link between the basic belief assignment BBA m(·) on quantitative intervals
with a BBA in the common FoD. It can be interpreted as a function from the
possibility distribution to a BBA on the common FoD. The initial principle of
mapping is based on a geometrical projection. It induces several issues such as its
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theoretical justification but also its limited ability to provide positive masses of
belief on singletons only. Our approach aims at improving this mapping process.

We consider an application case where ER-MCDA is used to assess the sta-
bility (high, medium, low) of check dams against torrential risk in mountains.
This evaluation is based on several criteria, such as the scouring rate (expressed
in percentage) which is a damageable loss of foundation support1 [2]. In this
application context, the Fig. 1 shows how an expert often provides an imperfect
evaluation of check dam stability according to its foundation’s scouring rate.
Indeed, a precise and direct measure would be somewhere too dangerous.

Fig. 1. A real example of imperfect evaluation of check dam stability according to its
foundation’s scouring rate.

In this paper, our scope is not to develop a theoretical proof of the mapping
process but to highlight some theoretical issues to propose another method. In
Sect. 2, we briefly recall some basics of fuzzy sets, possibility and belief function
1 Scouring is a process due to which the particles of the soil or rock under the check

dam’s foundation gets eroded and removed over a certain depth called scour depth
and over the foundation area called scouring rate. Scouring often occurs in torrent
because of the velocity and energy of the flowing in steep slopes.
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theories. We introduce the classical transformation and we propose a new method
in Sect. 3. In Sect. 4, we compare the two methods on a sample decision context
of our application case.

2 Fuzzy Sets, Possibility and Belief Function Theories

In the fuzzy set theory [4], U is the universe of discourse of individual elements
u. μA is the membership function which associates each u ∈ U to the class (fuzzy
set) A with the grade of membership μA(u) ∈ [0, 1]. A fuzzy set A is normal
when there is an element u ∈ U such as μA(u) = 1. We use trapezoidal functions
defined by the quadruplet {a, b, c, d} (Eq. (1), Fig. 2) given their simplicity to
approximate fuzzy intervals [5]. Intervals [a, d] and [b, c] are respectively the
fuzzy set’s support (suppA) and its core (Ac) [5]. We denote Ā the complement
of A for u ∈ U , defined by the membership function μĀ of the Eq. (2) and shown
in the Fig. 2. Given μB �= μA which represents another fuzzy set B for u ∈ U ,
the membership function μA∪B of the Eq. (3) represents the union of A and B
while μA∩B of the Eq. (4) represents their intersection [4] (see Fig. 2).

μA(u) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if u /∈ suppA

u−a
b−a

if u ∈ [a, b]

1 if u ∈ Ac

u−d
c−d

if u ∈ [c, d]

(1)

μĀ(u) � 1 − μA(u), u ∈ U (2)

μA∪B(u) � max
u∈U

(μA(u), μB(u)) (3)

μA∩B(u) � min
u∈U

(μA(u), μB(u)) (4)

Fig. 2. Given U , trapezoidal fuzzy sets A, Ā, A ∪ B and A ∩ B.

In the possibility theory framework [6], F is the fuzzy set of possible values
of u ∈ U . The possibility distribution π is given by μF (u) � π(u) ∈ [0, 1] also
defined by a quadruplet {a, b, c, d} [7]. Given X a subset of U and X̄ its com-
plement, the possibility measure is Π(X) � supu∈X π(u) [6] and the necessity
is [8] N(X) � 1 − Π(X̄), ∀X, X̄ ⊆ U as shown in the Fig. 3. Considering the
fuzzy set μA and a possibility distribution μF , the Eq. (5) gives the possibility
measure of A [6].
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Considering F as a nested family of α-cuts {Fα|α ∈ (0, 1]}, one has Fα �
{u|μF (u) � α} [5]. Viewing Fα as a uniformly distributed random set from
α ∈ (0, 1] to Fα ⊆ U , one has μF (u) �

∫ 1

0
μFα

(u)dα. Considering a finite nested

family of subsets {Fα1 =
]
u−

α1
;u+

α1

[ ⊆ . . . ⊆ Fαl
=

]
u−

αlmax
;u+

αlmax

[
}, the set

{α1 > . . . > αl > . . . > αlmax} and ml � αl − αl+1 ∈ [0, 1] with αl+1 = 0
(Fig. 3), one has the Eq. (6).

Π(A) � sup
u∈U

μA∩F (u) (5) π(u) �
∑

u∈Fαl

ml (6)

Fig. 3. Possibility distribution, possibility and necessity measures, α-cuts.

In the belief function theory, a basic belief assignment (BBA), or mass of
belief m(·), represents the imperfect knowledge of a body of evidence (or source)
on a given FoD denoted as Θ = {θ1, θ2, . . . , θq}. In the classical Shafer’s model [9],
all elements θk, k = 1, . . . , n are assumed exhaustive and mutually exclusive. The
powerset 2Θ is the set of all subsets of Θ, empty set ∅ included. For X ∈ 2Θ, we
denote X̄ ⊆ Θ its complement. For each source, the mass function m(·) : 2Θ →
[0, 1] must satisfy m(∅) = 0, and

∑
X⊆Θ m(X) = 1,∀X �= ∅ ∈ 2Θ. Considering

the universe of discourse U as the FoD and assuming a normal fuzzy set F , m(·)
is extracted considering Fαl

∈ 2U , l = 1, . . . , lmax.
Given m(·) on 2Θ, the belief of the hypothesis Y ∈ 2Θ is defined by Bel(Y ) �∑

X⊆Y |X∈2Θ m(X). Its plausibility is defined by Pl(Y ) �
∑

X∩Y �=∅|X∈2Θ m(X)
[10]. Considering that the universe of discourse U is the FoD Θ, the plausibility
measure Pl(X) is a possibility measure Π(X), ∀X ⊆ Θ = U [7].

Shafer’s assumption of exhaustivity of the FoD means that it is considered
as a “closed-world” (c.w.). In some practical problems, this assumption is too
strict and it is more convenient to consider the original FoD as an “open-world”
(o.w.). Dealing with it can be done in two manners as shown in the Fig. 4.

1. In Smets’ Transferable Belief Model (TBM) [11], Θo.w. � {θ1, . . . , θq} and
∅ = Θ̄o.w.. One has

∑
X∈2Θ m(X) = 1, and one allows m(∅) � 0.

2. In Yager’s approach [12], the open-world is closed by an hedge element θc,
so that Θc.w. � Θo.w. ∪ {θc}. Setting mc.w.(θc) = 0 and mc.w.(∅) = 0, one
has Belc.w.(A) = 0 and mc.w.(A) = 0 for each subset A ⊆ Θo.w.. For each
X ⊆ Θc.w., one computes Belc.w.(X) and mc.w.(X) in the Eqs. (7) and (8).
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Belc.w.(X) �
{

0 if X = A ⊆ Θo.w. ⊂ Θc.w.

1 − Plc.w.(X̄) if X = A ∪ θc ⊆ Θc.w.
(7)

mc.w.(X) �

⎧
⎪⎨

⎪⎩

0 if X = A ⊆ Θo.w. ⊂ Θc.w.

0 if X = θc ⊂ Θc.w.

∑
Y ⊆A(−1)|A−Y |Belc.w.(Y ∪ θc) if X = A ∪ θc ⊆ Θc.w.

(8)

Fig. 4. TBM and hedging models under an “open-world” with exclusivity, for q = 3.

3 Transforming Possibility Distributions to BBAs on Θ

The FoD Θ = {θ1, . . . , θq} of decision gathers q qualitative labels. For each
criterion, scoring results from an evaluation scale which is the specific universe
of discourse U . To take into account its imprecise and uncertain evaluation, a
possibility distribution π : U → [0, 1] is given by the expert according to Eq. (6).
To combine all the possibility distributions provided by several sources for several
criteria, each one must be represented by a BBA mΘ(·) established on 2Θ for
the common FoD Θ as shown in the Fig. 5.

Fig. 5. The general principle and objective of the mapping process.

A mapping model [1] is therefore based on q membership functions μθk
: U

→ [0, 1] for k = 1, . . . , q according to Eq. (1), corresponding to each θk of the
FoD. The construction of the q fuzzy sets respects the condition

∑q
k=1 μθk

� 1
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for mutual exclusivity: if an element u� ∈ U totally belongs to a label θk

(μθk
(u�) = 1, k ∈ [1, q]), it cannot partially belongs to another label of Θ

(μθm
(u�) = 0,m �= k ∈ [1, q]). By construction, there is at least u� ∈ U for

which μΘ=
⋃{θk|k∈[1,q]}(u�) � 1: it corresponds to an “open-world” assumption.

3.1 Classical Transformation

Given the possibility distribution π and the q functions μθk
for k = 1, . . . , q, the

classical mapping [1] consists of the three following steps (shown in Fig. 6):

1. Given lmax α-cuts with Fαl
∈ 2U , l = 1, . . . , lmax, mU (·) is extracted for

the FoD U from π as shown in Fig. 3. Each Fαl
is a focal element and its

corresponding mass is denoted mU (Fαl
). The BBA mU (·) thus represents the

imperfect evaluation of a quantitative or qualitative evaluation of u ∈ U . Each
focal element is an interval which represents evaluation imprecision. Each
mass of an interval takes into account the confidence level or uncertainty. By
definition of mU (·), one has

∑lmax
l=1 mU (Fαl

) = 1.
2. For each Fαl

=
]
u−

αl
;u+

αl

[
, l = 1, . . . , lmax, the area Akl

under each curve μθk

is given by Akl
�

∫ u+
αl

u−
αl

μθk
(u)du. One has Al �

∑q
k=1 Akl

and computes the

mass mΘ
l (θk) � Akl

Al
for each Fαl

and each θk. Thus, by definition of Al, one
has

∑q
k=1 mΘ

l (θk) = 1.
3. One then builds the Bayesian2 BBA mΘ(·) on 2Θ for the FoD Θ =

{θ1, θ2, . . . , θq} with mΘ(θk) �
∑lmax

l=1 mU (Fαl
) × mΘ

l (θk), k = 1, . . . , q. This
equation can be justified as follows.
From the two previous points, one has

∑q
k=1 mΘ

l (θk) × ∑lmax
l=1 mU (Fαl

) = 1.
Thus

∑q
k=1

∑lmax
l=1 mΘ

l (θk) × mU (Fαl
) = 1. By definition,

∑q
k=1 mΘ(θk) = 1.

As a consequence, mΘ(θk) �
∑lmax

l=1 mU (Fαl
) × mΘ

l (θk), k = 1, . . . , q.

Fig. 6. Steps of the ER-MCDA’s classical mapping process: α-cuts choice, BBA mU (·)
calculation, and projection on the mapping model to get a final BBA mΘ(·).
2 The focal elements of a Bayesian BBA are only singletons of 2Θ.
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This principle of simple geometric transformation is however not fully satis-
fying since it only assigns BBAs to singletons and arbitrarily shares a BBA on
several elements of the FoD regardless of partial or total ignorance. Moreover,
from a practical point of view, this classical method needs an arbitrary setting
of the value of lmax but also of all the values of αl. That is why, it was first
proposed that experts give their imprecise evaluation through intervals with a
confidence level. It corresponds to a possibility distribution after α-cut, each αl

being the confidence level given by the expert [1]. Nevertheless, in practice, we
think that it is easier to give only the quadruplet {a, b, c, d} of Fig. 3 than several
intervals with a confidence level.

3.2 New Transformation

Our new method is based on four steps to get a BBA mΘ(·) on all focal ele-
ments X ∈ 2Θ and not only on singletons of Θ = {θ1, . . . , θk, . . . , θq}. Given the
construction of the q fuzzy sets, it assumes mutual exclusivity without exhaus-
tivity. Thereafter we detail the method using Yager’s model with hedging even
if a similar approach has been also studied using the TBM. One thus considers
Θo.w. = {θ1, . . . , θk, . . . , θq} and Θc.w. = Θo.w. ∪ {θc}. Different steps are:

1. Construction of 2q − 1 functions μc.w.
A∪θc for all A �= ∅ ⊆ Θo.w. (see Fig. 7):

given q functions μo.w.
θk

: U → [0, 1] for k = 1, . . . , q, the Eq. (3) gives the
2q − 1 functions μo.w.

A : U → [0, 1]. One uses the Eq. (9) to close the world
and get the 2q − 1 functions μc.w.

A∪θc : U → [0, 1].

μc.w.
A∪θc(u) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if μo.w.
A (u) = 1

μo.w.
A (u) if μo.w.

A (u) < 1

and if
∑2q

i=1 μo.w.
Yi

(u) > 0, Yi ⊆ Θo.w., Yi ∩ A = ∅
1 if μo.w.

A (u) < 1

and if
∑2q

i=1 μo.w.
Yi

(u) = 0, Yi ⊆ Θo.w., Yi ∩ A = ∅

(9)

Fig. 7. Step 1 of the new mapping for q = 3.
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2. The Eq. (2) gives the 2q − 1 functions μc.w.
A∪θc

: U → [0, 1]. Given π (or μF ),
the Eq. (5) gives the possibility measures Πc.w.(A ∪ θc) � supu∈U μA∪θc∩F ,
∀A ∈ 2Θo.w. − {∅} corresponding to the plausibility measures Plc.w.(A ∪ θc).

3. The Eq. (7) first provides Belc.w.(·). The Eq. (8) then gives mc.w.(·) on 2Θc.w.

.

4 Application to the Scouring Rate of a Check Dam

In practice, the check dam stability is assessed through qualitative labels of
the FoD Θ = {θ1 = High, θ2 = Medium, θ3 = Low} [13]. The lower is the
scouring rate, the higher is check dam structural stability. The FoD cardinality
|Θ| is here q = 3. For each check dam, the choice of the stability label notably
depends on the scouring rate u of its foundation, with u a continuous value in
U = [0%, 100%]. μθk

is the membership function linking the scouring rate u ∈ U
to each stability label θk. Each μθk

of the mapping model is represented in the
Table 1 through a quadruplet {a, b, c, d} according to the Eq. (1). The practical
way of defining such a mapping model has been developed in [13]. It is based on
a civil engineering analysis of the check dams stability given several hypotheses
of scouring rate. They respect the exclusivity and “open-world” conditions given
in the third paragraph of the Sect. 3.

In practice, experts imperfectly measure scouring rate as shown in Fig. 1.
Therefore, we compare evaluations through possibility distributions provided by
six different experts. Each evaluation is represented by a quadruplet {a, b, c, d}
in the Table 1, from a very imprecise evaluation (expert 1) to very precise ones
(experts 5 and 6). The evaluation illustrated in Fig. 1 is given by expert 3.

Table 1. 3 fuzzy sets μθk(u) and expert possibility distributions π(u), ∀u ∈ U .

μθk θ1 θ2 θ3
a,b,c,d 0,0,30,50 30,50,60,70 60,70,100,100

π Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6
a,b,c,d 20,30,80,90 30,40,60,80 40,50,50,60 30,40,40,50 40,40,40,40 45,45,45,45

To apply the classical transformation on the Table 1, we assume lmax = 4 with
α-cuts α1 = 1, α2 = 0.7, α3 = 0.4, and α4 = 0.1 to extract the BBAs mU (·)
[10]. One gets the final Bayesian BBAs mΘ(·) in columns “1” in the Table 3.

After steps 1 and 2 using Table 1 values, one gets the values of Plc.w.(A ∪ θc),
∀A ∈ 2Θo.w. − {∅}, with Θo.w. = {θ1, θ2, θ3}. Using them in the step 4, one gets
the belief functions Belc.w.(·) in the Table 2 and the BBAs mc.w.(·) in columns
“2” in the Table 3. The latter gathers only focal elements with a positive mass.

Results given in the Table 3 show that the new method affects a positive
mass to total (experts 1 and 2) or partial ignorance with mc.w.(θ1 ∪ θ2 ∪ θc) > 0
(experts 3 and 4) according to the imprecision degree of initial evaluations. The
less precise is the initial evaluation of the scouring rate, the less informative is
the mapped BBA. It improves the classical transformation and it propagates the
imperfection of the initial information on Θc.w..
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Table 2. Intermediary Belc.w.(A ∪ θc) for the new mapping.

A ∪ θc Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

θ1 ∪ θc 0 0 0 0.333 0.5 0.25

θ2 ∪ θc 0 0.333 0.667 0.333 0.5 0.75

θ1 ∪ θ2 ∪ θc 0 0.333 1 1 1 1

θ3 ∪ θc 0 0 0 0 0 0

θ1 ∪ θ3 ∪ θc 0 0 0 0.333 0.5 0.25

θ2 ∪ θ3 ∪ θc 0 0.333 0.667 0.333 0.5 0.75

θ1 ∪ θ2 ∪ θ3 ∪ θc 1 1 1 1 1 1

Table 3. BBAs using two approaches: 1 = mΘ(·) for classical, and 2 = mc.w.(·) for
new.

Focal elements Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

1 2 1 2 1 2 1 2 1 2 1 2

θ1 0.24 0 0.15 0 0.05 0 0.5 0 0.5 0 0.25 0

θ2 0.44 0 0.75 0 0.95 0 0.5 0 0.5 0 0.75 0

θ3 0.32 0 0.10 0 0 0 0 0 0 0 0 0

θ1 ∪ θc - 0 - 0 - 0 - 1
3

- 0.5 - 0.25

θ2 ∪ θc - 0 - 1
3

- 2
3

- 1
3

- 0.5 - 0.75

θ1 ∪ θ2 ∪ θc - 0 - 0 - 1
3

- 1
3

- 0 - 0

θ1 ∪ θ2 ∪ θ3 ∪ θc - 1 - 2
3

- 0 - 0 - 0 - 0

5 Conclusion

This paper proposes a new mapping process in the ER-MCDA methodology. It
allows to get a belief mass on non singletons elements of the powerset of the FoD.
Unlike the initial approach [1], the possibility distribution is represented by its
support and core and setting of values of lmax and αl are not needed for an α-cut
approach. It is based on the conjunction between the possibility distribution and
fuzzy sets but also takes into account the relationship between the possibility and
the plausibility measures. To relax the hypothesis of exhaustivity of the classical
Shafer’s model, we have chosen Yager’s hedging model instead of Smets’ TBM
model to prevent from introducing an ambiguity in the interpretation of the
empty set. According to application cases, the hypothesis of exclusivity should
be relaxed. It will be studied in forthcoming publications.
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