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Abstract. In the paper we argue that aggregation rules in the theory of
belief functions should be in accordance with underlying decision models,
i.e. aggregation produced in conjunctive manner has to produce the order
embedded to the union of partial orders constructed in each source of
information; and if we take models based on imprecise probabilities, then
such aggregation exists if the intersection of underlying credal sets is not
empty. In the opposite case there is contradiction in information and the
justifiable functional to measure it is the functional giving the smallest
contradiction by applying all possible conjunctive rules. We give also the
axiomatics of this contradiction measure.
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1 Introduction

The theory of belief functions gives us many methods of information fusion.
This procedure can be characterized as an aggregation of information sources
that allows us to improve its reliability, precision, etc. There are many rules for
aggregation of information in the frame of the belief function theory [7]. If each
source of information is considered to be reliable then we can use conjunctive
rules [2,8] of aggregation that should decrease uncertainty. Because belief func-
tions have various interpretations, the optimal conjunctive rule does not exist.
Therefore, in the first part of the paper we propose to justify the application of
conjunctive rules based on the underlying decision models. This can be shortly
described as follows. Suppose that by using each source of information we can
construct the corresponding model of decision making described by a partial
preference order on decisions. The union of these orders can be understood as
the result of their conjunction. If orders do not contradict each other, then their
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conjunction can be embedded to a partial order. This way also explains when
contradiction among sources of information exists or does not. We show that
if we choose decisions based on models of imprecise probabilities then sources
of information are contradictory if the intersection of the corresponding credal
sets is not empty. We show that in this case the contradiction measure giving
the smallest contradiction after applying possible conjunctive rules is justifiable,
and we propose a number of axioms that leads to its unique choice.

The paper has the following structure. We give first the basic constructions
concerning belief functions in Sect. 2. Then we describe some aggregation rules
in Sect. 3, in particular, conjunctions rules that generalize the non-normalized
Dempster’s rule. In Sect. 4 we analyze the relation between decision models based
on imprecise probabilities and aggregation rules, and finally, in Sect. 5 we give
the axiomatics of the contradiction measure justified in the theory of imprecise
probabilities.

2 Some Facts and Notions from the Theory of Belief
Functions

Let X = {x1, ..., xn} be a finite set also called the frame of discernment and let
2X be the powerset of X. Any belief function [9] Bel : 2X → [0, 1] can be defined
by a basic belief assignment (bba) m : 2X → [0, 1] with

∑

B∈2X
m(B) = 1 as

Bel(A) =
∑

B∈2X |B⊆A

m(B).

A belief function is called normalized if Bel(∅) = 0. The value Bel(∅) shows the
amount of contradiction in information described by a belief function. Let Bel
be a belief function on 2X with bba m. Then a set B ∈ 2X is called a focal
element if m(B) > 0. The set of all focal elements for a belief function Bel is
called the body of evidence. If the body of evidence has only one focal element B,
then the belief function is called categorical and it is denoted by η〈B〉. Obviously,

η〈B〉(A) =
{

1, B ⊆ A,
0, B �⊆ A.

Any belief function Bel on 2X can represented as a sum of categorical belief
functions as

Bel =
∑

B∈2X

m(B)η〈B〉,

where obviously m is the bba of Bel.
In the next we will use the following notations:

– Mbel is the set of all normalized belief functions on 2X and the set of all belief
functions including non-normalized ones is denoted by M̄bel;

– Mpr is the set of all probability measures on 2X , i.e. normalized belief func-
tions, for which m(A) = 0 if |A| � 2.



Conjunctive Rules in the Theory of Belief Functions 139

3 Aggregation Rules in the Theory of Belief Functions

The application of aggregation rules depends on prior information about infor-
mation sources. We will discuss in detail the conjunctive rules. They are used
if each source of information is assumed to be reliable. The following scheme
gives us the general approach to construction of conjunctive rules [2,8]. Sup-
pose we have two sources of information described by belief functions Beli =∑

A∈2X
mi(A)η〈A〉, i = 1, 2. Then the general conjunctive rule can be defined with

the help of a joint belief assignment m : 2X × 2X → [0, 1] that satisfies the
following conditions:

{∑
A∈2X m(A,B) = m2(B),∑
B∈2X m(A,B) = m1(A). (1)

The result of the conjunctive rule is defined as

Bel =
∑

A,B∈2X

m(A,B)η〈A∩B〉.

Let us notice that if we assume that the sources of information are indepen-
dent, then the joint belief assignment m is defined as m(A,B) = m1(A)m2(B),
A,B ∈ 2X . In the next the last rule of aggregation is referred as the classical
conjunctive rule. Dempster’s and Yager’s rules of aggregation defined as

(1) Dempster’s rule [4,9]: Bel = 1
1−k

∑

A∩B �=∅
m1(A)m2(B)η〈A∩B〉, where k =

∑

A∩B=∅
m1(A)m2(B);

(2) Yager’s rule [10]: Bel =
∑

A∩B �=∅
m1(A)m2(B)η〈A∩B〉 + kη〈X〉, where k is

defined as in (1);

are closely related to the classical conjunctive rule. As one can see they show how
the result of the classical conjunctive rule can be transformed to the normalized
belief function.

In the theory of belief functions you can find also other rules of aggregation.
The disjunctive rule [7] is used if at least one source of information is reliable. The
result of its application is defined through the joint belief assignment obeying
the conditions (1) as

Bel =
∑

A,B∈2X

m(A,B)η〈A∪B〉.

If the sources of information are independent, then m(A,B) = m1(A)m2(B) for
all A,B ∈ 2X , and also Bel(A) = Bel1(A)Bel2(A) for all A ∈ 2X .

The mixture rule is used if we can evaluate the reliability of each source of
information. Let us assume that we have m sources of information described by
belief functions Beli, i = 1, ...,m, and reliability of i-th source, i = 1, ...,m, is
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evaluated by a non-negative real number ri and
m∑

i=1

ri = 1, then the result of

the mixture rule is defined as Bel =
m∑

i=1

riBeli. There are other approaches for

accounting reliability of information sources, see for example, Shafer’s rule [9].
Let us notice that one can find other rules of aggregation in the theory of belief
functions [7] but they can be represented as a combination of the above basic
aggregation rules.

4 Aggregation Rules and Decision Models

We will consider decision models in a view of probabilistic interpretation of
normalized belief functions. Suppose that each decision is identified with a real
valued function (gamble) f on X. The set of all such functions is denoted by K.
Let the available information be described by a probability measure P ∈ Mpr.
Then the preference order ≺ on K, based on suspected utility

EP (f) =
n∑

i=1

f(xi)P ({xi}),

is defined as: decision f2 is more preferable than decision f1 (f1 ≺ f2) iff
EP (f1) < EP (f2). If the available information is imprecise then it can be
described by a belief function Bel ∈ Mbel or the corresponding credal set
P = {P ∈ Mpr|P � Bel}, and we can use several decision rules from the theory
of imprecise probabilities [1]:

(a) f1 ≺ f2 iff EP (f1) < EP (f2) for all P ∈ P;
(b) f1 ≺ f2 iff EP(f1) < EP(f2), where EP(f) = inf

P∈P
EP (f);

(c) f1 ≺ f2 iff ĒP(f1) < ĒP(f2), where ĒP(f) = sup
P∈P

EP (f);

(d) f1 ≺ f2 iff EP(f1) < EP(f2) and ĒP(f1) < ĒP(f2).

Let us notice that the relation ≺ is a strict partial order, and this seems to
be natural that we cannot choose an optimal decision if we do not have sufficient
information. In the next we will focuse on the rule (a) and analyze its behavior
w.r.t. applying aggregation rules.

Assume that we have m information sources described by belief functions
Beli ∈ Mbel, i = 1, ...,m. Assume also that each source of information is char-
acterized by the preference order ρi ⊆ K × K. Then the result of applying the
conjunctive rule to orders ρi should be also the preference order ρ ⊆ K × K
and obey the consensus condition ρi ⊆ ρ, i = 1, ...,m, with the meaning that
each source of information is reliable. The application of the disjunction rule
should give us an order ρ obeying the condition ρi ⊇ ρ, i = 1, ...,m, meaning
that (f1, f2) ∈ ρ if this preference is confirmed in each source of information.
Observe that the conjunctive rule is not defined if an order ρ ⊆ K × K with
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ρi ⊆ ρ, i = 1, ...,m, does not exist. In this case we say that sources of informa-
tion are contradictory. The disjunctive rule always exists and it can be defined

as ρ =
m⋂

i=1

ρi.

Let us analyze how the above definitions agree with the aggregation rules in
the theory of belief functions.

Lemma 1. Let Bel ∈ Mbel be the result of the conjunctive rule to belief func-
tions Bel1, Bel2 ∈ Mbel. Let us consider preference orders ρ, ρ1, ρ2 that corre-
spond to belief functions Bel,Bel1, Bel2 by decision rule (a). Then the preference
order ρ for Bel agrees with orders ρ1 and ρ2.

Proof. Clearly, P(Bel) ⊆ P(Beli), i = 1, 2. Thus, applying decision rule (a)
implies that ρi ⊆ ρ, i = 1, 2.

Lemma 2. Let Bel ∈ Mbel be the result of the disjunctive rule to belief functions
Bel1, Bel2 ∈ Mbel. Then ρi ⊇ ρ, i = 1, 2.

Proof. It is easy to see that Bel � Beli, i = 1, 2. Thus, P(Beli) ⊆ P(Bel) and
ρi ⊇ ρ, i = 1, 2.

Proposition 1. Sources of information described by belief functions Bel1,
Bel2 ∈ Mbel are not contradictory iff P(Bel1) ∩ P(Bel2) �= ∅. In this case there
is a conjunctive rule with the result Bel ∈ Mbel.

Proof. Sufficiency. Assume that there exists a P ∈ P(Bel1)∩P(Bel2). Consider
the preference order ρ, generated by a probability measure P . Obviously, ρi ⊆ ρ,
i = 1, 2, where ρi is the preference order, generated by Beli.

Necessity. Let P(Bel1) ∩ P(Bel2) = ∅. We will use the well known fact that
if we have two disjoint closed convex sets in R

n, then there is a hyperplane sep-
arating them. This fact for credal sets P(Bel1) and P(Bel2) can be formulated
as: there is a f ∈ K such that EP (f) > 0 for all P ∈ P(Bel1) and EP (f) < 0 for
all P ∈ P(Bel1). Thus, f is more preferable than −f according to the order ρ1
and −f is more preferable than f according to the order ρ2. Clearly, a partial
order ρ does not exist, because the above preferences contradict to its asymmetry
property.

The existence of the conjunctive rule with properties indicated in the propo-
sition follows from the results in [2].

5 The Axiomatics of Contradiction Measure

Let us consider the measure of contradiction, analyzed in [2,3,5]. Let
R(Bel1, Bel2) be the set of possible belief functions obtained by the conjunc-
tive rules applied to Bel1, Bel2 ∈ Mbel. Then the measure of contradiction
Con : Mbel × Mbel → [0, 1] is defined as

Con(Bel1, Bel2) = inf {Bel(∅)|Bel ∈ R(Bel1, Bel2)} .
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Let us consider its properties indicated in [2]. Further we will use the order � on
M̄bel called specialization. Let Bel1, Bel2 ∈ M̄bel, then Bel1 � Bel2 iff there are

representations Bel1 =
N∑

i=1

aiη〈Ai〉 and Bel2 =
N∑

i=1

aiη〈Bi〉, such that
N∑

i=1

ai = 1,

ai � 0, Bi ⊆ Ai, i = 1, ..., n. It easy to see that Bel1 � Bel2 implies Bel1 � Bel2
(Bel1(A) � Bel2(A) for all A ∈ 2X), but the opposite is not true in general [6].

Proposition 2. The measure of contradiction Con : Mbel × Mbel → [0, 1] has
the following properties:

A1. Con(Bel1, Bel2) = 0 for Bel1, Bel2 ∈ Mbel iff P(Bel1) ∩ P(Bel2) �= ∅.
A2. Let Bel1, Bel2 ∈ Mbel, and let Ai be their corresponding bodies of evidence,

then Con(Bel1, Bel2) = 1 iff A ∩ B = ∅ for all A ∈ A1 and B ∈ A2.
A3. Con(Bel1, Bel2) = Con(Bel2, Bel1) for all Bel1, Bel2 ∈ Mbel;
A4. Let Bel1 � Bel′1 and Bel2 � Bel′2, then Con(Bel1, Bel2) �

Con(Bel′1, Bel′2);
A5. Let Bel1 = (1 − a)Bel

(1)
1 + aBel

(2)
1 and Bel2 = (1 − a)Bel

(1)
2 + aBel

(2)
2 ,

where a ∈ [0, 1] and Bel
(k)
i ∈ Mbel, i, k = 1, 2. Then Con(Bel1, Bel2) �

(1 − a)Con(Bel
(1)
1 , Bel

(1)
2 ) + aCon(Bel

(2)
1 , Bel

(2)
2 ).

A6. Let Con(Bel1, Bel2) = a, where a ∈ [0, 1] and Bel1, Bel2 ∈ Mbel, then there
exist Bel

(k)
i ∈ Mbel, i, k = 1, 2, such that Beli = (1 − a)Bel

(1)
i + aBel

(2)
i ,

i = 1, 2, Con(Bel
(1)
1 , Bel

(1)
2 ) = 0, and Con(Bel

(2)
1 , Bel

(2)
2 ) = 1.

In addition,

(a) Con(P1, P2) = 1 −
n∑

i=1

min {P1(xi), P2(xi)}, Pi ∈ Mpr, i = 1, 2;

(b) Con(Bel1, Bel2) = inf {Con(P1, P2)|P1 ∈ P(Bel1), P2 ∈ P(Bel2)}.
We will consider properties A1–A6 as axioms for a measure of contradic-

tion. We will show later that the measure of contradiction is uniquely defined by
this system of axioms. Let us notice that axioms A1–A4 are considered in [5].
Axiom A1 describes the case when sources of information are non-contradictory,
and similarly in axiom A2 we describe the case, when information sources are
absolutely contradictory. In the last case any evidence (focal element) A ∈ A1

taken from the first source of information contradicts to any evidence B ∈ A2

from the second source of information. Axiom A3 is the symmetry axiom that
follows from the problem statement. Let us observe that axiom A4 reflects the
following. If Beli � Bel′i, then Bel′i describes the same information but with
higher precision. Therefore, axiom A4 says that increasing precision can lead to
higher contradiction. Axioms A5 and A6 describe how we can evaluate contra-
diction by dividing information in each source on two parts: axiom A5 says that
evaluation produced by dividing on two parts can gives us the result with the
higher value of contradiction. Axiom A6 says that it is possible to divide infor-
mation in each source on two parts such that we can extract parts of information
that do not contradict each other and parts that are absolutely contradictory,
and this separation defines the value of contradiction.
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Lemma 3. Belief functions Bel1, Bel2 ∈ Mbel are absolutely contradictory, i.e.
they obey the condition A2, iff there are disjoint sets A,B ∈ 2X (A ∩ B = ∅)
such that Bel1(A) = Bel2(B) = 1.

Proof. Necessity. Let we use notations from A2 and assume Bel1, Bel2 are
absolutely contradictory. Let us choose A =

⋃

C∈A1

C and B =
⋃

C∈A2

C. Then

obviously A ∩ B = ∅ and Bel1(A) = Bel2(B) = 1.
Sufficiency. Assume that there are A,B ∈ 2X such that Bel1(A) =

Bel2(B) = 1 and A ∩ B = ∅. Then
∑

C⊆A

m1(C) = 1 and
∑

C⊆B

m1(C) = 1.

This means that any focal element for Bel1 is a subset of A and any focal ele-
ment for Bel2 is a subset of B, i.e. belief functions Bel1, Bel2 are absolutely
contradictory.

Lemma 4. Let a functional Φ : Mpr × Mpr → [0, 1] obey axioms A1, A2 and
A6. Then

Φ(P1, P2) = 1 −
n∑

i=1

min {P1(xi), P2(xi)}, P1, P2 ∈ Mpr.

Proof. In the case of probability measures in possible representations Pi = (1 −
a)P (1)

i + aP
(2)
i , where P

(k)
i ∈ Mpr, i, k = 1, 2, P

(1)
1 = P

(2)
1 , and P

(1)
2 , P

(2)
2 are

absolutely contradictory, the parameter a is uniquely defined as

a = 1 −
n∑

i=1

min {P1(xi), P2(xi)}.

The probability measures used in these representations can be chosen as

(1) P
(1)
i ({xk}) = 1

1−a min {P1(xk), P2(xk)}, i = 1, 2, for a ∈ [0, 1);

(2) P
(2)
i ({xk}) = 1

a (Pi({xk}) − min {P1({xk}), P2({xk})}) for a ∈ [0, 1);
(3) if a = 1, then a probability measure P

(1)
1 = P

(2)
1 can be chosen arbitrarily;

(4) if a = 0, then absolutely contradictory probability measures P
(1)
2 , P

(2)
2 ∈

Mpr can be chosen arbitrary.

Thus, the result from the lemma is proved.

Theorem 1. Let a functional Φ : Mbel ×Mbel → [0, 1] obey axioms A1, A2, A4,
and A6. Then it coincides with the contradiction measure Con on Mbel × Mbel.

Proof. Let us notice that Lemma 4 implies that functionals Φ and Con coincide
on Mpr × Mpr. Let us show first that Φ(Bel1, Bel2) � Con(Bel1, Bel2) for all
Bel1, Bel2 ∈ Mbel. Property (b) implies that there exist Pi ∈ Mpr, i = 1, 2,
such that Con(Bel1, Bel2) = Con(P1, P2) and Beli � Pi, i = 1, 2. Because
Φ(P1, P2) = Con(P1, P2), axiom A4 implies that Φ(Bel1, Bel2) � Φ(P1, P2) =
Con(Bel1, Bel2).
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Let us prove that Con(Bel1, Bel2) � Φ(Bel1, Bel2) for all Bel1, Bel2 ∈ Mbel.
Let us assume to the contrary that Con(Bel1, Bel2) > Φ(Bel1, Bel2) for some
Bel1, Bel2 ∈ Mbel. Then by axiom A6 there are representations

Beli = (1 − a)Bel
(1)
i + aBel

(2)
i , i = 1, 2,

such that Φ(Bel1, Bel2) = a, P(Bel
(1)
1 ) ∩ P(Bel

(1)
2 ) �= ∅, and P(Bel

(2)
1 ) ∩

P(Bel
(2)
2 ) = ∅. Consider probability measures

Pi = (1 − a)P + aP
(2)
i , i = 1, 2,

where P ∈ P(Bel
(1)
1 ) ∩ P(Bel

(1)
2 ) and P

(2)
i ∈ P(Bel

(2)
i ), i = 1, 2. Obvi-

ously, probability measures P
(2)
1 and P

(2)
2 are absolutely contradictory, thus,

Φ(Bel1, Bel2) = Con(P1, P2). In addition, Pi ∈ P(Beli), i = 1, 2. Thus, by
property (b) from Proposition 2, we get Con(Bel1, Bel2) � Con(P1, P2), but
this contradicts to our assumption.

6 Conclusion

In this paper we show that the choice of aggregation rules has to be in accordance
with the underlying decision models, and if we take decision models based on
imprecise probabilities then contradiction exists if the intersection of underlying
credal sets is not empty. We show that in this case the contradiction measure
giving the smallest contradiction by applying possible conjunctive rules is justi-
fiable, and we give the axiomatics of this measure. The important topic of the
next research can be the analysis of relations obtained as union of partial prefer-
ence orders on decisions and how these relations can be used for decision making
in case of contradictory information.
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