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Abstract. In the task of community detection, there often exists some
useful prior information. In this paper, a Semi-supervised clustering app-
roach using a new Evidential Label Propagation strategy (SELP) is pro-
posed to incorporate the domain knowledge into the community detec-
tion model. The main advantage of SELP is that it can take limited
supervised knowledge to guide the detection process. The prior infor-
mation of community labels is expressed in the form of mass functions
initially. Then a new evidential label propagation rule is adopted to prop-
agate the labels from labeled data to unlabeled ones. The outliers can be
identified to be in a special class. The experimental results demonstrate
the effectiveness of SELP.

Keywords: Semi-supervised learning · Belief function theory · Label
propagation · Community detection

1 Introduction

With the increasing size of networks in real world, community detection
approaches should be fast and accurate. The Label Propagation Algorithm
(LPA) [5] is known to be one of the near-linear solutions and benefits of easy
implementation, thus it forms a good basis for efficient community detection
methods. The behavior of LPA is not stable because of the randomness. Dif-
ferent communities may be detected in different runs over the same network.
Moreover, by assuming that a node always adopts the label of the majority
of its neighbors, LPA ignores any other structural information existing in the
neighborhood.

Semi-supervised classification has been widely studied for classical data sets,
but there has been little work on semi-supervised community detection. In many
scenarios a substantial amount of prior knowledge about the graph structure may
be available. It can reflect the application-specific knowledge about cluster mem-
bership to some extent. For instance, in a co-authorship community network, it
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may be possible to label a small subset of scholars based on their research inter-
ests. In a social network application, it may be desirable to label some nodes
according to their affinity to some products.

In [4] the authors considered the individual labels as prior knowledge, i.e. the
true community assignments of certain nodes are known in advance. In their work
the traditional LPA is adapted, allowing a few nodes to have true community
labels, but the rest nodes are unlabeled. In face the presented semi-supervised
community detection approach is an application of the semi-supervised classifi-
cation algorithm proposed by [7] on graph data sets.

In this paper, we enhance the original LPA by introducing new update and
propagation strategies using the theory of belief functions. The Semi-supervised
version of Evidential Label Propagation (SELP) algorithm is presented. SELP
can take advantage of the limited amount of supervised information and conse-
quently improve the detection results.

The remainder of this paper is organized as follows. Some basic knowledge is
briefly introduced in Sect. 2. The SELP algorithm is presented in detail in Sect. 3.
In order to show the effectiveness of the proposed community detection approach,
in Sect. 4 SELP algorithm is tested on different graph data sets. Conclusions are
drawn in the final section.

2 Background

In this section some related preliminary knowledge will be presented. Some basis
of belief function theory will be recalled first. As this work is inspired from the
LPA [5] and EK-NNclus [2] clustering, the two algorithms will also be briefly
introduced.

2.1 Theory of Belief Functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment
frame. The belief functions are defined on the power set 2Ω = {A : A ⊆ Ω}.

The function m : 2Ω → [0, 1] is said to be the Basic Belief Assignment (bba)
on 2Ω , if it satisfies: ∑

A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and
plausibility functions are defined in Eqs. (2) and (3) respectively:

Bel(A) =
∑

B⊆A,B �=∅
m(B) ∀ A ⊆ Ω, (2)

Pl(A) =
∑

B∩A �=∅
m(B), ∀ A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) rep-
resents potential amount of support to A.
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If bbas mj , j = 1, 2, · · · , S describing S distinct items of evidence on Ω, the
DS rule of combination [6] of S bbas can be mathematically defined as

(m1 ⊕ m2 ⊕ · · · ⊕ mS)(X) =
⎧
⎪⎨

⎪⎩

0 if X = ∅,
∑

Y1∩···∩YS=X

∏S
j=1 mj(Yj)

1− ∑

Y1∩···∩YS=X

∏S
j=1 mj(Yj)

otherwise.
(4)

2.2 EK-NNclus Clustering

Recently, a new decision-directed clustering algorithm for relational data sets,
named EK-NNclus, is put forward based on the evidential K nearest-neighbor
(EK-NN) rule [2]. Starting from an initial partition, the algorithm, called EK-
NNclus, iteratively reassigns objects to clusters using the EK-NN rule [1], until
a stable partition is obtained. After convergence, the cluster membership of each
object is described by a mass function assigning a mass to each specific cluster
and to the whole set of clusters.

2.3 Label Propagation

Let G(V,E) be an undirected network, V is the set of N nodes, E is the set of
edges. Each node v(v ∈ V ) has a label cv. Denote by Nv the set of neighbors
of node v. The Label Propagation Algorithm (LPA) uses the network structure
alone to guide its process. It starts from an initial configuration where every
node has a unique label. Then at every step one node (in asynchronous version)
or each node (in a synchronous version) updates its current label to the label
shared by the maximum number of its neighbors. For node v, its new label can
be updated to ωj with

j = arg max
l

{|u : cu = l, u ∈ Nv|}, (5)

where |X| is the cardinality of set X, and Nv is the set of node v’s neighbors.
When there are multiple maximal labels among the neighbors labels, the new
label is picked randomly from them. By this iterative process densely connected
groups of nodes form consensus on one label to form communities, and each
node has more neighbors in its own community than in any of other community.
Communities are identified as a group of nodes sharing the same label.

3 Semi-supervised Label Propagation

Inspired from LPA and EK-NNclus [2], we propose here SELP algorithm for
graph data sets with prior information. The problem of semi-supervised com-
munity detection will be first described in a mathematical way, and then the
proposed SELP algorithm will be presented in detail.
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3.1 Problem Restatement and Notions

Let G(V,E) denote the graph, where V is the set of n nodes and E ⊆ V × V is
the set of edges. Generally, a network can be expressed by its adjacent matrix
A = (aij)n×n, where aij = 1 indicates that there is a direct edge between nodes
i and j, and 0 otherwise.

Assume that there are c communities in the graph. The set of labels is denoted
by Ω = {ω1, ω2, · · · , ωc}. In addition, in order to make sure that the solution
is unique, we assume that there must be at least one labeled vertex in each
community. The n nodes in set V can be divided into two parts:

VL = {(n1, y1), (n2, y2), · · · , (nl, yl)}, yj ∈ Ω

for the labeled nodes, and

VU = {nl+1, nl+2, · · · , nn}

for the unlabeled ones. The main task of the semi-supervised community detec-
tion is to make models propagating the labels from nodes in VL to those in VU ,
and further determine the labels of those unlabeled vertices.

3.2 The Dissimilarities Between Nodes

Like the smooth assumption in the semi-supervised graph-based learning meth-
ods [8], here we assume that the more common neighbors the two nodes share,
the larger probability that they belong to the same community. Thus in this
work, the index considering the number of shared common neighbors is adopted
to measure the similarities between nodes.

Definition 1. Let the set of neighbors of node ni be Ni, and the degree of node
ni be di. The similarity between nodes ni and nj (ni, nj ∈ V ) is defined as

sij =

{ |Ni∩Nj |
di+dj

, if aij = 1

0, otherwise.
(6)

Then the dissimilarities associated with the similarity measure can be
defined as

dij =
1 − sij

sij
, ∀ ni, nj ∈ V. (7)

3.3 Evidential Label Propagation

For a labeled node nj ∈ VL in community ωk, the initial bba can be defined as
a Bayesian categorical mass function:

mj(A) =

{
1 if A = {ωk}
0 otherwise.

(8)
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For an unlabeled node nx ∈ VU , the vacuous mass assignment can be used to
express our ignorance about its community label:

mx(A) =

{
1 if A = Ω

0 otherwise.
(9)

To determine the label of node nx, its neighbors can be regarded as distinct
information sources. If there are |Nx| = rx neighbors for node nx, the number of
sources is rx. The reliability of each source depends on the similarities between
nodes. Suppose that there is a neighbor nt with label ωj , it can provide us with
a bba describing the belief on the community label of node nx as [2]

mx
t ({ωt}) = α ∗ mt({ωj}),

mx
t (Ω) = mt(Ω) + (1 − α) ∗ mt({ωj}),

mx
t (A) = 0, if A 	= {ωj}, Ω, (10)

where α is the discounting parameter such that 0 ≤ α ≤ 1. It should be deter-
mined according to the similarity between nodes nx and nt. The more similar the
two nodes are, the more reliable the source is. Thus α can be set as a decreasing
function of dxt. In this work we suggest to use

α = α0 exp{−γdβ
xt}, (11)

where parameters α0 and β can be set to be 1 and 2 respectively as default, and
γ can be set to

γ = 1/median
({

dβ
ij , i = 1, 2, · · · , n, j ∈ Ni

})
. (12)

After the rx bbas from its neighbors are calculated using Eq. (10), the fused bba
of node nx can be got by the use of Dempster’s combination rule:

mx = mx
1 ⊕ mx

2 ⊕ · · · ⊕ mx
rx

. (13)

The label of node nx can be determined by the maximal value of mx. The
main principle of semi-supervised learning is to take advantage of the unlabeled
data. It is an intuitive way to add node nx (previously in set VU but already be
labeled now) to set Vl to train the classifier. However, if the predicted label of nx

is wrong, it will have very bad effects on the accuracy of the following predictions.
Here a parameter η is introduced to control the prediction confidence of the
nodes that to be added in Vl. If the maximum of mx is larger than η, it indicates
that the belief about the community of node nx is high and the prediction is
confident. Then we remove node nx in VU and add it to set VL. On the contrary,
if the maximum of mx is not larger than η, it means that we can not make a
confident decision about the label of nx based on the current information. Thus
the node nx should be remained in set VU . This is the idea of self-training [3].

In order to propagate the labels from the labeled nodes to the unlabeled
ones in the graph, a classifier should be first trained using the labeled data in Vl.
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For each node nx in VU , we find its direct neighbors and construct bbas through
Eq. (10). Then the fused bba about the community label of node nx is calculated
by Eq. (13). The subset of the unlabeled nodes, of which the maximal bba is
larger than the given threshold η, are selected to augment the labeled data set.
The predicted labels of these nodes are set to be the class assigned with the
maximal mass. Parameter η can be set to 0.7 by default in practice.

After the above update process, there may still be some nodes in VU . For
these nodes, we can find their neighbors that are in VL, and then use Eqs. (10)
and (13) to determine their bbas.

4 Experiment

In order to verify the efficiency and effectiveness of the proposed SELP algorithm,
some experiments on graph data sets will be conducted in this section, and the
results by the use of different methods will be reported. The semi-supervised
community detection algorithm using label propagation (SLP) [4] and the unsu-
pervised label propagation algorithm will be used to compare the performance.
The parameters in SELP are all set to the default values in the experiments.

4.1 Real World Networks

A. Karate Club Network. In this experiment we tested on the widely used
benchmark in detecting community structures, “Karate Club”. The network con-
sists of 34 nodes and 78 edges representing the friendship among the members of
the club. During the development, a dispute arose between the club’s adminis-
trator and instructor, which eventually resulted in the club split into two smaller
clubs. The first one was an instructor-centered group covering 16 vertices: 1–8,
11–14, 17–18, 20 and 22, while the second administrator centered group consisted
of the remaining 18 vertices.

In the first test, the labeled node in community ω1 was set to node 5, while
that in community ω2 was set to node 24. After five steps, SELP algorithm
stopped. The detailed update process is displayed in Fig. 2. It can be seen from
the figure that two outliers, nodes 10 and 12 are detected by SELP. From the
original graph, we can see that node 10 has two neighbors, nodes 3 and 34. But
neither of them shares a common neighbor with node 10. For node 12, it only
connects to node 1, but has no connection with any other node in the graph.
Therefore, it is very intuitive that both the two nodes are regarded as outliers
of the graph.

The detection results on Karate Club network by SELP and SLP algorithms
with different labeled nodes are shown in Table 1. The labeled vertices and its
corresponding misclassified vertices are clearly presented in the table. As can be
seen from the table, nodes 10 and 12 are detected as outliers in all the cases by
SELP, and the two communities can be correctly classified most of the time. The
performance of SLP is worse than that of SELP when there is only one labeled
data in each community. For the nodes which are connected to both communities
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Fig. 1. Karate Club network.

and located in the overlap, such as nodes 3 and 9, they are misclassified most
frequently. If the number of labeled data in each community is increased to
2, the exact community structure can be got by both methods. It is indicated
that the more prior information (i.e. labeled vertices) we have, the better the
performance of SELP is (Fig. 1).
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Fig. 2. The results on Karate Club network. The nodes marked with color red are the
outliers detected by SELP. (Color figure online)

B. American Football Network. As a further test of our algorithm, the
network we investigated in this experiment was the world of American college
football games.
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Table 1. Community detection results for the Karate Club network.

Labeled
nodes in ω1

Labeled
nodes in ω2

Misclassified
nodes by SELP

Detected
outliers by
SELP

Misclassified
nodes by SLP

1 34 None 10, 12 None

1 32 9 10, 12 9, 10, 27, 31, 34

2 33 None 10, 12 None

6 31 3 10, 12 2, 3, 8, 14, 2

8 31 None 10, 12 10

8 32 None 10, 12 None

17 31 3, 4, 8, 14 10, 12 2, 3, 4, 8, 13,
14, 18, 20, 22

1, 2 33, 34 None 10, 12 None

1, 2 33, 9 None 10, 12 None

3, 18 26, 30 None 10, 12 None

17, 4 31, 9 None 10, 12 None
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Fig. 3. The results on American football network. The two figures show the average
error rates and NMI values (plus and minus one standard deviation) for 50 repeated
experiments, as a function of the number of labeled samples.

Let the number of labeled nodes in each community to be fixed. Then SELP
and SLP algorithms were evoked 50 times respectively with randomly selected
labeled nodes. The average error rates and NMI values (plus and minus one stan-
dard deviation) of the 50 experiments are displayed in Figs. 3a and b respectively.
As can be seen from the figures, with the increasing number of labeled samples,
the performance of both SELP and SLP becomes better. The NMI values of the



Semi-supervised Evidential Label Propagation 131

detected communities by SELP and SLP are significantly better than those by
LPA. It indicates that the semi-supervised community detection methods could
take advantage of the limited amount of prior information and consequently
improve the accuracy of the detection results. The behavior of SELP is better
than that of SLP in terms of both error rates and NMI values.

4.2 LFR Network

In this subsection, LFR benchmark networks were used to test the ability of the
algorithm to identify communities. The experiments here included evaluating
the performance of the algorithm with various amounts of labeled nodes and
different values of parameter μ in the benchmark networks. The original LPA
[5] and the semi-supervised community detection approach SLP [4] were used to
compare.

In LFR networks, the mixing parameter μ represents the ratio between the
external degree of each vertex with respect to its community and the total degree
of the node. The larger the value of μ is, the more difficult the community struc-
ture will be correctly detected. The values of the parameters in LFR bench-
mark networks in this experiment were set as follows: n = 1000, ξ = 15, τ1 =
2, τ2 = 1, cmin = 20, cmax = 50.
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Fig. 4. The results on LFR network. The number of labeled nodes in each commu-
nity is 3.

The performance of different methods with various values of μ is shown in
Fig. 4. As expected, the error rate is very high and the NMI value is low when
μ is large. It demonstrates the fact that the community structure is not very
clear and consequently difficult to be identified correctly. It can be seen from
Fig. 4a that the error rates by SELP are smaller than those by SLP generally.
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SELP performs better than SLP. This conclusion could also be got in terms of
the NMI values displayed in Fig. 4b.

The original LPA could not work at all when μ is larger than 0.5. The results
of SELP and SLP are significantly improved in these cases compared with LPA.
As shown in Fig. 5b, even when there is only one labeled data in each community,
the behavior of SELP is much better than that of LPA. This confirms the fact
that the semi-supervised community detection approaches can effectively take
advantage of the limited amount of labeled data. From Fig. 5, we can also see that
the performance of SELP and SLP becomes better with the increasing number
of labeled nodes.
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Fig. 5. The results on LFR network. The parameter of μ is set to be 0.6.

5 Conclusion

In this paper, the semi-supervised evidential label propagation algorithm is pre-
sented as an enhanced version of the original LPA. The proposed community
detection approach can effectively take advantage of the limited amount of super-
vised information. This is of practical meaning in real applications as there often
exists some prior knowledge for the analyzed graphs. The experimental results
show that the detection results will be significantly improved with the help of
limited amount of supervised information.
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