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Abstract. We propose a new definition of entropy of basic probability
assignments (BPA) in the Dempster-Shafer (D-S) theory of belief func-
tions, which is interpreted as a measure of total uncertainty in the BPA.
We state a list of five desired properties of entropy for D-S belief func-
tions theory that are motivated by Shannon’s definition of entropy of
probability functions, together with the implicit requirement that any
definition should be consistent with semantics of D-S belief functions
theory. Three of our five desired properties are different from the five
properties described by Klir and Wierman. We demonstrate that our
definition satisfies all five properties in our list, and is consistent with
semantics of D-S theory, whereas none of the existing definitions do. Our
definition does not satisfy the sub-additivity property. Whether there
exists a definition that satisfies our five properties plus sub-additivity,
and that is consistent with semantics for the D-S theory, remains an
open question.

1 Introduction

The main goal of this paper is to provide a new definition of entropy of belief
functions in the D-S theory that is consistent with semantics of the D-S theory.
By entropy, we mean a real-valued measure of uncertainty in the tradition of
Hartley [12] and Shannon [30]. Also, while there are several theories of belief
functions (see, e.g., [10,36]), our goal is to define entropy for the D-S theory
that uses Dempster’s product-intersection rule [6] as the combination rule.

Hartley’s Entropy. Suppose X is a discrete random variable with a finite state
space ΩX , whose elements are assumed to be mutually exclusive and exhaustive.
Suppose this is all we know about X, i.e., we do not know the probability mass
function (PMF) of X. What is a measure of uncertainty? Hartley [12] defines
entropy of ΩX as follows:

U(ΩX) = log2(|ΩX |), (1)
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where U(ΩX) denotes a real-valued measure of uncertainty of ΩX , with units
of bits. First, notice that U(ΩX) does not depend on the labels attached to the
states in ΩX , only on the number of states in ΩX . Second, Rényi [26] shows that
Hartley’s definition in Eq. (1) is characterized by the following three properties.

1. (Additivity) Suppose X and Y are random variables with finite state spaces
ΩX and ΩY , respectively. The joint state space of (X,Y ) is ΩX × ΩY . Then,
U(ΩX × ΩY ) = U(ΩX) + U(ΩY ).

2. (Monotonicity) If |ΩX1 | > |ΩX2 |, then U(ΩX1) > U(ΩX2).
3. (Units) If |ΩX | = 2, then U(ΩX) = 1 bit.

Shannon’s Entropy. Now suppose we learn of a probability mass function PX

of X. What is the information content of PX? Or alternatively, we can ask:
What is the uncertainty in PX? Shannon [30] provides an answer to the second
question as follows:

Hs(PX) =
∑

x∈ΩX

PX(x) log2

(
1

PX(x)

)
, (2)

where Hs(PX) is called Shannon’s measure of entropy (uncertainty) in PMF
PX . Shannon’s entropy is characterized (up to a constant) by the following two
properties [30].

1. (Monotonicity) If PX is an equally likely PMF, then Hs(PX) is a monotoni-
cally increasing function of |ΩX |.

2. (Compound distributions) If a PMF PX,Y is factored into two PMFs PX,Y

(x, y) = PX(x)PY |x(y), then Hs(PX,Y ) = Hs(PX)+
∑

x∈ΩX
PX(x)Hs(PY |x).

The uncertainty prior to learning PX was U(ΩX). After learning PX , it is
now Hs(PX). Thus, if I(PX) denotes information content of PX , then we have
the equality

I(PX) + Hs(PX) = U(ΩX). (3)

The maximum value of Hs(PX) (over the space of all PMFs for X) is
log2(|ΩX |), which is attained by the uniform PMF for X, PX(x) = 1/|ΩX |
for all x ∈ ΩX . Thus, I(PX) ≥ 0, with equality if and only if PX is the uniform
PMF. At the other extreme, Hs(PX) ≥ 0, with equality if and only if there exists
x ∈ ΩX such that PX(x) = 1. Such a PMF has no uncertainty, and therefore, it
must have maximum information. Thus I(PX) ≤ U(ΩX), with equality if and
only if there exists x ∈ ΩX such that PX(x) = 1.

Entropy for the D-S Theory. In the case of D-S theory of belief functions, if
m is a basic probability assignment (BPA) for X, let H(m) denote the entropy
of BPA m. First, the D-S theory is a generalization of probability theory. The
equiprobable PMF is represented by a Bayesian uniform basic probability assign-
ment (BPA) mu for X such that mu({x}) = 1/|ΩX | for all x ∈ ΩX . So to be
consistent with probability theory, we should have H(mu) = log2(|ΩX |). How-
ever, such a BPA, mu for X, does not have the maximum uncertainty. The
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vacuous BPA ιX for X such that ιX(ΩX) = 1 has more uncertainty than the
equiprobable Bayesian mu. As we cannot imagine a BPA for X that has more
uncertainty than ιX , we assume that H(ιX) has the maximum uncertainty. Klir
[16] and others argue that a measure of uncertainty can capture a measure of
conflict as well as a measure of non-specificity. Assuming that each of these two
measures is scaled so that they are each measured on a scale [0, log2(|ΩX |)],
then, H(ιX) = 2 log2(|ΩX |). Like in probability theory, we can define a measure
of information content of BPA m for X so that the following holds:

I(m) + H(m) = 2 log2(|ΩX |), (4)

where I(m) denotes the information content of BPA m for X. Thus, for the
vacuous BPA ιX for X, we have I(ιX) = 0, whereas for the Bayesian uniform
BPA mu for X, we have I(mu) = log2(|ΩX |).

In this paper, we are interested in defining a measure of entropy (uncertainty)
of BPAs m for X in the D-S theory of belief functions on the scale 0 ≤ H(m) ≤
2 log2(|ΩX |), so that H(m) ≤ 2 log2(|ΩX |) with equality if and only if m = ιX ,
and H(m) ≥ 0, with equality if and only if m is such that m({x}) = 1 for some
x ∈ ΩX . Also, we require a monotonicity property, a probability consistency
property, an additivity property, and a requirement that any definition should
be based on semantics consistent with D-S theory. These are discussed in detail
in Sect. 2.

Literature Review. There is a rich literature on information theoretic mea-
sures for the D-S theory of belief functions. Some, e.g., [13,23,32,38], define
the information content of BPA m so that I(ιX) = 0. Some define entropy
on the scale [0, log2(|ΩX |)] so that they define entropy only as a measure of
conflict (e.g., [35]), or only as a measure of non-specificity [8]. Some, e.g.,
[11,15,17,18,21,24,25,37] define entropy as a measure of conflict and non-
specificity, but on a scale [0, log2(|ΩX |)], so that H(mu) = H(ιX) = log2(|ΩX |).
Some, e.g., [1,3,22] define entropy as a measure of conflict and non-specificity
on the scale [0, 2 log2(|ΩX |)], but they do so using semantics of belief functions
(credal sets of PMFs) that are inconsistent with Dempster’s rule of combination
[10,29]. Our definition is the only one that defines entropy as a measure of con-
flict and non-specificity, on the scale [0, 2 log2(|ΩX |)], using semantics of belief
functions that are consistent with Dempster’s combination rule.

2 Desired Properties of Entropy of BPAs
in the D-S Theory

First, we explain our informal requirement that any definition of entropy for D-S
theory should be consistent with the semantics of this theory. Next, we propose
five formal properties that a definition of entropy of BPAs in the D-S theory
should satisfy, Finally, we compare these properties with those proposed by Klir
and Wierman [19] for the same purposes.
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Consistency with D-S Theory Semantics Requirement. First, let us stress
once more that we are concerned in this paper only with the D-S belief functions
theory that includes Dempster’s combination rule as the operation for aggregat-
ing knowledge. There are theories of belief functions that use other combination
rules. Let 2ΩX denote the set of all non-empty subsets of ΩX . A BPA m for X
can be considered as an encoding of a collection of PMFs Pm for X such that
for all a ∈ 2ΩX we have:

Belm(a) =
∑

b∈2ΩX :b⊆a

m(b) = min
P∈Pm

∑

x∈a

P (x). (5)

Pm is referred to as a credal set corresponding to m in the imprecise probability
literature (see, e.g., [36]). For such a theory of belief functions, Fagin and Halpern
[9] propose a combination rule that is different from Dempster’s combination
rule. Thus, a BPA m in the D-S theory cannot be interpreted as a collection
of PMFs satisfying Eq. (5) [10,28]. There are, of course, semantics that are
consistent with D-S theory, such as multivalued mappings [6], random codes
[28], transferable beliefs [34], and hints [20].

Example 1. Consider a BPA m1 for X with state space ΩX = {x1, x2, x3} as
follows: m1({x1}) = 0.5, m1(ΩX) = 0.5. With the credal set semantics of a BPA
function, m1 corresponds to a set of PMFs Pm1 = {P ∈ P : P (x1) ≥ 0.5}, where
P denotes the set of all PMFs for X. Now suppose we get a distinct piece of
evidence m2 for X such that m2({x2}) = 0.5, m2(ΩX) = 0.5. m2 corresponds
to Pm2 = {P ∈ P : P (x2) ≥ 0.5}. The only PMF that is in both Pm1 and Pm2

is P ∈ P such that P (x1) = P (x2) = 0.5, and P (x3) = 0. Notice that if we
use Dempster’s rule to combine m1 and m2, we have: (m1 ⊕ m2)({x1}) = 1

3 ,
(m1 ⊕ m2)({x2}) = 1

3 , and (m1 ⊕ m2)(ΩX) = 1
3 . The set of PMFs Pm1⊕m2 =

{P ∈ P : P (x1) ≥ 1
3 , P (x2) ≥ 1

3} is not the same as Pm1 ∩ Pm2 . Thus, credal
set semantics of belief functions are not compatible with Dempster’s rule of
combination.

Second, given a BPA m for X in the D-S theory, there are many ways to trans-
form m to a corresponding PMF Pm for X [5]. However, only one of these ways,
called the plausibility transform [4], is consistent with m in the D-S theory in the
sense that Pm1 ⊗ Pm2 = Pm1⊕m2 , where ⊗ is the combination rule in probabil-
ity theory [31], and ⊕ is Dempster’s combination rule in D-S theory [4]. [7,15,25]
define entropy of m as the Shannon’s entropy of the pignistic transform of m. The
pignistic transform of m is not compatible with Dempster’s combination rule [4],
and therefore, this definition is not consistent with D-S theory semantics. Thus,
as per our consistency with D-S theory semantics requirement, any method for
defining entropy of m in the D-S theory by first transforming m to a correspond-
ing PMF should use the plausibility transform method. Notice that we are not
claiming that a definition of entropy for D-S theory must use the plausibility trans-
form method, only that if one takes the path of first transforming a BPA m to an
equivalent PMF and then using Shannon’s entropy of the PMF as the definition
of entropy of m, then to be compatible with D-S theory semantics, the transfor-
mation method used must be the plausibility transform method.
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Example 2. Consider a situation where we have vacuous prior knowledge of X
with ΩX = {x1, . . . , x70} and we receive evidence represented as BPA m for X
as follows: m({x1}) = 0.30, m({x2}) = 0.01, and m({x2, . . . , x70}) = 0.69. The
pignistic transform of m [33], denoted by BetPm, is as follows: BetPm(x1) =
0.30, BetPm(x2) = 0.02, and BetPm(x3) = . . . = BetPm(x70) = 0.01. Thus,
as per the pignistic transform, BPA m is interpreted as evidence where x1 is
15 times more likely than x2. Now suppose we receive another distinct piece of
evidence that is also represented by m. As per the D-S theory, our total evidence
is now m ⊕ m. If on the basis of m (or BetPm), x1 was 15 times more likely
than x2, then now that we have evidence m ⊕ m, x1 should be 152 = 225 times
more likely than x2. But BetPm⊕m(x1) ≈ 0.156 and BetPm⊕m(x2) ≈ 0.036. So
according to BetPm⊕m, x1 is only 4.33 more likely than x2. Thus, BetPm is not
consistent with Dempster’s combination rule.

Thus, one requirement we implicitly assume is that any definition of entropy
of m should be based on semantics for m that are consistent with the basis tenets
of D-S theory. Also, we implicitly assume existence and continuity—given a BPA
m, H(m) should always exist, and H(m) should be a continuous function of m.
We do not list these three requirements explicitly.

Desired Properties of Entropy for the D-S Theory. The following list of
desired properties of entropy H(mX), where mX is a BPA for X, is motivated
by the properties of Shannon’s entropy of PMFs [30].

Let X and Y denote random variables with state spaces ΩX and ΩY , respec-
tively. Let mX and mY denote distinct BPAs for X and Y , respectively. Let ιX
and ιY denote the vacuous BPAs for X and Y , respectively.

1. (Non-negativity) H(mX) ≥ 0, with equality if and only if there is a x ∈ ΩX

such that mX({x}) = 1. This is similar to the probabilistic case.
2. (Maximum entropy) H(mX) ≤ H(ιX), with equality if and only if mX = ιX .

This makes sense as the vacuous BPA ιX for X has the most uncertainty
among all BPAs for X. Such a property is advocated in [3].

3. (Monotonicity) If |ΩX | < |ΩY |, then H(ιX) < H(ιY ). A similar property is
used by Shannon to characterize his definition of entropy of PMFs.

4. (Probability consistency) If mX is a Bayesian BPA for X, then H(mX) =
Hs(PX), where PX is the PMF of X corresponding to mX .

5. (Additivity) H(mX ⊕ mY ) = H(mX) + H(mY ). This is a weaker form of the
compound property of Shannon’s entropy of a PMF.

Klir and Wierman [19] also describe a set of properties that they believe
should be satisfied by any meaningful measure of uncertainty based on intuitive
grounds. Two of the properties that they suggest, probability consistency and
additivity, are also included in the above list. Our maximum entropy property
is not in their list. Two of the properties that they require do not make intuitive
sense to us.

First, Klir and Wierman require a property they call “set consistency” as
follows: H(m) = log2(|a|) whenever m is deterministic (i.e., it has only one focal
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element) with focal set a. This property would require that H(ιX) = log2(|ΩX |).
The probability consistency property requires that for the Bayesian uniform
BPA mu, H(mu) = log2(|ΩX |). Thus, these two requirements entail that
H(ιX) = H(mu) = log2(|ΩX |). We disagree, as there is greater uncertainty in ιX
than in mu.

Second, Klir and Wierman require a property they call “range” as follows:
For any BPA mX for X, 0 ≤ H(mX) ≤ log2(|ΩX |). The probability consistency
property requires that H(mu) = log2(|ΩX |). Also including the range property
prevents from having H(ιX) > H(mu). So we do not include it in our list.

Finally, Klir and Wierman require a sub-additivity property defined as fol-
lows. Suppose m is a BPA for {X,Y }, with marginal BPAs m↓X for X, and m↓Y

for Y . Then,
H(m) ≤ H(m↓X) + H(m↓Y ) (6)

We agree that this property is important, and the only reason we do not include
it in our list is because we are unable to meet this requirement in addition to
the five requirements that we do include, and our implicit requirement that any
definition be consistent with the semantics of D-S theory of belief functions.

The most important property that characterizes Shannon’s definition of
entropy is the compound property Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) +
Hs(PY |X), where Hs(PY |X) =

∑
x∈ΩX

PX(x)Hs(PY |x). This translated to the
D-S theory of belief function would require factorizing a BPA m for {X,Y } into
BPA m↓X for X, and BPA mY |X for {X,Y } such that m = m↓X ⊕ mY |X .
This cannot be done for all BPA m for {X,Y } [31]. But, we could construct
m for {X,Y } such that m = mX ⊕ mY |X , where mX is a BPA for X,
and mY |X is a BPA for {X,Y } such that m↓X

Y |X = ιX , and mX and mY |X
are non-conflicting, i.e., the normalization constant in Dempster’s combination
rule is 1. Notice that such a constructive BPA m would have the property
m↓X = (mX ⊕mY |X)↓X = mX . For such constructive BPAs m, we could require
a compound property as follows:

H(mX ⊕ mY |X) = H(mX) + H(mY |X). (7)

However, we are unable to formulate a definition of H(m) to satisfy such a
compound property. So like the sub-additivity property, we do not include a
compound property in our list of properties. The additivity property included
in Klir-Wierman’s and our list is so weak that it is satisfied by any definition
on a log scale. All definitions of entropy of belief functions in the literature are
defined on a log scale, and, thus, they all satisfy the additivity property.

3 A New Definition of Entropy of BPAs in the D-S
Theory

In this section, we propose a new definition of entropy of BPAs in the D-S theory.
The new definition of entropy is based on the plausibility transform of a belief
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function to an equivalent probability function. Therefore, we start this section
by describing the plausibility transform introduced originally in [4].

Plausibility Transform of a BPA to a PMF. Suppose m is a BPA for X.
What is the PMF of X that best represents m in the D-S theory? An answer
to this question is given by Cobb and Shenoy [4], who propose the plausibility
transform of m as follows. First consider the plausibility function Plm corre-
sponding to m. Next, construct a PMF for X, denoted by PPlm , by the values
of Plm for singleton subsets suitably normalized, i.e.,

PPlm(x) = K−1 · Plm({x}) = K−1 · Qm({x}) (8)

for all x ∈ ΩX , where K is a normalization constant that ensures PPlm is a
PMF, i.e., K =

∑
x∈ΩX

Plm({x}) =
∑

x∈ΩX
Qm({x}).

[4] argues that of the many methods for transforming belief functions to
PMFs, the plausibility transform is one that is consistent with Dempster’s rule
of combination in the sense that if we have BPAs m1, . . . , mk for X, then
PPlm1⊕...⊕mk

= PPlm1
⊗ . . . ⊗ PPlmk

, where ⊗ denotes pointwise multiplication
followed by normalization (i.e., Bayesian combination [31]). It can be shown
that the plausibility transform is the only method that has this property, which
follows from the fact that Dempster’s rule of combination is pointwise multipli-
cation of commonality functions followed by normalization [27].

Example 3. Consider a BPA m for X as described in Example 2. Then, Plm
for singleton subsets is as follows: Plm({x1}) = 0.30, Plm({x2}) = 0.70,
Plm({x3}) = · · · = Plm({x70}) = 0.69. The plausibility transform of m is as
follows: PPlm(x1) = 0.3/49.72 ≈ 0.0063, and PPlm(x2) = 0.7/49.72 ≈ 0.0.0146,
and PPlm(x3) = · · · = PPlm(x70) ≈ 0.0144. Notice that PPlm is quite different
from BetPm. In BetPm, x1 is 15 times more likely than x2. In PPlm , x2 is 2.33
times more likely than x1. Now consider the scenario where we get a distinct
piece of evidence that is identical to m, so that our total evidence is m⊕m. If we
compute m ⊕ m and PPlm⊕m

, then as per PPlm⊕m
, x2 is 2.332 more likely than

x1. This is a direct consequence of the consistency of the plausibility transform
with Dempster’s combination rule.

A New Definition of Entropy of a BPA. Suppose m is a BPA for X. The
entropy of m is defined as follows:

H(m) =
∑

x∈ΩX

PPlm(x) log2

(
1

PPlm(x)

)
+

∑

a∈2ΩX

m(a) log2(|a|). (9)

The first component is Shannon’s entropy of PPlm , and the second component
is generalized Hartley’s entropy of m [8]. Like some of the definitions in the
literature, the first component in Eq. (9) is designed to measure conflict in m,
and the second component is designed to measure non-specificity in m. Both
components are on the scale [0, log2(|ΩX |)], and therefore, H(m) is on the scale
[0, 2 log2(|ΩX |)].
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Theorem 1. The entropy H(m) of BPA m for X defined in Eq. (9) satisfies
the non-negativity, maximum entropy, monotonicity, probability consistency, and
additivity properties. It is also consistent with semantics of the D-S theory.

A proof of this theorem can be found in [14] (that can be downloaded from
〈http://pshenoy.faculty.ku.edu/Papers/WP330.pdf〉). Finally, we provide an exam-
ple that shows our definition does not satisfy the sub-additivity property.

Example 4. Consider a BPA m for binary-valued variables {X,Y }: m({(x,
y)}) = m({(x, ȳ)}) = 0.1, m({(x̄, y)}) = m({(x̄, ȳ)}) = 0.3, m(Ω{X,Y }) = 0.2.

It is easy to verify that H(m) .= 2.35. The marginal BPA m↓X is as follows:
m↓X({x}) = 0.2, m↓X({x̄}) = 0.6, and m↓X(ΩX) = 0.2. It is easy to verify that
H(m↓X) .= 1.12. Similarly, the marginal BPA m↓Y is as follows: m↓Y ({y}) = 0.4,
m↓Y ({ȳ}) = 0.4, and m↓Y (ΩY ) = 0.2. It is easy to verify that H(m↓Y ) .= 1.20.
Thus, H(m) .= 2.35 > H(m↓X) + H(m↓Y ) .= 1.12 + 1.20 = 2.32.

The only definition that satisfies the five properties we state plus the sub-
additivity property is that due to Maeda and Ichihashi [22], but this definition
is based on credal set semantics of a belief function that is inconsistent with
Dempster’s combination rule. Whether there exists a definition that satisfies our
five properties plus sub-additivity, and that is based on semantics consistent
with the basic tenets of D-S theory, remains an open question.

4 Summary and Conclusions

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the
amount of uncertainty in the PMF [30], we propose five desirable properties of
entropy of a basic probability assignment in the D-S theory of belief functions.
These five properties are motivated by the analogous properties of Shannon’s
entropy of PMFs, and they are based on our intuition that a vacuous belief func-
tion has more uncertainty than an equiprobable Bayesian belief function. Also,
besides the five properties, we also require that any definition should be based
on semantics consistent with the D-S theory of belief functions (with Dempster’s
rule as the combination rule), H(m) should always exist, and H(m) should be
a continuous function of m. Thus, a monotonicity-like property suggested by
Abellán-Masegosa [2], based on credal set semantics of belief functions that are
not compatible with Dempster’s rule, is not included in our set of requirements.

It would be ideal if we can state the consistency with D-S theory semantics as
a formal requirement, but we are unable to do so. In our opinion, the additivity
property for the case of two distinct BPAs for disjoint sets of variables does not
fully capture consistency with D-S theory semantics. In any case, the definitions
of entropy based on credal sets of probability distributions and pignistic trans-
forms are not consistent with Dempster’s combination rule, and therefore, in our
perspective, not appropriate for the D-S theory of evidence.

As first suggested by Lamata and Moral [21], we propose a new definition of
entropy of BPA as a combination of Shannon’s entropy of an equivalent PMF

http://pshenoy.faculty.ku.edu/Papers/WP330.pdf
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that captures the conflict measure of entropy, and Dubois-Prade’s entropy of
a BPA that captures the non-specificity (or generalized Hartley) measure of
entropy. The equivalent PMF is that obtained by using the plausibility trans-
form [4]. This new definition satisfies all five properties we propose. More impor-
tantly, our definition is consistent with the semantics for the D-S theory of belief
functions.

An open question is whether there exists a definition of entropy of BPA m
in the D-S theory that satisfies the five properties we list in Sect. 2, the sub-
additivity property, and most importantly, that is consistent with semantics for
the D-S theory. Our definition satisfies the five properties and is consistent with
semantics for the D-S theory, but it does not satisfy the sub-additivity property.
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35. Vejnarová, J., Klir, G.J.: Measure of strife in Dempster-Shafer theory. Int. J. Gen.
Syst. 22(1), 25–42 (1993)

36. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall,
London (1991)

37. Wierman, M.J.: Measuring granularity in evidence theory. Int. J. Gen. Syst. 30(6),
649–660 (2001)

38. Yager, R.: Entropy and specificity in a mathematical theory of evidence. Int. J.
Gen. Syst. 9(4), 249–260 (1983)


	Entropy of Belief Functions in the Dempster-Shafer Theory: A New Perspective
	1 Introduction
	2 Desired Properties of Entropy of BPAs in the D-S Theory
	3 A New Definition of Entropy of BPAs in the D-S Theory
	4 Summary and Conclusions
	References


