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Preface

The theory of belief functions, also referred to as evidence theory or Dempster-Shafer
theory, is a well-established general framework for reasoning with uncertainty. It has
well-understood connections to other frameworks, such as probability, possibility, and
imprecise probability theories. First introduced by Arthur P. Dempster in the context of
statistical inference, the theory was later developed by Glenn Shafer into a general
framework for modeling epistemic uncertainty. These early contributions have pro-
vided the starting points for many important developments, including the Transferable
Belief Model and the Theory of Hints.

The biennial BELIEF conferences (organized by the Belief Functions and Appli-
cations Society) are dedicated to the exchange of ideas, reporting of recent achieve-
ments, and presenting the wide range of applications of this theory. This conference
series was started in Brest, France, in 2010; the second event was held in Compiègne,
France, in May 2012; and the third in Oxford, UK, in September 2014.

The present volume contains the proceedings of the 4th International Conference on
Belief Functions, which took place in Prague, Czech Republic, on September 21–23,
2016. The book contains 25 peer-reviewed papers (out of a total number of 33 sub-
missions) describing recent developments concerning both theoretical issues (including
combination rules, conflict management, and generalized information theory) and
applications in various areas (such as image processing, material sciences, and
navigation).

The editors would like to thank all those who contributed to this volume as well as
those who helped with organizing the conference. We would especially like to thank
Thierry Denœux and Arnaud Martin, members of the Steering Committee, whose
experience with conference organization was invaluable, and the members of the
Program Committee and external reviewers for carefully reviewing all the submissions.
We would also like to thank the administration of the Institute of Information Theory
and Automation of the Czech Academy of Sciences, where the conference took place.

July 2016 Jiřina Vejnarová
Václav Kratochvíl
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Entropy of Belief Functions in the
Dempster-Shafer Theory: A New Perspective

Radim Jiroušek1,3 and Prakash P. Shenoy2(B)

1 Faculty of Management, University of Economics,
Jindřich̊uv Hradec, Czech Republic

2 School of Business, University of Kansas, Lawrence, KS, USA
pshenoy@ku.edu

3 Institute of Information Theory and Automation, Academy of Sciences,
Prague, Czech Republic
radim@utia.cas.cz

Abstract. We propose a new definition of entropy of basic probability
assignments (BPA) in the Dempster-Shafer (D-S) theory of belief func-
tions, which is interpreted as a measure of total uncertainty in the BPA.
We state a list of five desired properties of entropy for D-S belief func-
tions theory that are motivated by Shannon’s definition of entropy of
probability functions, together with the implicit requirement that any
definition should be consistent with semantics of D-S belief functions
theory. Three of our five desired properties are different from the five
properties described by Klir and Wierman. We demonstrate that our
definition satisfies all five properties in our list, and is consistent with
semantics of D-S theory, whereas none of the existing definitions do. Our
definition does not satisfy the sub-additivity property. Whether there
exists a definition that satisfies our five properties plus sub-additivity,
and that is consistent with semantics for the D-S theory, remains an
open question.

1 Introduction

The main goal of this paper is to provide a new definition of entropy of belief
functions in the D-S theory that is consistent with semantics of the D-S theory.
By entropy, we mean a real-valued measure of uncertainty in the tradition of
Hartley [12] and Shannon [30]. Also, while there are several theories of belief
functions (see, e.g., [10,36]), our goal is to define entropy for the D-S theory
that uses Dempster’s product-intersection rule [6] as the combination rule.

Hartley’s Entropy. Suppose X is a discrete random variable with a finite state
space ΩX , whose elements are assumed to be mutually exclusive and exhaustive.
Suppose this is all we know about X, i.e., we do not know the probability mass
function (PMF) of X. What is a measure of uncertainty? Hartley [12] defines
entropy of ΩX as follows:

U(ΩX) = log2(|ΩX |), (1)
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-45559-4 1



4 R. Jiroušek and P.P. Shenoy

where U(ΩX) denotes a real-valued measure of uncertainty of ΩX , with units
of bits. First, notice that U(ΩX) does not depend on the labels attached to the
states in ΩX , only on the number of states in ΩX . Second, Rényi [26] shows that
Hartley’s definition in Eq. (1) is characterized by the following three properties.

1. (Additivity) Suppose X and Y are random variables with finite state spaces
ΩX and ΩY , respectively. The joint state space of (X,Y ) is ΩX × ΩY . Then,
U(ΩX × ΩY ) = U(ΩX) + U(ΩY ).

2. (Monotonicity) If |ΩX1 | > |ΩX2 |, then U(ΩX1) > U(ΩX2).
3. (Units) If |ΩX | = 2, then U(ΩX) = 1 bit.

Shannon’s Entropy. Now suppose we learn of a probability mass function PX

of X. What is the information content of PX? Or alternatively, we can ask:
What is the uncertainty in PX? Shannon [30] provides an answer to the second
question as follows:

Hs(PX) =
∑

x∈ΩX

PX(x) log2

(
1

PX(x)

)
, (2)

where Hs(PX) is called Shannon’s measure of entropy (uncertainty) in PMF
PX . Shannon’s entropy is characterized (up to a constant) by the following two
properties [30].

1. (Monotonicity) If PX is an equally likely PMF, then Hs(PX) is a monotoni-
cally increasing function of |ΩX |.

2. (Compound distributions) If a PMF PX,Y is factored into two PMFs PX,Y

(x, y) = PX(x)PY |x(y), then Hs(PX,Y ) = Hs(PX)+
∑

x∈ΩX
PX(x)Hs(PY |x).

The uncertainty prior to learning PX was U(ΩX). After learning PX , it is
now Hs(PX). Thus, if I(PX) denotes information content of PX , then we have
the equality

I(PX) + Hs(PX) = U(ΩX). (3)

The maximum value of Hs(PX) (over the space of all PMFs for X) is
log2(|ΩX |), which is attained by the uniform PMF for X, PX(x) = 1/|ΩX |
for all x ∈ ΩX . Thus, I(PX) ≥ 0, with equality if and only if PX is the uniform
PMF. At the other extreme, Hs(PX) ≥ 0, with equality if and only if there exists
x ∈ ΩX such that PX(x) = 1. Such a PMF has no uncertainty, and therefore, it
must have maximum information. Thus I(PX) ≤ U(ΩX), with equality if and
only if there exists x ∈ ΩX such that PX(x) = 1.

Entropy for the D-S Theory. In the case of D-S theory of belief functions, if
m is a basic probability assignment (BPA) for X, let H(m) denote the entropy
of BPA m. First, the D-S theory is a generalization of probability theory. The
equiprobable PMF is represented by a Bayesian uniform basic probability assign-
ment (BPA) mu for X such that mu({x}) = 1/|ΩX | for all x ∈ ΩX . So to be
consistent with probability theory, we should have H(mu) = log2(|ΩX |). How-
ever, such a BPA, mu for X, does not have the maximum uncertainty. The



Entropy of Belief Functions in the Dempster-Shafer Theory 5

vacuous BPA ιX for X such that ιX(ΩX) = 1 has more uncertainty than the
equiprobable Bayesian mu. As we cannot imagine a BPA for X that has more
uncertainty than ιX , we assume that H(ιX) has the maximum uncertainty. Klir
[16] and others argue that a measure of uncertainty can capture a measure of
conflict as well as a measure of non-specificity. Assuming that each of these two
measures is scaled so that they are each measured on a scale [0, log2(|ΩX |)],
then, H(ιX) = 2 log2(|ΩX |). Like in probability theory, we can define a measure
of information content of BPA m for X so that the following holds:

I(m) + H(m) = 2 log2(|ΩX |), (4)

where I(m) denotes the information content of BPA m for X. Thus, for the
vacuous BPA ιX for X, we have I(ιX) = 0, whereas for the Bayesian uniform
BPA mu for X, we have I(mu) = log2(|ΩX |).

In this paper, we are interested in defining a measure of entropy (uncertainty)
of BPAs m for X in the D-S theory of belief functions on the scale 0 ≤ H(m) ≤
2 log2(|ΩX |), so that H(m) ≤ 2 log2(|ΩX |) with equality if and only if m = ιX ,
and H(m) ≥ 0, with equality if and only if m is such that m({x}) = 1 for some
x ∈ ΩX . Also, we require a monotonicity property, a probability consistency
property, an additivity property, and a requirement that any definition should
be based on semantics consistent with D-S theory. These are discussed in detail
in Sect. 2.

Literature Review. There is a rich literature on information theoretic mea-
sures for the D-S theory of belief functions. Some, e.g., [13,23,32,38], define
the information content of BPA m so that I(ιX) = 0. Some define entropy
on the scale [0, log2(|ΩX |)] so that they define entropy only as a measure of
conflict (e.g., [35]), or only as a measure of non-specificity [8]. Some, e.g.,
[11,15,17,18,21,24,25,37] define entropy as a measure of conflict and non-
specificity, but on a scale [0, log2(|ΩX |)], so that H(mu) = H(ιX) = log2(|ΩX |).
Some, e.g., [1,3,22] define entropy as a measure of conflict and non-specificity
on the scale [0, 2 log2(|ΩX |)], but they do so using semantics of belief functions
(credal sets of PMFs) that are inconsistent with Dempster’s rule of combination
[10,29]. Our definition is the only one that defines entropy as a measure of con-
flict and non-specificity, on the scale [0, 2 log2(|ΩX |)], using semantics of belief
functions that are consistent with Dempster’s combination rule.

2 Desired Properties of Entropy of BPAs
in the D-S Theory

First, we explain our informal requirement that any definition of entropy for D-S
theory should be consistent with the semantics of this theory. Next, we propose
five formal properties that a definition of entropy of BPAs in the D-S theory
should satisfy, Finally, we compare these properties with those proposed by Klir
and Wierman [19] for the same purposes.
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Consistency with D-S Theory Semantics Requirement. First, let us stress
once more that we are concerned in this paper only with the D-S belief functions
theory that includes Dempster’s combination rule as the operation for aggregat-
ing knowledge. There are theories of belief functions that use other combination
rules. Let 2ΩX denote the set of all non-empty subsets of ΩX . A BPA m for X
can be considered as an encoding of a collection of PMFs Pm for X such that
for all a ∈ 2ΩX we have:

Belm(a) =
∑

b∈2ΩX :b⊆a

m(b) = min
P∈Pm

∑

x∈a

P (x). (5)

Pm is referred to as a credal set corresponding to m in the imprecise probability
literature (see, e.g., [36]). For such a theory of belief functions, Fagin and Halpern
[9] propose a combination rule that is different from Dempster’s combination
rule. Thus, a BPA m in the D-S theory cannot be interpreted as a collection
of PMFs satisfying Eq. (5) [10,28]. There are, of course, semantics that are
consistent with D-S theory, such as multivalued mappings [6], random codes
[28], transferable beliefs [34], and hints [20].

Example 1. Consider a BPA m1 for X with state space ΩX = {x1, x2, x3} as
follows: m1({x1}) = 0.5, m1(ΩX) = 0.5. With the credal set semantics of a BPA
function, m1 corresponds to a set of PMFs Pm1 = {P ∈ P : P (x1) ≥ 0.5}, where
P denotes the set of all PMFs for X. Now suppose we get a distinct piece of
evidence m2 for X such that m2({x2}) = 0.5, m2(ΩX) = 0.5. m2 corresponds
to Pm2 = {P ∈ P : P (x2) ≥ 0.5}. The only PMF that is in both Pm1 and Pm2

is P ∈ P such that P (x1) = P (x2) = 0.5, and P (x3) = 0. Notice that if we
use Dempster’s rule to combine m1 and m2, we have: (m1 ⊕ m2)({x1}) = 1

3 ,
(m1 ⊕ m2)({x2}) = 1

3 , and (m1 ⊕ m2)(ΩX) = 1
3 . The set of PMFs Pm1⊕m2 =

{P ∈ P : P (x1) ≥ 1
3 , P (x2) ≥ 1

3} is not the same as Pm1 ∩ Pm2 . Thus, credal
set semantics of belief functions are not compatible with Dempster’s rule of
combination.

Second, given a BPA m for X in the D-S theory, there are many ways to trans-
form m to a corresponding PMF Pm for X [5]. However, only one of these ways,
called the plausibility transform [4], is consistent with m in the D-S theory in the
sense that Pm1 ⊗ Pm2 = Pm1⊕m2 , where ⊗ is the combination rule in probabil-
ity theory [31], and ⊕ is Dempster’s combination rule in D-S theory [4]. [7,15,25]
define entropy of m as the Shannon’s entropy of the pignistic transform of m. The
pignistic transform of m is not compatible with Dempster’s combination rule [4],
and therefore, this definition is not consistent with D-S theory semantics. Thus,
as per our consistency with D-S theory semantics requirement, any method for
defining entropy of m in the D-S theory by first transforming m to a correspond-
ing PMF should use the plausibility transform method. Notice that we are not
claiming that a definition of entropy for D-S theory must use the plausibility trans-
form method, only that if one takes the path of first transforming a BPA m to an
equivalent PMF and then using Shannon’s entropy of the PMF as the definition
of entropy of m, then to be compatible with D-S theory semantics, the transfor-
mation method used must be the plausibility transform method.
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Example 2. Consider a situation where we have vacuous prior knowledge of X
with ΩX = {x1, . . . , x70} and we receive evidence represented as BPA m for X
as follows: m({x1}) = 0.30, m({x2}) = 0.01, and m({x2, . . . , x70}) = 0.69. The
pignistic transform of m [33], denoted by BetPm, is as follows: BetPm(x1) =
0.30, BetPm(x2) = 0.02, and BetPm(x3) = . . . = BetPm(x70) = 0.01. Thus,
as per the pignistic transform, BPA m is interpreted as evidence where x1 is
15 times more likely than x2. Now suppose we receive another distinct piece of
evidence that is also represented by m. As per the D-S theory, our total evidence
is now m ⊕ m. If on the basis of m (or BetPm), x1 was 15 times more likely
than x2, then now that we have evidence m ⊕ m, x1 should be 152 = 225 times
more likely than x2. But BetPm⊕m(x1) ≈ 0.156 and BetPm⊕m(x2) ≈ 0.036. So
according to BetPm⊕m, x1 is only 4.33 more likely than x2. Thus, BetPm is not
consistent with Dempster’s combination rule.

Thus, one requirement we implicitly assume is that any definition of entropy
of m should be based on semantics for m that are consistent with the basis tenets
of D-S theory. Also, we implicitly assume existence and continuity—given a BPA
m, H(m) should always exist, and H(m) should be a continuous function of m.
We do not list these three requirements explicitly.

Desired Properties of Entropy for the D-S Theory. The following list of
desired properties of entropy H(mX), where mX is a BPA for X, is motivated
by the properties of Shannon’s entropy of PMFs [30].

Let X and Y denote random variables with state spaces ΩX and ΩY , respec-
tively. Let mX and mY denote distinct BPAs for X and Y , respectively. Let ιX
and ιY denote the vacuous BPAs for X and Y , respectively.

1. (Non-negativity) H(mX) ≥ 0, with equality if and only if there is a x ∈ ΩX

such that mX({x}) = 1. This is similar to the probabilistic case.
2. (Maximum entropy) H(mX) ≤ H(ιX), with equality if and only if mX = ιX .

This makes sense as the vacuous BPA ιX for X has the most uncertainty
among all BPAs for X. Such a property is advocated in [3].

3. (Monotonicity) If |ΩX | < |ΩY |, then H(ιX) < H(ιY ). A similar property is
used by Shannon to characterize his definition of entropy of PMFs.

4. (Probability consistency) If mX is a Bayesian BPA for X, then H(mX) =
Hs(PX), where PX is the PMF of X corresponding to mX .

5. (Additivity) H(mX ⊕ mY ) = H(mX) + H(mY ). This is a weaker form of the
compound property of Shannon’s entropy of a PMF.

Klir and Wierman [19] also describe a set of properties that they believe
should be satisfied by any meaningful measure of uncertainty based on intuitive
grounds. Two of the properties that they suggest, probability consistency and
additivity, are also included in the above list. Our maximum entropy property
is not in their list. Two of the properties that they require do not make intuitive
sense to us.

First, Klir and Wierman require a property they call “set consistency” as
follows: H(m) = log2(|a|) whenever m is deterministic (i.e., it has only one focal
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element) with focal set a. This property would require that H(ιX) = log2(|ΩX |).
The probability consistency property requires that for the Bayesian uniform
BPA mu, H(mu) = log2(|ΩX |). Thus, these two requirements entail that
H(ιX) = H(mu) = log2(|ΩX |). We disagree, as there is greater uncertainty in ιX
than in mu.

Second, Klir and Wierman require a property they call “range” as follows:
For any BPA mX for X, 0 ≤ H(mX) ≤ log2(|ΩX |). The probability consistency
property requires that H(mu) = log2(|ΩX |). Also including the range property
prevents from having H(ιX) > H(mu). So we do not include it in our list.

Finally, Klir and Wierman require a sub-additivity property defined as fol-
lows. Suppose m is a BPA for {X,Y }, with marginal BPAs m↓X for X, and m↓Y

for Y . Then,
H(m) ≤ H(m↓X) + H(m↓Y ) (6)

We agree that this property is important, and the only reason we do not include
it in our list is because we are unable to meet this requirement in addition to
the five requirements that we do include, and our implicit requirement that any
definition be consistent with the semantics of D-S theory of belief functions.

The most important property that characterizes Shannon’s definition of
entropy is the compound property Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) +
Hs(PY |X), where Hs(PY |X) =

∑
x∈ΩX

PX(x)Hs(PY |x). This translated to the
D-S theory of belief function would require factorizing a BPA m for {X,Y } into
BPA m↓X for X, and BPA mY |X for {X,Y } such that m = m↓X ⊕ mY |X .
This cannot be done for all BPA m for {X,Y } [31]. But, we could construct
m for {X,Y } such that m = mX ⊕ mY |X , where mX is a BPA for X,
and mY |X is a BPA for {X,Y } such that m↓X

Y |X = ιX , and mX and mY |X
are non-conflicting, i.e., the normalization constant in Dempster’s combination
rule is 1. Notice that such a constructive BPA m would have the property
m↓X = (mX ⊕mY |X)↓X = mX . For such constructive BPAs m, we could require
a compound property as follows:

H(mX ⊕ mY |X) = H(mX) + H(mY |X). (7)

However, we are unable to formulate a definition of H(m) to satisfy such a
compound property. So like the sub-additivity property, we do not include a
compound property in our list of properties. The additivity property included
in Klir-Wierman’s and our list is so weak that it is satisfied by any definition
on a log scale. All definitions of entropy of belief functions in the literature are
defined on a log scale, and, thus, they all satisfy the additivity property.

3 A New Definition of Entropy of BPAs in the D-S
Theory

In this section, we propose a new definition of entropy of BPAs in the D-S theory.
The new definition of entropy is based on the plausibility transform of a belief
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function to an equivalent probability function. Therefore, we start this section
by describing the plausibility transform introduced originally in [4].

Plausibility Transform of a BPA to a PMF. Suppose m is a BPA for X.
What is the PMF of X that best represents m in the D-S theory? An answer
to this question is given by Cobb and Shenoy [4], who propose the plausibility
transform of m as follows. First consider the plausibility function Plm corre-
sponding to m. Next, construct a PMF for X, denoted by PPlm , by the values
of Plm for singleton subsets suitably normalized, i.e.,

PPlm(x) = K−1 · Plm({x}) = K−1 · Qm({x}) (8)

for all x ∈ ΩX , where K is a normalization constant that ensures PPlm is a
PMF, i.e., K =

∑
x∈ΩX

Plm({x}) =
∑

x∈ΩX
Qm({x}).

[4] argues that of the many methods for transforming belief functions to
PMFs, the plausibility transform is one that is consistent with Dempster’s rule
of combination in the sense that if we have BPAs m1, . . . ,mk for X, then
PPlm1⊕...⊕mk

= PPlm1
⊗ . . . ⊗ PPlmk

, where ⊗ denotes pointwise multiplication
followed by normalization (i.e., Bayesian combination [31]). It can be shown
that the plausibility transform is the only method that has this property, which
follows from the fact that Dempster’s rule of combination is pointwise multipli-
cation of commonality functions followed by normalization [27].

Example 3. Consider a BPA m for X as described in Example 2. Then, Plm
for singleton subsets is as follows: Plm({x1}) = 0.30, Plm({x2}) = 0.70,
Plm({x3}) = · · · = Plm({x70}) = 0.69. The plausibility transform of m is as
follows: PPlm(x1) = 0.3/49.72 ≈ 0.0063, and PPlm(x2) = 0.7/49.72 ≈ 0.0.0146,
and PPlm(x3) = · · · = PPlm(x70) ≈ 0.0144. Notice that PPlm is quite different
from BetPm. In BetPm, x1 is 15 times more likely than x2. In PPlm , x2 is 2.33
times more likely than x1. Now consider the scenario where we get a distinct
piece of evidence that is identical to m, so that our total evidence is m⊕m. If we
compute m ⊕ m and PPlm⊕m

, then as per PPlm⊕m
, x2 is 2.332 more likely than

x1. This is a direct consequence of the consistency of the plausibility transform
with Dempster’s combination rule.

A New Definition of Entropy of a BPA. Suppose m is a BPA for X. The
entropy of m is defined as follows:

H(m) =
∑

x∈ΩX

PPlm(x) log2

(
1

PPlm(x)

)
+

∑

a∈2ΩX

m(a) log2(|a|). (9)

The first component is Shannon’s entropy of PPlm , and the second component
is generalized Hartley’s entropy of m [8]. Like some of the definitions in the
literature, the first component in Eq. (9) is designed to measure conflict in m,
and the second component is designed to measure non-specificity in m. Both
components are on the scale [0, log2(|ΩX |)], and therefore, H(m) is on the scale
[0, 2 log2(|ΩX |)].
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Theorem 1. The entropy H(m) of BPA m for X defined in Eq. (9) satisfies
the non-negativity, maximum entropy, monotonicity, probability consistency, and
additivity properties. It is also consistent with semantics of the D-S theory.

A proof of this theorem can be found in [14] (that can be downloaded from
〈http://pshenoy.faculty.ku.edu/Papers/WP330.pdf〉). Finally, we provide an exam-
ple that shows our definition does not satisfy the sub-additivity property.

Example 4. Consider a BPA m for binary-valued variables {X,Y }: m({(x,
y)}) = m({(x, ȳ)}) = 0.1, m({(x̄, y)}) = m({(x̄, ȳ)}) = 0.3, m(Ω{X,Y }) = 0.2.

It is easy to verify that H(m) .= 2.35. The marginal BPA m↓X is as follows:
m↓X({x}) = 0.2, m↓X({x̄}) = 0.6, and m↓X(ΩX) = 0.2. It is easy to verify that
H(m↓X) .= 1.12. Similarly, the marginal BPA m↓Y is as follows: m↓Y ({y}) = 0.4,
m↓Y ({ȳ}) = 0.4, and m↓Y (ΩY ) = 0.2. It is easy to verify that H(m↓Y ) .= 1.20.
Thus, H(m) .= 2.35 > H(m↓X) + H(m↓Y ) .= 1.12 + 1.20 = 2.32.

The only definition that satisfies the five properties we state plus the sub-
additivity property is that due to Maeda and Ichihashi [22], but this definition
is based on credal set semantics of a belief function that is inconsistent with
Dempster’s combination rule. Whether there exists a definition that satisfies our
five properties plus sub-additivity, and that is based on semantics consistent
with the basic tenets of D-S theory, remains an open question.

4 Summary and Conclusions

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the
amount of uncertainty in the PMF [30], we propose five desirable properties of
entropy of a basic probability assignment in the D-S theory of belief functions.
These five properties are motivated by the analogous properties of Shannon’s
entropy of PMFs, and they are based on our intuition that a vacuous belief func-
tion has more uncertainty than an equiprobable Bayesian belief function. Also,
besides the five properties, we also require that any definition should be based
on semantics consistent with the D-S theory of belief functions (with Dempster’s
rule as the combination rule), H(m) should always exist, and H(m) should be
a continuous function of m. Thus, a monotonicity-like property suggested by
Abellán-Masegosa [2], based on credal set semantics of belief functions that are
not compatible with Dempster’s rule, is not included in our set of requirements.

It would be ideal if we can state the consistency with D-S theory semantics as
a formal requirement, but we are unable to do so. In our opinion, the additivity
property for the case of two distinct BPAs for disjoint sets of variables does not
fully capture consistency with D-S theory semantics. In any case, the definitions
of entropy based on credal sets of probability distributions and pignistic trans-
forms are not consistent with Dempster’s combination rule, and therefore, in our
perspective, not appropriate for the D-S theory of evidence.

As first suggested by Lamata and Moral [21], we propose a new definition of
entropy of BPA as a combination of Shannon’s entropy of an equivalent PMF

http://pshenoy.faculty.ku.edu/Papers/WP330.pdf
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that captures the conflict measure of entropy, and Dubois-Prade’s entropy of
a BPA that captures the non-specificity (or generalized Hartley) measure of
entropy. The equivalent PMF is that obtained by using the plausibility trans-
form [4]. This new definition satisfies all five properties we propose. More impor-
tantly, our definition is consistent with the semantics for the D-S theory of belief
functions.

An open question is whether there exists a definition of entropy of BPA m
in the D-S theory that satisfies the five properties we list in Sect. 2, the sub-
additivity property, and most importantly, that is consistent with semantics for
the D-S theory. Our definition satisfies the five properties and is consistent with
semantics for the D-S theory, but it does not satisfy the sub-additivity property.
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26. Rényi, A.: On measures of information and entropy. In: Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561
(1960)

27. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

28. Shafer, G.: Constructive probability. Synthese 48(1), 1–60 (1981)
29. Shafer, G.: Perspectives on the theory and practice of belief functions. Int. J.

Approx. Reason. 4(5–6), 323–362 (1990)
30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.

27(379–423), 623–656 (1948)
31. Shenoy, P.P.: Conditional independence in valuation-based systems. Int. J. Approx.

Reason. 10(3), 203–234 (1994)
32. Smets, P.: Information content of an evidence. Int. J. Man Mach. Stud. 19, 33–43

(1983)



Entropy of Belief Functions in the Dempster-Shafer Theory 13

33. Smets, P.: Constructing the pignistic probability function in a context of uncer-
tainty. In: Henrion, M., Shachter, R., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty
in Artificial Intelligence, vol. 5. pp, pp. 29–40. North-Holland, Amsterdam (1990)

34. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234
(1994)
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Abstract. Linear models, obtained from independent sources, may be
combined via Dempster’s rule as linear belief functions. When they are
represented as matrices, the combination is reduced to the addition of
the matrices in fully swept forms. This paper improves this combination
rule by further reducing unnecessary sweeping operations.

Keywords: Linear belief functions · Matrix sweepings · Dempster’s rule

1 Introduction

Linear models, including observations with or without missing values, linear
regressions, linear equations, and ignorance, as well as marginal and conditional
multivariate normal distributions of linear combinations of variables, are all man-
ifestations of the concept of linear belief functions [3] in a unified matrix repre-
sentation [4]. To combine linear belief functions, Dempster proposed summing
their matrix representations in fully swept forms [1], i.e., the combination of two
linear belief functions corresponds to the addition of their matrix representations
if both matrices have been fully swept.

This paper shows that two linear belief functions can still be combined by
summing their matrix representations if the matrices are partially swept from
their common variables. It also proves that, if a matrix happens to be swept from
an uncommon variable due to the nature of its representation, it does not have
to be reversed in order to be combined. Thus, two matrices can be directly added
regardless whether they are swept or not from any uncommon variables. This
new matrix addition rule avoids unnecessary sweeping operations, and renders
more efficient the computation for combining linear models.

2 Linear Belief Functions

The essence of the concept of belief functions is limited divisibility of beliefs
[7]: a belief function is made of indivisible atomic subsets, called focal elements,
and indivisible probability mass numbers. A linear model is a belief function.
In the simple case of linear equations, e.g., 3X + 5Y = 4, the truth is on the
hyperplane s determined by the equation, but the equation alone provides no
further information on the whereabouts of the truth. Thus, s is the only focal
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 14–24, 2016.
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element, and m(s) = 1. In general, a linear belief function is a normal distribution
over a partition of parallel hyperplanes [3], e.g., 3X + 5Y ∼ N(2, 10), where the
frame of discernment is R2, focal elements are parallel hyperplanes, and the mass
number for each hyperplane s(w) = {(x, y) | 3x + 5y = w} is density value f(w)
for N(2, 10); this belief function contains knowledge about both X and Y , and
yet the mass number f(w) cannot be reallocated to any subset of points in s(w).

Instead of focal elements and mass values, a linear belief function on X =
(X1,X2, ...,Xn) can be more conveniently expressed as a (n + 1) × n matrix:

M(X1, ...,
−→
Xi, ...,Xn) =

X1 · · · −→
Xi · · · Xn

X1

...−→
Xi

...
Xn

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 · · · vi · · · vn
σ11 · · · σ1i · · · σ1n

...
...

...
...

...
σi1 · · · σii · · · σin

...
...

...
...

...
σn1 · · · σni · · · σnn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

here one or more variables like Xi have been swept, denoted by
−→
Xi. The key to

understanding Eq. 1 are forward and reverse sweeping operations:

Definition 1. Assume real matrix A is made of submatrices as A = (Aij) and
assume Aij is a square submatrix. Then a forward (or reverse) sweeping of A
from Aij replaces submatrix Aij by its negative inverse −(Aij)−1, any other
submatrix Aik in row i and any submatrix Akj in column j are respectively
replaced by (Aij)−1Aik (or −(Aij)−1Aik) and Akj(Aij)−1 (or −Akj(Aij)−1),
and the remaining submatrix Akl not in the same row or column as Aij, i.e.,
k �= i and j �= l, by Akl − Akj(Aij)−1Ail.

Here forward and reverse sweepings operationally differ only in the sign for
the elements in the same column or row as the sweeping point. Yet, they cancel
each other in effect. Aij is called a sweeping point, which is usually an element or
a square submatrix; a sweeping from a positive definite submatrix is equivalent to
successive sweepings from each of the leading diagonal elements of the submatrix.

Sweeping points in Eq. 1 are leading diagonal elements, e.g., σii, of the lower
n × n submatrix. Since σii is the intersection between row Xi and column Xi,
we may also call Xi a sweeping point, and the matrix is swept from Xi. If the
sweeping point consists of all variables or is the entire lower n × n submatrix,
then we say the (n+1)×n matrix is fully swept. For example, if X is Gaussian,
its distribution X ∼ N(μ,Σ) is expressed as Eq. 1:

M(X) =
[

μ
Σ

]
. (2)

Sweeping this matrix from all variables produces a fully swept form

M(
−→
X ) =

[
μΣ−1

−Σ−1

]
. (3)
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For partial sweepings, let us consider the matrix representation of a multi-
variate normal distribution on X and Y in the block form:

M(X,Y ) =

⎡

⎣
μX μY

ΣXX ΣXY

ΣY X ΣY Y

⎤

⎦ ,

where μX and μY are respectively the mean vectors of X and Y , and ΣXX ,
ΣY Y , ΣXY and ΣY X are respectively covariance matrices. Then, applying for-
ward sweepings from X or ΣXX produces the partially swept matrix:

M(
−→
X,Y ) =

⎡

⎣
μX(ΣXX)−1 μY − μX(ΣXX)−1ΣXY

−(ΣXX)−1 (ΣXX)−1ΣXY

ΣY X(ΣXX)−1 ΣY Y − ΣY X(ΣXX)−1ΣXY

⎤

⎦ .

here μX(ΣXX)−1 and −(ΣXX)−1 determine the density function of X in
the potential form according to Eq. 3. The remaining blocks of M(

−→
X,Y )

define a conditional normal distribution of Y given X = x as follows:
(ΣXX)−1ΣXY = [ΣY X(ΣXX)−1]T is the coefficient of the multivariate regres-
sion line, μY − μX(ΣXX)−1ΣXY is the Y −intercept of the regression line
or the expected value of Y given X = 0, and the conditional covariance
matrix ΣY Y − ΣY X(ΣXX)−1ΣXY is the covariance matrix of the residual
term ε when the conditional distribution is expressed as a linear regression
Y = [μY − μX(ΣXX)−1ΣXY ] + x(ΣXX)−1ΣXY + ε, where ε is the white noise
ε ∼ N(0, ΣY Y − ΣY X(ΣXX)−1ΣXY ).

The following is how Eq. 1 represents linear belief functions. The basic case
is probabilistic knowledge about X modeled as multinormal as in Eq. 2. As its
special case, if X takes on value x with certainty, then

M(X) =
[

x
0

]
, (4)

because Σ = 0 when there is no uncertainty. In an opposite case, we may have
complete ignorance on X, we represent the case as a fully swept matrix

M(
−→
X ) =

[
0
0

]
. (5)

As in the case of complete certainty, there is no density function for X in the
case of ignorance, and Eq. 5 is simply the definition of ignorance. However, one
may make sense of the definition by imaging it to be the limit of the fully swept
matrix in Eq. 3 when all the variances approach infinity or the inverse covariance
matrix approaches zero.

Between complete certainty and full ignorance, there are intermediate cases
involving partial ignorance, where we have ignorance on some variables but prob-
abilistic or deterministic knowledge on others. Without loss of generality, let us
assume that we have ignorance on X and probabilistic knowledge on Y as linear
regression model (Y | X = x) ∼ N(B + xA,ΣY Y ), where A is the coefficient
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matrix, B is an intercept vector, and Σ is a conditional covariance matrix. Note
that M(

−→
X,Y ) contains a marginal distribution on X and a conditional distribu-

tion on Y given X. Here we are ignorant on X, and thus the terms corresponding
to the density function of X will be 0. Thus,

M(
−→
X,Y ) =

⎡

⎣
0 B
0 A

AT ΣY Y

⎤

⎦ . (6)

Equation 6 has two interesting special cases. The first is when ΣY Y = 0, or
we have deterministic knowledge on Y given X. Then we have a standard linear
equation Y = B + XA, which will be represented as

M(
−→
X,Y ) =

⎡

⎣
0 B
0 A

AT 0

⎤

⎦ . (7)

The second special case is when X and Y are independent, or coefficient
matrix A = 0. This case corresponds to a proper normal distribution; since Y is
independent of X, its conditional becomes its marginal. Thus, we have ignorance
on X and a marginal distribution on Y . Assume Y ∼ N(μY , ΣY Y ). Then we
have a special case of Eq. 6:

M(
−→
X,Y ) =

⎡

⎣
0 μY

0 0
0 ΣY Y

⎤

⎦ . (8)

If we further assume ΣY Y = 0 in Eq. 8, then we have the case of observations
with missing data; we have observed values Y = y but missing values on X. We
represent the case as:

M(
−→
X,Y ) =

⎡

⎣
0 y
0 0
0 0

⎤

⎦ . (9)

The representations so far all involve explicit knowledge, or a lack of it, about
a set of variables. A more general form of linear belief functions is a normal dis-
tribution over hyperplanes, which carries implicit knowledge on some variables,
but the knowledge does not, or at least not readily, specify how each variable
is distributed. One approach to represent such a model is to transform it into
explicit knowledge such as a conditional distribution or any of the representation
that we have discussed so far. For example, the distribution 3X +5Y ∼ N(2, 10)
can be transformed into the following regression model Y ∼ N(−0.6X+0.4, 0.4).
The second approach is a more direct representation; we may introduce auxiliary
variables and then represent the model as composed of a few components. For
example, 3X + 5Y ∼ N(2, 10) may be directly represented using two separate
models: W = 3X + 5Y and W ∼ N(2, 10), or in the matrix format as

M(
−→
X,

−→
Y ,W ) =

⎡

⎢⎢⎣

0 0 0
0 0 3
0 0 5
3 5 0

⎤

⎥⎥⎦ , M(W ) =
[

2
10

]
.
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In general, for XA ∼ N(μ,Σ), we introduce a auxiliary vector Z and represent
the distribution into two parts: Z = XA and Z ∼ N(μ,Σ), both of which can
be readily represented as matrices. Such a direct representation is equivalent to
the original distribution because, as we will see later, the combination of the
component models is the same as the original distribution over hyperplanes.

3 A New Rule for Combination

The combination of two linear belief functions corresponds to the intersection of
the hyperplanes and the multiplication of two normal density functions. In the
case of usual normal distributions represented as Eq. 1, we can verify:

Theorem 1. For two normal distributions on X with positive definite covari-
ance matrices represented respectively by M1(X) and M2(X) as in Eq. 1, their
combination via Dempster’s rule is a normal distribution of X with a matrix
representation in fully swept form as M(

−→
X ) = M1(

−→
X ) + M2(

−→
X ).

The essence of Theorem 1 appeared in [3]. Note that, when X is a single
variable, this theorem basically states that the mean of the combined distribution
is a weighted average of component means with the inverse variances as weights.
It is interesting to compare it with how Kalman filter [2] estimates the true
state from measurements containing noises. As a simple demonstration, assume
xt is a measurement of an unknown true value μ at time t, contaminated by
the white noise with standard deviation σt. Assume that the observations xt

are independent and normally distributed with the same mean μ. Then the
maximum likelihood estimate for the true value μ is μ̂ = (

∑
xt/σ2

t )/(
∑

1/σ2
t ).

Thus, Kalman filtering is similar to the combination of independent estimates.
Theorem 1 implies a general matrix addition rule, which simplifies Dempster’s

rule of combination based on set intersections and mass multiplications into one
based on matrix sweepings and additions:

Definition 2. Combination Rule 1: The combination of any two linear belief
functions obtained from independent sources is the addition of their matrix rep-
resentations in fully swept form.

This rule was proposed by [1] and shown to satisfy Shenoy and Shafer axioms
such as commutativity and associativity [4]. It applies not only to normal distri-
butions, but also any linear belief functions, including linear regressions, linear
equations, ignorance, or normal distributions over hyperplanes [5,6,10]. Note
that, in degenerate cases, variances may be zero or not exist so the weighting
mechanism based on inverse variances fails. However, this rule is applicable to all
cases including ignorance, which have no finite expressions in probability theory.

Theorem 1 assume two normal distributions bear on the same random vec-
tor X. What if they bear on different random vectors? A vacuous extension must
be applied to make them bear on the same random vector. If X is vacuous, and
M(

−→
X,Y ) contains the same knowledge as M(Y ). Then M(

−→
X,Y ) is called a vac-

uous extension of M(Y ), denoted by M↑X(Y ) [9]. In general, for any matrix M ,
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in which variables may have mixed swept status with some but not all variables
swept, a vacuous extension to include additional variables X is

M↑X(...) = M(
−→
X, ...) =

⎡

⎣
0 ...
0 0
0 ...

⎤

⎦ . (10)

After extension, M↑X keeps the same values as in M for existing variables and
assumes full ignorance for X and no correlation between X and the existing vari-
ables. Thus, M↑X represents no more and no less information than the original.

Suppose M1(X) and M2(Y ) are respectively the matrices for two linear belief
functions. To combine them, first, both matrices are fully swept into M1(

−→
X )

and M2(
−→
Y ). Then, they are vacuously extended so that they bear on the same

variables. Finally, the extended matrices are added to obtain the combination:

M(
−→
X ∪ −→

Y ) = M↑Y
1 (

−→
X ) + M↑X

2 (
−→
Y ) (11)

A question arises regarding whether the combination of two normal distri-
butions on different variables can be so combined via Dempster’s rule. A more
important question is whether there is an explicit, analytical expression of the
combined distribution derived from Dempster’s rule. The following answers these
questions, and as a by-product, implies a new, improved matrix addition rule.
Note that one may be tempted to derive the analytical expression of the combi-
nation by multiplying the density functions directly. However, the derivation is
overwhelming. Here I approach the problem indirectly. First, I need:

Lemma 1. Assume X, Y , and Z are three distinct random vectors such that
X ∼ N(μX , ΣXX) and the conditional distributions of Y and Z given X:

(Y | X = x) ∼ N(BY + xAY , ΣY Y ),
(Z | X = x) ∼ N(BZ + xAZ , ΣZZ).

Then the joint distribution of X, Y , and Z has the following partially swept
matrix representation:

M(
−→
X,Y,Z) =

⎡

⎢⎢⎣

μX(ΣXX)−1 BY BZ

−(ΣXX)−1 AY AZ

(AY )T ΣY Y 0
(AZ)T 0 ΣZZ

⎤

⎥⎥⎦ .

This lemma along with Theorem 1 leads to an analytical expression for the
combination of two arbitrary normal distributions via Dempster’s rule:

Theorem 2. The combination of any two normal distributions is also a normal
distribution. In addition, assume two vectors of random variables have common
subvector X and different subvectors respectively as Y and Z such that their
matrix representations are respectively M1(X,Y ) and M2(X,Z). Let M(X,Y,Z)
denote their combination via Dempster’s rule. Then

M(
−→
X,Y,Z) = M↑Z

1 (
−→
X,Y ) + M↑Y

2 (
−→
X,Z). (12)
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A formal proof is not included here, but a sketch is as follows. Assume that
two normal distributions are respectively for (X,Y ) and (X,Z), where Y and
Z are disjoint. I can factor out from the distributions respectively marginals
N(μ1,X , Σ1,XX) and N(μ2,X , Σ2,XX), which can then be combined into a single
marginal N(μX , ΣXX) via Theorem 1. The other factors, i.e., conditionals (Y |
X = x) and (Z | X = x), are then combined with N(μX , ΣXX) to produce
the product of two original distributions. Lemma 1 represents this combination
simply as the sum of the matrices.

Theorem 2 represents the combination of two multivariate normal distribu-
tions elegantly in an analytical expression, generalizing the result in Theorem 1.
It states that the combination of two normal distributions is simply the sum of
their matrix representations if both matrices have been swept from each common
variable but have not been swept from any uncommon variable.

What if a matrix happens to be swept from an uncommon variable because of
the nature of its representation? The following theorem states that such matrices
can still be added directly.

Theorem 3. Assume X is the common set of variables between normal distribu-
tions represented by M1(

−→
X,Y1, Y2) and M2(

−→
X,Z1, Z2). Let M(

−→
X,Y1, Y2, Z1, Z2)

be their combination. Then

M(
−→
X,

−→
Y1, Y2,

−→
Z1, Z2) = M↑Z1∪Z2

1 (
−→
X,

−→
Y1, Y2) + M

↑Y1∪Y2

2 (
−→
X,

−→
Z1, Z2).

Thus, the combination of two normal distributions corresponds to the addi-
tion of their matrix representations as long as they have been swept from all
common variables. As far as uncommon variables, they can be either swept or
not swept from. Therefore, it improves the result of Theorem 2 one step further
by not requiring uncommon variables to be unswept.

Note that vacuous extensions bring in additional vacuous variables as swept
ones into the matrices. For example, Eq. 12 becomes

M(
−→
X,Y,Z) = M1(

−→
X,Y,

−→
Z ) + M2(

−→
X,

−→
Y ,Z), (13)

which is not true in general because both M1(
−→
X,Y,

−→
Z ) and M2(

−→
X,

−→
Y ,Z) now

have variable X, Y , and Z in common, and according to Theorem 2, both matri-
ces have to be fully swept before they can be added. However, it holds when Z is
vacuous in M1 and Y is vacuous in M2, and in which case, Eq. 13 is identical to
Eq. 12. Summarizing the above results, I can state a more efficient combination
rule based on partial matrix sweepings and additions:

Definition 3. Combination Rule 2: The combination of any two linear belief
functions from independent sources is the addition of their matrix representations
if the matrices are partially swept from each common variable. Furthermore, if a
common variable is vacuous in one of the linear belief functions, then the matrix
representation of the other does not have to be swept from the variable.

It is easy to see the difference between the two combination rules. Assume
M1 and M2 are two linear models respectively for two sets of variables X and Y .
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By Rule 1, the combination asks for fully sweeping both the matrices into M1(
−→
X )

and M2(
−→
Y ) and then extending them into M1(

−→
X,

−→
Y ) and M2(

−→
X,

−→
Y ) to be

added. By Rule 2, we just need to sweep both matrices from the common vari-
ables in the intersection X ∩ Y and leave the swept status of other variables in
either X or Y as is, and then extend and add the resulting matrices.

There are some special cases the new rule is convenient and efficient. First,
if there is no common variable, then no sweeping is necessary according to the
new rule. For example, to combine a distribution for variable X in potential form
M(

−→
X ) = (0.2,−0.1)T , and normal distribution Y ∼ N(1, 4), a simple addition,

after vacuous extensions, gets the combination

M(
−→
X,Y ) =

⎡

⎣
0.2 1

−0.1 0
0 4

⎤

⎦ . (14)

without first sweeping the moment matrix for Y ∼ N(1, 4). Second, when a
linear model is a linear equation or regression model, it is already in partially
swept form, and so sweeping may be unnecessary. For example, assume we have
another linear regression model

M(
−→
X,Z) =

⎡

⎣
0 4
0 1
1 10

⎤

⎦ , (15)

which is from a source independent of that of M(
−→
X,Y ) in Eq. 14. Then we may

combine M(
−→
X,Y ) and M(

−→
X,Z) without any sweeping:

M(
−→
X,Y,Z) =

⎡

⎢⎢⎣

0.2 1 4
−0.1 0 1

0 4 0
1 0 10

⎤

⎥⎥⎦ . (16)

Third, for a linear equation or a direct observation, sweeping operations will
usually involve divisions by zero. Dempster proposes a walk-around by turn-
ing a division by zero into a symbolic division by ε and let ε −→ 0 when the
opportunity arises [1]. However, the computation can easily become intractable.
Recently, I propose a notion of imaginary extreme numbers and represent 1

0 by
the imaginary number e. Then, sweeping operations on real matrices essentially
become ones on imaginary numbers. In contrast, the new combination rule can
avoid such an enigma or reduce its occurrence if linear equations are appropri-
ately represented.

A general linear belief function, or a normal distribution over hyperplanes,
is expressed as matrices directly as components. For example, the distributions
3X + 5Y ∼ N(2, 10) and X − Y ∼ N(−1, 4) can be represented respectively as
Z ∼ N(2, 10) with Z = 3X + 5Y and W ∼ N(−1, 4) with W = X − Y . Here Z
and W are auxiliary variables. The following shows the matrix representation of
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the four models, where M1 is for Z = 3X + 5Y , M2 is for Z ∼ N(2, 10), M3 is
for W = X − Y , and the last is normal distribution W ∼ N(−1, 4).

M1(
−→
X,

−→
Y ,Z) =

⎡

⎢⎢⎣

0 0 0
0 0 3
0 0 5
3 5 0

⎤

⎥⎥⎦ , M3(
−→
X,

−→
Y ,W ) =

⎡

⎢⎢⎣

0 0 0
0 0 1
0 0 −1
1 −1 0

⎤

⎥⎥⎦ .

The normal distribution Z ∼ N(2, 10) is shown as M2(Z) = (2, 10)T , and
W ∼ N(−1, 4) as M4(W ) = (−1, 4)T . There are a few different paths for the four
models to be combined, but they are all equivalent [4]. By the new combination
rule, it makes sense to combine M1 with M3 to obtain M13 and M2 with M4

obtain M24 first (see below). Note that M2 and M4 have no common variables,
and the common variables for M1 and M3 are X and Y with both being already
swept. Thus, these combinations require no extra sweepings.

M13(
−→
X,

−→
Y ,Z,W ) =

⎡

⎢⎢⎢⎢⎣

0 0 0 0
0 0 3 1
0 0 5 −1
3 5 0 0
1 −1 0 0

⎤

⎥⎥⎥⎥⎦
, M24(Z,W ) =

⎡

⎣
2 −1
10 0
0 4

⎤

⎦

Then, we can combine the two intermediate matrices M13 and M24. To do
so, we need to sweep them from both Z and W . This can be easily done for the
second matrix. However, to sweep the first matrix from Z or W , we encounter the
division-by-zero problem, which is generally handled by sweeping over imaginary
extreme numbers [8]. Sweeping the matrix representation of a linear equation
from a variable is essentially the same as moving the variable to the right-hand
side of the linear equation. Thus, above M13 represents the solution to X and
Y as X = 0.125Z + 0.625W and Y = 0.125Z − 0.375W .

M24(
−→
Z ,

−→
W ) =

⎡
⎣

0.2 −0.25
−0.1 0
0 −0.25

⎤
⎦ , M13(X,Y,

−→
Z ,

−→
W ) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0.125 0.625
0 0 0.125 −0.375

0.125 0.125 0 0
0.625 −0.375 0 0

⎤
⎥⎥⎥⎥⎦

Now that all common variables have been swept, the new combination rule
applies, and the result is shown below as M1234:

M1234(X,Y,
−→
Z ,

−→
W ) =

⎡

⎢⎢⎢⎢⎣

0 0 0.2 −0.25
0 0 0.125 0.625
0 0 0.125 −0.375

0.125 0.125 −0.1 0
0.625 −0.375 0 −0.25

⎤

⎥⎥⎥⎥⎦
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Applying reverse sweepings from Z and W , and we obtain the moment matrix
of four variables X, Y , Z, and W :

M1234(X,Y,Z,W ) =

⎡

⎢⎢⎢⎢⎣

−0.375 0.625 2 −1
1.71875 −0.78125 1.25 2.5

−0.78125 0.71875 1.25 −1.5
1.25 1.25 10 0
2.5 −1.5 0 4

⎤

⎥⎥⎥⎥⎦

Since Z and W are auxiliary variables, we can now get rid of them by marginal-
izing the moment matrix to the one for X and Y as follows:

M(X,Y ) =

⎡

⎣
−0.375 0.625
1.719 −0.781

−0.781 0.719

⎤

⎦ .

4 Conclusion

The combination of linear belief functions corresponds to the addition of their
matrix representations if the matrices are fully swept. This paper improves this
matrix addition rule by reducing the requirement of full sweeping and states that
two belief functions can be combined by summing their matrix representations
as long as each matrix is partially swept from the variables common to the both
belief functions. As far as those variables distinct to each belief function, the
corresponding matrix can be either swept or unswept depending on its natural
representation and does not affect the rule.

To arrive at this new rule, I also derived an analytical expression for the com-
bination of two multivariate normal distributions that bear on the different sets
of variables. The straightforward application of Dempster’s rule to this case is
mathematically intractable. However, thanks to the marriage between sweeping
operations and conditional distributions, I obtained such an analytical expres-
sion in the form of a conditional distribution, which corresponds to the sum of
the moment matrices for the two normal distributions when each is partially
swept from all the common variables. Besides its consequence to the new matrix
addition rule, the analytical expression may find its application in statistics;
assuming we have observations from two different but overlapping populations,
then the joint likelihood function is the product of the two multivariate normal
density functions and thus may allow one to make cross-population inferences.

The new matrix addition rule has some advantages. First, it improves com-
putational efficiency. By avoiding unnecessary sweepings, the new rule reduces
computation costs up to O(n3) divisions, multiplications, and subtractions for
combining two linear models in comparison to the original matrix addition rule.
Second, it reduces the chances to encounter the division-by-zero enigma. When
applying the old matrix addition rule, the issue is sure to occur because fully
sweeping the matrix representation of a linear equation will certainly involve
divisions by zero. In contrast, with the new rule, the problem may be avoided if
a linear equation is represented appropriately.
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On Internal Conflict as an External Conflict
of a Decomposition of Evidence
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Abstract. Conflictness is an important a priori characteristic of com-
bining rules in the belief functions theory. A new approach to the esti-
mation of internal conflict offered in this article. This approach is based
on the idea of decomposition of the initial body of evidence on the set of
bodies of evidence by means of some combining rule. Then the (external)
conflict of this set of beliefs is estimated. The dependence of change of
internal conflict from the choice of the combining rules is analyzed in
this study.

Keywords: Internal conflict · Belief functions theory · Combining
rules · Imprecision index

1 Introduction

Conflictness is an important a priori characteristic of combining rules in the
belief functions theory [5,17]. Usually the conflict of two or more pieces of evi-
dence is evaluated by a functional (measure), taking values in [0,1]. The conflict
of pieces of evidence characterizes the information inconsistency given by corre-
sponding bodies of evidence. Historically, the functional associated with Demp-
ster’s combining rule is the first conflict measure [5]. Recently the study of a
conflict measure in the framework of the belief functions theory was allocated
as a separate problem. So, the axiomatic of a conflict measure defined on pairs
of bodies of evidence was discussed in [6,15]. An axiomatic of a conflict measure
defined on arbitrary subsets of a finite set of bodies of evidence was considered
in [3]. There are several approaches to the estimation of conflict of evidence. The
metric approach is one of the most popular approaches [9,10,14]. A structural
approach was considered in [15]. The degree of inclusion of focal elements of
one evidence in the focal elements of other evidence took into account in this
approach. The algebraic approach to the estimation of a conflict was discussed
in [12]. In this case, the conflict measure was defined as a bilinear form satisfying
a certain conditions.

Also, conflictness of single evidence is considered together with the conflict
between the bodies of evidence. In the first case we talk about the external
conflict, in the second case we talk about the internal conflict. For example,
we have the following evidence in which a large internal conflict is observed:
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 25–34, 2016.
DOI: 10.1007/978-3-319-45559-4 3
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the value of the company shares will be tomorrow in the interval [0,10] or [30,35].
The internal conflict considered beginning in the early 1980s. This conflict esti-
mated with the help of different measures: dissonance, confusion, discord, strife
etc. [11]. Also the axiomatic of an internal conflict was considered in [1]. In [4]
internal conflict was determined in the case of a finite set of alternatives as min-
imum of the belief function, which is taken over all subsets of alternatives that
complement the singletons to the entire set. In [16] internal conflict was defined
as a conflict among the so-called generalized simple support functions on which
the original evidence decomposes uniquely.

In this paper we will consider and study another approach (but also used
the idea of decomposition, as in [16]) to the definition of internal conflict. The
following assumption is the basis of this approach. Evidence with a great internal
conflict has been obtained as a result of aggregating information from several
different sources with the help of some combining rule. Then the (external) con-
flict of the decomposed set of evidence can be regarded as an internal conflict of
the original evidence. It is understood that the decomposition result (and hence
the value of the internal conflict) is ambiguous. Therefore we can talk only about
the upper and lower estimates of the internal conflict in this case. In addition, it
is necessary to introduce some additional restrictions on the set of combinable
evidence in order to the result is not trivial or degenerate. These restrictions
are related with the character of combining rules, as will be shown below. Thus
the optimization problem formulates in this paper to estimation of the internal
conflict of evidence. The solution of this problem is studies for Dempster’s rule
and Dubois and Prade’s disjunctive consensus rule. The dependence of change of
internal conflict from the choice of the combining rules is analyzed in this study.
The decomposition method described above discussed in detail for the case of
two alternatives set of evidence.

2 Basic Concepts of the Belief Functions Theory
and a Conflict Measure

Let X be a finite set and 2X be a powerset of X. The mass function is a set
function m : 2X → [0, 1] that satisfies the conditions m(∅) = 0,

∑
A⊆X m(A) =

1. The value m(A) characterizes the relative part of evidence that the actual
alternative from X belongs to set A ∈ 2X .

The subset A ∈ 2X is called a focal element, if m(A) > 0. Let A = A be a
set of all focal elements of evidence. The pair F = (A,m) is called a body of
evidence. Let FA = (A, 1) (i.e. A = A and m(A) = 1), A ∈ 2X and F(X) be a
set of all bodies of evidence on X.

If we know the body of evidence F = (A,m) then we can estimate the degree
of confidence that the true alternative of X belongs to set B with the help of
belief function [17] g : 2X → [0, 1], g(B) =

∑
A⊆B m(A).

The belief function corresponding to body of evidence FA = (A, 1) is called
a categorical belief function and it is denoted as ηA. In particular ηX is called
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a vacuous belief function because the body of evidence FX = (X, 1) is totally
uninformative.

Let us have two bodies of evidence F1 = (A1,m1) and F2 = (A2,m2). For
example, these bodies of evidence can be obtained from two information sources.
We have a question about a conflict between these bodies of evidence. Histori-
cally, the conflict measure K0(F1, F2) associated with Dempster’s rule [5,17] is
the first among conflict measures:

K0 = K0(F1, F2) =
∑

B∩C=∅,
B∈A1,C∈A2

m1(B)m2(C). (1)

The value K0(F1, F2) characterizes the amount of conflict between two
sources of information described by the bodies of evidence F1 and F2. If K0 �= 1,
then we have the following Dempster’s rule for combining of two evidence:

mD(A) =
1

1 − K0

∑

B∩C=A

m1(B)m2(C), A �= ∅, mD(∅) = 0.

Below in this paper we will consider only the conflict measure (1).
Dubois and Prade’s disjunctive consensus rule is a dual rule to Dempster’s

rule in some sense. This rule is defined by a formula [8]:

mDP (A) =
∑

B∪C=A

m1(B)m2(C), A ∈ 2X . (2)

3 Decomposition of Evidence

In general case we can assume that some evidence describing with the help of
body of evidence F = (A,m) has a great internal conflict, if its information
source is a heterogeneous. For example, information about the prognostic value
of shares was obtained with the help of several different techniques. In this case
we can consider that the body of evidence F = (A,m) is a result of combining
of several bodies of evidence Fi = (Ai,mi) ∈ F(X), i = 1, ..., l with the help
of some combining rule R: F = R(F1, ..., Fl). Therefore we can estimate the
internal conflict by the formula

KR
in(F ) = K(F1, ..., Fl)

assuming that
F = R(F1, ..., Fl),

where K is some fixed (external) conflict measure, R is a fixed combining rule.
Since the equation F = R(F1, ..., Fl) has many solutions then we can consider
the optimization problem of finding the largest K

R

in(F ) and smallest KR
in(F )

conflicts:

K
R

in(F ) = arg max
F=R(F1,...,Fl)

K(F1, ..., Fl), KR
in(F ) = arg min

F=R(F1,...,Fl)

K(F1, ..., Fl). (3)
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Let Sn = {(si)n
i=1 : si ≥ 0, i = 1, ..., n,

∑n
i=1 si =1} be a n-dimensional sim-

plex. Let us consider some special cases of this problem.

Decomposition of Evidence with the Help of Dempster’s Rule. Let
R = D be Dempster’s Rule. Then optimization problems (3) for l = 2 have the
following formulation. We have to find the bodies of evidence Fi = (Ai,mi) ∈
F(X), i = 1, 2, that satisfy the condition

K0(F1, F2) =
∑

B∩C=∅,
B∈A1,C∈A2

m1(B)m2(C) → max (min) (4)

with constraints

(m1(B))B∈A1 ∈ S|A1|, (m2(C))C∈A2 ∈ S|A2|, (5)

(1 − K0(F1, F2)) m(A) =
∑

B∩C=A,
B∈A1,C∈A2

m1(B)m2(C), A ∈ A. (6)

This is a problem of quadratic programming with linear (5) and quadratic (6)
restrictions. Note, that in the case of the general formulation (4)–(6) KD

in(F ) = 0
and this value is achieved on the pair F1 = F , F2 = FX . In the same time we have
K

D

in(F ) = 1 and this value achieved for such Fi = (Ai,mi) ∈ F(X), i = 1, 2,
that B∩C = ∅ ∀B ∈ A1, ∀C ∈ A2. The latter being bodies of evidence are not
related with the initial body of evidence F . Therefore, in general formulation
the problem (4)-(6) to finding K

D

in(F ) and KD
in(F ) is not meaningful.

At the same time, Dempster’s rule is an optimistic rule in the following
sense. If one evidence argues that the true alternative belongs to the set A, and
the other – to the set B, then after combination of evidence in accordance with
Dempster’s rule we get that the true alternative belong to the set A∩B (see [13]).
Therefore, we can require from unknown bodies of evidence Fi = (Ai,mi) ∈
F(X), i = 1, 2 that their imprecision would not be less than imprecision of
initial evidence F :

f(F ) ≤ f(Fi), i = 1, 2, (7)

where f : F(X) → [0, 1] is a some imprecision index [2], for example, the gener-
alized Hartley measure [7]:

f(F ) =
1

ln |X|
∑

A∈A
m(A) ln |A|.

It is known that the estimation (7) is always true for any linear imprecision
index f and non-conflicting set of evidence (see [13]). Note that the conditions (7)
are performed for the bodies of evidence F1 = F and F2 = FX since f(FX) = 1.
Therefore we have always KD

in(F ) = 0. Then the problem can be put to find
bodies of evidence with the largest conflict (4) and satisfying the conditions
(5)–(7).
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In addition, the form of initial body of evidence F = (A,m) ∈ F(X) and the
combining rule defines a class of evidence in which we should seek solutions.

Example 1. It is necessary to estimate the internal conflict of evidence given
by a belief function

g = m0ηX +
n∑

i=1

miη{xi}, (mi)n
i=0 ∈ Sn+1.

In other words, we have the following set of focal elements A =
{{x1} , . . . , {xn} ,X} and m({xi}) = mi for i = 1, ..., n, m(X) = m0. Let us
assume that Dempster’s rule is used to combine of belief functions. In this case
combinable belief functions g1 and g2 should have a form similar to function g:

g1 = α0ηX +
n∑

i=1

αiη{xi}, g2 = β0ηX +
n∑

i=1

βiη{xi}.

Then

K0(g1, g2) =
∑

B∩C=∅,
B∈A1,C∈A2

m1(B)m2(C) =
n∑

i=1

n∑

j=1,i �=j

αiβj =

(1 − α0)(1 − β0) −
n∑

i=1

αiβi. (8)

The conditions (5)–(6) have the following form

(αi)n
i=0 ∈ Sn+1, (βi)n

i=0 ∈ Sn+1, (9)
(

1 − (1 − α0)(1 − β0) +
n∑

i=1

αiβi

)
mi = αiβi+αiβ0+α0βi, i = 1, ..., n, (10)

(
1 − (1 − α0)(1 − β0) +

n∑

i=1

αiβi

)
m0 = α0β0.

The last equation follows from (9) and (10). The condition (7) for the gen-
eralized Hatrley measure (and for any linear imprecision index [2]) has the form

m0 ≤ α0, m0 ≤ β0. (11)

Thus, the problem of finding the largest internal conflict K
D

in has a form: it is
necessary to find the largest value of the function (8) with constraints (9)–(11).

Decomposition of Evidence with the Help of Dubois and Prade’s
Disjunctive Consensus Rule. Let R = DP be a Dubois and Prade’s disjunc-
tive consensus rule (2). Then the conditions (2) will be used instead of the con-
ditions (6) in the problem of finding the internal conflict. In addition (see [13]),
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the following estimation holds for Dubois and Prade’s disjunctive consensus rule
and any linear imprecision index f [2]:

f(F ) ≥ f(Fi), i = 1, 2, (12)

i.e. imprecision of evidence is not reduced after the application of this combining
rule. The inequalities (12) reflect the pessimism of Dubois and Prade’s disjunc-
tive consensus rule. If the one evidence states that true alternative belongs to
the set A and another evidence states that the true alternative belongs to the
set B then true alternative should be belong to the set A∪B after combining of
these evidence with the help of Dubois and Prade’s disjunctive consensus rule.

Thus, we have a problem of finding of bodies of evidence having the largest
(smallest) conflict (4) and satisfying constraints (2), (5), (12).

Note that it is convenient to consider that the empty set can also be a focal
element of evidence in the case of using Dubois and Prade’s disjunctive consensus
rule. This can be interpreted as x /∈ X and a value m(∅) characterizes the
degree of belief to the fact x /∈ X. Then the largest value of conflict measure
(4) satisfying conditions (2), (5), (12) will be equal K

DP

in (F ) = 1. This value is
achieved for the following decomposition body of evidence F : F1 = F , F2 = F∅
(in this case we assume by definition that f(F∅) = 0 for any imprecision index f).

4 Estimates of the Internal Conflict in the Case |X| = 2

Decomposition with the Help of Dempster’s Rule. We solve the problem
of finding of measuring internal conflict for body of evidence F with the help
of its decomposition by using Dempster’s rule, if X = {x1, x2}. In this case the
information is described by a belief function g = m0ηX + m1η{x1} + m2η{x2}
with m = (mi)2i=0 ∈ S3. Since KD

in(F ) = 0, then we will find the maximum of
the function (8) with constraints (9)–(11) for computing of K

D

in(F ). We have

K0(g1, g2) = α1β2 + α2β1

after the exclusion of variables α0, β0 and conditions (9)–(11) can be rewritten
as

(1 − αi)(1 − βi) = (1 − α1β2 − α2β1)(1 − mi), i = 1, 2, (13)

α1 + α2 ≤ m1 + m2, β1 + β2 ≤ m1 + m2, αi ≥ 0, βi ≥ 0, i = 1, 2. (14)

Let Ω = {(α1, α2) ∈ [0, 1]2 : α1 + α2 ≤ m1 + m2}. We solve the system (13)
with respect to β1, β2. The determinant Δ(α1, α2) of this system is equal

Δ(α1, α2) = (1 − α1)(1 − α2) − (1 − m2)α1(1 − α1) − (1 − m1)α2(1 − α2)

and Δ(α1, α2) ≥ 0 in Ω. We have Δ(α1, α2) > 0, if m0 = 1 − m1 − m2 > 0. We
consider precisely this case (m0 > 0). Then

βi(α1, α2) = 1
Δ(α1,α2)

(mi − αi + αim3−i − α3−imi), i = 1, 2.
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Conditions (14) define the set

Ω0 = {(α1, α2) ∈ [0, 1]2 : (1 − m3−i)αi + miα3−i ≤ mi, i = 1, 2} ⊆ Ω.

Thus, finding the largest internal conflict K
D

in reduces to the solution of the
problem

K0 =
α1β2(α1, α2) + α2β1(α1, α2)

Δ(α1, α2)
→ max, (α1, α2) ∈ Ω0.

The unique stationary point α0
i = 1−

√
1−mi√

1−m1+
√
1−m2−√

1−m1−m2
, i = 1, 2, of

this function is a saddle point. The solution of problem is achieved on the border
∂Ω0 and

K
D

in = K0(0, m2
1−m1

) = K0( m1
1−m2

, 0) = m1m2
(1−m1)(1−m2)

= m1m2
(m0+m1)(m0+m2)

.

The set Ω0 and level lines of K0 for m1 = 0.4, m2 = 0.3 are shown on Fig. 1.

Fig. 1. The set Ω0 and level lines of K0

for m1 = 0.4, m2 = 0.3.
Fig. 2. Level lines of K

D
in.

We have K
D

in ≈ 1 if m0  min{m1,m2} (see Fig. 2). In particular, the last
condition is fulfilled when m0 ≈ 0 and min{m1,m2} � 0, i.e. the belief function
is close to probability measure but not a Dirac measure. Since KD

in(F ) = 0, then
the uncertainty of internal conflict will be maximum in this case. At that the
value K

D

in is more when the distance |m1 − m2| is less for one and the same
value of m0.

Conversely, we have K
D

in ≈ 0 (and hence KD
in ≈ 0), if the belief function is

either close to the Dirac measure m1 ≈ 1∨m2 ≈ 1, or it is closer to the vacuous
belief function ηX (m0 ≈ 1).

Decomposition with the Help of Dubois and Prade’s Disjunctive
Consensus Rule. Now we will estimate the internal conflict in the case of
X = {x1, x2} in suggestion that Dubois and Prade’s disjunctive consensus rule
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is used for decomposition of evidence and the external conflict is computed in
the formula (1). The conditions (2), (9), (12) can be rewritten as

m1 = α1β1, m2 = α2β2, (15)

α1 + α2 ≥ m1 + m2, β1 + β2 ≥ m1 + m2, (16)

(αi)2i=0 ∈ S3, (βi)2i=0 ∈ S3 (17)

correspondingly. We should find the minimum (maximum) of K0(g1, g2) =
α1β2 +α2β1 with constraints (15)–(17) for calculation of conflict measure’s bor-
ders KDP

in and K
DP

in . We solve this problem assuming that m1 �= 0, m2 �= 0.
Then our problem is reduced to finding minimum (maximum) of the function

K0 =
α1

α2
m2 +

α2

α1
m1

in the set

Ω1(m1,m2) =
{

(α1, α2) ∈ (0, 1]2 : α1 + α2 ≤ 1,
m1

α1
+

m2

α2
≤ 1

}
.

The set Ω1(m1,m2) �= ∅ ⇔ m0 = 1 − m1 − m2 ≥ 2
√

m1m2. We have

KDP
in (F ) = (K0)min = 2

√
m1m2, K

DP

in = (K0)max = m0 = 1 − m1 − m2.

Let

M =
{

(m1,m2) ∈ ◦
S2 : Ω1(m1,m2) �= ∅

}
=

{
(m1,m2)∈ ◦

S2:
√

m1+
√

m2≤1
}

.

The level lines are shown in Fig. 3 for K = KDP
in and K = K

DP

in on the set M ,
which indicated by grey color. In particular, we have KDP

in (F ) ≈ 0 and K
DP

in ≈ 1,
if m0 ≈ 1 (m1 ≈ 0 ∧ m2 ≈ 0). In this case the uncertainty of estimating conflict
is maximal.

Fig. 3. Level lines of K =KDP
in , K =K

DP
in .
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If m0 ≈ 0, then the belief function is close to a Dirac measure and K
DP

in ≈ 0
in this case (and consequently, KDP

in ≈ 0).
The estimation of internal conflict results in a unique KDP

in = K
DP

in =
2
√

m1

(
1 − √

m1

)
, 0 < m1 < 1, on the curve

√
m1 +

√
m2 = 1, which noted

by dashed line in Fig. 3. In particular, this unique value is maximal and it is
equal to 0.5 for belief function g = 1

2ηX + 1
4η{x1} + 1

4η{x2}.
We can make the following conclusions comparing decompositions with the

help of Dempster’s rule and Dubois and Prade’s disjunctive consensus rule.
The obtained estimations of an internal conflict are different but do not con-
tradict each other. In addition, it is easy to show also, that K

D

in(m1,m2) <
KDP

in (m1,m2) for all (m1,m2) ∈ Ω1. This means that the estimation of an inter-
nal conflict obtained with the help of optimistic Dempster’s rule is always less
than the estimation of an internal conflict obtained with the help of pessimistic
Dubois and Prade’s disjunctive consensus rule.

5 Conclusions

The approach to the estimation of internal conflict of evidence based on the
decomposition of the body of evidence on the set of bodies of evidence with the
help of some combining rule and later computing of external conflict measure
of decomposed set of evidence is considered in this article. This approach is
discussed in more detail for decomposition with the help of Dempster’s rule
and Dubois and Prade’s disjunctive consensus rule. The decomposition method
discussed in detail for the case of a set of evidence with two alternatives. In
particular, it is shown that:

– interval estimations of internal conflict obtained with the help of decomposi-
tion by Dempster’s rule and Dubois and Prade’s disjunctive consensus rule do
not intersect;

– in the case of decomposition by Dempster’s rule, the greatest uncertainty (0 ≤
KD

in ≤ 1) is achieved for the belief function close to a probability measure but
not close to a Dirac measure; the value KD

in ≈ 0 is achieved for belief function
close to a Dirac measure either it is close to the vacuous belief function;

– in the case of decomposition by Dubois and Prade’s disjunctive consensus
rule, the greatest uncertainty (0 ≤ KDP

in ≤ 1) is achieved for a vacuous belief
function F = ηX ; the value KDP

in ≈ 0 is achieved for a Dirac measure.
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Designing an Evidential Assertion Language
for Multiple Analysts

David Burke(B)
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Abstract. This paper describes our work in designing an expressive
evidence-based language for use by analysts as part of a decision support
system for managing cyber threats. The underlying design concept for
our system is that of perspective: there is not necessarily a definitive or
objective means of combining all of the potential evidence, and therefore,
how evidence is combined reflects a particular analyst’s point of view.
We describe how our design provides flexibility to analysts in terms of
expressing and combining evidence, while supporting rich interactions
between analysts, and then illustrate our approach with examples.

Keywords: Epistemic uncertainty · Combination rules · Belief
functions · Evidence theory · Dempster-Shafer theory · Transferable
Belief Model

1 Introduction

This paper describes our work in designing an expressive evidence-based lan-
guage for use by analysts as part of a decision support system for managing
cyber threats. The most precious resource for analysts is their attention - are
they addressing the most salient threats? It is difficult for analysts to answer
this question definitively, because they are always dealing with large amounts
of threat evidence that is dynamic, incomplete, ambiguous, and contradictory -
they are operating in a world of irreducible uncertainty.

The system we have been building is designed to augment analyst capabil-
ities by aggregating both primary-sourced threat evidence and the beliefs of
other analysts in order to make effective assessments about the current threat
landscape. Early in this effort, it became clear that the type of uncertainty that
best characterizes the cyber domain is epistemic, not aleatory. As an example,
consider the class of so-called “zero-day” attacks. What makes these attacks so
insidious is that by definition, they capitalize on software vulnerabilities that are
unknown to the defender. You cannot meaningfully say “There is a 70 percent
chance of our site being hit by a zero-day in the next month” because zero-days
are not about probabilities; they are about ignorance.

In addressing the challenge of epistemic uncertainty in the cyber domain,
we were immediately attracted to a belief function-based approach [11]. Our
research has focused on extending aspects of Dempster-Shafer theory [8] and the
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 37–45, 2016.
DOI: 10.1007/978-3-319-45559-4 4
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Transferable Belief Model (TBM) [9,10] in order to create an expressive language
of evidence aggregation, and then implementing these capabilities as a software
module for use by analysts.

2 Design Dimensions

The underlying design concept for our system is that of “perspective” - there is
not necessarily a definitive or objective means of combining all of the potential
evidence, and therefore, how evidence is combined reflects a particular analyst’s
point of view.

Analysts work in teams, so the typical workflow is not one analyst making
all of the decisions with respect to evidence availability, relevance, and probative
force. Instead, each analyst may see different pieces of evidence in the first place,
and their varied experiences, topic specializations, and cognitive biases lead them
to weigh that evidence differently in terms of the relevance and the strength
of that evidence. This includes not just how they deal with primary sources
(sensors, for example), but also how they weigh the assertions of other analysts.
At the end of the process, a decision represents a judgement that is dependent
on how evidence was aggregated.

To support varied workflows, we aimed for a system architecture that gives
analysts flexibility in terms of how to combine evidence, and that also supports
rich interactions between analysts. Certain dimensions stood out as being key,
and these became the underlying principles of our design:

1. Multiple Combinators: Instead of requiring the use of the same conjunctive
or disjunctive combinator for all calculations, the analyst gets to select the
appropriate one. A complex evidential assertion may contain a mixture of
combinators and multiple pieces of evidence.

2. Evidence Discounting: Given that evidence is likely to be ambiguous or incom-
plete, we do not want to be forced to treat all evidence as equally trustworthy,
whether that piece of evidence is a primary source, or some other analyst’s
assessment of evidence. Therefore, we provide an explicit discounting opera-
tor.

3. Evidence Naming: Evidential assertions can be named, so that other analysts
can refer to it, and treat it as a unit. In other words, the result of A’s analysis
becomes a single, named piece of evidence that other analysts can incorporate
into their analyses.

4. Multiple Assertions: Not all of the evidence that an analyst is considering
needs to be combined in one assertion. Instead, analysts can make a number of
evidential assertions, specifying their relative weights, giving them the ability
to create complex and nuanced narratives about how evidence should be
combined.

5. Evidential Consistency: One of our design principles stems (inadvertently)
from Zadeh’s notorious critique [14] of the Dempster-Shafer approach. It was
a contrived example, and Haenni addressed this critique [4] by pointing out
that more realistic models of the scenario would lead to reasonable outcomes.
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We drew the additional conclusion that it would be very desirable to be able
to make explicit assertions about evidential consistency. An analyst should
be able to state how important it is to their analysis that two or more pieces
of evidence be consistent with each other.

6. Reduction Modes: We make explicit whether our calculations are taking place
in a ‘closed’ universe in which we believe that we are considering all of the rel-
evant possible worlds, and the ‘open’ universe which also contains conclusions
corresponding to “none of the above” (that is, the actual state of affairs lives
outside the current enumeration of possible worlds). Making this distinction
visible to an analyst allows them to assess whether a segment of their current
analysis should be redone with a wider set of possible worlds (i.e., a more
diverse set of initial assumptions).

In the next two sections, we’ll build up the basic machinery and then the
overall evaluation strategies for our approach that incorporates these design
principles. This will be followed by a couple of illustrative examples, and then
our conclusions and thoughts on future work.

3 Basic Machinery

All evaluation of evidence is done with respect to a specific frame of discernment
Ω where Ω = (W1,W2, . . . Wn), a finite set of mutually exclusive possible worlds
Wi. Each frame of discernment is typed: ΩT where the choices for the type T
are “open” and “closed”. The definitional relationship between an open world
ΩT =O and its associated closed world ΩT =C is simply P(ΩT =O)−∅ ≡ P(ΩT =C)
(where normalization is done in the usual way).

Given a typed frame of discernment ΩT , we define a basic belief assignment
(bba) as a mapping m from P(ΩT ) to the interval [0,1], under the constraint∑

A⊆ΩT m(A) = 1. In practice, we care only about the so-called focal elements
of this mapping - those pairs (si,mi) where si ⊂ ΩT and mi > 0. Therefore, we
can think of a bba as a tuple consisting a list of focal pairs (si,mi) along with
the typed frame of discernment ΩT :

bba = ([(s1,m1), (s2,m2), . . . (sk,mk)], ΩT )

where ∀i ∈ [1, k] : si ∈ P(ΩT ),mi ∈ (0, 1],
∑

mi = 1

A bba along with its associated frame of discernment is the simplest form of
evidence; to construct more complex evidential assertions, we define an assertion
as an evidence tree. Every leaf of the evidence tree is a bba; the other nodes of
the trees are one of the following operators:

1. Discounting: Just as in the TBM, the discounting operator D takes a bba and
a discount factor f , and applies f to all the focal masses in the bba, with the
exception of the set Ω, which gets all the “extra” mass so that

∑
mi = 1

after discounting.
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2. Named Lookup: We can assign any evidence tree a unique name, which is
stored in an ‘evidence base’. This operator takes a name as argument, and
returns the corresponding evidence tree from the evidence base. This feature
allows for both reuse of evidence trees, and sharing among analysts.

3. Binary Operators: We provide conjunctive and disjunctive operators, � and
�. These work in the usual way [2], involving set intersections and set unions,
respectively. These operations are defined for both open and closed frames of
discernment (additional details below).

4. Negation: Given that we’ve defined binary operators roughly corresponding
to “and” and “or”, it seems natural to want to define a “not” operator ¬, in
analogy with binary expressions [15]. Further justification for this operator
is the fact that the domain of cyberspace can involve deception; we may be
working with a piece of evidence that we do not simply want to discount
completely, but rather take the opposite of it. The ¬ operator works on a bba
as follows: we replace every si that appears in a (si,mi) pair of the bba with
its set complement so that the negated bba is the pair (s�

i ,mi).

Reduction of an evidence tree results in a bba, but before we can actually carry
out that reduction, we need to specify one more thing – a reduction mode.
This is necessary because when using a binary operator to evaluate bba1 � bba2

or bba1 � bba2, we need to take into account the types of ΩT
1 and ΩT

2 when
calculating the type of the resultant frame of discernment.

We define two reduction modes, a conservative mode, and an inclusive mode.
The conservative mode favors a closed universe over an open universe, and the
inclusive mode favors an open universe over a closed one. The rules are simple:
in conservative mode, iff either of the two input frames is closed, then the resul-
tant frame is closed. In inclusive mode, iff either input frame is open, then the
resultant frame is open.

The two reduction modes and discernment types are important because they
tell us how to proceed when using binary operators on frames of discernment
that aren’t the same. An example will help to make this clearer. Suppose we
have two basic belief assignments, the first one from a closed world {a,b,c}, and
the second from the open world {a,b,e}:

bba1 = ([({a}, .5), ({a,b}, .3), ({a,b,c}, .2)], ΩT =C
1 = {a,b,c})

bba2 = ([({a,b}, .6), ({a,b,e}, .4)], ΩT =O
2 = {a,b,e})

We wish to combine these two pieces of evidence using the � operator in the
conservative mode. First of all, since the first frame of discernment is closed, and
we’re operating in the conservative mode, we know that the resultant frame of
discernment will be closed and be contain only the possible worlds that appear
in the first frame of discernment: ΩT =C

r = {a,b,c}). The second belief assignment
is from an open world, however, and therefore must be extended to account for
the fact that world c (from the first belief assignment) is a possible world that
thus far has been inaccessible to it. This extension operation is done by simply



Designing an Evidential Assertion Language for Multiple Analysts 41

adding world c to all the sets in bba2, leaving the mass values the same:

bba2 = ([({a,b,c}, .6), ({a,b,c,e}, .4)], ΩT =O
2 = {a,b,c,e})

Now the two belief assignments can be combined using the usual Dempster-
Shafer combination rule, with the resultant belief assignment as follows:

bbar = ([({a}, .38), ({a,b}, .12), ({a,c}, .3), ({a,b,c}, .2)], ΩT =C
r = {a,b,c})

4 Multiple Assertions and Decisions

The previous section has discussed how to reduce a single evidence tree (one
assertion); we now discuss how to handle a sequence of assertions. Our approach
is consistent with the discussion of the TBM in [10], in which a distinction is
made between the “credal” and “pignistic” levels of analysis. The TBM defines
the Pignistic transformation, P, that takes a bba as argument, and induces a
probability distribution over the singleton members (and potentially ∅ too, if
ΩT =O) that can inform a subsequent decision:

P(bba) = [(s1,m1), (s2,m2), . . . (sk,mk)]

where ∀i ∈ [1, k] : si ∈ P(ΩT ), |si| = 1 or si = ∅,mi ∈ (0, 1],
∑

mi = 1

An analyst makes a sequence of assertions, each assertion being an evidence
tree, bbai. Each assertion is assigned a nonnegative weight wi by the analyst
(with arbitrary scaling, since the result will be normalized in the end). These
pairs are collected in a “evidence forest” vector. Our strategy is to reduce the
vector element by element, giving us the flexibility to choose the relative weights
applied to each assertion, instead of aggregating assertions first before reduction,
and being forced to choose the semantics of a specific binary operator such
as � or � to combine all of the assertions. We start with the evidence forest
vector F :

F = [(bba1, w1), (bba2, w2), . . . (bbak, wk)]

Reduction of this vector begins with the piecewise application of P:

P(F) = [(P(bba1), w1), (P(bba2), w2), . . . (P(bbak), wk)]

We further reduce each vector element P(F) by scalar multiplication with wi:

P(bbaj) · wj = [(sj1,mj1 · wj), (sj2,mj2 · wj), . . . (sjk,mjk · wj)]

The final reduction step is to look across all the elements of the vectors, collecting
like s-terms, and summing their masses, normalizing the sum to be 1. This gives
us the resultant distribution, which we denote as R(F).

The system also keeps track of two measures pertaining to the quality of the
evidence. If not all evidence is assessed in closed universes, then we can track
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the value of the mass of the empty set m(∅) as our first metric. Recall that the
semantics of ∅ is the measure of how likely the actual state of affairs lives outside
the current enumeration of possible worlds. Analysts can set a threshold τ for
the size of m(∅); if m(∅) > τ , then the system reports that the analysis ought
to be redone under different assumptions. The second metric involves measuring
evidential inequality through a measure such as the Gini coefficient [3]. The idea
here is to again set a threshold: If the existing evidence is too equally spread out
across too many hypotheses, then the analysis might be too inconclusive to be
useful.

5 Illustrative Examples

Here are a couple of examples that illustrate the approach we’ve described in
the previous sections, inspired by Zadeh’s example [14].

Let t = tumor, f = flu, and m = meningitis. There are two doctors, each of
whom is making a diagnosis in the closed universe ΩT =C = {m,t,f}T=C . Doctor
1 is virtually certain that it is a tumor, with a very slight chance of meningitis.
Doctor 2 is equally certain that it is a case of flu, with a very slight chance of
meningitis. We represent these assertions by bba1 and bba2:

bba1 = ([(t, .99), (m, .01)], ΩT =C)

bba2 = ([(f, .99), (m, .01)], ΩT =C)

Now consider two additional medical personnel also weighing in with a diagnosis:

Analyst 1: The first analyst makes two assertions: first, it is extremely important
that the final diagnosis be consistent with the evidence from the two doctors,
and secondly, that there is some evidence (say, with a confidence of .7) for a new
mystery disease d that the doctors weren’t able to run tests against, with new
universe ΩT =C

1 = {m,t,f,d}T=C . The analyst represents these two assertions as
follows:

bba3 = (bba1 �bba2)

bba4 = ([(d, .7), ({m,t,f,d}, .3)], ΩT =C
1 )

Analyst 1 decides to assign these two assertions relative weights of 95 and 30,
respectively (Analyst 1 uses an arbitrary assertion weighting scale from 1 to 100)
to generate an evidence forest F1 for evaluation:

F1 = [(bba3, 95), (bba4, 30)]

Analyst 1 now calculates R(F1) using the conservative evaluation mode:

R(F1) = [(m, .78), (d, .19), (f, .02), (t, .02)]

For Analyst 1, meningitis is clearly the most likely candidate, with disease d in
solid second place. There is very little support for either flu or tumor.
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Analyst 2: The second analyst is somewhat skeptical about doctors and their
diagnoses. She believes, in fact, that Doctor 1 is a fool, and you cannot go too
far wrong by placing a bet on the opposite of anything he recommends. She
has more confidence in Doctor 2, but generally discounts the confidence level in
Doctor 2’s diagnoses by about 25 percent. Analyst 2 also believes that the real
culprit is possibly communicable disease e, or perhaps one of mystery disease d
or e, even though an outbreak of either hasn’t been observed in the region (this
is represented by assertion bba7)), with new universe ΩT =O

2 = {m,t,f,d,e}T=O.
Finally, Analyst 2 makes a final assertion combining bba4 (generated by Ana-
lyst 1) with bba7.

bba5 = (¬(bba 1))
bba6 = (D(bba2, .25))

bba7 = ([(e, .6), ({d,e}, .3), ({m,t,f,d,e}, .1)], ΩT =O
2 ))

bba8 = (bba4 �bba7)

Analyst 2 decides to assign her four assertions relative weights of .55, .80, and
.40, and .70 (Analyst 2 uses a weighting scale in the interval (0,1] ) in generating
evidence forest F2 for evaluation:

F2 = [(bba5, .55), (bba6, .80), (bba7, .40), (bba8, .70)]

Analyst 2 prefers to employ the inclusive evaluation mode when calculating
R(F2). The result is the following:

R(F2) = [(f, .41), (e, .24), (m, .16), (d, .14), (t, .05)]

For Analyst 2, flu is the most likely candidate, although the evidence is spread
out more equally among the possibilities than in the previous analysis. A tumor
is the least likely possibility, mostly due to bba5 and its negation of bba1.

6 Conclusions and Future Work

This paper has described our approach to designing an evidence-based modeling
tool that enables the expression of complex evidential assertions across teams
of analysts. Initial reactions from domain experts to our approach have been
positive: they have told us that our explicit modeling of epistemic uncertainty
through belief functions should be a useful addition to their current suite of tools
for reasoning under uncertainty. It is also worth noting that even though this
work was done in a cyber threat domain, our approach is not domain-specific
and therefore could be applied in other domains where multiple analysts are
sharing and assessing evidential assertions.

The capabilities described in this paper have been implemented as a stand-
alone software module, but we do not consider the language to be complete. The
following are extensions that we intend to pursue:
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1. Binary Operators: We currently implement two binary operators � and �,
and we’re aware that many more have been defined (for example, as described
in [2,7,13]). We intend to implement additional binary operators, keeping in
mind that there is a trade-off involved: more operators provides additional
expressiveness, but at the cost of making the language less intuitive, and
therefore potentially less useful as a modeling tool.

2. Decision Transforms: We currently use the P function to transform evidence
at the credal level into the decision level. There are other rules that we could
have used, such as those in [12], and in the future, we want to offer analysts
multiple transform methods.

3. Correlations: A key requirement in belief function analysis is that the pieces
of evidence are evidentially independent. In practice, though, it is common
for two pieces of evidence to be correlated, in the sense that higher confidence
in one would cause an analyst to believe the other as more plausible. Lifschitz
and colleagues developed a “correlation calculus” in the context of a deductive
AI challenge [5]; we intend to develop a “correlation combinator” to express
these situations in the context of a belief function analysis.

4. Fixed Point Analysis: The current implementation doesn’t prevent the unde-
sirable mutual recursion that would result from a situation such as “A’s analy-
sis depends on the results of B’s analysis, and B’s analysis depends the results
from A’s analysis” - analysts need to manually ensure that this isn’t taking
place. However, in analogy to how mutual recursion is handled in other pro-
gramming languages [6], we will implement a mathematically-based “fixed
point” solution that automatically resolves the mutual recursions.

During the design process, we were influenced by Box’s famous quip that “all
models are wrong, but some are useful” [1], and this remains our design objective.
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Abstract. The Evidential Reasoning for Multi Criteria Decision Analy-
sis (ER-MCDA) is based on a mapping process transforming a possibility
distribution into a Bayesian basic belief assignment (BBA) related to a
qualitative frame of discernement (FoD). Each element of the FoD is a
fuzzy set. A new improved mapping method is proposed to get a final
potentially non-Bayesian BBA on the FoD. We apply it to assess the
stability of protective check dams against torrential floods given their
imprecise scouring rate.

Keywords: Fuzzy sets · Possibility theory · Belief functions · Mapping ·
ER-MCDA

1 Introduction

Evidential Reasoning for Multi-Criteria Decision-Analysis (ER-MCDA) is a
multi-criteria decision method which is able to take into account both imperfect
evaluation of quantitative and qualitative criteria and multiple more or less reli-
able sources [1]. The principle is first to represent imperfect evaluation of each
criterion through a possibility distribution. As it uses fusion, those evaluations
must be transformed into a common Frame of Discernment (FoD). Therefore, a
mass of belief is assigned to consonant intervals with a confidence level which
correspond to the possibility distribution. The mapping process establishes the
link between the basic belief assignment BBA m(·) on quantitative intervals
with a BBA in the common FoD. It can be interpreted as a function from the
possibility distribution to a BBA on the common FoD. The initial principle of
mapping is based on a geometrical projection. It induces several issues such as its
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theoretical justification but also its limited ability to provide positive masses of
belief on singletons only. Our approach aims at improving this mapping process.

We consider an application case where ER-MCDA is used to assess the sta-
bility (high, medium, low) of check dams against torrential risk in mountains.
This evaluation is based on several criteria, such as the scouring rate (expressed
in percentage) which is a damageable loss of foundation support1 [2]. In this
application context, the Fig. 1 shows how an expert often provides an imperfect
evaluation of check dam stability according to its foundation’s scouring rate.
Indeed, a precise and direct measure would be somewhere too dangerous.

Fig. 1. A real example of imperfect evaluation of check dam stability according to its
foundation’s scouring rate.

In this paper, our scope is not to develop a theoretical proof of the mapping
process but to highlight some theoretical issues to propose another method. In
Sect. 2, we briefly recall some basics of fuzzy sets, possibility and belief function
1 Scouring is a process due to which the particles of the soil or rock under the check

dam’s foundation gets eroded and removed over a certain depth called scour depth
and over the foundation area called scouring rate. Scouring often occurs in torrent
because of the velocity and energy of the flowing in steep slopes.



48 S. Carladous et al.

theories. We introduce the classical transformation and we propose a new method
in Sect. 3. In Sect. 4, we compare the two methods on a sample decision context
of our application case.

2 Fuzzy Sets, Possibility and Belief Function Theories

In the fuzzy set theory [4], U is the universe of discourse of individual elements
u. μA is the membership function which associates each u ∈ U to the class (fuzzy
set) A with the grade of membership μA(u) ∈ [0, 1]. A fuzzy set A is normal
when there is an element u ∈ U such as μA(u) = 1. We use trapezoidal functions
defined by the quadruplet {a, b, c, d} (Eq. (1), Fig. 2) given their simplicity to
approximate fuzzy intervals [5]. Intervals [a, d] and [b, c] are respectively the
fuzzy set’s support (suppA) and its core (Ac) [5]. We denote Ā the complement
of A for u ∈ U , defined by the membership function μĀ of the Eq. (2) and shown
in the Fig. 2. Given μB �= μA which represents another fuzzy set B for u ∈ U ,
the membership function μA∪B of the Eq. (3) represents the union of A and B
while μA∩B of the Eq. (4) represents their intersection [4] (see Fig. 2).

μA(u) �

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if u /∈ suppA

u−a
b−a

if u ∈ [a, b]

1 if u ∈ Ac

u−d
c−d

if u ∈ [c, d]

(1)

μĀ(u) � 1 − μA(u), u ∈ U (2)

μA∪B(u) � max
u∈U

(μA(u), μB(u)) (3)

μA∩B(u) � min
u∈U

(μA(u), μB(u)) (4)

Fig. 2. Given U , trapezoidal fuzzy sets A, Ā, A ∪ B and A ∩ B.

In the possibility theory framework [6], F is the fuzzy set of possible values
of u ∈ U . The possibility distribution π is given by μF (u) � π(u) ∈ [0, 1] also
defined by a quadruplet {a, b, c, d} [7]. Given X a subset of U and X̄ its com-
plement, the possibility measure is Π(X) � supu∈X π(u) [6] and the necessity
is [8] N(X) � 1 − Π(X̄), ∀X, X̄ ⊆ U as shown in the Fig. 3. Considering the
fuzzy set μA and a possibility distribution μF , the Eq. (5) gives the possibility
measure of A [6].
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Considering F as a nested family of α-cuts {Fα|α ∈ (0, 1]}, one has Fα �
{u|μF (u) � α} [5]. Viewing Fα as a uniformly distributed random set from
α ∈ (0, 1] to Fα ⊆ U , one has μF (u) �

∫ 1

0
μFα

(u)dα. Considering a finite nested

family of subsets {Fα1 =
]
u−

α1
;u+

α1

[ ⊆ . . . ⊆ Fαl
=

]
u−

αlmax
;u+

αlmax

[
}, the set

{α1 > . . . > αl > . . . > αlmax} and ml � αl − αl+1 ∈ [0, 1] with αl+1 = 0
(Fig. 3), one has the Eq. (6).

Π(A) � sup
u∈U

μA∩F (u) (5) π(u) �
∑

u∈Fαl

ml (6)

Fig. 3. Possibility distribution, possibility and necessity measures, α-cuts.

In the belief function theory, a basic belief assignment (BBA), or mass of
belief m(·), represents the imperfect knowledge of a body of evidence (or source)
on a given FoD denoted as Θ = {θ1, θ2, . . . , θq}. In the classical Shafer’s model [9],
all elements θk, k = 1, . . . , n are assumed exhaustive and mutually exclusive. The
powerset 2Θ is the set of all subsets of Θ, empty set ∅ included. For X ∈ 2Θ, we
denote X̄ ⊆ Θ its complement. For each source, the mass function m(·) : 2Θ →
[0, 1] must satisfy m(∅) = 0, and

∑
X⊆Θ m(X) = 1,∀X �= ∅ ∈ 2Θ. Considering

the universe of discourse U as the FoD and assuming a normal fuzzy set F , m(·)
is extracted considering Fαl

∈ 2U , l = 1, . . . , lmax.
Given m(·) on 2Θ, the belief of the hypothesis Y ∈ 2Θ is defined by Bel(Y ) �∑

X⊆Y |X∈2Θ m(X). Its plausibility is defined by Pl(Y ) �
∑

X∩Y �=∅|X∈2Θ m(X)
[10]. Considering that the universe of discourse U is the FoD Θ, the plausibility
measure Pl(X) is a possibility measure Π(X), ∀X ⊆ Θ = U [7].

Shafer’s assumption of exhaustivity of the FoD means that it is considered
as a “closed-world” (c.w.). In some practical problems, this assumption is too
strict and it is more convenient to consider the original FoD as an “open-world”
(o.w.). Dealing with it can be done in two manners as shown in the Fig. 4.

1. In Smets’ Transferable Belief Model (TBM) [11], Θo.w. � {θ1, . . . , θq} and
∅ = Θ̄o.w.. One has

∑
X∈2Θ m(X) = 1, and one allows m(∅) � 0.

2. In Yager’s approach [12], the open-world is closed by an hedge element θc,
so that Θc.w. � Θo.w. ∪ {θc}. Setting mc.w.(θc) = 0 and mc.w.(∅) = 0, one
has Belc.w.(A) = 0 and mc.w.(A) = 0 for each subset A ⊆ Θo.w.. For each
X ⊆ Θc.w., one computes Belc.w.(X) and mc.w.(X) in the Eqs. (7) and (8).
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Belc.w.(X) �
{

0 if X = A ⊆ Θo.w. ⊂ Θc.w.

1 − Plc.w.(X̄) if X = A ∪ θc ⊆ Θc.w.
(7)

mc.w.(X) �

⎧
⎪⎨
⎪⎩

0 if X = A ⊆ Θo.w. ⊂ Θc.w.

0 if X = θc ⊂ Θc.w.

∑
Y ⊆A(−1)|A−Y |Belc.w.(Y ∪ θc) if X = A ∪ θc ⊆ Θc.w.

(8)

Fig. 4. TBM and hedging models under an “open-world” with exclusivity, for q = 3.

3 Transforming Possibility Distributions to BBAs on Θ

The FoD Θ = {θ1, . . . , θq} of decision gathers q qualitative labels. For each
criterion, scoring results from an evaluation scale which is the specific universe
of discourse U . To take into account its imprecise and uncertain evaluation, a
possibility distribution π : U → [0, 1] is given by the expert according to Eq. (6).
To combine all the possibility distributions provided by several sources for several
criteria, each one must be represented by a BBA mΘ(·) established on 2Θ for
the common FoD Θ as shown in the Fig. 5.

Fig. 5. The general principle and objective of the mapping process.

A mapping model [1] is therefore based on q membership functions μθk
: U

→ [0, 1] for k = 1, . . . , q according to Eq. (1), corresponding to each θk of the
FoD. The construction of the q fuzzy sets respects the condition

∑q
k=1 μθk

� 1
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for mutual exclusivity: if an element u� ∈ U totally belongs to a label θk

(μθk
(u�) = 1, k ∈ [1, q]), it cannot partially belongs to another label of Θ

(μθm
(u�) = 0,m �= k ∈ [1, q]). By construction, there is at least u� ∈ U for

which μΘ=
⋃{θk|k∈[1,q]}(u�) � 1: it corresponds to an “open-world” assumption.

3.1 Classical Transformation

Given the possibility distribution π and the q functions μθk
for k = 1, . . . , q, the

classical mapping [1] consists of the three following steps (shown in Fig. 6):

1. Given lmax α-cuts with Fαl
∈ 2U , l = 1, . . . , lmax, mU (·) is extracted for

the FoD U from π as shown in Fig. 3. Each Fαl
is a focal element and its

corresponding mass is denoted mU (Fαl
). The BBA mU (·) thus represents the

imperfect evaluation of a quantitative or qualitative evaluation of u ∈ U . Each
focal element is an interval which represents evaluation imprecision. Each
mass of an interval takes into account the confidence level or uncertainty. By
definition of mU (·), one has

∑lmax
l=1 mU (Fαl

) = 1.
2. For each Fαl

=
]
u−

αl
;u+

αl

[
, l = 1, . . . , lmax, the area Akl

under each curve μθk

is given by Akl
�

∫ u+
αl

u−
αl

μθk
(u)du. One has Al �

∑q
k=1 Akl

and computes the

mass mΘ
l (θk) � Akl

Al
for each Fαl

and each θk. Thus, by definition of Al, one
has

∑q
k=1 mΘ

l (θk) = 1.
3. One then builds the Bayesian2 BBA mΘ(·) on 2Θ for the FoD Θ =

{θ1, θ2, . . . , θq} with mΘ(θk) �
∑lmax

l=1 mU (Fαl
) × mΘ

l (θk), k = 1, . . . , q. This
equation can be justified as follows.
From the two previous points, one has

∑q
k=1 mΘ

l (θk) × ∑lmax
l=1 mU (Fαl

) = 1.
Thus

∑q
k=1

∑lmax
l=1 mΘ

l (θk) × mU (Fαl
) = 1. By definition,

∑q
k=1 mΘ(θk) = 1.

As a consequence, mΘ(θk) �
∑lmax

l=1 mU (Fαl
) × mΘ

l (θk), k = 1, . . . , q.

Fig. 6. Steps of the ER-MCDA’s classical mapping process: α-cuts choice, BBA mU (·)
calculation, and projection on the mapping model to get a final BBA mΘ(·).
2 The focal elements of a Bayesian BBA are only singletons of 2Θ.



52 S. Carladous et al.

This principle of simple geometric transformation is however not fully satis-
fying since it only assigns BBAs to singletons and arbitrarily shares a BBA on
several elements of the FoD regardless of partial or total ignorance. Moreover,
from a practical point of view, this classical method needs an arbitrary setting
of the value of lmax but also of all the values of αl. That is why, it was first
proposed that experts give their imprecise evaluation through intervals with a
confidence level. It corresponds to a possibility distribution after α-cut, each αl

being the confidence level given by the expert [1]. Nevertheless, in practice, we
think that it is easier to give only the quadruplet {a, b, c, d} of Fig. 3 than several
intervals with a confidence level.

3.2 New Transformation

Our new method is based on four steps to get a BBA mΘ(·) on all focal ele-
ments X ∈ 2Θ and not only on singletons of Θ = {θ1, . . . , θk, . . . , θq}. Given the
construction of the q fuzzy sets, it assumes mutual exclusivity without exhaus-
tivity. Thereafter we detail the method using Yager’s model with hedging even
if a similar approach has been also studied using the TBM. One thus considers
Θo.w. = {θ1, . . . , θk, . . . , θq} and Θc.w. = Θo.w. ∪ {θc}. Different steps are:

1. Construction of 2q − 1 functions μc.w.
A∪θc for all A �= ∅ ⊆ Θo.w. (see Fig. 7):

given q functions μo.w.
θk

: U → [0, 1] for k = 1, . . . , q, the Eq. (3) gives the
2q − 1 functions μo.w.

A : U → [0, 1]. One uses the Eq. (9) to close the world
and get the 2q − 1 functions μc.w.

A∪θc : U → [0, 1].

μc.w.
A∪θc(u) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if μo.w.
A (u) = 1

μo.w.
A (u) if μo.w.

A (u) < 1

and if
∑2q

i=1 μo.w.
Yi

(u) > 0, Yi ⊆ Θo.w., Yi ∩ A = ∅
1 if μo.w.

A (u) < 1

and if
∑2q

i=1 μo.w.
Yi

(u) = 0, Yi ⊆ Θo.w., Yi ∩ A = ∅

(9)

Fig. 7. Step 1 of the new mapping for q = 3.
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2. The Eq. (2) gives the 2q − 1 functions μc.w.
A∪θc

: U → [0, 1]. Given π (or μF ),
the Eq. (5) gives the possibility measures Πc.w.(A ∪ θc) � supu∈U μA∪θc∩F ,
∀A ∈ 2Θo.w. − {∅} corresponding to the plausibility measures Plc.w.(A ∪ θc).

3. The Eq. (7) first provides Belc.w.(·). The Eq. (8) then gives mc.w.(·) on 2Θc.w.

.

4 Application to the Scouring Rate of a Check Dam

In practice, the check dam stability is assessed through qualitative labels of
the FoD Θ = {θ1 = High, θ2 = Medium, θ3 = Low} [13]. The lower is the
scouring rate, the higher is check dam structural stability. The FoD cardinality
|Θ| is here q = 3. For each check dam, the choice of the stability label notably
depends on the scouring rate u of its foundation, with u a continuous value in
U = [0%, 100%]. μθk

is the membership function linking the scouring rate u ∈ U
to each stability label θk. Each μθk

of the mapping model is represented in the
Table 1 through a quadruplet {a, b, c, d} according to the Eq. (1). The practical
way of defining such a mapping model has been developed in [13]. It is based on
a civil engineering analysis of the check dams stability given several hypotheses
of scouring rate. They respect the exclusivity and “open-world” conditions given
in the third paragraph of the Sect. 3.

In practice, experts imperfectly measure scouring rate as shown in Fig. 1.
Therefore, we compare evaluations through possibility distributions provided by
six different experts. Each evaluation is represented by a quadruplet {a, b, c, d}
in the Table 1, from a very imprecise evaluation (expert 1) to very precise ones
(experts 5 and 6). The evaluation illustrated in Fig. 1 is given by expert 3.

Table 1. 3 fuzzy sets μθk(u) and expert possibility distributions π(u), ∀u ∈ U .

μθk θ1 θ2 θ3
a,b,c,d 0,0,30,50 30,50,60,70 60,70,100,100

π Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6
a,b,c,d 20,30,80,90 30,40,60,80 40,50,50,60 30,40,40,50 40,40,40,40 45,45,45,45

To apply the classical transformation on the Table 1, we assume lmax = 4 with
α-cuts α1 = 1, α2 = 0.7, α3 = 0.4, and α4 = 0.1 to extract the BBAs mU (·)
[10]. One gets the final Bayesian BBAs mΘ(·) in columns “1” in the Table 3.

After steps 1 and 2 using Table 1 values, one gets the values of Plc.w.(A ∪ θc),
∀A ∈ 2Θo.w. − {∅}, with Θo.w. = {θ1, θ2, θ3}. Using them in the step 4, one gets
the belief functions Belc.w.(·) in the Table 2 and the BBAs mc.w.(·) in columns
“2” in the Table 3. The latter gathers only focal elements with a positive mass.

Results given in the Table 3 show that the new method affects a positive
mass to total (experts 1 and 2) or partial ignorance with mc.w.(θ1 ∪ θ2 ∪ θc) > 0
(experts 3 and 4) according to the imprecision degree of initial evaluations. The
less precise is the initial evaluation of the scouring rate, the less informative is
the mapped BBA. It improves the classical transformation and it propagates the
imperfection of the initial information on Θc.w..
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Table 2. Intermediary Belc.w.(A ∪ θc) for the new mapping.

A ∪ θc Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

θ1 ∪ θc 0 0 0 0.333 0.5 0.25

θ2 ∪ θc 0 0.333 0.667 0.333 0.5 0.75

θ1 ∪ θ2 ∪ θc 0 0.333 1 1 1 1

θ3 ∪ θc 0 0 0 0 0 0

θ1 ∪ θ3 ∪ θc 0 0 0 0.333 0.5 0.25

θ2 ∪ θ3 ∪ θc 0 0.333 0.667 0.333 0.5 0.75

θ1 ∪ θ2 ∪ θ3 ∪ θc 1 1 1 1 1 1

Table 3. BBAs using two approaches: 1 = mΘ(·) for classical, and 2 = mc.w.(·) for
new.

Focal elements Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

1 2 1 2 1 2 1 2 1 2 1 2

θ1 0.24 0 0.15 0 0.05 0 0.5 0 0.5 0 0.25 0

θ2 0.44 0 0.75 0 0.95 0 0.5 0 0.5 0 0.75 0

θ3 0.32 0 0.10 0 0 0 0 0 0 0 0 0

θ1 ∪ θc - 0 - 0 - 0 - 1
3

- 0.5 - 0.25

θ2 ∪ θc - 0 - 1
3

- 2
3

- 1
3

- 0.5 - 0.75

θ1 ∪ θ2 ∪ θc - 0 - 0 - 1
3

- 1
3

- 0 - 0

θ1 ∪ θ2 ∪ θ3 ∪ θc - 1 - 2
3

- 0 - 0 - 0 - 0

5 Conclusion

This paper proposes a new mapping process in the ER-MCDA methodology. It
allows to get a belief mass on non singletons elements of the powerset of the FoD.
Unlike the initial approach [1], the possibility distribution is represented by its
support and core and setting of values of lmax and αl are not needed for an α-cut
approach. It is based on the conjunction between the possibility distribution and
fuzzy sets but also takes into account the relationship between the possibility and
the plausibility measures. To relax the hypothesis of exhaustivity of the classical
Shafer’s model, we have chosen Yager’s hedging model instead of Smets’ TBM
model to prevent from introducing an ambiguity in the interpretation of the
empty set. According to application cases, the hypothesis of exclusivity should
be relaxed. It will be studied in forthcoming publications.
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Abstract. Experts take into account several criteria to assess the
effectiveness of torrential flood protection systems. In practice, scoring
each criterion is imperfect. Each system is assessed choosing a quali-
tative class of effectiveness among several such classes (high, medium,
low, no). Evidential Reasoning for Multi-Criteria Decision-Analysis
(ER-MCDA) approach can help formalize this Multi-Criteria Decision-
Making (MCDM) problem but only provides a coarse ranking of all sys-
tems. The recent Belief Function-based Technique for Order Preference
by Similarity to Ideal Solution (BF-TOPSIS) methods give a finer rank-
ing but are limited to perfect scoring of criteria. Our objective is to
provide a coarse and a finer ranking of systems according to their effec-
tiveness given the imperfect scoring of criteria. Therefore we propose to
couple the two methods using an intermediary decision and a quantifi-
cation transformation step. Given an actual MCDM problem, we apply
the ER-MCDA and its coupling with BF-TOPSIS, showing that the final
fine ranking is consistent with a previous coarse ranking in this case.

Keywords: Belief functions · BF-TOPSIS · ER-MCDA · Torrent
protection

1 Introduction

In mountainous areas, torrents put people and buildings at risk. Thousands of
check dams, clustered in series, have been built to protect them. Risk managers
must assess their effectiveness given several criteria such as their structural sta-
bility or their hydraulic dimensions. This is a Multi-Criteria Decision-Making
(MCDM) problem. In practice, scoring each criterion is difficult and imperfect.
Experts affect each check dam series to one of several qualitative evaluation
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 56–65, 2016.
DOI: 10.1007/978-3-319-45559-4 6
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classes of effectiveness (high, medium, low, no) [1]. Evidential Reasoning for
Multi Criteria Decision Analysis (ER-MCDA) has been developed on the basis
of fuzzy sets, possibility and belief function theories [2,3] to decide on such
MCDM problems, taking into account imperfect assessment of criteria provided
by several sources.

Given the final qualitative label for each check dam series, a coarse ranking
of all of them can be provided, as shown in recent applications [1]. Nevertheless,
risk managers need a finer ranking to choose the most effective one. To help it,
the recent Belief Function-based Technique for Order Preference by Similarity
to Ideal Solution (BF-TOPSIS) methods [4] are more robust to rank reversal
problems than other classical decision-aid methods such as the Analytic Hier-
archy Process (AHP) [5]. Nevertheless, the BF-TOPSIS methods are limited to
MCDM problems with precise quantitative evaluation of criteria.

To help risk managers rank several check dam series according to their effec-
tiveness, the BF-TOPSIS should take into account the initial imperfect assess-
ment of criteria. Therefore, we propose to combine the ER-MCDA and BF-
TOPSIS methods. We first detail the ER-MCDA process and apply it to an
actual case with a final coarse ranking. We then combine ER-MCDA with BF-
TOPSIS. Applying it to the same example, we finally show that the finer ranking
result obtained is consistent with the previous coarse ranking result in this case.

2 Some Basics of Belief Function Theory

Shafer proposed belief function theory [6] to represent imperfect knowledge
(imprecision, epistemic uncertainty, incompleteness, conflict) through a basic
belief assignment (BBA), or belief mass m(·), given the frame of discernment
(FoD) Θ. All elements θk, k = 1, . . . , q of Θ are considered exhaustive and mutu-
ally exclusive. The powerset 2Θ is the set of all subsets (focal elements) of Θ,
the empty set included. Each body (or source) of evidence is characterized by a
mapping m(·) : 2Θ → [0, 1] with m(∅) = 0, and

∑
X⊆Θ m(X) = 1,∀X �= ∅ ∈ 2Θ.

For a categorical BBA denoted mX , it holds that mX(X) = 1 and mX(Y ) = 0
if Y ⊆ Θ �= X.

Given Θ, numerous more or less effective rules allow combining several BBAs.
Before their combination, each BBA m(·) can be differently discounted by the
source reliability or importance [7]. The comparison of the combination rules
is not the main scope of this paper, and hereafter we use the 6th Proportional
Conflict Redistribution (PCR6) fusion rule, developed within the framework of
Dezert-Smarandache Theory (DSmT) [8] (vol. 3). The latter is a modification
of belief function theory, designed to palliate the disadvantages of the classical
Dempster fusion rule [9].

Given m(·), choosing a singleton θ̂ ∈ Θ or subset X̂ ⊆ Θ is the deci-
sion issue. In general, it consists in choosing θ̂ = θk� , k = 1, . . . , q with
k� � arg maxkC(θk), where C(θk) is a decision-making criterion. Among sev-
eral C(θk), the most widely used one is the belief Bel(θk) � m(θk) correspond-
ing to a pessimistic attitude of the Decision-Maker (DM). On the contrary, the
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plausibility Pl(θk) �
∑

X∩{θk}�=∅|X∈2Θ m(X) is used for an optimistic attitude.
Between those two extreme attitudes, an attitude of compromise is represented
by the decision based on the maximum probability. For this, the BBA m(·) is
transformed into a subjective probability measure P (·) through a probabilistic
transformation such as the pignistic one [10], the normalized plausibility trans-
formation [11], etc.

In some cases, taking into account non-singletons X ⊆ Θ is needed to make a
decision. As shown in [12], the minimum of any strict distance metric d(m,mX)
between m(·) and the categorical BBA mX can be used in Eq. (1). If only
singletons of 2Θ are accepted, the decision is defined by Eq. (2).

X̂ � arg minX∈2Θ\{∅}d(m, mX) (1)

θ̂ � θk� � arg mink=1,...,qd(m, m{θk}) (2)
Among the few true distance metrics1 between two BBAs m1(·) and m2(·),

the Belief Interval-based Euclidean dBI(m1,m2) ∈ [0, 1] defined by Eq. (3) [13]
provides reasonable results. It is based on the Wasserstein distance defined by
Eq. (4) [14] with [a1, b1] � BI1(X) � [Bel1(X),Pl1(X)] and [a2, b2] � BI2(X) �
[Bel2(X),Pl2(X)] for X ⊆ Θ.

dBI(m1, m2) �
√

1

2|Θ|−1
·
∑

X∈2Θ

d2
W (BI1(X), BI2(X)) (3)

dW ([a1, b1], [a2, b2]) �

√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2
(4)

The quality indicator q(X̂) defined by Eq. (5) evaluates how good the decision
X̂ is with respect to other focal elements: the higher q(X̂) is, the more confident
in its decision X̂ the DM should be. If only singletons of 2Θ are accepted, q(X̂) =
q({θ̂}) is defined by Eq. (6).

q(X̂) � 1 − dBI(m, mX̂)∑
X∈2Θ\{∅} dBI(m, mX)

(5)

q({θ̂}) � 1 − dBI(m, m{θ̂})∑q
k=1 dBI(m, m{θk})

(6)

3 From ER-MCDA to Decision-Making

3.1 Multi-Criteria Decision-Making Problems

In a MCDM problem, the DM compares alternatives Ai ∈ A � {A1, A2, . . . , AM}
through N criteria Cj , scored with different scales. Each Cj has an importance
1 For any BBAs x, y, z defined on 2Θ, a true distance metric d(x, y) satisfies the

properties of non-negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0 ⇔ x = y),
symmetry (d(x, y) = d(y, x)), and triangle inequality (d(x, y) + d(y, z) ≥ d(x, z)).
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weight wj ∈ [0, 1] assuming
∑N

j=1 wj = 1. The N -vector w = [w1, . . . , wN ] rep-
resents the DM preferences between criteria. The AHP process helps extract it,
comparing criteria pairwisely [5]. The DM gives an M ×N score matrix S = [Sij ]
in Eq. (7). Sij is a score value of Ai according to the scoring scale of the criterion
Cj . In practice, Sij for each alternative Ai is given in hazardous situations, with
no sensor and in a limited amount of time. The sources of information can there-
fore be imprecise, epistemically uncertain, incomplete and possibly conflicting.

Given the matrix S,

S �

⎡

⎢⎢⎢⎢⎢⎢⎣

S11 . . . S1j . . . S1N

...
Si1 . . . Sij . . . SiN

...
SM1 . . . SMj . . . SMN

⎤

⎥⎥⎥⎥⎥⎥⎦
(7)

we consider two different decision-making assessments (DMA1 and DMA2).
Given a final FoD Θ = {θ1, . . . , θq}, DMA1 involves choosing a singleton
θ̂(Ai) ∈ Θ for each alternative Ai, i = 1, . . . ,M . Given S, DMA2 consists
in totally ranking the M alternatives Ai and choosing the best one Ai� .

3.2 The ER-MCDA for the DMA1 Given Imperfect Sij

• Step1old (MΘ construction): Given the FoD Θ = {θ1, . . . , θq} of qualitative
labels, the set A of M alternatives, the N criteria Cj and wj , the M × N
BBA matrix MΘ = [mΘ

ij(·)] is provided in Eq. (8). For each criterion Cj , a
possibility distribution πij [15] is provided by an expert through intervals Fαι

,
ι = 1, . . . , ιmax with a confidence level. This represents the imprecise scoring
of Sij of each alternative Ai. The mapping [2] of each possibility distribution
into q fuzzy sets θk, k = 1, . . . , q [16] provides each BBA mΘ

ij(·) on 2Θ for each
Ai, i = 1, . . . ,M and Cj , j = 1, . . . , N in the BBA matrix MΘ.

MΘ �

⎡

⎢⎢⎢⎢⎢⎢⎣

mΘ
11(·) . . . mΘ

1j(·) . . . mΘ
1N (·)

...
mΘ

i1(·) . . . mΘ
ij(·) . . . mΘ

iN (·)
...

mΘ
M1(·) . . . mΘ

Mj(·) . . . mΘ
MN (·)

⎤

⎥⎥⎥⎥⎥⎥⎦
(8)

The algorithm of the geometric mapping process is detailed in [2]. A BBA
m

Xj

ij (·) is first extracted from each πij : the FoD is the scoring scale Xj of
the criterion Cj ; focal elements are the intervals Fαι

, ι = 1, . . . , ιmax. Then
each interval Fαι

is mapped into each fuzzy set θk to obtain its geometric area
Aι,k, with Aι �

∑q
k=1 Aι,k. A final BBA is then computed for the FoD Θ with

mΘ
ij(θk) �

∑ιmax
ι=1 m

Xj

ij (Fαι
)Aι,k

Aι
.
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• Step2old (DMA1): We refer the reader to [3] for details. Each BBA mΘ
ij(·)

is discounted by the importance weight wj of each criterion Cj . For each
Ai ∈ A, the N BBAs mΘ

ij(·) are combined2 with importance discounting
[3] to obtain the BBA mΘ

i (·) for each ith-row. Given that the FoD Θ =
{θ1, . . . , θk, . . . , θq} and for each Ai, θ̂(Ai) = arg mink=1,...,qdBI(mΘ

i ,m{θk})
is chosen, where m{θk} is the categorical BBA focused on the singleton {θk}
only, based on the minimum of dBI defined by Eq. (3).

Given a preference ranking of the q elements of Θ, comparing all the θ̂(Ai)
chosen for each Ai helps rank the Ai alternatives. Nevertheless, it is not neces-
sarily a strict ranking since the label θ̂(Ai) may be the same for several Ai.

3.3 BF-TOPSIS Methods for the DMA2 Given Precise Sij

Four BF-TOPSIS methods were developed to decide on the corresponding M×N
matrix S = [Sij ] (Eq. (7)), with the precise score value Sij . Details are given
in [4].

All BF-TOPSIS methods start with the same construction of the M × N
matrix MA = [mA

ij(·)] from S for the FoD A � {A1, A2, . . . , AM}. In the sequel,
Āi denotes the complement of Ai in the FoD A. For each Ai and each Cj ,
the positive support Supj(Ai) �

∑
k∈{1,...,M}|Skj≤Sij

|Sij − Skj | measures how
much Ai is better than other alternatives according to criterion Cj . The negative
support Infj(Ai) � −∑

k∈{1,...,M}|Skj≥Sij
|Sij − Skj | measures how much Ai is

worse than other alternatives according to Cj . Given Aj
max � maxiSupj(Ai)

and Aj
min � miniInfj(Ai), each mA

ij(·) is consistently defined by the triplet
(mA

ij(Ai),mA
ij(Āi),mA

ij(Ai ∪ Āi)) presented on the FoD A by:

mA
ij(Ai) �

{
Supj(Ai)

A
j
max

if Aj
max �= 0

0 if Aj
max = 0

(9)

mA
ij(Āi) �

{ Infj(Ai)

A
j
min

if Aj
min �= 0

0 if Aj
min = 0

(10)

mA
ij(Ai ∪ Āi) � mA

ij(Θ) � 1 − (BelAij(Āi) + BelAij(Ai)) (11)

To help rank all alternatives Ai ∈ A, the main idea of BF-TOPSIS methods is
to compare each Ai with the best and worst ideal solutions. It is directly inspired
by the technique for order preference by similarity to the ideal solution (TOPSIS)
developed in [17]. The four BF-TOPSIS methods differ from each other in how
they process the M×N matrix MA with an increasing complexity and robustness
to rank reversal problems. In this paper, we focus on BF-TOPSIS3 (the 3rd BF-
TOPSIS method using the PCR6 fusion rule) [4].

2 with the PCR6 rule in this paper [8] (Vol. 3).
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1. For each Ai, the N BBAs mA
ij(·) are combined to give mA

i (·) on 2A, taking
into account the importance factor wj of each criterion Cj [7].

2. For each Ai ∈ A, the best ideal BBA defined by mA,best
i (Ai) � 1 and the worst

ideal BBA defined by mA,worst
i (Āi) � 1 means that Ai is better, and worse,

respectively, than all other alternatives in A. Using Eq. (3), one computes the
Belief Interval distance dbest(Ai) = dBI(mA

i ,mA,best
i ) between the computed

BBA mA
i (·) and the ideal best BBA mA,best

i (·). Similarly, one computes the
distance dworst(Ai) = dBI(mA

i ,mA,worst
i ) between mA

i (·) and the ideal worst
BBA mA,worst

i (·).
3. The relative closeness of each alternative Ai with respect to an unreal ideal

best solution defined by Abest is given by C(Ai, A
best) � dworst(Ai)

dworst(Ai)+dbest(Ai)
.

Since dworst(Ai) ≥ 0 and dbest(Ai) ≥ 0, then C(Ai, A
best) ∈ [0, 1].

If dbest(Ai) = 0, then C(Ai, A
best) = 1, meaning that alternative Ai coincides

with Abest. On the contrary, if dworst(Ai) = 0, then C(Ai, A
best) = 0, meaning

that alternative Ai coincides with the ideal worst solution Aworst.
Thus, the preference ranking of all alternatives Ai ∈ A is made according to
the descending order of C(Ai, A

best).

3.4 BF-TOPSIS Coupled with ER-MCDA to Deal with Imperfect
Sij

To deal with the DMA2 and imperfect information, we propose to couple (mix)
BF-TOPSIS with ER-MCDA according to the following steps:

• Step1new = Step1old (MΘ construction): We use the same step 1 from ER-
MCDA to obtain the matrix MΘ = [mΘ

ij(·)] defined by Eq. (8) for the FoD
Θ = {θ1, . . . , θk, . . . , θq}.

• Step2new (MA construction): ER-MCDA is coupled with BF-TOPSIS in this
step. We obtain the BBA matrix MA = [mA

ij(·)] related to the FoD A from
the BBA matrix MΘ as follows:
1. For each mΘ

ij(·), i = 1, . . . ,M, j = 1, . . . , N , restricting the decision to
singletons, one chooses θ̂(Ai, Cj) applying Eq. (2) with m = mΘ

ij . This
gives the M×N matrix SΘ = [θ̂(Ai, Cj)] with qualitative scores θ̂(Ai, Cj).
The corresponding quality indicator is computed by q(θ̂(Ai, Cj)) applying
Eq. (5) with m = mΘ

ij .
2. A quantitative transformation of each element θk in Θ is made to obtain

the M × N matrix S = [Sij ], Sij being the quantitative transformation
of θ̂(Ai, Cj). Several transformations are possible. We are aware that the
choice of one can impact the final results. We introduce it as a general
step and propose to analyze the results given different transformations in
forthcoming publications.

3. From the score matrix S = [Sij ], we use the formulas (9)-(11) to obtain
the BBA matrix MA = [mA

ij(·)] for A = {A1, A2, . . . , AM}.
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• Step3new (ranking alternatives): We use q(θ̂(Ai, Cj)) as the reliability factor
to discount each BBA mA

ij(·) using the Shafer discounting method [6]. For each
Ai, we combine them with the PCR6 rule to obtain the BBA mA

i (·), taking
into account the importance factor wj of each criterion Cj [7]. As explained
in points 2 and 3 of subsect. 3.4, the relative closeness factors C(Ai, A

best) are
calculated, from which the preference ranking of all Ai is deduced.

4 Effectiveness of Torrential Check Dam Series

To reduce potential damage on at-risk housing, each torrential check dam series
stabilizes the torrent’s longitudinal profile to curtail sediment release from the
headwaters. Their effectiveness in achieving this function depends on N = 7
technical criteria Cj with their importance weights wj , as shown in Fig. 1. An
expert assesses M = 4 check dam series Ai according to their effectiveness given
an imperfect evaluation of each Cj and using ER-MCDA step 1. After this com-
mon step, ER-MCDA step 2 is used to assess (DMA1) the effectiveness of each Ai

expressed by four qualitative labels (levels) in Θ = {high,medium, low,no} [1].
Then steps 2 and 3 of the method based on BF-TOPSIS3 developed in Sect. 3.4
are used to rank all Ai and to choose the most effective one, Ai� (DMA2).

• Step1new = Step1old (MΘ construction): The expert evaluates each crite-
rion Cj for each Ai through possibility distributions. N = 7 fuzzy scales are
specified, each one gathering the q = 4 fuzzy sets θk, k = 1, . . . , q. The BBA
matrix MΘ = [mΘ

ij(·)] obtained for Θ = {high,medium, low,no} is given in
Table 1.

• DMA1 (based on Step 2old described in Sect. 3.2): given MΘ in Table 1, the
column dmin

BI in Table 2 lists the minimal value obtained for dBI(mΘ
i ,m{θk})

defined by Eq. (3), for each Ai ∈ A. The best label θ̂(Ai) is chosen for each
Ai. Three check dam series A1, A2, and A4 are declared as medium, and A3

is declared as low. The DM coarsely has A1 
 A3, A2 
 A3 and A4 
 A3.
• DMA2 (based on Step 2new and Step 3new described in Sect. 3.2): given MΘ

in Table 1, for each Ai and Cj , one computes arg mink=1,...,q dBI(mΘ
ij ,m{θk})

between each mΘ
ij(·) and the categorical BBA m{θk}(·), with Θ = {θ1 =

high, θ2 = medium, θ3 = low, θ4 = no}. The linear quantitative transforma-
tion: θ1 = 4, θ2 = 3, θ3 = 2, θ4 = 1 is assumed to establish the matrix S = [Sij ]
in Table 3. For each Ai and Cj , the quality factor q(θ̂(Ai, Cj)) is also computed
in Table 3 applying Eq. (5) with m = mΘ

ij .

Fig. 1. Formalization of the actual MCDM problem.
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Table 1. MΘ provided by Step 1new = Step 1old.

Ai Focal element mΘ
ij(·)

C1 C2 C3 C4 C5 C6 C7

MΘ A1 θ1 0.2963 0.1755 0.0161 0.0000 0.0000 0.0000 0.1378

θ2 0.6270 0.7556 0.9107 0.0000 0.0391 0.1748 0.8083

θ3 0.0467 0.0389 0.0432 0.0009 0.4099 0.7786 0.0239

θ4 0.0000 0.0000 0.0000 0.9691 0.5210 0.0166 0.0000

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A2 θ1 0.8446 0.0052 0.0310 0.9281 0.0693 0.6434 0.0073

θ2 0.1254 0.2677 0.9232 0.0419 0.3469 0.3266 0.9250

θ3 0.0000 0.6050 0.0158 0.0000 0.2670 0.0000 0.0377

θ4 0.0000 0.0921 0.0000 0.0000 0.2868 0.0000 0.0000

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A3 θ1 0.7159 0.0019 0.6463 0.0000 0.0000 0.7154 0.0000

θ2 0.2541 0.1464 0.3237 0.0451 0.0338 0.2546 0.3769

θ3 0.0000 0.6655 0.0000 0.3786 0.2188 0.0000 0.5578

θ4 0.0000 0.1562 0.0000 0.5463 0.7174 0.0000 0.0353

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

A4 θ1 0.3372 0.3950 0.3849 0.0000 0.0576 0.0022 0.0000

θ2 0.4731 0.5676 0.2460 0.1562 0.3390 0.7030 0.5075

θ3 0.1597 0.0074 0.3391 0.7831 0.5147 0.2643 0.4371

θ4 0.0000 0.0000 0.0000 0.0307 0.0587 0.0005 0.0254

Θ 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

Table 2. Final results for DMA1 based on ER-MCDA step 2old from MΘ.

Ai dmin
BI θ̂(Ai) Final class Ranking

A1 0.3769 θ2 Medium 1-3

A2 0.4837 θ2 Medium 1-3

A3 0.5096 θ3 Low 4

A4 0.3911 θ2 Medium 1-3

Table 3. Sij and q(θ̂(Ai, Cj)) (= q(i, j)) provided by Step 2new from MΘ.

Cj , wj C1, 0.1 C2, 0.2 C3, 0.1 C4, 0.15 C5, 0.05 C6, 0.2 C7, 0.2

Ai ↓ Si1 q(i, 1) Si2 q(i, 2) Si3 q(i, 3) Si4 q(i, 4) Si5 q(i, 5) Si6 q(i, 6) Si7 q(i, 7)

A1 3 0.8747 3 0.9226 3 0.9754 1 0.9921 1 0.8332 2 0.9287 4 0.9404

A2 4 0.9505 2 0.8708 3 0.9794 4 0.9797 3 0.8737 4 0.8754 3 0.9794

A3 4 0.9029 2 0.8953 4 0.8765 1 0.8435 1 0.9078 4 0.9027 2 0.8469

A4 3 0.8747 3 0.9226 4 0.9754 2 0.9921 2 0.8332 3 0.9287 3 0.9404
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Table 4. Final results for DMA2 based on step 3new from Table 3.

Ai dbest(Ai) dworst(Ai) C(Ai, A
best) Ranking

A1 0.5965 0.3061 0.3391 3

A2 0.4930 0.4069 0.4521 1

A3 0.6431 0.2683 0.2944 4

A4 0.5033 0.4090 0.4483 2

After the reliability discounting of BBAs from Table 1 by the factors
q(θ̂(Ai, Cj)) from Table 3, one obtains MA = [mA

ij(·)] for A = {A1, A2, . . . , AM}.
After applying BF-TOPSIS3, we obtain the relative closeness C(Ai, A

best) val-
ues in Table 4. The ranking of all Ai according to their effectiveness is consistent
with the DMA1 results: A2 
 A4 
 A1 
 A3. The most effective check dam
series is A2.

5 Conclusion

The ER-MCDA helps provide a coarse ranking of torrential check dam series
according to their effectiveness, taking into account several imperfectly scored
criteria. Given the same imperfect MCDM problem, risk managers may need a
finer ranking. For this purpose, we suggested coupling the ER-MCDA and BF-
TOPSIS methods. We have shown the consistency of coarse and finer ranking
results for only one example. Further studies are needed to determine whether
such consistency holds in general or for certain classes of examples. Moreover,
an intermediary decision step and a quantitative transformation are needed to
meet this goal. The sensitivity of results to their definition is under evaluation
and will be reported in forthcoming publications.
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Abstract. In this paper we propose a new general method for decision-
making under uncertainty based on the belief interval distance. We show
through several simple illustrative examples how this method works and
its ability to provide reasonable results.

Keywords: Belief functions · Decision-making · Distance between
BBAs

1 Introduction

Dempster-Shafer Theory (DST), also known as the Mathematical Theory of Evi-
dence or the Theory of Belief Functions (BF), was introduced by Shafer in 1976
[1] based on Dempster’s previous works [2]. This theory offers an elegant theoret-
ical framework for modeling uncertainty, and provides a method for combining
distinct bodies of evidence collected from different sources. In the past more
than three decades, DST has been used in many applications, in fields including
information fusion, pattern recognition, and decision making [3]. Although belief
functions are very appealing for modeling epistemic uncertainty, the two main
important questions related to them remain still open:

1. How to combine efficiently several independent belief functions?
This open question is out of the scope of this paper and it has been widely
disputed by many experts [4–14]. In this short paper, we focus on the second
question below.

2. How to take a final decision from a belief function?
This second question is also very crucial in many problems involving epis-
temic uncertainty where the final step (after beliefs elicitation, and beliefs
combination) is to make a decision.

c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 66–74, 2016.
DOI: 10.1007/978-3-319-45559-4 7
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In the sequel, we assume that the reader is familiar with Demspter-Shafer
Theory of belief functions [1] and its notations. Due to space restriction, we will
not recall the definitions of basic belief assignment m(·), belief Bel(·) (also called
credibility by some authors), and plausibility functions Pl(·) functions defined
over a given finite discrete frame of discernment (FoD) Θ. For any focal element
X of the powerset of Θ, denoted by 2Θ, the interval BI(X) � [Bel(X), P l(X)]
is called the belief interval of X. Its length Pl(X) − BeI(X) characterizes the
uncertainty on X (also called ambiguity in [15]). This paper is organized as
follows. In Sect. 2, we recall the common decision-making techniques used so far
to make a decision from belief functions. In Sect. 3 we recall the new distance
measure based on Belief interval, and we present a new general method for
decision-making with belief functions. Finally, examples of this new approach
are given in Sect. 4, with concluding remarks in Sect. 5.

2 Classical Decision-Making Methods with Belief
Functions

We assume a given FoD Θ = {θ1, . . . , θn} and a given BBA m(·) defined on
2Θ. We want to make a decision from m(·). It consists in choosing a particular
element of the FoD that solves the problem under consideration, which is rep-
resented by the set of potential solutions (choices) θi, i = 1, . . . , n. How to do
this in an effective manner is the fundamental question of decision-making under
epistemic uncertainty. Many decision-making criteria have been proposed in the
literature. Some advanced techniques developed in the 1990s [15–19] have not
been widely used so far in the BF community, probably because of their com-
plexity of implementation. In this section, we only present briefly the simplest
ones frequently used.

1. Decision based on maximum of credibility:
This decision-making scheme is the so-called prudent (or pessimistic) scheme.
It consists in choosing the element of the FoD Θ that has the maximum of
credibility. In other terms, one will decide θ̂ = θi� with1

θi� = arg max
i

Bel(θi) (1)

2. Decision based on maximum of plausibility:
On the contrary, if we prefer to adopt a more optimistic decision-making
(less prudent) attitude, one will choose the element of the FoD Θ that has
the maximum of plausibility. In other terms, one will decide θ̂ = θi� with

θi� = arg max
i

Pl(θi) (2)

1 The notation with hat indicates the decision taken. Here θ̂ specifies that the decision
taken is only a singleton of Θ.
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3. Decision based on maximum of probability:
Usually decision-makers prefer to adopt a more balanced decisional attitude
making a compromise between the aforementioned pessimistic and optimistic
attitudes. For this, the BBA m(·) is transformed into a subjective probability
measure P (·) compatible with the belief interval [Bel(·), P l(·)], and one will
choose the element of the FoD Θ that has the maximum of probability. In
other terms, one will decide θ̂ = θi� with

θi� = arg max
i

P (θi) (3)

In practice, many probabilistic transformations are available to approximate
(or transform) a BBA m(·) in a probability measure P (·). By example, the
pignistic transformation [20], the plausibility transformation [21], the DSmP
transformation and other ones presented in [22], etc.

Of course, in case of multiple maximum values, no decision can be clearly
drawn. Usually if only one decision must be made, a random sample between
elements θi generating the maximal decision-making criterion value is used to
make a unique final decision θ̂. Another more prudent decision scheme is to use
the disjunction of all elements generating the maximal decision-making criterion
value, to provide a less specific final decision (if it is allowed for the problem
under concern).

Our main criticism about using these decision-making schemes is that they
do not use the whole information contained in the original BBA, which is in
fact expressed by the whole belief interval. The pessimistic attitude uses only
the credibility values, whereas the optimistic attitude uses only the plausibil-
ity values. The prudent attitude based on the criteria (3) requires a particular
choice of probabilistic transformation which is often disputed by users. Making
a decision from the P (.) measure is theoretically not satisfactory at all because
the transformation is lossy since we cannot retrieve m(·) from P (·) when some
focal elements of m(·) are not singletons. In the next section, we propose a better
justified decision scheme based on the belief interval distance [23,24].

3 Decision-Making Method Using Belief Interval
Distance

In our previous works [23,24], we have defined a Euclidean belief interval distance
between two BBAs m1(·) and m2(·) defined on the powerset of a given FoD
Θ = {θ1, . . . , θn} as follows

dBI(m1,m2) �
√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (4)

where Nc = 1/2n−1 is a normalization factor to have dBI(m1,m2) ∈ [0, 1], and
dW (BI1(X), BI2(X)) is the Wassertein’s distance [25] between belief intervals
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BI1(X) � [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) � [Bel2(X), P l2(X)] =
[a2, b2]. More specificly,

dW ([a1, b1], [a2, b2]) �

√[
a1 + b1

2
− a2 + b2

2

]2

+
1
3

[
b1 − a1

2
− b2 − a2

2

]2

(5)

In [23], we have proved that dBI(x, y) is a true distance metric because
it satisfies the properties of non-negativity (d(x, y) ≥ 0), non-degeneracy
(d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, y)+d(y, z) ≥ d(x, z), for any BBAs x, y and z defined on 2Θ. The choice of
Wasserstein’s distance in dBI definition is justified by the fact that Wasserstein’s
distance is a true distance metric and it fits well with our needs because we have
to compute a distance between [Bel1(X), P l1(X)] and [Bel2(X), P l2(X)].

For notation convenience, we denote mX the categorical BBA having only X
as focal element, where X �= ∅ is an element of the powerset of Θ. More precisely,
mX is the particular (categorical) BBA defined by mX(X) = 1 and mX(Y ) = 0
for any Y �= X. Such basic BBA plays an important role in our new decision
scheme because its corresponding belief interval reduces to the degenerate inter-
val [1, 1] which represents the certainty on X. The basic principle of the new deci-
sion scheme we propose is very simple and intuitively makes sense. It consists in
selecting as the final decision (denoted by X̂) the element of the powerset for which
the belief interval distance between the BBA m(·) and mX , X ∈ 2Θ \ {∅} is the
smallest one2. Therefore, take as the final decision X̂ given by

X̂ = arg min
X∈2Θ\{∅}

dBI(m,mX) (6)

where dBI(m,mX) is computed according to (4). m(·) is the BBA under test
and mX(.) the categorical BBA focused on X defined above.

This decision scheme is very general in the sense that the decision making
can be done on any type of element3 of the power-set 2Θ, and not necessarily
only on the elements (singletons) of the FoD (see examples in the next section).
This method not only provides the final decision X̂ to make, but also it evaluates
how good this decision is with respect to its alternatives if we define the quality
indicator q(X̂) as follows

q(X̂) � 1 − dBI(m,mX̂)∑
X∈2Θ\{∅} dBI(m,mX)

(7)

One sees that the quality indicator q(X̂) of the decision X̂ made will become
maximum (equal to one) when the distance between the BBA m(·) and mX̂ is
zero, which means that the BBA m(·) is focused in fact only on the element X̂.
The higher q(X̂) is, the more confident in the decision X̂ we should be.
2 This simple principle has also been proposed by Essaid et al. [26] using Jousselme’s

distance.
3 Empty set excluded.



70 J. Dezert et al.

Of course, if a decision must be made with some extra constraint4 defined
by a (or several) condition(s), denoted c(X), then we must take into account
c(X) in Eq. (6), that is X̂ = arg minX∈2Θ\{∅} s.t. c(X) dBI(m,mX), and also in
the derivation of quality indicator by taking

∑
X∈2Θ\{∅} s.t. c(X) dBI(m,mX) as

denominator in (7). Theoretically any other strict distance metric, for instance
Jousselme’s distance [27–29], could be used instead of dBI(·, ·). We have chosen
dBI distance because of its ability to provide good and reasonable behavior [23]
as will be shown. When there exists a tie between multiple decisions {X̂j , j > 1},
then the prudent decision corresponding to their disjunction X̂ = ∪jX̂j should
be preferred (if allowed), otherwise the final decision X̂ is made by a random
selection of elements X̂j .

4 Examples and Comparisons

In this section we present several examples when the cardinality of the FoD |Θ| is
only 2 and 3 because it is easier to see whether the decision-making results make
sense or not. We compare and discuss decisions only made with the belief inter-
val distance dBI and Jousselme’s distance dJ because the other lossy decision
schemes do not exploit both credibility and plausibility values. The examples
corresponding to cases where the BBA m(·) is focused on a single element X
of 2Θ are not presented because one trivially gets X̂ = X using either dBI

or dJ distances. The next tables present several BBAs from which a decision
has to be made. By convention, and since we work with normal BBAs satisfying
m(∅) = 0, the empty set is not included in the tables. The rows for dmin

BI (mi,mX)
and for dmin

J (mi,mX) list the minimal values obtained for dBI(mi,mX) and
dJ(mi,mX). The rows for X̂dBI and for X̂dJ list the decision(s) X̂ made when
using dBI(mi,mX) and dJ (mi,mX) respectively. The rows for q(X̂dBI ) and
q(X̂dJ ) list the quality indicators of decision(s) made using dBI(mi,mX) and
dJ(mi,mX) respectively. Depending on the BBA, it is possible to have multiple
decisions {X̂j} in case of a tie. If a tie occurs either a random sampling of {X̂j}
must be drawn, or (if allowed) the disjunction of decisions X̂j is preferred. In
the next subsections, we present results in free-constraint case (i.e. c(X) = ∅), as
well as when the decisions are restricted to be singletons (i.e. c(X) ≡ “|X| = 1”).

4.1 Examples with Θ = {A, B}
Table 1 shows the decisions made when there is no constraint on the cardinality
of the decision X̂.

One sees that methods based on min of dBI(m,mX) and on min of dJ (m,mX)
yield the same reasonable decisions in almost all cases. With m2, one has multiple
decisions X̂dJ = {A,B,A ∪ B} with quality 0.6667 when using dJ , which is
a bit surprising in our opinion because there is a real tie between A and B.
Consequently, the decision A∪B should be preferred when there is no constraint
4 For instance, making a choice only among the singletons of 2Θ.
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Table 1. Examples of several BBA’s and decisions made (no constraint case).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪ B 0 0 0.1 0.8 0.2 0.1 0.9

dmin
BI (mi, mX) 0.1000 0.2887 0.1528 0.0577 0.2309 0.0577 0.0577

q(X̂dBI ) 0.9330 0.7760 0.8939 0.9502 0.8134 0.9622 0.9513

X̂dBI A A ∪ B A A ∪ B A ∪ B A A ∪ B

dmin
J (mi, mX) 0.1000 0.5000 0.1581 0.1000 0.4000 0.0707 0.0707

q(X̂dJ ) 0.9390 0.6667 0.8999 0.9276 0.6409 0.9574 0.9501

X̂dJ A A, B, A ∪ B A A ∪ B A ∪ B A A ∪ B

on the cardinality of decisions. For this m2 case, one gets a unique decision
X̂dBI = A ∪ B with a better quality 0.776 which seems more reasonable. We see
also that all minimal distance values obtained with dBI are less (or equal in case
m1) to the minimal values obtained with dJ . In fact, when the mass function
is distributed symmetrically, it is naturally expected that no real decision can
be easily taken (as illustrated for BBA’s m2(·) and m5(·) in Table 1). Here, the
decision A ∪ B for BBA’s m2(·) and m5(·) can be interpreted as a no proper
decision, in the sense that A ∪ B is the whole universe of discourse, hence we
are merely selecting anything (and discarding nothing). Such kind of no proper
decision may however be very helpful in some fusion systems because it warns
that input information is not rich enough, and that one needs more information
to take a proper decision (by including more sensors or more experts reports
in the system for instance). For symmetrical mass function, the decision drawn
from the new proposed decision rule is consistent with what we can reasonably

Table 2. Average distances and relative closeness indicators for example 1.

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·)
A 0.9 0.5 0.8 0.1 0.4 0.9 0.1

B 0.1 0.5 0.1 0.1 0.4 0 0

A ∪ B 0 0 0.1 0.8 0.2 0.1 0.9

dmin
BI (mi, mX) 0.1000 0.5000 0.1528 0.5508 0.5033 0.0577 0.5196

q(X̂dBI ) 0.9000 0.5000 0.8477 0.5000 0.5000 0.9427 0.5393

X̂dBI A A, B A A, B A, B A A

dmin
J (mi, mX) 0.1000 0.5000 0.1581 0.6403 0.5099 0.0707 0.6364

q(X̂dJ ) 0.9000 0.5000 0.8434 0.5000 0.5000 0.9308 0.5276

X̂dJ A A, B A A, B A, B A A
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get because. To make a proper decision we will always need to introduce some
possibly arbitrary additional constraints.

Table 2 shows the decisions made for same examples when we force the deci-
sion to be a singleton, that is when the constraint is c(X) ≡ “|X| = 1”. One
sees that the decisions restricted to the set of singletons using dBI(m,mX) or
dJ(m,mX) are the same but the quality indicators are a bit better when using
dBI(m,mX) with respect to dJ(m,mX). The values of the quality indicators
in Table 2 are different to those of Table 1 which is normal because we use the
constraint c(X) in the denominator of the formula (7).

4.2 Examples with Θ = {A, B, C}
Table 3 shows the decisions made when there is no constraint on the cardinality of
the decision X̂, whereas Table 4 shows the results for the same examples when the
decisions made are restricted to singletons. As shown in the tables all minimal
distance values obtained with dBI are less (or equal) to the minimal values
obtained with dJ and the quality indicator decisions is better when computed
with dBI (except in case m1 of Table 3). The decisions results obtained with dJ

are mostly consistent with those obtained with dBI (except in case m2 and m3 of
Table 3) where a larger set of decisions (tie) is obtained using dJ . If the decisions
are restricted to singletons (see Table 4), then the decision-making based on dBI

and on dJ provides the same results with a better quality of decisions using dBI .

Table 3. Average distances and relative closeness indicators for example 2.

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)
A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪ B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪ B ∪ C 0 0 0 0 0 0 0 0.3

dmin
BI (mi, mX ) 0.1000 0.2887 0.4082 0.2887 0.2887 0.1925 0.2357 0.2227

q(X̂dBI ) 0.9776 0.9242 0.8787 0.9271 0.9120 0.9421 0.9241 0.9280

X̂dBI A A ∪ B 2Θ \ {∅, A, B, C} A, A ∪ B A ∪ B, B ∪ C, Θ A ∪ B A ∪ B ∪ C A ∪ B ∪ C

dmin
J (mi, mX ) 0.1000 0.5000 0.5774 0.3536 0.4082 0.2722 0.3333 0.3149

q(X̂dJ ) 0.9798 0.8870 0.8571 0.9225 0.8989 0.9337 0.9111 0.9152

X̂dJ A A, B, A ∪ B 2Θ \ {∅} A, A ∪ B A ∪ B, B ∪ C, Θ A ∪ B A ∪ B ∪ C A ∪ B ∪ C
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Table 4. Examples of several BBA’s and decisions made (restricted to singletons).

X ∈ 2Θ m1(·) m2(·) m3(·) m4(·) m5(·) m6(·) m7(·) m8(·)
A 0.9 0.5 1/3 0.5 0 0 0 0.2

B 0.1 0.5 1/3 0 0 0 0 0.1

A ∪ B 0 0 0 0.5 0.5 2/3 1/3 0.05

C 0 0 1/3 0 0 0 0 0.05

A ∪ C 0 0 0 0 0 0 1/3 0.1

B ∪ C 0 0 0 0 0.5 1/3 1/3 0.2

A ∪ B ∪ C 0 0 0 0 0 0 0 0.3

dmin
BI (mi, mX) 0.1000 0.5000 0.5774 0.2887 0.5000 0.5092 0.6236 0.5770

q(X̂dBI ) 0.9488 0.7321 0.6667 0.8531 0.7388 0.7364 0.6667 0.6855

X̂dBI A A, B A, B, C A B B A, B, C A

dmin
J (mi, mX) 0.1000 0.5000 0.5774 0.3536 0.5774 0.5932 0.6667 0.6117

q(X̂dJ ) 0.9488 0.7321 0.6667 0.8300 0.7257 0.7229 0.6667 0.6836

X̂dJ A A, B A, B, C A B B A, B, C A

5 Conclusions

We have presented a new method for decision-making with belief functions which
truly exploits the belief interval value of each focal element of a BBA. It is easy to
implement and can be applied with any strict distance metric between two BBAs.
We have considered and compared the well-known Jousselme’s distance and the
recent belief interval distance. This method is general because the decision can
be made not only on singletons, but also on any other compound focal elements
(if needed and allowed). It also provides a quality indicator of the decision made.
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Abstract. In this paper we show how the Belief-Function based Tech-
nique for Order Preference by Similarity to Ideal Solution (BF-TOPSIS)
approach can be used for solving non-classical multi-criteria decision-
making (MCDM) problems. We give simple examples to illustrate our
presentation.
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1 Introduction

Classical Multi-Criteria Decision-Making (MCDM) consists in choosing an alter-
native among a known set of alternatives based on their quantitative evaluations
(numerical scores) obtained with respect to different criteria. A typical example
could be the selection of a car to buy among a given set of cars based on different
criteria (cost, engine robustness, fuel economy, CO2 emission, etc.). The classical
MCDM problem, although easily formulated, have no solution at all in general
due to the fact that no alternative exists that optimizes all criteria jointly. Thus
MCDM problems are generally not solved, but a decision is found by means
of ranking, compromises etc. The difficulty of MCDM problems is also because
the scores are usually expressed in different (physical) units with different scales
which generally necessitates an ad-hoc choice of a normalization step that may
lead to many problems, e.g. rank reversal.

Many methods have been developed to address the classical MCDM. AHP1

[1] and its extensions in belief function frameworks [2–6], ELECTRE2 [7],
1 Analytic hierarchy process.
2 Elimination and choice translating reality.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45559-4 8



76 J. Dezert et al.

TOPSIS3 [8,9] methods are the most well-known and widely used MCDM meth-
ods in applications. These methods have already been extended in the belief func-
tion framework in our previous works [2,10,11] to take into account epistemic
uncertainty, missing scores’ values as well as conflicting information between
sources4. In this work, we show how the BF-TOPSIS methods proposed recently
in [11] (with application in [12]), can be directly used for solving also non-
classical multicriteria decision-making problems where not only alternatives are
scored (with possibly missing values), but also any element of the power set of
alternatives.

In the sequel, we assume the reader to be familiar with the theory of belief
functions [13] and its definitions and notations, mainly the basic belief assign-
ment (BBA) m(·), the belief function Bel(·) and the plausibility function Pl(·)
defined with respect to a discrete finite frame of discernment (FoD).

2 Non-classical MCDM Problem Formulation

We consider a given set of alternatives A � {A1, A2, . . . , AM} (M > 2) rep-
resenting the FoD of our problem under consideration, and we denote 2A the
power set5 of A. In our approach, we work with Shafer’s classical model of FoD
and we do not allow the empty set to be a focal element6 because in our opinion
it does not make sense to compare an alternative with respect to the empty
set from the decision-making standpoint. The cardinality of the (non empty)
elements of the power set varies from 1 to 2M − 1. We also consider a given
set of criteria C � {C1, C2, . . . , CN} (N ≥ 1), where each criterion Cj is char-
acterized by a relative importance weighting factor wj ∈ [0, 1], j = 1, . . . , N

such that
∑N

j=1 wj = 1. The set of normalized weighting factors is denoted by
w = {w1, w2, . . . , wN}. The score7 value is a number Sij = Sj(Xi) related to the
evaluation of an element Xi ∈ 2A \ {∅} from a given criterion Cj . If the score
value Sj(Xi) is not available (or missing), we denote it by the “varnothing” sym-
bol ∅. The non-classical MCDM problem can be formulated as follows in the
worst case (i.e. when scores apply to all elements of 2A): given the (2M −1)×N
score matrix S = [Sj(Xi)] whose elements take either a numerical value or a
∅ value (if the value is not available) and knowing the set w of the relative
importance weights of criteria, how to rank the elements of 2A \{∅} to make the
final decision?

3 Technique for order preference by similarity to ideal solution.
4 In the MCDM context, a source of information consists in the list of scores values

of alternatives related to a given criterion.
5 The power set 2A is the set of all subsets of A, empty set ∅ and A included.
6 As proposed in Smets Transferable Belief Model for instance.
7 Depending on the context of the MCDM problem, the score can be interpreted either

as a cost/expense or as a reward/benefit. In the sequel, by convention and with-
out loss of generality, we will interpret the score as a reward having monotonically
increasing preference. Thus, the best alternative with respect to a given criterion
will be the one providing the highest reward/benefit.
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Example: Let us consider the ranking of five students A1, . . . , A5 based on two
criteria C1 and C2. The criterion C1 is their long jump performance (in meters),
and the criteria C2 is a realization of a small project to collect funds (in euros) to
help a bigger nature protection project. Highest scores values mean better results
in this particular context. Let us assume that students were allowed to realize
their project in joint collaboration (no more than three students are allowed in
a group), or alone. At the end term of the project, suppose that one has the two
following evaluations (scoring)

SC1 =

⎛

⎜⎜⎝

C1

A1 3.7m
A3 3.6m
A4 3.8m
A5 3.7m

⎞

⎟⎟⎠ and SC2 =

⎛

⎝

C2

A5 640e
A1 ∪ A2 600e
A3 ∪ A4 650e

⎞

⎠ (1)

The scores’ values listed in SC1 indicate in fact that the student A2 has
not been able to pass the long jump test for some reason (medical, familial or
whatever), so his score is missing. The scores’ values listed in SC2 indicate that
A5 did choose to realize his project alone with a pretty good performance, and
the project realized by the collaboration of students A3 with A4 has obtained the
best performance (the highest amount of collected funds). In this very simple
example, one sees that the score evaluation can be done not only on single
alternatives (as for criterion C1) but also on a subset of elements of 2A (as for
criterion C2). All the elements having a score are called scoring focal elements. In
general, these focal elements can differ from one criterion Cj to another criterion
Ck for k �= j and the score matrix cannot be built by a simple (horizontal)
stacking of scoring lists. In general, one must identify all focal elements of each
scoring list to determine the minimum number of rows necessary to define the
scoring matrix. As mentioned, we use the symbol ∅ to identify all values that
are missing in the scoring matrix. Note that we do not set missing values to zero
number (or any other chosen number) to make explicit distinction between the
known precise numerical value zero and a missing value. In this example, the
scoring matrix will be defined as

S =

⎛

⎜⎜⎜⎜⎜⎜⎝

C1 C2

A1 3.7m ∅

A3 3.6m ∅

A4 3.8m ∅

A5 3.7m 640e
A1 ∪ A2 ∅ 600e
A3 ∪ A4 ∅ 650e

⎞

⎟⎟⎟⎟⎟⎟⎠
(2)

The question we want to address is how to rank the students based on such
a kind of scoring information including disjunctions of alternatives and missing
values, taking into account the relative importance weight of each criterion. Is
it possible to solve such type of non-classical MCDM problems, and how?
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3 The BF-TOPSIS Approach

The BF-TOPSIS approach has been proposed recently in [11] in a classi-
cal MCDM context where the focal elements of the scoring function Sj(·)
(j = 1, . . . , N) are only the singletons Ai (i = 1, . . . , M) of the frame of dis-
cernment A. BF-TOPSIS is initially based on belief functions for MCDM sup-
port which exploits only the M × N score matrix S = [Sj(Ai)] and the relative
importance weighting factors of criteria. The first main step of BF-TOPSIS is
the construction of an M × N BBA matrix M = [mij(·)] from the score matrix
S, and then the combination of components of M to make a final decision thanks
to the Euclidean belief interval distance, denoted by dBI , defined in [14,15].

In fact, the BF-TOPSIS approach can also be directly applied to solve the
non-classical MCDM problems because the belief interval [Belij(Xi), P lij(Xi)]
of each proposition (i.e. each focal element which is not necessarily a singleton)
Xi based on a criteria Cj can be established in a consistent manner8 from the
score matrix S = [Sj(Xi)] as follows

[Belij(Xi);Plij(Xi)] � [
Supj(Xi)

Xj
max

; 1 − Infj(Xi)
Xj

min

] (3)

where the Supj(Xi) and Infj(Xi) are computed from the score matrix S by

Supj(Xi) �
∑

Y ∈2A|Sj(Y )≤Sj(Xi)

|Sj(Xi) − Sj(Y )| (4)

Infj(Xi) � −
∑

Y ∈2A|Sj(Y )≥Sj(Xi)

|Sj(Xi) − Sj(Y )| (5)

Supj(Xi) is called the “positive support” of Xi because it measures how much Xi

is better than other propositions according to criterion Cj , and Infj(Xi) is called
the “negative support” of Xi because it measures how much Xi is worse than
other propositions according to criterion Cj . The length of interval [0, Supj(Xi)]
measures the support in favor of Xi as being the best proposition with respect
to all other ones, and the length of [Infj(Xi), 0] measures the support against
Xi based on the criterion Cj .

The denominators involved in (3), are defined by Xj
max � maxi Supj(Xi)

and Xj
min � mini Infj(Xi), and they are supposed different from zero9. From

the belief interval [Belij(Xi);Plij(Xi)], we obtain the BBA mij(·) defined by

mij(Xi) � Belij(Xi) (6)

mij(X̄i) � Belij(X̄i) = 1 − Plij(Xi) (7)

mij(Xi ∪ X̄i) � Plij(Xi) − Belij(Xi) (8)
8 Indeed, Belij(Xi) and Belij(X̄i) (where X̄i is the complement of Xi in the FoD A)

belong to [0, 1] and they are consistent because the equality Plij(Xi) = 1−Belij(X̄i)
holds. The proof is similar to the one given in [11].

9 If Xj
max = 0 then Belij(Xi) = 0, and if Xj

min = 0 then Plij(Xi) = 1, so that
Belij(X̄i) = 0.
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If a numerical value Sj(Xi) is missing in the score matrix S (it is equal to ∅),
one chooses mij(·) equals (0, 0, 1), i.e., one takes a vacuous belief assignment.
In [11], we have proposed four methods (called BF-TOPSIS1, . . . , BFTOPSIS4)
to make a decision from the BBA matrix M = [mij(·)]. Due to space restric-
tion constraint, we just recall the principle of the BF-TOPSIS1 method because
it is the simplest one. Applications of BFTOPSIS2–BFTOPSIS4 methods to
non-classical MCDM problems is also possible without difficulty. The proposed
transformation of score values to BBAs and basis of BF-TOPSIS method are
theoretically justified in [11].

Before presenting succinctly the BF-TOPSIS1 method, we need to recall the
definition of Belief Interval-based Euclidean distances dBI(m1,m2) introduced
in [14] between two BBAs m1(·) and m2(·) defined on a same FoD Θ. Mathe-
matically, dBI(m1,m2) is defined by

dBI(m1,m2) �
√

Nc ·
∑

X∈2Θ

d2W (BI1(X), BI2(X)) (9)

where Nc = 1/2|Θ|−1 is a normalization factor to have dBI(m1,m2) ∈ [0, 1], and
dW (BI1(X), BI2(X)) is the Wassertein distance [16] between belief intervals
BI1(X) � [Bel1(X), P l1(X)] = [a1, b1] and BI2(X) � [Bel2(X), P l2(X)] =
[a2, b2]. More specifically,

dW ([a1, b1], [a2, b2]) �

√[
a1 + b1

2
− a2 + b2

2

]2

+
1
3

[
b1 − a1

2
− b2 − a2

2

]2

(10)

In [14], we have proved that dBI(x, y) is a true distance metric.

Principle of BF-TOPSIS1: From the BBA matrix M and for each proposition
(focal element) Xi, one computes the Belief Interval-based Euclidean distances
dBI(mij ,m

best
ij ) defined in (9) between the BBA mij(·) and the ideal best BBA

defined by mbest
ij (Xi) = 1, and the distance dBI(mij ,m

worst
ij ) between mij(·) and

the ideal worst BBA defined by mworst
ij (X̄i) = 1.

Then, one computes the weighted average of dBI(mij ,m
best
ij ) values with

relative importance weighting factor wj of criteria Cj . Similarly, one computes
the weighted average of dBI(mij ,m

worst
ij ) values. More specifically, one computes

dbest(Xi) �
N∑

j=1

wj · dBI(mij ,m
best
ij ) (11)

dworst(Xi) �
N∑

j=1

wj · dBI(mij ,m
worst
ij ) (12)

The relative closeness of the proposition Xi with respect to ideal best solution
Xbest defined by

C(Xi,X
best) � dworst(Xi)

dworst(Xi) + dbest(Xi)
(13)
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is used to make the preference ordering according to the descending order of
C(Xi,X

best) ∈ [0, 1], where a larger C(Xi,X
best) value means a better proposi-

tion Xi.
Note that once the BBA matrix is computed from Eqs. (6), (7) and (8), we can

also apply (if we prefer) BF-TOPSIS2, BF-TOPSIS3 or BFTOPSIS4 methods
to make the final decision. Their presentation is out of the scope of this paper.

4 Apply BF-TOPSIS to Non-classical MCDM Problems

Due to space limitation restriction, we present the results of the BF-TOPSIS1
method only for two simple non-classical MCDM problems.

Example 1: This example is given by the score matrix of Eq. (2). We consider
the relative importance weights w1 = 1/3 and w2 = 2/3 of criteria C1 and
C2 respectively. Applying BBA construction formulas (6), (7) and (8) for this
example10, we get the BBA matrix M = [(mij(Xi),mij(X̄i),mij(Xi ∪X̄i))] with

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

C1 C2

A1 (0.25, 0.25, 0.50) (0, 0, 1)
A3 (0, 1, 0) (0, 0, 1)
A4 (1, 0, 0) (0, 0, 1)
A5 (0.25, 0.25, 0.50) (0.6667, 0.1111, 0.2222)
A1 ∪ A2 (0, 0, 1) (0, 1, 0)
A3 ∪ A4 (0, 0, 1) (1, 0, 0)

⎞

⎟⎟⎟⎟⎟⎟⎠
(14)

From this matrix M, we compute the distances dBI(., .) with respect to ideal
best and worst solutions shown in Table 1. Table 2 provides dbest(Xi), dworst(Xi)
and C(Xi,X

best) values computed from the formulas (11), (12) and (13). Based
on C(Xi,X

best) values sorted in descending order, we finally get the preference
order (A3 ∪A4) � A5 � A4 � A1 � (A1 ∪A2) � A3. If we restrict the preference
order to only singletons, we will get A5 � A4 � A1 � A3 (i.e. student A5 is the
best one). Note that student A2 alone cannot be ranked with respect to the other
students, which is normal based on the non-specific input (scoring) information
one has for him. Of course ad-hoc ranking solutions to rank all five students
can always be developed11, but without necessarily preserving the compatibility
with the rank obtained previously.

Example 2: In mountains, protecting housing areas against torrential floods is
based on a lot of alternatives at the watershed scale such as check dams’ series,
sediment traps, dikes, and individual protections [12]. Moreover, alternatives
can be the maintenance of existing structures or the construction of new ones to

10 When a score value is missing for some proposition Xi (i.e. if Sj(Xi) = ∅), then we
take the vacuous BBA mij(Xi ∪ X̄i) = 1.

11 For instance by normalizing the C(Xi, X
best) values (the most right column of

Table 2) and interpret it as a BBA, and then apply a decision method described
in [15].
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Table 1. Distances to ideal best and worst solutions.

Focal elem. Xi dBI(mi1,m
best) dBI(mi1,m

worst) dBI(mi2,m
best) dBI(mi2,m

worst)

A1 0.6016 0.2652 0.7906 0.2041

A3 0.8416 0 0.7906 0.2041

A4 0 0.8416 0.7906 0.2041

A5 0.6016 0.2652 0.2674 0.5791

A1 ∪ A2 0.5401 0.3536 0.6770 0

A3 ∪ A4 0.5401 0.3536 0 0.6770

Table 2. Average distances and relative closeness indicators.

Focal elem. Xi dbest(Xi) dworst(Xi) C(Xi, X
best) Ranking

A1 0.7276 0.2245 0.2358 4

A3 0.8076 0.1361 0.1442 6

A4 0.5270 0.4166 0.4415 3

A5 0.3788 0.4745 0.5561 2

A1 ∪ A2 0.6314 0.1179 0.1573 5

A3 ∪ A4 0.1800 0.5692 0.7597 1

increase the protection level. Final propositions generally involve several of pre-
vious individual alternatives. We propose here a simplified case of application.
Within a given watershed, a check-dams’ series already exists. Older than one
century years old, its maintenance (alternative A1) is questioned. Some experts
propose to abandon it and to build a sediment trap upstream the alluvial fan
(alternative A2) or to limit damage on buildings through individual protections
(alternative A3). The Decision-Maker (DM), here the local municipality, must
decide the best proposition taking into account several criteria: the investment
cost (C1 in e, in negative values), the risk reduction in 50 years between the
current situation and the expected situation after each proposition implemen-
tation (C2 in e), the impact on environment (C3 is a grade from 1 to 10), and
the land-use areas needed in privates (C4 in m2, in negative values). For each
criterion, the higher is the score, the better is the proposition. The DM gives
the same importance weight to C1 and C2 (w1 = w2 = 0.33), but they are more
important than C3 (w3 = 0.20) which is more important than C4 (w4 = 0.14).
The score matrix is given in Eq. (15). In this case, the problem is not to have no
knowledge on some scores but is that they are not cumulative in the same way
for each criterion. For C1 and C4, the score of the disjunction of two alternatives
is the sum of individual scores whereas it is not the case for C2 and C3.

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2 C3 C4

A1 −150000 100000 10 0
A2 −500000 200000 2 −20000
A3 −550000 250000 10 −5000
A1 ∪ A2 −650000 230000 2 −20000
A1 ∪ A3 −700000 250000 10 −5000
A2 ∪ A3 −1050000 250000 2 −25000
A1 ∪ A2 ∪ A3 −1200000 250000 2 −25000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)
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The BBA matrix based on S using (3), (4), (5), (6), (7) and (8) (rounded to 2
decimal points) is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1 C2 C3 C4

A1 (1, 0, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0)
A2 (0.44, 0.10, 0.46) (0.45, 0.28, 0.27) (0, 1, 0) (0.10, 0.67, 0.23)
A3 (0.37, 0.13, 0.50) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)
A1 ∪ A2 (0.27, 0.21, 0.52) (0.73, 0.10, 0.17) (0, 1, 0) (0.10, 0.67, 0.23)
A1 ∪ A3 (0.23, 0.26, 0.51) (1, 0, 0) (1, 0, 0) (0.70, 0.07, 0.23)
A2 ∪ A3 (0.04, 0.75, 0.21) (1, 0, 0) (0, 1, 0) (0, 1, 0)
A1 ∪ A2 ∪ A3 (0, 1, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)

The weighted distances to the ideal best and worst solutions and the relative
closeness indicator are listed in Table 3. Based on relative closeness indicator
sorted in descending order, the final preference order is (A1 ∪ A3) � A3 � A1 �
(A1 ∪ A2) � (A2 ∪ A3) � A2 � (A1 ∪ A2 ∪ A3): maintaining the existing check
dams’ series and implementing individual protections is the best option. If the
preferences are restricted to single alternatives, one will get as final preference
order A3 � A1 � A2, i.e. option A3 (only individual protections) should be
preferred by the DM.

Table 3. Average distances and relative closeness indicators.

Focal elem. Xi dbest(Xi) dworst(Xi) C(Xi, X
best) Ranking

A1 0.3012 0.6116 0.6700 3

A2 0.5668 0.3677 0.3935 6

A3 0.1830 0.7483 0.8035 2

A1 ∪ A2 0.4476 0.4901 0.5226 4

A1 ∪ A3 0.1555 0.7775 0.8333 1

A2 ∪ A3 0.5562 0.3614 0.3938 5

A1 ∪ A2 ∪ A3 0.8328 0.2694 0.2444 7

5 Conclusions

In this paper, we have shown how the BF-TOPSIS approach can be exploited
to solve non-classical MCDM problems. This method is relatively easy to use. It
does not require the normalization of data and offers a consistent construction of
basic belief assignments from the available scoring values. It can also deal with
missing scoring values and different criteria weights as well. In this paper only
the BF-TOPSIS1 method has been presented, but other more sophisticate BF-
TOPSIS methods could be also used to solve non-classical problems, but at the
price of a higher complexity. The application of this new BF-TOPSIS approach
to solve non-classical MCDM problems for natural risk prevention is currently
under evaluation, and it will be reported in a forthcoming publication.
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Abstract. Road traffic accidents are among the most pressing transportation-
related issues; they have not yet been addressed in a satisfactory way in many
countries. They can be viewed as failures of road safety systems caused by a set
of contributing components. This paper proposes a belief fault tree analysis
model based on road safety inspection for identifying road infrastructure defi-
ciencies that influence an accident occurrence and guiding highway profes-
sionals in the implementation of proper correction actions. Fault Tree Analysis
is used as a risk assessment technique to diagnose the failures of road safety
systems, while evidence theory is used to represent the probabilistic-based
information under uncertainty gathered from expert opinions. The proposed
approach is applied to analyse a real-world high-accident intersection location. It
provides a means for road safety engineers to elucidate the cause of accident
occurrence and to conduct road safety inspection under uncertainty.

Keywords: Fault tree analysis � Evidence theory � Uncertainty � Road
accident � Road safety inspection � Decision making

1 Introduction

Road traffic accidents have been acknowledged as one of the most serious phenomena
due to the problem of life loss and economic loss. Many national and international
attempts have been made in order to alleviate the road accident situations. However,
they have not yet been addressed in a satisfactory way. Among various road safety
improvement programs, Road Safety Inspection (RSI) program is a proactive tool to
prevent the accident occurrence. RSI is a site review of hazardous conditions and an
identification of road infrastructure failures and deficiencies that influence an accident
loss. It needs expert opinions and experience in road safety, but does not require
in-depth data input [1].

The study considers a road as a system and road accidents are the consequence of
road safety system failure. Road traffic accidents are the chain of event caused by three
contributing elements, which are (i) the roadway and environmental system; (ii) the
driver system; and (iii) the vehicle system. [2] This study proposes a systemic approach
by using an evidence theory in Fault Tree Analysis (FTA) as a mean to identify road
safety deficiencies and recommend safety measures. Fault Tree Analysis (FTA) is used

© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochvíl (Eds.): BELIEF 2016, LNAI 9861, pp. 84–93, 2016.
DOI: 10.1007/978-3-319-45559-4_9



as a risk and reliability analysis technique to diagnose the failures of the road safety
system, while evidence theory is used to represent the probabilistic-based information
under ignorance from expert opinions.

The study approaches the road safety inspection as decisions under uncertainty of
which safety experts have ambiguous and conflicting opinions about the possible risk
of accidents. The new approach for road safety inspection is proposed that models
decision systems based on fault tree analysis and employs uncertain knowledge in
supporting decision-making. The study selects a right-turn angled collision at a
high-accident intersection location as a case study to demonstrate the application of
evidence theory and FTA to road safety inspection.

2 Literature Review

Fault Tree Analysis (FTA) is a well-known risk analysis technique to diagnose the
failures of many engineering systems. FTA helps determine the combinations of
hardware component failures and human errors that result in the occurrence of undesired
outcome [3–5]. Figure 1 shows the typical structure of fault tree. Under the fault tree
structure, an undesired outcome is referred to a “top event”, causes are referred to “basic
events” (e.g. E1–E6 in Fig. 1), and the intermediate events (e.g. G1–G3 in Fig. 1).

The traditional FTA calculates the probability of the top event based on the
probabilistic-based information. It assumes that a probability distribution of each basic
event is known and complete. Such information can be derived from either database or
expert knowledge.

In real-world risk and reliability analyses, the information is incomplete or
imprecise. It has been argued that traditional probabilities are no longer appropriate to
represent uncertainty associated with ignorance particularly where probabilities of basic
events are not known or sufficient past statistical data are not completed. [6, 7] During
the last decade, a number of studies have been made to apply the concept of fuzzy logic
to the fault-tree analysis in several systems [8–10]. Their results showed the

Fig. 1. Structure of fault tree
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compatibility of fuzzy logic with the fault-tree analysis. However, the fuzzy set theory
is limited to deal with data under vagueness.

Recent developments in evidence theory, also known as Dempster-Shafer Theory
(DST), have revealed how probability can be used to represent incomplete or imprecise
information, especially information that is based on human judgment or human-
machine interaction. DST was developed by Dempster and Shafer as an extension of
probability theory. [6, 11–13] DST has been applied in reliability analyses in engi-
neering systems where several states cannot be distinguished from one another or the
state of “I don’t know” exists. [13–18] This paper employs the basic concepts of DST
including the Dempster Rule of Combination (DRC), the method of defining the basic
probability assignment (bpa), and the calculation of the lower and upper probabilities
(belief and plausibility measures.)

3 Evidence Theory in Fault Tree Analysis

The study proposes the fault tree analysis with evidence theory for examining factors
that affect the occurrence of road traffic accidents. The steps of analysis are as follows.

Step 1. Construct a logical fault-tree diagram consisting of a top event and basic events,
and determine the minimum cut sets of the fault tree.

Step 2. Interview experts to assign the basic probability assignment (or belief value)
associated with the truth of individual basic events. Each basic event has three
outcomes (Xi) and their associated belief value are: mk(T) for True, mk(F) for
False, and mk(T[F) for I don’t know. Two basic questions are asked: how
much does the expert believe that the basic event leads to the accident
occurrence; and how much are they confident about their belief value. In other
words, the lower and upper probabilities for basic event k are assigned.

X

Xi�X

mk Xið Þ ¼ mk Tð Þþmk Fð Þþmk T [Fð Þ ¼ 1 ð1Þ

Step 3. Aggregate experts’ opinions by using the Dempster’s rule of combination
(DRC). DRC is an aggregate operator in evidence theory used for combining
two belief values as shown in Eq. (2).

mk Xið Þ ¼

P
XU ;XV jXU \XV¼Xp

mk;1 XUð Þ � mk;2 XVð Þ

1� P
XU ;XV jXU \XV¼£

mk;1 XUð Þ � mk;2 XVð Þ ð2Þ

where mk,1(X) and mk,2(X) be the belief value of basic event k from experts 1
and 2 where the outcomes of X can be True, False, or I don’t know. The
numerator is the sum of the product of the belief values that supports set
X assigned by each expert, whereas the denominator is a normalizing factor
which is the sum of the product of the belief values associated with all the
possible combinations of opinions that are not in conflict.
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Step 4. Calculate the basic probability assignment of the intermediate and top events of
the fault tree. The basic probability assignment of the event is calculated by
Eqs. (3)–(5) for the “OR” gate and by Eqs. (6)–(8) for the “AND” gate. Let
{mk(T), mk(F), mk(T[F)} and {ml(T), ml(F), ml(T[F)} denote the basic
probability assignment of the event k and l, respectively.
For the OR gate

m Tð Þ ¼ mk Tð Þml Tð Þþmk Tð Þml Fð Þþmk Tð Þml T [Fð Þ
þmk Fð Þml Tð Þþmk T [Fð Þml Tð Þ ð3Þ

m Fð Þ ¼ mk Fð Þml Fð Þ ð4Þ

m T [Fð Þ ¼ mk Fð Þml T [Fð Þþmk T [Fð Þml Fð Þ
þmk T [Fð Þml T [Fð Þ ð5Þ

For the AND gate

m Tð Þ ¼ mk Tð Þml Tð Þ ð6Þ

m Fð Þ ¼ mk Tð Þml Fð Þþmk Fð Þml Tð Þþmk Fð Þml Fð Þ
þmk Fð Þml T [Fð Þþmk T [Fð Þml Fð Þ ð7Þ

m T [Fð Þ ¼ mk Tð Þml T [Fð Þþmk T [Fð Þml Tð Þ
þmk T [Fð Þml T [Fð Þ ð8Þ

Step 5. Once the basic probability assignment of the top event mtop(X) of the fault tree
is calculated, then compute the Belief measure (Bel) and Plausibility measure
(Pl) of the top event by Eqs. (9) and (10), which indicate the lower (conser-
vative) and upper (optimistic) failure probabilities.

Beltop ¼ mtopðTÞ ð9Þ

Pltop ¼ mtopðTÞþmtopðT [FÞ ð10Þ

Step 6. Recalculate the basic probability assignment and Belief measure of the top event
when each basic event is unavailable, Beltop{Ek = 0}. In this step, the basic event
Ek is removed one at a time from the fault tree, and then repeat Steps 4 and 5.

Step 7. Compute importance measures (Ik) for individual basic events and minimum cut
sets. The importance measure is calculated by the difference between failure
probabilities (belief values) of top events when all basic events exist (from Step
5) and when each event k does not exist (from Step 6)

Ik ¼ Beltop � Beltop Ek ¼ 0ð Þ ð11Þ
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Step 8. Set the priority among the basic events based on the importance measure (Ik)
and then propose corrective actions to minimize the failure of accident
occurrence according to the highly important minimum cut sets.

4 Application to Road Safety Inspection

The proposed approach, belief fault tree analysis, was applied to road safety inspection
program at a high accident location in Chiang Mai, Thailand. The location is the
unsignalized T-intersection between 6-lane divided major road (north-south) and 4-lane
minor road (west-east) controlled by stop operations. Figure 2 shows the layout of this
unsignalized T-intersection. There are storage right-turn lanes on both directions of

Fig. 2. Layout of intersection area
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major road for U-turn or right-turn movement. The problem is that there are heavy
right-turn movements from the major road to the minor road and heavy U-turn
movements on both directions. Based on the field observation, many drivers have
difficulties making a right-turn or a U-turn due to high-speed and heavy opposing traffic
volumes on the major road. At this intersection, various types of accidents are possibly
occurred; for example, right-turn angled collision, right-turn rear end collision, right-
turn head-on collision, and rear-end collision as presented in Fig. 2.

This study presents the model results as follows. First, the fault tree diagram is
presented. Second, the basic events and their importance measures are discussed and
compared. Finally, the minimum cut sets associated with accident and their proposed
corrective actions are determined.

The fault tree structure was developed for a right-turn angled collision between a
right-turn vehicle from the major road and a through vehicle from the opposite
direction. A right-turn angled collision is the most serious accident type at this inter-
section. The “Right-Turn Angled Collision” is defined as an undesired outcome or the
top event of fault tree. Two events leading to this accident type are defined “A vehicle
on a minor road fails to cross the intersection” and “A vehicle on a major road intrudes
into the intersection.” The latter is described by an action of a vehicle on a major road
whether it “does not stop” or “fails to stop”. The causes of event, leading to each
intermediate event are identified next.

Figure 3 shows the fault-tree structure for the “Right-Turn Angled Collision”
associated with this intersection. In this proposed fault-tree structure, 33 basic events
and 285 minimum cut sets are determined. These imply that there are a large number of
possible combinations related to this type of accident.

The following step is to calculate an importance measure (I) for each basic event
and each minimum cut set, and then prioritize all cut sets based on its importance
measure. Table 1 presents the top ten basic events based on their importance measures.
Figure 4 shows the importance measures of all basic events leading to the “Right-Turn
Angled Collision.”

Using a minimum cut set concept, the road traffic accident risks can be treated in an
effective manner by prioritizing the minimum cut sets and recommending corrective

Table 1. Top ten basic events of the right-turn angled collision

Rank No. Description

1 301 Overspeeding of vehicles on the major road
2 121 Insufficient storage in the middle of the intersection for a left-turn traffic
3 223 Missing street lighting for the high-speed intersection approach
4 102 Risk-taking behavior of a left-turn traffic from a minor road
5 101 Error in gap judgment of a left-turn traffic from a minor road
6 221 Visibility of the intersection for traffic on the major road
7 224 Poor warning of the intersection for the major traffic
8 122 Inadequate acceleration/braking rate of vehicles
9 222 Missing channelization for left-turn movements to separate vehicle paths
10 315 Vehicle visibility from the driver viewpoint
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Table 2. Minimum cut sets of the right-turn angled collision and their proposed preventive
actions

Rank Minimum Cut
Set

Description Preventive Actions

1 Minor road:
insufficient
storage

Major road:
overspeed

Spaces in the middle of the intersection are
not adequate to accommodate right-turn
vehicles from the minor road waiting to
merge the northbound traffic. In
particular, when a long heavy vehicle
stops and waits to merge, its trailer may
intrude into the through lane in the
southbound direction

• Provide an acceleration lane to separate
through northbound maneuvers on a
major road and right-turn maneuvers
from a minor road

• Redesign or consider other traffic control
operations to reduce this type of conflict
at an unsignalized intersection

• Relocate or close the median U-turn
intersection

2 Minor road:
error in gap
judgment

Major road:
overspeed

The driver of right-turn vehicle has
difficulty judging gap sizes before
deciding to make a turn. Such driver
decides to proceed when high-speed
oncoming vehicles are close

• Increase availability of gaps in through
traffic on a major road by properly
coordinating with an upstream
intersection

• Assist right-turn drivers in judging gap
sizes by providing visual information
for right-turn vehicles from a minor
road (e.g. traffic information system)

3 Minor road:
risk-taking
driving

Major road:
overspeed

The risk-taking driver from the minor road
is likely to cross the intersection even
though there is a small headway between
two vehicles on the major road. The
situation is more severe when the
vehicles on the major road approach with
the high speed

• Improve the visibility of traffic on a major
road for drivers making right-turn from
a minor road

• Reduce vehicle speeds on northbound so
that vehicles approach the intersection
as a platoon from the adjacent
intersection

Fig. 4. Importance measure of basic events leading to a right-turn angled collision
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actions for the top minimum cut sets. Table 2 presents the top three minimum cut sets,
its description, and its proposed preventive actions. The rankings indicate that the
higher order of the basic event has a higher contribution to an undesired outcome
(Right-Turn Angled Collision), and hence, some immediate treatments are needed for
those high rankings.

5 Conclusions

The principal advantages of the application of the evidence theory to fault tree analysis
for road safety inspection program are (i) potential to systematically identify the causes
of accident occurrence or inspect road safety deficiencies; and (ii) capability to handle
ignorance where knowledge of individual safety experts is fragmented and possibly
conflicting.

It is desirable in applying the evidence theory to fault tree analysis for road safety
inspection program in which several experts are involved. The belief fault tree analysis
method developed in the paper allows safety experts to genuinely assign the probability
values associated with individual causes of accident. The proposed method uses the
evidence theory to represent the expert opinions and the fault tree structure to cate-
gorize the roots of accidents. The evidence theory is used to quantify the probability of
occurrence for the top event of the fault tree as well as to evaluate the relative
importance of individual basic events and minimum cut sets of the fault tree. The
rankings of basic events and minimum cut sets are obtained based on the importance
values, while their respective preventive measures are proposed to reduce the risks of
accident.

To handle uncertainty in road safety inspection program, it is essential to preserve
uncertainty as much as possible, and be flexible to use mathematical framework that are
most fit to the nature of information available.
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Abstract. Crowdsourcing platforms enable to propose simple human
intelligence tasks to a large number of participants who realise these
tasks. The workers often receive a small amount of money or the plat-
forms include some other incentive mechanisms, for example they can
increase the workers reputation score, if they complete the tasks cor-
rectly. We address the problem of identifying experts among participants,
that is, workers, who tend to answer the questions correctly. Knowing
who are the reliable workers could improve the quality of knowledge one
can extract from responses. As opposed to other works in the literature,
we assume that participants can give partial or incomplete responses, in
case they are not sure that their answers are correct. We model such
partial or incomplete responses with the help of belief functions, and
we derive a measure that characterizes the expertise level of each par-
ticipant. This measure is based on precise and exactitude degrees that
represent two parts of the expertise level. The precision degree reflects the
reliability level of the participants and the exactitude degree reflects the
knowledge level of the participants. We also analyze our model through
simulation and demonstrate that our richer model can lead to more reli-
able identification of experts.

Keywords: Crowdsourcing · Expert · Expertise level · Exactitude and
precision degrees

1 Introduction

Crowdsourcing is term for “the act of a company or institution taking a function
once performed by employees and outsourcing it to an undefined (and generally
large) network of people in the form of an open call” [4]. Crowdsourcing platforms
are used more and more often to execute tasks that are hard for computers but
easy for humans. This form of realizing small human intelligence tasks through a
large number of individuals has been used in various domains; and plays a more
and more important role. It is also considered as a style of future work [10] that
can be crucial for example in the context of decision support [2]. Controlling the
c© Springer International Publishing Switzerland 2016
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quality of obtained data and identifying the workers who tend to give correct
answers in this environment still a major problem. The absence of quality control
of participants (and their responses) reduces the efficiency of these platforms [5].

One often refers to a participant who gives exact and precise answers as an
expert [12]. Several works [5,8,9,11] were proposed to identify the experts in this
context. These methods assume that if a worker accepts to complete a task, he
will give an answer, even if he is not sure about it. In other words, they make the
assumption that a worker does not skip a question. Also, existing crowdsourcing
platforms do not allow to give partial results. For example, if the tasks involve
a multiple choice question with answers A, B, C and D, a worker cannot say
that the correct answer either Aor B (he is not sure about), but certainly not
C or D.

Some works use first “gold” data on which real answers are known [6]. In
that case, a degree of exactitude (the percentage of answers that is not wrong)
and a degree of precision (the percentage of answers that is not partial) could
be learn to measure the expertise level. Here, we assume we that do not have
such data.

In our work, we construct a model where we allow situations where a worker
skips some questions or answers them partially. In our model we make use of
belief functions that is a powerful framework to take into account such imper-
fection of data. We propose a novel expert identification technique that by cal-
culating a degree of exactitude (based on a level of answers that is not wrong)
and a degree of precision (based on a level of answers that is not partial). The
“ideal” worker has a high degree of exactitude and a high degree of precision.
For example, in the multiple choice question case, if the correct answer is A then
clearly the answer A is better than an answer Aor B (higher degree of precision).

The degrees of exactitude and precision are complementary, so using both
of them together can lead to better expert identification methods. The rest of
the paper is organized as follows. Section 2 formulates the expert identification
problem more precisely, together with some relevant related work. We present
our approach in Sect. 3. The experimental evaluation is presented in Sect. 4.

2 Expert Identification in the Context of Crowdsourcing

2.1 Notions of an Expert

An expert in the context of crowdsourcing, is the person who provides a large
number of correct, complete and reliable answers. The person who acquired
a set of knowledge and skills about a particular area. He can extract knowl-
edge and relevant responses with a minimum cognitive effort. He is identified in
crowdsourcing platforms by: the precision and the exactitude of responses, the
capability to detect the tasks a priori, the knowledge, skills and learning level.

2.2 Expert Identification Methods

Evaluating quality of workers and identifying experts in crowdsourcing repre-
sents a standing problem. Many authors found that taking randomly workers is
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a good choice [1] and others found that establishing a good strategy for select-
ing experts is more interesting [5]. Several researches have been exploring this
area, but essentially there are two basic approaches to identify the experts: Use
“gold” data: Provide participants the questions that we already know the
answers and identify the workers who give the correct responses as the experts.
Use multiple workers: Give a score for each participant which represents his
qualities and skills. In this context, Ipeirotis et al. improved in [5] the expecta-
tion maximization algorithm (EM) to generate a scalar score representing the
quality of each worker. [9] proposed an evaluation of the participants by the set
of labels. [8] based on behavioral observation to define a typology of workers.
[11] proposed an algorithm based on the graphs (SPEAR) to classify the users
and to identify the experts. Various methods proposed to identify the experts.
But, all these methods have a such level of imprecision and inaccuracy results. In
order to ensure a certain identification, we propose to model this imperfection.
We proposed an identification of experts with using the theory of belief func-
tions [3,13] which represents a mathematical theory for representing imperfect
information and gives a complete framework to model the participant’s answers.

3 Identification of the Experts

We would like to identify the experts in a crowdsourcing platform. We assume
that the questions (tasks) and a list of answers from the crowd workers available.
However, we do not assume any access to a “gold” data that would contain
all the correct answers. Such a ground truth would clearly largely simplify the
identification of experts. Therefore, we develop novel techniques - based on the
theory of belief functions - to calculate the exactitude and precision degrees.

We use the following formalism. We note the responses rUj
proposed by each

participant Uj with a mass of belief mΩk

Uj
. Each response is specific for each

question Qk (k = {1, · · · ,K}) which has a specific frame of discernment Ωk

with Ωk = {ωQk

1 , . . . , ωQk
nk

}. The frame Ωk is the set of all possible responses of
Qk question. Therefore, we obtain a matrix of mass of belief of size s partici-
pants/lines and K questions/columns given by:

Q1 . . . Qk . . . QK

U1

...
Uj

...
Us

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

mΩ1
U1

. . . mΩk

U1
. . . mΩK

U1
...

...
...

mΩ1
Uj

. . . mΩk

Uj
. . . mΩK

Uj

...
...

...
mΩ1

Us
. . . mΩk

Us
. . . mΩK

Us

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(1)

3.1 Exactitude Degree

The exactitude degree is based on the average of the distance between the
response proposed by the participant mΩk

Uj
and all the responses of the other
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participants mΩk

Uεs−1
. This representation of all other participants is obtained

by the average of the responses proposed by the s − 1 participants for the kth

question, such as:

mΩk

Uεs−1
(X) =

1
s − 1

s−1∑

j=1

mj(X) (2)

The distance is then calculated by the distance of Jousselme et al. [7]:
dJ(mΩk

Ui
,mΩk

Uεs−1
). According to this distance, we calculate the exactitude degree

for each participant Uj as follows:

IEUj
= 1 − 1

r(Uj)

K∑

k=1

dΩk

Uj
(3)

The assumption behind this method is the majority of participants give a
correct answer. This assumption is currently made in information fusion and
crowdsourcing.

The exactitude degree can be used to identify the experts. For this purpose,
we use the k-means algorithm (with k = 2 for expert/non expert). The set of
experts is given by the cluster with the higher average of exactitude degree.

3.2 Precision Degree

Based on the model of responses given by the mass functions mΩk

Uj
, we can define

a degree of precision.
We recall that we allow the participants to give partial answers, that is crucial

for calculating the precision degree. The usual model of responses (that is, the
worker must give a complete answer), we could not define a such degree.

We note δΩk

Uj
the specificity degree of the mass function mΩk

Uj
. It is defined

by [14] as follows:

δΩk

Uj
= 1 −

∑

X∈2Ωk

mΩk

Uj
(X)

log2(|X|)
log2(|Ωk|) (4)

This specificity degree allows to translate the precision level of each response
independently of the other participant’s responses. To measure the degree of
precision of each participant IPUj

, we propose to calculate the average of the
specificity degrees for all the kth questions. Such as:

IPUj
=

1
r(Uj)

K∑

k=1

δΩk

Uj
(5)

We determine the experts by using k-means (with k = 2). We do not need the
assumption on the majority of participant’s answers.
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3.3 Global Degree

In order to obtain a global degree, we combine both degrees in a single degree
for each participant. The global degree is given by a weighted average as follows:

GDUj
= βUj

IEUj
+ (1 − βUj

)IPUj
(6)

The weight βUj
is introduced to give more or less importance for each degree.

Hereafter, we do not make any difference between the participants in the crowd.

4 Experimentation

In the following, we generate some mass functions in order to evaluate our app-
roach in the context where there is not use of gold data. We generate three kinds
of participants. The experts are those who provide precise and exact responses,
in the generation of the masses a singleton is expected on the correct answer.
However, if the expert is not totally sure of him, the ignorance is also a focal
element. The imprecise experts are those who provide exact but imprecise
answers, the correct singleton can be in a disjunction and the ignorance can
also be a focal element. The ignorants (sometimes called spammers) are those
who give random responses with mass functions taken randomly. To verify the
efficiency of our approach we make several experiments with 100 participants,
100 questions where each experiment is repeated 10 times.

The precision or the exactitude degree alone is insufficient to identify the
experts. The global degree of the equation (6) allows to identify precise and
exact responses simultaneously. In a first experiment (with results illustrated in
Fig. 1), we vary the experts’ number, without generating imprecise experts, from
10 % to 90 % with the global degree in order to prove the ability of our method
to identify precise and exact responses simultaneously. In order to demonstrate
the importance of each degree we vary in each case the weight βUj

from 0.1 to
0.9. 100 % Good classification rate with βUj

= 0.5 reflects that both exactitude
and precision degrees have the importance to identify experts. Our algorithm
identifies correctly the experts and puts all the other participants in the class of
the ignorant.

To verify the stability of the good classification rates, we vary in the next
experiment (with results illustrated in Fig. 2) the number of questions with 35 %
of experts, 35 % of imprecise experts and 30 % of ignorants for 10 iterations, we
calculate the three degrees. We measure this stability with a perturbation rate
calculated by the standard deviation between the different good classification
rate exchange on 10 iterations. This experiment shows that it is necessary to
have a certain number of questions in order to ensure a better identification.

We can found that 30 questions provide a reliable good classification rate.
All the previous experiments show the ability of our method to identify the
experts in the context of uncertain and imprecise responses. The recourse to the
theory of belief functions ensures a reliable identification. It solves the problem
of imperfection and provides a certain frame of characterization. With both
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Fig. 1. Variation of the good classification rate according to the percentages of experts

Fig. 2. The variation of the perturbation rate according to the different degrees

degrees, we detect the exactitude and precision level of each participant and we
correctly identify the experts in the crowd. To confirm the interest of the theory
of the belief functions, we compare our belief approach with the probabilistic
approach corresponding to the mass function mΩk

Uj
which models the responses

proposed by each participant Uj given by the pignistic probability:

BetP
m

Ωk
Uj

(ωk) =
∑

X⊆Ωk,ωk∈X

mΩk

Uj
(X)

(1 − mΩk

Uj
(∅))|X| (7)
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With the same principle in Sect. 3, we calculate the exactitude degree as follows:

EP (Uj) = 1 − 1
r(Uj)

K∑

k=1

dΩk

Uj
(8)

where dΩk

Uj
is the Euclidean distance on the probabilities. We have to do the same

assumption on the majority of correct answers. We use k-means to characterize
the experts. In this way, we obtain a probabilistic approach available to detect
experts. We limit the comparison by the exactitude degree, due to the impossi-
bility to determine the specificity degree with the probability. We vary in this
experiment the percentage of experts and imprecise experts at the same time.
The results are illustrated in Fig. 3. This figure shows the interest of the use of
the belief functions theory to identify the experts and imprecise experts. The
probabilistic approach cannot identify the experts from the imprecise experts,
it loose the information of exactitude and could not model the imprecision. The
regression of the good classification rate to 0 % reflects this inability. Whereas
with the belief approach the precise and imprecise experts are better discrimi-
nated with all the variations. In complex environment like the crowdsourcing, the
theory of belief functions can consider all the imperfection of the participant’s
responses.

Fig. 3. Comparison between belief function and probability function

5 Conclusion

We introduced a new technique for characterizing the experts in a crowdsourcing
platform by using the belief functions theory, to improve the quality of data that
one could obtain from such platforms. We use a model where the crowd workers
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are allowed to skip a question or provide partial answers. Based on a belief
model of the participant’s responses, we calculated two complementary degrees:
An exactitude degree translates the knowledge level of the participants and a
precision degree reflects their reliability level. We showed the ability of these
degrees to help for the expert identification and we demonstrated the interest of
the theory of the belief functions in a comparison with the probability theory.
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Abstract. In evidential clustering, the membership of objects to clus-
ters is considered to be uncertain and is represented by mass functions,
forming a credal partition. The EVCLUS algorithm constructs a credal
partition in such a way that larger dissimilarities between objects corre-
spond to higher degrees of conflict between the associated mass functions.
In this paper, we propose to replace the gradient-based optimization pro-
cedure in the original EVCLUS algorithm by a much faster iterative row-
wise quadratic programming method. We also show that EVCLUS can
be provided with only a random sample of the dissimilarities, reducing
the time and space complexity from quadratic to linear. These improve-
ments make EVCLUS suitable to cluster large dissimilarity datasets.

Keywords: Evidential clustering · Dempster-Shafer theory · Evidence
theory · Unsupervised learning

1 Introduction

Evidential clustering extends both hard and fuzzy clustering by modeling cluster-
membership uncertainty using Dempster-Shafer mass functions. The collection
of mass functions for n objects is called a credal partition. The first evidential
clustering algorithm, called EVCLUS, was introduced in [4]. This algorithm con-
structs a credal partition from a dissimilarity matrix, in such a way that more
dissimilar objects are assigned mass functions with greater degrees of conflict.
This method was shown to perform as well as or better than other relational
clustering algorithms on a variety of datasets, even when the dissimilarities are
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not Euclidean distances [4]. However, as other relational clustering algorithms,
EVCLUS requires to store the whole dissimilarity matrix; the space complexity
is thus O(n2), where n is the number of objects, which precludes application to
datasets containing more than a few thousand objects. Also, each iteration of the
gradient-based optimization algorithm used in [4] requires O(f3n2) operations,
where f is the number of focal sets of the mass functions, i.e., the number of
subsets of clusters being considered. This computational complexity of EVCLUS
further restricts its use to relatively small datasets.

After EVCLUS, other evidential clustering algorithms were introduced. The
Evidential c-means algorithm (ECM) [7] is an evidential version of the hard and
fuzzy c-means; it is only applicable to attribute data. A version of ECM for
dissimilarity data (Relational Evidential c-means, RECM) was later proposed
in [8]. This algorithm is faster than EVCLUS, but it can fail to converge when
the dissimilarities are not Euclidean distances. In [11], Zhou et al. introduced
another variant of ECM, called the Median Evidential c-means (MECM), which
is an evidential counterpart to the median c-means and median fuzzy c-means
algorithms. MECM can be used with non-metric dissimilarity data. Yet, it still
requires to store the whole dissimilarity matrix. Recently, we introduced another
evidential clustering procedure, called EK-NNclus [3]. This method uses only
the k nearest neighbors of each object: it thus has lower storage requirements
than EVCLUS, RECM or MECM, and it is considerably faster. However, it can
generate only very simple credal partitions, in which masses are assigned only
to singletons {ωk} and to the set Ω of clusters.

In this paper, we propose two improvements of EVCLUS, which make it
applicable to very large dissimilarity datasets. First, the gradient-based optimiza-
tion procedure in the original EVCLUS algorithm is replaced by an adaptation of
the much faster iterative row-wise quadratic programming method proposed in
[10]. Secondly, and even more importantly, we show that EVCLUS does not need
to be provided with the whole dissimilarity matrix, reducing the time and space
complexity from quadratic to roughly linear. The rest of this paper is orga-
nized as follows. The basic notions of evidential clustering and the EVCLUS
algorithm will first be recalled in Sect. 2. The improvements to EVCLUS will
then be introduced in Sect. 3, and simulation results will be presented in Sect. 4.
Finally, Sect. 5 will conclude the paper.

2 Evidential Clustering

The notion of credal partition will first be recalled in Sect. 2.1. The EVCLUS
algorithm will then be summarized in Sect. 2.2.

2.1 Credal Partition

Assume that we have a set O = {o1, . . . , on} of n objects, each one belonging
to one and only one of c groups or clusters. Let Ω = {ω1, . . . , ωc} denote the
set of clusters. If we know for sure which cluster each object belongs to, we
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can provide a partition of the n objects. Such a partition may be represented
by binary variables uik such that uik = 1 if object oi belongs to cluster ωk,
and uik = 0 otherwise. If objects cannot be assigned to clusters with certainty,
then it is natural to quantify cluster-membership uncertainty by mass functions
m1, . . . ,mn, where each mass function mi is defined on Ω and describes the
uncertainty about the cluster of object i. The n-tuple M = (m1, . . . ,mn) is
called a credal partition [4]. The notion of credal partition is very general, in
the sense that it boils down to several alternative clustering structures when
the mass functions composing the credal partition have some special forms [2].
Hard, fuzzy, possibilistic and rough partitions may also be computed from a
credal partition as by-products [2,7]. Recently, evidential clustering has been
successfully applied in various domains such as machine prognosis [9], medical
image processing [6] and analysis of social networks [11].

2.2 EVCLUS

The EVCLUS algorithm, introduced in [4], constructs a credal partition for dis-
similarity data. Let D = (dij) be an n×n dissimilarity matrix, where dij denotes
the dissimilarity between objects oi and oj . Dissimilarities may be distances com-
puted from attribute data, or they may be provided directly, in which case they
need not satisfy the axioms of a distance function. To derive a credal partition
M = (m1, . . . ,mn) from D, we assume that the plausibility plij that two objects
oi and oj belong to the same class is a decreasing function of the dissimilarity
dij : the more similar are two objects, the more plausible it is that they belong
to the same cluster. Now, it can be shown [4] that the plausibility plij is equal
to 1 − κij , where κij is the degree of conflict between mi and mj . The credal
partition M should thus be determined in such a way that similar objects have
mass functions mi and mj with low degree of conflict, whereas highly dissimilar
objects are assigned highly conflicting mass functions. This can be achieved by
minimizing a stress function measuring the discrepancy between the pairwise
degrees of conflict and the dissimilarities, up to some increasing transformation.
Here, we consider the following stress function,

J(M) = η
∑

i<j

(κij − δij)2, (1)

where η =
(∑

i<j δ2ij

)−1

is a normalizing constant, and the δij = ϕ(dij) are
transformed dissimilarities, for some fixed increasing function ϕ from [0,+∞)
to [0, 1]. For instance, ϕ can be chosen as ϕ(d) = 1 − exp(−γd2), where γ is
a user-defined parameter. Parameter γ can be fixed as follows. For α ∈ (0, 1),
let d0 = ϕ−1(1 − α) be the dissimilarity value such that two objects whose
dissimilarity exceeds d0 have a plausibility at least equal to 1− α. For ϕ defined
as above, we have γ = − log α/d20. In the simulations presented in this paper, we
used α = 0.05, leaving d0 as the only parameter to be adjusted.
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3 Improvements to EVCLUS

In this section, we introduce two improvements to the original EVCLUS algo-
rithm. First, in Sect. 3.1, we show that the special form of stress function (1)
makes it possible to use an Iterative Row-wise Quadratic Programming (IRQP)
algorithm, such as introduced in [10] for latent-class clustering. In Sect. 3.2, we
then propose to use only a subset of the dissimilarities, allowing for a drastic
reduction in computing time.

3.1 Optimization Algorithm

To simplify the presentation of the IRQP algorithm, let us rewrite (1) using
matrix notations. Let us assume that the f focal sets F1, . . . , Ff of mass func-
tions m1, . . . ,mn have been ordered in some way. We can then represent each
mass function mi by a vector mi = (m1(F1), . . . , mi(Ff ))T of length f . The
credal partition M = (m1, . . . ,mn) can then be represented by a matrix
M = (mT

1 , . . . ,mT
n )T of size n × f . The degree of conflict between two mass

functions mi and mj can be written as κij = mT
i Cmj , where C is the square

matrix of size f , with general term Ck� = 1 if Fk ∩F� = ∅ and Ck� = 1 otherwise.
With these notations, the stress function (1) can be written as

J(M) = η
∑

i<j

(mT
i Cmj − δij)2. (2)

In [4], we proposed to minimize J using a gradient-based algorithm. Another
approach, which better exploits the particular form of (1), is to minimize J(M)
with respect to each row of M at a time, keeping the other rows constant [10].
Minimizing J(M) with respect to mi is equivalent to minimizing

g(mi) = ‖M−iCmi − δi‖2, (3)

where M−i is the matrix obtained from M by deleting row i, and δi is the
vector of transformed dissimilarities δij between object oi and all other objects
oj , j �= i. Minimizing g(mi) under the contraints mT

i 1 = 1 and mi ≥ 0 is a
linearly constrained positive least-squares problem, which can be solved using
efficient algorithms. By iteratively updating each row of M as described above,
as long as the overall function value decreases, the algorithm converges to a
stable function value, which is at least a local minimum.

3.2 kEVCLUS

As mentioned in Sect. 1, the O(n2) complexity of EVCLUS, where n is the num-
ber of objects, makes it inapplicable to large dissimilarity data. The fundamental
reason for this high complexity is the fact that the calculation of stress crite-
rion (1) requires the full dissimilarity matrix. However, there is usually some
redundancy in a dissimilarity matrix, even if the dissimilarity measure is not a
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distance. In particular, if two objects o1 and o2 are very similar, then any object
o3 that is dissimilar from o1 is usually also dissimilar from o2. Because of such
redundancies, it might be possible to compute the differences between degrees of
conflict and dissimilarities, for only a subset of randomly sampled dissimilarities.

More precisely, let j1(i), . . . , jk(i) be k integers sampled at random from the
set {1, . . . , i−1, i+1, . . . , n}, for i = 1, . . . , n. Let Jk the following stress criterion,

Jk(M) = η
n∑

i=1

k∑

r=1

(κi,jr(i) − δi,jr(i))
2, (4)

where, as before, η is a normalizing constant, η =
(∑

i,r δ2i,jr(i)

)−1

. Obviously,
J(M) is recovered as a special case when k = n − 1. However, in the general
case, the calculation of Jk(M) requires only O(nk) operations. If k can be kept
constant as n increases, or, at least, if k increases slower than linearly with n, then
significant gains in computing time and storage requirement could be achieved. In
the experiments below, we show that this version of EVCLUS (hereafter referred
to as k-EVCLUS) is more scalable than the original version, and applicable to
large dissimilarity datasets.

4 Experiments

In this section, we first report some results showing the superiority of IRQP
over the gradient-based optimization procedure in Sect. 4.1. Experiments with
k-EVCLUS are then reported in Sect. 4.2. For all the experiments reported in
this section, we used the version of EVCLUS with the empty set ∅, the singletons
{ωk}, and Ω as focal sets. The k-EVCLUS algorithm, as well as other evidential
clustering procedures, has been implemented in the R package1 evclust [1].

4.1 Comparison Between IRQP and Gradient-Based Optimization

The Protein dataset [4] consists of a dissimilarity matrix derived from the struc-
tural comparison of 213 protein sequences. Each of these proteins is known to
belong to one of four classes of globins. We ran the Gradient and IRQP algo-
rithms on the Protein dataset with c = 4, and parameter d0 set to the largest
dissimilarity value. Both algorithms were run 20 times from 20 random initial
values. In each run, both algorithms were started from the same initial condi-
tions. Figure 1, which shows boxplots of the stress values at convergence and
computing times, for both algorithms. We can see that, on this data, the IRQP
algorithm converges more than 10 times faster than the Gradient algorithm.
The stress values at convergence for IRQP also have lower variability and are
consistently smaller than those obtained by the Gradient algorithm.

1 Available from the CRAN web site at https://cran.r-project.org/web/packages.

https://cran.r-project.org/web/packages
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Fig. 1. Boxplots of computing time (a) and stress value at convergence (b) for 20 runs
of the Gradient and IRQP algorithms on the Protein data.

4.2 Evaluation of k-EVCLUS

In this section, we report experiments with artificial datasets composed of four
clusters of n/4 two-dimensional vectors, generated from a multivariate t distrib-
ution with five degrees of freedom and centered, respectively, on [0, 0], [0, 5], [5, 0]
and [5, 5]. The dissimilarities were computed as the Euclidean distances between
the data points. Algorithm k-EVCLUS was run with d0 equal to the 0.9-quantile
of distances and c = 4. Figure 2 shows the Adjusted Rand Index (ARI) and com-
puting time2 as functions of k for a simulated dataset with n = 2000. The ARI
was computed after transforming the credal partition into a hard partition by
selecting, for each object, the cluster with the largest plausibility. The values of
k were chosen as 10, 20, 50, 100, 200, 500 and 1999. When k = 1999 = n − 1,
the whole distance matrix is used, and k-EVCLUS boils down to EVCLUS. As
we can see, k-EVCLUS performs as well as EVCLUS (k = 1999) according to
the ARI (Fig. 2(a)), as long as k ≥ 100, with a significant gain in training time
(Fig. 2(b)). We observe that the computing time is higher for k = 10 than it
is for k = 20, which is due to the fact that the algorithm took more time to
converge for k = 10.

To compare k-EVCLUS with RECM and EK-NN on this clustering problem,
we let n vary in from 1000 to 5000 (by 1000 increments), and we generated 10
datasets of each size, from the same distribution. We then recorded the com-
puting times and ARI values for for k-EVCLUS (with k = 100 and d0 equal to
the 0.9-quantile of the distances), RECM (with the same parameters as above),
and EK-NNclus with K = 3

√
n and q = 0.95. The results are reported in Fig. 3.

2 All simulations reported in this paper were performed on an Apple MacBook Pro
computer with a 2.5 GHz Intel Core i7 processor.
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Fig. 2. Adjusted Rand Index (a) and computing time (b) of k-EVCLUS as a function
of k, as a function of k, for the simulated data with n = 2000. The error bars show the
median as well as the lower and upper quartiles over 10 runs of the algorithm.

From Fig. 3(a), we can see that k-EVCLUS and EK-NNclus are comparable in
terms of computing time for different values of n, whereas the time complexity
of RECM seems to be considerably higher. On the other hand, k-EVCLUS and
RECM yield comparable results in terms of ARI (see Fig. 3(b)), whereas the
partitions obtained by EK-NNclus have higher variability. It must be noticed
that the number c of clusters is specified for k-EVCLUS and RECM, but it is
not for EK-NNclus. Overall, k-EVCLUS seems to provide the best results (for
correctly specified c) in the least amount of time. More extensive results with
several synthetic and real datasets are reported in [5].
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Fig. 3. Computing time (a) and ARI (b) for k-EVCLUS, RECM and EKNNclus for
simulated datasets with different values of n.
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5 Conclusions

In its original version, EVCLUS was significantly slower than more recently
introduced relational evidential clustering algorithms such as RECM and EK-
NNclus. Also, it was limited to datasets of a few thousand objects, due to the
necessity to store the whole dissimilarity matrix. In this paper, we have been
able to overcome these limitations, thanks to two major improvements. First,
the original gradient algorithm has been replaced by a much more efficient iter-
ative row-wise quadratic programming procedure, which exploits the particular
structure of the optimization problem. Secondly, we have shown that we only
need to supply EVCLUS with the dissimilarities between each object and k ran-
domly selected objects, reducing the space complexity from O(n2) to O(kn). The
improvements described in this paper make EVCLUS potentially applicable to
large dissimilarity data, with of the order of 104 or even 105 objects. Analyzing
even larger datasets (with millions of objects, as arising in social network stud-
ies, for instance), would probably require to sample the rows of the dissimilarity
matrix. This issue requires further investigation.
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Abstract. Hyperspectral imagery is a powerful source of information
for recognition problems in a variety of fields. However, the resulting
data volume is a challenge for classification methods especially consider-
ing industrial context requirements. Support Vector Machines (SVMs),
commonly used classifiers for hyperspectral data, are originally suited
for binary problems. Basing our study on [12] bbas allocation for binary
classifiers, we investigate different strategies to combine two-class SVMs
and tackle the multiclass problem. We evaluate the use of belief func-
tions regarding the matter of SVM fusion with hyperspectral data for a
waste sorting industrial application. We specifically highlight two possi-
ble ways of building a fast multi-class classifier using the belief functions
framework that takes into account the process uncertainties and can use
different information sources such as complementary spectra features.

Keywords: Hyperspectral classification · Belief Function Theory ·
Waste sorting

1 Introduction

Hyperspectral imaging acquires an almost continuous sampling of the spectral
data in each pixel of a scene. The large number of narrow and contiguous bands
allows us to detect even minor variations in a spectrum and provides a significant
advantage for the distinction of different materials (natural or artificial). Hyper-
spectral imaging popularity has thus increased during the last decade, due both
to the increase in computing power (that allows us to process these voluminous
data) and to the need of separation of increasingly specific classes, e.g. different
kinds of polymers for industrial application or different mineralogical composi-
tions of surfaces for remote sensing applications. The acquisition of numerous
wavebands enables the identification of fine classes belonging to various fields:
atmosphere analysis, ecosystems monitoring, military applications and industrial
applications (e.g. [5]).

Recently, hyperspectral imaging industrial applications appeared in waste
sorting field. This latter needs new automated processes to improve the working
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 113–122, 2016.
DOI: 10.1007/978-3-319-45559-4 12
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conditions and decrease the cost of recycled materials. This requires sensors able
to discriminate among waste materials as close (in terms of spectral response)
as different kinds of plastics or different fibrous materials. Then, some efficient
classification methods should be defined to use the full potential of hyperspectral
data in this industrial context: methods adapted to waste material classes, robust
to significant object occlusion (objects stacked on one another), and fast enough
to match the waste flow.

Hyperspectral imagery provides detailed spectral information for each pixel of
the picture. This information richness comes with an obvious drawback: the huge
amount of data to process. Indeed, it involves significant computing resources
(time, memory...) that may be an issue in an industrial context. In addition
to spectral information, several works also propose to include spatial informa-
tion in their classification process, e.g. [13]. However, in this study, we focus on
blind classification, i.e. classification of each pixel independently (not taking into
account the neighbouring pixels that provide the spatial information). For our
industrial application, it is a first step towards a classification process at object
level which couples blind classification and spatial segmentation using others
sensors.

Support vector machines (SVMs) are classically used to meet the challenge
of hyperspectral classification, see [7,8,10] for instance. Basically, they project
data into a higher dimensional space in which classes can be separated using
(optimal) hyperplanes. SVMs are widely used in a probabilistic framework (e.g.
through logistic regression). However, probabilities are not able to distinguish
between uncertainty (in decision process) due to ambiguity, e.g. because of over-
lapping between classes, and uncertainty due to imprecision, e.g. because of low
number of samples for some score values during the SVM training and calibra-
tion processes. Thus, [12] has extended several classical regressions used for SVM
binary classifiers to the Belief Function Theory framework.

As SVMs are well suited for 2-class problems, several strategies have been
proposed to address the multiclass case. Classical approaches are: (i) the one-
versus-one strategy, where a classifier is trained on each class pair and (ii)
the one-versus-all strategy, where a classifier is trained to distinguish one class
against all the others. For each strategy, the merging of these 2-class classifiers
is an important issue. In this study, we propose and evaluate three strategies
to combine binary SVM outputs in the BFT framework. We also show that
the use of belief functions allows us to combine the information contained into
different input data derived from the whole spectrum data, and that it is an
efficient way to deal with the complexity involved by the high dimensionality of
the hyperspectral data.

2 Strategies from Binary to Multiclass Belief Functions

Addressing a multiclass problem from binary SVMs (one-versus-one or one-
versus-all), we have to combine their binary decisions while taking into account
the imprecision of each SVM (classes overlapping, number of samples, . . . ).
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We choose to perform this combination in BFT framework considering SVM
outputs as logical sources. The way an observed score generates a basic belief
assignment (bba) is defined by the calibration step proposed by [12]. It is briefly
recalled in Appendix. Then, in the following, we assume that each cluster of
SVM produces as many bbas as there are SVMs in the cluster, and that each
bba represents our belief in each of the two classes handled by the considered
SVM as well as the ignorance left by this classifier.

Notation are as follows. For any one-versus-one SVM dealing with the pair of
classes ωj and ωk, Ωb

j,k denotes the associated discernment frame and mΩb
j,k the

bba derived from calibration. For any one-versus-all SVM dealing with the pair
of classes ωj and its complementary ω̄j , Ωb

j denotes the associated discernment

frame and mΩb
j the bba derived from calibration. In both cases, the upperscript

b recalls that SVM was binary and the cardinality of Ωb
j,k or Ωb

j is 2. Then,
the transition from binary classification to a multiclass one implies a change of
discernment frame from Ωb

j,k or Ωb
j to Ω = {ω1, . . . , ωn}, the multiclass set.

2.1 Case of one-versus-one SVMs

In the one-versus-one strategy, Ωb
j,k = {ωj , ωk} and mΩb

j,k is interpreted as the

result of a conditioning of a multiclass bba mΩ on Ωb
j,k, noted mΩ

[
Ωb

j,k

]
. Then,

from these conditioned estimations of the bba, [9] proposes to derive mΩ by
solving the optimization problem:

min
mΩ

∑

k>j

∑

∅�=A⊆Ω

(
mΩ

[
Ωb

j,k

]
(A) − mΩb

j,k (A)
(
1 − mΩ

[
Ωb

j,k

]
(∅)

))2

, (1)

under the constraints: (i) mΩ(A) ≥ 0,∀A ∈ 2Ω, (ii) mΩ(∅) = 0 and (iii)
∑

A∈2Ω mΩ(A) = 1. In Eq. (1), the factor 1−mΩ
[
Ωb

j,k

]
(∅) is due to the fact that

mΩb
j,k is a normal bba which may not be the case for mΩ

[
Ωb

j,k

]
. To solve such

a constrained system, we have noticed that it can also be written as a matrix
system minX |AX-B|2.

In this study, we propose an alternative to derive mΩ that consists in simply
performing a deconditioning of every bba mΩb

j,k on the frame of discernment Ω
and then combining the deconditioned bbas mΩb

j,k⇑Ω using a conjunctive rule:
denoting B = Ā the complementary in Ω of hypothesis A,

mΩ (A) = ∩ (j,k)∈[1,n]2m
Ωb

j,k⇑Ω (A) , ∀A ∈ 2Ω, (2)

with
mΩb

j,k⇑Ω
(
A ∪ Ω̄j,k

)
= mΩb

j,k (A) , ∀A ∈ {ωj , ωk, {ωj , ωk}} . (3)

This second way is much simpler than the first one and it is theoretically
founded on the independence between the binary SVM outputs. Now, it could
provide an interesting approximation of the solution and even, it outperforms
the optimization proposed by [9] in our application case. Therefore, on this latter
at least, there are only advantages in using the proposed alternative.
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2.2 Case of one-versus-all SVMs

In the one-versus-all strategy, the binary discernment frames Ωb
j are some coars-

enings of discernment frame Ω, or equivalently Ω is a common refinement of the
different Ωb

j = {ωj , ω̄j}. Then, the bbas defined on Ωb
j are refined on Ω using

classical refinement operator, before combination using Dempster’s rule:

mΩ (A) = ⊕j∈[1,n]m
Ωb

j↑Ω (A) , ∀A ∈ 2Ω, (4)

with
mΩb

j↑Ω (A) = mΩb
j (A) , ∀A ∈ {ωj , ω̄j ,Ω} . (5)

Here, we use the orthogonal sum instead of the conjunctive combination rule
since, due to the existence of singleton focal elements and to the high num-
ber of combinations (as much as the number of classes), conflict becomes very
important even in standard cases.

2.3 Case of Hybrid Strategy

Each of the two previous strategies handles a given kind of binary SVMs, either
one-versus-one or one-versus-all. Each of these strategies has some advantages:
better separability of the classes for the one-versus-one SVMs, simplicity and
speed for the one-versus-all SVMs. Then, in order to benefit from both advan-
tages, we propose a hybrid strategy that handles SVMs belonging to both kinds
of binary SVMs.

The proposed solution is based on some metaknowledge on the classes used to
choose the considered SVMs. Let us first present the particular case of a hierar-
chical strategy through a toy example with only 4 classes: Ω = {ω1, ω2, ω3, ω4},
and assume ω3 and ω4 classes are difficult to separate. According to the pro-
posed strategy, one will focus on most performing SVMs, i.e. SVMs ‘ω1 against
{ω2, ω3, ω4}’, ‘ω2 against {ω1, ω3, ω4}’, ‘{ω3, ω4} against {ω1, ω2}’ and ‘ω3 against
ω4’. In a more general way, the classes of Ω are ‘wisely’ grouped to form a new
coarsened discernment frame on which the one-versus-all approach performs well
(‘good’ enough class separability, such as for {ω1, ω2, {ω3, ω4}} in the example).
Then, the considered classifiers are: the one-versus-all SVMs for classes corre-
sponding to singleton hypotheses of the coarsened discernment frame (i.e. some
of them are compound classes, e.g. hypothesis {ω3, ω4} in the example) and the
one-versus-one SVMs for classes belonging to a compound class of the coarsened
discernment frame (e.g. SVM ω3 versus ω4 in the example). The bbas derived
from outputs of previously cited SVMs that have been either refined or decon-
ditioned on Ω are combined using conjunctive rule (or Dempster’s orthogonal
rule).

This hierarchical strategy appears as a compromise in terms of number
of used (and thus trained) classifiers: if n = |Ω|, with the pure one-versus-
one strategy, we have to consider

(
n
2

)
= n(n−1)

2 classifiers, with the pure one-
versus-all strategy, we have to consider n classifiers and with the hierarchical
strategy involving l groups of ni indistinguishable classes, we have to consider
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n − ∑l
i=1 (ni − 1)) one-versus-all classifiers and

∑l
i=1

ni(ni−1)
2 one-versus-one

classifiers.
With respect to the hierarchical strategy, the hybrid strategy can in addition

consider few other classifiers in order to increase the redundancy between clas-
sifiers and then provide more robust results. However, this number of additional
classifiers should remain low to keep an interest in terms of complexity.

Finally, if the derivation of the metaknowledge is a subject beyond the scope
of this article (here we simply assume that it can be either known a priori
or learnt from training samples), let us underline that it is the crucial point
for the proposed hybrid strategy since it allows us to add prior information
(metaknowledge) that should be carefully chosen.

2.4 Decision

Independently of the strategy used, at the end, we have a bba resulting from the
combination of the information pieces provided by different binary SVMs taking
into account their own features (in particular the learning step conditions and
results). From this bba, we can take a decision or, as seen in the experimental
part, combine it with other bba(s) and then take the decision.

The belief function framework offers many possibilities for decision mak-
ing [3]. Among them, pessimistic and optimistic strategies consist in maximiz-
ing, over the singleton hypotheses, the belief or plausibility function, respectively.
A decision according to the pignistic probability provides intermediate results.

Here, specific to the one-versus-one strategy based optimization [9], we also
test the following criterion: the decided singleton class ωi maximizes the conflict
generated by conditioning on binary subsets not including ωi:

ωi = arg maxi

∑

j,k �=i

mΩ
[
Ωb

j,k

]
(∅) . (6)

3 Experiments

3.1 Industrial Context and Data Preprocessing

We applied the proposed classification strategies to waste sorting. Despite the
use of some sorting components exploiting the mechanical properties of the waste
materials in order to separate them, this industrial application has still several
issues such as the automatic identification of some resembling materials or the
detection of some ‘intruders’ in a set of similar wastes (e.g. paper, cardboard
and plastic waste). For such purposes, the hyperspectral sensor appears relevant
since it provides some information about the nature of the material itself that
should help us to discriminate among different fibrous materials and polymers
with high throughput and a reliability and robustness suitable for an industrial
context.

As with any classification method, the performance of a SVM classifier
strongly depends on the input data. Classical preprocessing on the spectrum
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involves a filtering and derivation at different orders. Specifically, the Savitsky-
Golay filter is widely used for hyperspectral data analysis [6,11]. This filter fits
a low degree polynomial on data within a sliding window having fixed size. It
allows us to smooth the data and to compute the derivatives from the fitted
polynoms. The fact of considering different derivative orders (typically 0, 1 and
2) appears all the more justified since, for classification, not the whole spec-
trum is considered but only some selected features, in order to reduce both the
data complexity and the correlation between the bands. Then, a classical way
is to perform a Principal Component Analysis (PCA) on the filtered spectra,
e.g. [1,2]. In our case, the number of selected components is set to represent
99% of the information. It varies between 3 to about 20 whereas the whole
spectrum dimensionality was about 275.

In summary, preprocessing involves the computation of different derivative
orders (0, 1 and 2) of the spectrum by the Savitsky-Golay filter and then, for
each of these derivatives, the computation of the PCA that provides the input
data for the SVM classifiers. In the following, these input data are denoted S0,
S1 and S2 where subscript denotes the derivation order. The results obtained
using these inputs will be compared in terms of classification performance. We
also propose to use them as different logical sources so that, we combine the
multiclass (defined on Ω) bbas derived for given input data (S0, S1 and S2).
Assuming that the PCA process makes input data cognitively independent, bba
combination will be done through the conjunctive rule.

3.2 Experimental Results

The sample sets used for these experiments have been collected in the Veolia
laboratories on a hyperspectral sensor (whose spectra contains about 275 wave-
lengths) via specimen boards with small material samples: four boards called
Paper, Plastic1, Plastic2a, Plastic2b. Samples are divided in 9 classes, namely 7
polymers classes (not listed here for paper shortness) and 2 fibrous classes (paper
and cardboard). From specimen boards, three different datasets were extracted.
The first one, called training set, has 1000 samples per class and is used for
SVM training. The second one, called calibration set, has 200 samples per class
and is used for bba calibration. The last one has 1000 samples per class and
is used for test and performance estimation. In addition to this test dataset,
another board, exclusively used for testing and called Superposition, presents
real objects stacked on top of each other to provide more realistic conditions.

Then, the training set allows for the estimation of each SVM classifier para-
meters, determined by cross validation and grid search, using Gaussian kernels.
The calibration set allows for the estimation of sigmoid parameters and contour
function defined for any score value (see Appendix for details). It also allows
us to determine the classes to group for the hybrid strategy. Then, using the
test set and the Superposition board, the first analysis (not presented here) puts
forward some complementarity of classification performance for the input data
S1 and S2, in particular for the ‘difficult’ pixels such as those present in the
shadows or pixels corresponding to the superposition of two objects. The initial
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Table 1. Correct classification rate (in %) for the 5 test sample boards (each one
having 13500 pixels). Results are given for S1 source, considering different strategies
and decisions for the one-versus-one strategy.

Strategy→ One-versus-one One-versus-all Hybrid

↓Boards Score vote Optimization Deconditioning

Paper 95.3 95.2 95.5 91.6 94.1

Plastic1 90.2 87.3 91.4 85.2 91.0

Plastic2a 79.1 83.7 84.1 77.5 79.5

Plastic2b 87.2 89.3 89.7 83.9 87.8

Superposition 82.8 88.0 88.4 79.5 80.1

Whole data 86.9 88.8 89.8 83.5 86.5

analysis also revealed that the S0 input data provides results of little interest
(low performance and lower complementarity) so that it has not been considered
in the results presented further.

3.3 Comparison of the Different Strategies

The comparison of the different strategy is presented here in the case of S1 data
that prompts better results than S0 or S2. Considering S1, the hybrid strat-
egy was instantiated introducing two coarse classes: one grouping paper and
cardboard and another grouping two classes of polymers (among the 7). A sup-
plementary one-versus-one classifier is also considered to remove ambiguities
between two other classes of polymers.

Classification results are analyzed in the perspective between comparison
of (i) different multi-class strategies (one-versus-one, one-versus-all, hybrid),
(ii) different decision making processes for the one-vs-one strategy. Quantita-
tive results, computed on the whole datasets, are shown in Table 1. Our main
conclusions are:

– In the case of the one-versus-one strategy, solving Eq. (1), the computation
time increases dramatically with the number of classes (factor about 200
with the one-vs-all strategy computation time). Performing deconditioning
(Eq. (2)) as proposed provides slightly better results for a much lower com-
putation time.

– Comparison with classic decision rules, either score voting (shown in Table 1)
or probabilistic decision (not shown) shows that the optimistic decision on
bba obtained using either optimization or deconditioning (Eq. (2)) is better
in every cases.

– The one-vs-one strategy always outperforms the one-vs-all strategy and the
hybrid one, which is a standard result due to the better separability of the
classes and much higher number of considered classifiers.
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Fig. 1. Example of the fusion impact on classification rate (superposition board). From
left to right: test board image, binary representations of the well classified pixels (in
white) considering S1, S2 and their evidential fusion, respectively.

Table 2. Correct classification rate (in %) for the 5 test sample boards. Results are
given for the S1&S2 fusion, considering different strategies.

Boards→ Paper Plastic1 Plastic2a Plastic2b Superposition Whole data

One-versus-one 93.3 93.4 82.2 87.9 89.9 89.3

One-versus-all 92.3 91.8 80.1 87.1 87.3 87.7

Hybrid 95.9 92.2 78.4 87.3 86.1 88.0

– The hybrid strategy shows intermediate results between the one-vs-one strategy
and the one-vs-all one: depending on the considered test dataset, the improve-
ment relatively to the one-vs-all strategy varies between 0.6% and 5.8%.

3.4 Combination of Sources S1 and S2

In this subpart, classification results are analyzed versus different input data,
namely both S1 and S2 (combined by fusion) or only S1 (shown in Table 1).
Quantitative results are shown on Table 2. Our main conclusions are:

– The fusion of S1 and S2 sources provides no or low improvement compared to
the one-vs-one strategy, however the complementarity is very beneficial to the
one-versus-all strategy and narrows the gap between the classification results
of the two strategies (from 6.3 % to 1.5 % on the whole dataset).

– Fig. 1 presents the Superposition results illustrating that the fusion improves
particularly the classification of the difficult pixels, such as at the top of the
bottle and the caps stacked on paper.

– The hybrid strategy still provides intermediate results between one-versus-one
strategy and one-versus-all one, but the interest relatively to the one-versus-
all is reduced (relatively to the case of the only-S1 data) due to the high
improvement of performance of one-versus-all strategy provided by fusion.

4 Conclusion and Perspectives

This study has investigated the possibility in BFT to build a multiclass classi-
fier which would be fast and efficient enough to be considered in the industrial
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context of waste sorting. We compare different ways to achieve it: using the
deconditioning operator on bbas derived from one-vs-one classifiers, using the
refinement operator on bbas derived from one-vs-all classifiers or a using hybrid
strategy. According to our tests, using one-vs-one leads to better performance
but requires more classifiers to train than using one-vs-all classifiers. Using opti-
mization [9] to derive the multiclass bba from bbas derived from one-vs-one
classifiers can be advantageously replaced by the proposed deconditioning and
conjunctive combination in terms of computation time. Hybrid strategy seems a
good compromise between pure one-vs-one and pure one-vs-all strategies, pre-
senting both reasonable number of classifiers and interesting performance results.
Combining multiclass bbas associated to different features of the hyperspectral
spectra (different orders of derivative) enhances the classification results in a
noticeable way.

A main perspective to our work is the automatic derivation of the meta-
knowledge on data used to build the hybrid strategy. We saw that the results
provided by hybrid strategy are encouraging. However, the impact of the meta-
knowledge has to be investigated and this also indirectly raises the question of
the calibration quality of the binary classifiers. Then, we also intend to inves-
tigate some evidential criteria that will allow us to analyze training calibration
sets, for instance to group automatically some classes and make the most of the
hybrid strategy.

Appendix: Evidential Calibration

Handling binary classifiers, the discernment frame is Ωb = {{0} , {1}}. Then, for
a given SVM having its own features in terms of number of samples, learning
step performance, we aim at defining a belief function for each score that reflects
the confidence we may have in each class. Indeed, this belief function will be used
for forecasting taking into account the whole training set specificities. Explicitly,
for each score s, the mass function, denoted m, is derived from the contour
function: ω → plX (ω, s), where ω = P (y = 1 |s ) (note that, ω is not a class but
a probability).

To build the contour function on ω, [12] uses the idea behind the logistic
regression: approximating the probability P (y = 1 |s ) by a sigmoid sigs (θ) =
[1 + exp(θ0 + θ1s)]

−1, where the parameter θ̂ = (θ0, θ1) is determined by
maximizing the likelihood function LX (θ) over the training set X =
{(s1, y1), . . . , (sN , yN )} where, for each sample number i, si ∈ R is the score
given by the considered classifier and yi ∈ {0, 1} is its true label. Then, the con-
tour function of interest is drawn for a given value of score. It derives from the
2D function plotting the relative value of the likelihood function LX(θ)

LX(θ̂)
versus

θ = (θ0, θ1). Then, for any given pair (s, ω), the set of θ (i.e. sig−1
s (ω)) values is

a straight line in R
2. Then, the contour function value can be determined as the

maximum value over this straight line:

pl
Ωb

j,k

X (ω) =

{
0 if ω ∈ {0, 1} ,

supsig−1
s (ω)

LX(θ)

LX(θ̂)
otherwise, (7)
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with LX (θ) =
∏N

i=1 pyi

i (1 − pi)1−yi where pi = 1
1+exp(θ0+θ1si)

. Finally, from

each pl
Ωb

j,k

X , the corresponding mass function mΩb
j,k on binary discernment frame

Ωb
j,k is derived using the ‘likelihood based’ belief function for statistical inference

approach proposed by Shafer and further justified by Denœux [4].
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Abstract. In the task of community detection, there often exists some
useful prior information. In this paper, a Semi-supervised clustering app-
roach using a new Evidential Label Propagation strategy (SELP) is pro-
posed to incorporate the domain knowledge into the community detec-
tion model. The main advantage of SELP is that it can take limited
supervised knowledge to guide the detection process. The prior infor-
mation of community labels is expressed in the form of mass functions
initially. Then a new evidential label propagation rule is adopted to prop-
agate the labels from labeled data to unlabeled ones. The outliers can be
identified to be in a special class. The experimental results demonstrate
the effectiveness of SELP.

Keywords: Semi-supervised learning · Belief function theory · Label
propagation · Community detection

1 Introduction

With the increasing size of networks in real world, community detection
approaches should be fast and accurate. The Label Propagation Algorithm
(LPA) [5] is known to be one of the near-linear solutions and benefits of easy
implementation, thus it forms a good basis for efficient community detection
methods. The behavior of LPA is not stable because of the randomness. Dif-
ferent communities may be detected in different runs over the same network.
Moreover, by assuming that a node always adopts the label of the majority
of its neighbors, LPA ignores any other structural information existing in the
neighborhood.

Semi-supervised classification has been widely studied for classical data sets,
but there has been little work on semi-supervised community detection. In many
scenarios a substantial amount of prior knowledge about the graph structure may
be available. It can reflect the application-specific knowledge about cluster mem-
bership to some extent. For instance, in a co-authorship community network, it
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may be possible to label a small subset of scholars based on their research inter-
ests. In a social network application, it may be desirable to label some nodes
according to their affinity to some products.

In [4] the authors considered the individual labels as prior knowledge, i.e. the
true community assignments of certain nodes are known in advance. In their work
the traditional LPA is adapted, allowing a few nodes to have true community
labels, but the rest nodes are unlabeled. In face the presented semi-supervised
community detection approach is an application of the semi-supervised classifi-
cation algorithm proposed by [7] on graph data sets.

In this paper, we enhance the original LPA by introducing new update and
propagation strategies using the theory of belief functions. The Semi-supervised
version of Evidential Label Propagation (SELP) algorithm is presented. SELP
can take advantage of the limited amount of supervised information and conse-
quently improve the detection results.

The remainder of this paper is organized as follows. Some basic knowledge is
briefly introduced in Sect. 2. The SELP algorithm is presented in detail in Sect. 3.
In order to show the effectiveness of the proposed community detection approach,
in Sect. 4 SELP algorithm is tested on different graph data sets. Conclusions are
drawn in the final section.

2 Background

In this section some related preliminary knowledge will be presented. Some basis
of belief function theory will be recalled first. As this work is inspired from the
LPA [5] and EK-NNclus [2] clustering, the two algorithms will also be briefly
introduced.

2.1 Theory of Belief Functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment
frame. The belief functions are defined on the power set 2Ω = {A : A ⊆ Ω}.

The function m : 2Ω → [0, 1] is said to be the Basic Belief Assignment (bba)
on 2Ω , if it satisfies: ∑

A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and
plausibility functions are defined in Eqs. (2) and (3) respectively:

Bel(A) =
∑

B⊆A,B �=∅
m(B) ∀ A ⊆ Ω, (2)

Pl(A) =
∑

B∩A �=∅
m(B), ∀ A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) rep-
resents potential amount of support to A.
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If bbas mj , j = 1, 2, · · · , S describing S distinct items of evidence on Ω, the
DS rule of combination [6] of S bbas can be mathematically defined as

(m1 ⊕ m2 ⊕ · · · ⊕ mS)(X) =
⎧
⎪⎨

⎪⎩

0 if X = ∅,
∑

Y1∩···∩YS=X

∏S
j=1 mj(Yj)

1− ∑

Y1∩···∩YS=X

∏S
j=1 mj(Yj)

otherwise.
(4)

2.2 EK-NNclus Clustering

Recently, a new decision-directed clustering algorithm for relational data sets,
named EK-NNclus, is put forward based on the evidential K nearest-neighbor
(EK-NN) rule [2]. Starting from an initial partition, the algorithm, called EK-
NNclus, iteratively reassigns objects to clusters using the EK-NN rule [1], until
a stable partition is obtained. After convergence, the cluster membership of each
object is described by a mass function assigning a mass to each specific cluster
and to the whole set of clusters.

2.3 Label Propagation

Let G(V,E) be an undirected network, V is the set of N nodes, E is the set of
edges. Each node v(v ∈ V ) has a label cv. Denote by Nv the set of neighbors
of node v. The Label Propagation Algorithm (LPA) uses the network structure
alone to guide its process. It starts from an initial configuration where every
node has a unique label. Then at every step one node (in asynchronous version)
or each node (in a synchronous version) updates its current label to the label
shared by the maximum number of its neighbors. For node v, its new label can
be updated to ωj with

j = arg max
l

{|u : cu = l, u ∈ Nv|}, (5)

where |X| is the cardinality of set X, and Nv is the set of node v’s neighbors.
When there are multiple maximal labels among the neighbors labels, the new
label is picked randomly from them. By this iterative process densely connected
groups of nodes form consensus on one label to form communities, and each
node has more neighbors in its own community than in any of other community.
Communities are identified as a group of nodes sharing the same label.

3 Semi-supervised Label Propagation

Inspired from LPA and EK-NNclus [2], we propose here SELP algorithm for
graph data sets with prior information. The problem of semi-supervised com-
munity detection will be first described in a mathematical way, and then the
proposed SELP algorithm will be presented in detail.
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3.1 Problem Restatement and Notions

Let G(V,E) denote the graph, where V is the set of n nodes and E ⊆ V × V is
the set of edges. Generally, a network can be expressed by its adjacent matrix
A = (aij)n×n, where aij = 1 indicates that there is a direct edge between nodes
i and j, and 0 otherwise.

Assume that there are c communities in the graph. The set of labels is denoted
by Ω = {ω1, ω2, · · · , ωc}. In addition, in order to make sure that the solution
is unique, we assume that there must be at least one labeled vertex in each
community. The n nodes in set V can be divided into two parts:

VL = {(n1, y1), (n2, y2), · · · , (nl, yl)}, yj ∈ Ω

for the labeled nodes, and

VU = {nl+1, nl+2, · · · , nn}

for the unlabeled ones. The main task of the semi-supervised community detec-
tion is to make models propagating the labels from nodes in VL to those in VU ,
and further determine the labels of those unlabeled vertices.

3.2 The Dissimilarities Between Nodes

Like the smooth assumption in the semi-supervised graph-based learning meth-
ods [8], here we assume that the more common neighbors the two nodes share,
the larger probability that they belong to the same community. Thus in this
work, the index considering the number of shared common neighbors is adopted
to measure the similarities between nodes.

Definition 1. Let the set of neighbors of node ni be Ni, and the degree of node
ni be di. The similarity between nodes ni and nj (ni, nj ∈ V ) is defined as

sij =

{ |Ni∩Nj |
di+dj

, if aij = 1

0, otherwise.
(6)

Then the dissimilarities associated with the similarity measure can be
defined as

dij =
1 − sij

sij
, ∀ ni, nj ∈ V. (7)

3.3 Evidential Label Propagation

For a labeled node nj ∈ VL in community ωk, the initial bba can be defined as
a Bayesian categorical mass function:

mj(A) =

{
1 if A = {ωk}
0 otherwise.

(8)
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For an unlabeled node nx ∈ VU , the vacuous mass assignment can be used to
express our ignorance about its community label:

mx(A) =

{
1 if A = Ω

0 otherwise.
(9)

To determine the label of node nx, its neighbors can be regarded as distinct
information sources. If there are |Nx| = rx neighbors for node nx, the number of
sources is rx. The reliability of each source depends on the similarities between
nodes. Suppose that there is a neighbor nt with label ωj , it can provide us with
a bba describing the belief on the community label of node nx as [2]

mx
t ({ωt}) = α ∗ mt({ωj}),

mx
t (Ω) = mt(Ω) + (1 − α) ∗ mt({ωj}),

mx
t (A) = 0, if A 	= {ωj}, Ω, (10)

where α is the discounting parameter such that 0 ≤ α ≤ 1. It should be deter-
mined according to the similarity between nodes nx and nt. The more similar the
two nodes are, the more reliable the source is. Thus α can be set as a decreasing
function of dxt. In this work we suggest to use

α = α0 exp{−γdβ
xt}, (11)

where parameters α0 and β can be set to be 1 and 2 respectively as default, and
γ can be set to

γ = 1/median
({

dβ
ij , i = 1, 2, · · · , n, j ∈ Ni

})
. (12)

After the rx bbas from its neighbors are calculated using Eq. (10), the fused bba
of node nx can be got by the use of Dempster’s combination rule:

mx = mx
1 ⊕ mx

2 ⊕ · · · ⊕ mx
rx

. (13)

The label of node nx can be determined by the maximal value of mx. The
main principle of semi-supervised learning is to take advantage of the unlabeled
data. It is an intuitive way to add node nx (previously in set VU but already be
labeled now) to set Vl to train the classifier. However, if the predicted label of nx

is wrong, it will have very bad effects on the accuracy of the following predictions.
Here a parameter η is introduced to control the prediction confidence of the
nodes that to be added in Vl. If the maximum of mx is larger than η, it indicates
that the belief about the community of node nx is high and the prediction is
confident. Then we remove node nx in VU and add it to set VL. On the contrary,
if the maximum of mx is not larger than η, it means that we can not make a
confident decision about the label of nx based on the current information. Thus
the node nx should be remained in set VU . This is the idea of self-training [3].

In order to propagate the labels from the labeled nodes to the unlabeled
ones in the graph, a classifier should be first trained using the labeled data in Vl.



128 K. Zhou et al.

For each node nx in VU , we find its direct neighbors and construct bbas through
Eq. (10). Then the fused bba about the community label of node nx is calculated
by Eq. (13). The subset of the unlabeled nodes, of which the maximal bba is
larger than the given threshold η, are selected to augment the labeled data set.
The predicted labels of these nodes are set to be the class assigned with the
maximal mass. Parameter η can be set to 0.7 by default in practice.

After the above update process, there may still be some nodes in VU . For
these nodes, we can find their neighbors that are in VL, and then use Eqs. (10)
and (13) to determine their bbas.

4 Experiment

In order to verify the efficiency and effectiveness of the proposed SELP algorithm,
some experiments on graph data sets will be conducted in this section, and the
results by the use of different methods will be reported. The semi-supervised
community detection algorithm using label propagation (SLP) [4] and the unsu-
pervised label propagation algorithm will be used to compare the performance.
The parameters in SELP are all set to the default values in the experiments.

4.1 Real World Networks

A. Karate Club Network. In this experiment we tested on the widely used
benchmark in detecting community structures, “Karate Club”. The network con-
sists of 34 nodes and 78 edges representing the friendship among the members of
the club. During the development, a dispute arose between the club’s adminis-
trator and instructor, which eventually resulted in the club split into two smaller
clubs. The first one was an instructor-centered group covering 16 vertices: 1–8,
11–14, 17–18, 20 and 22, while the second administrator centered group consisted
of the remaining 18 vertices.

In the first test, the labeled node in community ω1 was set to node 5, while
that in community ω2 was set to node 24. After five steps, SELP algorithm
stopped. The detailed update process is displayed in Fig. 2. It can be seen from
the figure that two outliers, nodes 10 and 12 are detected by SELP. From the
original graph, we can see that node 10 has two neighbors, nodes 3 and 34. But
neither of them shares a common neighbor with node 10. For node 12, it only
connects to node 1, but has no connection with any other node in the graph.
Therefore, it is very intuitive that both the two nodes are regarded as outliers
of the graph.

The detection results on Karate Club network by SELP and SLP algorithms
with different labeled nodes are shown in Table 1. The labeled vertices and its
corresponding misclassified vertices are clearly presented in the table. As can be
seen from the table, nodes 10 and 12 are detected as outliers in all the cases by
SELP, and the two communities can be correctly classified most of the time. The
performance of SLP is worse than that of SELP when there is only one labeled
data in each community. For the nodes which are connected to both communities
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Fig. 1. Karate Club network.

and located in the overlap, such as nodes 3 and 9, they are misclassified most
frequently. If the number of labeled data in each community is increased to
2, the exact community structure can be got by both methods. It is indicated
that the more prior information (i.e. labeled vertices) we have, the better the
performance of SELP is (Fig. 1).
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Fig. 2. The results on Karate Club network. The nodes marked with color red are the
outliers detected by SELP. (Color figure online)

B. American Football Network. As a further test of our algorithm, the
network we investigated in this experiment was the world of American college
football games.
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Table 1. Community detection results for the Karate Club network.

Labeled
nodes in ω1

Labeled
nodes in ω2

Misclassified
nodes by SELP

Detected
outliers by
SELP

Misclassified
nodes by SLP

1 34 None 10, 12 None

1 32 9 10, 12 9, 10, 27, 31, 34

2 33 None 10, 12 None

6 31 3 10, 12 2, 3, 8, 14, 2

8 31 None 10, 12 10

8 32 None 10, 12 None

17 31 3, 4, 8, 14 10, 12 2, 3, 4, 8, 13,
14, 18, 20, 22

1, 2 33, 34 None 10, 12 None

1, 2 33, 9 None 10, 12 None

3, 18 26, 30 None 10, 12 None

17, 4 31, 9 None 10, 12 None
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Fig. 3. The results on American football network. The two figures show the average
error rates and NMI values (plus and minus one standard deviation) for 50 repeated
experiments, as a function of the number of labeled samples.

Let the number of labeled nodes in each community to be fixed. Then SELP
and SLP algorithms were evoked 50 times respectively with randomly selected
labeled nodes. The average error rates and NMI values (plus and minus one stan-
dard deviation) of the 50 experiments are displayed in Figs. 3a and b respectively.
As can be seen from the figures, with the increasing number of labeled samples,
the performance of both SELP and SLP becomes better. The NMI values of the
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detected communities by SELP and SLP are significantly better than those by
LPA. It indicates that the semi-supervised community detection methods could
take advantage of the limited amount of prior information and consequently
improve the accuracy of the detection results. The behavior of SELP is better
than that of SLP in terms of both error rates and NMI values.

4.2 LFR Network

In this subsection, LFR benchmark networks were used to test the ability of the
algorithm to identify communities. The experiments here included evaluating
the performance of the algorithm with various amounts of labeled nodes and
different values of parameter μ in the benchmark networks. The original LPA
[5] and the semi-supervised community detection approach SLP [4] were used to
compare.

In LFR networks, the mixing parameter μ represents the ratio between the
external degree of each vertex with respect to its community and the total degree
of the node. The larger the value of μ is, the more difficult the community struc-
ture will be correctly detected. The values of the parameters in LFR bench-
mark networks in this experiment were set as follows: n = 1000, ξ = 15, τ1 =
2, τ2 = 1, cmin = 20, cmax = 50.
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Fig. 4. The results on LFR network. The number of labeled nodes in each commu-
nity is 3.

The performance of different methods with various values of μ is shown in
Fig. 4. As expected, the error rate is very high and the NMI value is low when
μ is large. It demonstrates the fact that the community structure is not very
clear and consequently difficult to be identified correctly. It can be seen from
Fig. 4a that the error rates by SELP are smaller than those by SLP generally.
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SELP performs better than SLP. This conclusion could also be got in terms of
the NMI values displayed in Fig. 4b.

The original LPA could not work at all when μ is larger than 0.5. The results
of SELP and SLP are significantly improved in these cases compared with LPA.
As shown in Fig. 5b, even when there is only one labeled data in each community,
the behavior of SELP is much better than that of LPA. This confirms the fact
that the semi-supervised community detection approaches can effectively take
advantage of the limited amount of labeled data. From Fig. 5, we can also see that
the performance of SELP and SLP becomes better with the increasing number
of labeled nodes.
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Fig. 5. The results on LFR network. The parameter of μ is set to be 0.6.

5 Conclusion

In this paper, the semi-supervised evidential label propagation algorithm is pre-
sented as an enhanced version of the original LPA. The proposed community
detection approach can effectively take advantage of the limited amount of super-
vised information. This is of practical meaning in real applications as there often
exists some prior knowledge for the analyzed graphs. The experimental results
show that the detection results will be significantly improved with the help of
limited amount of supervised information.
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Abstract. In the paper we argue that aggregation rules in the theory of
belief functions should be in accordance with underlying decision models,
i.e. aggregation produced in conjunctive manner has to produce the order
embedded to the union of partial orders constructed in each source of
information; and if we take models based on imprecise probabilities, then
such aggregation exists if the intersection of underlying credal sets is not
empty. In the opposite case there is contradiction in information and the
justifiable functional to measure it is the functional giving the smallest
contradiction by applying all possible conjunctive rules. We give also the
axiomatics of this contradiction measure.

Keywords: Belief functions · Contradiction measures · Aggregation
rules · Conjunctive rules

1 Introduction

The theory of belief functions gives us many methods of information fusion.
This procedure can be characterized as an aggregation of information sources
that allows us to improve its reliability, precision, etc. There are many rules for
aggregation of information in the frame of the belief function theory [7]. If each
source of information is considered to be reliable then we can use conjunctive
rules [2,8] of aggregation that should decrease uncertainty. Because belief func-
tions have various interpretations, the optimal conjunctive rule does not exist.
Therefore, in the first part of the paper we propose to justify the application of
conjunctive rules based on the underlying decision models. This can be shortly
described as follows. Suppose that by using each source of information we can
construct the corresponding model of decision making described by a partial
preference order on decisions. The union of these orders can be understood as
the result of their conjunction. If orders do not contradict each other, then their
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 137–145, 2016.
DOI: 10.1007/978-3-319-45559-4 14
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conjunction can be embedded to a partial order. This way also explains when
contradiction among sources of information exists or does not. We show that
if we choose decisions based on models of imprecise probabilities then sources
of information are contradictory if the intersection of the corresponding credal
sets is not empty. We show that in this case the contradiction measure giving
the smallest contradiction after applying possible conjunctive rules is justifiable,
and we propose a number of axioms that leads to its unique choice.

The paper has the following structure. We give first the basic constructions
concerning belief functions in Sect. 2. Then we describe some aggregation rules
in Sect. 3, in particular, conjunctions rules that generalize the non-normalized
Dempster’s rule. In Sect. 4 we analyze the relation between decision models based
on imprecise probabilities and aggregation rules, and finally, in Sect. 5 we give
the axiomatics of the contradiction measure justified in the theory of imprecise
probabilities.

2 Some Facts and Notions from the Theory of Belief
Functions

Let X = {x1, ..., xn} be a finite set also called the frame of discernment and let
2X be the powerset of X. Any belief function [9] Bel : 2X → [0, 1] can be defined
by a basic belief assignment (bba) m : 2X → [0, 1] with

∑
B∈2X

m(B) = 1 as

Bel(A) =
∑

B∈2X |B⊆A

m(B).

A belief function is called normalized if Bel(∅) = 0. The value Bel(∅) shows the
amount of contradiction in information described by a belief function. Let Bel
be a belief function on 2X with bba m. Then a set B ∈ 2X is called a focal
element if m(B) > 0. The set of all focal elements for a belief function Bel is
called the body of evidence. If the body of evidence has only one focal element B,
then the belief function is called categorical and it is denoted by η〈B〉. Obviously,

η〈B〉(A) =
{

1, B ⊆ A,
0, B �⊆ A.

Any belief function Bel on 2X can represented as a sum of categorical belief
functions as

Bel =
∑

B∈2X

m(B)η〈B〉,

where obviously m is the bba of Bel.
In the next we will use the following notations:

– Mbel is the set of all normalized belief functions on 2X and the set of all belief
functions including non-normalized ones is denoted by M̄bel;

– Mpr is the set of all probability measures on 2X , i.e. normalized belief func-
tions, for which m(A) = 0 if |A| � 2.
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3 Aggregation Rules in the Theory of Belief Functions

The application of aggregation rules depends on prior information about infor-
mation sources. We will discuss in detail the conjunctive rules. They are used
if each source of information is assumed to be reliable. The following scheme
gives us the general approach to construction of conjunctive rules [2,8]. Sup-
pose we have two sources of information described by belief functions Beli =∑
A∈2X

mi(A)η〈A〉, i = 1, 2. Then the general conjunctive rule can be defined with

the help of a joint belief assignment m : 2X × 2X → [0, 1] that satisfies the
following conditions:

{∑
A∈2X m(A,B) = m2(B),∑
B∈2X m(A,B) = m1(A). (1)

The result of the conjunctive rule is defined as

Bel =
∑

A,B∈2X

m(A,B)η〈A∩B〉.

Let us notice that if we assume that the sources of information are indepen-
dent, then the joint belief assignment m is defined as m(A,B) = m1(A)m2(B),
A,B ∈ 2X . In the next the last rule of aggregation is referred as the classical
conjunctive rule. Dempster’s and Yager’s rules of aggregation defined as

(1) Dempster’s rule [4,9]: Bel = 1
1−k

∑
A∩B �=∅

m1(A)m2(B)η〈A∩B〉, where k =
∑

A∩B=∅
m1(A)m2(B);

(2) Yager’s rule [10]: Bel =
∑

A∩B �=∅
m1(A)m2(B)η〈A∩B〉 + kη〈X〉, where k is

defined as in (1);

are closely related to the classical conjunctive rule. As one can see they show how
the result of the classical conjunctive rule can be transformed to the normalized
belief function.

In the theory of belief functions you can find also other rules of aggregation.
The disjunctive rule [7] is used if at least one source of information is reliable. The
result of its application is defined through the joint belief assignment obeying
the conditions (1) as

Bel =
∑

A,B∈2X

m(A,B)η〈A∪B〉.

If the sources of information are independent, then m(A,B) = m1(A)m2(B) for
all A,B ∈ 2X , and also Bel(A) = Bel1(A)Bel2(A) for all A ∈ 2X .

The mixture rule is used if we can evaluate the reliability of each source of
information. Let us assume that we have m sources of information described by
belief functions Beli, i = 1, ...,m, and reliability of i-th source, i = 1, ...,m, is
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evaluated by a non-negative real number ri and
m∑
i=1

ri = 1, then the result of

the mixture rule is defined as Bel =
m∑
i=1

riBeli. There are other approaches for

accounting reliability of information sources, see for example, Shafer’s rule [9].
Let us notice that one can find other rules of aggregation in the theory of belief
functions [7] but they can be represented as a combination of the above basic
aggregation rules.

4 Aggregation Rules and Decision Models

We will consider decision models in a view of probabilistic interpretation of
normalized belief functions. Suppose that each decision is identified with a real
valued function (gamble) f on X. The set of all such functions is denoted by K.
Let the available information be described by a probability measure P ∈ Mpr.
Then the preference order ≺ on K, based on suspected utility

EP (f) =
n∑

i=1

f(xi)P ({xi}),

is defined as: decision f2 is more preferable than decision f1 (f1 ≺ f2) iff
EP (f1) < EP (f2). If the available information is imprecise then it can be
described by a belief function Bel ∈ Mbel or the corresponding credal set
P = {P ∈ Mpr|P � Bel}, and we can use several decision rules from the theory
of imprecise probabilities [1]:

(a) f1 ≺ f2 iff EP (f1) < EP (f2) for all P ∈ P;
(b) f1 ≺ f2 iff EP(f1) < EP(f2), where EP(f) = inf

P∈P
EP (f);

(c) f1 ≺ f2 iff ĒP(f1) < ĒP(f2), where ĒP(f) = sup
P∈P

EP (f);

(d) f1 ≺ f2 iff EP(f1) < EP(f2) and ĒP(f1) < ĒP(f2).

Let us notice that the relation ≺ is a strict partial order, and this seems to
be natural that we cannot choose an optimal decision if we do not have sufficient
information. In the next we will focuse on the rule (a) and analyze its behavior
w.r.t. applying aggregation rules.

Assume that we have m information sources described by belief functions
Beli ∈ Mbel, i = 1, ...,m. Assume also that each source of information is char-
acterized by the preference order ρi ⊆ K × K. Then the result of applying the
conjunctive rule to orders ρi should be also the preference order ρ ⊆ K × K
and obey the consensus condition ρi ⊆ ρ, i = 1, ...,m, with the meaning that
each source of information is reliable. The application of the disjunction rule
should give us an order ρ obeying the condition ρi ⊇ ρ, i = 1, ...,m, meaning
that (f1, f2) ∈ ρ if this preference is confirmed in each source of information.
Observe that the conjunctive rule is not defined if an order ρ ⊆ K × K with
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ρi ⊆ ρ, i = 1, ...,m, does not exist. In this case we say that sources of informa-
tion are contradictory. The disjunctive rule always exists and it can be defined

as ρ =
m⋂
i=1

ρi.

Let us analyze how the above definitions agree with the aggregation rules in
the theory of belief functions.

Lemma 1. Let Bel ∈ Mbel be the result of the conjunctive rule to belief func-
tions Bel1, Bel2 ∈ Mbel. Let us consider preference orders ρ, ρ1, ρ2 that corre-
spond to belief functions Bel,Bel1, Bel2 by decision rule (a). Then the preference
order ρ for Bel agrees with orders ρ1 and ρ2.

Proof. Clearly, P(Bel) ⊆ P(Beli), i = 1, 2. Thus, applying decision rule (a)
implies that ρi ⊆ ρ, i = 1, 2.

Lemma 2. Let Bel ∈ Mbel be the result of the disjunctive rule to belief functions
Bel1, Bel2 ∈ Mbel. Then ρi ⊇ ρ, i = 1, 2.

Proof. It is easy to see that Bel � Beli, i = 1, 2. Thus, P(Beli) ⊆ P(Bel) and
ρi ⊇ ρ, i = 1, 2.

Proposition 1. Sources of information described by belief functions Bel1,
Bel2 ∈ Mbel are not contradictory iff P(Bel1) ∩ P(Bel2) �= ∅. In this case there
is a conjunctive rule with the result Bel ∈ Mbel.

Proof. Sufficiency. Assume that there exists a P ∈ P(Bel1)∩P(Bel2). Consider
the preference order ρ, generated by a probability measure P . Obviously, ρi ⊆ ρ,
i = 1, 2, where ρi is the preference order, generated by Beli.

Necessity. Let P(Bel1) ∩ P(Bel2) = ∅. We will use the well known fact that
if we have two disjoint closed convex sets in R

n, then there is a hyperplane sep-
arating them. This fact for credal sets P(Bel1) and P(Bel2) can be formulated
as: there is a f ∈ K such that EP (f) > 0 for all P ∈ P(Bel1) and EP (f) < 0 for
all P ∈ P(Bel1). Thus, f is more preferable than −f according to the order ρ1
and −f is more preferable than f according to the order ρ2. Clearly, a partial
order ρ does not exist, because the above preferences contradict to its asymmetry
property.

The existence of the conjunctive rule with properties indicated in the propo-
sition follows from the results in [2].

5 The Axiomatics of Contradiction Measure

Let us consider the measure of contradiction, analyzed in [2,3,5]. Let
R(Bel1, Bel2) be the set of possible belief functions obtained by the conjunc-
tive rules applied to Bel1, Bel2 ∈ Mbel. Then the measure of contradiction
Con : Mbel × Mbel → [0, 1] is defined as

Con(Bel1, Bel2) = inf {Bel(∅)|Bel ∈ R(Bel1, Bel2)} .
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Let us consider its properties indicated in [2]. Further we will use the order � on
M̄bel called specialization. Let Bel1, Bel2 ∈ M̄bel, then Bel1 � Bel2 iff there are

representations Bel1 =
N∑
i=1

aiη〈Ai〉 and Bel2 =
N∑
i=1

aiη〈Bi〉, such that
N∑
i=1

ai = 1,

ai � 0, Bi ⊆ Ai, i = 1, ..., n. It easy to see that Bel1 � Bel2 implies Bel1 � Bel2
(Bel1(A) � Bel2(A) for all A ∈ 2X), but the opposite is not true in general [6].

Proposition 2. The measure of contradiction Con : Mbel × Mbel → [0, 1] has
the following properties:

A1. Con(Bel1, Bel2) = 0 for Bel1, Bel2 ∈ Mbel iff P(Bel1) ∩ P(Bel2) �= ∅.
A2. Let Bel1, Bel2 ∈ Mbel, and let Ai be their corresponding bodies of evidence,

then Con(Bel1, Bel2) = 1 iff A ∩ B = ∅ for all A ∈ A1 and B ∈ A2.
A3. Con(Bel1, Bel2) = Con(Bel2, Bel1) for all Bel1, Bel2 ∈ Mbel;
A4. Let Bel1 � Bel′1 and Bel2 � Bel′2, then Con(Bel1, Bel2) �

Con(Bel′1, Bel′2);
A5. Let Bel1 = (1 − a)Bel

(1)
1 + aBel

(2)
1 and Bel2 = (1 − a)Bel

(1)
2 + aBel

(2)
2 ,

where a ∈ [0, 1] and Bel
(k)
i ∈ Mbel, i, k = 1, 2. Then Con(Bel1, Bel2) �

(1 − a)Con(Bel
(1)
1 , Bel

(1)
2 ) + aCon(Bel

(2)
1 , Bel

(2)
2 ).

A6. Let Con(Bel1, Bel2) = a, where a ∈ [0, 1] and Bel1, Bel2 ∈ Mbel, then there
exist Bel

(k)
i ∈ Mbel, i, k = 1, 2, such that Beli = (1 − a)Bel

(1)
i + aBel

(2)
i ,

i = 1, 2, Con(Bel
(1)
1 , Bel

(1)
2 ) = 0, and Con(Bel

(2)
1 , Bel

(2)
2 ) = 1.

In addition,

(a) Con(P1, P2) = 1 −
n∑

i=1

min {P1(xi), P2(xi)}, Pi ∈ Mpr, i = 1, 2;

(b) Con(Bel1, Bel2) = inf {Con(P1, P2)|P1 ∈ P(Bel1), P2 ∈ P(Bel2)}.
We will consider properties A1–A6 as axioms for a measure of contradic-

tion. We will show later that the measure of contradiction is uniquely defined by
this system of axioms. Let us notice that axioms A1–A4 are considered in [5].
Axiom A1 describes the case when sources of information are non-contradictory,
and similarly in axiom A2 we describe the case, when information sources are
absolutely contradictory. In the last case any evidence (focal element) A ∈ A1

taken from the first source of information contradicts to any evidence B ∈ A2

from the second source of information. Axiom A3 is the symmetry axiom that
follows from the problem statement. Let us observe that axiom A4 reflects the
following. If Beli � Bel′i, then Bel′i describes the same information but with
higher precision. Therefore, axiom A4 says that increasing precision can lead to
higher contradiction. Axioms A5 and A6 describe how we can evaluate contra-
diction by dividing information in each source on two parts: axiom A5 says that
evaluation produced by dividing on two parts can gives us the result with the
higher value of contradiction. Axiom A6 says that it is possible to divide infor-
mation in each source on two parts such that we can extract parts of information
that do not contradict each other and parts that are absolutely contradictory,
and this separation defines the value of contradiction.
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Lemma 3. Belief functions Bel1, Bel2 ∈ Mbel are absolutely contradictory, i.e.
they obey the condition A2, iff there are disjoint sets A,B ∈ 2X (A ∩ B = ∅)
such that Bel1(A) = Bel2(B) = 1.

Proof. Necessity. Let we use notations from A2 and assume Bel1, Bel2 are
absolutely contradictory. Let us choose A =

⋃
C∈A1

C and B =
⋃

C∈A2

C. Then

obviously A ∩ B = ∅ and Bel1(A) = Bel2(B) = 1.
Sufficiency. Assume that there are A,B ∈ 2X such that Bel1(A) =

Bel2(B) = 1 and A ∩ B = ∅. Then
∑

C⊆A

m1(C) = 1 and
∑

C⊆B

m1(C) = 1.

This means that any focal element for Bel1 is a subset of A and any focal ele-
ment for Bel2 is a subset of B, i.e. belief functions Bel1, Bel2 are absolutely
contradictory.

Lemma 4. Let a functional Φ : Mpr × Mpr → [0, 1] obey axioms A1, A2 and
A6. Then

Φ(P1, P2) = 1 −
n∑

i=1

min {P1(xi), P2(xi)}, P1, P2 ∈ Mpr.

Proof. In the case of probability measures in possible representations Pi = (1 −
a)P (1)

i + aP
(2)
i , where P

(k)
i ∈ Mpr, i, k = 1, 2, P

(1)
1 = P

(2)
1 , and P

(1)
2 , P

(2)
2 are

absolutely contradictory, the parameter a is uniquely defined as

a = 1 −
n∑

i=1

min {P1(xi), P2(xi)}.

The probability measures used in these representations can be chosen as

(1) P
(1)
i ({xk}) = 1

1−a min {P1(xk), P2(xk)}, i = 1, 2, for a ∈ [0, 1);

(2) P
(2)
i ({xk}) = 1

a (Pi({xk}) − min {P1({xk}), P2({xk})}) for a ∈ [0, 1);
(3) if a = 1, then a probability measure P

(1)
1 = P

(2)
1 can be chosen arbitrarily;

(4) if a = 0, then absolutely contradictory probability measures P
(1)
2 , P

(2)
2 ∈

Mpr can be chosen arbitrary.

Thus, the result from the lemma is proved.

Theorem 1. Let a functional Φ : Mbel ×Mbel → [0, 1] obey axioms A1, A2, A4,
and A6. Then it coincides with the contradiction measure Con on Mbel × Mbel.

Proof. Let us notice that Lemma 4 implies that functionals Φ and Con coincide
on Mpr × Mpr. Let us show first that Φ(Bel1, Bel2) � Con(Bel1, Bel2) for all
Bel1, Bel2 ∈ Mbel. Property (b) implies that there exist Pi ∈ Mpr, i = 1, 2,
such that Con(Bel1, Bel2) = Con(P1, P2) and Beli � Pi, i = 1, 2. Because
Φ(P1, P2) = Con(P1, P2), axiom A4 implies that Φ(Bel1, Bel2) � Φ(P1, P2) =
Con(Bel1, Bel2).
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Let us prove that Con(Bel1, Bel2) � Φ(Bel1, Bel2) for all Bel1, Bel2 ∈ Mbel.
Let us assume to the contrary that Con(Bel1, Bel2) > Φ(Bel1, Bel2) for some
Bel1, Bel2 ∈ Mbel. Then by axiom A6 there are representations

Beli = (1 − a)Bel
(1)
i + aBel

(2)
i , i = 1, 2,

such that Φ(Bel1, Bel2) = a, P(Bel
(1)
1 ) ∩ P(Bel

(1)
2 ) �= ∅, and P(Bel

(2)
1 ) ∩

P(Bel
(2)
2 ) = ∅. Consider probability measures

Pi = (1 − a)P + aP
(2)
i , i = 1, 2,

where P ∈ P(Bel
(1)
1 ) ∩ P(Bel

(1)
2 ) and P

(2)
i ∈ P(Bel

(2)
i ), i = 1, 2. Obvi-

ously, probability measures P
(2)
1 and P

(2)
2 are absolutely contradictory, thus,

Φ(Bel1, Bel2) = Con(P1, P2). In addition, Pi ∈ P(Beli), i = 1, 2. Thus, by
property (b) from Proposition 2, we get Con(Bel1, Bel2) � Con(P1, P2), but
this contradicts to our assumption.

6 Conclusion

In this paper we show that the choice of aggregation rules has to be in accordance
with the underlying decision models, and if we take decision models based on
imprecise probabilities then contradiction exists if the intersection of underlying
credal sets is not empty. We show that in this case the contradiction measure
giving the smallest contradiction by applying possible conjunctive rules is justi-
fiable, and we give the axiomatics of this measure. The important topic of the
next research can be the analysis of relations obtained as union of partial prefer-
ence orders on decisions and how these relations can be used for decision making
in case of contradictory information.
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A Relationship of Conflicting Belief Masses
to Open World Assumption
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Abstract. When combining belief functions by conjunctive rules of
combination, conflicting belief masses often appear, which are assigned
to empty set by the non-normalized conjunctive rule or normalized by
Dempster’s rule of combination in Dempster-Shafer theory.

This theoretical study analyses processing of conflicting belief masses
under open world assumption. It is observed that sum of conflicting
masses covers not only a possibility of a non-expected hypothesis out of
considered frame of discernment. It also covers, analogously to the case
of close world assumption, internal conflicts of individual belief functions
and conflict between/among two or several combined belief functions.

Thus, for correct and complete interpretation of open world assump-
tion it is recommended to include extra element(s) into used frame of
discernment.

Keywords: Belief functions · Dempster-shafer theory · Uncertainty ·
Conflicting belief masses · Internal conflict · Conflict between belief
functions · Open world assumption · Transferable Belief Model (TBM)

1 Introduction

When combining belief functions by conjunctive rules of combination, conflicting
belief masses often appear. This happens whenever combined belief functions
(BFs) are not mutually completely consistent. Conflicting masses are originally
considered to be caused by a conflict between belief functions [16] and later,
alternatively, by a possibility of having a new hypothesis outside of a considered
frame of discernment [17]. The later approach is called open world assumption
(OWA).

The original Shafer’s interpretation of the sum of all conflicting belief masses
does not correctly correspond to the real nature of conflicts between belief func-
tions [1,13], this has motivated a theoretical research and a series of papers on
the topic of conflicts of BFs, e.g., [3,6,9–15].

Smets’ idea of open world assumption is usually accepted by papers on the
Transferable Belief Model (TBM) and on TBM based approaches. Nevertheless
Smets’ OWA approach hides the real nature of conflicting masses and conflicts
of BFs; it mixes conflicts with a possibility of existence of a hypothesis outside
of a considered frame of discernment.
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 146–155, 2016.
DOI: 10.1007/978-3-319-45559-4 15
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Motivated by a discussion after presentation of author’s recent approach to
conflicts of BFs [9], we discuss a relationship of the sum of conflicting belief
masses and OWA approach in this study, in order to uncover a real nature of
the sum of all conflicting masses and to present and analyse interpretations of
conflicting belief masses under OWA.

Important basic notions are briefly recalled in Sect. 2. Section 3 presents nor-
malized belief functions under OWA, whereas non-normalized belief functions
under OWA are analysed in Sect. 4. Section 5 summarizes the analysed interpre-
tations of OWA approach. Utilizing the presented results, Smets’ TBM based on
OWA is compared with the classic Shafer’s approach to belief functions.

2 Preliminaries

We assume classic definitions of basic notions from the theory of belief functions
(BFs) [16] on a finite frame of discernment Ωn = {ω1, ω2, ..., ωn}. An exhaustive
frame of discernment is considered in the classic Shafer’s approach; this is called
closed world assumption. Alternatively Smets [17] admits a possibility of appear-
ance of a new hypothesis outside of the considered frame of discernment, thus
the frame is not exhaustive there; this is called open world assumption (OWA).
The sum of conflicting belief masses is interpreted as a mass of a hypothesis(-es)
outside of the original frame, BFs are not assumed to be normalized there.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such
that

∑
A⊆Ω m(A) = 1; the values of the bba are called basic belief masses

(bbm). m(∅) = 0 is assumed in the classic approach; m(∅) ≥ 0 in Smets’
OWA approach. A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅�=X⊆A m(X). There is a unique correspondence between m and

corresponding Bel thus we often speak about m as of belief function.
A BF is normalized if m(∅) = 0, thus if

∑
∅�=X⊆Ω m(X) = Bel(Ω) = 1.

A BF is non-normalized if m(∅) > 0, thus if
∑

∅�=X⊆Ω m(X) = Bel(Ω) < 1.
A focal element is a subset X of the frame of discernment, such that

m(X) > 0. If all focal elements are nested, we speak about a consonant belief
function; if all focal elements have a non-empty intersection, we speak about a
consistent belief function.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕ m2)(A) =∑
X∩Y =A Km1(X)m2(Y ) for A �=∅, where K = 1

1−κ , κ=
∑

X∩Y =∅ m1(X)m2(Y ),
and (m1 ⊕ m2)(∅) = 0, see [16]; putting K = 1 and (m1 ∩©m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩©, which is used in OWA
approach, see e.g., original Smets’ Transferable Belief Model (TBM) [18].

3 Normalized Examples Against a Simple Interpretation
of OWA Approach

Let us present several examples in this section. We will start with an extremely
illustrative Almond’s example [1,6], assuming OWA here.
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Example 1. Let us suppose six-element frame of discernment, results of a six-
sided die and two independent believers with the same beliefs1 expressing that
the six-sided die is fair: Ω6 = {ω1, ..., ω6} = {1, 2, 3, 4, 5, 6}, mj({ωi}) = 1/6
for i = 1, ..., 6, j = 1, 2, mj(X) = 0 otherwise. Let m = m1 ∩©m2. We obtain
m({ωi}) = 1/36 for i = 1, ..., 6, m(∅) = 5/6, m(X) = 0 otherwise. Supposing
the usual simple OWA interpretation we obtain big belief mass m(∅) = 5/6 for
a non-expected hypothesis outside of our frame Ω6, e.g. the die stands on one of
its edges or vertices. It seems obvious that such an interpretation is not correct.

An analogous example is presented by W. Liu in [13] on a five-element frame
of discernment. We can modify these examples, where both believers have same
positive arguments for all hypotheses, by decreasing belief masses of singletons
by the same value and putting the removed belief masses to the frame of discern-
ment, or by taking any classic (i.e., normalized with m(∅) = 0) non-vacuous2

symmetric BFs, i.e., by some kind of discounting. Nevertheless, we always obtain
positive m(∅) = 0, which is hardly interpretable as a belief mass of an unexpected
hypothesis, when zero belief mass is assigned to a hypothesis outside of the frame
by both of the believers, which are in full accord.

More generally, we can take any couple of numerically same classic non-
consistent BFs under OWA, e.g., Example 2 from [6], tossing a coin. We again
obtain m(∅) = 0, from two believers in full accord with mj(∅) = 0. This is again
hardly interpretable as a belief mass of unexpected hypotheses, e.g., coin stands
on its edge.

Example 2. Let us suppose for simplicity Ω2 = {ω1, ω2} now. Let mj({ω1}) =
0.5, mj({ω2}) = 0.4, mj({ω1, ω2}) = 0.1 for j = 3, 4, mj(X) = 0 otherwise. Let
m = m3 ∩©m4 now. We obtain m({ω1}) = 0.35, m({ω2}) = 0.24, m({ω1, ω2}) =
0.01, m(∅) = 0.4, m(X) = 0 otherwise.

Both believers have same beliefs, they are in full agreement, there is no
conflict between them. Assuming OWA the believers have a possibility to assign
some belief mass to a new hypothesis unexpected in the frame of discernment
using non-normalized BF(s). But they did not use this option, they assigned
all the belief masses to non-empty subsets of the considered frame. Thus the
positive resulting m(∅) expresses, in accordance with [6], rather internal conflict
of input BFs than a belief mass assigned to a new hypothesis unexpected in the
frame of discernment.

Let us suppose classic internally non-conflicting BFs, thus consonant or more
generally consistent BFs now. There is no issue when the BFs are mutually

1 Do not forget that the equality of BFs is not equivalent to their dependence:
dependent BFs, BFs from dependent believers should be same or somehow simi-
lar, dependence implies similarity, but same (or very similar) BFs do not imply their
dependence.

2 Combining two vacuous BFs gives m(Ω) = 1, thus m(∅) = 0, but vacuous BF
does not express the same positive arguments for all hypotheses, it expresses the full
ignorance.
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consistent, i.e., if common intersection of all their focal elements is non-empty,
there is m(∅) = 0 in such a case. On the other hand, if our consistent BFs are
not mutually consistent, we can obtain the following example:

Example 3. Let us suppose Ω6 = {ω1, ..., ω6} again and two simple internally
non-conflicting BFs: m5({ω2, ω4, ω6}) = 1, m6({ω1}) = 1/3, m6({ω1, ω3}) =
2/3, mi(X) = 0, otherwise. Combining m = m5 ∩©m6 we obtain m(∅) = 1.

Example 3 (Modified). Let us suppose Ω6 again and two modified BFs
Bel′5, Bel′6:

X : {ω1} {ω1, ω3} {ω2, ω4, ω6} Ω6 ∅
m5(X) : 2/3 1/3
m6(X) : 2/9 4/9 3/9

(m5 ∩©m6)(X) : 2/27 4/27 6/27 3/27 12/27

A situation is much more complicated here. Both the input BFs are consis-
tent, thus internally non-conflicting. On the other hand the BFs are not mutually
consistent, there is high conflict between them, they are even completely conflict-
ing in the case of the original Example 3. Some part of m(∅) represents conflict
between BFs here. Of course another part of m(∅) may be caused by OWA.
Because both of the believers assign all their belief masses to non-empty subsets
of the frame, even if OWA is considered, we can hardly interpret entire m(∅) as
a belief mass assigned to a new hypothesis outside of the frame.

Thus we rather have to consider entire m(∅) or its part to be a conflict between
BFs (external conflict [11]) than to consider a belief mass of an unexpected
hypothesis (or unexpected hypotheses) only.

4 Non-normalized Belief Functions Under OWA

Let us turn our attention to non-normalized BFs in this section. Input BFs
explicitly assume or at least admit existence of a new hypothesis unexpected in
the considered frame of discernment.

Let us start with an analogy of Example 1, but the believers want to admit
the existence of a new hypothesis, thus they assign belief mass 1

10 outside of the
considered frame Ω6 frame thus to the ∅:

Example 4. Let us again suppose a six-sided fair die, thus Ω6, but modified bbms
m′

1,m
′
2 this time:

X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} ∅
m′

1(X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10
m′

2(X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10
(m′

1 ∩©m′
2)(X) : 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.8650

The result is better this time, positive belief masses same for all singletons
are obtained. Nevertheless, both believers assign greater masses to any element
from the frame than to a new hypothesis. But the resulting belief mass of the
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empty set is significantly greater than masses assigned to the singletons, even
significantly greater than the sum of belief masses assigned to all the singletons
from the frame of discernment (0.865 = m′(∅) >

∑6
i=1 m′({ωi}) = 0.135). When

believers decrease their belief masses assigned to the empty set (see the following
modification of the example), the resulting belief mass assigned to the empty set
remains almost the same. Thus (a possibility of appearing of) a new hypothesis
outside of the frame of discernment is significantly preferred to any hypothesis
from the frame, even to the entire frame (as m(∅) > Bel(Ω)).

Example 4 (Modified). Let us suppose Ω6 again, with different modification of
bbms m′′

1 ,m′′
2 this time:

X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} ∅
m′′

j (X) : 0.16 0.16 0.16 0.16 0.16 0.16 0.04
(m′′

1 ∩©m′′
2)(X) : 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.8464

There is a simple mathematical explanation: m(∅) is absorbing element with
respect to conjunctive combination, i.e., mi(X)mj(∅) goes to (mi ∩©mj)(∅) for
any X ⊆ Ω, as there always holds that X ∩ ∅ = ∅.

There is also an interpretational explanation: in accord with the classic cases
studied in [6] the sum of conflicting belief masses m ∩©(∅) contains also internal
conflicts of input belief masses (and conflict between BFs if they are mutually
conflicting).

When we want to admit a possibility of an unexpected hypothesis and we do
not like to assign positive belief masses directly to the empty set we can either
explicitly add a new element(s) representing some unexpected hypothesis(es)
into the considered frame of discernment or we can add empty set to the frame.

Let us start with the later option, i.e., addition of the empty set to the frame
of discernment. Thus we obtain Ω∅

n = Ωn ∪ {∅} = {ω1, ω2, ..., ωn, ∅}, especially
Ω∅

6 = {ω1, ω2, ..., ω6, ∅}. We can express a possibility of unexpected hypothesis
by positive m(Ω∅

n) now. Let us look at Example 5 and its modification applied
to Ω∅

6 :

Example 5. A six-sided fair die again; and modified bbms on Ω∅
6 this time:

X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} Ω6 Ω∅
6 ∅

m′′′
1 (X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

m′′′
2 (X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

(m′′′
1 ∩©m′′′

2 )(X) : 0.0525 0.0525 0.0525 0.0525 0.0525 0.0525 0.01 0.6750

m′′′′
j (X) : 0.16 0.16 0.16 0.16 0.16 0.16 0.04

(m′′′′
1 ∩©m′′′′

2 )(X) :0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0016 0.7680

We can observe a high belief mass assigned to the empty set at m′′′
1 ∩©m′′′

2

and m′′′′
1 ∩©m′′′′

2 , especially in the later case where less masses are assigned to
Ω∅

6 in input BFs m′′′′
1 , m′′′′

2 . Thus, the problem of preference of an unexpected
hypothesis seems to be solved here, but interpretation of high (m1 ∩©m2)(∅)
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remains an open issue. Moreover, when we interpret m(∅) or its part as belief
mass of an unexpected hypothesis, the unexpected hypothesis is preferred again,
as its belief mass comes from two parts: m(∅) and m({∅}) (the later is zero in
Example 5).

We are going to investigate addition of a new classic element N(ew)
representing unexpected hypotheses now. We obtain Ω+

n = Ωn ∪ {N} =
{ω1, ω2, ..., ωn, N}, especially Ω+

6 = {ω1, ω2, ..., ω6, N}. Let us look at Exam-
ple 4 and its modification 6 applied to Ω+

6 . We can directly assign a belief mass
to the additional element N , see Example 6, or analogously to the previous case
to entire Ω+

6 (we obtain numerically same results as in the previous case), see
Example 6 (modified). The combination of these two options is of course also a
possibility.

Example 6. A six-sided fair die again; and modified bbms on Ω+
6 this time:

X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} N(ew) Ω+
6 ∅

mv
1(X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

mv
2(X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

(mv
1 ∩©mv

2)(X) : 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.01 0.8550

mvi
j (X) : 0.16 0.16 0.16 0.16 0.16 0.16 0.04

(mvi
1 ∩©mvi

2 )(X) :0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0016 0.8448

Example 6 (Modified). A six-sided fair die; and modified bbms on Ω+
6 this time:

X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω6} N(ew) Ω+
6 ∅

mvii
1 (X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

mvii
2 (X) : 0.15 0.15 0.15 0.15 0.15 0.15 0.10

(mvii
1

∩©mvii
2 )(X) : 0.0525 0.0525 0.0525 0.0525 0.0525 0.0525 0.01 0.6750

mviii
j (X) : 0.16 0.16 0.16 0.16 0.16 0.16 0.04

(mviii
1

∩©mviii
2 )(X) : 0.0384 0.0384 0.0384 0.0384 0.0384 0.0384 0.0016 0.7680

We can see a high belief mass assigned to the empty set also in the case of Ω+
6

but this time it does not represent a belief mass of unexpected hypotheses. Belief
mass directly assigned to unexpected hypotheses is represented by m({N}) and
plausibly also by any m(X) for N ∈ X, while mi ∩©mj(∅) represents conflicts
inside and between mi and mj as under the close world assumption. If it is useful
for a given domain, we can use several additional elements for several unexpected
hypotheses, or just one as coarsening of all unexpected hypotheses together. We
can see that belief mass of an unexpected hypothesis (of element N) which is
less than belief mass of any element of Ω6 in individual BFs remains less also
after combination. Thus an unexpected hypothesis in not preferred now.

Let us suppose an observer which knows European animals only and a frame
of discernment ΩEA containing the European animals. Let us move our observer
(without any previous knowledge of African animals) to Africa now. When
observing a zebra, an assignment of positive belief mass explicitly to a new
element N is probably not necessary, as belief masses may be assigned to focal
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elements H = {horse,N} and H ∪X for X ⊆ ΩEA. Observing a crocodile or an
elephant some positive belief mass should be probably assigned to N (where its
size would be related to a quality of the observation). For some applications one
element N for all unknown animals is sufficient, for other applications several
new elements, e.g., NM (new mammal), NB (new bird), NR (new reptile), etc.,
would fit better.

Using additional element N for unexpected hypothesis, we can either make
normalization as in classic Shafer’s approach; or we can use non-normalized
BFs as in Smets’ approach, considering that m(∅) represents a size of conflict
(both internal and external) of BFs. From the decisional point of view both the
options are the same as an element with the highest value of some probabilistic
transformation3 of BFs is usually selected. Usually Smets’ pignistic probability
[19] or normalized plausibility of singletons [4] (i.e., normalized contour function)
is used. For an analysis4 of probabilistic transformations see, e.g., [4,5].

5 A Comparison of the Approaches

5.1 A Summary of the Presented OWA Approaches

Using just a non-negative m(∅): This is a simple idea and performance.
But simple interpretation of m(∅) hides internal conflict(s) of BF(s) and conflict
between BFs in results of their combination. Interpreting m(∅) only as belief
mass assigned to new unexpected hypotheses significantly prefers possibility of
unexpected hypotheses to those which are included in the considered frame of
discernment.

Extension of Ω by {∅}, where belief masses are assigned only to classic focal
elements and entire extended Ω∅

n: This simple extension, unfortunately does not
cover the issue of interpretation of m(∅), see Example 5.

Extension of Ω by new element(s): Ω+. This approach increases the size of
the frame, thus it also a little bit increases complexity of computation (especially
when several new elements are added in a small frame). On the other hand, this
approach distinguishes belief masses of unexpected hypothesis(es) from both
internal and external conflicts caused by conflicting masses of disjoint focal ele-
ments from the frame and also from conflicts caused by conflicting masses of
original focal elements and unexpected hypotheses. Moreover, both original and
additional hypotheses are managed analogously in this approach, none of them
is preferred.
3 Note, that the pignistic probability gives numerically same results under close and

open world assumptions, as normalization is part of pignistic transformation; and
that TBM with non-normalized ∩© under OWA gives same decisional results as clas-
sic Shafer’s approach with ⊕ and pignistic transformation does. The only difference
is that TBM explicitly keeps in m(∅) value of conflict (internal and external conflict
together with masses of unexpected hypotheses) until the moment of decision.

4 Note, that normalized plausibility is consistent with conjunctive combination (they
mutually commute), while pignistic transformation is not. Pignistic transformation
commutes instead of conjunctive combination with linear combination of BFs.
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5.2 When Do the OWA Approaches Coincide?

When there is no necessity or reason to assign belief mass directly to sets of con-
sidered hypotheses, we obtain an unexpected hypothesis N in all focal elements
in the extended approach. Thus all intersections of focal elements contain N
again. There is no reason to assign a positive belief mass to the empty set in the
extended approach. Intersections are non-empty under our assumption, thus ∅ is
not a focal element in the extended approach under our assumption. Hence we
obtain the following equivalence of focal elements, thus also of the approaches:
X+ ≡ X, where X ⊆ Ω, X+ ⊆ Ω+, X+ = X ∪ {N}, and {N} ≡ ∅.

E.g., for two-element frame {H(ead), T (ail)} we obtain under our assump-
tion the following equivalence with extended version of the frame {H,T,N}:

{N} ≡ ∅,
{H,N} ≡ {H},
{T,N} ≡ {T},
{H,T,N} ≡ {H,T}.

We can see that Bel(Ω) is not only ≤1, but it is just Bel(Ω) = 0 under
the assumption. We can see that N is preferred in this case as Bel({N}) ≥ 0.
It may be zero in initial BFs, but it may obtain a positive belief mass within
combination of two BFs which are not mutually consistent.

We have to notice that we cannot assign any positive belief mass to any focal
element from the considered frame Ω in this case which is equivalent to simple
interpretation of OWA. Even if we have a fully reliable believer (observer, sensor)
and 100 % clear argument (observation, measurement) in favour of an element or
a subset of the frame (ωX ∈ Ω or X ⊆ Ω), focal elements should always contain
N , thus they are {ωX , N} or X ∪ {N} and m({ωX}) = m(X) = 0 hence always
also Bel({ωX}) = Bel(X) = 0.

Assuming a criminal example analogous to Smets’ Peter, Paul and Mary
case, any (partially of fully) contradictive testimonies give (multiples of) their
contradictive masses to a person which is out of the frame, thus to unknown
person, which is still not suspicious to be an assassin. On the other hand, belief
of the entire frame is zero, thus Bel({Peter, Paul,Mary}) = 0.

This always holds true under the above assumption and due to the equiva-
lence it also holds true in the simple interpretation of OWA in general.

5.3 A Comparison of Smets’ OWA and Classic Shafer’s Approaches

A Decisional Point of View. Based on commutativity of normalization
with conjunctive combination, i.e., on the fact that n(n(m1) ∩©n(m2)) =
n(m1 ∩©m2) = m1 ⊕ m2, where (n(m))(X) = m(X)∑

∅�=Y ⊆Ω m(Y ) , ∩© non-normalized,
and ⊕ normalized conjunctive combinations, we can see that TBM gives the
same results as classic Shafer’s approach produces, when pignistic probability
is used. This holds true because the first step of the pignistic transformation
(generating of BetP ) is just a normalization. Possibly different results may arise
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when different probabilistic approaches are used in the approaches: e.g., pig-
nistic transformation in TBM, and plausibility transformation (generation of
normalized plausibility of singletons) in the classic approach.
Belief Mass of the Empty Set: m(∅). A positive belief mass of the empty
set is a feature which really distinguishes TBM form the classic approach. It is
hidden on the normalization step when two or more BFs are combined in the
same time in Shafer’s approach. It is not even computed there, when input BFs
are combined gradually one by one. We have to recall that m(∅) includes not
only belief mass of a possible unexpected hypothesis, but also internal conflicts
of input BFs, conflict between two or among several input BFs.

If we want correctly use the simple interpretation of m(∅) only as a belief
mass of an unexpected hypothesis, then we have to assume that all focal elements
include the unexpected hypothesis, hence that m(X) = Bel(X) = 0 for any
subset X of Ω (X ⊆ Ω), which does not contain the unexpected hypothesis.

Definition Domains. Non-normalized conjunctive rule is defined for any couple
(n-tuple) of BFs. Classic Dempster rule is not defined

∑
X∩Y �=∅ m1(X)m2(Y ) =

0, i.e., if
∑

X∩Y =∅ m1(X)m2(Y ) = 1. On the other hand in this case we know
m(∅) = 1 even in the classic approach.

6 Conclusion

In this study, we have studied the nature of conflicting belief masses under open
world assumption. Simple interpretation of sum of all conflicting masses from the
Transferable Belief Model was analysed. Several variants of extension of frame of
discernment with additional element(s) representing unexpected hypothesis(es)
was suggested here. Finally, simple interpretation and extension approaches were
mutually compared, and condition of their coincidence described.

We have to always keep in mind that the sum of all conflicting belief masses
(m(∅)) contains not only belief mass which should be assigned to new unex-
pected hypothesis(es), but also internal conflicts of single belief functions and
conflict between belief functions (external conflict) whenever m is a basic belief
assignment corresponding to a result of combination of two or more belief
functions.

For a correct and complete interpretation of open world assumption it is
recommended to include extra element(s) into used frame of discernment.

The presented theoretical results improve general understanding of both the
sum of all conflicting masses and conflicts of belief functions under open world
assumption. This, consequently, may improve combination of conflicting belief
functions and interpretation of results of combination in practical applications
under open world assumption.
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ducted at the Institute of Computer Science, The Czech Academy of Sciences.
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Abstract. When combining multiple belief functions, designing a com-
bination rule that selects the least informative belief function among
those more informative than each of the combined ones is a difficult task.
Such rules, commonly depicted as “cautious”, are typically required to
be idempotent, since when one is cautious, combining identical informa-
tion should not lead to the reinforcement of some hypothesis. However,
applying the least commitment principle using partial orders is in gen-
eral not straightforward, mainly due to the non-uniqueness of solutions.
Building upon previous work, this paper investigates the use of distances
compatible with such partial orders to determine a unique solution to the
combination problem. The obtained operators are conjunctive, idempo-
tent and commutative, but lack associativity. They are, however, quasi-
associative allowing sequential combinations at no extra complexity.

Keywords: Conjunctive combination · Idempotence · Belief function ·
Distance · Optimization

1 Introduction

Combining pieces of evidence coming from different sources of information is
one of the most frequently studied problem in the belief function theory. In
particular, there exist a rich literature proposing alternatives to Dempster’s rule
when this latter does not apply, that is when sources of information are either
unreliable or non-independent, or both. This paper deals with the second issue,
that is the one concerning source independence, and more particularly with the
case where this dependence is ill-known and hard to assess.

Under such an assumption, it is common to adopt a cautious approach, also
known under least-commitment principle [7] (LCP). A natural consequence of
this principle is that if all the sources provide the same mass function, then
the result of the combination should be this very mass function, or in other
words the combination should be idempotent. However, if idempotence is a con-
sequence of the LCP, satisfying idempotence does not imply satisfying the LCP.
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 156–163, 2016.
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As shown by Dubois and Yager [8], there is virtually an infinity of ways to
derive idempotent combination rules, not all of them necessarily following a
least-commitment principle. For instance, Cattaneo [2] provides an idempotent
rule following a conflict-minimization approach, which may lead to non-least
committed results [4].

To satisfy the LCP, we therefore must add additional constraints on the
combination results. One such natural constraint is to consider a partial order
over informative content of mass functions, and to require the combination result
to be one of the maximal element of this partial order within the subset of
possible combination results. Unfortunately, such an approach will very often
lead to multiple solutions corresponding to all possible maximal elements [6].
Denœux [3] shows that using the canonical decomposition and the associated
partial order leads to a unique LCP, idempotent solution, yet this solution has
two limitations: the set of possible combination results is much reduced, leading
to a not so conservative behavior (as we will see on a simple example in Sect. 4,
and as already pointed out in [4]), and the combination only apply to specific
(i.e., non-dogmatic) mass functions.

In this paper, we take inspiration from some of our previous work [9] studying
the consistency of distances with partial orders comparing informative contents
to propose a new way to derive cautious combination rules. Our approach departs
from previous ones, as it is formulated as an optimization problem that naturally
satisfies the LCP principle (similarly to what is done by Cattaneo [2] for conflict
minimization). The interest of this approach is that if the distance is chosen so
as to minimize a strictly convex objective function, we are guaranteed to have
a unique solution that satisfies the LCP and is easy to compute. The bulk of
the proposal is contained in Sect. 3, where we present the combination approach
and study its properties. Sections 2 and 4 respectively recalls the basics needed
in this paper and (briefly) compares our proposal with respect to existing ones.

2 Preliminaries and Problem Statement

This section briefly recalls the basics of evidence theory (due to space limitations,
we will provide references for details).

2.1 Basic Concepts

A body of evidence Ei defined on the space Ω = {ω1, . . . , ωn} will be modeled by
a mass function mi : 2Ω → [0, 1] that sums up to one, i.e.,

∑
E⊆Ω m(E) = 1. In

evidence theory, this basic tool models our uncertainty about the true value of
some quantity (parameter, variable) lying in Ω. The cardinality of 2Ω is denoted
by N = 2n. A set A is a focal element of mi iff mi(A) > 0. A mass function
assigning a unit mass to a single focal element A is called categorical and
denoted by mA: mA(A) = 1. If A �= Ω, the mass function mA is equivalent
to providing the set A as information, while the vacuous mass function mΩ

represents ignorance.
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Several alternative set functions are commonly used in the theory of belief
functions and encode the same information as a given mass function mi. The
belief, plausibility and commonality functions of a set A are defined as

beli(A) =
∑

E⊆A,E �=∅
mi(E), pli(A) =

∑
E∩A �=∅

mi(E), qi(A) =
∑
E⊇A

mi(E)

and respectively represent how much A is implied, consistent and common by
the actual evidence.

In this paper, we will also use the conjunctive weight function denoted by
wi introduced by Smets [10]. It is only defined for mass functions with mi (Ω) �=
0 (i.e. non-dogmatic mass functions). We refer to Denœux [3] for a thorough
presentation of the conjunctive weight function.

2.2 Comparing Mass Functions with Respect to Informative
Content

When considering two mass functions m1 and m2 providing information about
the same quantity, a natural question is to wonder if one of these two is more
informative than the other one. This question can be answered if the mass space
M, i.e. the set of mass functions over Ω, is endowed with a relevant partial order
� with m1 � m2 when m1 is more informative than m2. Informative content
related partial orders should extend set inclusion, since when A ⊆ B, A is more
informative than B. Such partial orders1 can be directly obtained by consider-
ing inequality between the set functions f ∈ {pl, q, w}, by stating that m1 is
f-included in m2, denoted m1 �f m2, if f1 ≤ f2 where ≤ is the element-wise
inequality.

Each of these orders is partial in the sense that in general there are some
incomparable pairs (m1,m2), i.e. m1 �� m2 and m2 �� m1. There exist implica-
tions between them, as we have

m1 �w m2 ⇒
{

m1 �pl m2

m1 �q m2
. (1)

2.3 Distances and Partial Orders Compatibility

Another way to compare mass functions is by measuring how distant they are.
An evidential distance is a function d : M × M → [0,∞] that satisfies the
symmetry, definiteness and triangle inequality properties. In [9], we have for-
malized the idea of compatibility between a distance and a partial order in the
following way:

Definition 1. Given a partial order �f defined over M, an evidential distance
d is said to be �f -compatible (in the strict sense) if for any mass functions
m1, m2 and m3 such that m1 �f m2 �f m3, we have:

max {d (m1,m2) ; d (m2,m3)} < d (m1,m3) , (2)
1 There are others, but due to limited space, we will only deal with these ones.
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For some family of set-functions f that are in bijective correspondence with mass
functions, an interesting distance df,k is defined as

df,k (m1,m2) =

⎛

⎝
∑

A⊆Ω

|f1 (A) − f2 (A) |k
⎞

⎠

1
k

.

In particular, we showed that for any k ∈ N
∗ \ {∞}, dpl,k are �pl-compatible

and dq,k is �q-compatible (in the strict sense for all of them).

3 A Distance-Based Cautious Conjunctive Aggregation

In this section, we introduce the main idea of our new combination operator,
relying on distances compatible with the partial orders comparing informative
content.

3.1 Conjunctive Combination Using Partial Orders

In this paper, rather than seeing a conjunctive combination E1, . . . , E� as a par-
ticular operator defined either on the mass functions m1, . . . ,m� or on the weight
functions w1, . . . , w�, we simply consider that a mass function m∗ resulting from
a conjunction should be (1) more informative (in the sense of some partial order
�f ) than any m1, . . . ,m� and (2) should be among the least committed elements
(in terms of information) among those, in accordance with the LCP. Formally
speaking, if we denote by

Sf (mi) := {m ∈ M | m �f mi} (3)

the set of mass functions more informative than mi, then we should have:

1. m∗ ∈ Sf (m1) ∩ . . . ∩ Sf (m�),
2. � ∃m′ ∈ Sf (m1) ∩ . . . ∩ Sf (m�) such that m∗ �f m′.

The first constraint expresses the conjunctive behavior of such an approach. The
second constraint says that m∗ is a maximal element (i.e. a least committed
solution) for admissible solutions subject to the first constraint.

The interest of such a solution is that it is rather generic, and does not
require any explicit model of dependence. However, it should be noted that the
choice of the partial order to consider is not without consequence. Considering
those mentioned in Sect. 2.2, Eq. (1) tells us that for a same mass function m,
Sw(m) ⊆ Spl(m), hence the space of solutions will be potentially much smaller
when choosing �w rather than �pl. In practice and in accordance with the LCP,
it seems safer to choose the most conservative partial orders, i.e., in our case
�pl or �q. We will see in Sect. 4 that it can have an important impact on the
combination results, even for simple examples.

While our definition of the cautious result of a conjunctive combination
appears natural, it still faces the problem that many different solutions m∗ could
actually fit the two constraints, as � is a partial order. One idea to solve this
problem is to use distances that are compatible with �.
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3.2 New Conjunctive Operators from Soft LCP

To derive new conjunctive operators, we consider a weaker form of least commit-
ment principle which we call soft LCP. This principle states that when there
are several candidate mass functions compliant with a set of constraints, the one
with minimal distance value from the vacuous mass function should be chosen
for some �-compatible distance. According to Corollary 4 in [9], we know that
the problem induced by the soft LCP is a convex optimization problem with a
unique solution if the chosen distance df,k is �f -compatible and if 2 ≤ k < ∞.
Let �k,f denote this operator, for any set of � functions {m1, ..,m�}, we have

m1 �f,k .. �f,k ml = arg min
m∈Sf (m1)∩..∩Sf (m�)

df,k (m,mΩ) . (4)

The commutativity of the set-intersection and the symmetry property of distance
give that �f,k is commutative. Each operator �f,k is also idempotent: for any
possible solution m ∈ Sf (m1) \ {m1}, we have df,k (m1,mΩ) < df,k (m,mΩ)
because df,k is �f -compatible and m �f m1 �f mΩ , hence m1 �f,k m1 = m1.
Each of these operators are also conjunctive by construction, in the sense that the
output mass function is more informative than any of the initial mass functions.
Indeed if mi states that ω is not a possible value of the unknown quantity
(pli(ω) = 0), then any function in S (mi) also states so. Since the combination
result belongs to S (mi), then this piece of information is propagated by �f,k.

This operator is, however, not associative because we can have

Sf (m1 �f,k m2) � Sf (m1) ∩ Sf (m2) .

Consequently, the optimization constraints are not deducible from an output
mass function m1 �f,k m2. Fortunately, these constraints can be stored and
updated iteratively, meaning that the complexity of the combination does not
increase with �. In practice, one needs to be able to compute combinations itera-
tively without storing the whole set of mass functions {m1, . . . ,m�} and restart
the combination from scratch when a new function m�+1 arrives. This property
is often referred to as quasi-associativity. Let c denote a set function from
2Ω to [0; 1] which is meant to store the problem constraints. Algorithm 1 allows
to compute combinations using �q,k sequentially. The same algorithm works for
�pl,k. In practice, what we simply do is storing, for each set A, the lowest com-
monality (resp. plausibility) value encountered in {m1, . . . ,m�}.

4 A Brief Comparison with Related Works

As said earlier, there are many works that have dealt with the problem of either
cautious conjunctive rules or of conjunctive rules not relying on independence.
They depart from the classical conjunctive rule ∩© that assume independence of
the sources, and whose formula for a pair (m1,m2) of mass functions is

m1 ∩©2 (A) =
∑

A1,A2∈2X
s.t. A1∩A2=A

m1 (A1) m2 (A2) , for all A ⊆ Ω. (5)



Idempotent Conjunctive Combination by Distance Minimization 161

Algorithm 1. Sequential combination using �q,k

entries : {m1, .., m�}, k ≥ 2.
c ← min {q1; q2} (entrywise minimum).
m ← m1 �q,k m2.
for i from 3 to � do

c ← min {c; qi} (entrywise minimum).
m ← arg min

m′
dq,k (m′, mΩ) subject to q′ ≤ c.

end for
return m.

Dempster’s rule ⊕ corresponds to the normalized version of this rule where the
mass of the empty set is forced to zero. Choosing an alternative to them is
however not so easy. A principled and common approach is to rely on a set of
axiomatic properties [5] or to adapt existing rules from other frameworks [4]. In
practice, such axioms seldom lead to a unique solution, and it is then necessary
to advocate more practical solutions. Our rule can be seen as an instance of such
an approach, where the axiom consists in using the LCP over sets of f -included
mass functions, and the practical solution is to use a distance compliant with
such an axiom. Cattaneo’s solution [1] as well as Denoeux [3] cautious rules can
also be seen as instances of the same principle. The former defends the fact of
reducing the conflict rather than minimizing the informative content, while the
latter focuses on using the set Sw(m1) ∩ . . . ∩ Sw(m�) and the order �w, and
demonstrates that in this case there is a unique LCP solution known in closed
form. This cautious rule is usually denoted by ∧©. Due to lack of space, we will
focus on comparing our approach with the most well-known, that is with rules
∩©, ⊕ and ∧©.

Table 1 summarizes some basic theoretical properties satisfied by operators
∩©, ⊕, ∧© and �f,k. From a practical point of view, let us stress that combinations
using �f,k for f ∈ {pl, q} and k = 2 are really easy to compute. Indeed, quadratic
programming techniques can solve equation (4) in a very few iterations. The
function m∅ can be used to initialize the minimization as we are sure that it
belongs to Sf (m1) ∩ .. ∩ Sf (m�).

Table 1. Basic properties of operators ∩©, ⊕, ∧© and �f,k.

Operator Condition for use Commutativity Associativity Idempotence

∩© None Yes Yes No

⊕ m1 ∩©2 (∅) < 1 Yes Yes No

∧© m1 (Ω) > 0 and m2 (Ω) > 0 Yes Yes Yes

�f,k None Yes Quasi Yes

Let us illustrate the operator discrepancies on a simple situation inspired
from Zadeh’s counter-example [11]. Suppose m1 = αm{b} + (1 − α) m{a} and
m2 = αm{b} + (1 − α) m{c} are two mass functions on a frame Ω = {a, b, c}.
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Fig. 1. Mass assigned to {b} after combination of m1 = αm{b} + (1 − α) m{a} and
m2 = αm{b} + (1 − α)m{c} with ∩©, ∧© and �f,2.

Figure 1 shows the mass assigned to {b} after combination by ∩©, ∧© and �f,2.
The same masses are obtained for f ∈ {pl, q}. A very small mass was assigned
to Ω when using ∧© to circumvent the non-dogmatic constraint.

As could be expected, our rule tries to maintain as much evidence on {b} as
possible. A striking fact is that we have obviously m1 �f,2 m2 ({b}) = α. More
precisely, we have m1 �f,2 m2 = (1 − α) m∅ + αm{b}.

This result can be proved for any finite k ≥ 2 when f = q. Let q1∧2 denote
the entrywise minimum of functions q1 and q2. In this particular setting, q1∧2

happens to be a valid commonality function. Consequently, m1∧2 ∈ Sq (m1) ∩
Sq (m2). By definition of the partial order �q, for any function m ∈ Sq (m1) ∩
Sq (m2), we have m �q m1∧2. Since we also have m1∧2 �q mΩ and dq,k is �q-
compatible, then m1 �q,k m2 = m1∧2. In other words, our approach coincides
with the minimum rule applied to commonalities in this case.

When f = pl, the result can also be proved. For any m ∈ Spl (m1)∩Spl (m2),
the constraints pl ({a}) = pl ({c}) = 0 imply that only {b} and ∅ are possible
focal sets for m. More precisely, this actually implies that Spl (m1) ∩ Spl (m2) is
a segment (1 − β) m∅ + βm{b} in M parametrized by β ∈ [0;α]. �pl is a total
order for this segment and obviously m1 �pl,k m2 = (1 − α) m∅ + αm{b}.
In this example, the behavior of Denœux’s cautious rule ∧© is more questionable,
as it keeps almost no mass on {b} except when α = 1. This is an unconservative
behavior, due partly to the fact that Sw induces stronger constraints than Spl

or Sq. Finally, the conjunctive rule appears to have an intermediate behavior as
compared to the two others.

5 Conclusion

This paper introduces an idea allowing cautious conjunctive combinations of
mass functions by relying on constraints inducing a more informative mass func-
tion than the combined ones on one hand, and on the minimization of distances
to total ignorance on the other hand. The metrics used in the minimization pro-
cedure must be compatible with partial orders comparing informative contents.
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This idea can generate several commutative, idempotent and quasi-associative
combination operators that are in line with the LCP principle. This procedure
allows these operators to be easily interpretable and to rely on sound justi-
fications. Preliminary experimental results show that they have very regular
behavior as compared to standard approaches, and comply with some user’s
expectations.

This study is a start, but the interesting results we obtained call for several
possible extensions, for instance by adapting the approach to other combination
types (starting with disjunction), and by fully investigating its connection with
other rules trying to solve the same problem. Moreover, it would be also inter-
esting to check if our distance-based approach is to some extent compliant with
other operations such as conditioning or refining. Finally, these new operators
rely on Lk norms (k ≥ 2) and the influence of parameter k must be studied.

References

1. Cattaneo, M.E.G.V.: Combining belief functions issued from dependent sources. In:
Bernad, J.M., Seidenfeld, T., Zaffalon, M. (eds.) Third International Symposium
on Imprecise Probabilities and Their Applications (SIPTA 2003), pp. 133–147.
Carleton Scientific, Lugano (Switzerland) (2003)

2. Cattaneo, M.E.G.V.: Belief functions combination without the assumption of inde-
pendence of the information sources. Int. J. Approx. Reason. 52(3), 299–315 (2011).
Dependence Issues in Knowledge-Based Systems

3. Denœux, T.: Conjunctive and disjunctive combination of belief functions induced
by nondistinct bodies of evidence. Artif. Intell. 172, 234–264 (2008)

4. Destercke, S., Dubois, D.: Idempotent conjunctive combination of belief functions:
extending the minimum rule of possibility theory. Inf. Sci. 181(18), 3925–3945
(2011)

5. Dubois, D., Liu, W., Ma, J., Prade, H.: The basic principles of uncertain infor-
mation fusion. An organised review of merging rules in different representation
frameworks. Inf. Fusion 32, 12–39 (2016)

6. Dubois, D., Prade, H.: Consonant approximations of belief functions. Int. J.
Approx. Reason. 4(56), 419–449 (1990)

7. Dubois, D., Prade, H., Smets, P.: A definition of subjective possibility. Int. J.
Approx. Reason. 48(2), 352–364 (2008). In Memory of Philippe Smets (19382005)

8. Dubois, D., Yager, R.R.: Fuzzy set connectives as combinations of belief structures.
Inf. Sci. 66(3), 245–276 (1992)

9. Klein, J., Destercke, S., Colot, O.: Interpreting evidential distances by connecting
them to partial orders: application to belief function approximation. Int. J. Approx.
Reason. 71, 15–33 (2016)

10. Smets, P.: The canonical decomposition of a weighted belief. In: 14th International
Joint Conference on Artificial Intelligence, vol. 2, pp. 1896–1901 (1995)

11. Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence, its impli-
cation for the rule of combination. Artif. Intell. Mag. 7, 85–90 (1986)



IPFP and Further Experiments
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Abstract. Iterative Proportional Fitting Procedure is commonly used
in probability theory for construction of a joint probability distribution
from a system of its marginals. A similar idea can be used in case of
belief functions thanks to special operators of composition defined in
this framework. In this paper, a formerly designed IPF procedure is fur-
ther studied. We propose a modification of composition operator (for
the purpose of the procedure), compare the behavior of the modified
procedure with the previous one and prove its convergence.

1 Introduction

The marginal problem, as one of the most challenging problem types in proba-
bility theory, addresses the question whether or not a common extension exists
for a given system of marginals. The challenges lie not only in a wide range of the
relevant theoretical problems, but also in its applicability to various problems
of statistics [1], computer tomography [8], relational databases [10] and artificial
intelligence [12]. In the last case, it is the problem how to obtain a global knowl-
edge (represented by a multidimensional probability distribution) from pieces of
local knowledge (represented by low-dimensional probability distributions).

To solve a discrete marginal problem, one can use Iterative Proportional
Fitting Procedure (IPFP), introduced by Deming and Stephan already in 1940
[5]. Its convergence was finally proven by Csiszár [6] in 1975. Note that both the
EM and the Newton-Raphson algorithms converge towards the same limit. How-
ever, in most cases, IPFP is preferred due to its computational speed, numerical
stability and algebraic simplicity [13]. A possibilistic version of this procedure
(parametrized by a continuous t-norm) was studied in [11].

A possible application of IPFP in the framework of belief functions was
studied in [2]. Knowing that the probabilistic IPFP can be easily (and elegantly)
expressed with the help of the so-called operator of composition [7], the same
idea was applied in this framework. Two different composition operators for bpas
were discussed in the above-mentioned paper: the first one has already been
introduced in [3], the second one was based on Dempster’s combination rule [9].
Let us note that the operator based Dempster’s rule appeared as inappropriate
for IPFP (for more details see [2]). That is why, in this paper, we focus on the
original operator only. We illustrate one undesirable aspect of its behavior and
suggest a possible modification to solve the problem.
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 164–173, 2016.
DOI: 10.1007/978-3-319-45559-4 17
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The paper is organized as follows. After a brief overview of necessary con-
cepts and notation (Sect. 2), in Sect. 3 we recall the concept of evidential IPF
procedure and present its modification. Section 4 is devoted to the discussion of
experimental results. The proof of convergence is given is Sect. 5.

2 Basic Concepts and Notation

In this section we will briefly recall basic concepts from evidence theory [9]
concerning sets and set functions as well as the concept of the operator of com-
position [4].

2.1 Set Projections and Joins

In this paper XN = X1 ×X2 × . . . ×Xn denotes a finite multidimensional space,
and its subspaces (for all K ⊆ N) are denoted by XK = ×i∈KXi. For a point
x = (x1, x2, . . . , xn) ∈ XN , its projection into subspace XK is denoted x↓K =
(xi)i∈K , and for A ⊆ XN A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we understand a set A �� B =
{x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}. Let us note that if K and L are disjoint,
then A �� B = A×B, if K = L then A �� B = A∩B. Generally, for C ⊆ XK∪L,
C is a subset of C↓K �� C↓L, which may be proper.

2.2 Basic Assigments

A basic assignment (bpa) m on XK (K ⊆ N) is a real non-negative function on
power set of XK , for which

∑
∅�=A⊆XK

m(A) = 1. If m(A) > 0, then A is said to
be a focal element of m.

A bpa is called vacuous, if it contains only one focal element, namely XK .
In accordance with [2] we call a bpa uniform if m(A) = 1/(2|XK | − 1) for each
A ⊆ XK , A �= ∅.

Considering two bpas m1,m2 on the same space XK , we say that m1 is
dominated by m2, if for all A ⊆ XK : m1(A) > 0 =⇒ m2(A) > 0.

Having a bpa m on XK one can consider its marginal assignments. On
XL (for L ⊆ K) it is defined (for each ∅ �= B ⊆ XL) as follows m↓L(B) =∑

A⊆XK :A↓L=B m(A).
Having two bpas m1 and m2 on XK and XL, respectively (K,L ⊆ N), we

say that these assignments are projective if m↓K∩L
1 = m↓K∩L

2 , which occurs if
and only if there exists a bpa m on XK∪L such that both m1 and m2 are its
marginal assignments.

2.3 Operator of Composition

Let us recall the definition of operator of composition � introduced in [3].
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Definition 1. Consider two arbitrary basic assignments m1 on XK and m2 on
XL (K �= ∅ �= L). A composition m1 � m2 is defined for each C ⊆ XK∪L by one
of the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K �� C↓L then

(m1 � m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 � m2)(C) = m1(C↓K);

[c] in all other cases (m1 � m2)(C) = 0.

3 Iterative Proportional Fitting Procedure

Let us start this section by recalling the original design of evidential version of
IPF procedure [2].

3.1 Original Design

Assume a system of n low-dimensional bpas m1,m2, . . . ,mn defined on
XK1 ,XK2 , . . . ,XKn

, respectively. During the computational process, an infi-
nite sequence of bpas μ0, μ1, μ2, μ3, . . . is computed, each of them defined on
XK1∪...∪Kn

. If this sequence is convergent, its limit is the result of this process.
For simplicity reason let us suppose that K1 ∪ K2 ∪ · · · ∪ Kn = N .

Algorithm IPFP. Define the starting bpa μ0 on XK1∪K2∪...∪Kn
. Then compute

sequence {μi}i∈1,2,3,... in the following way:

μ1 = m1 � μ0

μ2 = m2 � μ1

...
μn = mn � μn−1

μn+1 = m1 � μn

μn+2 = m2 � μn+1

...
μ2n = mn � μ2n−1

μ2n+1 = m1 � μ2n

μ2n+2 = m2 � μ2n+1

...
μ3n = mn � μ3n−1

...

As already said in the Introduction, if this algorithm is applied to probability
distributions, it has nice and useful properties, most of which were proven by
Csiszár in his famous paper [6].

Based on the Csiszár’s results, two nice properties on convergence were proven
in [2].

Theorem 1. Consider a system of bpas m1,m2, . . . ,mn defined on XK1 ,XK2 ,
. . . ,XKn

and a basic assignment μ0 on XK1∪...∪Kn
. If there exists a bpa ν on

XK1∪...∪Kn
such that ν is dominated by μ0, and ν is a common extension of all

m1,m2, . . . ,mn, then the sequence μ0, μ1, μ2, μ3, . . . computed by the Algorithm
IPFP with � converges.
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Theorem 2. If the sequence μ0, μ1, μ2, μ3, . . . computed by the Algorithm
IPFP converges then the bpa μ∗ = lim

i→+∞
μi is a common extension of all

m1,m2, . . . ,mn, i.e., (μ∗)↓Kj = mj for all j = 1, . . . , n.

In experiments performed in [2], the uniform bpa was chosen to be μ0. It
seems to correspond to the probabilistic framework, where the uniform distrib-
ution is also used as the starting distribution. Moreover, uniform bpa dominates
every other bpa on the same frame. Thus, if one starts the IPFP with uniform
basic assignment, Theorem 1 guarantees its convergence whenever the common
extension of the given assignments exists.

Nevertheless, there is a big difference between semantics of these two
approaches. While in the probabilistic case uniform distribution is considered to
be the least specific, nothing similar holds in the evidential framework. Here the
vacuous bpa represents the least specific one. However, in this case the assump-
tion of dominance of μ0 is not valid, and the procedure need not converge (and
it does not, in most cases).

3.2 Modification

If the composition operator is applied on projective marginals, part [b] of Def-
inition 1 is never used. On the other hand, if it is not the case, then rule [b] is
adding just one focal element of a very specific form. It is, in fact, cylindrical
extension of the focal element on XK to XK∪L (in case of m1 on XK , m2 on XL,
and m1 � m2).

This led us to the following consideration. Let us start the IPFP procedure with
vacuous bpa — reflecting total ignorance about the problem — and rewrite part
[b] of the operator of composition in a way to be able to add more focal elements.
We decided to add all focal elements that, being marginalized to XK have a focal
element in m1. The respective mass is uniformly distributed among them. A lot
of unnecessary focal elements may be (and really is) added, but they are left for
future removal by rules [a] and [c] of Definition 1 — which remain unchanged.

Definition 2. Consider two arbitrary bpas m1 on XK and m2 on XL (K �= ∅ �=
L) an iterative composition m1 �′ m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K �� C↓L then

(m1 �′ m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b’] if m↓K∩L
2 (C↓K∩L) = 0 then ∀D ∈ D = {D ∈ XK∪L : D↓K = C↓K}

(m1 �′ m2)(D) =
m1(C↓K)

|D| ;

[c] in all other cases (m1 �′ m2)(C) = 0.
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In other words, in [b’] instead of one focal element C = C↓K × XL\K , a
system of its subsets is added. The mass of m1(C↓K) is uniformly distributed
among them.

This approach has significant impact on the behavior of the IPFP procedure,
which seems to behave better (or in the same way, in the worst case) as the one
presented in [2] (cf. Sect. 4).

Now, let us summarize three observations concerning both original and mod-
ified IPFP, which will, hopefully, help the reader to understand not only the
difference between them, but later also the idea of the proof.

Observation 1. Note that in case of IPFP, K ⊆ L in the definition of the
operator of composition and therefore A = A↓K �� A↓L = A↓K �� A for every
A ⊆ XN .

Note that in case of IPFP, there is a close connection between the notion of
dominance and using of rule [b] in the definition of �:

Observation 2. If ν is dominated by μi, then ν is dominated by ν↓K � μi as
well, and rule [b] from Definition 1 is never used.

Proof. If it is not the case, then ∃A ⊆ XN such that ν(A) > 0 while
(ν↓K � μi)(A) = 0. Since μi(A) > 0 by dominance assumption, then, follow-
ing Observation 1, rule [a] has to be used and therefore (ν↓K � μi)(A) > 0,
which is a contradiction.

Having Observation 2 in mind, one can conclude:

Observation 3. If ν is dominated by μi then ν↓K � μi = ν↓K �′ μi.

4 Experiments

Most experiments discussed in this section deal with cases of consistent bpas,
i.e. bpas representing marginals of a multidimensional bpa. We will start with
the original IPFP [2] to reveal the problems caused by its application.

4.1 Original Procedure

Let X,Y and Z be three binary variables with values in X = Y = Z = {0, 1}.
Joint basic assignment m on X × Y × Z = {0, 1}3 is defined in Table 1.

First, we calculate all three two-dimensional marginals of m — denoted by
m1 = m↓XY , m2 = m↓Y Z , and m3 = m↓XZ — and we apply them in this order
on uniform μ0 using IPFP. The computational process is illustrated by Table 2.

Notice, that the procedure converges to m′ which is not in contradiction with
results proven in [2] because both m′ and m have the same two-dimensional
marginals. This experiment has already been published in [2].

A problem appears if mΩ is taken into account instead of m (in case of
mΩ — a non-zero mass has been put on the whole frame of discernment —
mΩ(X) = 0.1). The computational process with respective marginals m1 =
m↓XY

Ω , m2 = m↓Y Z
Ω , and m3 = m↓XZ

Ω is illustrated by Table 3.
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Table 1. Three-dimensional assignments

(Focal) elements m m′ mΩ m′
Ω

{010, 100} 0.2 0.2 0.2 0.2

{001, 010} 0.3 0.3 0.3 0.3

{001, 011, 101, 110} 0.5 0.25 0.4 0.2

{001, 011, 101, 110, 111} 0 0.25 0 0.2

X 0 0 0.1 0.1

Table 2. IPFP with �, two-dimensional marginals of m, and uniform μ0.

Focal elements μ3 μ4 μ5 μ6 μ7 μ8 μ100 μ1000

{010, 100} 0.156 0.200 0.166 0.166 0.200 0.172 0.195 0.199

{000, 010, 100, 110} 0.043 0.040 0.033 0.033 0.031 0.027 0.004 4 · 10−4

{001, 010} 0.146 0.146 0.300 0.211 0.211 0.300 0.293 0.299

{001, 010, 011} 0.153 0.153 0.124 0.088 0.085 0.079 0.006 7 · 10−4

{001, 011, 101, 110} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250

{001, 011, 101, 110, 111} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250

Table 3. IPFP with �, two-dimensional marginals of mΩ , and uniform μ0.

Focal elements μ3 μ4 μ5 μ6 μ100 μ1000 μ10000

{010, 100} 0.156 0.195 0.166 0.166 0.188 0.188 0.188

{000, 010, 100, 110} 0.043 0.040 0.034 0.034 0.011 0.011 0.011

{001, 010} 0.158 0.158 0.272 0.211 0.257 0.257 0.257

{001, 010, 011} 0.132 0.132 0.104 0.080 0.038 0.038 0.038

{001, 011, 101, 110} 0.181 0.167 0.132 0.172 0.170 0.170 0.170

{001, 011, 101, 110, 111} 0.181 0.167 0.132 0.172 0.170 0.170 0.170

X 0.001 0.0009 0.001 0.001 0.0007 0.0007 0.0007

And 43 other elements . . . . . . . . . . . . . . . . . . . . .

IPF procedure does not perform very well in this case. A stabilized state is
achieved approximately in μ800 and it is far away from mΩ , with 50 focal ele-
ments, although, according to Theorem1, its two-dimensional marginals coincide
with those of mΩ .

It seems, that the problem consists in the fact that we start with too many
focal elements in μ0. It would be of a special interest to have a procedure that
starts with vacuous μ0. Because the ability of operator � to add new focal ele-
ments is limited, operator �′ will be used instead.
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Table 4. Number of focal elements during IPFP

Operator Assignment IPFP ordering μ0 μ1 μ2 μ3 μ4 μ5 μ6

� m m1; m2; m3; 255 99 15 6 6 6 6

m2; m1; m3; 255 45 15 6 6 6 6

m3; m1; m2; 255 45 17 6 6 6 6

mΩ m1; m2; m3 255 99 66 50 50 50 50

m2; m1; m3 255 126 66 50 50 50 50

m3; m1; m2 255 126 82 50 50 50 50

�′ m m1; m2; m3 1 19 6 30 11 5 5

m1; m3; m2 1 19 9 3 84 11 6

m2; m1; m3 1 45 15 6 6 6 6

mΩ m1; m2; m3 1 19 9 33 14 11 11

m2; m1; m3 1 46 16 11 11 11 11

m3; m1; m2 1 46 18 11 11 11 11

4.2 Modified Procedure

Note that in case of IPFP with �′ and vacuous μ0, only eleven focal elements
are taken into the account. Respective elements are depicted in Table 5. Note
that the sequence {μi}i→∞ tends to m′

Ω from Table 1 which is not in conflict,
because it has the same two-dimensional marginals as mΩ .

Starting with vacuous assignment, potentially necessary focal elements have
to be added. Operator �′ seems to be a reasonable choice. See Table 4 to compare
the development of the number of focal elements for both operators � and �′.
Note that for �, the uniform assignment is solely used as μ0 in respective IPFP.

Table 5. IPFP with �′, two-dimensional marginals of mΩ , and vacuous μ0.

Focal elements μ5 μ100 μ1000 μ10000

{010, 100} 0.200 0.199 0.199 0.199

{001, 010} 0.155 0.292 0.299 0.299

{001, 010, 011} 0.143 0.007 10−4 10−5

{001, 011, 101, 110} 0.159 0.198 0.199 0.199

{001, 011, 101, 110, 111} 0.159 0.198 0.199 0.199

{010, 011, 100, 101} 0.001 0.001 10−4 10−6

{000, 001, 010, 011} 0.001 10−6 10−9 10−10

{001, 011, 100, 101, 110} 0.026 0.001 10−4 10−6

{001, 011, 100, 110, 111} 0.026 0.001 10−4 10−6

{001, 011, 100, 101, 110, 111} 0.026 0.001 10−4 10−6

X 0.098 0.099 0.099 0.099
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Similarly, �′ is associated with vacuous assignment as its starting point. This is
highlighted in Table 4 — in the number of focal elements in column corresponding
to μ0. The number of focal elements stabilizes in μi for i ≥ 6 in this case (some
of them may disappear later by having mass converging to zero).

4.3 Inconsistent Marginals

In case of inconsistent marginals and IPFP based on �′ and vacuous μ0, we
observe the same behavior as for � and uniform μ0: After several cycles, the
iteration process goes through cyclical changes. The length of the cycle corre-
sponds to the number of basic assignments entering the computational process.
The subsequences converge.

5 Proof of Convergence

To prove the convergence of the IPFP starting with vacuous bpa and using
operator �′ from Definition 2 it is enough to show that the sequence μ0, μ1, μ2, . . .
can be divided into two parts. In the first part, a bpa μk dominating ν (a common
extension of given system of marginals) is found. Then, the second part converges
because of Theorem 1 and Observations 2 and 3.

We work in a discrete space, therefore the number of focal elements is finite.
We cope with a system of marginals m1,m2, . . . ,mn (of a joint (unknown) bpa
on XN = XK1∪...∪Kn

) defined on XK1 ,XK2 , . . . ,XKn
, respectively, and an infinite

sequence of bpas μ0, μ1, μ2, μ3, . . . computed using IPFP algorithm and operator
�′ from Definition 2, where μ0 is vacuous bpa on XN .

Lemma 1. Having a bpa on XN and a system of its marginals {mj}n
j=1, create

sequence μ0, μ1, μ2, . . . using IPFP starting with vacuous μ0 and using �′. Let
A ⊆ XN be a focal element of μi such that A↓Kj is a focal element of mj ∀j =
1, . . . , n, respectively. Then ∀k ≥ i, A is a focal element in μk.

Proof. Take an arbitrary j = 1, . . . , n. Let μi+1 = mj �′ μi. To prove the lemma,
one has to realize that in case of IPFP, K ⊆ L in the definition of the operator
of composition and A = A↓Kj �� A for every A (Observation 1). Then, using
lemma assumption, rule [a] from the definition of the composition operator is
used in case of A. Because A↓Kj is a focal element in mj , then we multiply
non-zero numbers and A is a focal element in μi+1 as well. This reasoning can
be iteratively repeated which finishes the proof.

Observation 4. Let Kj ⊂ N , A ⊆ XKj
and B = {B ⊆ XN |B↓Kj = A}. If none

B ∈ B is a focal element of μi and A is a focal element of mj then B is a subset
of focal elements of μi+1 = mj �′ μi.

Indeed, rule [b’] from Definition 2 is used in this case.
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Theorem 3. Consider a system of bpas m1,m2, . . . ,mn defined on XK1 ,XK2 ,
. . . ,XKn

, respectively, and a vacuous bpa μ0 on XK1∪...∪Kn
. If a common exten-

sion of {mj}n
j=1 exists then the sequence μ0, μ1, μ2, μ3, . . . computed using IPFP

with �′ converges to one of them.

Proof. First, let us prove that in a finite number of steps we get bpa μi that
dominates a common extension of {mj}n

j=1. To prove that, is sufficient to realize
three simple facts:

(i) following Lemma 1, once a focal element of a common extension is added,
it cannot be removed,

(ii) focal elements are added if necessary (Observation 4) — note that at least
of them has to be a focal element of a common extension and therefore it
cannot be removed by Lemma 1, and

(iii) there is a finite number of focal elements.

Once a μi dominating a common extension is obtained, then, using Obser-
vation 3, Theorem 1 can be applied and such a sequence converges. Moreover, it
converges to a common extension by Theorem 2 (using Observation 3, again).

6 Conclusions and Future Work

We studied recently designed IPF procedure for bpas based on the evidential
composition operator in more detail and realized that its behavior is not satis-
factory, especially in case of partial ignorance. Deeper study revealed the fact,
that although starting from uniform distribution allows an elegant proof of con-
vergence, the procedure produces a great number of focal elements.

We suggested an alternative approach starting with vacuous basic assignment
and consisting in adding of potentially interesting focal elements and subsequent
removing of the unimportant ones. Several experiments showed that this proce-
dure behaves much better than the previous one.

Following Table 5, the computational complexity of the new approach seems
to be lower. This is caused not only by the fact that the new approach is pro-
ducing bpas with generally less focal elements, but also by the fact that it does
not start with all possible focal elements in μ0. This could be further improved
by excluding the first part of the IPFP responsible for finding dominating bpa.
Note that we are not interested in “probability” masses laid on focal elements
in this part, but on the shape of focal elements only. This is a topic of further
research.
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4. Jiroušek, R., Vejnarová, J.: Compositional models and conditional independence
in evidence theory. Int. J. Approx. Reason. 52, 316–334 (2011)

5. Deming, W.E., Stephan, F.F.: On a least square adjustment of a sampled frequency
table when the expected marginal totals are known. Ann. Math. Stat. 11, 427–444
(1940)

6. Csiszár, I.: I-divergence geometry of probability distributions and minimization
problems. Ann. Probab. 3, 146–158 (1975)
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Abstract. In this paper, we develop an entropy-based degree of falsity and
combine it with a previously developed conflict-based degree of falsity in order
to grade all belief functions. The new entropy-based degree of falsity is based on
observing changes in entropy that are not consistent with combining only
truthful information. With this measure, we can identify deliberately deceptive
information and exclude it from the information fusion process.

Keywords: Deception � Counter-deception � Information fusion � Entropy �
Conflict � Belief function � Dempster-Shafer theory

1 Introduction

Managing false and possibly deliberately deceptive information is, in general, an
important issue within an information fusion process. If false and deceptive information
is not actively managed, it becomes impossible to trust any conclusions that is based on
combining information from several different sources without knowing if one is
deceptive. Conclusions that are drawn based on a combination of information from all
sources may become degraded or false when truthful information is combined with
deceptive information that supports untrue possibilities.

We previously developed methods within the theory of belief functions [1–6] for
clustering information regarding several different subproblems that should be managed
separately when the information regarding different subproblems might be mixed up
[7–11]. When we know that all information concerns only one problem at hand, this
method could be used to identify false pieces of information and allow us to calculate a
conflict-based degree of falsity for each piece of evidence [12]. These approaches use a
function of the conflict [13, 14] in Dempster’s rule [2] as criterion function.

Smets [15] developed a methodology for managing a special case of deception
where a deceiver may observe a truthful report and send the complement of a truthful
belief function as deception instead of the truthful report itself. Pichon et al. [16] later
developed a correction scheme that generalizes Shafer’s discounting rule [4] by taking
into account uncertain meta-knowledge regarding the source relevance and truthful-
ness. This model now subsumes Smets’ model. Furthermore, they recently introduced a
contextual correction mechanism [17] for [16].
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However, the approach taken by Smets is a special case where the deceiver always
sends the complement of what is observed from a truthful source. We think that this is
not a realistic strategy by the deceiver, as it is easily countered by the counter-deception
technique developed in Smets’ approach [15]. Instead, we would allow the deceiver to
act in any way it chooses and assume it might want to deceive us by supporting some
focal elements of the frame of discernment that are wrong but we already somewhat
believe. We think that this might be a more realistic approach.

In this paper, we develop an entropy-based measure of degree of falsity based on
the change in entropy when truthful belief functions are combined with a deceptive
belief function. The aim is that this new approach should be able to manage more
generic types of deception than Smets’ approach. As we have previously developed a
conflict-based measure of degree of falsity [12] we will here combine these two
approaches into one method for recognizing and managing deceptive information.

In Sect. 2, we discuss approaches to analyzing belief functions for their likelihood
of being false due to deception. In Sect. 3, we review a previous approach to grading
pieces of evidence for their degree of falsity based on their contribution to the conflict
[13, 14] received from Dempster’s rule [2]. We then develop a new complimentary
approach for grading pieces of evidence based on such changes in entropy that are not
consistent with adding truthful evidence into the combination of all belief functions
(Sect. 4). In Sect. 5, we combine the previously developed conflict-based degree of
falsity with the new entropy-based degree of falsity into a combined degree of falsity.
We use this approach to reason about which pieces of evidence might be false and
should be either discounted or eliminated from the combination of information from all
sources. Finally, in Sect. 6, we present the study’s conclusions.

2 Analyzing Belief Functions

A belief function that is constructed to be deliberately false may be discovered in two
different ways. Such a belief function is aimed to change the conclusion when ana-
lyzing the combination of all belief functions. Thus, it must be different from truthful
belief functions.

One way to find this is by observing the conflict when combining a new belief
function with all previous belief functions. For each belief function at hand, we may
observe the change in conflict if we remove this particular belief function from the
entire set of all available belief functions [7, 18]. This will either lower the conflict or
leave it unchanged. From the change in conflict, we can derive a degree of falsity for
the belief function in question and, for example, use that to discount this particular
belief function [12].

A second approach is to observe the change in entropy when receiving a new belief
function. If we receive a good belief function about the problem at hand we should
assume that it will further reduce both the scattering and the nonspecificity of the basic
belief by focusing it on small focal sets containing the ground truth. Thus, the belief of
the ground truth will gradually become more believed and the entropy of the combined
belief function will approach zero. On the other hand, if we receive a false belief
function that incrementally changes the belief function a small step towards a uniform
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mass function, then the entropy of the combined belief function will increase. A very
strong false belief function may swap the preferred order of the focal sets and leave the
entropy unchanged or increased.

We will use both of these approaches to identify which belief functions may be
deceptive in order to manage or eliminate them completely from the combination.

3 Conflict-Based Degree of Falsity

We interpret the conflict received when combining a set of basic belief assignments
(bbas) v, as if there is at least one bba in v that violates the representation of the frame
of discernment H. Such a bba is interpreted as if it does not belong to the evidence that
refer to the problem at hand [18].

A conflict when combining all bbas may thus be interpreted as a piece of evidence
on a metalevel stating that at least one bba does not belong to v.

We have,

mv 9j:ej 62 v
� � ¼ c0;

mv Hð Þ ¼ 1� c0;
ð1Þ

where v is the set of all bbas, c0 is the conflict when combining all bbas, ej is bba
number j, and H is the frame of discernment.

Let us study one particular piece of evidence eq in v. If eq is removed from v, the
conflict when combining all remaining bbas in v decreases from c0 to cq. This decrease
is interpreted as if there exists some evidence on the metalevel indicating that eq does
not belong to v [12],

mDv eq 62 v
� �

;

mDv Hð Þ; ð2Þ

where Dv is a label for this piece of evidence.
The conflict that remains cq after eq has been removed from v is interpreted as

evidence on the metalevel that there is at least one other bba ej, j 6¼ q, that does not
belong to v� eq

� �
.

We have,

mv� eqf g 9j 6¼ q:ej 62 v� eq
� �� �� � ¼ cq;

mv� eqf g Hð Þ ¼ 1� cq:
ð3Þ

Using Eqs. (1) and (3), we can derive Eq. (2) by stating that the belief in the
proposition that there is at least one bba that does not belong to v, 9j:ej 62 v, must be
equal, regardless of whether we base that belief on (1) before eq is taken out from v, or
on the combination of (2) and (3) after eq is taken out from v.
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That is,

Belv 9j:ej 62 v
� � ¼ BelDv� v� eqf gð Þ 9j:ej 62 v

� �
: ð4Þ

On the left hand side (LHS) of Eq. (4) we have,

Belv 9j:ej 62 v
� � ¼ mv 9j:ej 62 v

� � ¼ c0 ð5Þ

and, on the right hand side (RHS) Eq. (4) we have,

BelDv� v� eqf gð Þ 9j:ej 62 v
� � ¼ cq þmDv eq 62 v

� �
1� cq
� �

: ð6Þ

By stating that LHS = RHS, we derive the basic belief number (bbn) of Eq. (2) as,

mDv eq 62 v
� � ¼ c0 � cq

1� cq
;

mDv Hð Þ ¼ 1� c0
1� cq

:
ð7Þ

We call this the conflict-based degree of falsity of eq. For additional details, see [12].

4 Entropy-Based Degree of Falsity

Let us measure the change in entropy by observing the change in the aggregated
uncertainty functional (AU) of the combination of all belief functions, both with and
without the particular belief function in question eq.

4.1 Aggregated Uncertainty Functional

The aggregated uncertainty functional AU was discovered by several authors around
the same time [19–21]. AU is defined as

AU Belð Þ ¼ max pxf gx2H �
X
x2H

p xð Þ log2 p xð Þ
( )

ð8Þ

where pxf gx2H is the set of all probability distributions such that px 2 0; 1½ � for all
x 2 H,

X
x2H

p xð Þ ¼ 1 ð9Þ

and
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Bel(AÞ�
X
x2A

p xð Þ ð10Þ

for all A�H. For an overview, see [22]. The AU measure corresponds to measures of
nonspecificity and scattering that generalize Hartley information [23] and Shannon
entropy [24].

An algorithm for numeric computation of AU was found by Meyerowitz et al. [25].
See [26] for implementation.

We define the entropy as a normalization of AU [27, 28],

Ent mj
� �� � ¼ AU a mj

� �� �
log2 Hj j ð11Þ

where mj is the set of all bbas under combination, AU 2 0; log2 Hj j½ � and Ent 2 0; 1½ �.
Using Ent and AU, we may define an entropy-based degree of falsity for a deceptive

piece of evidence as

mDEnt eq 62 v
� � ¼ Entq mjjj 6¼ q

� �
j

� �
� Ent0 mj

� �
j

� �
;

mDEnt Hð Þ ¼ 1� mDEnt eq 62 v
� �

;
ð12Þ

where Ent0 is the entropy with eq included in the combination, and Entq is the entropy
without eq, under the assumption that mDEnt eq 62 v

� �� 0. Provided that the difference in
Eq. (12) is positive and that there is no change in the bbn of the top focal element, this
may serve as an adequate measure of falsity for a deceptive piece of evidence based on
change of entropy. For a deceptive piece of evidence that changes the order of focal
elements we may have a negative difference. For truthful evidence we expect a negative
difference and would like to define the degree of falsity as zero. For a general and
incremental approach that takes these situations into account see Sect. 4.2.

4.2 Incremental Steps of Entropy Change

Let us focus on eq, which we want to evaluate by changes in entropy Ent. Because the
entropy might increase when we remove eq we will study a series of incremental
changes. We will discount mass function mq at different rates and observe the incre-
mental changes in entropy. We have [2],

mq Að Þ ¼ amq Að Þ; A 	 H
1� aþ amq Að Þ; A ¼ H

�
ð13Þ

where 0� a� 1. Let a be defined as

a ¼ i
n
; ð14Þ

where n is a parameter of choice with 0� i� n.

178 J. Schubert



We have,

mi
q Að Þ ¼

i
n mq Að Þ; A 	 H
1� i

n þ i
n mq Að Þ; A ¼ H

�
: ð15Þ

Let DEntkþ 1;k
q be the incremental change in entropy between two situations using

mkþ 1
q and mk

q, respectively, in the calculation of DEntkþ 1;k
q .

We have,

DEntkþ 1;k
q ¼ Entq mkþ 1

q ;mjjj 6¼ q
n o

j

	 

� Entq mk

q;mjjj 6¼ q
n o

j

	 

: ð16Þ

We may extend Eq. (12) to define an incremental entropy-based degree of falsity as

mDEnt eq 62 v
� � ¼ 1

2

Xn�1

k¼0

0; 80� l� k: DEntlþ 1;l
q � 0

DEntkþ 1;k
q

��� ���; otherwise
;

8<
:

mDEnt Hð Þ ¼ 1� mDEnt eq 62 v
� �

;

ð17Þ

using Eq. (16).
As long as we receive a sequence of negative incremental changes, we consider mq

to be true. However, if there is a positive incremental change this is interpreted (to a
degree) that this piece of evidence is false. The sequential inclusion of mq may
eventually cause a flip in the preferred focal element, followed by a series of negative
incremental changes that must be counted towards the degree of falsity when the
distribution becomes more and more focused around false focal elements.

This information, mDEnt eq 62 v
� �

, can serve as an indication that mq might be
deliberately false, and may function as an indication even if the direct conflict with the
main body of truthful evidence is low.

5 Combine Degree of Falsity with Change of Entropy

In order to find which pieces of evidence might be false, we combine mDvðeq 62 vÞ with
mDEntðeq 62 vÞ by Dempster’s rule; i.e., mDvðeq 62 vÞamDEntðeq 62 vÞ. This is a
conflict-free combination as both mass functions have the same foci.

We get,

mDvaDEntðeq 62 vÞ ¼ mDvðeq 62 vÞþmDEntðeq 62 vÞ
� mDvðeq 62 vÞ � mDEntðeq 62 vÞ;

mDvaDEntðHÞ ¼ 1� mDvaDEntðeq 62 vÞ;
ð18Þ

by using Eq. (7) and Eqs. (11), (15)–(17) and the algorithm in [26] to compute Eq. (8).

Entropy-Based Counter-Deception in Information Fusion 179



Based on this results (of Eq. (18)) we can manage all mq (8q) in one of several
different ways:

1. We may discount all mq based on mDvaDEntðeq 62 vÞ using Eq. (13) with

a ¼ 1� mDvaDEnt eq 62 v
� �

. Evidence with a high degree of combined
conflict-based and entropy-based falsity will be discounted to its degree with a low
a. Subsequently, we handle all evidence with whatever mass remains after dis-
counting as if it is true. This approach is somewhat crude and may not be the most
preferable way to manage all evidence.

2. A more refined approach is to perform sequential incremental discounts using
increments of a ¼ 1� mDvaDEnt eq 62 v

� �
as was suggested in [12]. With that

approach it is possible to manage the conflict by appropriate discounts that bring the
conflict down to an acceptable level.

3. A third approach is to evaluate and rank all mq based on mDvaDEnt eq 62 v
� �

and if
there is a natural partition of all mq into two groups (corresponding to true and false
reports) we eliminate the false group from the combination.

We think that managing all evidence in an interactive and incremental way using
Eq. (18) and Approach 3 above whenever possible is a good way to find and manage
deceptive information in an information fusion process.

6 Conclusions

We have developed an approach for counter-deception in information fusion. This
method combines the study of conflict in Dempster’s rule with observation of changes
in entropy to determine which belief functions are deceptive. With this methodology,
we can prevent deceptive information from being included in the information fusion
process.

References

1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann.
Math. Stat. 38, 325–339 (1967)

2. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30, 205–247
(1968)

3. Dempster, A.P.: The Dempster-Shafer calculus for statisticians. Int. J. Approx. Reason. 48,
365–377 (2008)

4. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

5. Yager, R.Y., Fedrizzi, M., Kacprzyk, J. (eds.): Advances in the Dempster-Shafer Theory of
Evidence. Wiley, New York (1994)

6. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)
7. Schubert, J.: On nonspecific evidence. Int. J. Intell. Syst. 8, 711–725 (1993)
8. Schubert, J.: Managing inconsistent intelligence. In: 3rd International Conference on

Information Fusion, pp. TuB4/10-16 (2000)

180 J. Schubert



9. Schubert, J.: Clustering belief functions based on attracting and conflicting metalevel
evidence using potts spin mean field theory. Inf. Fusion 5, 309–318 (2004)

10. Schubert, J.: Clustering decomposed belief functions using generalized weights of conflicts.
Int. J. Approx. Reason. 48, 466–480 (2008)

11. Schubert, J., Sidenbladh, H.: Sequential clustering with particle filtering - estimating the
number of clusters from data. In: 8th International Conference on Information Fusion, paper
A4-3 (2005)

12. Schubert, J.: Conflict management in Dempster-Shafer theory using the degree of falsity. Int.
J. Approx. Reason. 52, 449–460 (2011)

13. Smets, P.: Analyzing the combination of conflicting belief functions. Inf. Fusion 8, 387–412
(2007)

14. Schubert, J.: The internal conflict of a belief function. In: Denoeux, T., Masson, M.-H. (eds.)
Belief Function: Theory and Applications. AISC, vol. 164, pp. 169–177. Springer,
Heidelberg (2012)

15. Smets, P.: Managing deceitful reports with the transferable belief model. In: 8th
International Conference on Information Fusion, pp. 893–899 (2005)

16. Pichon, F., Dubois, D., Denœux, T.: Relevance and truthfulness in information correction
and fusion. Int. J. Approx. Reason. 53, 159–175 (2012)

17. Pichon, F., Mercier, D., Lefèvre, É., Delmotte, F.: Proposition and learning of some belief
function contextual correction mechanisms. Int. J. Approx. Reason. 72, 4–42 (2016)

18. Schubert, J.: Specifying nonspecific evidence. Int. J. Intell. Syst. 11, 525–563 (1996)
19. Chau, C.W.R., Lingras, P., Wong, S.K.M.: Upper and lower entropies of belief functions

using compatible probability functions. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993.
LNCS, vol. 689, pp. 306–315. Springer, Heidelberg (1993)

20. Maeda, Y., Ichihashi, H.: An uncertainty measure with monotonicity under the random set
inclusion. Int. J. Gen Syst 21, 379–392 (1993)

21. Harmanec, D., Klir, G.J.: Measuring total uncertainty in Dempster-Shafer theory: a novel
approach. Int. J. Gen Syst 22, 405–419 (1994)

22. Klir, G.J.: Uncertainty and Information: Foundation of Generalized Information Theory.
Wiley, Hoboken (2006)

23. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)
24. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423),

623–656 (1948)
25. Meyerowitz, A., Richman, F., Walker, E.: Calculating maximum-entropy probability for

belief functions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2, 377–389 (1994)
26. Harmanec, D., Resconi, G., Klir, G.J., Pan, Y.: On the computation of uncertainty measure

in Dempster-Shafer theory. Int. J. Gen Syst 25, 153–163 (1996)
27. Schubert, J.: Constructing multiple frames of discernment for multiple subproblems. In:

Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 189–198.
Springer, Heidelberg (2010)

28. Schubert, J.: Constructing and evaluating alternative frames of discernment. Int. J. Approx.
Reason. 53, 176–189 (2012)

Entropy-Based Counter-Deception in Information Fusion 181



Identification of Elastic Properties Based
on Belief Function Inference

Liqi Sui1(B), Pierre Feissel1, and Thierry Denœux2
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Laboratoire Heudiasyc, 60203 Compiègne, France
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Abstract. In this paper, we consider parameter identification from mea-
surement fields in an uncertain environment. An approach based on the
theory of belief functions is developed to take into account all possi-
ble sources of information. Information from measurements is described
through likelihood-based belief functions, while consonant random sets
are used to handle prior information on the model parameters. Next, we
construct the posterior random set by combining measurement and prior
information using Dempster’s rule. To summarize the posterior random
sets, we propose to find the minimal-area region in the parameter space,
whose belief and plausibility values exceed given thresholds. This app-
roach was applied to identify the elastic properties of a 2D plate from a
measured kinematic field.

Keywords: Identification · Measurement field · Prior information ·
Aleatory uncertainty · Epistemic uncertainty · Likelihood-based belief
function · Belief function theory

1 Introduction

In recent years, full field measurements (e.g., kinematic fields) have been increas-
ingly used for the characterization of the mechanical behavior of materials and
structures. They allow one to tackle the challenge of identification from hetero-
geneous tests thanks to their very rich information contents. However, the mea-
surements are always uncertain and the identification problems can be ill-posed.
A way to solve this problem is to take advantage of available prior informa-
tion. Nevertheless, similarly to measurement information, prior information is
also tainted with uncertainty. Furthermore, measurement uncertainty and prior
information uncertainty have different natures. Measurement uncertainty can be
considered as aleatory, whereas prior information uncertainty is epistemic [1,2].
The uncertainty on prior information can be represented by various approaches,
such as intervals [3], possibility theory [4], or imprecise probability [5]. We aim
at proposing a unified framework to describe all uncertainties, and a strategy to
propagate them.
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This paper focuses on developing a method to identify material parameters
from kinematic fields. There are two challenges: firstly, taking into account both
measurement and prior information; secondly, quantifying the different kinds of
uncertainty and propagating them through models. Belief function theory, also
referred to as Evidence theory [6–8], offers a suitable framework to encode and
quantify both epistemic and aleatory uncertainty. Moreover it includes a com-
prehensive information merging mechanism for combination and conditioning.
Some previous studies using belief function theory have focused on the conversion
of available information and the propagation of uncertainty through mechanical
models [9,10]. However, very few studies have been devoted to handling uncer-
tainty in identification based on belief functions. In this paper, we explore the
possibility of using belief functions theory to quantify uncertainty in identifica-
tion.

2 Identification Strategy

We consider the identification of elastic parameters of a 2D body (plain stress)
under loading based on displacement field data. The body shown in Fig. 1 is
considered as a 2D domain Ω. The main unknowns are the material parameters
collected in θ; the stress field σ and the displacement field u are secondary
unknowns.

Fig. 1. Mechanical model for identification.

We sum up the equation corresponding to the available information as
follows:

– On Ω:

Equilibrium: divσ = 0, (1)

Constitutive equation: σ = C(θ)ε with ε =
1
2
(∇u + ∇T u), (2)

where u, ε and σ are, respectively, the displacement, strain and stress fields;
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– On ∂uΩ: u = ud, where ud is a known Dirichlet boundary condition;
– On ∂fΩ: σ · n = fs, where fs is a known Neumann boundary condition;
– On Ωm: u = ũ. The displacement is measured in Ωm ⊂ Ω.

We consider the simple case where ∂uΩ ∪ ∂fΩ = ∂Ω and ∂uΩ ∩ ∂fΩ = ∅. The
purpose of the identification is to find the elastic parameters θ that are com-
patible with the above equations, taking into account uncertainty. The available
information can be split into three categories:

– Theoretical information, which is considered as reliable and deterministic.
We substitute Eq. (2) into Eq. (1) and obtain an implicit function about u
and θ: g(u,θ) = 0. Considering the boundary conditions, a well-posed direct
problem, whose solution is denoted u = u(θ) for any given θ, can then be
defined.

– Experimental information, with mainly aleatory uncertainty. Hence the dis-
placement measurement can be written as

ũ = u(θ) + e, (3)

where e is the measurement error.
– Background information corresponding to prior knowledge on θ; it is tainted

with epistemic uncertainty.

In the following, we will use belief functions and random sets to model uncer-
tainty. Considering a probability space (Ω, σΩ , P ), a non-empty set Θ, its power
set 2Θ and a strongly measurable multi-valued mapping Γ : Ω −→ 2Θ, Γ is a
random set. For all A ⊆ Θ, the uncertainty of the proposition θ ∈ A can be
quantified by belief and plausibility function [6,11]:

Bel(A) = P ({ω ∈ Ω|Γ (ω) ⊆ A, Γ (ω) 
= ∅}), (4)
Pl(A) = P ({ω ∈ Ω|Γ (ω) ∩ A 
= ∅}). (5)

Bel(A) is interpreted as the degree of support in the proposition θ ∈ A, while
Pl(A) measures the lack of support in the proposition θ 
∈ A. The contour
function pl : Θ → [0, 1] is defined as

pl(θ) = Pl({θ}) for all θ ∈ Θ. (6)

2.1 Measurement Information

The measurement ũ is assumed to be known with some aleatory uncertainty
(see Eq. (3)). The error is assumed to be a random Gaussian noise, with known
covariance e ∼ N (0,D). Based on [6,8], the uncertainty about θ is represented
by a consonant likelihood-based belief function, whose contour function equals
the normalized likelihood function:

pl(θ; ũ) =
L(θ; ũ)

supθ L(θ; ũ)
, (7)
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where L(θ; ũ) is the likelihood function,

L(θ; ũ) = (2π det D)−1/2 exp
[
−1

2
(u(θ) − ũ)T D−1(u(θ) − ũ)

]
. (8)

The contour function pl(θ; ũ) in Eq. (7) is normalized. It is equivalent to a
possibility distribution, and corresponds to a consonant random set.

2.2 Prior Information

Prior information with epistemic uncertainty is represented by a possibility dis-
tribution π(θ), which induces the consonant random set

Γ (ω) = {θ ∈ Θ|π(θ) ≥ ω}. (9)

The consonant random set shown in Fig. 2 expresses an expert opinion about
θ: values of θ outside interval [a, d] are considered as impossible, while values
inside interval [b, c] are considered as fully possible. Indeed, Γ (ω) ⊆ [a, d] and
[b, c] ⊆ Γ (ω) for any ω ∈ [0, 1]. In this paper, we assume that ω ∼ U [0, 1].

Moreover, in the framework of belief function theory, the discounting oper-
ation allows us to express the degree of confidence in a source of information.
Assume, for instance, that an expert uses the possibility distribution of Fig. 2 to
represent their opinion about a parameter, and we have a degree of confidence
mΘ ∈ [0, 1] in this opinion. We can then assign the value mΘ to the whole
set Θ, i.e., P ({ω ∈ Ω|Γ (ω) = Θ}) = mΘ. When mΘ = 0, we fully trust the
expert’s opinion; when mΘ = 1, we totally doubt it. The discounted possibility
distribution is shown in Fig. 3. We notice that it has an infinite support.

Fig. 2. Possibility distribution Fig. 3. Discounted possibility distribution

2.3 Dempster’s Rule

Measurement and prior information typically induce two random sets repre-
sented by possibility distributions. Aggregation of information from multiple
sources is an important step in the modeling of uncertainty. Dempster’s rule [6]
is a combination mechanism in belief function theory. This rule is often used
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to combine belief functions defined on finite sets. Here, we reformulate it in
the infinite setting. Consider two random sets (Ωk, σΩk

, Pk, Γk), k = 1, 2. Let
Ω = Ω1 × Ω2 be the product space, P = P1 ⊗ P2 the product measure on
σΩ = σΩ1 ⊗ σΩ2 , and Γp the multi-valued mapping defined by: ∀(ω1, ω2) ∈ Ωp,
Γp(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2). The combined random set is (Ω, σΩ , P, Γp). It
induces the following belief and plausibility functions: for any A ⊂ Θ,

Bel(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ⊆ A, Γp(ω1, ω2) 
= ∅})

P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) 
= ∅})
, (10)

Pl(A) =
P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) ∩ A 
= ∅})

P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) 
= ∅})
. (11)

The degree of conflict is:

k = P ({(ω1, ω2) ∈ Ω|Γp(ω1, ω2) = ∅}). (12)

It is a measure of the compatibility between the two sources of information.

3 Numerical Implementation and Posterior Exploration

In this paper, we use Monte Carlo simulation to implement Dempster’s rule
for combining information. Considering two possibility distributions π1(θ) and
π2(θ), we can draw (ω1, ω2) uniformly from [0, 1]2 and cut the two possibil-
ity distributions, respectively, at levels ω1 and ω2. Then we intersect the two
ω-level cuts. After iterating the above process a large number of times, we obtain
a collection of subsets or domains with irregular shapes. Therefore, we need a
strategy to describe domains of arbitrary shape. Here, we propose to describe
a subset using a cloud of points generated by a Halton sequence [12]. For each
domain, the value at any point is 1 if the point is inside this domain, and 0
otherwise. Such a description is suitable for Boolean operations as required by
Dempster’s rule.

After merging information, we obtain a collection of posterior subsets that
need to be exploited. The contour function pl(θ) is an easy and direct way
to summarize information. The greatest pl(θ) value corresponds to the most
possible θ. Consequently Eq. (13) can serve as a point identification method:

θ̂ = arg max pl(θ). (13)

For further exploitation of posterior random sets, we search for a minimal
subset R ⊆ Θ such that Pl(R) and Bel(R) are larger than threshold values
δPl and δBel. Formally, we need to solve the following constrained minimization
problem:

R̂ = arg min
R⊆Θ

V (R), (14)

such that {
Pl(R) ≥ δPl

Bel(R) ≥ δBel
,

where V (R) is the area or volume of R.
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4 Application

In this section, we present as a numerical example the identification of the Lamé
coefficients θ = {λ, μ} describing the elastic properties of a 2D plate from a
tensile test. The measurement is the displacement field on the whole plate and
the applied traction. It was created based on a reference finite element calculation
with reference value {λ, μ} = {1, 1} and adding a 5% Gaussian noise to represent
the measurement error.

The prior information, which comes from expert opinions, was expressed by
possibility distributions. In order to check the performance of this approach, two
scenarios were considered: in the first scenario, the expert possibility distribu-
tions are close to the reference values; in the second scenario, they are far from
the reference values. We assumed a 80% degree of confidence in the expert opin-
ions in both scenarios. The possibility distributions considered in both scenarios
are shown in Fig. 4.

Fig. 4. Prior information on λ (a) and μ (b).

Based on the discussion in Sect. 2.3, we used Dempster’s rule to combine
the information. After computing the ω-level cuts of the two distributions and
intersecting the random sets, we obtained a posterior random set. The degrees
of conflict in scenarios 1 and 2 were, respectively, k̂1 = 0.3867 and k̂2 = 0.7996.
If the degree of conflict k is too large, at least one source is likely to provide
wrong information.

The estimator p̂l(θ) of the contour function is shown in Fig. 5. The value θmax

with maximum plausibility can be used as a point estimator. For scenario 1, we
obtained θmax = {0.943, 0.939}; for scenario 2, θmax = {0.935, 0.937}. Thanks
to the discounting operation, the contour function keeps the same form as the
possibility distribution from the measurement, even when the prior information
is inaccurate.

Lastly, we focussed on finding a minimum subset R with Pl(R) and Bel(R)
larger than given threshold values δBel and δPl. We set (1) δBel = 0.30 and
δPl = 0.95; (2) δBel = 0.25 and δPl = 0.95 (3) δBel = 0.25 and δPl = 0.90.
The obtained subsets R̂ for the two scenarios are shown in Fig. 6. It is clear
that the area of minimum subsets grows as thresholds δBel and δPl increase.
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Fig. 5. Contour function p̂l(θ): (a) scenarios 1; (b) scenarios 2.

Fig. 6. Minimal-area domains R̂: (a) scenario 1 (b) scenario 2

As compared to those in scenario 2, the minimal subsets in scenario 1 move
to top right because of the influence of prior information. In scenario 2, the
prior information does not affect the measurement information; consequently,
the minimal subsets reflect the form of the likelihood function.

5 Conclusion

In this paper, we have presented an identification strategy based on belief func-
tion theory. This approach allows for the representation and combination of
prior and measurement information. Point clouds were used to describe multi-
dimension random sets. Dempster’s rule was used to combine random sets from
prior and measurement information. Finally, posterior random sets were obtained
and explored. This approach makes it possible to encode and propagate epis-
temic and aleatory uncertainty in a unified framework. The discounting opera-
tion allows us to take into account the reliability of the sources of information; as
a result, inaccurate information only marginally affects measurement informa-
tion. The two functions Bel and Pl provide a rich description of the uncertainty
on model parameters, taking into account prior information. In the future, our
research will focus on accounting for uncertainty in mechanical models and on
the application of this approach to more complex structures.
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Abstract. Structured arguments are commonly used to communicate
to stakeholders that safety, security or other attributes of a system are
achieved. Due to the growing complexity of systems, more uncertainties
appear and the confidence in arguments tends to be less justifiable by
reviewing. In this paper, we propose a quantitative method to assess the
confidence in structured arguments, like safety cases. We adopt the Goal
Structuring Notation (GSN) to model the safety case and propose to
add annotations to identify uncertainties in this model. Three inference
types of arguments are proposed according to their impact on confidence.
Definition and quantification assessment of confidence are based on the
belief function theory. The proposed approach is illustrated with several
GSN examples.

Keywords: Safety case · Confidence assessment · Belief function
theory · Assurance case

1 Introduction

Structured arguments play important role in communicating a system’s
attributes with various names: safety case [2,19], assurance case [4], trust case
[5], dependability case [3], etc. For safety-critical industries, such arguments are
even required by the standards (ISO 26262 [15] for automotive, EN 50129 for
railway, etc.).

Furthermore, regulation bodies (such as avionics certification authorities)
have to evaluate the system safety based on safety cases in order to produce
a justified decision for certification. Nevertheless, some problematic issues has
been argued when assessing the structured arguments, especially for computing
systems. In [6], authors consider that the excessive growth of argument leads it
to be too complex to be analyzed. In [1,14], the authors emphasize the necessity
to assess the confidence in these arguments and propose to develop a confidence
argument in parallel with the safety argument. Besides, some quantitative assess-
ment of confidence in arguments are provided in [9] (using Bayesian Network),
and [6,13] (using belief function theory for confidence definition).

c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 190–200, 2016.
DOI: 10.1007/978-3-319-45559-4 20
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This paper aims to propose a quantitative approach to assess the confidence
in structured arguments. In order to give an understandable demonstration, a
graphical notation, called Goal Structuring Notation (GSN) [19] presented in
Sect. 2, is adopted to model the analyzed safety case including its identified
uncertainties. Then, the quantified assessment process is developed under the
frame of belief function theory in Sect. 3. Belief function theory allows uncer-
tainty to be explicitly modeled and handled. An application of this approach is
conducted for some extracts of GSN safety case in Sect. 4.

2 Safety Argumentation

Safety argument, also called safety case, is defined by [2] as “a documented
body of evidence that provides a convincing and valid argument that a system
is adequately safe for a given application in a given environment”. It is used to
communicate the rationale of developers for implementing the development or
their choices of techniques. Many related research work are available based on
the Toulmin’s argument model [22]. [17] defined a notation of safety case, called
Goal Structuring Notation (GSN), to make the presentation of argumentation
more readable and adaptable. GSN allows the representation of the supporting
evidence, objectives to be achieved, safety argument, context, etc. An example
of GSN is given in Fig. 1, which is derived from the Hazard Avoidance Pattern
[18]. The five main elements of GSN are: goal (e.g., G1): the claim about the
system; solution (e.g., Sn1): the reference to evidence item(s); strategy (e.g., S1):
the nature of inference that exists between a goal and its supporting sub-goal(s);
context (e.g., C1): a reference to contextual information, or a statement.

GSN provides a qualitative representation. Nevertheless, the confidence in
the top claim is not specified in this view. Indeed, the correctness of the infer-
ence links, the appropriateness of the context, the sufficiency of the evidence
are key factors to make the assertions in safety argument acceptable. However,

C1

hazards for {System X}

G1
 {System X} is 
acceptably safe 

G3
 {Hazard H2} has been 

addressed

Gn
 {Hazard Hn} has been 

addressed

{Hazard H1} has 
been removed.

Sn1  
A given 

prevention risk 
control is 

implemented.

Sn2  
A given 

protection risk 
control is 

implemented.

Sn3

 {Hazard H1} has been 
addressed

G2

S1

 Argumentation by claiming 

plausible hazards 

Fig. 1. GSN example adapted from Hazard Avoidance Pattern [18]
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B

Uncertainty in Solution B (UP2)

?

?

A
Software system 

is correct 

G1

Tests are 
conclusive

Sn1

Fig. 2. Uncertainty points in a simple inference

in practice, no precise values can be assigned to these factors. We have to cope
with uncertainties. We actually consider two types of uncertainties sources, which
are similar to those presented in [14] named “appropriateness” and “trustwor-
thiness”. They are illustrated in the simple safety case presented in Fig. 2 as
uncertainty points (UPs): UP1 - uncertainty in the fact that B supports A; and
UP2 - uncertainty in the fact that B is True.

3 Safety Case Confidence Assessment

This section presents the main contribution of the paper, which is a framework
to quantitatively estimate the confidence in a safety case.

3.1 Definition of Confidence in Argument

We adopt the belief function theory, also called Dempster-Shafer theory (D-S the-
ory) [7,8,21], to define the confidence in arguments. It is indeed one of the uncer-
tainty theories with which you can explicitly estimate the uncertainty, and com-
bine several sources of information which is particularly convenient to develop
our confidence aggregation rules. For the claim B, (“Tests are conclusive”) in
Fig. 2, the belief in its truth is expressed using the belief function and plausi-
bility function provided in D-S theory. An opinion about this claim is assessed
with 3 attributes: our belief (bel({B})), our disbelief (bel({B̄})) in the conclu-
siveness of the testing, and the uncertainty (pl({B})-bel({B})) concerning the
fact that “we know that we don’t know”. This leads to have belief + disbelief +
uncertainty = 1, exactly as the first three parameters in Jøsang’s opinion space
[16].

In this paper, a binary frame of discernment ΩB = {B̄, B} is used to describe
the truth of claim B; then we define the confidence in claim B as follows:
⎧⎨
⎩

bel({B}) = mΩB ({B}) = gB
bel({B̄}) = mΩB ({B̄}) = fB
pl({B}) − bel({B}) = mΩB (ΩB) = 1 − mΩB ({B}) − mΩB ({B̄}) = 1 − gB − fB

(1)
where gP , fP ∈ [0, 1].
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Formalization of Inferences (UP1). To study the inference between B and
A, we propose to use a 2-tuple (XB ,XA) to express the cross product ΩB ×
ΩA, where XB and XA are elements of ΩB and ΩA respectively. Then, the
joint frame of discernment is ΩB × ΩA = {(B̄, Ā), (B̄, A), (B, Ā), (B,A)}. For
instance, the mass describing the belief that claim A can be inferred from claim
B and conversely that the fact that A is false can be inferred from the fact
that B is false, is mΩB×ΩA

({(B,A), (B̄, Ā)})
. This inference is measured by the

contributing weight of B to A (wB). Moreover, it is hard to ensure that the
available supporting premises cover all aspects to assert the upper-level claim.
Thus, we introduce a discounting factor (v) to represent the completeness of
premises. The contributing weight is defined as follows:

mΩB×ΩA
1 ({(B̄, Ā), (B,A)}) = wBv mΩB×ΩA

1 (ΩB × ΩA) = 1 − wBv (2)

Where mΩB×ΩA
1 (ΩB × ΩA) is used as abbreviation of mΩB×ΩA

1 ({(B̄, Ā),
(B̄, A), (B, Ā), (B,A)}). When v = 1, it means that B sufficiently support A;
When v = 0, mΩB×ΩA

1 (ΩB × ΩA) = 1 means that B does not provide any
knowledge about A, i.e. a full uncertainty exists in A.

Formalization of the Confidence in Claims (UP2). The measure of confi-
dence in B has been defined as Formula (1). In order to combine UP1 and UP2,
we apply the vacuous extension [20] (represented by the up arrow ↑) to m2, to
transform the confidence in B on the frame ΩB to the frame ΩB×ΩA. Therefore,
the confidence in claim B is:

⎧
⎪⎨

⎪⎩

mΩB↑ΩB×ΩA

2 ({B} × ΩA) = gB

mΩB↑ΩB×ΩA

2 ({B̄} × ΩA) = fB

mΩB↑ΩB×ΩA

2 (ΩB × ΩA) = 1 − fB − gB

(3)

Where {B} × ΩA is employed instead of {(B,A), (B, Ā)} and {B̄} × ΩA instead
of {(B̄, A), (B̄, Ā)} to highlight the ignorance in A.

Confidence Aggregation for Simple Inference. Our aim is to deduce the
degree of belief in the fact that claim A is true (m({A})) based on the belief
placed in (2) and (3). With the help of Dempster’s rule [21], these two pieces
of information can be combined. The 6 possible combinations and focal sets are
shown in Table 1, where the conflict factor K [21] in this combination rule is
0, due to no conflict in this case. To calculate m({A}) on ΩA from the com-
bined information on ΩB × ΩA, we have to use the marginalization operation
[20]. Accordingly, there is only one focal set ({(B,A)} underlined in Table 1)
contributing to m({A}). Thus, the confidence in A is:

bel({A}) = m(A) = gBwBv (4)

where gB , wB , v ∈ [0, 1].
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Table 1. Combination results of confidence measures

m12 = m1 ⊕ m2 mΩB×ΩA
1 ({(B̄, Ā), (B,A)}) mΩB×ΩA

1 (ΩB × ΩA)

mΩB↑ΩB×ΩA
2 ({B} × ΩA) {(B,A)} {B} × ΩA

mΩB↑ΩB×ΩA
2 ({B̄} × ΩA) {(B̄, Ā)} {B̄} × ΩA

mΩB↑ΩB×ΩA
2 (ΩB × ΩA) {(B̄, Ā), (B,A)} ΩB × ΩA

3.2 Arguments Inference Types

In practice, several premises are used to support one goal. Therefore, a new issue
arises: how the contributions of premises are combined while assessing the confi-
dence in a goal? Cyra and Gorski [6] extend the work of Govier [12] and introduce
two inference rules, each of which contains 3 sub types of inferences. Neverthe-
less, there are overlapping among them. We propose another categorization of
the argument with three inference types (listed in Table 2):

– Type 1: Dependent inference: premises supporting the same goal have some
degree of dependency, denoted with d.

• d = 1: fully dependent inference. B and C are needed as premises of A. For
instance, safety engineers often consider that a system is safe if the “test
process is correct” as well as the “test results are correct”. If one of these
two premises is false, no confidence can be placed in the system safety.
It is important to emphasize that this “dependence” means only that A
depends on B and C (dependence formalized by joint mass function m1

hereafter). The confidences in sub-claims B and C (formalized by mass
functions m2 and m3 hereafter) are considered independent (there are
independent elements of evidence in experts opinion) and can therefore
be combined using Dempter’s rule. In cases where this hypothesis would
be not ensured, other combination rules like “cautious rule” [10] could be
used instead.

• d = 0.5: partial dependent inference. B and C have some impacts on each
other when supporting A. For instance, safety engineers also consider that
a system is safe if “high-level requirement coverage is achieved”, that is,
all functions perform correctly, and “low-level requirement coverage is
achieved”, that is, all components are exercised. If we have high confi-
dence in the function correctness, then we have high confidence in system
safety. Then, even if we do not have sufficient evidence in the component
exercising, we preserve our confidence in the system safety.

– Type 2: Redundant inference: premises contribute to the top goal with certain
degree of redundancy, denoted with r.

• r = 1: fully redundant inference. B or C can be used alone as premises
of A. For instance, safety engineers consider that “a failure of a hard-
ware component is acceptable” (goal), if “its probability is low” or “the
occurrence of this failure can be detected and handled” (fault tolerance
mechanism). These two premises are fully redundant because if we have
full confidence in one of them, then we believe that the goal is achieved.
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• r = 0.5: partial redundant inference. B and C are not fully redundant,
and can be used in a complementary way. For instance, safety engineers
consider that “a system is acceptably safe” (goal), if “its test is conclusive”
or “formal verification is passed”. We believe that the two techniques
(testing and formal verification) are partially redundant as they both
partially contribute to our confidence in system safety.

– Type 3: Independent inference: each of the premises covers part of the con-
clusion, without redundancy or dependency r/d = 0. For instance, safety
engineers consider that confidence of system safety is obtained (goal), when
all hazards are addressed. Therefore, the belief in each premise “Hazard Hi is
addressed” provides an independent contribution to our confidence in system
safety.

3.3 Confidence Assessment

The proposed confidence aggregation operator varies according to the type of
inference. Due to limited space, we only provide details for the dependent infer-
ence in this section. We assess the confidence in A based on the confidence in
B and C and their way of contribution. The calculation is similar to Sect. 3.1,
except that we need to take into account the argument types.

Formalization of Inferences (UP1). In order to provide a general formula
for the dependent inference, the cases with d = 0, 0.5 and 1 have to be taken
into account. The independent contributions of B and C and the contribution
of the combinations of B and C has to be considered. The corresponding mass
function m1 is therefore built using:
– A focal set giving the contribution of B to A (see Eq. (3)), using the vacuous

extension, to extend it to Ω = ΩB × ΩC × ΩA,
– A focal set giving the contribution of C to A built on the same model and also

extended to Ω,
– A focal set giving the contribution of B and C to A (traduction of an AND

operator in terms of mass function),
– The remaining mass being affected on Ω.

Hence, this joint frame of discernment is expressed as Ω = {(B̄, C̄, Ā), (B̄, C̄, A),
(B̄, C, Ā), (B̄, C,A), (B, C̄, Ā), (B, C̄,A), (B,C, Ā), (B,C,A)}. According to D-S
theory, the sum of masses of all the focal sets is 1. We deduce that the degree of
dependency (dA) is 1 − wB − wC . Also, we introduce the discounting factor v.
Then, we obtain:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mΩ
1 ({B̄} × ΩC × {Ā} ∪ {B} × ΩC × {A}) = wBv

mΩ
1 (ΩB × {C̄} × {Ā} ∪ ΩB × {C} × {A}) = wCv

mΩ
1 ({(B̄, C̄, Ā), (B̄, C, Ā), (B, C̄, Ā), (B,C,A)}) = dA = (1 − wB − wC)v

mΩ
1 (Ω) = 1 − v

(5)
where v, wB , wC ∈ [0, 1], and wB + wC ≤ 1.
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Formalization of the Confidence in Claims (UP2). According to the defi-
nition of confidence in Formula (1) of Sect. 3.1 and the help of vacuous extension,
the measures of confidence in sub-claims B and C are:

⎧
⎪⎨

⎪⎩

mΩ
2 ({B} × ΩC × ΩA) = gB

mΩ
2 ({B̄} × ΩC × ΩA) = fB

mΩ
2 (Ω) = 1 − fB − gB

(6)

⎧
⎪⎨

⎪⎩

mΩ
3 (ΩB × {C} × ΩA) = gC

mΩ
3 (ΩB × {C̄} × ΩA) = fC

mΩ
3 (Ω) = 1 − fC − gC

(7)

Confidence Aggregation for Dependent Argument (Type 1). As
explained above, mass functions m1, m2 and m3 are considered as independent
pieces of evidence and can therefore legitimately combined using Dempster’s
rule. According to the associativity of this rule, (6) and (7) are combined firstly,
then with (5). Due to the limited scale of this paper, the development is not
presented here. Thus, we give the confidence in claim A:

bel({A}) = m({A}) = v
(
(1 − wB − wC)gBgC + gBwB + gCwC

)
(8)

Formula (8) is the confidence aggregation formula for the basic dependent
argument for two premises. The general confidence aggregation formula for
n-nodes dependent argument derived:

m({A}) = v[(1 −
n∑

i=1

wi)
n∏

i=1

gi +
n∑

i=1

giwi] (9)

Where n > 1, gi, wi, v ∈ [0, 1], and
∑n

i=1 wi ≤ 1.

Confidence Aggregation for Redundant Argument (Type 2). For redun-
dant argument, the confidence aggregation operator has to be changed. The
redundant parts of the premises behave as an OR gate. Therefore, the con-
tributing weights are measured in the following way:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mΩ
1 ({B̄} × ΩC × {Ā} ∪ {B} × ΩC × {A}) = wBv

mΩ
1 (ΩB × {C̄} × {Ā} ∪ ΩB × {C} × {A}) = wCv

mΩ
1 ({(B̄, C̄, Ā), (B̄, C,A), (B, C̄,A), (B,C,A)}) = rA = (1 − wB − wC)v

mΩ
1 (Ω) = 1 − v

(10)
Then the developing process is similar to the one used for the dependent

argument. We directly give the confidence aggregation formula for the above
argument:

m({A}) = v
(
(1 − wB − wC)[1 − (1 − gB)(1 − gC)] + gBwB + gCwC

)
(11)
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Table 2. Experimental application of confidence aggregation formulas

Type, rA/dA GSN instances
Confidence in A,
m(A)

Behaviors

2, rA = 1 G1
A

All causes of hazardous 
hardware failure modes are 

acceptable

C
Occurence of 

hazardous hardware 
failure modes 

acceptably detected 
and handled

B
Probability of 

hazardous hardware 
failure modes in 

contributory hardware 
acceptably low

Sn1 Sn2

v(gB + gC − gBgC)
M

N

(Fully redun-
dant)

2, rA = 0.5
G1

A
System is acceptably 

safe

Sn2
C

Formal 

passed

Sn1
B

Test is 
conclusive

v( 1−(1−gB)(1−gC)
2

M

N

(Partially
redundant) +

gBwB + gCwC)

3, rA = 0
G1

A
System is acceptably 

safe

Sn2
C

Hazard 2 
has been 
addressed

Sn1
B

Hazard 1 
has been 
addressed

v(gBwB + gCwC) M

N

(Independent)

1, dA = 0.5 G1
A

System is acceptably 
safe

Sn2
C

Low-level 
requirements. 

coverage is 
achieved

Sn1
B

High-level 
requirements 
coverage is 

achieved

v( gBgC
2

+ gBwB+

M

N

(Partially
dependent) gCwC)

1, dA = 1 G1
A

System is acceptably 
safe

Sn2
C

Test results 
are correct

Sn1
B
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The general formula for n-node redundant argument is deduced. We obtain:

m({A}) = v
(
(1 −

n∑

i=1

wi)[1 −
n∏

i=1

(1 − gi)] +
n∑

i=1

giwi

)
(12)

Where n > 1, gi, wi, v ∈ [0, 1], and
n∑

i=1

wi ≤ 1.

4 Experimental Application

In this section, the confidence aggregation formulas are applied to five simple
examples with two premises. This application aims to analyze how the confi-
dence evolves depending on different inference types. The examples in Table 2
are extractions of GSN patterns from [23] or objectives required in the avionics
standard DO-178C [11].

The formulas corresponding to varied values of d or r are obtained based on
Eqs. (8) and (11). Note that when the premises are completely independent, i.e.
r/d = 1 − wB − wC = 0, then Eqs. (8) and (11) are equivalent.

Moreover, we use the contour plotting to illustrate the behaviors of these five
cases with several values for d and r, as shown in Table 2. As v is the common
factor of all formulas, its impact on the confidence in A is easily estimated. We
choose v = 1 for this analysis.

In the figures representing the behaviors, light color means low confidence
in A. On the contrary, dark color represents high confidence. Comparing the
positions of Point M (gB = 0, gC = 1) and Point N (gB = 1, gC = 0), the best
model, with which it is easy to obtain high confidence, is the fully redundant case
(case 1); the opposite is case 5, that is, the fully dependent inference. Looking
at cases 2 and 4, the obvious difference is that low confidence in one single
premise of partial dependent inference decreases more confidence in A than that
of partial redundant inference. Furthermore, this feature helps to determine the
right type of inference for an argument. In cases 2, 3 and 4, because the weight
of B is higher than the weight of C, the influence of gB on bel(A) is always larger
than gC (Point M is always higher than Point N).

According to this analysis, the behaviors of the aggregation formulas are
consistent with our expectation regarding the confidence variation. The different
impacts of contributing weights make explicit the influence of the dependency
and redundancy among arguments on the confidence in the top goal.

5 Conclusion

In this paper, we propose a quantitative approach to evaluate the confidence in
safety arguments. A graphical safety notation, GSN, is used to clearly present
the studied arguments. The definition and aggregation of confidence for simple
inference and multiple inferences are all realized by adopting the functions and
operations of the belief function theory. We introduce a clear way to categorize
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three inference types including five cases. This makes it possible to explicitly
assess the contributions of premises. We applied our approach to typical exam-
ples of arguments in system safety engineering domain, and checked that results
of aggregation rules are consistent. A behavior analysis is given to demonstrate
the characters of the proposed aggregation formulas. A case study of real sys-
tem safety case will be our future work. Experts will be inquired to provide the
reasonable confidence values with the help of the GSN examples. The issue of
decision-making based on confidence levels (see behavior figures in Table 2) will
be also considered.
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Abstract. Hidden Markov Fields (HMF) have been widely used in various
problems of image processing. In such models, the hidden process of interest X is
assumed to be a Markov field that must be estimated from an observable process
Y . Classic HMFs have been recently extended to a very general model called
“evidential pairwise Markov field” (EPMF). Extending its recent particular case
able to deal with non-Gaussian noise, we propose an original variant able to deal
with non-Gaussian and correlated noise. Experiments conducted on simulated
and real data show the interest of the new approach in an unsupervised context.

Keywords: Markov random field � Correlated noise model � Gaussian
mixture � Belief functions � Theory of evidence � Image segmentation

1 Introduction

The paper deals with statistical image segmentation. The use of hidden Markov fields
(HMFs) has become popular since the introduction of these models in pioneering
papers [1, 2] with related optimal Bayesian processing. HMFs provide remarkable
results in numerous situations and continue to be used nowadays. On the other hand,
Dempster-Shafer theory of evidence (DST) has been used in different information
fusion problems [3, 4]. However, simultaneous use of both HMFs and DST is rather
rare, and is mainly applied to fuse sensors of different nature [5–8]. Another application
consists of using DST to model images with fine details, and the first results presented
in [9] were encouraging. Calculations presented in [9] were possible because of the fact
that DS fusion in Markov field context can be interpreted as calculation of a marginal
distribution in a “triplet Markov field” (TMF [10]). The model proposed in [9] has been
recently extended to non-Gaussian noise in [11], enjoying the generality of the pro-
posed “Evidential Pairwise Markov Field” (EPMF) models. Such extensions are par-
ticularly useful in radar images context, in which noise is not Gaussian in general. The
aim of this paper is to propose a further extension of the model proposed in [11] to the
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J. Vejnarová and V. Kratochvíl (Eds.): BELIEF 2016, LNAI 9861, pp. 203–211, 2016.
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case of correlated noise. This seems to be of interest in radar images processing, as
noises are correlated in real situations while they are usually considered independent in
different Markov fields based models.

Let S be a finite set, with Card Sð Þ ¼ N, let Y ¼ Ysf gs2S be the observed random
field with each Ys taking its value in <, and let X ¼ Xsf gs2S be the hidden random label
field with each Xs taking its values from a finite set of “classes” or “labels”. Realization
of such random fields will be denoted using lowercase letters. The labeling problem
consists in estimating X ¼ x from Y ¼ y.

The reminder of the paper is organized as follows. Section 2 summarizes the theory
of evidence and its applicability within Markov models. In Sect. 3, we describe our
proposed model. In Sect. 4, we assess the proposed model on image segmentation.
Finally, concluding remarks are presented in Sect. 5.

2 Background

In this section, we briefly recall the basics of Dempster-Shafer theory of evidence and
discuss its application within Markov field models.

2.1 Hidden Markov Fields

In basic hidden Markov fields (HMFs) context, the field X is assumed Markovian with
respect to a system of cliques C, associated to some neighborhood system. The model
name “hidden Markov field” stands for the very fact that the hidden field X is Markov.
According to the Hammersley-Clifford equivalence, X is then an MRF given by

p xð Þ / exp �
X
c2C

wc xcð Þ
" #

ð1Þ

where wc xcð Þ is the potential function associated to clique c, and xc ¼ ðxsÞs2c.
On the other hand, the likelihood distribution pðy xÞj is defined by

p yjxð Þ / exp
X
s2S

log p ysjxsð Þð Þ
" #

ð2Þ

The joint distribution of X; Yð Þ is then given by

p x; yð Þ ¼ p xð Þp yjxð Þ: ð3Þ

2.2 Theory of Evidence

The class set fromwhichXs takes its value is defined by L ¼ l1; � � � lKf g that is an universe
of discourse, also called frame of discernment. Let H ¼ 2L ¼ £; l1; � � � ; L� � ¼
£; h1; � � � ; hQ

� �
be its corresponding powerset, where lk ¼ lkf g and Q ¼ 2K � 1.
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A “basic belief assignment” (bba) is a functionM fromH to 0; 1½ � satisfyingM £ð Þ ¼ 0

and
PQ
i¼1

m hið Þ ¼ 1. A bba M defines then a “plausibility” function Pl and a “credibility”

function Cr, both defined from H to 0; 1½ � by Pl hð Þ ¼ P
h\ h0 6¼/

M h0ð Þ and Cr hð Þ ¼
P
h0�h

M h0ð Þ respectively. For a given bba M, related Pl and Cr are linked by

Pl hð ÞþCr �h
� � ¼ 1. From this point of view, a probability p can be perceived as a special

case for which p ¼ Pl ¼ Cr. Moreover, if two bbas M1 and M2 represent two pieces of
evidence, we can merge, or fuse, them using the so called “Dempster-Shafer fusion” (DS

fusion), which defines M ¼ M1 �M2 given by: M hð Þ ¼ M1 �M2ð Þ hð Þ /
P

h0 \ h00¼h

M1 h0ð ÞM2 h00ð Þ for any h 6¼ £. Finally, a bba is said “probabilistic” or “Bayesian”

when it vanishes outside singletons, and it is said “evidential” otherwise. In this paper, a
probabilistic bba will be said defined on L and singletons lk and elements lk will be
handled indifferently.

2.3 Hidden Evidential Markov Field with Gaussian-Mixture Likelihood

Let us consider the fields X ¼ Xsð Þs2S, Y ¼ Ysð Þs2S and let p1 xð Þ / exp � P
c2C

wc xcð Þ
� �

and py xð Þ / Q
s2S

p ysjxsð Þ. p1 and py will be called “prior” and “likelihood” bbas

respectively. Then, the posterior distribution p xjyð Þ given by (3) is itself the DS fusion
of p1 and py: p xjyð Þ ¼ p1 � pyð Þ xð Þ. This is of particular significance since it may offer
different possibilities of extensions [9]. More precisely, if either p1 or py is extended to
an evidential bba, the result of the fusion p1 � py remains a probabilistic distribution,
which can then be seen as an extension of the classic posterior probability p xjyð Þ.
Additionally, if the “evidential” extension of p1 or py is of a similar Markovian form,
the computation of posterior margins p xsjyð Þ remains feasible in spite of the fact that
the fusion result is no longer necessarily a Markov field [9].

For instance, if p1 is extended to a Markov bba M, we can construct an evidential
Markov field (EMF) defined on HN by

M mð Þ / exp �
X
c2C

wc mcð Þ
" #

ð4Þ

In [11], we consider a general situation where the priors are evidential and the noise
is blind but not Gaussian. By introducing an auxiliary field U ¼ Usð Þs2S with
Us 2 K ¼ k1; � � � ; kPf g, the evidential blind Gaussian mixture Markov (EBGMM)
model is given by
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pðm; x; u; yÞ ¼ 1x2mcexp �
X
c2C

wcðmcÞ �
X
s2S

gsðxs; usÞþ
X
s2S

Log pðys xsj ; usÞð Þ
" #

ð5Þ

Since p m; x; yð Þ ¼ P
u2KN

pðm; x; u; yÞ, we have

pðm; x; yÞ ¼ c 1x2m exp �
X
c2C

wcðmcÞ
" #" #Y

s2S

X
us2K

exp½�gsðxs; usÞ�pðys xs; usj Þ
" #

ð6Þ

and thus pðm; x; yÞ is a classic EHMF with pðys xsj Þ being mixtures, pðys xsj Þ ¼P
us2K

aðusÞpðys xs; usj Þ, where the mixture coefficients are aðusÞ ¼ exp½�gsðxs; usÞ�. As
demonstrated in [11], the interest of such models is to make it possible to deal with
unknown noise densities pðys xsj Þ.

3 Evidential Correlated Gaussian Mixture Markov Model

The aim of the present paper is to extend the model (5) in such a way that the possible
noise correlations can be taken into account. Thus we propose a model in which the
noise is non-Gaussian and correlated, and in which all parameters can be estimated by
the “iterative conditional estimation” (ICE) method, allowing unsupervised image
segmentation.

The distribution of the proposed model, called “evidential correlated Gaussian
mixture Markov” (ECGMM) model, is written as

pðm; x; u; yÞ ¼ 1x2mc exp �
X
c2C

wcðmcÞ �
X
c2C

/cðucÞ �
X
s2S

gsðxs; usÞþ
X
s2S

Logðpðys xs; usj ÞÞ
" #

ð7Þ

Then the likelihood is

pðy xj Þ /
X
u2KN

exp �
X
c2C

/cðucÞ �
X
s2S

gsðxs; usÞþ
X
s2S

Logðpðys xs; usj ÞÞ
" #

ð8Þ

Let us notice that this likelihood, which is new with respect to the likelihood in (5), is
very different from the latter. Indeed, the likelihood in (5) verifies two classical
properties:

(i) pðy xj Þ ¼ Q
s2S

pðys xj Þ;
(ii) pðys xj Þ ¼ pðys xj sÞ for each s 2 S,

whereas the likelihood (8) does not verify any of them. Thus the greater complexity of
(7) with respect to (5) goes beyond the introduction of the noise correlation.

We have to mention that another way to construct the correlated likelihood is
assuming the likelihood to be the Markov field:
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p yjxð Þ ¼ c exp �
X
c2C

wc yc; xcð Þ
" #

; ð9Þ

which captures the contextual information directly [13]. Since the observation ys takes
the value from R, it is such a complex model with so many parameters. When the
likelihood is simple Gaussian there are six parameters, it will be much more when we
consider the Gaussian mixture. In CGMM, us takes the value from a limited data set, so
wcðucÞ can be constructed by the well-used Multi-level logistic (MLL) model [14],
which keeps the likelihood to be correlated as well as simplify the complexity of the
model.

The labeling problem is to find x̂ from Y ¼ y. Then setting V ¼ ðVsÞs2S with
Vs ¼ ðMs; Xs; UsÞ, we have a standard hidden Markov field ðV ; YÞ. The field V is
discrete finite, and thus we use the classic “iterated conditional modes” (ICM) algo-
rithm [1, 6], which is an approximation of the optimal Bayesian solution
v̂B ¼ argmax

v
pðv yÞj . Having v̂ ¼ ðm̂; x̂; ûÞ gives then x̂ (in addition, it also gives

ðm̂; ûÞ, which can be of interest). Let us consider the simplest situation: xs takes the
value from l1; l2f g, and us takes the value from k1; k2f g. Then vs takes the value from
X ¼ l1; k1ð Þ; l1; k2ð Þ; l2; k1ð Þ; l2; k2ð Þf g¼ x1;x2;x3;x4f g. We can estimate the prob-
ability p vsjyð Þ on X by Gibbs sampler. The estimation obtained in this way enables us
to compute p xs ¼ l1jyð Þ ¼ p vs ¼ x1jyð Þþ p vs ¼ x2jyð Þ and p xs ¼ l2jyð Þ ¼ p vs ¼ð
x3jyÞþ p vs ¼ x4jyð Þ, which are then used to perform ICM.

4 Experiments

4.1 Simulated Data

The proposed model will be assessed against the existing EBGMM and HMF models
on unsupervised segmentation of simulated images in both cases of independent and
correlated noise. Let us consider the simulated images “Nazca bird”, which has already
been dealt with in [9, 11], and which is too complex for the simple HMFs models.
There are two classes, i.e. Xs takes its value from L ¼ l1; l2f g, Ms takes its values from
H ¼ h1; h2; h3f g ¼ l1f g; l2f g; l1; l2f gf g, and Us takes its values from K ¼ k1; k2f g.
The non-Gaussian noise used here is the Gamma one. In independent noise case, the
two noise densities are Gamma G1 0:5; 2ð Þ and G2 3; 1ð Þ, which are quite different from
Gaussian densities. The correlated noise is obtained by the following equation:

yi;j ¼
y1i;j � l1

� 	
þ y1i�1;j � l1
� 	

þ y1i;j�1 � l1
� 	

ffiffiffi
3

p þ l1

2
4

3
51ai;j¼x1

þ
y2i;j � l2

� 	
þ y2i�1;j � l2
� 	

þ y2i;j�1 � l2
� 	

ffiffiffi
3

p þ l2

2
4

3
51ai;j¼x2

ð10Þ
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where i; j is the location of the pixel; y1 and y2 are two independent noises with the
densities being G1 0:5; 2ð Þ and G2 3; 1ð Þ; l1 and l2 are the means; a is the class image.
We obtain a correlation coefficient of 0.23. We show the class image, the observed
images, and their corresponding histograms in Fig. 1.

The noisy images are then segmented using HMF, EBGMM and ECGMM
respectively. The obtained results are shown in Fig. 2. More precisely, we assess all
approaches with respect to the reference map in terms of overall accuracy (OA) and
Kappa coefficient (Kappa) [12] and illustrate them in Table 1. The best approach is the
one exhibiting the highest OA, and the highest Kappa. The presented results, and other
similar results obtained in additional experiments, show that HMFs give very poor
results in both independent and correlated noise cases. EBGMM and ECGMM sig-
nificantly improve HMFs’ results in the independent-noise case, and produce equiva-
lent results. Finally, the new ECGMM model based segmentation allows a significant
improvement of the EBGMM based one in the case of correlated noise.

4.2 Real Data

In this subsection, we evaluate our method on a real radar image. To this end, we
consider the image of Toronto city, shown in Fig. 3(a), obtained in December 2007 by
TerraSAR-X SpotLight, which is single HH polarization with a resolution of 1m.

(d)       

(a)       (b)       (c)       

(e)

Fig. 1. Simulated noisy Nazca bird images (a) class image; (b) image corrupted by independent
noise; (c) image corrupted by correlated noise; (d) histogram of independent noise; (e) histogram
of correlated noise.
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We segment the image into three classes by EBGMM and the proposed ECGMM,
and show the result in Fig. 3. This data is full of small edges, which is a real challenge
for Markov-based methods. Compared with EBGMM, we see that ECGMM seems to
perform better in some spots; in particular around the rich-edge area. We can see from
the red panels that the segmentation obtained by ECGMM includes more details with
respect to the one obtained through EBGMM. The correlated coefficient of this data is
about 0.25, which is very close to the simulated image above.

(a1)                                      (b1)                                     (c1) 

(a2)                                       (b2)                                    (c2) 

Fig. 2. Results of segmentation of noisy Nazca bird images. (a1–a2) by HMF; (b1–b2) by
EBGMM; (c1-c2) by ECGMM. (a1–c1) independent noise case; (a2–c2) correlated noise case.

Table 1. Performance evaluation of different approaches on simulated images

OA (%)
HMF EBGMM ECGMM

Independent noise 73.92 91.73 90.28
Correlated noise 69.15 80.22 90.61
Kappa

HMF EBGMM ECGMM
Independent noise 0.3912 0.5864 0.5377
Correlated noise 0.3336 0.3405 0.5864
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5 Conclusion

In this paper, we extended the particular “evidential pairwise Markov fields” model
used in [11] to deal with the segmentation of SAR images containing fine details and
non-Gaussian noise. The extension consists of introducing an auxiliary field, making it
possible to take the noise correlation into account. The experiments conducted on
simulated and real data prove that the new approach can significantly improve the
results obtained by the previous one. In future work, one can view an extension of the
probabilistic likelihood used here to an evidential one, so that the possible non sta-
tionarity of the noise could be taken into account.
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Abstract. This paper studies a vehicle routing problem, where vehicles
have a limited capacity and customer demands are uncertain and repre-
sented by belief functions. More specifically, this problem is formalized
using a belief function based extension of the chance-constrained pro-
gramming approach, which is a classical modeling of stochastic math-
ematical programs. In addition, it is shown how the optimal solution
cost is influenced by some important parameters involved in the model.
Finally, some instances of this difficult problem are solved using a simu-
lated annealing metaheuristic, demonstrating the feasibility of the app-
roach.

Keywords: Vehicle routing problem · Stochastic programming ·
Chance-constrained programming · Belief functions

1 Introduction

The Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD)
is a Vehicle Routing Problem (VRP) that asks to determine the set of routes
of minimum cost that can serve a set of customers with stochastic demands,
while respecting the capacity limit of each vehicle [8]. This stochastic integer
linear program can be modeled via the Chance-Constrained Programming (CCP)
approach [2,6], which is one of the main approaches to addressing stochastic
mathematical programs. Modeling the CVRPSD via CCP amounts to having
a constraint, which states that the probability that any route exceeds vehicle
capacity, must be below a given (small) value.

Belief function theory [14] is an alternative uncertainty framework to prob-
ability theory. Uncertainty on customer demands may be naturally represented
by belief functions in various situations; for instance, when sources providing
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 212–221, 2016.
DOI: 10.1007/978-3-319-45559-4 22
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pieces of information on customer demands, are assumed to be partially reli-
able or biased [12]. In such case, a new VRP is obtained, which may be called
the Capacitated VRP with Evidential Demands (CVRPED), where evidential
means that uncertainty on customer demands is modeled by belief functions.

Few papers [9,10,15] have been dedicated to handling uncertainty within
optimization problems using belief functions. These papers only addressed the
case of continuous linear programs, which are usually far more easier to solve
than their discrete counterparts. Most notably, Masri and Ben Abdelaziz [9]
generalized the CCP approach to linear programs involving uncertainty repre-
sented by belief functions, which they coined the Belief-Constrained Program-
ming (BCP) approach to the belief linear programming problem.

In this paper, we study the extension of the CCP approach to an integer
linear program involving uncertainty represented by belief functions, which is the
CVRPED, leading to what may be called the BCP approach to the CVRPED.
Being a derivative from the large class of VRP, which are NP-hard and may be
tackled using metaheuristics [3], we adapt a simulated annealing metaheuristic [7]
to find solutions to the CVRPED modeled via the BCP approach.

This paper is structured as follows. Section 2 contains a brief reminder of
CVRPSD modeled via CCP, and of necessary belief function theory concepts.
In Sect. 3, the BCP modeling of CVRPED is presented along with an analysis
of how the optimal solution cost is influenced by the parameters involved in the
belief-based constraints. Experiments on CVRPED instances built from well-
known CVRP instances, are reported in Sect. 4, before concluding in Sect. 5.

2 Background

In this section, the CCP modeling of CVRPSD is first recalled, and then some
necessary concepts of belief function theory are reviewed.

2.1 CCP Modeling of CVRPSD

The Capacitated Vehicle Routing Problem (CVRP) is an important variation
of VRP where vehicles have identical capacities, and customers have indivisible
deterministic demands. It can be formulated as follows:

Minimize

n∑

i=1

n∑

j=1

ci,j

m∑

k=1

wi,j,k, (1)

where n is the number of customers including the depot, m the number of vehi-
cles that are initially located at the depot, ci,j the cost for traveling between
customers xi and xj , and wi,j,k a binary variable that is equal to 1 if vehicle k
goes from xi to xj and serves them, and 0 if it does not. Besides, routes must be
designed so that each route starts and ends at the depot and so that each cus-
tomer is visited exactly once by exactly one vehicle; due to lack of space, we refer
to [1] for a formal description of these constraints. In addition, the sum of the
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demands of the customers served by a route must not exceed vehicle capacity,
which corresponds to the capacity constraints

n∑

i=1

dxi

n∑

j=1

wi,j,k ≤ Q, k = 1, . . . ,m, (2)

where dxi
is the quantity demanded by customer xi and Q the vehicle capacity.

We are interested by a variation of CVRP, called CVRPSD, which introduces
stochastic demands into CVRP, i.e., dxi

, i = 1, . . . , n, are now random variables.
A way to address this problem is via the CCP approach, which corresponds to
the same optimization problem as CVRP except that constraints represented
by (2) are replaced by the following so called chance-constraints:

P

⎛

⎝
n∑

i=1

dxi

n∑

j=1

wi,j,k ≤ Q

⎞

⎠ ≥ 1 − β, k = 1, . . . , m,

where 1−β is the minimum allowable probability that any route respects vehicle
capacity and thus succeeds.

2.2 Belief Function Theory

Belief function theory was introduced in [14] as a theory of evidence. In this
theory, uncertain knowledge about a variable ω taking its values in a domain
Ω, is represented by a Mass Function (MF) defined as a mapping m : 2Ω →
[0, 1] verifying

∑
A⊆Ω m(A) = 1 and m (∅) = 0. The mass m(A) represents the

probability of knowing only that ω ∈ A. Every A ⊆ Ω such that m(A) > 0, is a
focal element of m. A mass function is called Bayesian if its focal elements are
singletons (in which case it is the usual probability mass function) and categorical
if it has only one focal element. To be consistent with the stochastic case notation
and terminology, we will write m(ω ∈ A) instead of m(A), and a variable ω whose
true value is known in the form of a MF will be called an evidential variable.

Equivalent representations of a MF m are the belief and plausibility functions
defined, respectively, as

Bel(ω ∈ A) =
∑

B⊆A

m(ω ∈ B), ∀A ⊆ Ω, (3)

Pl(ω ∈ A) =
∑

B∩A �=∅
m(ω ∈ B), ∀A ⊆ Ω.

The degree of belief Bel(ω ∈ A) can be interpreted as the probability that the
evidence about ω and represented by m, supports (implies) ω ∈ A, whereas the
degree of plausibility Pl(ω ∈ A) is the probability that the evidence is consistent
with ω ∈ A. We have Bel(ω ∈ A) ≤ Pl(ω ∈ A), for all A ⊆ Ω. Besides, if m is
Bayesian, then Bel(ω ∈ A) = Pl(ω ∈ A), for all A ⊆ Ω, and this function is a
probability measure.
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In this paper, belief function theory is used to model uncertain knowledge
about customer demands, which we assume to be positive real numbers. Hence,
we will be dealing with MF defined on Ω = R

+. The tools of belief function
theory exposed above remain the same in such case, as long as the number of
focal sets is finite [11], which will be the case in this study. Besides, focal sets of
MF considered in this paper will all be intervals of positive real numbers.

Let us finally recall the definition provided by Yager [17], of the addition of
evidential variables, which will also be needed in the next section.

Definition 1. Let [w] = [w,w] denote the closed interval of all reals w, such
that w ≤ w ≤ w. Let σ and τ be two independent evidential variables defined on
R

+, and having finite numbers of focal sets, which are intervals. Their addition
is the evidential variable σ + τ with associated mass function

m (σ + τ ∈ [u]) =
∑

[s]+[t]=[u]

m (σ ∈ [s]) · m (τ ∈ [t]) ,

where the addition of two intervals [s] and [t] is defined by [s]+[t] =
[
s + t, s + t

]
.

Remark 1. Let σ and τ be the evidential variables in Definition 1. Let σ and τ
be two independent random variables with associated probability mass functions
pσ and pτ defined by pσ(s) = m (σ ∈ [s, s]) and pτ (t) = m

(
τ ∈ [

t, t
])

for any
focal sets [s, s] and

[
t, t

]
of σ and τ , respectively. We will refer to σ and τ as

the upper probabilistic versions of σ and τ . It can easily be shown that we have
Bel(σ + τ ≤ Q) = P (σ + τ ≤ Q), for any Q ∈ R

+.

3 BCP Modeling of CVRPED

This section formalizes, and then studies, a means to handle the case where
uncertainty on customer demands in the CVRP is represented by belief functions.

3.1 Formalization

Let us consider the case where customer demands are no longer determinis-
tic or random, but evidential, i.e., dxi

, i = 1, . . . , n, are now evidential vari-
ables. The associated problem is then called CVRPED as already introduced
in Sect. 1. Following what has been done in [9] for the case of linear programs
under uncertainty, we may generalize the CCP modeling of CVRPSD into a
Belief-Constrained Programming (BCP) modeling of CVRPED, which amounts
to keeping the same optimization problem as CVRP except that capacity con-
straints represented by (2) are replaced by the following belief -constraints:

Bel

⎛

⎝
n∑

i=1

dxi

n∑

j=1

wi,j,k ≤ Q

⎞

⎠ ≥ 1 − β, k = 1, . . . , m, (4)

Pl

⎛

⎝
n∑

i=1

dxi

n∑

j=1

wi,j,k ≤ Q

⎞

⎠ ≥ 1 − β, k = 1, . . . , m, (5)
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with β ≥ β and where 1 − β (resp. 1 − β) is the minimum allowable degree of
belief (resp. plausibility) that a vehicle capacity is respected on any route. Note
that in order to evaluate the belief-constraints (4) and (5), the total demand
on every route must be determined by summing all customers demands on that
route, which is done using Definition 1.

3.2 Particular Cases of the BCP Modeling of CVRPED

It is interesting to remark that depending on the values chosen for β and β as
well as the nature of the evidential demands dxi

, i = 1, . . . , n, the BCP modeling
of CVRPED may degenerate into simpler or well-known optimisation problems.

The case β = β is particularly important. In this case, constraints (5) can
be dropped, that is, only constraints (4) need to be evaluated (if constraints (4)
are satisfied then constraints (5) are necessarily satisfied due to the relation
between the belief and plausibility functions). As a matter of fact, the BCP
approach originally introduced in [9] is of this form (no constraint based on Pl
is considered). Furthermore, we note that due to Remark 1, the BCP modeling
of CVRPED can be converted into an equivalent optimisation problem, which
is the CCP modeling of a CVRPSD where the stochastic demand of client xi

is defined as the upper probabilistic version dxi
of its evidential demand dxi

. In
particular, if the evidential demands are Bayesian, i.e., we are dealing really with
a CVRPSD, then the BCP modeling clearly degenerates into the CCP modeling
of this CVRPSD. In contrast, if the evidential demands are categorical, i.e.,
we are dealing with a CVRP where each customer demand dxi

is only known to
belong to an interval [dxi

, dxi
], then the belief-constraints reduce to the following

constraints
n∑

i=1

dxi

n∑

j=1

wi,j,k ≤ Q, k = 1, . . . ,m, (6)

since in the case of categorical demands, the total demand on any given route
is also categorical (it corresponds to the interval whose endpoints are obtained
by summing the endpoints of the interval demands of the customers on the
route) and thus for any k = 1, . . . ,m, Bel(

∑n
i=1 dxi

∑n
j=1 wi,j,k ≤ Q) either

equals 1 or equals 0, with the former occurring iff
∑n

i=1 dxi

∑n
j=1 wi,j,k ≤ Q. In

other words, in the case of categorical demands and β = β, the BCP modeling
amounts to searching the solution which minimizes the overall cost of servicing
the customers (1) under constraints (6), i.e., assuming the maximum (worst)
possible customer demands, and thus it corresponds to the minimax optimisation
procedures encountered in robust optimization [16].

Let us eventually remark that the case β = 1 > β is the converse of the case
β = β in the sense that constraints (4) can be dropped (as they are necessarily
satisfied) and only constraints (5) need then to be evaluated. Moreover, as in the
case β = β, the BCP modeling of CVRPED can be converted into an equivalent
optimisation problem, which is the CCP modeling of some CVRPSD (this is due
to the existence of a counterpart to Remark 1 for the plausibility function, which
relies on the lower endpoints of the focal sets rather than the upper endpoints).
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3.3 Influence of β, β and Q on the Optimal Solution Cost

In this section, we study the influence of the parameters β, β and Q on the cost
of the optimal solution of the CVRPED modeled via BCP.

To simplify the presentation, we will denote by ΣQ,β,β the set of solutions to

the CVRPED modeled via BCP and ĈQ,β,β the cost of an optimal solution in

ΣQ,β,β , for some β, β and Q.
The following propositions state how the optimal solution cost changes as Q,

β or β vary.

Proposition 1. The optimal solution cost is non increasing in Q.

Proof. Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, . . . ,m, such that it is not known whether this set respects the belief-constraints
(4) and (5), but it is known that it respects all the other constraints of the
CVRPED modeled via BCP, in particular each route Rk starts and ends at the
depot and each customer is visited exactly once by exactly one vehicle.

It is clear that for any β and β, as Q increases (starting from 0), it reaches
necessarily a value at which C becomes a solution to the CVRPED modeled via
BCP. Hence, ΣQ,β,β ⊆ ΣQ′,β,β for Q′ ≥ Q, and thus ĈQ′,β,β ≤ ĈQ,β,β . 	


Proposition 2. The optimal solution cost is non increasing in β.

Proof. Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, . . . ,m, such that it is not known whether this set respects the belief-constraints
(4), but it is known that it respects all the other constraints of the CVRPED
modeled via BCP, in particular constraints (5).

It is clear that for any Q, as β increases from β to 1, it reaches necessarily a
value at which C becomes a solution to the CVRPED modeled via BCP. Hence,
ΣQ,β,β ⊆ ΣQ,β′,β for β′ ≥ β, and thus ĈQ,β′,β ≤ ĈQ,β,β . 	


Proposition 3. The optimal solution cost is non increasing in β.

Proof. The proof is similar to that of Proposition 2.

Informally, Propositions 1–3 show that if a decision maker is willing to buy
vehicles with a higher capacity or to have vehicle capacity exceeded on any route
more often, then he will obtain at least as good (at most as costly) solutions in
theory, i.e., if he uses an exact optimization method. Unfortunately, no such
method exists yet for the CVRPED modeled via BCP. As a matter of fact, the
next section reports an experiment, where solutions to this optimization problem
are sought using a metaheuristic.
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4 Experimental Study

Section 3 has introduced the CVRPED modeled via BCP, and has studied some
of its theoretical properties. In this section, a preliminary experimental study
on some CVRPED instances is presented for the case where β = β; for notation
simplicity we introduce the value β such that β = β = β. These instances are first
described, and then the obtained results are discussed. Note that to solve these
instances, we adapted a simulated annealing algorithm designed for the CVRP,
which was proposed in [5] and that uses a combination of random and greedy
operators based on problem knowledge. However, due to space limitations, we
must refrain from describing this adaptation.

4.1 CVRPED Instances

We have generated CVRPED instances based on Augerat set A instances for
the CVRP [13]. In our instances, the customers coordinates and the capacity
constraints are the same as in Augerat’s. However, each deterministic customer
demand ddet in Augerat instances has been replaced by an evidential demand
dev with associated MF

m(dev ∈ [ddet, ddet]) = α,

m(dev ∈ [ddet − γ · ddet, ddet + γ · ddet]) = 1 − α, (7)

with α ∈ [0, 1] and γ ∈ (0, 1). Such a transformation of the original deterministic
demand may be relevant if each customer providing his deterministic demand is
assumed to be reliable with probability α, and approximately (at ±γ ∗ 100%)
reliable with probability 1 − α [12].

We note that a deterministic demand is a particular case of an evidential
demand, and thus the BCP approach to the CVRPED can also be applied to
CVRP instances. Although this latter idea may not be very useful in itself, it
leads to an interesting remark based on the following result.

Proposition 4. For any β and Q, the optimal solution to a CVRPED instance
generated from a CVRP instance through transformation (7) and modeled via
the BCP approach, has a higher or equal cost to that of the optimal solution of
the CVRP instance modeled via the BCP approach.

Proof. Let Σev
Q,β,β and Σdet

Q,β,β be the sets of solutions to the CVRPED and
CVRP instances modeled via BCP, for some Q and β. For any route Rk of any
solution S ∈ Σev

Q,β,β , it can easily be shown that we have Bel(dev
Rk

≤ Q) ≤
Bel(ddet

Rk
≤ Q), where dev

Rk
and ddet

Rk
are evidential variables denoting respectively

the sum of the evidential and deterministic demands on Rk, and thus any solution
S ∈ Σev

Q,β,β also belongs to Σdet
Q,β,β . We have thus Σev

Q,β,β ⊆ Σdet
Q,β,β . 	


The cost difference put forward by Proposition 4 between the optimal solution(s)
of a CVRPED instance generated using (7) and the optimal solution(s) of its
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original generating CVRP instance, represents what a decision maker would
loose if the customers were actually totally reliable whereas he was cautious
and thought (wrongly) that they were only partially reliable. More specifically,
by using (7), the decision maker assumes that the customer demands may be
actually higher than they appear, i.e., he believes that the customers may under-
estimate their needs, and the price to pay by being cautious in that latter way,
is that the optimal solution he will obtain may have a higher cost than if he had
not made such an assumption.

4.2 Results Using Simulated Annealing

We have generated CVRPED instances using the procedure described in the
preceding section, where α was set to 0.8, while γ was set to 0.1. We also chose
β = 0.1. The running time for the algorithm was less than an hour in almost all
cases. Each instance was solved 30 times, and the results are given in Table 1.

Table 1. Results of the simulated annealing algorithm on the CVRPED instances

Instance Best Best Worst Avg Stand Difference Avg runtime

cost cost cost cost dev with CVRPED

CVRP CVRPED CVRPED CVRPED CVRPED CVRP (seconds)

A-n32-k5 784 802, 07 837, 04 822, 27 8, 3 2.3 % 1919,79

A-n33-k5 661 690, 41 706, 36 696, 33 3, 9 4.45 % 2147,13

A-n33-k6 742 777, 63 782, 80 779, 84 1, 4 4.8 % 2572,64

A-n34-k5 778 800, 96 809, 94 802, 67 2, 8 2.95 % 2727,92

A-n36-k5 799 849, 83 887, 47 866, 67 9, 02 6.36 % 2383,9

A-n37-k5 669 692, 34 740, 17 715, 85 14, 54 3.49 % 2107,05

A-n37-k6 949 1006, 39 1054, 31 1027, 04 12, 4 6.05 % 2131,87

A-n38-k5 730 770, 34 819, 54 796, 9 12, 4 5.53 % 2083,72

A-n39-k5 822 876, 47 934, 18 909, 61 17, 18 6.63 % 2109,3

A-n39-k6 831 855, 18 895, 45 874, 7 8, 8 2.9 % 2479,13

A-n44-k6 937 998, 16 1108, 10 1056, 44 30, 5 6.53 % 2611,04

A-n45-k6 944 1017, 29 1083, 19 1055, 9 17, 12 7.76 % 2276,26

A-n45-k7 1146 1194, 19 1237, 3 1212, 23 12, 08 4.2 % 2917,09

A-n46-k7 914 1014, 87 1060, 3 1034, 81 11, 02 11.03 % 2314,7

A-n48-k7 1073 1150, 32 1201, 80 1174, 61 14, 7 7.2 % 2742,24

A-n53-k7 1010 1145, 46 1233, 65 1181, 39 18, 9 13.4 % 2555,31

A-n54-k7 1167 1297, 98 1409, 6 1336, 05 25, 5 11.22 % 2530,67

A-n61-k9 1034 1121, 58 1162, 52 1142, 31 11, 5 8.47 % 3183,39

A-n62-k8 1288 1392, 68 1448, 29 1414, 21 14, 3 8.13 % 3990,58

A-n63-k9 1616 1835, 86 1959, 45 1890, 48 30, 8 13.61 % 2948,24

A-n65-k9 1174 1326, 63 1400, 09 1366, 96 18, 97 13 % 3097,57

A-n80-k10 1763 2098, 53 2284, 5 2191, 77 48, 3 19.03 % 3459,88
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The column “Best cost CVRP” gives the costs of the best solutions reported
so far for the CVRP instances [13]. We note that for β �= 1, the optimal solutions
of the CVRP instances modeled via the BCP approach are the same as the
optimal solutions of the CVRP instances, hence the costs in the column “Best
cost CVRP” may be taken as the costs of the best solutions for the CVRP
instances modeled via the BCP approach.

The “Difference with CVRP” column shows that for all instances the cost of
the best solution for the CVRP is better than that of the best solution obtained
for the CVRPED. This latter observation may be seen as an approximation of
the theoretical difference between the optimal solution cost of a CVRP instance
and the optimal solution cost of the CVRPED instance generated from it, which
is predicted by Proposition 4; however, one must be careful since it is not possible
to quantify the quality of this approximation due to the diversity and complexity
of the algorithms involved in computing those values.

5 Conclusions

This paper studied the capacitated vehicle routing problem with evidential
demands. We modeled this problem using a belief function based extension of
the chance-constrained programming approach to stochastic mathematical pro-
grams. Furthermore, theoretical results relating variations of the optimal solu-
tion cost with variations of the parameters involved in the model, were provided.
Instances of this difficult optimization problem were also solved using a meta-
heuristic. Future works includes addressing this problem using a recourse-based
approach, which is another main approach to modeling stochastic mathematical
programs [3]. Another perspective is to identify the customers whom more knowl-
edge about their demands would lead to better solutions, that is performing a
sensitivity analysis [4].
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Abstract. Blurring faces on images may be required for anonymity rea-
sons. This may be achieved using face detectors that return boxes poten-
tially containing faces. The most direct way to exploit these detectors is
to combine them in order to obtain a more efficient face detection system,
producing more accurate boxes. However, contrary to detection, blurring
is actually a decision problem situated rather at the pixel level than the
box level. Accordingly, we propose in this paper a face blurring sys-
tem based on face detectors, which operates at the pixel-level. First, for
each pixel, detector outputs are converted into a common representation
known as belief function using a calibration procedure. Then, calibrated
outputs are combined using Dempster’s rule. This pixel-based approach
does not have some shortcomings of a state-of-the-art box-based app-
roach, and shows better performances on a classical face dataset.

Keywords: Belief functions · Information fusion · Image processing ·
Evidential calibration · Face blurring

1 Introduction

Blurring faces on images may be required for anonymity reasons. Due to the
generally large amount of images to process but also the necessity for good
performances (in particular, avoiding missed faces), one must resort to semi-
automatic blurring systems – typically, a human operator correcting the outputs
of an automatic face detection system.

Face detection can be performed using single detectors [6,10], yet since detec-
tors are generally complementary, i.e., they do not detect only the same faces,
using multiple detectors is a means to improve overall performance. Within this
scope, Faux [3] proposed a face detection system, which consists in combining
outputs of the face detector proposed in [10] and a skin colour detector. This step
c© Springer International Publishing Switzerland 2016
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of combination is conducted within a framework for reasoning under uncertainty
called evidence theory [8,9]. However, it does not use all available information.
Indeed, for a given image, face detectors such as [10] provide a set of bounding
boxes corresponding to the assumed positions of the faces, but they provide as
well for each of these boxes a confidence score.

In the context of pedestrian detection, Xu et al. [11] recently proposed an
evidential approach, which uses these confidence scores. Specifically, multiple
detectors are used in Xu et al. [11], and to be able to combine them, the scores
they produce are transposed into a common representation; this latter procedure
is called calibration [7]. Of particular interest is that Xu et al. [12] subsequently
refined this calibration procedure, in order to account explicitly for uncertainties
inherent to such process.

Now, although face blurring may be achieved using simply the bounding
boxes outputted by a face detection system, we may remark that it is not exactly
the same problem as face detection. Indeed, face blurring amounts merely to
deciding whether a given pixel belongs to a face, whereas face detection amounts
to determining whether a given set of pixels corresponds to the same face. In
other words, the richer box-based information provided by detection systems is
not strictly necessary for blurring. This remark opens the path for a different
approach to reasoning about blurring, which may then be situated at the pixel-
level rather than box-level. In particular, face detectors may still be used but
their outputs need not be combined so as to produce boxes as is the case in face
detection.

Accordingly, we propose in this paper a face blurring system based on face
detectors, which operates at the pixel-level. First, for each pixel, detector out-
puts are calibrated using Xu et al. procedure [12]. Then, calibrated outputs are
combined using Dempster’s rule [8]. We may already remark that this approach
does not have some shortcomings of box-based methods, as will be shown later.

This paper is organized as follows. First, Sect. 2 recalls necessary background
on evidence theory and calibration. Then, Sect. 3 exposes what may be con-
sidered presently as one of the best available blurring system based on multi-
ple detectors, that is, an evidential system relying on face detection performed
using Xu et al. detection approach [11], applied to faces rather than pedestrians
and improved using Xu et al. calibration [12]. Our proposed pixel-based system
is then detailed in Sect. 4. An experiment comparing these two approaches is
reported in Sect. 5, before concluding in Sect. 6.

2 Evidence Theory and Calibration: Necessary
Background

2.1 Evidence Theory

The theory of evidence is a framework for reasoning under uncertainty. Let Ω
be a finite set called the frame of discernment, which contains all the possible
answers to a given question of interest Q. In this theory, uncertainty with respect
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to the answer to Q is represented using a Mass Function (MF) defined as a
mapping mΩ : 2Ω → [0, 1] that satisfies

∑
A⊆Ω mΩ (A) = 1 and mΩ(∅) = 0. The

quantity mΩ(A) corresponds to the share of belief that supports the claim that
the answer is contained in A ⊆ Ω and nothing more specific.

Given two independent MFs mΩ
1 and mΩ

2 about the answer to Q, it is pos-
sible to combine them using Dempster’s rule of combination. The result of this
combination is a MF mΩ

1⊕2 defined by

mΩ
1⊕2(A) =

1
1 − κ

∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), (1)

for all A ⊆ Ω, where κ =
∑

B∩C=∅ mΩ
1 (B)mΩ

2 (C).
Different decision strategies exist to make a decision about the true answer

to Q, given a MF mΩ on this answer [1]. In particular, the answer having the
smallest so-called upper expected cost may be selected. The upper expected cost
R∗(ω) of some answer ω ∈ Ω is defined as

R∗(ω) =
∑

A⊆Ω

mΩ(A) max
ω′∈A

c(ω, ω′), (2)

where c(ω, ω′) is the cost of deciding ω when the true answer is ω′.

2.2 Evidential Calibration of Binary Classifiers

A binary classifier, e.g., a detector, may return a score associated to its classifi-
cation decision, which is a valuable information because it provides an indication
on how confident the classifier is. The range of these scores differs depending on
the features and the type of the classification algorithm used. Thus, transposing
scores in a common representation is essential in a context of multi-detectors.

This step, called calibration of a classifier, relies on a training set Lcal =
{(S1, Y1), ..., (Sn, Yn)}, with Si the score provided by the classifier for the ith

sample and Yi ∈ Ω = {0, 1} its associated true label. Given a new score S,
the purpose of calibration is to estimate the posterior probability distribution
pΩ

S = pΩ(·|S) using Lcal.
Yet, certain score values may be less present than others in Lcal, thus some

estimated probabilities may be less accurate than others. To address this issue,
Xu et al. [12] proposed several evidential extensions of probabilistic calibration
methods. Accordingly, given a new score S, any of Xu et al. [12] evidential
calibration procedures yields a MF mΩ

S (rather than a probability distribution
pΩ

S ) accounting explicitly for uncertainties in the calibration process.
Among the evidential calibration procedures studied in [12], the likelihood-

based logistic regression presents overall better performances than other calibra-
tions. Thus, this will be the calibration used in this paper1.

1 Due to lack of space, we must refrain from recalling the definition of mΩ
S obtained

under this calibration. We refer the interested reader to [12].
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3 An Evidential Box-Based Face Detection Approach

Face blurring may be achieved using simply the boxes outputted by a face detec-
tion system. In this section, we present such a system, which may be considered
as state-of-the-art with respect to face detection. In a nutshell, it is merely
Xu et al. [11] evidential box-based detection approach applied to faces rather
than pedestrians and whose calibration step has been replaced by the evidential
likelihood-based logistic regression calibration procedure proposed in [12].

3.1 Xu et al. [11] Box-Based Detection Approach Applied to Faces

Let us consider a given image and assume that J face detectors are run on this
image. Formally, each detector Dj , j = 1, ..., J , provides Nj couples (Bi,j , Si,j),
where Bi,j denotes the ith box, i = 1, ..., Nj , returned by the jth detector and
Si,j is the confidence score associated to this box.

Through a calibration procedure, which will be described in Sect. 3.2, score
Si,j is transformed into a MF mBi,j defined over the frame Bi,j = {0, 1}, where
1 (resp. 0) means that there is a face (resp. no face) in box Bi,j .

Then, using a clustering procedure detailed in Sect. 3.3, all the boxes Bi,j

returned by the J detectors for the considered image, are grouped into K clusters
Ck, k = 1, ...,K, each of these clusters being represented by a single box Bk.

In addition, for each box Bi,j ∈ Ck, its associated MF mBi,j is assumed to
represent a piece of evidence regarding the presence of a face in Bk, that is, mBi,j

is converted into a MF mBk
i,j on Bk = {0, 1} defined by mBk

i,j (A) = mBi,j (A), for
all A ⊆ {0, 1}. These pieces of evidence are then combined using Dempster’s rule;
this can be done as the sources are considered to be independent and reliable.
More complex combination schemes are also considered in [11]. However, only
Dempster’s rule, which besides presents good performance in [11], is considered
here. The combination results in a MF mBk representing the overall system
uncertainty with respect to the presence of a face in Bk.

3.2 Box-Based Score Calibration for a Detector

In order to transform the score Si,j associated to a box Bi,j into a MF mBi,j ,
detector Dj needs to be calibrated. In particular, the evidential likelihood-based
logistic regression calibration procedure [12] may be used instead of the cruder
procedures used in [11]. As recalled in Sect. 2.2, such procedures require a train-
ing set, which we denote by Lcal,j . We recall below how Lcal,j is built.

Assume that L images are available. Besides, the positions of the faces really
present in each of these images are known in the form of bounding boxes. For-
mally, this means that for a given image �, a set of M � boxes G�

r, r = 1, ...,M �,
is available, with G�

r the rth bounding (ground truth) box on image �.
Furthermore, detector Dj to be calibrated is run on each of these images,

yielding N �
j couples (B�

t,j , S
�
t,j) for each image �, where B�

t,j denotes the tth box,
t = 1, ..., N �

j , returned on image � by detector Dj and S�
t,j is the confidence score

associated to this box.
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From these data, training set Lcal,j is defined as the set of couples
(S�

t,j , Y B�
t,j), � = 1, ..., L, and t = 1, ..., N �

j , with Y B�
t,j ∈ {0, 1} the label

obtained by evaluating whether box B�
t,j “matches” some face in image �, i.e.,

Y B�
t,j =

{
1 if ∃G�

r, r = 1, ...,M �, such that ov(G�
r, B

�
t,j) ≥ λ,

0 otherwise,

where λ is some threshold in (0, 1) and ov(G�
r, B

�
t,j) is a measure of the overlap

between boxes G�
r and B�

t,j [2]. It is defined by

ov(B1, B2) =
area(B1 ∩ B2)
area(B1 ∪ B2)

, (3)

for any two boxes B1 and B2. Informally, Lcal,j stores the scores associated to
all the boxes returned by detector Dj on images where the positions of faces are
known, and records for each score whether its associated box is a true or false
positive. The MF mBi,j associated to a new score Si,j and obtained from cali-
bration relying on Lcal,j represents thus uncertainty toward box Bi,j containing
a face.

3.3 Clustering of Boxes

As several detectors are used, some boxes may be located in the same area of
an image, which means that different boxes assume that there is a face in this
particular area. The step of clustering allows one to group those boxes and to
retain only one per cluster. A greedy approach is used in [11]: the procedure starts
by selecting the box Bi,j with the highest mass of belief on the face hypothesis
and this box is considered as the representative of the first cluster. Then, for
each box Bu,v, ∀(u, v) �= (i, j), such that the overlap ov(Bi,j , Bu,v) is above the
threshold λ, the box Bu,v is grouped into the same cluster as Bi,j , and is then
no longer considered. Among the remaining boxes, the box Bi,j with the highest
mBi,j ({1}) is selected as representative of the next cluster, and the procedure is
repeated until all the boxes are clustered.

4 Proposed Approach

As explained in Sect. 1, for the purpose of blurring, it seems interesting to work
at the pixel level rather than box level. This section gives the full particulars of
our proposed pixel-based system.

4.1 Overview of the Approach

To each pixel px,y in an image, we associate a frame of discernment Px,y = {0, 1},
where x and y are the coordinates of the pixel in the image and 1 (resp. 0) means
that there is a face (resp. no face) in pixel px,y.
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The inputs of our approach are the same as for the box-based approach but
are treated differently. In particular, if pixel px,y belongs to a box Bi,j , the
score Si,j associated to this box Bi,j is “transferred” to px,y and then using
the evidential likelihood-based logistic regression calibration procedure together
with a training set LcalP,j defined in Sect. 4.2, this score is transformed into a
MF m

Px,y

i,j . If pixel px,y does not belong to any of the boxes returned by detector

Dj , we take this into account via a MF denoted m
Px,y

∗,j and defined in Sect. 4.2.
Eventually, we then obtain for pixel px,y several MFs on Px,y, which we

combine by Dempster’s rule, resulting in a MF mPx,y representing the overall
system uncertainty with respect to the presence of a face in px,y.

This approach has in theory a high complexity. However, since we have
m

Px,y

∗,j (A) = m
Px′,y′
∗,j (A), for all A ⊆ {0, 1} and x′ �= x or y′ �= y, i.e., any

two pixels that do not belong to a box of Dj are associated MFs with the same
definitions, then pixels that do not belong to any of the returned boxes by the
detectors have the same resulting MF. Hence, since this latter case happen often
in practice, this allows us to have a common processing for a very large number
of pixels, which considerably reduces the complexity.

Let us finally remark that this approach presents several advantages over
the one of Sect. 3: first, as will be seen in Sect. 4.2, our calibration step avoids
the use of the parameter λ, whose value needs to be fixed either a priori (but
then it is arguably arbitrary) or empirically; second, our approach avoids the
use of clustering, which also involves the parameter λ and that may behave
non optimally in a multi-object situation, especially when they are close to each
other, which may be the case with faces.

4.2 Pixel-Based Score Calibration for a Detector

Let us describe the set LcalP,j underlying the transformation using calibration
of a score Si,j associated to a pixel px,y by a detector Dj , into a MF m

Px,y

i,j .
For a given image �, each couple (B�

t,j , S
�
t,j) introduced in Sect. 3.2 yields,

via “transfer”,
∣∣B�

t,j

∣∣ couples (p�
d,t,j , S

�
t,j), with d = 1, . . . ,

∣∣B�
t,j

∣∣, and
∣∣B�

t,j

∣∣ the
number of pixels in box B�

t,j , and where p�
d,t,j denotes the pixel in dth position

in box B�
t,j .

From these data, we define LcalP,j as the set of couples (S�
t,j , Y P �

d,t,j), with
� = 1, . . . , L, t = 1, . . . , N �

j , and d = 1, . . . ,
∣∣B�

t,j

∣∣, with Y P �
d,t,j ∈ {0, 1} the label

simply obtained by checking whether pixel p�
d,t,j belongs to some ground truth

box G�
r in the image �, i.e,

Y P �
d,t,j =

{
1 if ∃ G�

r, r = 1, . . . ,M �, such that p�
d,t,j ∈ G�

r,

0 otherwise.

LcalP,j may pose a complexity issue as |LcalP,j | =
∑L

�=1

∑N�
j

t=1

∣∣B�
t,j

∣∣. To avoid
this, one may use a smaller set L′

calP,j ⊂ LcalP,j , which represents roughly the
same information as LcalP,j and built as follows: for each triple (�, t, j), only
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10 couples among the couples (S�
t,j , Y P �

d,t,j), d = 1, . . . ,
∣∣B�

t,j

∣∣, are selected such

that the ratio |{Y P �
d,t,j |d=1,...,|B�

t,j|,Y P �
d,t,j=1}|

|{Y P �
d,t,j |d=1,...,|B�

t,j|,Y P �
d,t,j=0}| is preserved. L′

calP,j has then a size

of
∣∣∣L′

calP,j

∣∣∣ = 10
∑L

�=1 N �
j .

Set LcalP,j is useful for pixels that have a score, i.e., are contained in a box.
A pixel px,y that does no belong to any box returned by a given detector Dj ,
does not have a score for this detector. Yet, it is reasonable to assume that Dj is
almost certain that this pixel does not belong to a face, which can be modelled
by a MF denoted m

Px,y

∗,j . A first possibility for m
Px,y

∗,j could be to simply choose
some MF representing this kind of knowledge, but this is not a very satisfying
solution. Moreover, it should be taken into account that detectors do not present
the exact same performances (e.g., some may have many more pixels not in boxes
than others). Within this scope, we propose a solution to obtain m

Px,y

∗,j . For each
detector Dj , its classification performance on pixels that do not belong to boxes
is estimated using L images, where the positions of the faces really present
are known. We denote by TN (True Negative) the number of pixels correctly
classified on these images as non-face and FN (False Negative) the number of
pixels classified as non-face but actually belonging to a face. m

Px,y

∗,j can then be

defined by m
Px,y

∗,j ({0}) = TN
TN+FN+1 ,m

Px,y

∗,j ({1}) = FN
TN+FN+1 ,m

Px,y

∗,j ({0, 1}) =
1

TN+FN+1 . This definition may be seen as an evidential binning calibration [12]
applied to pixels that do not belong to any of the boxes.

Our modeling of box absence is quite different from that of the box-based
method, and arguably more consistent. Indeed, in this latter method, for a given
area in an image, there are two different modelings of box absence for a detector
depending on the situation: either none of the detectors has provided a box, in
which case the area is considered as non face, which amounts to considering that
the detectors know that there is no face; or only a subset of the detectors has
provided a box, in which case the other detectors are ignored, which is equivalent
(under Dempster’s rule) to considering that these detectors know nothing.

5 Experiment

In this section, the results of the proposed approach on a literature dataset are
presented and compared to that of the box-based method presented in Sect. 3.

We selected three face detectors in the light of the availability of an open
source implementation. The first detector is the one proposed by Viola and
Jones [10], which is based on a classification algorithm called Adaboost and
that uses Haar feature extraction. The second detector is a variant of the pre-
vious one: the same classification algorithm is used but with Local Binary Pat-
terns (LBP) feature extraction [4]. The third detector relies on Support Vector
Machine (SVM) and uses Histogram of Oriented Gradients (HOG) features [6].

For our experiment, we used a literature database called Face Detection Data
Set and Benchmark (FDDB) [5]. It contains the annotations (ground truth) for
5171 faces in a set of 2845 images. In this paper, about 2000 images are used for
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the training of the detectors, and around 200 for calibration. Performance tests
are conducted over the last 600 images, containing 1062 ground truth faces.

As our purpose is to minimize the number of non-blurred face pixels, it is
worse to consider a face pixel as non-face than the opposite. In other words,
using the decision strategy relying on upper expected costs (Sect. 2.1), decisions
were made for each test pixel with costs such that c(1, 0) <= c(0, 1). More
specifically, we fixed c(1, 0) = 1 and gradually increased c(0, 1) starting from
c(0, 1) = 1, to obtain different performance points. To quantify performances,
we used recall (proportion of pixels correctly blurred among the pixels to be
blurred) and precision (proportion of pixels correctly blurred among blurred
pixels).

(a) Versus detectors. (b) Versus box-based method.

Fig. 1. Pixel-based approach vs detectors (1a) and vs box-based approach (1b).

Figure (1a) compare the results of the three selected detectors taken alone
with our approach relying on a combination of their outputs. Comparison
between the box-based approach used with different values of the overlap thresh-
old λ and our approach is shown in Fig. (1b).

6 Conclusion

In this paper, a pixel-based face blurring system relying on evidential calibration
and fusion of several detector outputs was proposed. It brings several advantages
over a previous box-based proposal: avoidance of the overlap threshold, of a
clustering step, more consistent treatment of box absence, better performances.
Several improvements are envisioned such as adding a skin colour detector to
the system and refining the calibration and fusion steps. Some experiments are
also envisaged on a more challenging database, which presents difficulties such
as image quality or low light conditions.
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Abstract. The theory of belief functions offers a framework for model-
ing and reasoning with epistemic uncertainties. While epistemic uncer-
tainties are not well characterized, the Bayesian approaches, such as
the recursive bayesian filtering methods (e.g., Kalman filter) utilize a
sequence of noisy measurements for recursively ‘tracking’ the behavior
of a dynamic system. While tracking performance is often defined by
the estimation accuracy, the latter in turn depends heavily on what’s
being measured by the sensors and how accurately these measurements
are modeled. Characterizing system states and observations solely via
a measurement model may turn out to be inadequate in applications
that involve ‘non-ideal’ sensors that introduce epistemic uncertainties
into the measurement process, mainly due to the difficulties associated
with capturing highly uncertain, imperfect and subjective nature of these
environments. In this paper, we present a novel approach to utilize belief
theoretic notions to conveniently and accurately model such epistemic
uncertainties that are originated by the use of non-ideal sensors. We
are motivated by the well-understood connection from belief theory to
Bayesian probability to develop this hybrid approach that enables the
utilization of “best of both worlds.”

Keywords: Big-data signal processing · Non-ideal sensors · Belief
theory

1 Introduction

The theory of belief functions [1–3] has emerged as one of the most dominant
frameworks for uncertainty processing [4] for decision-making purposes in a wide
variety of application domains [5–18]. While certain types of data uncertainties
may pose several challenges toward probabilistic modeling, the Bayesian prob-
abilistic approaches still form the mainstay of well-understood estimation and
detection techniques. In particular, the Recursive bayesian filtering [19] meth-
ods (e.g., Kalman filter [20]), which include perhaps the most widely used and
best-understood ‘tracking’ technique to-date, utilize a sequence of noisy measure-
ments for recursively ‘tracking’ the behavior of a dynamic system. While tracking
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performance in such settings are often defined by the estimation accuracy, the
latter in turn depends heavily on what’s being measured by the sensors and how
accurately these measurements are modeled. In particular, with statistical signal
processing community taking an interest in big-data and potential application
of recursive bayesian tracking methods therein, one must clearly understand the
ramifications of using ‘non-ideal’ sensors on estimation accuracy. The existing
approach to characterizing the system states and observations solely via a mea-
surement model may turn out to be inadequate in these applications, mainly
due to the difficulties associated with capturing highly uncertain, imperfect and
subjective nature of these environments. Therefore, careful consideration of epis-
temic uncertainties that originate as result of inability to adequately and accu-
rately (a) take measurements and/or (b) model certain effects that are crucial
for the measurement models is of crucial importance in such settings.

In this paper, by deriving from first principles to include explicit sensor reli-
ability terms into estimation equations, we present on-going work on a novel
approach to utilize belief theoretic notions to conveniently and accurately model
epistemic uncertainties (that are originated by the use of non-ideal sensors) in
a recursive bayesian filtering setting. We then introduce an intermediate belief
theoretic updating step in order to preserve the ‘integrity’ of existing evidence,
when such updates are carried out with measurements obtained via non-ideal
sensors.

2 Preliminaries

2.1 Theory of Belief Functions

Basic Notions. The frame of discernment (FoD), Θ = {θ1, . . . , θn}, refers to
the set of mutually exclusive and exhaustive propositions of interest; a proposi-
tion θi represents the lowest level of discernible information.

Definition 1. The mapping m : 2Θ �→ [0, 1] is a basic probability assignment
(BPA) or mass function for the FoD Θ if

∑
B⊆Θ m(B) = 1 with m(∅) = 0.

Consider the proposition B ⊆ Θ. Let B = Θ \ B.

(i) When m(B) > 0, B is referred to as a focal element and the quantity m(B)
is the mass allocated to B.

(ii) The set of focal elements is the core F; the triplet E ≡ {Θ,F,m(�)} is the
corresponding body of evidence (BoE).

(iii) The mapping Bl : 2Θ �→ [0, 1] where Bl(B) =
∑

C⊆B m(C) is the belief of
B; the mapping Pl : 2Θ �→ [0, 1] where Pl(B) = 1−Bl(B) is the plausibility
of B.

2.2 Recursive Bayesian Filtering

Problem Statement. Consider a dynamic system H. Let xk ∈ Θx denote the
state of H at time tk, where Θx represents all possible states. The evolution of H
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is given by the system model, xk = f(xk−1,vk−1), where f(�) is a (possibly) non-
linear function and vk−1 denotes i.i.d. process noise. The objective of tracking
is to recursively estimate xk from measurements given by measurement model,
zk = h(xk,nk), where h(�) is a (possibly) non-linear function of xk and i.i.d.
measurement noise nk.

Optimal Bayesian Formulation. Given the measurements z1:k up to time
tk and the initial pmf/pdf p(x0|z0) ≡ p(x0), the objective here is to re-
cursively calculate a degree of belief in the state xk, viz., to recursively con-
struct p(xk|z1:k). Now, suppose p(xk−1|z1:k−1) is available at time tk−1. Then,
in principle, p(xk|z1:k) can be obtained in two steps:
(a) prediction step: use the system model to obtain the prior pdf of xk via

p(xk|z1:k−1) =
∑

xk−1

p(xk|xk−1)p(xk−1|z1:k−1). (1)

(b) update step: As a measurement zk becomes available at tk, update the prior
estimate of xk via Bayes’ rule as

p(xk|z1:k) =
1

p(zk|z1:k−1)
p(xk|z1:k−1)p(zk|xk), (2)

where the normalizing constant is given by,

p(zk|z1:k−1) =
∑

xk

p(zk|xk) p(xk|z1:k−1). (3)

3 Bayesian Tracking with Non-ideal Sensors

A non-ideal sensor may report a noisy or even an erroneous version of the actual
measurement corresponding to the current system state. Such sensing include
situations where (a) the sensors are unable to adequately and accurately take
measurements and/or (b) the sensing process is not captured by the measure-
ment model. Often times, use of alternative measurement models are also not
feasible, since only limited data or knowledge are available to properly char-
acterize sensing process in situations where non-ideal sensors are used, e.g., a
faulty sensor making an erroneous mapping or an eye-witness not accurately
identifying the target.

Problem Statement. Suppose the non-ideal sensor reports ẑk instead of
reporting zk for system state xk, where zk is now not observable. However,
the credibility of each measurement ẑk can be indirectly captured via p(ẑk|zk),
which is a probabilistic characterization of sensor reliability estimated over time
(alternatively, non-ideal sensor maps zk to ẑk via p(ẑk|zk)). Then, we are inter-
ested in recursively computing p(xk|ẑ1:k) as measurements ẑk become available.
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State Estimation. Let p(x0|ẑ0) ≡ p(x0) denote the initial pdf. Now, suppose
p(xk−1|ẑ1:k−1) is available at time tk−1. Then, let us derive the prediction and
update steps as follows.

(a) Prediction step: obtain the prior pdf of state at time tk via

p(xk|ẑ1:k−1) =
∑

xk−1

p(xk,xk−1|ẑ1:k−1)

=
∑

xk−1

p(xk|xk−1) p(xk−1|ẑ1:k−1) (4)

where, p(xk|xk−1, ẑ1:k) = p(xk|xk−1) describes a 1st order Markov process.
(b) Update step: At time tk, use the measurement ẑk to update the prior via

p(xk|ẑ1:k) =
p(xk, ẑk, ẑ1:k−1)

p(ẑk, ẑ1:k−1)

=
p(ẑk|xk, ẑ1:k−1)p(xk|ẑ1:k−1)

p(ẑk|ẑ1:k−1)
, (5)

where the normalizing constant is given by

p(ẑk|ẑ1:k−1) =
∑

xk

p(ẑk|xk, ẑ1:k−1)p(xk|ẑ1:k−1), (6)

with

p(ẑk|xk, ẑ1:k−1) =
∑

zk

p(ẑk, zk|xk, ẑ1:k−1)

=
∑

zk

p(ẑk|zk)p(zk|xk) (7)

where p(ẑk|zk) denotes the non-ideal sensor characteristics; precisely, how the
sensor maps zk to ẑk. From a practical stand point, one could relate this to
sensor reliability characteristics (see Example 1 for an illustration).

Example 1. Consider a 3-state dynamic system described by state- and
measurement-models of the form

p(xk|xk−1) =

∣∣∣∣∣∣

α 1−α
2

1−α
2

1−α
2 α 1−α

2
1−α
2

1−α
2 α

∣∣∣∣∣∣
; p(zk|xk) =

∣∣∣∣∣∣

β 1−β
2

1−β
2

1−β
2 β 1−β

2
1−β
2

1−β
2 β

∣∣∣∣∣∣
,

where the parameters α, β ∈ � satisfy 1/3 ≤ α, β ≤ 1 (note that 1/3 generate
a uniform distribution). When sensors are ideal (or assumed to be ideal), one
directly observes the noisy measurement zk, which is used for state updating.

Suppose we can only obtain ẑk via some non-ideal sensor, which now intro-
duce epistemic uncertainty into the measurement process. For analysis, let us
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use a probabilistic mapping p(ẑk|zk) to map a ‘true’ observation zk to a noisy
or erroneous measurement ẑk, where p(ẑk|zk) is given by

p(ẑk|zk)=

∣∣∣∣∣∣

γ 1−γ
2

1−γ
2

1−γ
2 γ 1−γ

2
1−γ
2

1−γ
2 γ

∣∣∣∣∣∣
,

4 Belief Theoretic Approach to Integrity Preserving
Update

4.1 Integrity of Existing Evidence

Preserving the integrity of existing body of knowledge requires one to compare
the likelihood of the occurrence of current measurements given the current state
of the system. While the prediction step takes this into account to a certain
degree, it is also important to understand the system level requirements for
enabling such tasks (Fig. 1).

Fig. 1. The relationship of estimation accuracy versus sensor reliability,
where subfigure (a) and subfigure (b) show the behavior for β = 0.9 and α = 0.9, respec-
tively. Here, a hidden Markov model with state transition pmf p(xk|xk−1) and emission
pmfs p(zk|xk) are used to generate state and observation sequences of length N = 100
given by X ≡ {xk ∈ {1, 2, 3} | k = 1, . . . , N} and Z ≡ {zk ∈ {1, 2, 3} | k = 1, . . . , N},
respectively. We then utilize Z and p(ẑk|zk) to generate non-ideal observation sequence
Ẑ ≡ {ẑk ∈ {1, 2, 3} | k = 1, . . . , N}. Also, the estimation error is the averaged mean
squared error given by 1

N

∑
k ‖xk − x̂k‖, where the experiment was repeated for 1000

times.
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Fig. 2. The relationship of ‘estimation lag’ and sensor reliability γ, illustrating
the potential for using unreliable sensors in rather stable systems.

Example 2. Let us consider the 3-state system in Example 1 again. An interest-
ing case to look at is the combination of moderate β (e.g., 0.7) for different values
of γ, which characterizes a scenario where one may learn a fairly accurate mea-
surement model by analyzing large amount of data, but will have to deal with
unreliable sensors for estimation tasks (see cases for β = 0.7 with γ = 0.5 and
0.7). See Fig. 2. In such cases, one may also be interested in the ‘estimation lag,’
which could be loosely defined as the minimum number of updates to estimate
the current state. In particular, this scenario is useful for ‘stable’ systems (i.e.,
relatively higher values of α, thus the state changes are not as rapid in compar-
ison to belief updates). As one would expect, the estimation lag increases with
the decreasing sensor reliability.

On the contrary, given the system under consideration is sufficiently ‘stable’
or measurements are sampled at a rate that is fast enough to compensate for
errors caused by non-ideal sensors, updating stage can be augmented to preserve
the integrity of existing evidence.

4.2 Updating Evidence in the Theory of Belief Functions

Updating evidence or revision of belief refers to the process of updating a BoE
Ei[k] with evidence received from the BoEs Ej [k], j = {1, . . . , n} \ i, to arrive at
Ei[k + 1]. As in probability theory, conditioning is the primary tool for evidence
updating [21] in belief theory. The Fagin-Halpern (FH) conditional, one of the
many conditionals available, offers a unique probabilistic interpretation and a
natural transition to the Bayesian conditional notion [22].

Theorem 1 (FH Conditionals [22]). Given a BoE E = {Θ,F,m}, the con-
ditional belief Bl(B|A) : 2Θ �→ [0, 1] and the conditional plausibility Pl(B|A) :
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2Θ �→ [0, 1] of an arbitrary B ⊆ Θ given the conditioning event A s.t. Bl(A) > 0
are

Bl(B|A) =
Bl(A ∩ B)

Bl(A ∩ B) + Pl(A ∩ B)
; Pl(B|A) =

Pl(A ∩ B)
Pl(A ∩ B) + Bl(A ∩ B)

,

respectively.

In terms of assigning support to a probabilistic event, the FH conditional
belief and plausibility correspond to the inner and outer measures of a non-
measurable event [22]. Moreover, the extensive study undertaken in [23] identifies
various elegant properties of the FH conditionals including their equivalence to
other popular notions of DS theoretic conditionals (such as those in [24,25])
under the unifying umbrella of the Choquet integral. Therefore, FH conditionals
perhaps provide the best avenue to handle epistemic uncertainties introduced by
non-ideal sensors within a recursive bayesian filtering setup.

4.3 Conditions for Preserving Existing Body of Evidence

Let us now look at conditions that can be set to preserve the integrity of exist-
ing evidence in a recursive bayesian filtering setting. In particular, we are inter-
ested in deriving conditions under which the integrity of current state estimates
are preserved by potentially erroneous measurements received from non-ideal
sensors. He we assume that the system under consideration is either stable or
measurements are sampled at a fast enough rate to skip several update steps.

Problem Statement. Suppose the non-ideal sensor reports ẑk instead of
reporting zk for system state xk, where zk is now not observable. Let us assume
that the reliability γ of the non-ideal sensor is given (or estimated outside of this
problem). Let p(x0|ẑ0) ≡ p(x0) denote the initial pdf. Given p(xk−1|ẑ1:k−1), we
are interested in recursively computing p(xk|ẑ1:k) as measurement ẑk become
available at time tk. Also, assume the belief and plausibility counterparts of
p(xk−1|ẑ1:k−1) as given by Bl(xk−1|ẑ1:k−1) and Pl(xk−1|ẑ1:k−1) are also main-
tained, where Bl(xk−1|ẑ1:k−1) ≤ p(xk−1|ẑ1:k−1) ≤ Pl(xk−1|ẑ1:k−1).

State Estimation. Given p(xk−1|ẑ1:k−1),
(a) Prediction step: obtain the prior pdf of state at time tk via

p(xk|ẑ1:k−1) =
∑

xk−1

p(xk|xk−1) p(xk−1|ẑ1:k−1) (8)

where, the system model p(xk|xk−1) is utilized to generate the predicted state.
Similarly, use the system model Bl(xk|xk−1) = p(xk|xk−1) to generate the
belief theoretic counterparts of predicted state given by Bl(xk|ẑ1:k−1) and
Pl(xk|ẑ1:k−1). Trivially, we will have Bl(xk|ẑ1:k−1) ≤ p(xk|ẑ1:k) ≤ Pl(xk|ẑ1:k−1).
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(b) Update step: The update step now must be carried out in such a manner
to preserve the integrity of current estimates from potentially erroneous mea-
surement ẑk. The conditional approach to DS theoretic evidence updating, which
espouses these FH conditional notions [26–29], perhaps provide an ideal solution
for the task at hand.

Definition 2 (Conditional Update Equation (CUE)). The CUE that
updates E1[k] with the evidence in E2[k] is

Bl1(B)[k + 1] = α1[k]Bl1(B)[k] +
∑

A∈F2[k]

β2(A)[k]Bl2(B|A)[k], ∀k ≥ 0,

where α1[k], β2(�)[k] ∈ �+ satisfy, α1[k] +
∑

A∈F2[k]
β2(A)[k] = 1

and the conditional belief Bl(B|A) is given by the Fagin-Halpern conditional
Bl(B|A) = Bl(A ∩ B)/[Bl(A ∩ B) + Pl(A ∩ B)] [22] (please refer to [26–29] for
guidelines on selection of parameters α[k] and β[k]).

In order to preserve the integrity of exiting evidence, we will enforce that

Bl(xk|ẑ1:k−1) ≤ Bl(xk|ẑ1:k) ≤ Pl(xk|ẑ1:k−1) (9)

must be satisfied by the update step. If this condition is satisfied, then
choose an appropriate conversion to generate the probabilistic counterpart
p(xk|ẑ1:k) of Bl(xk|ẑ1:k). Otherwise, set p(xk|ẑ1:k) = p(xk−1|ẑ1:k) and discard
measurement ẑk.

5 Conclusion

Recursive bayesian filtering methods provide a well-established mechanism for
‘tracking’ the behavior of a dynamic system via a sequence of noisy measure-
ments. However, little attention has been given to the case, where the sensors
utilized are ‘non-ideal’ that introduce epistemic uncertainties into the measure-
ment process. By utilizing a tandem approach, we present an on-going effort
on utilizing belief theoretic notions in the update stages of bayesian recursive
tracking application, thus allowing one to conveniently and accurately model
such epistemic uncertainties that are originated by the use of non-ideal sen-
sors. Furthermore, an approach for state update while preserving the integrity
of existing evidence is presented.
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Abstract. The RANSAC (random sampling consensus) approach was
proposed for robust estimation in presence of outliers, that are detected
as inconsistent with the solution. In this paper, we adapt its principle to
derive an algorithm detecting inconsistent sources based on their mod-
elling in evidential framework. We compare two (in)consistency criteria:
the classic empty set mass and Pichon’s consistency measure that was
recently proposed. The proposed approach is applied to positioning from
Global Navigation Satellite Systems (GNSS), specifically in constrained
environments, i.e. in the presence of Non Line Of Sight and multipath
receptions. Results are compared with former approaches either in belief
functions framework or using interval analysis, stating the interest of the
proposed algorithm.

Keywords: Outlier detection · Belief function theory · Consistency
measure · Global navigation satellite systems

1 Introduction

Positioning is required in many applications involving autonomous navigation.
Among Global Navigation Satellite Systems (GNSS), the Global Positioning
System (GPS) is the most popular one, widely used for outdoor localization.
However, localization is still an issue in constrained environments such as urban
canyons because of the presence of multipath signals and Non-Line-Of-Sight
(NLOS) receptions. These phenomena induce an overestimation of the distance
between satellite and receiver called pseudo-range (PR), and then, degrade the
precision of the positioning. Several strategies have been proposed to detect some
erroneous measurements (called outliers) or/and to improve the positioning accu-
racy. One of them is to combine GNSS data with embedded sensors (e.g., cam-
era, inertial measurement unit) and/or geographical informations (e.g., digital
maps). Focusing on localization using only-GPS data, the proposed approaches
can be divided into two main categories: (i) methods that aim at enhancing
GNSS accuracy by filtering, estimating or correcting the PR errors or multipath
biases (e.g. [5]) and (ii) methods that consist in detecting and discarding the erro-
neous PR from the localization process. The statistical tests such as used in the
c© Springer International Publishing Switzerland 2016
J. Vejnarová and V. Kratochv́ıl (Eds.): BELIEF 2016, LNAI 9861, pp. 241–250, 2016.
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Receiver Autonomous Integrity Monitoring (RAIM) [2] and the interval analy-
sis belongs to this second category just as the method we propose. The RAIM
method allows us to detect at most one outlier per epoch (i.e., time sample) that
may be insufficient for urban areas. Then, some probabilistic approaches have
been proposed to deal with several simultaneous outliers, e.g. coupling failure
detection and exclusion with RAIM or adapting the classic RANSAC (RANdom
SAmple Consensus) algorithm [4]. Zair et al. [10] proposes a very robust free-
parameter approach based on an a-contrario modeling and a Number of False
Alarms (NFA) criterion. However, if the uncertainty is modelled in a rather fine
and sophisticated way using probabilist approaches, the imprecision is not dis-
tinguished from uncertainty. Then, besides statistical approaches, some methods
specifically focus on the modelling of the imprecision of the sensors. In partic-
ular, Interval Analysis (IA), that takes into account the imprecision of all the
sources, was applied to indoor localization and to outdoor GNSS localization. In
IA, the q-relaxation technique was proposed to deal with outliers by removing
until q sources out of the N initial sources, in order to get a non-empty solution.
Recently, [7] presented the idea of relaxing sources in belief function combina-
tion generalizing the IA q-relaxation technique. Assuming that only r sources
have to be considered out of the N available sources, we denote by HN

r this
hypothesis about the number of reliable sources. Then, for any N -tuple A of
hypotheses Ai: ∀i ∈ [1, N ] , Ai ∈ 2Ω , A = {A1, A2, . . . , AN} , Γr (A) represents
this metaknowledge:

Γr (A) =
⋃

A⊆{A1,··· ,AN},|A|=r

(∩Ai∈AAi), (1)

where r is the parameter representing the assumed number of reliable sources.
Then, the mass value of an hypothesis B is the sum, over Γr (A) correspond-

ing to B, of the products of masses of elements of A:

m
[
HN

r

]
(B) =

∑

A⊆ΩN ;
Γr(A)=B

[
N∏

i=1

mΩ
i (Ai)

]
, (2)

where mΩ
i denotes the mass function. Besides generalizing the classic combina-

tion rules [7], e.g. conjunctive rule (r = N) and disjunction rule (r = 1), the
approach is similar to the q-relaxation technique in IA when the knowledge is
categorical (one focal element).

In this paper, we propose an approach inspired from RANSAC algorithm. It
allows us to detect iteratively the outliers and, based on an evidential consis-
tency measure (either the opposite of the classical Belief Function Theory (BFT)
conflict measure, namely the empty set mass, or the maximum of the contour
function as proposed by [3]) to partition the dataset between two subsets respec-
tively containing the inliers and the outliers.

In our application, the discernment frame is the set of possible discrete local-
izations, in East and North coordinates. Depending on the a priori hypothesis
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about whole research area and discretization step, the cardinality of such 2D
discernment frame may be very large. For instance, considering an area of 100 m
by 100 m with 1 m2 resolution, |Ω| = 10000, which is huge comparing to classical
applications of BFT. This issue may be handled representing the focal elements
by subsets of 2D boxes and taking advantage of their low number for easy manip-
ulation [1,8]. While remaining tractable thanks to the redefinition of the basic
set operators (intersection, union), such a representation is finer than processing
independently 1D intervals as in [6].

2 Proposed Approach

RANSAC algorithm is based on two ideas. The first one is to avoid the whole
exploration of the solution space. For this the solutions to test are computed
according to a given process (that generally corresponds to only considering
exact solutions for a subset of measurements). In this work, we follow this idea
of a ‘guided’ exploration of the space solution. However, the way to explore
it differs from those used in classic RANSAC: it is based on addition/removal
of a data measurement (i.e. an information piece) in/from the current set of
measurements (information pieces) considered as inliers (i.e. truthful).

The second idea is to keep the solution that is the most ‘consensual’, i.e. that
induces the highest number of inliers defined as measurements presenting a noise
level lower than a given threshold (that is a parameter of the method). Following
this idea that is also those of the q-relaxation (since a criterion maximizing the
number of inliers boils down to a criterion minimizing the number of outliers),
after exploring partially the solution space, we keep the solution corresponding
to the highest number of inliers given a threshold applied on the chosen measure
of consistency or inconsistency.

In the following, the proposed algorithm is called ‘Evidential-RANSAC’ (EV-
RANSAC) since instead of handling data or measurements, it handles bbas.

2.1 Evidential RANSAC Algorithm

The measure of inconsistency or conflict is still an issue (e.g., [9]) since it may
have different origins: the conjunctive combination of an important number of
sources, a too high confidence in a source possibly noised, etc. Algorithm 1
presents the evidential RANSAC in the case where the conflict m (∅) is used
as inconsistency measure. It is straightforward to change the considered mea-
sure of consistency or inconsistency. For instance, we also run it using the contour
function as consistency measure.

As said, the basic idea is to displace in the solution space according some
moves. These latter are defined through a graph G: Considering N sources, G
nodes are the 2N subsets of sources and two nodes are connected by an edge (or
arc) if the two subsets of sources (represented by the two considered nodes) only
differ by one source. Practically, the nodes are denoted by binary words repre-
senting the subsets of sources (e.g., for N = 4, any word of 4 bits, with 1-source
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Algorithm 1. EV-RANSAC algorithm having as inputs: bba set M, dis-
cernment frame Ω, conflict threshold κth, maximum number of iterations
lmax; and as output the set of sources labelled as inlier IS .

1 N ← |M|; l ← 1;

2 Create graph G having 2N nodes (coded by binary words) and edges between
nodes at a Hamming distance equal to 1;

3 Initialize G nodes (conflict and ‘father’) values to −1;

4 for j ← 1 to N×(N−1)
2

do

5 b ← binary code of the jth 2-source node;
6 Set i1 and i2 equal to the indices of the sources in b subset (e.g.,

{i1, i2} ← {n |b&(1 << n) = 1});
7 κb ← ∩ i∈{i1,i2}mi (∅);

8 end
9 Starting node b0 ← arg minb,|b|=2 κb;

10 Set κb0 to b0 node conflict value;
11 Call function RecursiveEvRANSAC(G, M, Ω, κth, b0, l, lmax);
12 κb̂ = +∞; n ← N ;
13 while κb̂ > κth and n > 0 do
14 for j ← 1 to

(
n
N

)
do

15 b ← binary code of the jth n-source node; κb ← conflict value of b;

16 If κb ∈ [0, κb̂ ) then κb̂ ← κb; b̂ ← b;

17 end
18 if κb̂ ≥ κth then n ← n − 1;

19 end

20 Set in IS the indices of the sources in b̂ (e.g., IS ←
{

n
∣∣∣b̂&(1 << n) = 1

}
);

nodes ∈ {0001, 0010, 0100, 1000}, 2-source nodes ∈ {0011, 0101, 0110, 1001, 1010,
1100}, etc.). Then, nodes are four neighbours: 0000, 0011, 0101 and 1001).
Finally, for any binary word b, |b| denotes its number of bits equal to 1 that
corresponds to the cardinality of the subset of sources represented by b node.
G nodes also contain two values: the conflict value induced by the combination
of the node sources and the previous node on the path (called ‘father’). These
values are filled during the exploration but, since the exploration will be only
partial, some of these values will never be computed.

Having defined the graph G, the proposed algorithm explores it according to
a path (ordered succession of G nodes linked by edges) that starts from the two-
source node presenting the lowest conflict value. This choice is a compromise
between complexity and distinction between nodes in terms of conflict value.
Indeed, on the one hand, for 1-source nodes, every conflict values are equal (to
0) and, even for 2-source nodes, null conflict value can be reached by several
nodes. On the other hand, considering k-source nodes, the number of source
combinations, to test in order to choose the initial node, is

(
k
N

)
, that increases

exponentially for k lower than N
2 . Then, we prefer a low complexity and if several
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Algorithm 2. Function RecursiveEvRANSAC having as parameters: source
subset graph G, bba set M, discernment frame Ω, κth conflict threshold,
current node b, current iteration l, maximum number of iterations lmax

1 Set N ← |M| and initialize κmin ← κth and b̂ ← ∅;
2 for j ← 1 to N do
3 if j /∈ b then
4 b′ ← b ∪ j; κb′ ← ∩ i∈b′mi (∅);

5 if κb′ < κmin then κmin ← κb′ ; b̂ ← b′;
6 end

7 end

8 if l < lmax and
∣∣∣b̂
∣∣∣ < N then

9 while b̂ = ∅ and |b| > 0 do

10 κb ← conflict value of b; b̂ ← arg minb′,|b′|=|b|,κ′
b>κb

κ′
b;

11 b ← its ‘father’ node;

12 end

13 RecursiveEvRANSAC
(
G, M, Ω, κth, b̂, l + 1, lmax

)
;

14 end

nodes reach the lowest conflict value, we select randomly one of them. At the
end, i.e. after exploration, we select, as best solution, the one having the highest
cardinality provided that conflict value be lower than conflict threshold. In case
of several solutions (having same cardinality), we keep the one with the lowest
conflict value.

Algorithm 1 presents the proposed EV-RANSAC. The input data are the N
bbas (gathered in M = {mi, i ∈ {1, . . . , N}}) and their discernment frame Ω,
the a priori threshold on conflict κmax and the maximum number of iterations
lmax. The output is the set of inlier sources.

Algorithm 1 involves a recursive function used to browse through the graph
G. It is described in Algorithm 2 using the following notations. As previously
b denotes a node G representing the subset of sources having as indices the
position of 1-bit in b. Then, for any source having index j ∈ {1, . . . , N}, j ∈ b
(j /∈ b, resp.) means that j source belongs (does not belongs, resp.) to b subset
of sources, j ∪ b means that j source has been added to b subset of sources. Note
that all these operations or tests are very simply achieved by bitwise operators.

The recursion is stopped at the end of a maximal number of iterations
(lmax << 2N − (

1
N

) − (
2
N

)
) or because a solution involving all sources has been

found. From the current node, it adds a new source (the one minimizing the
conflict) provided that the conflict remains below the conflict threshold. Other-
wise, it searches the node having same cardinality (of source subset) n and next
increasing conflict value (smallest value among the greatest values than current
node one). In terms of graph, this boils down to come back to the ‘father’ node
(cardinality n−1) and then search among its neighbours of cardinality n (whose
conflict value has already been computed when processing the father node). If



246 S. Zair et al.

Fig. 1. Illustration of EV-RANSAC algorithm with 5 sources among which 1 is faulty;
one level of the graph corresponds to a given cardinality of source combination (level
n ↔ n-sources), with the involved sources indices denoted inside the nodes, and con-
flict values indicated by real numbers beside the nodes except when it is null (for
information, conflict values of unexplored nodes are also indicated in grey).

such a node does not exist (all ‘brother’ nodes have been tested), the next node
is searched among the ‘brothers’ of the ‘father’ and so on.

To illustrate the algorithm, Fig. 1 shows an example with 5 sources among
which 1 is erroneous. The discernment frame is Ω = {θ1, θ2, θ3}. According to
Algorithm 1, we compute the conflict associated to every pair of sources (first
level of combination on the graph), only considering (for this example) the com-
binations involving source S1. On Fig. 1, conflict is null for combination between
S1 and S2 and for combination between S1 and S3; We randomly select com-
bination S1∩2 and pursue our graph exploration from this node. Minimum (i.e.
null here) conflict is achieved for combination S1∩2∩3. Pursuing graph explo-
ration from S1∩2∩3, we found conflict values greater that the considered conflict
threshold κth = 0.2, so that the exploration returns to the father node S1∩2 to
pursue the exploration from S1∩2∩5 (second less conflicting node from S1∩2). The
conflict value found for S1∩2∩4∩5 is lower than κth and indeed it is the solution
in terms of consistent data set. At the end, 10 nodes instead of 25 have been
tested.

2.2 Toy Example

To illustrate the interest of the evidential RANSAC, we consider the classical toy
example of the estimation of straight line from several points including inliers
and outliers.

Specifically, Fig. 2a show 10 points randomly drawn: 8 of them only presenting
noise around the ground truth straight line (slope 1 and offset 0) whereas two
of them are outliers. Several efficient approaches have been proposed for this
problem: either from statistical estimation (e.g., M-estimators, classic RANSAC)
or from pattern recognition (e.g., Hough’s transform). Here, our purpose is to
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(a) (b)

(c) (d)

Fig. 2. Comparison between EV-RANSAC and evidential q-relaxation in the case of
the toy example (straight line y = ax + b) with 10 points and 2 outliers: (a) dataset;
(b) 4th point bba focal elements in the space parameter axis (a, b); solution provided
(c) by EV-RANSAC, (d) by evidential q-relaxation. (Color figure online)

illustrate the kind of results provided by evidential RANSAC and its ability to
perform robust estimation. Since two parameters (slope a and offset b of the
straight line) should be estimated the chosen discernment frame is a discretized
2D compact bounded such that a ∈ [−1, 3] and the bias b ∈ [−2, 2] (then, for a
discretization step equal to 0.1, |Ω| = 40 × 40). The sources are the 2D points
(inliers and outliers). Each of them generates a bba having two 2D consonant
focal elements (as further in the actual localization application) such that A1 ⊆
A2, m(A1) = 0.49 and m(A2) = 0.51. For straight line estimation, the 2D
focal elements generated by point (x0, y0) have the shape of strips around line
segment b = y0 − a × x0, (a, b) ∈ [−1, 3] × [−2, 2]. Figure 2b shows an example of
bba generated by a point, with two focal elements: A1 (blue strip) having width
equal to 0.1 and A2 (red strip) having width equal to 0.3.

Figure 2a allows us to compare the results obtained by conjunctive combina-
tion of the bbas selected as inliers either by EV-RANSAC, mIS

, or by evidential
q-relaxation [7], mq−r. Figure 2c (resp. 2d) shows the focal elements of mIS

(resp.
mq−r) with false colours representing their ordering by size from the largest (red)
to the smallest (blue). We note that, in this example, our result is much more
specific than the evidential q-relaxation one, while also being more accurate.
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3 Application to GPS Positioning

3.1 Evidential Formulation of Localization Problem

GNSS positioning consists in estimating receiver position from the measured
travel time of GNSS signals from a satellite Si and the GNSS receiver Xr =
(er, nr, ur). For a satellite Si located at position (eSi

, nSi
, uSi

) in the ENU
frame (East, North, Up) where ‘Up’ coordinates represents the altitude differ-
ence between the receiver and a reference position, the ‘pseudo-range’ (PR) ρi

writes:

ρi =
√

(er − eSi
)2 + (nr − nSi

)2 + (ur − uSi
)2 + cδt + εae + εmp. (3)

In Eq. (3), δt is the time bias (difference) between the satellite clock and the
receiver clock, c is the speed of light, εae is a random realization of independent
centred Gaussian noise corresponding to atmospheric and electronic noise and
εmp is the noise corresponding to multipaths.

Classically, the optimal value of the 3D position Xr and δt are estimated
by minimizing the quadratic error: X̂r = arg minXr

∑
i [ρ̃i (Xr) − ρi]

2 where ρi

denotes the measurement acquired from satellite i, and ρ̃i is the estimated PR
assuming a position Xr and a clock bias δt. The solution can be obtained using
the iterative Gauss-Newton algorithm. Using BFT framework, we focus on the
East en North coordinates represented in the vector Xbba = (er, nr) . Indeed, for
land receivers, the altitude (Up coordinate) can be obtained from Xbba using a
Digital Elevation Model and the clock bias is derived using a Kalman filter and
assuming it follows a linear model with constant drift. Then, the estimation of
the PR is:

ρ̃i (Xbba) =
√

(er − eSi
)2 +

(
nr − nSi,t

)2 + αi + β, (4)

where αi is the square of the difference between Up coordinates of satellite Si and
receiver and β is the estimated clock bias multiplied by speed of light. Like in the
toy example, the discernment frame Ω is bounded, here to (w, h), and discretized,
here with same discretization R along the East and North coordinates, so that
|Ω| = w×h

R2 .
Bbas derived from PR measurements are consonant with only two focal ele-

ments, A1 and A2, that are defined according to PR model described by Eq. (3):
A1 contains the imprecision due to atmospheric and electronic noise where A2

includes multipath signals.

3.2 Results on Experimental Data

Experimental data (PR measurements) have been acquired with a Ublox GPS
receiver EVK-5T having a factory parameter precision equal to 5 m and fre-
quency acquisition of 1 Hz. The experiment was performed in an urban canyon
(La Défense, Paris, France) in static conditions. The receiver was surrounded
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by high buildings, so that the probability of multipaths signal and NLOS recep-
tions is high. The GPS receiver remains static during 40 min acquiring signals
from four to seven satellites. The estimation of the receiver location is performed
independently at each epoch so that each time sample is an independent test
sample to compute performance statistics.

Our approach is compared with the method proposed by Pichon et al. [7]
and Interval Analysis (IA) also using q-relaxation. In Algorithm 1, parameter
κth = 0.2 and lmax = min

(
3N,N + 2N−3

)
. Besides, having determined the

subset of inlier bbas, these latter are combined conjunctively to obtain the bba
on which the location will be estimated. In [7], the used threshold deals with
consistency measure φmin. We take φmin = 0.8. Finally, for the IA q-relaxation,
the number of relaxed constraints is the minimum such that there is a solution
(�= ∅). Note also that for this latter approach there is only one ‘focal element’
that is taken equal to the larger one when considering evidential approaches.

Finally, by interpreting the pignistic function of the final bba as the proba-
bility distribution function (pdf) of receiver location values, two kinds of errors
can be computed. The first one allows us to evaluate if the location estimation is
biased. It writes as the statistical expectation, being given the pdf, of the errors:

E1 =
|Ω|∑
i=1

ε(Hi)BetP (Hi), where ε(Hi) is the difference between the centroid of

the singleton 2D hypothesis Hi and the ground truth. The second error measure
allows us to evaluate the imprecision of the solution (since errors do not compen-

sate). It writes as the expectation of the L1 error: E2 =
|Ω|∑
i=1

|ε(Hi)|BetP (Hi).

Table 1 shows the achieved errors for different localization methods (first
column) and for different widths of focal elements A1 and A2. It allows us to
evaluate the robustness of the approaches to this parameter that can generally
only empirically be derived. Table 1 presents the p-values corresponding to the
68 and 95 percentiles (1 × σ and 2 × σ cut of the normal distribution). We note
that the proposed approach has better performance according to E2 measure

Table 1. Statistical comparison varying the widths of focal element(s).

Method Focal element width E1 (m) E2 (m)

68 % 95 % 68 % 95 %

EvRansac (4, 20) 10.72 20.81 15.43 23.45

(6, 15) 10.07 16.54 12.36 17.84

(6, 20) 9.51 17.74 13.36 20.25

Pichon and al. (4, 20) 10.92 31.63 23.90 49.49

(6, 15) 8.31 29.22 15.92 40.46

(6, 20) 8.63 17.95 19.10 32.38

IA q-relaxation (12) 10.63 17.71 15.99 20.36

(15) 11.18 18.31 14.35 20.24

(20) 11.86 23.57 18.32 25.59
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and according to the 95 percentiles of E1 measure. Indeed, using conjunctive
combination of the inlier bbas, the result is much more committed than with
q-relaxation (either evidential or interval analysis), like in the case of the toy
example. We also note that best results correspond to assumed noise levels equal
to 6 m and 15 m that are rather classic values used in GPS localization processes.

4 Conclusion

In this work, we propose an adaptation of the RANSAC principle to select inlier
sources in an evidential framework. Accordingly, several solutions are tested so
that the one selected is the most ‘consensual’, i.e. compatible with the highest
number of observations viewed as information sources. This approach is com-
pared to the classic q-relaxation and its evidential version that both search the
solution that removes the smallest number of sources. Applying these algorithms
to the processing of GNSS pseudo-range measurements, we observe that eviden-
tial RANSAC provides a more accurate localization.
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