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Abstract. OpenMP 4.5 introduced a task-parallel version of the classi-
cal thread-parallel for-loop construct: the taskloop construct. With this
new construct, programmers are given the opportunity to choose between
the two parallel paradigms to parallelize their for loops. However, it is
unclear where and when the two approaches should be used when writing
efficient parallel applications.

In this paper, we explore the taskloop construct. We study perfor-
mance differences between traditional thread-parallel for loops and the
new taskloop directive. We introduce an efficient implementation and
compare our implementation to other taskloop implementations using
micro- and kernel-benchmarks, as well as an application. We show that
our taskloop implementation on average results in a 3.2 % increase in
peak performance when compared against corresponding parallel-for
loops.

1 Introduction

Task- and thread-parallelism are two different paradigms used to exploit parallel
patterns in applications. Thread-parallelism stems from the conceptual abstrac-
tion of user-level threads as proxies for physical processors. These threads are
made explicitly visible for the user. Task-parallelism is on the other hand fully
oblivious of the physical layout of the system and programmers are instead
encouraged to focus on exposing parallelism rather than mapping parallelism
onto threads. Task-parallelism is argued to be more versatile than thread-level
parallelism [3].

Up until version 3.0, OpenMP was a thread-parallel framework. However,
with OpenMP 3.0, OpenMP added task-parallelism. Practitioners have since
debated what paradigm to use in each case.

With OpenMP 4.5, a new task level construct has been added, the taskloop
construct. This means that applications that previously used the omp for con-
struct can today be re-written using taskloop directives. Hence, practically
eliminating the need for thread-parallelism. This also means that programmers
now need to take a decision which of the two paradigms to use.
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We argue that the task-parallel paradigm should be exclusively used. We
also argue that a well-implemented taskloop can be used instead of the thread-
parallel for loops in OpenMP.

The present paper is one step towards verifying our hypotheses. We do so by
evaluating how well the recently added taskloop construct performs compared
to the traditional for constructs. We also propose an efficient taskloop imple-
mentation. We show that using taskloops can on average be 3.2 % faster than
corresponding parallel for loops.

In short, our contributions are as follows:

– We reveal implementation details of our taskloop implementation, which
includes a novel way of load balancing tasks.

– We evaluate the taskloop construct using our prototype implementation
and the latest GCC implementation. We further compare against parallel-for
implementations in GCC and Intel’s OpenMP libraries.

For the remaining paper, we will use the term task-loop when we refer to the
new omp taskloop directive and use parallel-for when we refer to the old omp
for directive.

The paper is structured as followed. Section 2 surveys existing OpenMP
taskloop implementations and Sect. 3 describes our taskloop implementation.
Section 4 describes the experimental method with results in Sect. 5. Section 6
position our contributions against similar methods. Finally, we conclude the
paper in Sect. 7.

2 Existing OpenMP Task-Loop Implementations

The OpenMP 4.5 taskloop decomposes a canonical for-loop into a set of unique
tasks, where each task is not bound to any specific processing thread. The
task-loop is compliant with the earlier omp for; the main difference is the lack
of schedule- and reduction-clauses in the task-loop. Because both approaches
behave in a similar way, programmers can now choose which of the two para-
digms to be used in their applications.

Today, the OpenMP taskloop construct is supported in two frameworks:
OmpSs [8] and GCC version 6.1. Both implementations use a single thread to
spawn the entire loop, visually illustrated in Fig. 1:a. GCCs OpenMP implements
the decomposition inside the runtime system while OmpSs does so statically
through compiler transformations. Unless specified by the programmer, GCCs
OpenMP runtime will decompose the iteration space evenly across the number of
threads (numtask = numthreads) while OmpSs always requires the programmer
to specify the chunk size for each loop.

We have observed three main limitations to OmpSs’ and GCCs approaches.
First, neither systems recursively decompose tasks, which also means that tasks
are not decomposed in parallel. Instead, a single thread bears the responsibility
of creating tasks. This leads to increased overheads and a longer critical path.
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Fig. 1. Different task-loop decomposition strategies. (a) Serial spawn order found in
GCC and OmpSs. (b) Divide-and-conquer found in runtime systems such as Cilk+ and
Threading Building Blocks. (c)-(d) Proposed iteration tasks

Second, iterations are statically assigned with few opportunities for load bal-
ancing.

Third, and this only applies to GCC, a single global local is used when
decomposing tasks, which increases the critical path.

3 Improved Task-Loop Implementation and Load
Balancing

Based on our observations of the limitations in OmpSs and GCC, we have
designed and implemented a scalable task-loop. We have included the imple-
mentation into B�lysk.

B�lysk1 is our prototype runtime system, primarily developed for research
on task-parallel runtime systems. B�lysk is API compatible with GCCs OpenMP
runtime system. Prior work on B�lysk includes research on task dependencies and
task-level speculation [6,14].

1 The B�lysk prototype implementation can be obtained through https://github.com/
podobas/BLYSK.git.

https://github.com/podobas/BLYSK.git
https://github.com/podobas/BLYSK.git
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3.1 Implementation

We have focused on the identified problems with GCCs OpenMP and OmpSs’
implementation: overheads, task decomposition and load balancing. As with
GCCs OpenMP, our implementation makes use of the existing tasking infrastruc-
ture in B�lysk. The infrastructure provides functionality for maintaining and
scheduling tasks. Each thread has a private task-queue, and load balancing is
performed through work-stealing [9]. Accesses to shared data-structures are done
through lock-free operations where possible, which is unlike the global locks used
in GCCs OpenMP.

A task-loop in B�lysk is decomposed using a recursive divide-and-conquer
algorithm, illustrated in Fig. 1:b.

The benefits of recursively decomposing work through divide-and-conquer are
many and range from improved cache utilization to a shorter critical path [5,11,13].
This is an improvement over GCCs OpenMP and OmpSs’ approach where tasks
are created serially by a single thread.

The divide-and-conquer algorithm will divide the iteration space into finer
and finer tasks, until a cutoff is reached. The cutoff is similar to that of GCCs
OpenMP runtime system. We subdivide the iteration space until we have as
many tasks as we have threads. These leaf tasks of the task graph are called
iteration tasks. We currently subdivide in a binary fashion but for large systems
a higher branching factor is likely more efficient.

3.2 Iteration Tasks

Iteration tasks are the primary way to balance the workload across threads. An
iteration task will have a subset of the iteration space associated with it.

Inspired by existing thread-parallel self-scheduling algorithms, we created a
method for load balancing iteration tasks. The algorithm is visually illustrated
in Fig. 1:c-d.

When a thread creates an iteration task, it will become the owner of that task
and will execute iterations from its iteration space. However, there are situations
where some threads have executed all their iterations while other threads have
iterations left. To handle that, we allow threads to take over, or steal, iterations
from other threads.

As an owner, a thread reserves and executes a large fraction of the iteration
task’s work, the owned fraction, seen in Fig. 1:c. We have heuristically chosen the
owned fraction to be 1

8 in this paper. The thread will steadily consume fractions
of the owned task, decreasing the work in the task until all work is consumed.
We allow threads to steal work from each other. Any unreserved amount of work
in an iteration task can be stolen, which means that more than one thread can
cooperatively consume iterations. In other words, when a thread tries to reserve
work, another thread might already have stolen it.

When a thread has consumed the work within the task it owns, it will proceed
to steal work from other threads, see Fig. 1:d. A successful steal will not only
steal a single iteration from the task but also migrate the ownership to the thread
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that performed the steal. The thread first executes the stolen single iteration. It
now owns the iteration task and will continue to reserve and consume iterations
reserving an owned fraction in each step.

We have run a number of experiments with different configurations arriving
at the aforementioned heuristic. We have explored scheduling and work stealing
approaches, including stealing single iterations, not transferring ownership and
various owned fractions. We found that an owned fraction of 1

8 reaches equal
performance to more fine-grained strategies but requires fewer steals. We present
empirical evidence motivating our decision in Sect. 5.1.

4 Experimental Method

We used a 48 core AMD Opteron 6172-based system for the evaluation. The
system consists of four sockets with two AMD Opteron 6172 processors per
socket. Each processor contains 6 processing cores. The system runs at 2.1 GHz
and have a total of 64 GB of RAM. The operating system running on the system
is CentOS 6.5 with Linux kernel 2.6.32.

GCC version 6.1 was used to build all benchmarks as well as the B�lysk run-
time system. All benchmarks were compiled with aggressive optimizations, -O3.
Intels OpenMP compiler version 15.0.3 was used to complement the performance
evaluation.

4.1 Benchmarks

We evaluated our implementation as well as the GCC and Intels OpenMP imple-
mentations using benchmarks and microbenchmarks. It should be noted that our
version of Intels OpenMP implementation does not yet support task-loops and
so it is not used for any task-loop experiments.

We have developed two microbenchmarks. The first microbenchmark is a
stress-test designed to evaluate the runtime systems’ resilience to iteration gran-
ularity. The microbenchmark contains a for loop where iterations have a con-
trollable amount of work. The chunk size is set to one to isolate per iteration
overheads. We have two versions of the benchmark parallelized using task-loop
and parallel-for respectively. We vary the amount of work in each iteration, the
granularity, and measure the execution time.

The second microbenchmark tests the resilience to variance in the execution
time of iterations. We use measurements from the first benchmark to design a
benchmark where the average iteration granularity is large enough so that we
see linear scalability with all the runtime systems. However, we also introduce
a controlled uniformly random variance to the execution time of iterations. We
make several runs with different levels of variance to observe the load balancing
abilities of the runtime systems.

We have also used kernels from the SpecOMP benchmark suite [2], the
Rodinia benchmark suite [7] and Parsec [4]. Table 1 shows the input data sets
for the different benchmarks as well as serial execution time. We have selected
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Table 1. Benchmarks, their input data set and serial execution time

Benchmark Input Source Serial time

358.botsalgn prot.100.aa SpecOMP 2012 22, 25 s

359.botspar 8000× 8000 SpecOMP 2012 88, 83 s

Backward Propagation 4194304 nodes Rodinia 3, 87 s

HeartWall test.avi / 50 frames Rodinia 107, 46 s

HotSpot3D 512× 8 Rodinia 4, 58 s

LavaMD 10 boxes Rodinia 65, 81 s

Leukocyte testfile.avi / 10 frames Rodinia 71, 20 s

Prime all primes 0-300,000 Selfmade 77, 84 s

BlackScholes in 10M.txt Parsec 281, 68 s

benchmarks which GCC 6.1 can handle. GCC 6.1 is, as of this writing, the
current GCC version which also has some shortcomings.

GCC can currently, for example, not handle the case when a parallel or
single construct is encountered in the same compound statement as a taskloop
construct.

We compare the performance when using GCCs task-loop implementation as
well as our own. In addition, we also measure the performance of benchmarks
when using parallel-for.

The main metric for performance chosen is speed-up over the serial imple-
mentation, given as: tserial

tparallel

The speed-up shows how well the performance of the runtime system and
application scales with the number of processors. All benchmarks were executed
ten times and we show the mean value.

5 Results

We study performance in two principle ways. First, we study the scalability and
load balancing capabilities of different task-loop and parallel-for implementa-
tions. Second, we observe the execution time of a set of benchmarks.

We use the two microbenchmarks we developed to study how well task-loop
and parallel-for implementations scale and how well they handle load balancing
problems.

First, we use our first microbenchmark and vary the number of loop itera-
tions and their execution time. This will show what overheads runtime system
incur with different number of iterations and iterations with different execution
times. Figure 2 shows results for 2400 and 4800 iterations. The speed-up over a
serial loop execution is plotted on the y-axis against the execution time of each
iteration.

The best performing implementation is that of the older statically scheduled
parallel-for loops, where Intel’s OpenMP implementation performs with as low
as 24 cycle iteration granularity and GCC’s OpenMP implementation requires
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Fig. 2. Evaluation of different scheduling strategies using microbenchmarks with
respect to: (a–b) resilience to iteration granularity, and (c) resilience to variance in
iteration execution time

400 cycles per iteration. Both Intel’s and GCC’s parallel-for with a dynamic
schedule perform worse than their static counterpart. GCC’s task-loop imple-
mentation, GCC task-loop in Fig. 2, has the poorest performance, requir-
ing coarser than 150,000 cycles/iteration to start performing well. Our re-
implementation of the same algorithm, labeled “BLYSK (gcc-like)”, results in
better performance and start scaling at nearly 148,000 cycles shorter iterations.
The increased performance of the B�lysk re-implementation is due to B�lysks bet-
ter tasking infrastructure. For our proposed improved implementation, called
B�lysk in Fig. 2 and other figures, the B�lysk scheduler can reach performance
levels comparable to those of Intel’s or GCC’s dynamic parallel-for. Note how
GCC’s task-loop implementation refuses to scale in the case of 4800 iterations.
Here GCCs runtime system actually refuses to spawn parallel tasks. GCC will
not create any tasks if the aggregated number of spawned tasks is higher than
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64 times the number of executing threads. That is the case in this situation and
so the task-loop is executed serially.

We now use the second microbenchmark. We use a granularity of 1 mil-
lion cycles per iteration to allow all runtime systems to scale to 48 threads.
Figure 2:c shows the results of the second microbenchmark, where we see the
speed-up plotted against the variance in per iteration execution time. Here the
static parallel-for scheduler is showing its weakness. As we increase the vari-
ance, the load balancing properties of the static schedule decreases, yielding
lower and lower performance. Because the algorithm of parallel-for static and
GCC’s OpenMP task-loop are similar, they both suffer from the same weakness
to increased variance.

Intel’s and GCC’s parallel-for with dynamic schedule and our implementa-
tion of taskloop continue to scale to 48 threads, unaffected by the variance in
iteration granularity.

5.1 Scheduling Heuristics

We now argue for our chosen scheduling heuristic, where we set the owned frac-
tion to 12 % (18 ).

Figure 3 shows results of the second microbenchmark when executed under
different scheduling heuristics with three different metrics in mind: performance,
stealing activity and unbroken iterations. Executing long, unbroken iterations is
important as it often honors the user’s effort to write loops with good spatial
and temporal cache locality [1]. A large amount of steals can lead to resource
contention.

The evaluated heuristics range from a single iteration up-to consuming half
the remaining iterations of a task.

Figure 3:a shows the performance when varying the amount of iterations con-
sumed from tasks. Performance vary with the owned fraction, with diminishing
returns as the owned fraction is reduced. For high performance, we need to use
an owned fraction no larger than 12 %!

The number of steals that are occurring using the different heuristics is shown
in Fig. 3:b. A steal is recorded every time a thread has to take iterations from
a task it does not own. We see that consuming a smaller owned fraction leads
to increased stealing activity. For example, using a single iteration leads to the
highest stealing activity while using an owned fraction of 50 % results in the
least amount of steals. This is intuitive as consuming a larger owned fraction
leaves fewer iterations for potential load balancing purposes. The 12 % heuristic
we have chosen steals on average 25 % less than the 6 % heuristic and 40 % less
than the single iteration case.

Figure 3:c shows the average length of unbroken iterations for the three
heuristics that yield the best performance. Our heuristic executes the longest
continuous chain of iterations.

To summarize, our results shows that stealing 12 % of the iterations of a task
in a controlled benchmark offers good performance with the fewest number of
steals and the longest unbroken iteration chain.
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Fig. 3. Evaluation of different scheduling heuristics with respect to (a) performance,
(b) number of steals and (c) average unbroken iteration length

5.2 Benchmark Performance

Figure 4 shows the performance of the various benchmarks. Here the speed-up
is plotted against the number of threads allocated to the application.

For most benchmarks, the performance of the parallel-for version is compa-
rable with our task-loop implementation. Some benchmarks, such as
rodinia.Backprop, rodinia.Hotspot and rodinia.Heartwall scale poorly.
This is mainly due to the lack of enough parallelism to occupy the 48 cores in
the system. Others, such as rodinia.lavaMD, show an increase in performance
for our proposed task-loop version when compared against GCC’s parallel-for
version. rodinia.Leokocyte and parsec.BlackScholes are both fairly coarse-
grained applications that scale well for all runtime systems irrespective of the
chosen paradigm.
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Fig. 4. Speed-up of benchmarks using task-loop and parallel-for OpenMP constructs

The 358.botsalign benchmark shows a small performance difference
between our and GCCs OpenMP implementations, to our advantage. The per-
formance increase is mainly due to the hybrid nature of the application. Unlike
other benchmarks, 358.botsalign exploits both task- and thread-parallelism.
The performance improvements of our task-loop come from the faster tasking
infrastructure compared to GCCs OpenMP. However, note that GCCs imple-
mentation of task-loop slightly outperforms the GCC parallel-for version on
358.botsalign, indicating that mixing the two paradigms is unfavorable.
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Fig. 5. Performance of the sparse LU benchmark when varying the task granularity.

Overall, our implementation of the task-loop outperforms the GCC task-loop
implementation in all cases. This is attribute to both lower overheads and better
load balancing.

The case of overheads is more clearly shown in Fig. 5:a–c. The figure shows
359.botspar which implements a sparse LU factorization based on either the
parallel-for or task-loop implementation. Here we see the performance obtained
when the entire matrix is split into block-sizes of varying granularity. The various
granularities represent the amount of parallelism available in the application to
solve the LU decomposition.

Our task-loop implementation outperforms the other runtime systems con-
sistently. For the coarse-grained case, the main reason is the poor decomposition
done by the other runtime systems, which can be fixed by manually tuning
grain-sizes. Notice how GCCs task-loop implementation fails to scale in the fine-
grained case. This decrease in performance is due to the overhead increase asso-
ciated with tasking. We also see that the overall performance increase as we
decrease the granularity, which leads to increased parallelism and thus better
performance.

Figure 5:d shows the speed-up as a function of the amount of parallelism,
when varied from decomposing the matrix into 1× 1 sized blocks all the way
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up to 500× 500 sized blocks. Note how the highest performance is reached by
our task-loop implementation at a block-size of 8× 8. The valley between the
two peak points is mainly due to the uneven balance of parallelism that these
block-sizes yield. While the parallelism increases, it does not increase enough to
actually reduce the critical path of the application. The amount of application-
level parallelism cannot be evenly distributed across the threads, which leads to
some threads being idle.

We have included the performance of Intel’s OpenMP implementation pri-
mary as a source of reference. However, it is more complicated to scrutinize the
performance because the compilation infrastructure is different between Intels
compiler and GCC. For example, the kernel.Prime benchmark performance is
in part due to the vectorization capabilities of the Intel compiler. On the other
hand, Intels runtime system degrades in performance on benchmarks such as
rodinia.Hotspot3D and rodinia.lavaMD. We have not attempted to isolate
the performance losses in Intel’s OpenMP runtime system.

Fig. 6. The peak speed-up observed running with the different implementations for all
the benchmarks using GCC’s compilation framework

Figure 6 shows a summary of the peak performance that was obtained for each
of benchmarks under the different implementations. The average reduction in
performance when migrating from GCCs parallel-for to GCCs task-loops amount
to a decrease of 9.6 % in performance. The average difference in performance
between GCCs parallel-for and our improved task-loop is on the other hand an
increase of 3.2 % in peak performance.

6 Related Work

Task based scheduling of for loops exists in several well-known task-based frame-
works, such as Cilk++/Intel Cilk+ [12] and Intel Threading Build Blocks [10].
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These frameworks decompose the iteration space using divide-and-conquer
algorithms, most commonly using a binary division such similar to the one used
in our implementation of task-loop. However, unlike our implementation, which
introduces a new type of tasking primitive, the iteration tasks, said frameworks
spawn a large number of tasks. Our approach is to spawn no more tasks than
the number of threads and still achieves good load balancing properties.

Our task-loop approach is more closely related to that of classical thread-
parallel iteration scheduling policies, though we adapt it to the task-parallel
paradigm. More precisely, we position our work closely to the Chunk or Guided
Chunk Self-Schedulers, GSS [15]. The main differences between our method and
GSS is the parallelization paradigm and that our approach use the concept of
ownership to help balance iteration. In GSS the stolen iteration are fixed. Other
similar work is the Trapzeoid Self-Scheduler [16] which is similar to GSS but with
a linear rather than nonlinear decreasing iteration distribution. Our proposed
algorithm is of the nonlinear kind.

Another direction is to use several different scheduling algorithms combined.
These are called N-level schedulers where different schedulers are used on various
invocations of the same for loop [18] or on subsets of the iteration space [17].
However, N-level schedulers require profiling which has been shown to be costly
in the task-parallel paradigm.

7 Conclusions

Our main purpose for this paper is to evaluate the taskloop construct. To do
so, we have introduced an efficient implementation for load balancing task-loop
iterations. We have evaluated this and existing taskloop implementations and
can show that using taskloop can on average be 3.2 % faster than corresponding
parallel for loops.

We used established kernel- and application-benchmarks to evaluate perfor-
mance and conclude that the performance of a task-loop implementation could
rival that of a traditional thread-parallel for loop.

Based on our results, we argue that the task-parallel paradigm in OpenMP
is now poised to displace the thread-parallel paradigm.
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