
Approaches for Task Affinity in OpenMP

Christian Terboven1(B), Jonas Hahnfeld1, Xavier Teruel2, Sergi Mateo2,
Alejandro Duran3, Michael Klemm3, Stephen L. Olivier4,

and Bronis R. de Supinski5

1 Chair for High Performance Computing, IT Center,
RWTH Aachen University, Aachen, Germany
{terboven,hahnfeld}@itc.rwth-aachen.de

2 Barcelona Supercomputing Center, Barcelona, Spain
{xavier.teruel,sergi.mateo}@bsc.es

3 Intel, Santa Clara, USA
{alejandro.duran,michael.klemm}@intel.com

4 Center for Computing Research, Sandia National Laboratories,
Albuquerque, USA
slolivi@sandia.gov

5 Lawrence Livermore National Laboratory (LLNL), Livermore, USA
bronis@llnl.gov

Abstract. OpenMP tasking supports parallelization of irregular algo-
rithms. Recent OpenMP specifications extended tasking to increase func-
tionality and to support optimizations, for instance with the taskloop

construct. However, task scheduling remains opaque, which leads to
inconsistent performance on NUMA architectures. We assess design
issues for task affinity and explore several approaches to enable it. We
evaluate these proposals with implementations in the Nanos++ and
LLVM OpenMP runtimes that improve performance up to 40 % and
significantly reduce execution time variation.

1 Introduction

The OpenMP* API specification first included support for task-based parallelism
in version 3.0 [8]. In contrast to OpenMP worksharing constructs, task constructs
support parallelization of irregular algorithms, e.g., code with recursion or graph
traversals. The flexibility of OpenMP tasks leads to nondeterministic execution
including highly dynamic mapping of tasks to threads.

Modern processor architectures do not provide uniform performance since an
internal fabric connects multiple processor packages with their local memories
to form a single shared memory system. This NUMA (non-uniform memory
access) architecture exposes different memory latencies and bandwidth rates,
depending on the memory location that is accessed. Two examples are the Intel R©

Quick Path Interconnect [13] of Intel R© Xeon processors and the Bull Coherent
Switch [2]. A typical strategy allocates data on its first touch to a physical page

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 102–115, 2016.
DOI: 10.1007/978-3-319-45550-1 8

Approaches for Task Affinity in OpenMP 103

in the local memory of the processor that issues the instruction. While OpenMP
worksharing constructs can explicitly assign work to individual OpenMP threads,
OpenMP tasks do not support this kind of control. Thus, tasking complicates
control of page placement and memory locality.

In this paper, we assess issues that arise in extending OpenMP to sup-
port task affinity that would address this question. We propose two funda-
mental approaches to extend existing tasking constructs that provide hints to
the OpenMP compiler and runtime that can guide the assignment of tasks to
threads in order to improve data placement and memory locality. First, the novel
affinity clause for the task construct suggests a place or thread on which to
execute a task. Second, a taskgroup extension provides a hint to the runtime
system about how to the distribute the tasks of that task group.

The remainder of the paper is organized as follows. Section 2 reviews prior
proposals to support task affinity in OpenMP. Section 3 assesses key issues in
the design of task affinity support while Sect. 4 presents the proposed syntax and
semantics of our two approaches. Section 5 details the prototype implementations
of our approaches while we provide a preliminary assessment of their performance
in Sect. 6.

2 Related Work

Proposed OpenMP extensions for data, thread, and task affinity by Huang et al.
predate offically-adopted OpenMP thread affinity support, but the article only
evaluates data and thread, not task, affinity [5]. Terboven et al. found that the
status quo of task scheduling – no mechanism to express affinity among tasks
or between tasks and threads – leads to inconsistent performance across differ-
ent OpenMP implementations and between different NUMA architectures [11].
Olivier et al. defined the concept of “work time inflation”, additional time spent
by threads in a multithreaded computation beyond the time required to perform
the same work sequentially [7]. They showed the impact of such work time inflation
in OpenMP task parallel programs and proposed OpenMP extensions to specify
mappings of tasks to NUMA locality domains, enabling exploitation of first touch
placement for tasks. Muddukrishna et al. base task scheduling on available capac-
ity of the last level cache and working sets of the tasks [6]. Our work incorporates
the preliminary lessons from many of these prior studies to provide a comprehen-
sive assessment of the issues that arise for task affinity.

Work on task parallelism prior to the OpenMP task model has also exam-
ined the issue of task affinity. Acar et al. derive a theoretical bound on cache
misses due to differences in the ordering of tasks between sequential and paral-
lel executions [1]. They propose “locality-guided work stealing” that enqueues
tasks with affinity to a particular thread into a special “mailbox” that is sepa-
rate from its main queue. Task scheduling techniques based on system topology
particular to other task-based programming models and runtime systems have
also been attempted, e.g., for Charm++ [10] and Habanero [4,12]. Cilk’s work-
first task scheduler exploits task affinity naturally by design for programs in which

104 C. Terboven et al.

significant data sharing occurs between parent and child tasks [3]. Such data shar-
ing often, but not always, occurs with recursive algorithms; it frequently does not
for general task parallelism. Further, Cilk’s design targets temporal locality in pri-
vate caches, while modern systems have much more complex memory subsystem
hierarchies: private and shared caches, multiple memory controllers and generally
more complex memory systems. Our work extends OpenMP to assist OpenMP
compilers and runtimes in using these increasingly complex memory systems.

3 Design Choices for Task Affinity

Substantially different issues arise with task affinity compared to thread affinity,
which OpenMP 4.0 incorporated [9]. We explore several of these issues in this
section.

How does task affinity limit task stealing? While OpenMP does not mandate
a task scheduling policy, many implementations use task stealing to exploit
OpenMP tasking semantics to improve load balance. Prescriptive task affin-
ity extensions would prevent the implementation from exploring the trade-off
between load balance and work time inflation. Thus, both of our approaches
provide descriptive hints that can guide task scheduling decisions. While our
proposals do not mandate task scheduling policies, the user may assume that
hints bias task stealing to improve affinity.

How should affinity mechanisms interact with the task scheduling constraints?
When a task encounters a task scheduling point it may switch (or not) to begin
or resume the execution of a different task. These task switching points are
subject to an explicit ruleset described in the OpenMP specification (i.e. the
Task Scheduling Constraints). Thus, any task affinity scheduler implementation
may use the information provided by the affinity clauses to guide task execution
but they will always be subject to any constraint explicitly expressed in the
OpenMP specification (see descriptive vs. prescriptive discussion in the previous
paragraph).

Should tasks have affinity with threads or data? We could specify which OpenMP
thread should execute a given task, which would support the distribution of
tasks to threads to which the programmer has already carefully distributed data.
Task-to-thread affinity also simplifies an initialization phase that must distribute
data appropriately across system resources. Alternatively, we could specify data
locations that are used by a given task to enable the task scheduler to execute
each task on a resource that is close to its data. Task affinity to a data location
may be the right level of abstraction for the programmer as it is independent of
the underlying architecture or the data layout. However, the programmer must
be able to specify all data important for affinity when the task is created (i.e.
this data must be accessible at task creation). While straightforward for simple
programs, data access sets of large programs with multiple compilation units are
often not apparent where the tasks are created. Since both choices are useful in
some cases, our proposals support both.

Approaches for Task Affinity in OpenMP 105

How should we express task-to-thread affinity? We could specify which thread
should execute a task by using OpenMP places or by using OpenMP thread
identifiers. Using OpenMP places would restrict the task to be executed by one
of the threads bound to the given place(s). While this approach has conceptual
appeal, the place list is static and defined through an environment variable before
the program starts. Further, the place list heavily depends on the system archi-
tecture, which would require the programmer to have that architecture in mind
when writing the program and, thus, fail to provide portable semantics. Because
of this we decided not to support OpenMP places. Alternatively, while OpenMP
thread identifiers may be appropriate if the program distributes data based on
them, they also can limit portability and do not capture natural semantics for
other data distribution strategies. Thus, our approaches provide this option but
also can exploit another mechanism, which specifies higher level policies that
capture task-to-thread affinity similarly to OpenMP thread affinity policies (i.e.,
spread or close). These policies allow the user to specify task-to-thread affinity
independently of the exact number of threads or place list.

Which task-to-thread affinity policies should we support? Policies that are similar
to those that already exist for thread affinity provide many advantages. First,
many users are already familiar with the concepts expressed by those policies.
Second, they have proven useful to guide efficient decisions for real applications.
It has to be noted that a task affinity policy cannot directly be expressed in
the context of the place list. To illustrate this, assume a parallel region with the
proc bind(master) clause, which determines all threads to execute within the
same place. In this case, the affinity(spread) clause on a taskgroup construct
cannot lead to task affinity outside of this single place, as task are executed by
the threads in the current team. We also allow specification of task affinity at
different levels of the task hierarchy, similarly thread affinity policies and nested
parallelism.

Which memory accesses determine task-to-data affinity? Two types of memory
accesses could guide task affinity: allocations or recent task (load/store) accesses.
Task affinity could request that a task execute in the same place as the last task
that used the same data, which would imply that the place to which task affinity
refers changes when task stealing occurs. Alternatively, task affinity could refer
to the place on which the data was first touched (allocated), which would fix
affinity to the original place. The right choice is application dependent: compute-
bound problems with good cache locality benefit from executing where the data
was most recently accessed and likely is still resident while the data for memory-
bound problems usually does not remain resident except where it was allocated.
Thus, we support both patterns.

Should we use the depend clause to express task-to-data affinity? Since tasking
constructs already support the depend clause to specify a relationship to data
locations, we could use it to express task-to-data affinity since the same data
location often captures data affinity and synchronization. However, the depend

106 C. Terboven et al.

clause tying affinity to synchronization semantics by binding the two concepts
would violate the separation of concerns design principle. Therefore, we provide
a new clause although we also support a short form that expresses the overlap
when appropriate.

On which tasking construct should we express task affinity? Specifying task affin-
ity on the task construct would make programs easier to read since the rela-
tionship is then visible where it applies. This choice easily supports task-to-data
affinity. However, high-level task-to-thread affinity policies affect multiple tasks.
Thus, specifying them on the task construct would be unclear and could lead
to cases in which sibling tasks specify different policies. Thus, we also provide
new clauses for thread affinity on the taskgroup construct, which clearly marks
which tasks are affected by the policy.

It would be also desirable to have affinity support for tasks spawned from
the taskloop construct. For task-to-thread affinity this is straightforward as
spawned tasks are grouped by an implicit taskgroup. But to support task-to-
data OpenMP currently lacks the language to be able to express the affinity
of the different iterations and how that relates to spawned tasks. We therefore
have decided to postpone a decision on how to handle task-to-data affinity for
the taskloop construct.

4 Proposed Syntax and Semantics

As a general concept, this proposal introduces the affinity clause for the task,
taskgroup and taskloop constructs, as discussed below.

Task: Task affinity could be expressed directly to an OpenMP place or thread,
depending on the given specifier, as in the following example:

#pragma omp task a f f i n i t y (thread : <thread− i d e n t i f i e r >)

Task affinity could be also expressed by means of the data a task produces,
modifies or consumes, indicated by a different specifier:

#pragma omp task a f f i n i t y (data : A[i])

The task shall be executed as close as possible to the location of the specified
data reference. Data location can be determined by the assumption of thread
affinity (i.e. binding OpenMP threads to cores or sockets) and then grouping
tasks that use the same location as close as possible.

A second approach could use system queries to determine where the data
is actually allocated1. However, this option may be hard to implement: Since
every task is executed by a thread, the runtime must first determine the physical
location of the variable reference in the system and then perform a mapping into
the place list to find the list of threads within that place, which are candidates
to execute the task. On current Linux systems this incurs considerable overhead.
1 Future versions of OpenMP may support explicit memory affinity and thereby

inhance the definition of a location.

Approaches for Task Affinity in OpenMP 107

Taskgroup: The affinity to a set of other tasks cannot be expressed directly on
a task construct, as it stands without the context of the other sibling tasks that
may be generated during the execution of the program. In order to define a task
distribution policy, the total number of tasks in the context must be known, as
it would be with the taskgroup construct. Currently the taskgroup construct
always includes an implied taskwait at the end, but in the following it is assumed
that this could be omitted, for example with the introduction of a nowait clause.

The following example illustrates the use of the affinity clause on a
taskgroup construct using the spread policy, analogous to the corresponding
thread affinity policy:

#pragma omp taskgroup a f f i n i t y (spread)

Task affinity cannot directly be expressed in the context of the place list,
as explained above. To address this, we defined that task affinity spread such
that the generated tasks shall be spread among the threads in the team, as far
and evenly as possible. In the current implementation, the task distribution is
determined based on the OpenMP thread ids – another option to implement
the task distribution would be to consider the place list as well, which could be
evaluated at a later point in time. Similarly, with the close policy, the generated
tasks shall be executed closely together as far as appropriate in the context of
the current thread team. And finally with the master policy, the generated tasks
shall be executed by the master thread.

As will be discussed below, determining the set of tasks to be used for apply-
ing the policy may challenge the implementation, the definition of the policy
could be extended with the specification of a number of tasks to be used together:

#pragma omp taskgroup a f f i n i t y (spread :N)

In this scenario, the policy will be applied under the assumption that N
tasks will be created in the construct. If more tasks are created the distribution
will be restarted with task N +1 which may not deliver optimal performance as
multiple tasks get scheduled on the same thread.

Taskloop: In its current form, the number of tasks to be generated is known.
Consequently, the same task affinity policies discussed in the previous section
are also useful in this case.

5 Prototype Implementations

As described above, some options were implemented and evaluated. Expression of
task affinity with respect to a place or thread or storage location have been imple-
mented in the Nanos++ runtime, while the task affinity policies on the taskgroup
and taskloop constructs have been implemented in the LLVM runtime.

108 C. Terboven et al.

Nanos++: All changes to the runtime needed for the affinity support were
limited to the scheduler submodule. The baseline is the Nanos++ distributed
breadth first scheduler. This scheduler has a pair of ready queues per thread:
local and private. The only difference in these two set of queues is that local
queues allow stealing but private queues do not. Stealing can be enabled in all
scheduler policies by means of an environment variable.

Private queues are only used once a tied task has been executed by a thread.
At any task switching point, a tied task is queued in the private queue of the
executing thread, preventing other threads from stealing the task.

Local queues are used when the task may still be executed by any thread.
Usually the encountering task will enqueue newly created tasks in its own local
queue. In this manner we ensure certain affinity guidance for multiple creator
scenarios (e.g., task creation in loop worksharing constructs or nested tasks cre-
ated in recursive programs). The only exception to this simple rule is when the
runtime encounters a single threaded execution by an implicit task (i.e., inside
a single or a master construct). In this case the scheduler policy distributes
the work following a round-robin or random pattern (configurable by means of
an environment variable) among all the threads of the team. There are cases
in which the runtime fails and determines a single creation scheme when actu-
ally there are more threads creating tasks simultaneously (e.g., multiple single
constructs with the nowait clause).

LLVM: We used the LLVM OpenMP runtime2 to create a prototype imple-
mentation of task affinity policies for the taskgroup and taskloop constructs,
as described in the subsection Taskgroup and Taskloop. In the LLVM runtime,
OpenMP tasking is implemented with a local task queue for each thread. When
a thread encounters a task construct, it creates a new task and puts it onto its
local task queue. If a thread is idle and its local queue is empty, it will steal a
task from another thread’s queue.

5.1 OpenMP Place/Thread Approach

The extended Nanos++ runtime supports the thread-id mapping technique in
a very straightforward way. The scheduler policy uses the set of threads local
queues but it will target the corresponding queue using the thread identifier
provided in the affinity clause.

5.2 Storage Location Approach

The implementation of the data-driven approach may imply different degrees of
complexity. In the current discussion we will describe two different Nanos++
implementations when guiding the task affinity using data. In both cases thread
local queues are still used in order to group these tasks with a certain affinity
among them.

2 http://openmp.llvm.org/.

http://openmp.llvm.org/

Approaches for Task Affinity in OpenMP 109

The first (default) implementation determines the target thread-id using
a hash-map function. All tasks providing the same memory address will be
enqueued onto the same thread local queue. Our hash-map function relies on
the pattern of consecutive memory blocks with the same size and we compute
the thread-id by shifting to the right log2(size) the memory address and keeping
the modulo number of threads.

The main problem with this approach is that information may not be accu-
rate when stealing occurs. Once a task is enqueued in a thread local queue it
should ultimately be executed by that thread. If stealing occurs then the task
is actually executed by another thread but the rest of the tasks using the same
data will still be scheduled to the formerly assigned thread.

A map can be used to keep track of the actual thread executing a task. The
map can be updated when a task is stolen so that related tasks will also be
scheduled on the thread that has stolen the task. This map is distributed among
threads as mentioned above, so any thread will know in which map a given data
can be found.

The latter implementation gets more accurate information for scheduling a
task but has the associated cost of keeping track of where the tasks are dis-
tributed at different scheduling points: submission, dependence fulfilment and
stealing. The evaluation section will give more information about the impact of
this specific technique.

5.3 Taskgroup

In order to implement the task affinity policies, we followed the general approach
to put each task onto the queue of the corresponding thread, which is determined
according to the given policy. To evenly distribute the tasks of a taskgroup or
taskloop construct over the available threads, in our approach it is required to
know the total number of tasks to distribute.

Therefore with affinity(spread) all recently created tasks are collected in
a dedicated list and only distributed among the threads when a taskwait is
encountered, either explicitly or implicitly. This means that task execution has
to be deferred until all tasks are created and ready to be distributed which may
negatively impact the performance. With our proposal of affinity(spread:N),
the distribution and execution of tasks could start immediately with task cre-
ation as the thread to put the task on can be determined a-priori.

Each task maintains a dedicated list of threads to execute its child tasks.
This list is partitioned according to the task affinity policy.

When using task affinity in a single producer pattern, and if the team consists
of more threads than tasks created in a single recursion step or loop iteration,
some threads will not immediately get a task to execute. These threads will try
to steal tasks from other threads’ task queues, which may disturb affinity. It is
not desirable for that to occur too early. To ensure affinity is maintained until
all threads are busy, we prevent any thread from stealing until it has at least
executed one local task. This ensures that task stealing is still allowed, which is
desirable as argued above to perform load balancing, for instance.

110 C. Terboven et al.

5.4 Taskloop

The LLVM OpenMP runtime recently gained support for taskloops, which inter-
nally makes use of taskgroups for synchronisation. Consequently we were able
to reuse our implementation and extend the support for task affinity on the
taskloop construct. It accepts the same task affinity policies as described in the
semantics and implementation above.

6 Evaluation

Again, task affinity with respect to a place or thread or storage location on the
one hand and the task affinity policies on the other hand have been implemented
and evaluated differently, with the Nanos++ and LLVM runtimes, respectively
(see Table 1 for an overview).

Table 1. Different approaches and their implementations.

Approach Implementation Evaluation

Place/Thread Nanos++ (Subsect. 5.1) Subsect. 6.1 (Fig. 1)

Storage Location Nanos++ (Subsect. 5.2) Subsect. 6.2 (Fig. 1)

Taskgroup Policy LLVM (Subsect. 5.3) Subsect. 6.3 (Fig. 2)

Taskloop Policy LLVM (Subsect. 5.4) Subsect. 6.4 (Fig. 3)

Measurements with the LLVM and Nanos++ runtimes have been performed
on a two-socket Intel Xeon E5-2699 v4 (Broadwell) system, with 44 cores in total.
This system exhibits a 2-level NUMA architecture with four memory domains,
as the two sockets are each split into two rings and each ring is connected to its
local memory controller.

Nanos++ runtime has also been evaluated in the MareNostrum III clus-
ter. This system is based on Intel SandyBridge processors, iDataPlex Com-
pute Racks, a Linux Operating System (based on a SuSe Distribution) and
an Infiniband interconnection network. Each node has 2x Intel SandyBridge-
EP E5-2670/1600 20M 8-core at 2.6 GHz and 8× 4 GB DDR3-1600 DIMMS of
memory.

In order to obtain the results presented in this section we used the STREAM
synthetic benchmark3. The suite is composed by four different kernels described
in Table 2 and each execution consists of multiple repetitions of these four kernels.

We evaluated our prototype implementation of task affinity for the
taskgroup construct with a task parallel merge sort. This program is repre-
sentative of the class of divide and conquer algorithms. The input size for the
merge sort was 233 integer values.
3 Further information about the STREAM benchmark suite available at: http://www.

cs.virginia.edu/stream/ref.html.

http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html

Approaches for Task Affinity in OpenMP 111

Table 2. The STREAM benchmark suite: description of kernels.

Name Kernel Bytes/Iteration FLOPS/Iteration

COPY a(i) = b(i) 16 0

SCALE a(i) = q*b(i) 16 1

SUM a(i) = b(i) + c(i) 24 1

TRIAD a(i) = b(i) + q*c(i) 24 2

6.1 Place/Thread

We evaluated our place and thread approach described in Subsect. 5.1 using the
aggregated results of the full STREAM suite. Figure 1 shows the performance
results of executing this benchmark in SandyBridge and Broadwell respectively.
Speedups are computed against the execution time of the very same parallel
version without task affinity annotation and using a per thread (local queue)
round-robin scheduler. The first two bars of each cluster of bars correspond to
the thread approach.

SandyBridge results show that we have no penalty/no gain when running on
a single socket, but we increase the performance up to 20 % when mapping tasks
to threads when both sockets are used.

We have used different numbers of threads configurations when running
on the Broadwell system: 11 threads (one ring of a single socket), 22 threads
(all the cores of a single socket), 44 threads (all the cores of the two sockets)
and 88 threads (enabling hyper-threading). As in the case of SandyBridge there
is no penalty/no gain when running on a single NUMA domain but perfor-
mance increases as we use a thread per core/two sockets (30 % of speed-up) and
increases still more when using all threads on the two sockets (up to 44 %).

SandyBridge

sp
ee

d−
up

0.
0

0.
4

0.
8

1.
2

threads
8 16

Broadwell

sp
ee

d−
up

0.
0

0.
4

0.
8

1.
2

threads
11 22 33 44 88*

thread thread−stealing data data−stealing

Fig. 1. Thread and storage (data) affinity approaches: STREAM benchmark perfor-
mance with and without stealing, relative to a round-robin scheduler, on two different
architectures using Nanos++.

112 C. Terboven et al.

The Broadwell results also show that stealing induces unpredictable execu-
tion behaviour. In some case we observe a performance degradation (e.g., with
44 threads) and in some other cases we the performance improves (e.g., with
88 threads). In this particular comparison (44 vs. 88 threads) the use of hyper-
threading may also have an impact on the observed results due the plot also shows
how the non-stealing version suffers a slight degradation in the speed-up gain.

6.2 Storage Location

Figure 1 also shows the results for the storage location approach, in the right
two bars of each cluster of bars. In all cases we obtain a performance gain (i.e.,
the speedups are always bigger than 1) with respect to the non-affinity version,
but comparing with the thread approach the performance gain is smaller. The
gap between 22 and 44 threads in the Broadwell execution is an anomaly. In
this specific case the storage affinity approach suffers from a small performance
degradation while the thread approach is still able to improve results.

6.3 Taskgroup

The measurements discussed below were done with the Intel C/C++ Compiler
in version 17.0 beta, employing our modified LLVM OpenMP runtime. 44 threads
(one per physical core) were used, always delivering the best absolute performance.

Figure 2 shows that task affinity resulted in an improvement of approximately
20 % of execution time, and also a significant reduction of the performance vari-
ation between trials. Results for three versions of the program are shown. The
default implementation performs data allocation and initialization in a sequential
part, with the result that the whole array is located on only one NUMA domain.
In the first touch variant, the array has been distributed over the NUMA nodes
in chunks of equal size. The affinity variant employs the same data distribution
together with a omp taskgroup affinity(spread) around the task creation
points. Note that this currently still includes an implied taskwait synchroniza-
tion construct at each recursion level, which we envision becoming optional in
future versions of the OpenMP specification.

The improvement in execution time for the affinity variant stems from the
higher percentage of local data accesses, as tasks are distributed according to
the data distribution. The reduction in runtime variation occurs because the
tasks’ distribution to the threads based on the affinity policy is deterministic. In
contrast, without task affinity the distribution is determined by stealing which
in itself is nondeterministic. When stealing is allowed, data locality and therefore
performance differs with every run.

6.4 Taskloop Construct

To evaluate affinity on the rather new taskloop construct, we modified the
STREAM benchmark to use a single-producer pattern: the taskloop construct

Approaches for Task Affinity in OpenMP 113

0
10

20
30

40

se
co

nd
s

default w/ first touch w/ affinity

Fig. 2. Policy approach with taskgroup
using LLVM: Avg, min and max execu-
tion time of merge sort with 233 integer
values.

taskloop

taskloop affinity(spread)

parallel for

G
B

/s

0
2

0
6

0
1

0
0

COPY SCALE ADD TRIAD

Fig. 3. Policy approach with taskloop
using LLVM: STREAM benchmark
performance.

is used to parallelize the loops performing the actual operations of the bench-
mark, and also the data initialization loops. On all instances the number of tasks
to be created is set equal to the number of threads (num tasks(omp get num
threads())): thereby the same number of explicit tasks is created as a do
worksharing construct would create implicit tasks. As compiler support for
this feature was very limited in the Intel compilers, we used a trunk version
of the LLVM/Clang compiler. This version required us to use the builtin
nontemporal store intrinsic to enable the generation of non temporal stores.
This was necessary to achieve maximum memory bandwidth with this code and to
allow for a fair comparison. If task affinity is successful, this taskloop implemen-
tation should deliver the same memory bandwidth as the do worksharing variant.

Figure 3 compares three variants: the taskloop implementation as described
with and without affinity enabled, and the same benchmark parallelized with the
parallel for combined worksharing construct serving as the reference. In the
version without affinity, the nondeterminism of the task to thread mapping in the
task scheduling – as explained above – limits the achievable memory bandwidth.
Enabling the affinity(spread) task affinity policy yields the same bandwidth
as using the worksharing construct from the original STREAM benchmark – the
ideal outcome.

7 Conclusion

In this paper we have discussed several language extensions to support task affin-
ity in OpenMP. We focus on three different approaches. The first is based on the
OpenMP places concept and complements OpenMP thread affinity. The second
approach is based on data storage. This approach is more programmer-friendly
(assuming programmers understand the data use of the tasks they create) but
requires more complexity in the runtime implementation. The third approach is
based on distribution policies of a set of tasks (e.g. those generated in taskgroup
or taskloop constructs).

114 C. Terboven et al.

We have implemented and evaluated a representative prototype for each app-
roach. The place-based approach is implemented assuming thread to core affinity.
The storage approach uses the memory address as a key value to determine and
group tasks using the same storage location. The distribution policies approach
has been implemented by tracking at each task level the set of valid thread local
queues a task can submit work to.

Results show that using this set of affinity guidelines when scheduling OpenMP
tasks can help the runtime system to improve the application performance. Having
different mechanisms to distribute tasks among threads or group their execution
over the same (or a close) physical resource can help programmers to choose the one
thatfitsbestwith their application.Regular and repetitivepatterns of task creation
may use thread-based task affinity, irregular patterns of memory usage may benefit
from the ease of the storage-based approach, and recursive applications seem to fit
with the task set distribution policies.

As future work we plan to further evaluate the different approaches on a
wider set of kernels. We also plan to perform more in-depth experiments to
better understand the effects of load imbalance and how stealing techniques may
impact the performance. Finally, we plan to execute these kernels on additional
system architectures to investigate the behavior of our implemented approaches
in more complex system architectures (with respect to the NUMA layout). Our
evaluations so far show significant benefits for OpenMP task parallel programs
using the diverse approaches we investigated.

Acknowledgement. SandiaNational Laboratories is amulti-program laboratoryman-
aged and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energys National Nuclear Security Administra-
tion under contract DE-AC04-94AL85000.

This work has been developed with the support of the grant SEV-2011-00067 of the
Severo Ochoa Program, awarded by the Spanish Government, by the Spanish Ministry
of Science and Innovation (TIN2015-65316-P, Computacion de Altas Prestaciones VII)
and by the Intel-BSC Exascale Lab collaboration project.

Someof the experimentswere performedwith computing resources grantedby JARA-
HPC from RWTH Aachen University under project jara0001. Parts of this work were
funded by the German Federal Ministry of Research and Education (BMBF) under grant
numbers 01IH13008A(ELP).

Intel and Xeon are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands are the property of their respective owners.
Software and workloads used in performance tests may have been optimized for per-

formance only on Intel microprocessors. Performance tests, such as SYSmark and Mobile-
Mark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined
with other products. For more information go to http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

http://www.intel.com/performance

Approaches for Task Affinity in OpenMP 115

Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations
not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer
to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

References

1. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The data locality of work stealing. In:
Proceedings of the 12th ACM Symposium on Parallel Algorithms and Architec-
tures, SPAA 2000, pp. 1–12. ACM (2000)

2. Bull Atos Technologies: Bull Coherent Switch. http://support.bull.com/ols/prod
uct/platforms/hw-extremcomp/hw-bullx-sup-node. Accessed 25 May 2016

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 1998, pp. 212–223.
ACM (1998)

4. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: SLAW: a scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. In: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2010, pp. 341–342. ACM (2010)

5. Huang, L., Jin, H., Yi, L., Chapman, B.M.: Enabling locality-aware computations
in OpenMP. Sci. Program. 18(3–4), 169–181 (2010)

6. Muddukrishna, A., Jonsson, P.A., Brorsson, M.: Locality-aware task scheduling
and data distribution for OpenMP programs on NUMA systems and manycore
processors. Sci. Program. 2015, 5:1–5:16 (2015)

7. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings of the 24th
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 65:1–65:12. IEEE (2012)

8. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 3.0. http://www.openmp.org/

9. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.0. http://www.openmp.org/

10. Pilla, L.L., Ribeiro, C.P., Cordeiro, D., Bhatele, A., Navaux, P.O.A., Méhaut, J.F.,
Kalé, L.V.: Improving parallel system performance with a NUMA-aware load bal-
ancer. Technical reort TR-JLPC-11-02, INRIA-Illinois Joint Laboratory on Petas-
cale Computing, Urbana, IL (2011). http://hdl.handle.net/2142/25911

11. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP task-
ing implementations on NUMA architectures. In: Chapman, B.M., Massaioli, F.,
Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195.
Springer, Heidelberg (2012)

12. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical place trees: a portable abstrac-
tion for task parallelism and data movement. In: Gao, G.R., Pollock, L.L., Cavazos,
J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 172–187. Springer, Heidelberg
(2010)

13. Ziakas, D., Baum, A., Maddox, R.A., Safranek, R.J.: Intel QuickPath interconnect
architectural features supporting scalable system architectures. In: 2010 18th IEEE
Symposium on High Performance Interconnects, pp. 1–6, August 2010

http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-sup-node
http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-sup-node
http://www.openmp.org/
http://www.openmp.org/
http://hdl.handle.net/2142/25911

	Approaches for Task Affinity in OpenMP
	1 Introduction
	2 Related Work
	3 Design Choices for Task Affinity
	4 Proposed Syntax and Semantics
	5 Prototype Implementations
	5.1 OpenMP Place/Thread Approach
	5.2 Storage Location Approach
	5.3 Taskgroup
	5.4 Taskloop

	6 Evaluation
	6.1 Place/Thread
	6.2 Storage Location
	6.3 Taskgroup
	6.4 Taskloop Construct

	7 Conclusion
	References

