
OpenMP Extension for Explicit Task Allocation
on NUMA Architecture

Jinpil Lee1(B), Keisuke Tsugane2, Hitoshi Murai1, and Mitsuhisa Sato1

1 RIKEN Advanced Institute for Computational Science, Kobe, Japan
{jinpil.lee,h-murai,msato}@riken.jp
2 University of Tsukuba, Tsukuba, Japan

tsugane@hpcs.cs.tsukuba.ac.jp

Abstract. Most modern HPC systems consist of a number of cores
grouped into multiple NUMA nodes. The latest Intel processors have
multiple NUMA nodes inside a chip. Task parallelism using OpenMP
dependent tasks is a promising programming model for many-core archi-
tecture because it can exploit parallelism in irregular applications with
fine-grain synchronization. However, the current specification lacks func-
tionality to improve data locality in task parallelism. In this paper, we
propose an extension for the OpenMP task construct to specify the loca-
tion of tasks to exploit the locality in an explicit manner. The prototype
compiler is implemented based on GCC. The performance evaluation
using the KASTORS benchmark shows that our approach can reduce
remote page access. The Jacobi kernel using our approach shows 3.6
times better performance than GCC when using 36 threads on a 36-core,
4-NUMA node machine.

Keywords: OpenMP · Task parallelism · NUMA optimization

1 Introduction

Many-core architecture is widely used in High Performance Computing (HPC)
since increasing the number of cores is an efficient way to build an energy effi-
cient processor. Along with the trend, Non-Uniform Memory Access (NUMA)
architecture has been introduced to provide high memory bandwidth. Modern
CPU architecture has multiple NUMA nodes inside a chip (e.g. the latest Xeon
processors with the Cluster-On-Die (COD) technology). We expect that this
trend will continue and many HPC systems will have many-core processors with
multiple NUMA nodes.

OpenMP has been the de facto standard for thread-level parallel program-
ming. In the early version of OpenMP, the programming model had focused on
data parallelism described by loop work sharing, which requires global synchro-
nization in a parallel region. When the number of cores increases, synchronization
overhead is getting bigger, and load imbalance among cores causes a significant
performance drop. Dynamic task generation was introduced in OpenMP 3.0.

c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 89–101, 2016.
DOI: 10.1007/978-3-319-45550-1 7

90 J. Lee et al.

In OpenMP 4.0, task dependency can be specified using the depend clause in
the task construct. Task parallelism can exploit potential parallelism in irregular
applications. Task dependency can reduce synchronization overhead because it
generates fine-grain synchronization between dependent tasks.

To exploit memory bandwidth with the NUMA architecture, OpenMP
provides thread affinity options through environment variables such as
OMP PROC BIND. For OpenMP 4.5, the proc bind clause is discussed to spec-
ify a thread affinity scheme for a parallel region. These can be helpful to improve
data locality when performing data parallelism with loop work sharing. However,
the current specification lacks functionality to do the same thing for task par-
allelism. A task can be tied to any thread in the parallel region. It will cause
unexpected remote page access across the NUMA interconnection.

The aim of our research is to find an explicit way of improving data local-
ity in OpenMP tasks for the NUMA architecture. In this paper, we propose
an OpenMP extension to describe NUMA-aware task allocation explicitly. The
extension specifies the data that the target task would access. Our compiler
implementation, based on GCC, determines the NUMA node that the speci-
fied data is allocated and schedules the task to the node. The programmer can
distribute data and tasks among NUMA nodes in the same manner by combin-
ing our extension and NUMA APIs. This approach can reduce remote memory
access and improve memory performance.

The rest of the paper is organized as follows: Sect. 2 show related works about
task parallelism and data locality optimization for the NUMA architecture using
OpenMP. In Sect. 3, we propose a new clause for the task construct, which gives
a hint about how to schedule tasks on the NUMA architecture. Our prototype
implementation based on GNU Compiler Collection (GCC) is explained in the
section. In Sect. 4, we introduce the new clause into KASTORS benchmark ker-
nels to improve data locality of tasks. In Sect. 5, the benchmark kernels are
evaluated using GCC and our implementation to show how much performance
improvement can be achieved by our approach. Finally, we discuss the future
work and conclude the paper and in Sect. 6.

2 Related Work

Barcelona OpenMP Task Suite (BOTS) [1,3] consists of several benchmark ker-
nels exploiting tasks in OpenMP 3.0. The KASTORS benchmark suite (KAS-
TORS) [4] developed by Inria is inspired by BOTS. The major difference between
BOTS and KASTORS is that KASTORS utilize the task depend clause in
OpenMP 4.0 to exploit dependency between tasks. Virouleau et al. [10] showed
that fine-grain task dependencies can replace global synchronization of all tasks
in a parallel region and improve the scalability of task parallelism in OpenMP.

The NUMA-aware task scheduler has been studied extensively [2,6–9]. Most
of them focus on work-stealing algorithms in runtime to handle recursive algo-
rithms. Muddukrishna et al. [5] showed that manual data distribution among
NUMA nodes and their NUMA-aware task scheduling algorithm in runtime can

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 91

improve the parallel performance. This approach is similar to ours since our app-
roach also requires explicit data distribution. However, task allocation is done
explicitly using the extended OpenMP task construct in our approach.

3 OpenMP Extension for NUMA-Aware Task Allocation

The NUMA architecture, as its name suggests, provides non-uniform memory
performance, which depends on the distance between a memory location and a
core. Generally, improving data locality and reducing remote memory access can
exploit potential memory performance on the NUMA architecture. The same is
true for task parallelism in OpenMP. A task should be executed on the NUMA
node where its processing data is allocated to get the highest memory bandwidth.
In this section, we propose a new clause named node bind for the OpenMP task
construct. It specifies a NUMA node that the target task should be scheduled.

3.1 Overview

Figure 1 shows the conceptual model of our approach. The software system con-
sists of multiple task queues connected to each NUMA node respectively. Assume
that an application generates a number of OpenMP task which carries out com-
putations on a single element of array A. The figure shows how tasks and data
can be allocated on NUMA nodes and matched with the help of information
given by the programmer.

First, the programmer distributes the array among NUMA nodes by using
existing NUMA libraries such as libnuma. Then the programmer describes
OpenMP tasks with a hint about which element would be accessed in the task.

Fig. 1. NUMA-aware data distribution and task allocation

92 J. Lee et al.

The node bind clause used in the task construct, which we propose in this paper,
gives the information to the OpenMP compiler and runtime. The OpenMP com-
piler can determine the node id that the specified element is allocated. The
OpenMP runtime utilizes it to schedule the task to the corresponding task queue.
In our implementation, a group of cores connected to the same NUMA node has
a higher priority to access the corresponding task queue than others so that the
cores would have more chance to access the local memory. This approach pro-
vides an explicit way of improving data locality in tasks by combining explicit
data distribution.

3.2 Language Definition

Listing 1.1 shows the definition of the node bind clause. node bind is defined as
an additional clause to the task construct. It takes one variable reference that
its address can be determined by the compiler. The compiler assigns the target
task on the same node that the specified variable is allocated. When multiple
node bind is given, the compiler uses the last node bind clause.

Listing 1.1. node bind clause definition

#pragma omp task [c l au s e [[,] c l au s e] . . .] new l ine
s t r u c t u r e d b l o c k

c l au s e := unt ied
| depend (dependence type : l i s t)
| . . .
| node bind (v a r i a b l e)

Listing 1.2 shows an example code of the node bind clause. The code is taken
from the Strassen kernel in KASTORS. The output array C is given in the
node bind clause. When M2 and C are allocated on the same NUMA node,
the task can be executed without any remote memory access. In some cases, the
depend clause has enough information to specify the NUMA node to be allo-
cated, instead of using the node bind clause. Using output dependency for task
allocation may be a good idea because usually there is one output dependency
for each task, and the output array can be easily distributed among NUMA
nodes compare to input arrays. However, we propose to use more explicit way
of using the node bind clause in this paper because task allocation is to be con-
trolled explicitly and we are interested in seeing how performance changes by
the initialization scheme.

Listing 1.2. node bind clause example code

#pragma omp task depend (inout : C) depend (in : M2) \
pr i va t e (Row, Column) node bind (C[0])

for (Row = 0 ; Row < QuadrantSize ; Row++)
for (Column = 0 ; Column < QuadrantSize ; Column += 1)

C[RowWidthC∗Row+Column] += M2[Row∗QuadrantSize+Column] ;

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 93

3.3 Prototype Implementation Using GCC

We have implemented the node bind clause modifying GNU Compiler Collection
(GCC) version 5.3.0. GCC 5.3.0 supports OpenMP 4.0 features including the
task depend clause. The GCC implementation determines the address of the
variable specified in the depend clause and passed it to the runtime. We used
the mechanism to implement the node bind clause. The compiler determines
the address of the variable specified in the node bind clause and add it to the
argument list of the GOMP task() function which generates OpenMP tasks.

When the address is passed to the OpenMP runtime system, our implemen-
tation calls a Linux system call, get mempolicy() to determine the NUMA node
id on which the specified variable is allocated. The node id is used to select the
corresponding task queue. The GCC implementation creates a single global task
queue shared by all tasks in a parallel region. Our implementation also has a
global task queue and creates multiple task queues assigned to each NUMA node
respectively. If get mempolicy() returns an available NUMA id, the correspond-
ing task queue is selected. If the function could not determine the NUMA node
(it usually happens when the memory area has been allocated, but not touched
by any thread), the global task queue is selected. Tasks without a node bind
clause are scheduled to the global task queue.

Task handling functions in GCC dequeue a task from the global task queue
and execute it. Our implementation is modified to use NUMA task queues. As
long as tasks exist in the local queue, cores dequeue tasks from the local task
queue. If there is no task left in the local task queue, tasks in the global queue are
scheduled. If there is no task both in the local queue and the global queue, cores
take tasks from other NUMA nodes. This improves workload balance between
cores at the cost of remote page access.

4 KASTOR Kernel Optimization with node bind

In this section, we introduce the node bind clause into the KASTOR benchmark
kernels, Jacobi, SparseLU, and Strassen. Each kernel is implemented in two ways,
TASK and TASK DEP. The TASK version is implemented using independent
tasks in OpenMP 3.0, which is equivalent to BOTS. Depend clauses in OpenMP
4.0 are added in the TASK DEP version to replace global synchronization. We
have modified both versions adding node bind clauses. Explicit data distribution
schemes using NUMA APIs have been tested on each kernel.

4.1 Jacobi Kernel

The Jacobi kernel solves a 2D Poisson equation on evenly-divided N × N grid
points. Along with the TASK and TASK DEP version, KASTOR implements the
FOR version for Jacobi. It uses the parallel for construct to perform loop work
sharing, which is a straightforward way to parallelize stencil computation. The
Jacobi kernel performs 5-point 2D stencil computation known to be memory-
intensive.

94 J. Lee et al.

Listing 1.3 shows the TASK DEP version of Jacobi. Each task calculates
assigned grid points and stores the result data in the output array. The node bind
clauses are added to specify the first element of the assigned output array block
in each task. Since each grid point can be calculated independently, we can
distribute the calculation evenly not only among cores but also NUMA nodes.
The parallel for construct was used to initialize array data so that the arrays
are evenly distributed among NUMA nodes. It relies on the first-touch memory
allocation policy of the Linux OS. The TASK version was also modified in the
same way.

Listing 1.3. Jacobi TASK DEP Kernel with node bind clauses

for (i t = i t o l d + 1 ; i t <= itnew ; i t++) {
for (b lock x = 0 ; b lock x < max blocks x ; b lock x++)

for (b lock y = 0 ; b lock y < max blocks y ; b lock y++)

#pragma omp task shared (u , unew , b l o c k s i z e , nx , ny) \
depend (in : unew [. . .]) depend (out : u [. . .]) . . . \
node bind (u [b lock x ∗ b l o c k s i z e ∗nx+block y ∗ b l o c k s i z e])

copy block (nx , ny , block x , block y , u , unew , b l o c k s i z e) ;

for (b lock x = 0 ; b lock x < max blocks x ; b lock x++)

for (b lock y = 0 ; b lock y < max blocks y ; b lock y++) . . .
#pragma omp task shared (u , unew , f , dx , dy , nx , ny , b l o c k s i z e) \

depend (out : unew [. . .]) depend (in : f [. . .] , . . .) . . . \
node bind (unew [b lock x ∗ b l o c k s i z e ∗nx + . . .])

compute est imate (block x , block y , u , unew , f , dx , dy ,

nx , ny , b l o c k s i z e) ; }

4.2 SparseLU Kernel

The SparseLU kernel calculates the LU decomposition of a sparse matrix.
Listing 1.4 shows the TASK version of SparseLU. BENCH is a 2D array of which
each element is the memory pointer to the submatrix. SparseLU allocates a sub-
matrix to the locations where the problem matrix has non-zero values. The LU
decomposition is carried out to the non-NULL submatrices.

Listing 1.4. SpaseLU TASK Kernel with node bind clauses

lu0 (BENCH[kk∗ mat r i x s i z e+kk] , submat r i x s i z e) ;

for (j j=kk+1; j j<mat r i x s i z e ; j j++)
i f (BENCH[kk∗ mat r i x s i z e+j j] != NULL)

#pragma omp task unt ied f i r s t p r i v a t e (kk , j j) shared (BENCH) \
node bind (BENCH[kk∗ mat r i x s i z e+j j] [0])

fwd (BENCH[kk∗ mat r i x s i z e+kk] ,

BENCH[kk∗ mat r i x s i z e+j j] , s ubmat r i x s i z e) ;

for (i i=kk+1; i i <mat r i x s i z e ; i i ++)

i f (BENCH[i i ∗ mat r i x s i z e+kk] != NULL)
#pragma omp task unt ied f i r s t p r i v a t e (kk , i i) shared (BENCH) \

node bind (BENCH[i i ∗ mat r i x s i z e+kk] [0])

bdiv (BENCH[kk∗ mat r i x s i z e+kk] ,
BENCH[i i ∗ mat r i x s i z e+kk] , submat r i x s i z e) ;

#pragma omp taskwai t

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 95

for (i i=kk+1; i i <mat r i x s i z e ; i i ++)

i f (BENCH[i i ∗ mat r i x s i z e+kk] != NULL)
for (j j=kk+1; j j<mat r i x s i z e ; j j++)

i f (BENCH[kk∗ mat r i x s i z e+j j] != NULL) {
i f (BENCH[i i ∗ mat r i x s i z e+j j]==NULL)

BENCH[i i ∗ mat r i x s i z e+j j] =

a l l o ca t e c l e an b l o ck numa (submatr ix s i z e , j j) ;

#pragma omp task unt ied f i r s t p r i v a t e (kk , j j , i i) shared (BENCH) \
node bind (BENCH[i i ∗ mat r i x s i z e+j j] [0])

bmod(BENCH[i i ∗ mat r i x s i z e+kk] ,BENCH[kk∗ mat r i x s i z e+j j] ,
BENCH[i i ∗ mat r i x s i z e+j j] , s ubmat r i x s i z e) ;

}
#pragma omp taskwai t

The submatrix allocation pattern is irregular in SparseLU because it depends
on the sparsity of the input matrix. Figure 2 shows the allocation pattern of
the default input used in SparseLU. Each square indicates a submatrix. The
submatrices allocated in the initialization routine are drawn as black squares.
Submatrices allocated during the LU decomposition are drawn as gray blocks.
White squares are zero matrices which are not accessed in the LU decomposition.
As the figure shows, every column at even indices has non-zero elements. Given
the situation, we distributed each column in a block-cyclic manner. 4 columns are
grouped into a block, and blocks are distributed among NUMA nodes in a round-
robin fashion. The columns are distributed among 4 NUMA nodes in Fig. 2.

Fig. 2. Data distribution in SparseLU

The data distribution is implemented by using libnuma. numa alloc onnode()
takes a NUMA node id as an argument and allocates a memory chunk on the
specified node. Given the column index jj, the initialization routine allocates the
submatrix on node ((jj/B) % N) where B is the block size and N is the number of
nodes to be used. Each task is scheduled to the node that the output submatrix
is allocated. As Listing 1.4 shows, the first element of the output submatrix is
given in the numa node clauses so that no remote page access will occur when
accessing the output. Note that the original version calls the allocation function

96 J. Lee et al.

in a task region. The modified version calls the allocation function in the single
region with a target node id. The difference between these allocation schemes is
explained in Sect. 5.

4.3 Strassen Kernel

The Strassen kernel calculates the multiplication of dense matrices using the
Strassen algorithm. The algorithm reduces the number of multiplication opera-
tions by splitting each matrix into 4 equally divided submatrices. Figure 3 shows
how the output matrix is divided in recursive function calls. The output array
C is split into 4 submatrices (C0-C3 in Fig. 3) in the first matrix multiplication
function call. Each submatrix is calculated in parallel using independent tasks.
Each task splits the submatrix into 4 smaller submatrices and generates tasks to
handle them. This recursive computation guarantees that the child tasks always
compute the output elements which are allocated in the parent task, as we can
see in Fig. 3.

Since the output matrix is split into 4 submatrices, the array elements can be
distributed among 4 nodes at most. We distributed the array elements explicitly
by using the OpenMP parallel construct and libnuma APIs. First, aligned alloc()
is used to allocate the output array with a page boundary alignment. The starting
index of the corresponding submatrix is calculated in a parallel region. A thread
is selected for each NUMA node in the parallel region. Then the thread calls
numa setlocal memory() to migrate memory pages to the local NUMA node.
As a result, the submatrices C0-C3 shown in Fig. 3 are allocated on multiple
NUMA nodes.

Fig. 3. Data distribution in Strassen

Listing 1.5 shows the TASK DEP version of Strassen. The kernel performs 7
multiplications and 4 of them access the output array C. node bind clauses are
specified for them. Since we wanted to use the node bind clause at the top level
of recursive calls, our modified GCC runtime performs task allocation only if
the task does not have the parent task. When the parent task exists, the NUMA
node id assigned to the parent task will be used.

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 97

Listing 1.5. Strassen TASK DEP Kernel Code with node bind clauses

void Opt imizedStrassenMult ip ly par (double ∗C, double ∗A, . . .
#pragma omp task depend (in : A, B) depend (out : M2)

Opt imizedStrassenMult ip ly par (M2, A, B, . . .) ;
#pragma omp task unt ied depend (in : S1 , S5) depend (out : M5)

Opt imizedStrassenMult ip ly par (M5, S1 , S5 , . . .) ;
#pragma omp task unt ied depend (in : S2 , S6) depend (out : T1sMULT)

Opt imizedStrassenMult ip ly par (T1sMULT, S2 , S6 , . . .) ;

#pragma omp task unt ied depend (in : S3 , S7) depend (out : C22) \
node bind (C22 [0])

Opt imizedStrassenMult ip ly par (C22 , S3 , S7 , . . .) ;

#pragma omp task unt ied depend (in : A12 , B21) depend (out : C) \
node bind (C [0])

Opt imizedStrassenMult ip ly par (C, A12 , B21 , . . .) ;
#pragma omp task unt ied depend (in : S4 , B22) depend (out : C12) \

node bind (C12 [0])

Opt imizedStrassenMult ip ly par (C12 , S4 , B22 , . . .) ;

#pragma omp task unt ied depend (in : A22 , S8) depend (out : C21) \
node bind (C21 [0])

Opt imizedStrassenMult ip ly par (C21 , A22 , S8 , . . .) ;

#pragma omp task depend (inout : C) depend (in : M2) . . .

for (Row = 0 ; Row < QuadrantSize ; Row++)
for (Column = 0 ; Column < QuadrantSize ; Column += 1)

C[RowWidthC∗Row+Column] += M2[Row∗QuadrantSize+Column] ;

5 Performance Evaluation

In this section, we measured the performance of the KASTORS benchmark
kernels using GCC and our implementation. Table 1 shows the hardware config-
uration and the memory performance used for the evaluation. Each CPU has
18 physical cores and 2 NUMA nodes (when the COD mode is enabled). The
OpenMP version of the Stream Triad benchmark is used to measure the sustain-
able memory bandwidth. OMP PROC BIND is set to CLOSE so that OpenMP
threads use the smallest number of NUMA nodes. We used the same value to
evaluate KASTORS. We compiled the original KASTOR kernels using GCC,
and the modified kernels shown in Sect. 4 using our implementation.

5.1 Result of Jacobi Kernel

Figure 4 shows the performance speedup of the Jacobi kernel against the serial
version. The matrix size is 16384×16384 and the block size is 1024. The original
FOR, TASK, and TASK DEP version (task init and original in Fig. 4) initializes
the grid point values in parallel execution of independent tasks so that the mem-
ory pages are distributed among NUMA nodes in a random manner. On the other
hand, the modified TASK and TASK DEP version showed in Sect. 4 (node bind
in Fig. 4) initializes the grid points using loop work sharing in a parallel region.
As a result, the memory pages are evenly distributed among nodes.

98 J. Lee et al.

Table 1. Evalustion environment

Item Name/Value

CPU Intel (R) Xeon (R) CPU E5-2699 v3, 2 sockets

18 cores with HT, 2.30 GHz, COD enabled

Memory DDR4 128 GB

Stream performance 1 thread: 14.49

(Triad, GB/s) 9 threads (1 node): 21.82 18 threads (2 nodes): 43.36

27 threads (3 nodes): 65.01 36 threads (4 nodes): 86.49

Memory DDR4 128 GB

OS Red Hat Enterprise Linux Server release 7.1

Linux Kernel: 3.10.0-229.7.2.el7.x86 64

Compiler GNU Compiler gcc version 5.3.0

Fig. 4. Parallel performance of Jacobi

The performance of the FOR version shows that the initialization scheme
can change the performance. Compared with for init, the FOR version initialized
using the parallel for construct, task init achieves the lower performance than for
init because the memory pages are allocated randomly among NUMA nodes. for
init achieves the best performance because the access pattern of the initialization
and the computation is perfectly matched.

The modified TASK and TASK DEP version achieve better performance
than the original versions for the same reason of for init. It reduces remote
page access by matching the data allocation pattern and the task scheduling
pattern. The reason why the TASK version show the lower scalability than the
TASK DEP version is that there is a global synchronization (taskwait construct)
between the update phase and the computation phase. The GCC OpenMP run-
time eagerly uses the master thread to execute the child tasks to handle the

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 99

taskwait construct. The same thing happens in our implementation so that the
specified task allocation scheme is ignored in the global synchronization.

5.2 Result of SparseLU Kernel

Figure 5 shows the performance speedup of the SparseLU kernel against the
serial version. The matrix size is 128 and the submatrix size is 64. The original
TASK version allocates submatrices in each task so that the memory pages
are distributed in a random manner. The original TASK DEP version allocates
submatrices on the master thread before task creation in order to specify task
dependency using the submatrix indices. In both cases, remote page access occurs
when accessing the output submatrix since the GCC OpenMP runtime does not
consider data locality in task scheduling.

Fig. 5. Parallel performance of SparseLU

node bind in Fig. 5 shows the performance of the modified TASK and TASK
DEP version shown in Sect. 4. task (random) uses node bind clauses and sub-
matrices are allocated in the same manner with the original TASK version. task
(random) achieves lower performance than the original version because of the
irregular allocation pattern. All submatrices are allocated in the first iteration of
the LU decomposition (when kk is 0 in Listing 1.4) and reused in the subsequent
iterations. task (random) uses the irregular allocation pattern to allocate tasks
in every iteration. It causes load imbalance between NUMA nodes.

The modified TASK version solves the problem. It distributes submatrices
evenly among nodes using NUMA APIs. The block-cyclic manner used in Fig. 2
guarantees that each NUMA node has the balanced workload in every iteration.
As a result, the modified version achieves better performance than the origi-
nal version. The result shows that the performance of the node bind clause is
sensitive to data distribution.

100 J. Lee et al.

5.3 Result of Strassen Kernel

Figure 6 shows the performance speedup of the Strassen kernel against the ser-
ial version. The modified TASK and TASK DEP version distributes the output
matrix C among nodes. The output matrix and temporary arrays allocated in
the parent task are used in the child tasks in recursive function calls. Our imple-
mentation schedules child tasks to the same node used to the parent task. The
explicit data distribution and the task scheduling scheme increase the perfor-
mance of the TASK DEP version by 7 %.

Fig. 6. Parallel performance of Strassen

While the output matrix is localized, the input matrices should be copied
from remote NUMA nodes due to the data dependency coming from the Strassen
algorithm. For the further improvement, we are testing some techniques to reduce
the remote page access, such as duplicating input data among nodes.

6 Conclusion

In this paper, we proposed the node bind clause for the OpenMP task construct
specifying the NUMA node id that the task should be scheduled. The extension
can be combined with explicit data distribution to reduce remote page access, as
shown in Sect. 4. Although it requires additional programming effort, the results
of the performance evaluation using the KASTOR benchmark showed that
NUMA-aware task allocation improved the parallel performance. The Jacobi
kernel using our approach shows 3.6 times better performance than GCC when
using 36 threads on a 36-core, 4-NUMA node machine. Techniques for distribut-
ing data and reducing communication have been studied extensively in cluster
computing. We found that those techniques can be also helpful for the NUMA
architecture. Currently, we are designing an OpenMP extension to describe data
distribution instead of using Linux OS system calls and NUMA APIs.

OpenMP Extension for Explicit Task Allocation on NUMA Architecture 101

References

1. Barcelona OpenMP Task Suite (BOTS). https://pm.bsc.es/projects/bots/
2. Drebes, A., Heydemann, K., Drach, N., Pop, A., Cohen, A.: Topology-aware and

dependence-aware scheduling and memory allocation for task-parallel languages.
ACM Trans. Archit. Code Optim. 11(3), 30:1–30:25 (2014). http://doi.acm.org/
10.1145/2641764

3. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: Proceedings of the 2009 International Conference on Parallel Process-
ing, ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009).
doi:10.1109/ICPP.2009.64

4. KASTORS Benchmark. https://gforge.inria.fr/projects/kastors/
5. Muddukrishna, A., Jonsson, P.A., Vlassov, V., Brorsson, M.: Locality-aware task

scheduling and data distribution on NUMA systems. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 156–170. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40698-0 12

6. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. Int. J. High Perform.
Comput. Appl. 26(2), 110–124 (2012). doi:10.1177/1094342011434065

7. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings ofthe Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012, pp. 65:1–65:12. IEEE Computer Society Press, Los Alamitos
(2012). http://dl.acm.org/citation.cfm?id=2388996.2389085

8. Tahan, O.: Towards efficient OpenMP strategies for non-uniform architectures.
CoRR abs/1411.7131 (2014). http://arxiv.org/abs/1411.7131

9. Vikranth, B., Wankar, R., Rao, C.R.: Topology aware task stealing for on-chip
NUMA multi-core processors. Procedia Comput. Sci. 18, 379–388 (2013). 2013
International Conference on Computational Science. http://www.sciencedirect.
com/science/article/pii/S187705091300344X

10. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O.,
Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS bench-
mark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-11454-5 2

https://pm.bsc.es/projects/bots/
http://doi.acm.org/10.1145/2641764
http://doi.acm.org/10.1145/2641764
http://dx.doi.org/10.1109/ICPP.2009.64
https://gforge.inria.fr/projects/kastors/
http://dx.doi.org/10.1007/978-3-642-40698-0_12
http://dx.doi.org/10.1177/1094342011434065
http://dl.acm.org/citation.cfm?id=2388996.2389085
http://arxiv.org/abs/1411.7131
http://www.sciencedirect.com/science/article/pii/S187705091300344X
http://www.sciencedirect.com/science/article/pii/S187705091300344X
http://dx.doi.org/10.1007/978-3-319-11454-5_2

	OpenMP Extension for Explicit Task Allocation on NUMA Architecture
	1 Introduction
	2 Related Work
	3 OpenMP Extension for NUMA-Aware Task Allocation
	3.1 Overview
	3.2 Language Definition
	3.3 Prototype Implementation Using GCC

	4 KASTOR Kernel Optimization with node_bind
	4.1 Jacobi Kernel
	4.2 SparseLU Kernel
	4.3 Strassen Kernel

	5 Performance Evaluation
	5.1 Result of Jacobi Kernel
	5.2 Result of SparseLU Kernel
	5.3 Result of Strassen Kernel

	6 Conclusion
	References

