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Abstract. The tasking feature enriches OpenMP by a method to
express parallelism in a more general way than before, as it can be
applied to loops but also to recursive algorithms without the need of
nested parallel regions. However, the performance of a tasking program
is very much influenced by the task scheduling inside the OpenMP run-
time. Especially on large NUMA systems and when tasks work on shared
data structures which are split across NUMA nodes, the runtime influ-
ence is significant. For a programmer there is no easy way to examine
these performance relevant decisions taken by the runtime, neither with
functionality provided by OpenMP nor with external performance tools.
Therefore, we will present a method based on the Score-P measurement
infrastructure which allows to analyze task parallel programs on NUMA
systems more deeply, allowing the user to see if tasks were executed by
the creating thread or remotely on the same or a different socket. Exem-
plary the Intel and the GNU Compiler were used to execute the same task
parallel code, where a performance difference of 8x could be observed,
mainly due to task scheduling. We evaluate the presented method by
investigating both execution runs and highlight the differences of the
task scheduling applied.

1 Introduction

In 2007 OpenMP was extended by a new way to express parallelism through
tasks. A task is an independent chunk of work in combination with an own data
environment. In OpenMP tasks are executed by threads of the current team.
Which thread executes which tasks is up to the OpenMP runtime and by now
OpenMP offers no way for a programmer to have influence on this decision.
Furthermore, there is no way for a programmer to get information about the
scheduling done by the runtime.

In former work we investigated the behavior of different OpenMP runtime
systems and their scheduling techniques (see [14,15] for details). It turned out,
that the scheduling of tasks to threads can be extremely relevant for applica-
tion performance especially on non uniform memory access (NUMA) machines.
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Furthermore, we found that a programmer can have indirect influence on the
scheduling for some runtimes, like the Intel OpenMP runtime, by letting threads
create tasks which they should preferably execute. This way of task creation is
called parallel-producer multiple-executor pattern, since all threads
create tasks in parallel and then also execute them in parallel.

Since in these cases the application performance is dependent on the schedul-
ing done by the OpenMP runtime, it is highly desirable from a programmer’s
perspective to be able to observe the scheduling behavior in detail for perfor-
mance analysis. We investigated the general ability of performance tools to ana-
lyze OpenMP task parallel programs in [13]. It turned out, that performance
tools can deliver a lot of information for tasking programs, but no tool deliv-
ers an easy way to understand the impact of scheduling decisions done by the
runtime on NUMA architectures.

Therefore, in this work we will present an approach to address this issue.
Based on the Score-P performance measurement infrastructure [5] we imple-
mented a method to combine a standard OTF2 event trace with hardware infor-
mation of the system about memory nodes and with information about thread
pinning. This allows to investigate if tasks were executed by the creating thread
or if they were executed by a different thread. Furthermore we can analyze if
the different thread was running on the same or a different NUMA node, which
is useful information in case the task accesses data resident on the local NUMA
node.

The rest of this work is structured as follows: First, we present related work in
Sect. 2 before we will recap relevant information from our work on NUMA-aware
task programming in Sect. 3, including an extended version of the benchmark
we used to analyze the tasking behavior of different runtime systems. Then
we present out method to analyze the tasking performance in a NUMA-aware
manner in Sect. 4 and an evaluation is presented in Sect. 5. Finally, we draw our
conclusions in Sect. 6.

2 Related Work

The concept of tasks [1] has been added in OpenMP 3.0 [9]. As was shown by
Ayguadé et al. tasking is able to deliver comparable performance to OpenMP
worksharing implementations [2]. This early performance comparison did not
focus on multi-core multi-socket (NUMA) machines, but several others investi-
gated this issue. Olivier et al. [8] and Broquedis et al. [3] both deal with the
efficient scheduling of OpenMP tasks on NUMA systems. Our previous work
[14,15] in contrast did not aim at changes to the scheduling, but tried to use the
given scheduling mechanism which became common practice in OpenMP in the
most efficient way on NUMA systems.

Performance analysis of task parallel programs is meanwhile possible with
many different tools. We investigated the ability of a subset of these tools in
[13]. Sampling based tools like the Intel VTune Amplifier [4] or the Oracle Solaris
Studio Analyzer [10] can be used to gather a statistical overview of the execution



NUMA-Aware Task Performance Analysis 79

of a task parallel program. These tools allow to identify execution time in tasks
and also overhead spend in the OpenMP runtime to manage tasks or idle time
because no tasks are available. But, they do not allow to identify an individual
task instance in the analysis and also data on the scheduling is not presented.
Event based tools like the measurement system Score-P in combination with
visualization tools like the profile browser Cube [11] or the event trace visualiza-
tion tool Vampir [7] allow to investigate the same information than the sampling
based tools, but with a higher measurement overhead for fine grained tasks. Fur-
thermore these tools allow to identify task instances which allows for individual
tasks to locate the creation and execution region in a trace file manually. With
this information the scheduling can be analyzed, but for hundreds or thousands
of tasks in an application run, this leads to an enormous amount of manual work.
Therefore, we will present an automated method to ease this analysis in the next
sections of this work.

3 NUMA-Aware Task Creation

The performance analysis techniques presented in this work are useful under
different circumstances. The major requirement is, that a programmer has cre-
ated the tasks in a NUMA-aware manner. What exactly is understood under
NUMA-aware in this context is wrapped up in this section and is basically a
recap of the work we presented in [14,15].

3.1 Task Scheduling in OpenMP

As mentioned before, OpenMP does not specify exactly how the runtime should
schedule tasks. Even not scheduling them at all and just executing all tasks
immediately would be legal according to the specification. But of course this
would not lead to additional parallelism in the application and a user would
be unsatisfied by the implementation. So, in the past eight years, since tasking
was added to OpenMP, different scheduling mechanisms have emerged. The most
relevant difference with respect to NUMA-aware scheduling is, if tasks are queued
after creation in one central task queue or if they are queued in thread local
task queues.

Figure 1 illustrates both approaches. On the left side a central task queue is
shown. Here all threads enqueue tasks into one queue and also dequeue tasks
from this data structure. On the right side of the figure thread local task queues
are shown. Here, every thread has an own queue where it enqueues tasks. Every
thread can also dequeue tasks from its own queue, but it can also dequeue tasks
from other queues. This is then called task stealing. Typically stealing is only
performed if the local queue is empty, since it involves more overhead.

The Intel compiler (v. 15.0) uses thread local task queues, whereas the GCC
(v.4.9) compiler uses a central queue. Therefore, these compilers are used for all
later experiments as representatives for one or the other approach.
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Fig. 1. Illustration of a central task queue used by four threads (left) and thread-local
task queues for four threads (right).

3.2 Task Creation

NUMA-aware programming typically has to handle:

– The mapping of threads to cores on specific NUMA nodes.
– The mapping of data to NUMA nodes.
– The mapping of work items to threads. Work items in this context can be for

example loop iterations, OpenMP sections or tasks.

The goal for NUMA-aware programming is then to execute work items by
threads which run on the NUMA node where the data is located which is needed
to process this work item.

Regarding the first issue, OpenMP offers support for thread pinning which
allow to influence the mapping of threads to cores in any desired way. For the
data mapping no support exists in OpenMP, but all common operating systems
in HPC use the so called first-touch memory allocation policy. This policy
means, that data is located on the NUMA node where it is first used. By parallel
data initialization this can be used to achieve most desired mappings of data to
NUMA nodes. For the mapping of work items to threads in some cases support
exists, e.g. for parallel loops with a static schedule clause. But, as mentioned
above, when tasks are used, the mapping of tasks to threads cannot directly be
influenced by the programmer and any scheduling of tasks to threads is valid
according to the specification.

In [14,15] we investigated the scheduling of tasks for different task creation
patterns and for different compilers. It turned out, that the implementation of
thread local task queues can be used on NUMA systems to maintain data locality
to a certain amount. When the parallel-producer multiple-executor
pattern is used, i.e. tasks are created and executed in parallel by all threads of a
team, every thread fills its own local task queue. During execution all threads will
then first pick tasks out of their own task queue until this queue is empty. After
the queue is empty, they will start task stealing. If the programmer creates tasks
by the thread which also initialized the data needed in this tasks, this results in
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a situation where all threads have a task queue filled with tasks which need local
data. After a thread executed all tasks of its own task queue, it will start task
stealing and execute tasks on remote data, if the task is stolen from a remote
NUMA node’s thread. But, this situation means, that no local data needs to be
processed anymore, since the local queue is empty. In this case it is better to
execute remote tasks than doing nothing.

3.3 Benchmark Evaluation

To highlight the performance relevance of tasking implementations under these
circumstances we used a synthetic benchmark program. The benchmark emulates
a situation where:

– Many work items need to be processed which all work on separate data.
– The needed data is distributed already over the NUMA nodes of the system.
– The amount of data to process on each NUMA node is different, so there is a

load imbalance problem. (If no load imbalance would exist, a loop worksharing
construct with a static schedule would be preferred over tasks.)

The benchmark is designed in the following way: A set of work packages (WP)
to execute is created (3840 in this case). Each WP performs a vector addition as
operation, where all WPs use different vectors. The size of the vectors increases

Fig. 2. Distribution of work packages (WPs) across NUMA nodes for the load balancing
benchmark. Exemplary for 12 work packages (WPs) on a machine with 8 threads and
4 NUMA nodes.
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linearly from the first to the last work package, resulting in a load imbalance. The
vectors are distributed across the NUMA nodes evenly, i.e. the first |WPs|

|NUMAnodes|
vectors are located in NUMA node 0, the second |WPs|

|NUMAnodes| vectors in NUMA
node 1 and so on. Figure 2 illustrates the setup exemplary for a system with
eight threads and four NUMA nodes and for 12 WPs to be scheduled.

During the benchmark execution the time to execute all work packages is
measured individually. Furthermore we create a firstprivate variable for
each task which is used to store the creating thread of the task. During execution
of the task we use this information to find out if task stealing was applied or not.

Fig. 3. Load balancing benchmark results when tasking was applied. All tasks were
created by the thread which also initialized the data used by the task, to maintain
locality for thread-local task queues. (Color figure online)

Figure 3 shows the results of a benchmark run on a 16-socket system equipped
with Intel Xeon X7550 8-core processors. In total 128 threads were executed and
the tests were done with the Intel and GNU Compiler. Each bar stands for the
execution time a thread executed tasks. The colors used in the bars illustrate
where the data of the tasks which were executed was located. One color for every
one of the 16 NUMA nodes was used. For the Intel Compiler it can be observed,
that threads with a higher ID execute mainly tasks of one color, the color of
the local NUMA node. Threads with a smaller ID execute less local work and
steal from different other NUMA nodes. This is because they have less data to
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process and after all local work was executed they start stealing tasks. When
the GNU compiler is used all threads execute tasks of many different colors.
This is because of the centralized task queue which cannot be used for locality
aware task creation as mentioned above. The overall execution time with the
GNU compiler is about 8 times higher compared to the Intel compiler. This
gives evidence, that task scheduling, also it is done internally in the runtime can
have a high influence on the execution of a program, so it would be good if the
programmer can observe it with performance tools.

4 Task Performance Analysis

The work presented here is based on a former publication [6], where we have
shown how the performance measurement system Score-P can be extended to
allow event-based performance analysis of task parallel programs. This allowed
us to identify different task related performance issues, like too finely or coarsely
grained tasks as shown in [12]. But, it does not enable us to identify the NUMA
related issues mentioned above for the following reasons.

4.1 Gathered Data

The information desirable for the analysis if tasks are executed locally or on a
remote NUMA node are:

1. Information about the hardware topology, i.e. which cores are on which
NUMA node.

2. Information which thread is running on which core.
3. The start and end time of every tasks execution.
4. Information which thread executed which tasks.
5. Information which thread created which tasks.

The OTF2 trace as described in [6] contains information about the start and
end time of every task (3) and also information which thread executed the task
(4). The second information is implicit, since the begin and end event of the task
are located in the event trace of only one thread, the one which executed the
task. To get information which thread created a task (5), it is necessary to have
IDs for all task instances. Such IDs are not provided by OpenMP, but in [6] we
presented a method to store task local IDs in a mixture of variables private to
a task and threadprivate variables. These IDs are stored with every begin
and end event in the OTF2 trace. Furthermore, we used the thread ID of the
creating thread of a task as prefix in the task ID. This allowed us to create tasks
in parallel with unique IDs without the need to synchronize between threads,
as all tasks which might be created in parallel are created by different threads
and thus get a different prefix for their ID. Now, we can extract this information
at task begin and end events out of the task ID to obtain information (5). The
information which cores belong to which NUMA node (1) of the system is static
information which can be extracted before the program run from the Linux



84 D. Schmidl and M.S. Müller

OS. E.g. the command line tool numactl lists all cores of a NUMA node in a
system. The information which thread is running on which core (2) must not be
constant over the complete program run for all applications. If thread binding is
not used at all, the OS might migrate threads at any time. If thread binding is
used and different affinity clauses are used for different parallel regions, this
also leads to changes in the mapping of threads to cores. However, in practice
the majority of programs sets a fixed affinity policy, e.g. using the environment
variable OMP PROC BIND and stick to this mapping for the whole application
run. In such cases the mapping can easily be queried in the application and used
later on for the analysis of the complete OTF2 trace file of a thread.

4.2 Data Analysis

To be able to visualize the gathered data in a user friendly way, we implemented
a post processing tool to combine all gathered data in a new OTF2 trace file.
This file can than be visualized in the Vampir GUI [7] for analysis.

Fig. 4. Workflow of the trace rewriter tool to use hardware information to analyze
NUMA related task scheduling issues.

Figure 4 illustrates the workflow for the post processing tool. During the
application run the Score-P measurement infrastructure is used to generate an
OTF2 trace of the application run. As usual, the trace contains begin and end
events for all functions and also OpenMP events, like tasks. Every event also
contains a timestamp. Also the mapping of threads to cores is written to a file
during execution of the application. Furthermore hardware information on the
system topology is added to this file.

After gathering this information the Rewriter tool reads the information on
the hardware topology and the thread mapping. Then the tool reads in the
original OTF2 trace and writes out a new modified trace file. If an event is
not related to a task, it is copied to the new trace. If an event is a task begin
event, the tool checks if the task was created by the current thread, a remote
thread on the same socket or a remote thread of a different socket of the system.
Furthermore, the tool adds three groups for tasks, local, same socket and
remote socket. In the modified trace file tasks are sorted into these groups,
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depending on the location of the creating thread. On a runtime system with
thread local queues, this allows to distinguish if the task was stolen from a
different queue or not during the analysis with Vampir later on.

5 Evaluation

Finally, we evaluate the analysis technique with the help of the benchmark pre-
sented in Sect. 3.3. We executed the benchmark once compiled with the Intel
and once with the GCC compiler on a 4 socket server with 8-core Intel Xeon
X7550 processors. Remember, we observed a 8x performance difference between
both versions.

Fig. 5. Vampir screenshot showing the tasks during the execution of the load balancing
benchmark with the Intel runtime. Tasks executed on the creating thread ar shown in
green, stolen tasks from the same NUMA-node in orange and from remote NUMA-
nodes in red. (Color figure online)

Figure 5 shows a Vampir timeline view of the execution done with the Intel
compiler and Fig. 6 shows the execution using the GCC compiler. It can be
observed, that the behavior with the Intel compiler is as desired. First all threads
work on local (green) tasks. After some time, when no more local tasks are
available, threads start doing task stealing and work on remote tasks, either on
the same socket (orange) or on remote sockets (red).

With the GCC compiler and the centralized task queue, the picture is com-
pletely different. During the complete execution of the benchmark a mixture of
red, orange and green tasks can be observed. But, on the very beginning, many
threads also start with local (green) tasks. This is because all tasks are created
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Fig. 6. Vampir screenshot showing the tasks during the execution of the load balancing
benchmark with the GNU runtime. Tasks executed on the creating thread ar shown
in green, stolen tasks from the same NUMA-node in orange and from remote NUMA-
nodes in red. Comparing this figure to Fig. 5, a huge difference in the way tasks are
scheduled in the GNU and Intel runtime can be observed. (Color figure online)

at the beginning, filling the task queue. Once the task queue exceeds a certain
limit it is full and no more tasks can be queued. Then all threads execute the
tasks directly instead of putting it into the queue and this of course leads to
local task execution.

Overall, there are many more red tasks with the GCC compiler, which means
tasks are executed by threads on different sockets than the creator of the task.
Since we created the tasks with the same thread which initialized the data needed
in the task, this means the executing task is also on a different socket than the
data needed. So, a lot of remote memory accesses occur under these circum-
stances which explains the worse performance with the GNU compiler compared
to the Intel compiler.

The presented technique to group the tasks in the OTF2 tracefile based on
the topology information is very helpful to understand and explain performance
characteristics of the benchmark program for different OpenMP runtime sys-
tems. It presents an easy to understand overview in the Vampir GUI and allow
users a deeper understanding of internal task scheduling done in the OpenMP
runtime. This information is helpful for application developers who want to opti-
mize their tasking applications on NUMA systems.

6 Conclusion

Task scheduling decisions taken by the OpenMP runtime can have a high influ-
ence on the performance of task parallel programs, particularly on large NUMA
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systems and when the tasks work on data already distributed across the system.
We summarized previous work how NUMA aware task parallel programming can
be achieved for OpenMP runtime systems working with thread local task queues.
Furthermore, we presented a benchmark test to evaluate the performance differ-
ence of two runtime systems, the one from Intel and the other one from GNU as
examples for runtime systems with thread local queues or a centralized queue,
respectively. It turned out, that on a 16-socket NUMA machine, a performance
difference of 8x was observed.

To allow users understanding such a situation in a real application code,
support in performance tools is desirable. Therefore, we presented a method
how standard OTF2 trace data can be combined with information on the sys-
tem topology and thread placement to do an in-depth analysis of the runtime
scheduling with a focus on NUMA nodes. We write topology information from
the system as well as information about the thread placement into a log file. Fur-
thermore, we measure a standard OTF2 trace with Score-P during execution.
Then a post processing tool was developed to combines both information and
produces a trace file where tasks are grouped in either locally executed tasks,
tasks executed on the same socket as the creator and tasks executed on a remote
socket. As shown during the evaluation the newly generated trace can be visual-
ized with the Vampir GUI and contains a useful overview of the tasks executed
in these different groups.

As future work, this approach could be integrated into the Score-P infrastruc-
ture directly. All information needed about the system can be gathered at the
application start allowing to do the grouping at runtime. This would also allow
to support situations where thread pinning is changed over runtime, e.g. by
different affinity clauses used during execution. In such circumstances it is
necessary to keep track of the thread to core mapping which is easy at runtime
but hard in a post processing tool.
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