
Description, Implementation and Evaluation
of an Affinity Clause for Task Directives

Philippe Virouleau1,2(B), Adrien Roussel1,2,3, François Broquedis1,
Thierry Gautier1,2, Fabrice Rastello1, and Jean-Marc Gratien3

1 Inria, Univ. Grenoble Alpes, CNRS, Grenoble Institute of Technology, LIG,
Grenoble, France

{philippe.virouleau,francois.broquedis,
fabrice.rastello}@inria.fr, thierry.gautier@inrialpes.fr

2 LIP, ENS de Lyon, Lyon, France
3 IFPEN, Rueil Malmaison, France

adrien.roussel@inria.fr, jean-marc.gratien@ifpen.fr

Abstract. OpenMP 4.0 introduced dependent tasks, which give the pro-
grammer a way to express fine grain parallelism. Using appropriate OS
support (such as NUMA libraries), the runtime can rely on the informa-
tion in the depend clause to dynamically map the tasks to the architec-
ture topology. Controlling data locality is one of the key factors to reach
a high level of performance when targeting NUMA architectures. On this
topic, OpenMP does not provide a lot of flexibility to the programmer
yet, which lets the runtime decide where a task should be executed. In
this paper, we present a class of applications which would benefit from
having such a control and flexibility over tasks and data placement. We
also propose our own interpretation of the new affinity clause for the task
directive, which is being discussed by the OpenMP Architecture Review
Board. This clause enables the programmer to give hints to the runtime
about tasks placement during the program execution, which can be used
to control the data mapping on the architecture. In our proposal, the pro-
grammer can express affinity between a task and the following resources:
a thread, a NUMA node, and a data. We then present an implementation
of this proposal in the Clang-3.8 compiler, and an implementation of the
corresponding extensions in our OpenMP runtime libKOMP. Finally,
we present a preliminary evaluation of this work running two task-based
OpenMP kernels on a 192-core NUMA architecture, that shows notice-
able improvements both in terms of performance and scalability.

Keywords: OpenMP · Task dependencies · Affinity · Runtime sys-
tems · NUMA

1 Introduction

OpenMP has become a major standard to program parallel applications on a
wide variety of parallel platforms ranging from desktop notebooks to high-end

c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 61–73, 2016.
DOI: 10.1007/978-3-319-45550-1 5

62 P. Virouleau et al.

supercomputers. It provides keywords to express fine grain task-based parallelism
that boosts the applications performance and scalability on large-scale shared
memory machines. In particular, tasking in OpenMP helps the programmers
parallelize applications with an irregular workload, letting the runtime system
be in charge of performing load balancing through task scheduling in a dynamic
way. However, very little support exists to express and to control the affinity
between tasks and data on systems with a decentralized memory layout, like
Non-Uniform Memory Architectures (NUMA). On such systems, the memory
is physically split into several banks, also called NUMA nodes, which leads to
different memory latencies and throughputs depending on the location of the
memory bank a core is accessing data from. To get the most performance out of
such architectures, OpenMP runtime systems thus need to be extended to make
the task scheduler aware of both the underlying hardware and the relation that
exists between a task and the data it accesses.

We relate in this paper our experiences to reach high performance out of
OpenMP numerical applications on a 192-core NUMA machine. The recently-
added places concept in the OpenMP 4.0 specification provides ways of binding
OpenMP parallel regions to user-defined partitions of the machine. This basically
ends up binding the threads of the corresponding region to a set of cores. Thus,
relying on the first-touch memory allocation policy as a portable solution to
control memory binding, OpenMP places can help to control thread affinity with
respect to the memory. However, the concept behind OpenMP places needs to
be extended to improve the performance of task-based applications, as tasks
are most of the time scheduled over threads in a dynamic way according to a
work-stealing execution model. This is why the OpenMP Architecture Review
Board is currently discussing the introduction of a new affinity feature to make
the runtime system aware of the affinities between the tasks and the data they
access.

In this paper, we present how we control task and data placement inside
our OpenMP runtime system, implementing an affinity clause whose syntax is
very close to the one currently discussed by the ARB. We also explain how
we manage such information at runtime in order to improve the execution of
task-based OpenMP programs on NUMA systems, with a particular focus on
the scheduling data structure and the scheduling algorithm. The contribution of
this paper is threefold:

– We propose an OpenMP affinity extension to the Clang-3.8 compiler able to
express affinities between tasks and memory and pass this information along
to the runtime system;

– We describe an extension to our task-based OpenMP runtime system to guide
the scheduling of tasks according to such information to reach better perfor-
mance on NUMA systems;

– We present some preliminary experimental results on running OpenMP bench-
marks with tasks dependencies on a 192-core NUMA system, with and without
using affinity.

Description, Implementation and Evaluation of an Affinity Clause 63

The remainder of this paper is organized as follows. Section 2 introduces
some motivating examples of applications that suffer from the lack of affinity
support on NUMA machines. Section 3 details our proposal from the extension
to the OpenMP specification to its actual implementation inside both the Clang
compiler and our own OpenMP runtime system. Section 4 presents the perfor-
mance evaluation of two OpenMP kernels that were enhanced to support affinity
and were executed on a 192-core NUMA machine. We eventually present some
related work in Sect. 5 before concluding in Sect. 6.

2 Motivating Examples for Which Affinity Does Matter

The high memory throughput of NUMA architectures has been introduced at the
price of non-uniformity in memory latency. On such architectures, accessing local
memory access induces lower latency than accessing data on a remote memory
bank. To get the most performance, computational units of work, like threads
and tasks, should ideally only access local memory.

Many projects from the High-Performance Computing research area deal
with sparse linear solvers as fundamental building blocks. For instance, let us
consider the BiCGStab [13] algorithm, a classical method for solving sparse linear
algebra systems. Such algorithm is structured around a main loop that iterates
until convergence is reached. At each iteration, the algorithm accesses global data
through the computation of some sparse matrix-vector products as well as the
execution of many global reductions like dot products. Preserving data locality
among iterations is crucial to reach a high level of performance, especially for
the sparse matrix products arising during the algorithm execution like reported
by some early experiments running the BiCGStab algorithm (Sect. 4.3).

Another class of algorithms needing special care regarding data locality is
the Stencil algorithms. These algorithms consist of multiple time steps during
which every element of an array is updated using the value of its neighbors.
Figure 1 shows the base performances of our Jacobi kernel, a stencil algorithm,
evaluated on a 192-core NUMA architecture, with both Clang’s OpenMP run-
time and our OpenMP runtime libKOMP. We can see that the performances of
either task-based versions are disappointing, as the execution time of this kernel
increases when the number of threads is greater than 16. The reason behind
this is that tasks are not scheduled close to their data. To do so, the runtime
system should be aware of which data is accessed by every task and where the
data has been physically allocated. While the former could be obtained through
OpenMP data dependencies, the latter would need a specific support from the
runtime level. Our proposal meets both these requirements through an OpenMP
portable solution presented in the next section.

3 Extending OpenMP to Support Affinities

In this section, we detail our proposal with the introduction of the affinity key-
word and how we implemented the corresponding runtime extensions that take
advantage of this new feature.

64 P. Virouleau et al.

49152, 1024 49152, 2048

10

20

30

40

50

0 50 100 0 50 100
Threads

T
im

e
(s

)

Runtime and Program:

Clang / For

Clang / Dep. Tasks

Komp / For

Komp / Dep. Tasks

Fig. 1. Jacobi’s base performances, with a Matrix size of 49152, and blocksizes of 1024
or 2048

3.1 Extension of the OpenMP Task Directive

We propose an extension to precisely control the affinity of a task with a specific
part of the architecture hierarchy.

The two main components of NUMA architectures we consider in this work
are cores and nodes. One of the key to getting performances out of NUMA
architectures is to ensure tasks are executing close to their data. Therefore, we
identified three different kinds of affinity the programmer may need to express,
which are the following:

affinity to a thread: the runtime should try to schedule the task to be executed
by a given thread.

affinity to a NUMA node: the runtime should try to schedule the task on
any of the threads bound to a given NUMA node.

affinity to a data: once a task becomes ready for execution, the runtime should
try to schedule it on any of the threads bound to the NUMA node on which
the given data has been physically allocated.

Additionally, the programmer can specify if this affinity is strict, which means
the task must be executed on the given resource, or not. In the latter case, the
task scheduler may decide to execute the task on a different resource, to perform
load balancing for example.

Since this extension is aimed for the tasking construct, we implemented it as
a new clause for the OpenMP task directive. The proposed syntax for the clause
is the following:

1 affinity([node | thread | data]: expr[, strict])

This proposal assumes the master thread with id 0 is executed on the first place
in the place list. When expr refers to a thread id, it should refer to the thread id
within the OMP PLACES defined for the current team. For example, if the places for

Description, Implementation and Evaluation of an Affinity Clause 65

the current team are "{0},{1},{2}", thread with id 0 refers to "{0}". However,
if the places are "{2},{5},{8}", thread with id 0 refers to "{2}".

When expr refers to a NUMA node id, it should refer to a node id within
the set of NUMA nodes built from the OMP PLACES list.

Two successive parallel regions with the same number of threads and the
same places have the same set of NUMA nodes.

When expr refers to a data, it should be a memory address. If the NUMA
node associated with the data can’t be determined, it defaults to the first NUMA
node of the team.

If expr refers to an out-of-bounds resource, the value is taken modulo the
number of resources.

3.2 Extension of the OpenMP Runtime API Functions

In order to dynamically get information about the current team hierarchy, we
also propose the following runtime API functions:

1 //Get the number of NUMA nodes in the team
2 omp_get_num_nodes(void);
3 //Get the NUMA node the task is currently executed on
4 omp_get_node_num(void);
5 //Get the NUMA node the data has been allocated on
6 omp_get_node_from_data(void *ptr);

These functions allow to query information about the hardware topology, and
can only be called from inside a parallel region. On machines without NUMA
support, we consider that all the threads are on a single NUMA node. In our
proposed implementation, omp get node from data is implemented through
Linux get mempolicy interface.

We also added the following runtime API function that mimics the affinity
clause:

1 //Set the affinity information to the next created
tasks

2 omp_set_task_affinity(
3 omp_affinitykind_t k, uintptr_t ptr, int strict);

The scope of the function call is the next created task in the current
task region. This function takes an omp affinitykind t value (either
omp affinity thread, omp affinity numa or omp affinity data) to
specify which kind of affinity control is applied. value is either an integer that
represents an identifier of the NUMA node, an identifier of a thread or an address
in the process address space used to select the affinity NUMA node when the
task becomes ready for execution.

66 P. Virouleau et al.

We implemented these extensions in the Clang compiler, based on the 3.8
version1; and we also added the corresponding entry points in Clang’s OpenMP
runtime2.

Please note only the entry points have been implemented in Clang’s OpenMP
runtime, the actual runtime support has only been implemented in our OpenMP
runtime and is described in the following section.

3.3 Extension of the Task Scheduler to Support Affinity

We implemented extensions in the OpenMP runtime developed in our team,
libKOMP [3,5], which is based on the XKaapi [1,9] runtime system. XKaapi is
a task-based runtime system, using workstealing as a general scheduling strategy.
This section gives a brief description of some of its key internal structures and
mechanisms.

The Way XKAAPI Models the Architecture. XKaapi sees the architec-
ture topology as a hierarchy of locality domains. A locality domain is
a list of tasks associated with a subset of the machine processing units. XKaapi’s
locality domains are very similar to the notion of shepherd introduced in [11],
or ForestGOMP’s runqueues [2]. XKaapi most of the time only considers two
levels of domains : node-level domains, which are bound to the set of processors
contained in a NUMA node, and processor-level domains, which are bound to a
single processor of the platform. This way, at the processor level one locality
domain is associated with each of the physical cores, and at the NUMA node
level, one locality domain is associated with each of the NUMA nodes.

The Way XKAAPI Enables Ready Tasks and Steals Them. The schedul-
ing framework in XKaapi [1,9] relies on virtual functions for selecting a victim
and selecting a place to push a ready task. When a processor becomes idle, the
runtime system calls a function to browse the topology to find a locality domain,
and steal a task from its task queue.

Implementation of the Support for Affinity. We extended the set of inter-
nal control variables (ICV) with an affinity-var property, and provided some
runtime API functions to get and to set this ICV. As ICVs are inherited from
the generating implicit task of the parallel region to each task this region gen-
erates, affinity-var can be considered as a per-task variable. The variable is
composed of two fields: an omp affinitykind t value and an integer large
enough to encode a pointer.

When a task construct using the affinity clause is encountered, the runtime
sets the appropriate kind of affinity and the integer value in the ICVs. During
task creation, these parameters will be set in the internal task descriptor.
1 https://github.com/viroulep/clang.
2 https://github.com/viroulep/openmp.

https://github.com/viroulep/clang
https://github.com/viroulep/openmp

Description, Implementation and Evaluation of an Affinity Clause 67

When a task becomes ready to be executed, the function responsible for the
selection of the place to push the task will look at the affinity and select the
appropriate locality domain. The capacity to defer the evaluation of the affinity
until the task becomes ready allows the runtime to rely on the get mempolicy
function to identify the NUMA node on which a data is allocated.

As described earlier, an affinity can be strict or not. To implement this we
used a private queue per locality domain. If the affinity is strict, the task is
pushed to the locality domain’s private queue. During the victim selection, a
thread may only steal from the locality domain’s public queue (in case of a
locality domain attached to a NUMA node, every thread on this node can steal
from the private queue).

4 Examples of Use and Experimentation Results

In this section, we describe two OpenMP kernels we extended to make use of the
affinity clause. We also give some details on the platform we used to conduct
experiments, before presenting the performance evaluation of different versions
of these two kernels.

4.1 Enhancing Task-Based OpenMP Kernels to Support affinity

This section presents how we expressed affinities inside the two task-based
OpenMP kernels we described in Sect. 2.

Jacobi. We looked into our Jacobi application from the KASTORS benchmark
suite [14]. The application is a 2D stencil computational kernel that is repeat-
edly applied until convergence is detected. We used a blocked version of this
algorithm. We used both a dependent tasks based implementation and a for
based implementation. Each operation on a point of the matrix depends on its
neighboring blocks, therefore the blocks should be physically evenly distributed
among the nodes, and the computational tasks should be located close to these
data.

Knowing the number of cores in the team, the matrix size and the block size,
we computed a mapping between multiple neighboring blocks and the different
cores.

We used the affinity clause to achieve two goals:

– first, to ensure the physical distribution of the data during initialization: in
the dependent tasks version, each memory block is touched for the first time
in the initialization task, therefore pinning the task to a thread ensures the
memory will be physically allocated on its NUMA node. Listing 1.1 shows an
example of the blocks initialization.

– second, to ensure tasks stay close to their dependencies during computation,
by putting them on their block’s thread.

We implemented both a strict affinity and a non-strict affinity version.

68 P. Virouleau et al.

Listing 1.1. Example of use of the affinity clause for initialization

1 for (j = 0; j < ny; j+= block_size)
2 for (i = 0; i < nx; i+= block_size) {
3 #pragma omp task firstprivate(i,j) private(ii,jj)\
4 affinity(thread:GET_PARTITION(i, j, block_size, nx, ny), 1)
5 {
6 for (jj=j; jj<j+block_size; ++jj)
7 for (ii=i; ii<i+block_size; ++ii) {
8 if (ii == 0 || ii == nx - 1 || jj == 0 || jj == ny - 1)
9 (*unew)[ii][jj] = (*f)[ii][jj];

10 else
11 (*unew)[ii][jj] = 0.0;
12 }
13 }
14 }

Sparse Matrix Vector Product. In this section, we present the sparse matrix
vector product algorithms arising in the BiCGStab iterative algorithm. The main
goal is to ensure that tasks will have local accesses to their data among the
iterations. We split data following matrix graph partitioning techniques [13]
while using automatic graph partitioner like Metis [7] tools.

In such a decomposition, a matrix A is split into several sub-domains of sev-
eral rows: OpenMP independent tasks are responsible for computing sub-parts
of the output vector. We ensure the task affinity using the common methodology
in this paper: first data are allocated while taking care to evenly distribute them
among the NUMA nodes while the workload is balanced among the cores; then
we annotate tasks to constrain the scheduling.

To ensure an efficient data distribution on NUMA nodes, all the local data
structures to a partition are allocated in parallel. Vectors are split following row
permutations and splitting is dictated by partitions. Local parts of the vectors
are distributed too (sparse matrix are stored in CSR format). Moreover, an
output vector block associated with a part of the matrix is allocated on the
same NUMA node than the partition itself.

The affinity of computational tasks are constrained by assigning them where
partitions of the matrix are stored. This is very similar to the owner compute
rule from HPF [8]: a task is mapped on the thread holding the output sub-vector
Y [i] (line 9 of Fig. 3(a)).

4.2 Experimental Platform Description

The machine we experimented on is an SGI UV2000 platform made of 24 NUMA
nodes. Each NUMA node holds an 8-core Intel Xeon E5-4640 CPU for a total
of 192 cores.

The memory topology is organized by pairs of NUMA nodes connected
together through Intel QuickPath Interconnect. These pairs can communicate
together through a proprietary fabric called NUMALink6 with up to two hops.

Description, Implementation and Evaluation of an Affinity Clause 69

4.3 Experimental Results

Jacobi Kernel. We compared several blocked versions of the application
with both the Clang’s OpenMP runtime and the XKaapi runtime. The
jacobi block for version uses for constructs during initialization and compu-
tation, while the jacobi block taskdep version generates tasks with dependen-
cies for initialization and computation. Each version comes with or without
using the affinity extension we propose. We refer to these enhanced versions
as jacobi block for affinity and jacobi block taskdep affinity. The last enhanced
version is the jacobi block taskdep affinity nonstrict, which uses a strict initial-
ization, but a non-strict affinity for tasks during computation.

The initialization part of the jacobi block for affinity uses tasks instead of
the regular for construct, so that we could use the affinity clause and precisely
set which thread initialize which data. The computation part of the algorithm
has not been changed, there is no affinity during the computation.

Matrix size and block sizes have been chosen so that partitioning easily match
the number of threads up to 128. Experiments have been made with a block size
of 1024 or 2048, and with a matrix size of 49152.

Base performances comparison between Clang’s runtime and XKaapi are
available on Fig. 1 from Sect. 2.

Figure 2 focuses on results for XKaapi used through libKOMP.

49152, 1024 49152, 2048

10

20

30

40

0 50 100 0 50 100
Threads

T
im

e
(s

)

Program version:

For

For + Affinity

Dep. Tasks

Dep. Tasks + strict Affinity

Dep. Tasks + non−strict Affinity

Fig. 2. Jacobi’s performances overview using libKOMP, with a Matrix size of 49152,
and blocksizes of 1024 or 2048

A general comment on these results is that the application globally does
not scale well, whichever runtime or version is used. The program is memory
bound and there is not much we can do besides ensuring computation occurs
close to the data, in order to minimize the impact of memory bandwidth. In all
these results, only the use of the affinity extension prevent a severe decrease in
performances when increasing the number of threads.

The basic dependent tasks version offers really poor performances, the basic
for version is a bit better but still has room for improvement. The two high

70 P. Virouleau et al.

results for the for versions in Figs. 1 and 2 are obtained for a number of threads
of 48 and 96: these numbers are not powers of 2 (whereas all the other number
of threads are), and are not automatically perfectly mapped on the topology.
For these numbers the mapping of the blocks on the architecture is not a perfect
square, therefore each thread needs data from more neighbors, and a slight shift
in initial iterations placement leads to worse performances.

Interestingly, using a strict affinity during initialization is beneficial for both
for and task version: we can ensure a balanced mapping of the data over the
whole hierarchy, even with non-square numbers.

As described in Sect. 2, the Jacobi kernel is a stencil algorithm and is very
sensible to data locality and cache reuse. It explains why the version using depen-
dent tasks with strict affinity achieves better performances than the non-strict
version, where tasks may be stolen from a remote node, therefore ruining the
cache reusability and the data locality (this is especially true with bigger blocks).

Fig. 3. SpMV experiment

Sparse Matrix Vector Product (SpMV Operation). In our experiment,
500 iterations of SpMV operations are timed and the average times is reported in
Fig. 3(b) using various number of cores p. The matrix here corresponds to a Finite
Volumediscretization of a 2DLaplace problemona squaremesh of size 2000×2000.
We run the same code compiled and executed with Clang-3.8 and its standard
OpenMP runtime (labeled Clang on Fig. 3), GCC-5.2 with libGOMP (GCC) and
our modified Clang-3.8 compiler with our OpenMP runtime libKOMP (Komp).

Up to 8 cores, all the execution times decrease in the same way for the three
configurations Clang, GCC and Komp: differences between them is not visible.
When the number of cores exceeds 8, Clang and GCC have execution times that
increase before to decrease with a growing number of cores. On our machine, a
NUMA node is composed of 8 cores. When p > 8 then the program has to use
several NUMA nodes. For both Clang and GCC this is due to the misplacement

Description, Implementation and Evaluation of an Affinity Clause 71

of tasks on NUMA nodes where accessed memory is allocated. Data are split
to fit on the local memory of each NUMA node. Vector are split into several
parts, which are allocated on different NUMA nodes by using initialization tasks
placement, relying on the OS first-touch policy. Matrices are split and also allo-
cated by the use of initialization tasks so that it matches the same NUMA nodes
on which the corresponding sub-vector has been allocated. Despite this tasks
misplacement, the computation times are still decreasing because computations
related to a domain are always done on the same core due to scheduling policies
offered by Clang and GCC. XKaapi obtains better results because of the use
of affinity clauses to place tasks on specific NUMA nodes, which ensures the
temporal affinity among the iterations.

5 Related Work

Many research projects have been carried out to improve the execution of
OpenMP applications on NUMA machines.

The HPCTools group at the University of Houston has been working in this
area for a long time, proposing compile-time techniques that can help improv-
ing memory affinity on hierarchical architectures like distributed shared memory
platforms [10]. Huang et al. [6] proposed OpenMP extensions to deal with mem-
ory affinity on NUMA machines, like ways of explicitly aligning tasks and data
inside logical partitions of the architecture called locations.

Drebes et al. [4] proposed scheduling techniques to control both the data
placement and the task placement, in order to take advantage of the data local-
ity. They implemented these techniques in dataflow programming model named
OpenStream. Their approach is focused at a scheduler level and does not provide
flexibility to the user regarding data placement.

Olivier et al. [12] introduced node-level queues of OpenMP tasks, called local-
ity domains, to ensure tasks and data locality on NUMA systems. The runtime
system does not maintain affinity information between tasks and data during exe-
cution. Data placement is implicitly obtained considering that the tasks access
memory pages that were allocated using the first-touch allocation policy. The
authors thus ensure locality by always scheduling a task on the same locality
domain, preventing application programmers to experiment with other memory
bindings.

The INRIA Runtime group at the University of Bordeaux proposed the
ForestGOMP runtime system [2] that comes with an API to express affini-
ties between OpenMP parallel regions and dynamically allocated data. Forest-
GOMP implements load balancing of nested OpenMP parallel regions by mov-
ing branches of the corresponding tree of user-level threads on a hierarchical
way. Memory affinity information is gathered at runtime and can be taken into
account when performing load balancing.

72 P. Virouleau et al.

6 Conclusion

OpenMP 4.0 introduced dependent tasks, which give the programmer a way to
express fine grain parallelism that can be dynamically mapped to the architecture
topology at runtime. Controlling data locality is one of the keys to performance
when targeting NUMA architectures, and on this topic, OpenMP does not pro-
vide a lot of flexibility to the programmer yet, which leaves the responsibility to
the runtime to make choices regarding tasks placements.

In this paper, we presented a class of applications which would benefit from
having such a control and flexibility over tasks and data placement.

We proposed an implementation of a new affinity clause for the task directive,
based on the discussion within the OpenMP language committees. It enables
the programmer to give hints to the runtime about tasks placement during the
program execution. These hints, combined with NUMA’s first touch policy for
memory, can be used to control the data mapping. The programmer can express
affinity between a task and the following resources: a thread, a NUMA node,
and a data.

We implemented this proposal in the Clang-3.8 compiler, and implemented
the corresponding extensions in our OpenMP runtime libKOMP.

Finally, we performed a preliminary evaluation of this work running two
task-based OpenMP kernels on a 192-core NUMA architecture, that showed
noticeable improvements both in terms on performance and scalability.

In future, our focus will move to compile-time techniques able to infer and
attach valuable information to tasks, like an estimation of a task operational
intensity, that could guide some of the runtime system’s decisions regarding task
scheduling, load balancing, and data placement. We strongly believe a tight coop-
eration between the compiler and the runtime system is a key step to enhance
the performance and scalability of task-based programs on large-scale platforms.

Acknowledgments. This work is integrated and supported by the ELCI project,
a French FSN (“Fond pour la Société Numérique”) project that associates academic
and industrial partners to design and provide a software environment for very high
performance computing.

References

1. Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014 Parallel
Processing. LNCS, vol. 8632, pp. 560–571. Springer, Heidelberg (2014)

2. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Programm. 38(5), 418–439 (2010)

3. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an efficient OpenMP runtime
system for both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli,
F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115.
Springer, Heidelberg (2012)

Description, Implementation and Evaluation of an Affinity Clause 73

4. Drebes, A., Heydemann, K., Drach, N., Pop, A., Cohen, A.: Topology-aware and
dependence-aware scheduling and memory allocation for task-parallel languages.
ACM Trans. Archit. Code Optim. 11(3), 30:1–30:25 (2014). Special Issue on
OpenMP; Müller, M.S., Ayguade, E. (eds.)

5. Durand, M., Broquedis, F., Gautier, T., Raffin, B.: OpenMP in the Era of Low
Power Devices and Accelerators, pp. 141–155. Springer, Berlin, Heidelberg (2013)

6. Huang, L., Jin, H., Yi, L., Chapman, B.: Enabling locality-aware computations in
openmp. Sci. Program. 18(3–4), 169–181 (2010)

7. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

8. Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of high performance fortran:
an historical object lesson. In: Proceedings of the Third ACM SIGPLAN Con-
ference on History of Programming Languages, HOPL III, pp. 7-1–7-22. ACM,
New York (2007)

9. Lima, J.V.F., Gautier, T., Danjean, V., Raffin, B., Maillard, N.: Design and analy-
sis of scheduling strategies for multi-CPU and multi-GPU architectures. Parallel
Comput. 44, 37–52 (2015)

10. Marowka, A., Liu, Z., Chapman, B.: Openmp-oriented applications for distributed
shared memory architectures: research articles. Concurr. Comput. Pract. Exper.
16, 371–384 (2004)

11. Olivier, S., Porterfield, A., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp task
scheduling strategies for multicore NUMA systems. IJHPCA 26(2), 110–124 (2012)

12. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012 (2012)

13. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2nd edn. SIAM, Philadelphia (2003)

14. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O.,
Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS bench-
mark suite. In: DeRose, L., Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Heidelberg (2014)

	Description, Implementation and Evaluation of an Affinity Clause for Task Directives
	1 Introduction
	2 Motivating Examples for Which Affinity Does Matter
	3 Extending OpenMP to Support Affinities
	3.1 Extension of the OpenMP Task Directive
	3.2 Extension of the OpenMP Runtime API Functions
	3.3 Extension of the Task Scheduler to Support Affinity

	4 Examples of Use and Experimentation Results
	4.1 Enhancing Task-Based OpenMP Kernels to Support affinity
	4.2 Experimental Platform Description
	4.3 Experimental Results

	5 Related Work
	6 Conclusion
	References

