Workstealing and Nested Parallelism
in SMP Systems

Larry Meadows®™), Simon J. Pennycook, Alex Duran, Terry Wilmarth,
and Jim Cownie

Intel Corporation, Hillsboro, OR, USA
{lawrence.f.meadows, john.pennycook,alejandro.duran,
terry.l.wilmarth, james.h.cownie}@intel.com

Abstract. We present a workstealing scheduler and show its use in two
separate areas: (1) to enable hierarchical parallelism and per-core load
balancing in stencil codes, and (2) to reduce overhead in per-thread load
balancing in particle codes.

Keywords: Stencil - Nested parallelism - Runtime support

1 Introduction

Modern symmetric multiprocessors (SMPs) have cores with multiple hardware
threads per core and share caches at multiple levels. Effective programming for
such systems requires that code be structured so that threads and cores cooperate
rather than compete for these shared resources.

Section 2 introduces some terminology. Section 3 motivates the need for the
workstealing scheduler using a simple two-dimensional loop and discusses its
implementation. In Sects. 4 and 5 we introduce the ISO-3DFD stencil code, show
several implementations exploiting hierarchical parallelism and the workstealing
scheduler, and give performance results. Section 6 describes possible extensions
to OpenMP* that are motivated by the stencil implementations. Section 7 shows
how the workstealing scheduler can be used in particle codes. Finally we conclude
with Sect. 8.

2 Terminology

In our terminology, a core is a single hardware processor. Each core can execute
multiple independent hardware threads (“hyperthreads”), which are interleaved
in the core’s pipeline. Threads on a core share all of the core’s resources, including
all levels of cache. We assume that OpenMP threads are tightly bound to cores
so that the operating system cannot move them, and that there is no over-
subscription. Therefore if we have a core that can execute four threads (e.g.,
on an Intel® Xeon Phi™ processor or coprocessor), the OpenMP runtime will
create at most four threads bound to that core.

© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 47-60, 2016.
DOI: 10.1007/978-3-319-45550-1_4

48 L. Meadows et al.

3 Static Workstealing Scheduler

3.1 Motivation

Consider a code that loops over a two-dimensional iteration space:

for (int i = 0; i
for (int j = 0;
work (i, j);

< N; ++i)

j o< M; o ++j)

If the iterations of the nested loop are independent, then we can easily parallelize
the loop nest and exploit parallelism in both loops using the OpenMP collapse
directive:

#pragma omp parallel for schedule(static) collapse(2)

for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
work (i, j);

The combined iteration space of length N % M is divided among the OpenMP
threads according to the schedule clause. If required, the compiler generates code
to recover the i and j indices for each iteration using % and / operators.

In many cases we would prefer to distribute the iterations by core, rather
than by thread. This can improve locality and load balancing. It also enables
cooperation among the threads on a single core, as we will see in a later section.
Since OpenMP does not provide such an iteration distribution, we simulate it
by hand like this:

#include"omp_sched.h"
Percore cores[maxCores];
#pragma omp parallel

Sched sch(N*M, cores);

int block;

while ((block = sch.nextiter()) != -1) {
int i = block / N;
int j = block % N;
coreWork (i, j);

}

}

Here the function coreWork will be called with the same ¢ and j values in all of
the threads on a given core. It must therefore internally distribute the work for

the i, j iteration over those threads.
The scheduler Sched is described in the next section.

3.2 Scheduler Implementation

The static workstealing scheduler is implemented as two C++ classes: Sched
and Percore. Percore contains data that is shared among the OpenMP threads
that execute on the same core. The scheduler uses an array of Percore objects,
one for each core. Since the Percore array is shared it must be declared outside
an OpenMP parallel region or allocated on the heap. A predefined constant
maxCores is defined to simplify declaration:

Percore cores[maxCores];

Workstealing and Nested Parallelism in SMP Systems 49

The Sched class must be instantiated inside a parallel region, resulting in one
instance per OpenMP thread. It is constructed with the number of iterations of
the parallel loop and the Percore array:

Sched sch(niter, cores);

Every cooperating instance of Sched must be constructed with the same argu-
ments.

Sched has two member functions: nextiter() and nextiter1(). Both of
these function enumerate the iterations for which the Sched instance was con-
structed. nextiter () returns the same value to all hyperthreads on the same
core and contains an implicit barrier on them. nextiter1() returns a value to
only the calling thread and there is no implicit barrier. There is a third member
function corebarrier () that barriers the threads in a core. It uses the barrier
described in [5,6].

Initially iterations are distributed as they would be in a static schedule,
except that they are distributed over cores rather than threads. The Percore
object for a given core contains the start and end iteration for that core. When
one of the iteration functions is called, it first checks to see if there are any
remaining iterations on the core to which the calling thread is bound. If so, it
atomically increments the start value and returns that iteration. Otherwise, it
traverses the Percore array looking at each core. As soon as it finds a core that
has available iterations, it atomically decrements the end value (thus stealing
an iteration from the end of its range) and returns that iteration. If a thread
has traversed all cores and found no iterations to steal, the iteration function
returns —1, indicating that there are no more iterations to start. See Fig.1 for
the stealing algorithm.

iter_t _nextiter()
{
iter_t ret = getiter (*core); // my core
if (ret != -1)
return ret;

// need to steal, start in a random place
int startcore = _rdtsc() % ncores;
int i = startcore;
do
{
if (i != mycore)
{
ret = stealiter(basel[i]);
if (ret != -1)
return ret;
}
i = (i == ncores-1) ? 0 : i+1; // wraparound
} while (i != startcore);
return -1;

Fig. 1. Stealing algorithm

50 L. Meadows et al.

3.3 OpenMP Scheduler Constraints

Prior to OpenMP 4.5, the description of a dynamic schedule in OpenMP was
subject to interpretation. In particular it was not immediately apparent whether
code liks this should always succeed, or whether schedules which would cause it
to abort are legal.

#pragma omp parallel
{
int myHighestIteration = -1;
#pragma omp for schedule (dynamic)
for (int i=0; i<1000; i++)

{
if (i < myHighestIteration)
abort () ;
else
myHighestIteration = ij;
}

}

Fig. 2. OpenMP scheduler monotonicity test

This is an important question for the static workstealing scheduler, since
under load-imbalance it will generate schedules that would cause this test to
abort. (Consider the thread whose static schedule includes the serially final iter-
ation; if it ever steals from another thread the iteration it steals must be lower
than one it has already seen.)

In OpenMP 4.5 control of this property of the scheduler (known as
“monotonicity”) can be explicitly expressed by the programmer using the new
schedule modifiers (monotonic and nonmonotonic). In addition, OpenMP 4.5
includes the statement of intent that in OpenMP 5.0 an unmodifed dynamic
loop schedule can legally be treated as though it had the nonmonotonic quali-
fier. These improvements to the OpenMP standard make it clear that a static
workstealing scheduler, like that described here, can be used inside the OpenMP
runtime, and, therefore, that its performance should be of interest to people who
will never rewrite their code to include their own scheduler (Fig.2).

4 ISO-3DFD Test Code

The ISO-3DFED stencil code (hereafter referred to as ISO-3DFD) is a 16th order
stencil in space (second order in time) finite difference implementation used to
solve the isotropic acoustic wave equation. The baseline code is shown in Fig. 3.

We can use a roofline model [2] to estimate the performance of ISO-3DFD.
Each iteration of the loop as written above has 27 multiplies, 51 adds, and 51
4-byte loads, for an arithmetic intensity of 78/4*51 or 0.38 flops/byte. We use
five different systems in this article:

SNB Intel® Xeon® Processor E5-2680 v1

Workstealing and Nested Parallelism in SMP Systems 51

int dimnlin2 = nl%*n2;
for(int iz=0; iz<n3; iz++)
for(int iy=0; iy<n2; iy++)
for(int ix=0; ix<nl; ix++) {
float value = ptr_prev[offset]l*coeff [0];
for (int ir=1; ir<=8; ir++) {
value += coeff[ir] * (ptr_prev[offset + ir] +
ptr_prev [offset - irl);
value += coeff[ir] * (ptr_prev[offset + irxmnl] +
ptr_prev [offset - ir*nill);
value += coeff[ir] * (ptr_prev[offset + ir*dimnin2] +
ptr_prev[offset - ir*dimnin2]);
}
ptr_next [offset] = 2.0f* ptr_prev[offset] - ptr_next[offset] +
value*ptr_vel [offset];

Fig. 3. ISO-3DFD pseudocode

HSW Intel® Xeon® Processor E5-2697 v3

BDW Intel® Xeon® Processor E5-2699 v4

KNC Intel® Xeon Phi™ COPRQ-7120

KNL the Intel processor codenamed Knights Landing in a preproduction sys-
tem, B0 stepping, 1.4 GHz, 68 cores, 16 GB MCDRAM, 96 GB DDR in quad-
rant/flat mode.

We collectively call SNB, HSW and BDW big cores, and KNC and KNL
small cores.

Table 1 shows the five systems, their Stream benchmark [7] figures, the pro-
jected performance from the roofline model, and the actual, measured, perfor-
mance. Note: Only one socket is used on the big core systems to avoid compli-
cations from NUMA effects.

From Table 1 we see that the actual performance exceeds that predicted by
the roofline model. This is because, by using bandwidth from main memory,
the roofline model is implicitly assuming that all the loads miss cache. In fact,
as we can see from the stencil pattern, there is a lot of potential temporal and
spatial reuse from one iteration to the next in all three dimensions. In particular
the X dimension has a lot of spatial reuse because of accesses to the same few

Table 1. Roofline prediction vs. measured performance

System | Stream bandwidth | Roofline prediction | Measured performance
(GB/s) (GF/s) (GF/s)

SNB 39 15 25

HSW 59 22 44

BDW 529 20 39

KNC | 177 67 137

KNL 490 186 275

“The memory configuration on this system is non-optimal, with optimal configuration the
stream bandwidth is around 70 GB/s per socket.

52 L. Meadows et al.

Table 2. Roofline using LLC BW

System | LLC bytes/ | # Cores | Freq |LLC BW | Roofline | Measured
clock/core | used (MHz) | (GB/Sec) | prediction | performance
(GF/Sec) | (GF/Sec)

SNB 11 8 2700 237 90 25
HSW |11 14 2600 400 152 44
BDW |11 22 2200 532 173 39
KNC |14 60 1238 | 1040 395 137
KNL |32 64 1400 | 2867 1089 275

cache lines offset by between 1 and 8 4-byte floats in both positive and negative
directions.

We can refine the roofline model to get a more accurate performance estimate
by looking at bandwidth from the last level cache. On the small cores the last
level cache is the L2 cache, while on the big cores it is the L3 cache. Table 2 shows
the roofline performance using this alternate bandwidth metric (LLC bandwidth
was measured by a simple test program performing a vectorized single-precision
summation). This roofline assumes that all accesses hit in the last-level cache.
Tables 1 and 2 bound the expected performance of ISO-3DFD.

5 ISO-3DFD Optimization

As we have seen, there is a lot of temporal reuse in ISO-3DFD and we would
like to capture that reuse to improve performance. The usual way to do this is
to tile the loops so that reused cache-lines are closer together in time and thus
more likely to stay in the LLC. This is fairly easy in ISO-3DFD, as shown in
Fig. 4. The tile sizes tilex, tiley, and tilez are chosen by experimentation.
Tile sizes should be fairly small so that the collapsed loop has significantly more
iterations than threads to improve load balancing (dynamic scheduling or static
workstealing can also be used as we will see later).

5.1 Nested Parallelism vs. Hand Threading

The collapsed loop in Fig.4 distributes iterations by thread, not by core. To
obtain iteration distribution by core, we can use either the static workstealing
scheduler described previously, or nested parallelism. The two methods are shown
side-by-side in Figs. 5 and 6.

Both implementations distribute the tiles among the cores and then distrib-
ute the work for the tile over the threads in the core. The code in Fig.5 uses
nested OpenMP. It assumes that the threads in the outer team are placed one
per core, and that the threads in the inner teams are on the same core as their
master thread. The code in Fig. 6 accomplishes the same effect by precomputing

Workstealing and Nested Parallelism in SMP Systems

#pragma omp parallel for collapse (3)
for(int iiz=0; iiz<n3; iiz+=tilez)

for(int iiy<n2; iiy+=tiley)
for(int iix=0; iix<nl; iix+=tilex) {
int zmax = std::min(iiz+tilez, n3);
int ymax = std::min(iiy+tiley, n2);
int xmax = std::min(iix+tilex, nil);
for (int iz=iiz; iz<zmax; ++iz)
for (int iy=iiy; iy<ymax; ++iy) {

#pragma omp simd
for (int ix=iix; ix<xmax; ++ix) {

int offset = idx(ix, iy, iz, nl, n2, n3);
float value = ptr_prev[offset]*coeff [0];
#pragma unroll (8)
for(int ir=1; ir<=8; ir++) {
value += coeff[ir] * (ptr_prev[offset + ir] +
ptr_prev[offset - ir]);
value += coeff[ir] * (ptr_prev[offset + ir*xni] +

ptr_prev [offset - ir*xnl]);
value += coeff[ir] * (ptr_prev[offset + ir*xnin2] +
ptr_prev[offset - ir*xnin2]);

Y

ptr_next [offset] = 2.0f*ptr_prev[offset] - ptr_next[offset] +

valuexptr_vel [offset];

Fig. 4. ISO-3DFD tiled pseudocode

53

the core and hyperthread for each OpenMP thread. Hand threading assumes
that OpenMP thread affinity is set properly to mirror the internal mapping to
cores and hyperthreads. The distribution of the work within the core is done
explicitly in the Y loop using the thread number within the core.

Percore cores[maxCores];

#pragma omp parallel for collapse(3) #pragma omp parallel
for(int iiz=0; iiz<n3; iiz+=tilez) {
for (int iiy=0; iiy<n2; iiy+=tiley) int nblocksz = (n3 + tilez - 1) / tilez;
for (int iix=0; iix<nl; iix+=tilex) { int nblocksy = (n2 + tiley - 1) / tiley;
#pragma omp parallel int nblocksx = (nl + tilex - 1) / tilex;
nblocks = nblocksz * nblocksy * nblocksx;
Sched sch(nblocks, cores);
int myht = omp_get_thread_num (); int myht = sch.myht;
int block;
while ((block = sch.nextiter()) != -1) {
int iiz = block / (nblocksy * nblocksx);
int rem = block % (nblocksy * nblocksx);
int iiy = rem / (nblocksx);
int iix = rem % (nblocksx);
iix *= tilex; iiy *= tiley; iiz *= tilez
int zmax = std::min(iiz+tilez, n3); int zmax = std::min(iiz+tilez, n3);
int ymax = std::min(iiy+tiley, n2); int ymax = std::min(iiy+tiley, n2);
int xmax = std::min(iix+tilex, nil); int xmax = std::min(iix+tilex, nl);
for (int iz=iiz; iz<zmax; ++iz) for (int iz=iiz; iz<zmax; ++iz)
for (int iy=iiy+myht; iy<ymax; iy+=nHT) { for (int iy=iiy+myht; iy<ymax; iy+=nHT) {
#pragma omp simd #pragma omp simd
for (int ix=iix; ix<xmax; ++ix) { for (int ix=iix; ix<xmax; ++ix) {
} b3
} }
} 3
} 3

Fig. 5. Nested OpenMP

Fig. 6. Hand threaded

54 L. Meadows et al.

5.2 Performance Results

Table 3 compares the different implementions of ISO-3DFD. The implementa-
tions are:

Baseline The baseline implementation in Fig. 3.

Tiled The tiled implementation in Fig. 4.
Nested The nested implementation in Fig. 5.
Hand The hand-threaded implementation in Fig. 6.

Scheduler Three implementations used to evalua te the workstealing sched-
uler. The code is hand-tiled and the loop over the tiles is parallelized in one
of three ways:

Static - Use OpenMP #pragma omp for schedule(static)
Worksteal - Use static workstealing scheduler
Dynamic - Use OpenMP #pragma omp for schedule(dynamic)

Table4 gives the performance results for the different implementations on
the test platforms.

On big cores, tiling alone gives a significant improvement over the baseline.
This is because the large L3 cache is able to hold almost all of the reused data.
Small cores do not have an L3 cache and the smaller 1.2 cache is not able to
enable much reuse, so tiling does not generally help here.

Turning to the scheduler columns, we see that OpenMP dynamic schedul-
ing is generally superior to either OpenMP static scheduling or static work-
stealing on big cores (though this might change if we looked at a multi-socket
big-core case). The shared L3 improves the performance of the atomic opera-
tions needed in dynamic scheduling, and the static workstealing implementation
introduces additional overhead. However on the small cores, Static worksteal-
ing is clearly superior to either OpenMP static or OpenMP dynamic scheduling
since it requires many fewer atomic operations.

This also helps to explain why nested parallelism (which uses #pragma
omp parallel for schedule(dynamic)) performs better than hand threading
(which uses static workstealing) on the big cores.

On the small cores we were able to improve the performance of nested par-
allelism by adjusting the tile size. The small cores have reduced single-thread
performance and many more cores which combine to increase the overhead of

Table 3. ISO-3DFD implementation comparison

Baseline Tiled Nested Hand Static ‘Worksteal | Dynamic
Outer loop | collapse(2) | collapse(3)| hand- hand- hand- hand- hand-
structure zY 7,Y,X collapse collapse collapse collapse collapse

Z,Y,X Z,Y,X Z,Y,X Z,Y,X Z,Y,X

Inner loop | simd X serial Z,Y |serial Z,Y |serial Z,Y | serial Z,Y |serial Z,Y |serial Z,Y
structure simd X simd X simd X simd X simd X simd X
Cooperative none none Y loop Y loop none none none
threading

Workstealing and Nested Parallelism in SMP Systems 55

Table 4. ISO-3DFD performance (GF/s)

System | Threads | Indep threading | Coop threading | Scheduler
Baseline | Tiled | Nested | Hand | Static | Worksteal | Dynamic
SNB 1 25 55 59 57 61 57 55
2 21 47 59 57 49 56 52
HSW |1 39 109 109 106 113 113 118
2 35 107 119 108 96 107 109
BDW |1 39 155 156 119 117 121 154
2 45 158 167 122 108 120 156
KNC |1 49 40 38 51 48 52 40
2 76 70 79 82 67 89 70
4 93 86 101 107 64 115 86
KNL |1 256 119 159 264 250 | 274 122
2 179 132 148 291 245 | 318 135
4 166 169 209 274 196 196 173

nesting, so the amount of work per tile needs to be larger to compensate. How-
ever, even with this change, the hand threaded implementation with static work-
stealing outperforms nested parallelism.

6 OpenMP Extension to Loop Scheduling

As we have seen, the current OpenMP support is limited when trying to map
the iterations of loops to modern hardware and forces programmers wanting the
maximum performance to code their own loop scheduling policies by hand. To
improve OpenMP support we propose two sets of extensions to the loop schedul-
ing mechanisms: hierarchical loop scheduling and multi-dimensional chunking.

6.1 Hierarchical Loop Scheduling

In existing and future architectures not all hardware threads are peers. Hardware
threads are organized in a hierarchy in which threads in the same level share
some resources together. For example, in many architectures several hardware
threads are part of the same core (sharing some part of the cache hierarchy) and
these cores are part of the same NUMA domain (sharing a privileged access to
some system memory). These logical groupings create a hierarchy of groups of
threads.

Exploiting this hierarchy when distributing the iterations of a given loop
nest is becoming increasingly important to obtain the best performance. Cur-
rent OpenMP provides the mechanisms (e.g., OMP_PLACES and OMP_PROC_BIND)
that allow the programmer to lay out the different OpenMP threads across the

56 L. Meadows et al.

hardware thread hierarchy. But it has no provisions to ensure that the scheduling
of iterations from a loop can exploit these carefully planned layouts.

Furthermore, the scheduling decisions at each level of the hardware hierarchy
are likely to be different. For example, a programmer might want to dynamically
distribute relatively large groups of iterations between the different cores but
then statically distribute the iterations of each group between the threads of
each core, or to statically distribute large groups of iterations across NUMA
domains while dynamically scheduling those iterations inside a NUMA domain.

While it is possible to code these patterns today in OpenMP using nested par-
allelism the unnecessary fork-join overheads make it impractical in many cases.
We argue that these patterns should be supported as loop scheduling options
that do not require nested parallelism. We therefore propose two extensions to
the existing OpenMP loop construct:

— add a new schedule-groupsizes clause. This clause contains a list of posi-
tive integer expressions that are group sizes. The first group size defines how
the threads of the team are divided into groups. Each subsequent group size
specified defines how the previous group is divided. This creates a hierarchy of
groups that will be used for scheduling the iterations of the loop. The usage of
this clause must be coordinated with the thread affinity mechanism to obtain
good results.

— extend the current syntax of the schedule clause from a single schedule-kind
to a list of schedule-kinds. The schedule-kind that will be applied to each
level of the group hierarchy is implicitly defined by the order in the list (i.e.,
the first schedule kind applies to the root group, the second schedule kind
applies to the next group level, etc.).

6.2 Multi-dimensional Chunking

Another common OpenMP limitation is that in a nest of loops OpenMP only
offers the options to either schedule the iterations of the outer loop of the nest
or collapse the iteration space of some outer subset of the nest and schedule the
resulting iterations of the collapse operation. In the first case, the loop scheduling
is akin to a one-dimensional tiling of the loop nest, while in the second case the
created tiles can have irregular shapes that do not favor locality.

What a programmer would frequently like is to distribute multi-dimensional
tiles between the threads that cooperate in the worksharing construct. Today
programmers are required to manually modify their code to apply tiling opti-
mization and then apply a loop worksharing with the collapse clause as shown
in Fig. 4.

Because by creating chunks of iterations for loop scheduling purposes
OpenMP is implicitly supporting 1D tiling, we propose to extend loop schedul-
ing semantics to support multi-dimensional tiling. This requires that the chunks
of iterations assigned to threads contain not just a subset of iterations of the
outer most loop, but a tuple of iteration subsets for other loops in the nest.

Workstealing and Nested Parallelism in SMP Systems 57

To express this we propose to extend the existing schedule-kinds to accept
not just one chunksize expression but a list of them. The first chunksize is applied
to the first loop in the nest, the second chunksize to the next loop in the next, etc.
The special value * is allowed in one dimension to imply that chunksize is equal
to the number of iterations in that dimension. This is important in combination
with the previous hierarchical scheduling proposal as the number of iterations
below the root level might be unknown.

Given a certain nest of m loops and a schedule clause with chunk sizes
Cq,...,Cp, the iteration space of the loop nest is Nyx..xN,, where N, is the
number of iterations for the i loop in the nest (1 being the outermost loop and
m the innermost). This iteration space is partitioned in chunks of size Cyz...2Cy,
except for the uppermost boundaries where they can have less iterations. Then
these chunks are distributed to the threads in the team following the schedule-
kind specified in the schedule clause (i.e., statically or dynamically).

A new static (without chunksize) schedule-kind that has the same seman-
tics as the existing static schedule-kind but can be applied to multiple loops
(i.e., create tiles of approximately the same size for each thread) could also be
added to OpenMP. It is unclear to us how useful this would be, as in practice
a programmer usually wants to create these tiles to match the size of a specific
hardware resource (e.g., the L2 cache).

6.3 Example

Combining the two proposals we can apply them together to the ISO3DFD code
as show in Fig.7. We use the multi-dimensional chunking to create 3D tiles of
size tilexxtileyxtilez. Then we use the hierarchical scheduling to distribute them
dynamically across groups of HT threads (which correspond to cores assuming
a close thread placement and that HT is the number of threads per core used).
Then threads inside each core cooperate to execute the iterations of the tile.
Note that the static(*,*,1) expresses that only those iterations of the iz loop
(which are also SIMDized) are distributed among threads of each core using
a static schedule with chunksize 1. The code generated from this new version
should be equivalent to that of Fig. 6, but is significantly easier to write!

#pragma omp parallel for schedule-groupsizes(HT) \
schedule (dynamic (tilez ,tiley ,tilex),static (x,*,1))
for (iz = 0; iz < zmax; iz++)
for (iy = 0; iy < ymax; iy++)
#pragma omp simd
for (ix = 0; ix < xmax; ix++)

{
}

Fig. 7. ISO-3DFD parallelization with the proposed OpenMP extensions

58 L. Meadows et al.

7 Static Workstealing and Particle Codes

Particle codes often include some interaction between the particles and a mesh
(i.e., a discretized version of the space in which they are travelling). For example,
the Particle Mesh Ewald (PME) method accumulates charges at mesh points in
order to approximate long-range interactions, and in particle transport codes
each particle will update several “tally” values for any cells that it encounters
while traversing the mesh.

The simplest way to implement these particle-mesh interactions in parallel is
to loop over particles, using some method of guaranteeing atomicity (e.g., hard-
ware atomics, locks or transactions) to handle write-conflicts during updates to a
single (shared) mesh data structure. Although in some cases it is possible to use
some algorithmic restructuring (e.g., using coloring [8]) instead, such approaches
are more complicated to implement and may incur other runtime overheads or
decrease the amount of available parallelism. We restrict our discussion to the
simplest implementation.

In order to improve cache locality, it is desirable to have some way to group
and then iterate over particles spatially, and this is commonly achieved by sorting
all of the particles at some fixed frequency [9]. However, the number of particles
in each region of space is not guaranteed to be uniform, and in some simulations
the amount of computation per particle is not fixed (e.g. particles may represent
different atoms, or different regions of space may have different material prop-
erties). As a result it is often necessary to use dynamic scheduling of some sort
to overcome the load imbalance.

7.1 Application of Static Workstealing

A purely static schedule ensures that threads are working on particles from
disjoint sections of the mesh (thus reducing the probability of write-conflicts),
but does not account for load imbalance; at the other extreme, a purely dynamic
schedule handles load imbalance well, but makes no guarantees about scheduling
(potentially increasing the probability of write-conflicts). The static workstealing
schedule proposed here strikes a good balance between the two: each thread is
initially assigned work from one region of the mesh, but is able to steal work
from another region if/when necessary.

Distributing work per core instead of per thread provides additional benefits,
by ensuring that the threads executing on each core are (initially) working on
particles from the same region. The primary effect of this is decreased latency for
mesh data accesses through cache re-use. A secondary effect is improved atomics
throughput, since an atomic update to a cache line is fastest when the line is
already held in modified/exclusive state by the updating core [10].

Table 5 compares the performance of static, dynamic, guided and static work-
stealing schedules for a Monte Carlo particle transport benchmark developed by
the French Alternative Energies and Atomic Energy Commission (CEA) [11].

Note that all of these schedules had to be implemented by hand (i.e., without
using OpenMP pragmas) due to the structure of the loops involved; however,

Workstealing and Nested Parallelism in SMP Systems 59

Table 5. Monte Carlo particle transport benchmark performance (Mega events/sec-
ond)

System | Threads | Scheduler

Static Dynamic | Guided Worksteal
SNB 2 84 | 108 87 113
HSW |2 112 163 125 185
BDW |2 211 281 244 327
KNC |4 191 | 315 225 378
KNL 2 278 413 335 588

every effort was made to ensure that the implementation was representative. Sta-
tic workstealing provides a clear performance benefit across all of the architec-
tures tested, and should be expected to provide greater benefits where inter-core
communication is more expensive (e.g., in dual-socket systems).

8 Conclusions and Future Work

We have shown that static workstealing performs well across the board on the
small core platforms and on imbalanced problems on big cores. With the intro-
duction of the nonmonotonic modifier for dynamic schedules in OpenMP 4.5
(and the statement that nonmonotonic will become the default dynamic sched-
ule in OpenMP 5.0), the static workstealing implementation is now legal in
OpenMP implementations. Given the performance it shows on our examples, we
expect that it will become the default implementation for dynamic schedules in
many runtimes.

We have also proposed simple extensions to OpenMP which would allow the
expression of loop tiling and the choice of appropriate schedules at each level of
a closely nested OpenMP loop-nest. These extensions would allow the benefits
which we have demonstrated from these techniques to be more easily achieved
by OpenMP programmers.

While our stencil performance falls short of the roofline model, especially on
the small cores, absolute stencil performance is beyond the scope of this paper.
We expect to include in-depth analysis of the performance shortfall in a future
publication.

References

1. Andreolli, C.: Eight Optimizations for 3-Dimensional Finite Difference (3DFD)
Code with an Isotropic (ISO). https://software.intel.com/en-us/articles/eight-
optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso.
Accessed 21 Oct 2014

2. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. CACM 52(4), 65 (2009)

https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso

60

10.

11.

L. Meadows et al.

Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kauffman, Boston (2013)

Dempsey, J.: Plesiochronous phasing barriers. In: Jeffers, J., Reinders, J. (eds.)
High Performance Parallelism Pearls, pp. 87-115. Morgan Kauffman, Boston
(2015)

. Briggs, J., et al.: Separable projection integrals for higher-order correlators of the

cosmic microwave sky: acceleration by factors exceeding 100, Cornell University
Library. http://arxiv.org/abs/1503.08809

Meadows, L., Kim, J., Wells, A.: Parallelization methods for hierarchical SMP
systems. In: Terboven, C., et al. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 247—
259. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24595-9_18

McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, December 1995

Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M.,
Koumoutsakos, P.: PPM a highly efficient parallel particlemesh library for the
simulation of continuum systems. J. Comput. Phys. 215(2), 566 (2006)

Madduri, K., Im, E.-J., Ibrahim, K.Z., Williams, S., Ethier, S., Oliker, L.: Gyroki-
netic particle-in-cell optimization on emerging multi- and manycore platforms. Par-
allel Comput. 37(9), 501 (2011)

Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations on
modern architectures. In: Proceedings of Parallel Architectures and Compilation
(2015)

Dureau, D., Poétte, G.: Hybrid parallel programming models for AMR neutron
Monte-Carlo transport. In: Joint International Conference on Supercomputing in
Nuclear Applications and Monte Carlo (2013)

http://arxiv.org/abs/1503.08809
http://dx.doi.org/10.1007/978-3-319-24595-9_18

	Workstealing and Nested Parallelism in SMP Systems
	1 Introduction
	2 Terminology
	3 Static Workstealing Scheduler
	3.1 Motivation
	3.2 Scheduler Implementation
	3.3 OpenMP Scheduler Constraints

	4 ISO-3DFD Test Code
	5 ISO-3DFD Optimization
	5.1 Nested Parallelism vs. Hand Threading
	5.2 Performance Results

	6 OpenMP Extension to Loop Scheduling
	6.1 Hierarchical Loop Scheduling
	6.2 Multi-dimensional Chunking
	6.3 Example

	7 Static Workstealing and Particle Codes
	7.1 Application of Static Workstealing

	8 Conclusions and Future Work
	References

