
Design and Preliminary Evaluation of Omni
OpenACC Compiler for Massive MIMD

Processor PEZY-SC

Akihiro Tabuchi1(B), Yasuyuki Kimura2, Sunao Torii2, Hideo Matsufuru3,
Tadashi Ishikawa3, Taisuke Boku1,4, and Mitsuhisa Sato1,5

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

tabuchi@hpcs.cs.tsukuba.ac.jp
2 ExaScaler Inc., Tokyo, Japan

3 Computing Research Center, High Energy Accelerator Research Organization
(KEK), Tsukuba, Japan

4 Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
5 RIKEN Advanced Institute for Computational Science, Kobe, Japan

Abstract. PEZY-SC is a novel massive Multiple Instruction Multiple
Data (MIMD) processor used as an accelerator and characterized by high
power efficiency. OpenACC is a standard directive-based programming
model for accelerators, and programmers can concisely offload data and
computation to the accelerators. In this paper, we present the design
and preliminary implementation of an OpenACC compiler for a PEZY-
SC. Our compiler translates C code with OpenACC directives to the
corresponding PZCL code, which is the programming environment for
PEZY-SC. The evaluation shows that the performance of the OpenACC
version achieves over 98 % at N-body and up to 88 % at NAS Parallel
Benchmarks CG than that of the PZCL version. In addition, we exam-
ined optimization techniques such as kernel merging and explicit con-
text switching to exploit the PEZY-SC MIMD architecture, which differs
from the single instruction multiple data graphics processing units. We
found these optimizations useful in improving the performance and will
be implemented in the future release.

Keywords: PEZY-SC · OpenACC · Compiler

1 Introduction

Accelerators are widely used in super computers for improving power efficiency
because of limitation of power supply. At Green 500 [1], which is a ranking of
the 500 most energy-efficient supercomputers, the top 10 systems were equipped
with accelerators in November 2015. The top system is the Shoubu Supercom-
puter at RIKEN and is developed by ExaScaler in Japan. Its accelerator is a
PEZY-SC processor, which has 1024 cores and 8192 threads that run in mul-
tiple instruction multiple data (MIMD) format. ExaScaler provides PZCL as a
c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 293–305, 2016.
DOI: 10.1007/978-3-319-45550-1 21

294 A. Tabuchi et al.

programming environment for PEZY-SC. PZCL is based on OpenCL [2] but
its kernel description differs from that of OpenCL. Application development
using PZCL is complicated because programmers must describe many codes for
offloading data and computations to PEZY-SC. This degrades the application
productivity.

In recent years, OpenACC [3] is being widely used for accelerator program-
ming. It is a directive-based programming model for accelerators and allows a
programmer to offload codes to accelerators to simplify the porting process for
legacy CPU-based applications. Some commercial and research compilers sup-
port OpenACC for Graphics Processing Units (GPUs). If PEZY-SC is supported
by OpenACC, it will be easier to use because users can rapidly develop applica-
tions and reuse the existing OpenACC code. Thus, we designed and preliminarily
implemented an OpenACC compiler for PEZY-SC by using the Omni OpenACC
compiler [4] originally targeted for NVIDIA GPU. We evaluated the performance
of the compiler using the N-Body benchmark and NAS Parallel Benchmarks CG
(NPB-CG) [5] and the productivities of PZCL and OpenACC.

The contributions of this paper are summarized as follows:

– We have designed an OpenACC for the massive MIMD many-core processor,
PEZY-SC. We determined that OpenACC is useful and provides a good pro-
gramming model to improve the productivity for programmers of PEZY-SC.

– We propose some optimizations to exploit the PEZY-SC architecture, and
show the effectiveness of these optimizations by comparing the performance
of the nonoptimized version generated by our current preliminary OpenACC
compiler. We examine the implementation of these optimizations by using the
compiler and new additional directives.

The remainder of this paper is organized as follows. Section 2 introduces
related works and Sect. 3 describes the architecture and programming of PEZY-
SC. Section 4 describes the design and detailed implementation of the Omni
OpenACC compiler for PEZY-SC. Further, we report the performance and pro-
ductivity evaluation using two benchmarks in Sect. 5 and discuss on optimization
for PEZY-SC and comparison with OpenMP in Sect. 6. Finally, we conclude our
study in Sect. 7.

2 Related Work

Several open-sourced OpenACC compilers, such as accULL [6], OpenUH - Ope-
nACC [7], OpenARC [8], and RoseACC [9] have been developed. Moreover, GCC
supports OpenACC from version 5.0.1, and the development of future versions
are under progress [10]. accULL is the first open-sourced OpenACC compiler,
which translates code from OpenACC to CUDA or OpenCL with optimization
through the YaCF compiler framework. OpenUH-OpenACC is based on the
OpenUH compiler framework and translates OpenACC to CUDA or OpenCL.
OpenARC is a compiler framework for accelerators and supports full features in
OpenACC 1.0. The compiler is based on the Cetus compiler infrastructure, which

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 295

Fig. 1. PEZY-SC processor

has some code analysis and transformation features. RoseACC is a Rose Com-
piler based on the OpenACC compiler and translates code to OpenCL. These
compilers mainly target GPUs but compilers that translate to OpenCL may be
able to target various devices such as CPU, Xeon Phi, and FPGA. However,
they are unavailable for PEZY-SC because the description of a kernel in PZCL
is specialized for the PEZY-SC architecture and some built-in operations are not
supported in OpenCL. We propose the implementation of the Omni OpenACC
compiler to translate to PZCL and support PEZY-SC.

3 PEZY-SC

3.1 Architecture

PEZY-SC is a many-core processor developed by PEZY computing. Figure 1(a)
shows the structure of the processor. The processor contains 1024 Processing
Elements (PEs), which run in MIMD. In each PE, eight threads are executed
by using simultaneous multithreading (SMT), that is, 8192 threads run on the
processor. The processor is hierarchically constructed with PE, Village, City, and
Prefecture in an ascending order. A PE has registers for eight threads, 16 KB
local memory, two Arithmetic Logic Units (ALUs), two Floating-Point Units
(FPUs), etc. In addition, a Village is constructed with four PEs and a 2 KB L1
cache per two PEs. Further, a City is constructed with four Villages, a Special

296 A. Tabuchi et al.

Function Unit (SFU), and a 64 KB L2 cache. Moreover, a Prefecture is con-
structed with 16 cities and a 2 MB L3 cache. The processor has four prefectures
or 1024 PEs.

Eight threads in a PE are actually the two sides of 4 threads, as shown in
Fig. 1(b). One side of each of the four threads is executed in a round-robin manner
every clock cycle, and some synchronizations or explicit switching operations
switch the threads to the opposite side. Caches L1–L3 have no coherency. Thus,
if a PE reads some values written by another PE, programmers need to flush
cached data through a flush operation before the read.

3.2 Programming

PEZY computing provides PZCL, which is a language based on OpenCL as a
programming environment for PEYZ-SC. Thus, programmers also need to write
the host and device codes; however, some points differ from those of OpenCL.

Host Code. A host code is written using C APIs, which is a subset of OpenCL
1.1. It supports almost all APIs that conventional OpenCL code uses; however,
the building and launching of kernels are limited. A conventional OpenCL code
usually uses online-compilation, which compiles kernel code at runtime; whereas
PZCL only supports offline-compilation, which compiles kernel code at com-
pile time. When launching a kernel, global work size must be a multiple of 128
because PEZY-SC executes threads by the City and local work size must be eight
because a number of threads in a PE is fixed at eight. Moreover, we can specify
at least three dimensions for the shape of a work item in OpenCL, whereas we
can specify only one dimension in PZCL. Notably, global work size should be
8192 or less, otherwise the kernel is launched multiple times.

Device Code. A device code is written in C/C++. Kernels, which are launched
from the host, are described as functions same as those in OpenCL. The qualifiers
kernel and global or local must be respectively added to the kernel

functions and kernel function parameters in OpenCL. Although we must add
“pzc ” prefix to the function name and retain the kernel parameters in PZCL, the
memory shared among threads in a PE cannot be defined (it corresponds to local
memory in OpenCL). In the function body, computation is parallelized using PE
and thread IDs, which are obtained through get pid() and get tid(), respectively.
These correspond to get group id(0) and get local id(0) in OpenCL. The number
of PEs and threads can be obtained using get maxpid() and get maxtid(),which
correspond to get num groups(0) and get local size(0) respectively in OpenCL.

PZCL provides some functions for PEZY-SC specific features as follows.
The function chgthread() switches the thread to its opposite side explicitly, and
sync() synchronizes all threads in a processor. In addition, functions sync L1(),
sync L2(), and sync L3() synchronize threads by the Village, City, and Prefec-
ture, respectively. Further, flush() synchronizes all threads in a processor and

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 297

flushes all cached data. Moreover, flush L1() synchronizes threads by the Vil-
lage and flushes L1 cache data, and flush L2() synchronizes threads by the City
and flushes L1 and L2 cache data. We need to optimize kernel functions using
these built-in functions for obtaining the best performance. Here, we describe
two optimizations used in this study.

Kernel merging. In CUDA or OpenCL, there is no synchronization among
thread-blocks (CUDA) or work-groups (OpenCL); thus, we need to divide
a kernel code into several kernel functions at global synchronization points.
This leads to the increase of kernel launch overhead. However, PZCL provides
global synchronization in a processor (sync()); therefore, we do not need to
divide the kernel code and the kernel launch overhead can be reduced.

Explicit thread switching. This optimization has two benefits. (1) The
improvement of cache utilization. Paired threads tend to access data that
are closer because the difference between the thread numbers is four. The
explicit switching allows the opposite side to access data before the cache is
removed and improves the cache hit ratio. (2) The second benefit is latency
hiding of memory access. Switching to the opposite side reduces stall through
memory access.

4 Omni OpenACC Compiler

This section describes the design and implementation of the Omni OpenACC
compiler for PEZY-SC.

4.1 Design

OpenACC supports C, C++, and Fortran; however, our compiler only supports
C. The Omni OpenACC compiler is a source-to-source compiler, and thus trans-
lates an OpenACC C code to a host C code and a kernel PZCL code. Thus, the
device code for PEZY-SC can be generated by the PZCL compiler. In the host
code, the directives are translated to some runtime library calls for maintaining
portability. In the kernel code, the offloaded code is translated using functions
for simplification and commonization.

4.2 Implementation

To realize the code translation, we used the Omni compiler infrastructure [11],
which is a set of programs for a source-to-source compiler with code analysis and
transformation. Figure 2 shows the flow for compilation. An OpenACC translator
is used to translate an input OpenACC C code to host C and kernel PZCL codes.
The host code is compiled using a general C compiler (e.g., GCC and ICC) and
linked with the Omni OpenACC runtime library for PZCL. The kernel code
is compiled to a kernel binary code using a PZCL compiler, and the binary is
loaded at runtime. Note that our preliminary implementation does not currently
support the optimizations for PEZY-SC.

298 A. Tabuchi et al.

Fig. 2. Compilation flow

Fig. 3. Code translation of data construct

Translation of Data Construct. A data construct declares data on an accel-
erator in the following region. According to clauses, device memory is allocated
and data is transferred from host to device at the beginning, and data is trans-
ferred from device to host and device memory is released at the end. The compiler
translates these operations to runtime library calls.

Figure 3 illustrates a data construct and the translated code. This data con-
struct specifies that an array a and a variable b are allocated on a device at the
beginning of the region and freed at the end. The array a in the copy clause is trans-
ferred at the beginning and end of the region, and the variable b in the copyout
clause is transferred at the end of the region. The function ACC init data allo-
cates data on the device. If the data is an array, the lower bound and length of
each dimension are passed. The variable DEV ADDR name is a pointer to the
device memory that corresponds to the host memory of name. The DESC name
is a pointer to the structure, which has the host address, device address, shape,
element size, etc. The function ACC copy data transfers data between the host
and device, and the function ACC finalize data frees data on the device.

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 299

Translation of Parallel Construct. A parallel construct offloads the follow-
ing region to a device. OpenACC supports three-level parallelism: gang, worker,
and vector. However, PZCL provides only the PE and thread. Although our
preliminary implementation maps the gang to PE and the vector to thread in
PEZY-SC and does not use worker-level parallelism, this correspondence might
be changed in the future. The compiler generates a kernel function from the
offloading region. Variables, which are accessed in the region, become the func-
tion parameters, unless they are specified in the private clauses. The function
is launched from the host code with device memory objects or values as argu-
ments. Additionally, the number of launch PEs is specified by the num gangs
clause. Alternatively, it may be determined by the number of loop iteration in
the region.

Figure 4 illustrates a parallel construct and the translated code. The
function pzc ACC kernel 0 is a kernel function. There are 16 PEs from the
num gangs clause and the number of threads is fixed at 8. The array ACC args
contains the kernel arguments and the array ACC argsizes contains the sizes
of the arguments. Further, the function ACC launch launches the kernel func-
tion. The first argument ACC program is a pointer of structure, which contains
kernel objects loaded from a kernel binary file, and the second argument is the
kernel number. In the function ACC launch, the kernel is launched after the
number of total threads is adjusted to multiples of 128 and 8192 or less for
PEZY-SC.

Translation of Loop Construct. A loop construct specifies parallelization
of the following loop in an offloaded region. If parallelisms (gang or vector) are
specified, the compiler parallelizes the loop with them; otherwise, the compiler

#pragma acc parallel present(a) num_gangs(16)
{
/* codes in parallel region */

}

(a) parallel construct

/* host code */
{
int _ACC_ngangs = 16;
int _ACC_nworkers = 1;
int _ACC_veclen = 8;
int _ACC_conf[] = {_ACC_ngangs, _ACC_nworkers, _ACC_veclen};

void* _ACC_args[] = {&DEV_ADDR_a};
size_t _ACC_argsizes[] = {sizeof(void*)};
_ACC_launch(_ACC_program, 0, _ACC_conf, ACC_ASYNC_SYNC, 1, args, arg_sizes);

}

/* kernel function in device code */
void pzc__ACC_kernel_0(int *a)
{
/* codes in parallel region */

}

(b) translated code

Fig. 4. Code translation of parallel construct

300 A. Tabuchi et al.

/* inside parallel region */
#pragma acc loop vector reduction(+:sum)
for(i = 0; i < N; i++){
a[i]++;
sum += a[i];

}

(a) loop construct

/* inside kernel function */
int _niter_i, _idx, _init, _cond, _step, _red_sum;
_ACC_init_reduction_var(&_red_sum,0);
_ACC_calc_niter(&_niter_i, 0, N, 1);
_ACC_init_thread_iter(&_init,&_cond,&_step,_niter_i);
for(_idx = _init; _idx < _cond; _idx += _step){
int i;
_ACC_calc_idx(_idx, &i, 0, N, 1);
a[i]++;
_red_sum += a[i];

}
_ACC_reduction_thread(sum,_red_sum, 0);

(b) translated code

Fig. 5. Code translation of loop construct

automatically determines parallelisms. The loop iterations are cyclically sched-
uled for both PE and thread. If reduction clauses are present, private variables
are prepared before the loop, and their reduced values are stored in reduction
variables after the loop.

Figure 5 illustrates a loop construct and the translated code. The function
ACC calc niter calculates the number of iterations of the loop, and the function
ACC init thread iter obtains the initial, conditional, and step values of the itera-
tion for its thread. In the loop body, the function ACC calc idx obtains the value
of the loop variable. For reduction, the function ACC init reduction var initial-
izes the thread local variable, and then the function ACC reduction thread
reduces the value of the variable among threads in the PE.

5 Evaluation

This section presents the evaluation of our compiler’s performance and produc-
tivity of OpenACC.

5.1 Benchmark

For evaluation, we used the N-body benchmark and NPB-CG. The N-body
benchmark simulates the motion of particles that interact and calculates the
interactions of all pairs in a simple manner using a single-precision floating-
point value. NPB-CG is a benchmark, which evaluates the smallest eigenvalue
of a large sparse symmetric positive definite matrix by using the conjugate gra-
dient method. We developed the following versions of the benchmarks.

PZCL (Base). The baseline code written in PZCL. This uses kernel functions
separated at global synchronization points.

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 301

Table 1. Evaluation environment

Suiren Blue HA-PACS/TCA

CPU Intel Xeon-E5 2618Lv3 2.3 GHz Intel Xeon-E5 2680v2 2.8 GHz×2

Memory DDR4 64 GB, 1866 MHz DDR3 128 GB, 1866 MHz

Accelerator PEZY-SC×4 Tesla K20X×4

-Peak perf. SP: 3 TFlops, DP: 1.5 TFlops SP: 3.95 TFlops, DP: 1.31 TFlops

-Memory DDR4 16 GB, 1866 MHz GDDR5 6 GB

-Memory BW 153.6 GB/s 250 GB/s

Compiler ICC 14.0.2, PZSDK 2.1, Omni
OpenACC compiler 0.9.3 for
PEZY-SC

PGI 15.10, CUDA 7.5, Omni
OpenACC compiler 0.9.3

PZCL (A). PZCL (Base) with optimization A (Kernel merging)
PZCL (A, B). PZCL (Base) with optimizations A and B (Explicit thread

switching)
OpenACC. The code written in C with OpenACC

The performance of OpenACC should be equal to that of PZCL (Base) because
our compiler does not support the optimizations.

5.2 Performance

We measured the performance using Suiren Blue and HA-PACS/TCA, and the
evaluation environments are shown in Table 1.

Figure 6(a) shows the performance of the N-body benchmark on PEZY-SC.
The results show flops under an assumption of 38 floating-point operations

per interaction [12]. The performance of OpenACC version is 97.8–100.0 % of
PZCL versions. The effects of optimizations A and B are slight because the
calculation of interactions is dominant.

Figure 6(b) shows the performance of the NPB-CG benchmark on PEZY-SC.
“mop/s” implies mega operations per second. The performance of OpenACC
version is over 91.9 % of PZCL (base) version. Moreover, the OpenACC version
has unnecessary transfers related to reduction kernels. The value of the reduction
variable is copied from the host to device despite the initial value being always
zero. The optimization A is effective when the matrix size is small, especially
because the ratio of kernel launch overhead is large. The optimization B has a
good effect when the matrix size is large because the opposite-side threads can
utilize cached data before it is removed. The performance of OpenACC version
is 61.6–87.5 % of the PZCL (A,B).

Finally, for comparison, we measured the performance of the benchmarks of
the OpenACC version on Tesla K20X and compared it with that of the bench-
marks on PEZY-SC, as shown in Fig. 7(a) and (b). For K20X, we measured the
performance using both PGI and Omni compilers. For the N-body benchmark,

302 A. Tabuchi et al.

Fig. 6. Performance of benchmarks on PEZY-SC

the performance of Omni version is less than half of the performance of the PGI
version because particle data is loaded as scalars in the Omni version and as
a vector in the PGI version. For the NPB-CG benchmark, the Omni version
outperforms the PGI version because the Omni compiler utilizes warp shuffle
operation during reduction and the adjustment of the number of thread-blocks
is better than in PGI. Even when considering that the OpenACC compiler for
PEZY-SC is not optimized, the performance of PEZY-SC is unsatisfactory com-
pared with that of K20X. This may be because PEZY-SC has small number of
SFUs, which calculate the reciprocal square root for N-body, and the memory
bandwidth is low for NPB-CG.

5.3 Productivity

In PZCL, programmers need to manage memory and kernel execution on the
accelerator using many complex API calls same as in OpenCL, and write paral-
lelized kernel functions in the PZCL-specific description. Contrastively, in Ope-
nACC, programmers can directly offload and parallelize parts of serial code by
using several simple directives. Moreover, OpenACC is a standard specification;
therefore, OpenACC code is available for all accelerators.

We counted the Source Lines Of Code (SLOC) to measure the productivity
quantitatively. Table 2 shows the SLOC of N-body and NPB-CG. The SLOC of
OpenACC version are 48 % and 45 % of those of the PZCL version for N-Body
and NPB-CG respectively, and these are almost the same as their serial codes.
Therefore, OpenACC shows better productivity than PZCL.

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 303

Fig. 7. Performance of OpenACC version on K20X and PEZY-SC

Table 2. SLOC of N-Body and NPB CG. The number in parentheses represent the
lines of directives.

N-Body NPB CG

Serial 109 418

PZCL (A, B) 240 1001

OpenACC 114 (5) 447 (25)

6 Discussion

6.1 Optimization for PEZY-SC

We have not yet implemented the proposed optimizations in our OpenACC
compiler. In this subsection, we describe how to apply these optimizations.

The optimization of kernel merging can be implemented in the translation
of kernels constructs. Similar to a parallel construct, a kernels construct
offloads the following region to a device. While the parallel construct launches
a single kernel, the kernels construct launches multiple kernels. Our current
compiler translates a kernels region to some separated kernels, in the same
manner as for GPU. We will modify our compiler to translate the region to the
single kernel when the target is PEZY-SC. In the kernel, our compiler automat-
ically inserts sync() or flush() at the ends of each loop parallelized among gangs,
not breaking the semantics of the OpenACC program.

For explicit thread switching, we propose an additional directive correspond-
ing to chgthread(). Another method is for our compiler to automatically insert
chgthread() at appropriate points, such as at the end of a loop body, but it is
not always effective because it may lead to additional overhead due to thread

304 A. Tabuchi et al.

switching or cache miss. Therefore, it is preferable to give an API for program-
mers to specify thread switching explicitly by using some directives. As there is
no OpenACC directive that corresponds this, we will introduce the additional
directive to OpenACC. In addition, our compiler will replace the directive to
chgthread() when the target is PEZY-SC, or ignore it.

Although we did not exploit the hierarchy of PEs on PEZY-SC in this study, we
will utilize that by also using worker level parallelism in OpenACC. For example,
it is considered to map gang to City, worker to PE, and vector to thread.

6.2 Comparison with OpenMP

OpenMP supports offloading since version 4.0, and that is similar to OpenACC.
Even if we implement an OpenMP compiler for PEZY-SC, we will obtain almost
the same performance and productivities for the benchmarks.

However, some difference between OpenMP and OpenACC may affect perfor-
mance. OpenMP parallel construct can be multiple nested; whereas OpenACC
has only three-level parallelism. Therefore, if we describe five-nested parallel
constructs, they correspond to all levels of PEZY-SC hierarchy one-to-one. Fur-
ther, OpenMP provides barrier and flush directives which OpenACC does not.
The directives correspond to sync and flush functions in PZCL, respectively and
allow programmers to synchronize threads and flush cached data at each level of
the hierarchy. However, the correspondences between OpenMP parallel con-
structs and the hierarchy levels are implicit when using less than five nested
parallel constructs especially. In OpenACC, programmers can clarify paral-
lelisms by using gang, worker, and vector clauses.

Therefore, specifying parallelism level extension for parallel construct can
be considered for OpenMP, and more parallelism levels and synchronization and
flushing directives extension can be considered for OpenACC.

7 Conclusion

In this paper, we preliminarily designed and implemented an OpenACC compiler
for PEZY-SC to improve productivity. The compiler is based on our Omni Ope-
nACC compiler, and we implemented it to translate OpenACC code to PZCL
for PEZY-SC. In the evaluation, the performance of the OpenACC version was
over 98 % at N-body and up to 88 % at NPB-CG of that of the PZCL version.
At NPB-CG, some optimizations such as kernel merging and explicit thread
switching were effective for improving performance. From the viewpoint of pro-
ductivity, OpenACC outperforms PZCL because OpenACC allows programmers
to offload work to accelerators by adding directives to the serial version of code,
and the SLOC of OpenACC version are less than half of the PZCL version at
both N-Body and NPB-CG.

In our future work, we will optimize our compiler using PEZY-SC-specific
features. We plan to improve the translation of kernels construct and introduce
an additional directive for thread switching.

Design and Evaluation of Omni OpenACC Compiler for PEZY-SC 305

Acknowledgment. The present study was supported in part by the JST/CREST pro-
gram entitled “Research and Development on Unified Environment of Accelerated Com-
puting and Interconnection for Post-Petascale Era” in the research area of “Development
System Software Technologies for post-Peta Scale High Performance Computing”.

References

1. The green500. http://www.green500.org
2. Khronos Group. OpenCL - The open standard for parallel programming of hetero-

geneous systems. https://www.khronos.org/opencl/
3. OpenACC-Standard.org. OpenACC Home. http://www.openacc.org
4. Tabuchi, A., Nakao, M., Sato, M.: A source-to-source OpenACC compiler for CUDA.

In: an Mey, D., et al. (eds.) Euro-Par 2013. LNCS, vol. 8374, pp. 178–187. Springer,
Heidelberg (2014)

5. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. http://
www.nas.nasa.gov/publications/npb.html

6. Reyes, R., López-Rodŕıguez, I., Fumero, J.J., de Sande, F.: accULL: an Ope-
nACC implementation with CUDA and OpenCL support. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 871–
882. Springer, Heidelberg (2012)

7. Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S., Chapman, B.: Compiling
a high-level directive-based programming model for GPGPUs. In: Cas.caval, C.,
Montesinos-Ortego, P. (eds.) LCPC 2013. LNCS, vol. 8664, pp. 105–120. Springer,
Heidelberg (2014)

8. Lee, S., Vetter, J.S.: Openarc: open accelerator research compiler for directive-
based, efficient heterogeneous computing. In: Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing, HPDC
2014, New York, NY, USA, pp. 115–120. ACM (2014)

9. University of Delaware and LLNL. RoseACC. http://roseacc.org/
10. GCC. OpenACC - GCC Wiki. https://gcc.gnu.org/wiki/OpenACC
11. RIKEN AICS and University of Tsukuba. Omni Compiler Project. http://

omni-compiler.org
12. Warren, M.S., Salmon, J.K., Becker, D.J., Goda, M.P., Sterling, T., Winckelmans,

W.:Pentiumpro inside: I. a treecode at 430gigaflops onasci red, ii. price/performance
of $50/mflop on loki and hyglac. In: ACM/IEEE 1997 Conference on Supercomput-
ing, p. 61, November 1997

http://www.green500.org
https://www.khronos.org/opencl/
http://www.openacc.org
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://roseacc.org/
https://gcc.gnu.org/wiki/OpenACC
http://omni-compiler.org
http://omni-compiler.org

	Design and Preliminary Evaluation of Omni OpenACC Compiler for Massive MIMD Processor PEZY-SC
	1 Introduction
	2 Related Work
	3 PEZY-SC
	3.1 Architecture
	3.2 Programming

	4 Omni OpenACC Compiler
	4.1 Design
	4.2 Implementation

	5 Evaluation
	5.1 Benchmark
	5.2 Performance
	5.3 Productivity

	6 Discussion
	6.1 Optimization for PEZY-SC
	6.2 Comparison with OpenMP

	7 Conclusion
	References

