
OpenMP Parallelization and Optimization
of Graph-Based Machine Learning Algorithms

Zhaoyi Meng1,2(B), Alice Koniges2(B), Yun (Helen) He2, Samuel Williams2,
Thorsten Kurth2, Brandon Cook2, Jack Deslippe2, and Andrea L. Bertozzi1

1 University of California, Los Angeles, USA
mzhy@ucla.edu, aekoniges@lbl.gov

2 Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract. We investigate the OpenMP parallelization and optimiza-
tion of two novel data classification algorithms. The new algorithms are
based on graph and PDE solution techniques and provide significant
accuracy and performance advantages over traditional data classification
algorithms in serial mode. The methods leverage the Nystrom extension
to calculate eigenvalue/eigenvectors of the graph Laplacian and this is a
self-contained module that can be used in conjunction with other graph-
Laplacian based methods such as spectral clustering. We use performance
tools to collect the hotspots and memory access of the serial codes and
use OpenMP as the parallelization language to parallelize the most time-
consuming parts. Where possible, we also use library routines. We then
optimize the OpenMP implementations and detail the performance on
traditional supercomputer nodes (in our case a Cray XC30), and test the
optimization steps on emerging testbed systems based on Intel’s Knights
Corner and Landing processors. We show both performance improvement
and strong scaling behavior. A large number of optimization techniques
and analyses are necessary before the algorithm reaches almost ideal
scaling.

Keywords: Semi-supervised · Unsupervised · Data · Algorithms ·
OpenMP · Optimization

1 Introduction

We detail the OpenMP parallelization of two new data classification algorithms.
A classification algorithm sorts the data into different classes such that the sim-
ilarity within a class is stronger than that between different classes. This is a
standard problem in machine learning. Recently, novel algorithms have been pro-
posed [1] that are motivated by PDE-based image segmentation methods and
are modified to apply to discrete data sets [4]. Serial results show that these
algorithms improve both accuracy of solution and efficiency of the computation
and can be potentially faster in parallel than various classification algorithms
such as spectral clustering with k-means [6]. In this paper we describe parallel
implementations and optimizations of the new algorithms. We focus on shared
c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 17–31, 2016.
DOI: 10.1007/978-3-319-45550-1 2

18 Z. Meng et al.

memory many-core parallelization schemes that will be applicable to next gener-
ation architectures such as the upcoming Intel Knights Landing processor. After
analyzing the computational hotspots, we find that an optimized implementa-
tion of the Nyström eigensolver is the computational challenge. We implement
directive-based OpenMP parallelization on the most time-consuming part and
implement steps of optimizations to speed up and achieve almost ideal perfor-
mance.

The rest of this paper is organized as follows: Sect. 2 presents the background
of the image classification algorithms and the Nyström extension eigensolver. In
Sect. 3 we discuss Math library usage and optimization for the serial code. We
show our OpenMP parallelization strategies, optimization steps and arithmetic
intensity analysis in Sect. 4. Finally, Sect. 5 presents some conclusions and future
work.

2 Graph-Based Classification Algorithms

2.1 Introduction

We approach the classification problem using graph cut ideas. The novel classi-
fication algorithms consider each data point as a node in a weighted graph and
the similarity (weight) between two nodes Zi and Zj is given by formula:

wij = exp(−dis(Zi, Zj)/τ), (1)

where τ is a parameter [5,6]. The weight matrix is W = {wij}. In this paper,
we use cosine distance since we use the hyperspectral imagery as the test data
set and cosine distance is standard in this field. So

dis(Zi, Zj) =
< Zi, Zj >

||Zi||2||Zj ||2 . (2)

The classification problem is approached using ideas from graph-cuts [2].
Given a weighted undirected graph, the goal is to find the minimum cut (mea-
sured by a summation of the weights along the graph cut) for this problem.
This is equivalent to assigning a scalar or vector value ui to each ith data point
and minimizing the graph total variation (TV)

∑
ij |ui − uj |wij [3]. Instead of

directly solving a graph-TV minimization problem, we transform the graph TV
to graph-based Ginzburg-Laudau (GL) functional [8]:

E(u) = ε < Lsu, u > +
1
ε

∑

i

(W (ui)) (3)

where W (u) is a double well potential, for example W (u) = 1
4 (u2 − 1)2 in a

binary partition and multi-well potential for more classes. Ls is the normalized
symmetric graph Laplacian which is defined as L = I − D− 1

2 WD− 1
2 , where D

is a diagonal matrix with diagonal elements di =
∑

j∈V w(i, j).
In the vanishing ε limit a variant of (3) has been proved to converge to the

graph TV functional [7]. Different fidelity items are added to GL functional

OpenMP - Machine Learning Algorithm 19

for semi-supervised and unsupervised learning respectively. The GL functional
is minimized using gradient descent [9]. An alternative is to directly minimize
the GL functional using the MBO scheme [11] or a direct compressed sensing
method [12]. We use the MBO scheme in this paper in which one alternates
solving the heat (diffusion) equation for u and thresholding to maintain distinct
class structure. Computation of the entire graph Laplacian is prohibitive for
large data so we use the Nyström extension to randomly sample the graph and
compute a modest number of leading eigenvalues and eigenfunctions of the graph
Laplacian [10]. By projecting all vectors onto this sub-eigenspace, the iteration
step reduces to a simple coefficient update.

2.2 Semi-supervised and Unsupervised Algorithms

We outline the semi-supervised and the unsupervised algorithms. For the semi-
supervised algorithm, the fidelity (a small amount of “ground truth”) is known
and the rest needs to be classified according to the categories of the fidelity.
For the unsupervised algorithm, there is no prior knowledge of the labels of the
data. We use the Nyström extension algorithm beforehand for both algorithms
to calculate the eigenvalues and eigenvectors as the inputs. In practice, these
two algorithms converge very fast and give accurate classification results.

Semi-supervised Graph MBO Algorithm. [11]

1. Input eigenvectors matrix Φ, eigenvalues {λk}Mk=1 and fidelity.
2. Initialize u0, d0 = 0, a0 = ΦT · u0.

3. While ||un+1−un||22
||un+1||22 < α = 0.0000001 do

a. Heat equation
1). an+1

k = an
k · (1 − dt · λk) − dt · dnk

2). y = Φ · an+1

3). dn+1 = ΦT · μ(y − u0),
b. Thresholding

un+1
i = er, r = arg maxj yi

c. Updating a

an+1 = ΦT · un+1

Unsupervised Graph MBO Algorithm. [13]

1. Input data matrix f , eigenvector matrix Φ, eigenvalues {λk}Nk=1.
2. Initialize u0, a0 = ΦT · u0

3. While ||un+1−un||22
||un+1||22 < α = 0.0000001 do

a. Updating c

cn+1
k = <f,un+1

k >
∑N

i=1 uki

b. Heat equation

1. a
n+ 1

2
k = an

k · (1 − dt · λk)

20 Z. Meng et al.

2. Calculating matrix P , where Pi,j = ||fi − cj ||22
3. y = Φ · a

n+ 1
2

k − dt · μP
c. Thresholding

un+1
i = er, r = arg maxj yi

d. Updating a

an+1 = ΦT · un+1

2.3 Nyström Extension Method

In both the semi-supervised and unsupervised algorithms, we calculate the lead-
ing eigenvalues and eigenvectors of the graph Laplacian using the Nyström
method [10] to accelerate the computation. This is achieved by calculating an
eigendecomposition on a smaller system of size M << N and then expanding
the results back up to N dimensions. The computational complexity is almost
O(N). We can set M << N without any significant decrease in the accuracy of
the solution.

Suppose Z = {Zk}Nk=1 is the whole set of nodes on the graph. By randomly
selecting a small subset X, we can partition Z as Z = X

⋃
Y , where X and Y

are two disjoint set, X = {Zi}Mi=1 and Y = {Zj}N−M
j=1 and M << N . The weight

matrix W can be written as

W =
[

WXX WXY

WY X WY Y

]

,

where WXX denotes the weights of nodes in set X, WXY denotes the weights
between set X and set Y , WY X = WT

XY and WY Y denotes the weights of nodes
in set Y . It can be shown that the large matrix WY Y can be approximated by
WY Y ≈ WY XW−1

XXWXY , and the error is determined by how many of the rows
of WXY span the rows of WY Y . We only need to compute WXX , WXY = WT

Y X ,
and it requires only (|X| · (|X| + |Y |)) computations versus (|X| + |Y |)2 when
the whole matrix is used. For the data set we use in this paper, M = 100 and
N = 13, 475, 840.
Nyström Extension Algorithm

1. Input a set of features Z = {Zi}Ni=1.

2. Partition the set Z into Z = X ∪ Y , where X consists of M randomly selected elements.

3. Calculate WXX and WXY using formula (1).

4. Calculate dX = WXX1L + WXY 1N−L and dY = WY X1L + (WY XW−1
XXWXY)1N−L.

5. Calculate sX =
√

dX and sY =
√

dY .

6. Calculate WXX = WXX ./(sXsTX) and WXY = WXY ./(sXsTY).

7. Calculate eigendecomposition WXX = BXΓBT
X (using the SVD).

8. Calculate S = BXΓ−1/2BT
X and Q = WXX + S(WXY WY X)S.

9. Calculate eigendecomposition Q = AΘAT (using the SVD).

10. Form eigenvector matrix Φ =

[
BXΓ 1/2

WY XBXΓ−1/2

]
BT

X(AΘ−1/2).

11. Output Φ and {λi}Ni=i,where λk = 1 − θk with θk the kth diagonal element of Θ.

OpenMP - Machine Learning Algorithm 21

3 Math Library Usage and Optimizations

All the data are in matrix form and there are intensive linear algebra calculations.
We apply a Singular Value Decomposition (SVD) to two small matrices. We
make use of the LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear
Algebra Subprograms) libraries in the codes. The LAPACK provides routines
for the SVD and the BLAS provides routines for vector-vector (Level 1), matrix-
vector (Level 2) and matrix-matrix (Level 3) operations. BLAS and LAPACK
are also highly vectorized and multithreaded using OpenMP.

We use the Intel Performance Tool VTune Amplifier to analyze the perfor-
mance and to find bottlenecks [21]. The hotspots collection shows some com-
putationally expensive parts are related to calculating the inner product of two
vectors. In the unsupervised graph MBO algorithm, this operation occurs when
calculating the matrix P and takes 84 % of the run time. Also, it occurs when
calculating the matrix WXY in the Nyström extension algorithm and takes 90 %
of the run time. We optimize this procedure by forming all the vectors into
matrices and doing the inner product of two matrices. In this way, we make use
of BLAS 3 (matrix-matrix) instead of BLAS 1 (vector-vector). The part of cal-
culating the matrix P in the unsupervised algorithm is 22.5× faster using BLAS
3. This optimization is based on the fact that BLAS 1,2 are memory bound and
BLAS 3 is computation bound [14,15].

4 Parallelization of the Nyström Extension

Parallelization of these two classification algorithms involves a parallel for. It
is critical to further optimize the OpenMP implementation to get nearly ideal
scaling. We detail this process using more complex features of OpenMP such as
SIMD and vectorization. Then we use the uniform sampling and chunk of data
to get the best performance.

We consider the data set, described in more detail in [16], composed of hyper-
spectral video sequences recording the release of chemical plumes at the Dugway
Proving Ground. We use the 329 frames of the video. Each frame is a hyper-
spectral image with dimension 128 × 320 × 129, where 129 is the dimension of
the channel of each pixel. The total number of pixels is 13,475,840. Since we are
dealing with very large data set we choose binary form for smaller storage space
and faster I/O. Our test data is 13.91 GB in binary form and the I/O is 36.8×
faster than the txt format when testing on Cori Phase I.

We conduct our experiments on single nodes of systems at the National
Energy Research Scientific Computing Center (NERSC). Cori Phase I is the
newest supercomputer system at NERSC [22]. The system is a Cray XC based
on the Intel Haswell multi-core processor. Each node has 128 GB of memory and
two 2.3 GHz 16-core Haswell processors. Each core has its own L1 and L2 caches,
with 64 KB (32 KB instruction cache, 32 KB data) and 256 KB, respectively;

22 Z. Meng et al.

there is also a 40-MB shared L3 cache per socket. Peak performance per node
is about 1.2 TFlop/s and peak bandwidth is about 120 GB/s. The resultant
machine balance of 10 flops per byte strongly motivates the use of BLAS 3 like
computations. Cori Phase II will be a Cray XC system based on the second gen-
eration of Intel Xeon Phi Product Family, called Knights Landing (KNL) Many
Integrated Core (MIC) Architecture. The test system available to us now fea-
tures 64 cores with 1.3 GHz clock frequency (Bin-3 configuration) with support
for four hyper-threads each. Each core additionally has two 512bit-wide vec-
tor processing units. Additionally, the chip is equipped with 16 GB on-package
memory shared between all cores. it is referred to as HBM or MCDRAM with
a maximum bandwidth of 430 GB/s measured using the STREAM triad bench-
mark. The 512 KB L2 cache is shared between two cores (i.e. within a tile)
and the 16 KB L1 cache is private to the core. Furthermore, the single socket
KNL nodes are equipped with 96 GB DDR4 6-channel memory with a maximum
attainable bandwidth of 90 GB/s.

4.1 OpenMP Parallelization

Analysis with VTune shows that the most time consuming phase of both two
classification algorithms is the construction of WXY in the Nyström extension
procedure. This phase is a good candidate for OpenMP parallelization because
each element of WXY can be computed independently. The procedure of cal-
culating WXY is shown in Fig. 1. We form the data in a N by d matrix Z.
Each row of Z corresponds to a data point and it’s a vector of dimension d.
In computation, we store Z in an array in row major. We randomly select M
rows to form the sampled data set X = {Zi}Mi=1. The other rows form the data

Fig. 1. The procedure of calculating WXY :

OpenMP - Machine Learning Algorithm 23

set Y = {Zj}N−M
j=1 . Then we use the nested for-loop to calculate the values of

WXY by the formula (1). We then put the corresponding value in an array which
represent the M by N − M matrix WXY .

Reordering Loops. We have tested re-ordering loops as a means to optimize
the algorithm. With analysis, we notice the j-loop is far larger than the i-loop.
There are still two ways to do the parallelization. One way is to parallelize the
j-loop as inner loop and the other way is to parallelize the j-loop as outer loop.
We tried both ways and compared the results.

Step A: Parallelizing the inner j-loop
f o r i = 0; i < M ; i + +

n1 =< Zi, Zi >
#pragma omp p a r a l l e l f o r
f o r j = 1 : N − M

n12 =< Zi, Zj >
n2 =< Zj , Zj >
d = 1 − n12/

√
n1 · n2

WXY (i, j) = exp(−d/σ)
end

end

Step B: Parallelizing the outer j-loop
#pragma omp p a r a l l e l f o r
f o r j = 1 : N − M

n2 =< Zj , Zj >
f o r i = 1 : M

n12 =< Zi, Zj >
n1 =< Zi, Zi >
d = 1 − n12/

√
n1 · n2

WXY (i, j) = exp(−d/σ)
end

end

The results show that parallelizing the outer j-loop is much faster. The run
time decreases by a factor of 7. This is because on Cori, each core has its own L1
and L2 cache. When parallelizing the outer j-loop, all the Xis can be read and
reside on the L2 of each core and can be used repeatedly. If instead we parallelize
the inner j-loop, there are more reads of the Xi and thus the calculation takes
more time. Parallelizing the outer j loop also means each thread has more work
to do, since the inner i-loop is also part of the j-loop. In this way less overhead
and more load balance can be achieved. While if we parallelize the inner j-loop,
not only each thread has less work and large load imbalance, but also there are
multiple times of thread creation and overhead.

Vectorization and Chunk. We further optimize the OpenMP parallelization
using vectorization. First, we notice, the norms of Zis are computed repeatedly
in the i-loop. So, we normalize all the Zis in the previous step, calculating WXX ,
and store all the normalized Zis in a new matrix Xmat. Then we can calculate
the inner product of each Zj and all the Zis (Xmat) all at once. This make use
of BLAS 2 instead of the previous BLAS 1. Also, we can vectorize the loop when
calculating WXY . This optimization reduce the run time of calculating WXY by
a factor of 3.

Step C: Calculating WXY , normalize and form all Zis to Xmat

#pragma omp for
for j = 1 : N − M

24 Z. Meng et al.

n2 =< Zj , Zj >

nvec = 1− < Xmat, Zj > /
√

n2
#pragma omp simd aligned
for i = 1 : M

WXY (i, j) = exp(−nvec/σ)
end

end

The Nyström extension algorithm is based on a random partition of the
whole dataset Z into two disjoint data sets X and Y , where X = {Zi}Mi=1

and Y = {Zj}N−M
j=1 and M << N . Assuming we can uniformly partition the

dataset, so that Zis are evenly distributed, we can form chunks of Zjs to matrix
and further optimize this calculation. The procedure is shown in Fig. 2. First,
when calculating WXX , we evenly sample Zis and normalized them. We form the
normalized Zis to a matrix Xmat. Then all the data in between two consecutive
Zis are the chunk of Zjs. Since the chunk size is still very large, we further
decompose each Y-chunk into sub-chunks. There are several considerations for
choosing the sub-chunk size. If it is too small, we waste potential of combining
expensive operations. If it is too large, the sub-chunk may run out of lower level
cache and needs to be put into the higher cache levels, up to the point where
they spill over into DRAM which may cause a substantial performance hit. The
optimal value depends on the cache hierarchy, their respective sizes, their latency
and so on. For a different architecture, one may consider choosing another value.
We pick the the subchunksize = 64 when running the codes on Cori Phase I
and it can be further optimized.

Then for each sub-chunk, we calculate the Euclidean norm of each row and
store them in a vector n2vec. This calculation can be vectorized since calculating
the norm of each row is independent. We then calculate the matrix multiplication
Xmat·Ysubmat using BLAS 3 function DGEMM. The result is a m×subchunksize
matrix n12mat. It is the result of all the inner product of rows in Xmat and rows
in Ysubmat. Then we can vectorize the final calculation of values in WXY .

Fig. 2. Uniform sampling and dividing Y into chunks and sub-chunks

OpenMP - Machine Learning Algorithm 25

Step D: Calculating WXY using uniform sampling and chunked Y matrices

#pragma omp for collapse(2)
for ychunk = 0; ychunk < m; ychunk + +

for j = chunkstart; j < chunkstop; j+ = subchunksize
#pragma omp simd aligned
for k = 0; k < subchunksize; k + +

n2vec[k] =< Zj+k, Zj+k >

n2vec[k] = 1/
√

n2vec[k]
end
n12mat =< Xmat, Ysubmatj >
#pragma omp simd aligned
for i = 0; i < m; i + +

for k = 0; k < subchunksize; k + +
d = 1 − n12mat[i, k] · n2vec[k]
WXY (i, j + k) = exp(−d/σ)

end
end

end

In this uniform sampling, the chunk size is defined as chunksize =
floor(N/M). When M is not divisible by N , the last chunk is larger than the
other chunks. Also, subchunksize may not be divisible by chunksize. So the
size of the last sub-chunk in each chunk needs to be adjusted. The procedure of
uniform sampling gives good results as compared to the random sampling and
further improves the performance by a factor of 1.7.

Thread Affinity. We also consider the effect of thread affinity. We choose
the thread affinity setting as “OMP PROC BIND=scatter” and “OMP
PLACES=cores (or threads)”, because it uses one hardware thread per core.
While if we use the thread affinity setting to be “OMP PROC BIND=close” and
“OMP PLACES=threads”, it puts more threads on each physical core and leaves
other cores idle, which affects scaling performance.

Experiment Results. Cori Phase I : We examined optimization steps on a
single node of Cori Phase I. The run time decrease and scaling results of different
steps of optimizing the OpenMP parallelization are shown in Fig. 3. We show
the significant speed up of the Nyström loop part. In Step A, in addition to
parallelizing the Nyström loop, we also use BLAS 3 optimization on the graph
MBO algorithm. Since we use BLAS and LAPACK in the serial part of Nyström
algorithm and the graph MBO algorithm, their run time also decrease when
using multi-cores. We show the OpenMP thread scaling results on Cori Phase
I in Fig. 4. Almost ideal scaling results are acheived. Each Cori Phase 1 node
has two sockets (NUMA domain) and each socket has 16 cores. Although the
absolute performance increases when using more than 16 threads on a single

26 Z. Meng et al.

Fig. 3. The run time of different optimization steps on Cori Phase I. Step A: paralleliz-
ing the inner j-loop and BLAS 3 optimization on Graph MBO. Step B: parallelizing the
outer j-loop. Step C: normalizing and forming all Zis to Xmat. Step D: using uniform
sampling and chunked Y matrices. (Color figure online)

Fig. 4. The scaling results of the OpenMP parallelization of the Nyström loop on Cori
Phase I. The black line with squares, the red line with circles and the blue line with
triangles show the scaling results of step B, C and D respectively. The pink line with
upside down triangles shows the ideal scaling. (Color figure online)

OpenMP - Machine Learning Algorithm 27

Fig. 5. The scaling results of the OpenMP parallelization of the Nyström loop on KNL
white box. The black line with squares, the red line with circles and the blue line
with triangles show the scaling results of step B, C and D respectively. The pink line
with upside down triangles shows the ideal scaling which matches step D. (Color figure
online)

node, the NUMA effect is observed. The scaling slows down due to the remote
memory access to a far NUMA domain.

Knight’s Landing : We employed the same optimizations already used for the
Haswell optimization with three exceptions: we have compiled the code with
AVX-512 support to make use of the wider vector units as well as doubled the
sub-chunk size as depicted in Fig. 2 accordingly.1 Furthermore, we have enabled
fast floating point model and imprecise divides with -fp-model fast=2 and
-no-prec-div respectively. The (strong) thread scaling of the various sections
of the code is depicted in Fig. 5 for one hyper-thread per core. We found that
this configuration delivered the best performance. Utilizing two or more hyper-
threads significantly decreased the performance, especially that of the Nystrom
loop. We observe that our code obtains good strong scaling up to all 64 cores.
We are currently investigating the hyper-threads performance and improving the
scaling of step D.

4.2 Arithmetic Intensity and Roofline Model

Arithmetic intensity is the ratio of floating-point operations (FLOP’s) performed
by a given code (or code section) to the amount of data movement (Bytes) that
1 We have explored various sub-chunk sizes but found that twice the optimal Haswell

value, i.e. 128 vectors, yield the best performance.

28 Z. Meng et al.

Fig. 6. Empirical Roofline Toolkit results for a Cori Phase I node. Observe, DRAM
bandwidth constrains performance for a wide range of arithmetic intensities.

are required to support those operations. Arithmetic intensity in conjunction
with the Roofline Model [17] can be used to bound kernel performance and
qualify performance in a manner more nuanced than percent-of-peak. Figure 6
shows the result of using the Roofline Toolkit [18] to characterize the performance
of a Cori Phase I node (full 32 cores). The resultant lines (“ceilings”) are bounds
on performance. Clearly, in order to attain high performance, one must design
algorithms that deliver high arithmetic intensity. In order to characterize the
Nyström loop, we used Intel’s Software Development Emulator Toolkit (SDE)
to record FLOP’s and Intel’s VTune Amplifier to collect data movement when
running on 32 cores of a Cori Phase I node [19,20]. We can then compare the
results to a theoretical estimate based on the inherent requisite computation and
data movement.

As shown in Fig. 1, the memory access has two major components — one
must read data from the matrix Z from DRAM and then write the results in to
a matrix WXY . The size of data matrix Z is N × d, where N = 13, 475, 840 and
d = 129 for our test data. As we store the data in double precision, the total
size of the matrix (and hence volume of data read) is at least 13.907×109 bytes.
In the inner loop, the processor must continually access M rows of the matrix
Z. As the resultant volume of data (103,200 bytes) easily fits in cache, we need
only read each Zi once (data movement is well proxies by compulsory cache
misses). The size of the matrix WXY is (N − M) × M , where M = 100. As each
double-precision element is written once, we can bound write data movement as
(N − M) × M × 8 = 10.78 × 109 bytes. A similar calculation can be performed
to calculate the requisite number of floating-point operations. In the optimized
code, although there are dot products for < Zj , Zj > coupled with a reciprocal

OpenMP - Machine Learning Algorithm 29

Table 1. Theoretical estimates (ignoring dual-socket nature of the machine) and
Empirical measurements (using VTune and SDE) of data memory and floating-point
operations for the Nyström loop.

Theoretical Empirical

Bytes Read 13.907×109 17.123×109

Bytes Written 10.781×109 12.256×109

FP operations >347.68×109 385.59×109

Arithmetic Intensity (flop:byte) >14.1 13.12

square root and one exponential per element of WXY , the DGEMM used for
calculating Xmat × Ysubmat should dominate the flop count. The matrix Xmat

is 100 × 129, the matrix Ysubmat is on average 64 × 129, and there are roughly
13, 475, 840/64 = 210560 Ysubmat matrices. Thus, the number of floating-point
operations in the loop is about 210560 × 2 × 64 × 129 × 100 = 347.68 × 109

(ignoring any BLAS 2 operations, the dot products, and the exponential).
Table 1 presents our theoretical estimates and empirical measurements (using

VTune and SDE) of data memory and floating-point operations for the Nyström
loop. As expected, our rough theoretical model slightly underestimated each
quantity. Multiple sockets (each with their own caches) may be required to read
unique bytes, but in reality will access overlapping data due to the realities of
large cache lines and hardware stream prefetchers. In terms of floating-point
operations, it is clear DGEMM (the basis for our theoretical model) constitutes
over 90 % of the total flop count with the remainder likely arising from exponen-
tials and dot products. Overall, with a run time of about 1.28 s, the optimized
code attains about 300GFlop/s of performance and 23GB/s of DRAM band-
width at an arithmetic intensity of just over 13 flops per byte. At such a high
arithmetic intensity, Fig. 6 suggests the full node DRAM bandwidth will not
be the ultimate limiting factor. However, as we have not included any NUMA
optimizations in the implementation, we expect the single socket’s DRAM band-
width (slightly less than 54 GB/s) to be a substantial performance impediment.
Additional data movement in the cache hierarchy coupled with performance chal-
lenges associated with transcendental operations such as reciprocal-square-root
and exponential likely impede our ability to fully saturate even a single socket’s
bandwidth.

5 Conclusion and Future Work

In this paper, we present a parallel implementation of two novel classification
algorithms using OpenMP. We show OpenMP parallel and SIMD regions in
combination with optimized library routines achieve almost ideal scaling and
significant speedup over serial implementations. Although, we attain roughly
50 % of the Roofline bound (no NUMA), we expect future optimizations for
the transcendentals, the cache hierarchy, and NUMA to substantially improve

30 Z. Meng et al.

performance. We also expect more performance optimization results on KNL
“white boxes” (pre-release hardware) and the future Cori Phase II.

Acknowledgments. This work was supported by NSF grants DMS-1417674 and
DMS-1045536 and AFOSR MURI grant FA9550-10-1-0569. We would like to thank
Dr. Da Kuang for his suggestions on optimizing the serial codes. This work was also
supported by U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. Meng, Z., Merkurjev, E., Koniges, A., Bertozzi, A.L.: Hyperspectral Video Analysis
Using Graph Clustering Methods. Image Processing On Line, submitted

2. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM (JACM) 44(4), 585–
591 (1997)

3. Szlam, A., Bresson, X.: A total variation-based graph clustering algorithm for
cheeger ratio cuts. UCLA CAM Report, pp. 09–68 (2009)

4. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of
high dimensional data. SIAM Rev. 58(2), 293–328 (2016)

5. Chung, F.: Spectral Graph Theory, vol. 92. American Mathematical Society, Prov-
idence (1997)

6. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

7. Van Gennip, Y., Bertozzi, A.L.: Gamma-convergence of graph Ginzburg-Landau
functionals. Adv. Differ. Equ. 17(11/12), 1115–1180 (2012)

8. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of
high dimensional data. Multiscale Model. Simul. 10(3), 1090–1118 (2012)

9. Luo, X., Bertozzi, A.L.: Convergence analysis of the graph Allen-Cahn scheme.
Preprint

10. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the
Nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004)

11. Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classifi-
cation and image processing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013)

12. Merkurjev, E., Bae, E., Bertozzi, A.L., Tai, X.C.: Global binary optimization on
graphs for classification of high-dimensional data. J. Math. Imaging Vis. 52(3),
414–435

13. Hu, H., Sunu, J., Bertozzi, A.L.: Multi-class graph Mumford-Shah model for plume
detection using the MBO scheme. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M.
(eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 209–222. Springer, Heidelberg (2015)

14. Kuang, D., Gittens, A., Hamid, R.: Hardware compliant approximate image codes.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (2015)

15. Demmel, J.W.: Applied Numerical Linear Algebra. Siam, Philadelphia (1997)
16. Broadwater, J.B., Limsui, D., Carr, A.K.: A primer for chemical plume detection

using LWIR sensors. Technical Paper, National Security Technology Department,
Las Vegas, NV (2011)

OpenMP - Machine Learning Algorithm 31

17. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

18. Rooine Toolkit: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
19. Intel Software Development Emulator. https://software.intel.com/en-us/articles/

intel-software-development-emulator
20. Doerfler, D.: Understanding Application Data Movement Characteristics using

Intel VTune Amplifier and Software Development Emulator tools, Intel Xeon Phi
User Group (IXPUG) (2015)

21. Intel VTune Official Website. https://software.intel.com/en-us/intel-vtune-
amplifier-xe

22. Cori Website: https://www.nersc.gov/users/computational-systems/cori

https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://www.nersc.gov/users/computational-systems/cori

	OpenMP Parallelization and Optimization of Graph-Based Machine Learning Algorithms
	1 Introduction
	2 Graph-Based Classification Algorithms
	2.1 Introduction
	2.2 Semi-supervised and Unsupervised Algorithms
	2.3 Nyström Extension Method

	3 Math Library Usage and Optimizations
	4 Parallelization of the Nyström Extension
	4.1 OpenMP Parallelization
	4.2 Arithmetic Intensity and Roofline Model

	5 Conclusion and Future Work
	References

