
Scaling FMM with Data-Driven OpenMP Tasks
on Multicore Architectures

Abdelhalim Amer1(B), Satoshi Matsuoka2, Miquel Pericàs3,
Naoya Maruyama4, Kenjiro Taura5, Rio Yokota2, and Pavan Balaji1

1 Argonne National Laboratory, Lemont, IL 60439, USA
aamer@anl.gov

2 Tokyo Institute of Technology, Tokyo 152-8550, Japan
3 Chalmers University of Technology, 412 96 Gothenburg, Sweden

4 RIKEN Advanced Institute of Computational Science, Hyogo 650-0047, Japan
5 University of Tokyo, Tokyo 113-0033, Japan

Abstract. Poor scalability on parallel architectures can be attributed
to several factors, among which idle times, data movement, and runtime
overhead are predominant. Conventional parallel loops and nested par-
allelism have proved successful for regular computational patterns. For
more complex and irregular cases, however, these methods often perform
poorly because they consider only a subset of these costs. Although data-
driven methods are gaining popularity for efficiently utilizing computa-
tional cores, their data movement and runtime costs can be prohibitive
for highly dynamic and irregular algorithms, such as fast multipole meth-
ods (FMMs). Furthermore, loop tiling, a technique that promotes data
locality and has been successful for regular parallel methods, has received
little attention in the context of dynamic and irregular parallelism.

We present a method to exploit loop tiling in data-driven parallel
methods. Here, we specify a methodology to spawn work units char-
acterized by a high data locality potential. Work units operate on tiled
computational patterns and serve as building blocks in an OpenMP task-
based data-driven execution. In particular, by the adjusting work unit
granularity, idle times and runtime overheads are also taken into account.
We apply this method to a popular FMM implementation and show
that, with careful tuning, the new method outperforms existing parallel-
loop and user-level thread-based implementations by up to fourfold on
48 cores.

1 Introduction

The technology trend of increasing core densities and deepening memory hierar-
chies in high-end processor packages is exacerbating the difficulty of harnessing
their computational power. Higher core counts imply that applications have to
expose more concurrent work in order to feed the computational units. More-
over, the performance of the memory subsystem is not keeping up with the core
density. Consequently, pressure on the memory subsystem (e.g., caches, intercon-
nects) and the distances that remote data has to traverse are increasing, adding
to the existing CPU-memory performance gap.
c© Springer International Publishing Switzerland 2016
N. Maruyama et al. (Eds.): IWOMP 2016, LNCS 9903, pp. 156–170, 2016.
DOI: 10.1007/978-3-319-45550-1 12



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 157

A parallel execution can be formulated as a dynamic scheduling optimization
problem. The goal is to minimize the makespan of a schedule of work units (tasks,
loop chunks) on a set of computational cores. Unfortunately, finding an optimal
schedule has proved to be an NP-complete problem even in the simple case of
static scheduling, two processors, and one or two time units for task weights [11].
In practice, the model that dictates parallel execution (e.g., bulk-synchronous,
data-driven) affects the resulting schedule and does not guarantee optimality.

The effectiveness of the resulting schedule is often quantified in terms of paral-
lel efficiency relative to a sequential execution. Recent literature has shown that
loss in parallel efficiency can be attributed to three primary factors: idle times,
data movement, and runtime overhead1 [7,9]. In order to mitigate these costs,
parallel algorithms must expose sufficient parallelism (i.e., parallel slackness)
and reduce data movement while keeping the runtime overhead low. Conven-
tional parallel loops and nested parallelism have proved successful for regular
computational patterns. For more complex and irregular cases, however, such
methods often perform poorly because they take into account only a subset of
these factors. For instance, bulk-synchronous approaches, exemplified by parallel
loops, can suffer from underutilization of resources because of insufficient par-
allel slackness within or across computational steps. Data-driven methods can
maximize resource utilization but often suffer from poor data locality (e.g., cache
thrashing) and costly task management.

The difficulty of reducing data-movement costs in data-driven methods is
often caused by high degrees of parallel slackness and poor data-locality incen-
tives. Higher parallel slackness implies that the complexity of a proper work-
unit-to-core mapping by the underlying runtime increases as well. Combined
with poor data locality incentives, runtimes often operate with greedy heuris-
tics (e.g. work-first and work-stealing policies) and thus execute work units in a
data-locality-oblivious manner. Consequently, the resulting mapping can exhibit
little data reuse and often causes substantial cache thrashing. Although some
incentives have been proposed, such as hierarchical place trees [12], they remedy
only part of the issue (e.g., reduction in remote memory accesses) and do not
provide sufficient data reuse. On the other hand, loop tiling, a technique that
promotes data locality and has been successful for regular parallelism, has seen
little application in the context of data-driven and asynchronous tasking. In par-
ticular, it is arduous for these methods to exploit loop tiling within or across
work units because of their fine-grained nature.

In this work, we investigate using OpenMP for a highly irregular fast multi-
pole method (FMM) implementation. We choose FMM for its rich set of hetero-
geneous computational kernels and its complex dependencies that stress parallel
efficiency. Furthermore, FMM input parameters allow us to control computation
and synchronization requirements to help generalize our results. We propose a
methodology to generate work units inherently suitable for data locality and
amenable for granularity tuning to control the degree of parallel slackness and
management overhead, thus taking into account all the primary factors that

1 The time spent managing work units (e.g., creation, destruction, and scheduling).



158 A. Amer et al.

influence parallel efficiency. Specifically, work units operate on input-output data
in tiled computational patterns inspired by cache-blocking techniques. Since tile
sizes correlate with task granularity, they are exposed as tuning parameters.
This method was applied in the context of an OpenMP task-based data-driven
implementation that relies on the task construct to expose parallelism and the
depend clause to express data dependence.

Results after applying this method to the kernel-independent FMM
(KIFMM) of Ying et al. [13] showed substantial scalability improvements over
existing parallel loop and user-level thread-based implementations, where up to
fourfold improvements have been observed on 48 cores. Furthermore, we show
that the tuned parameter values can be portable for several other input problems
except when the parallel slackness is severely hindered, such as with small prob-
lem sizes and large tasks. We also show the limits of our data-locality optimiza-
tion on a heavy cache-coherent non-uniform memory access (ccNUMA) machine.
These results indicate that tiling to improve temporal and spacial data locality
needs to be combined with NUMA awareness in order to further reduce data
movement costs.

2 Related Work

Although scheduling work on parallel machines has long been studied, its NP-
completeness and the rapid growth in scale and complexity of the parallel com-
puting landscape make it an important and open research topic. We discuss here
recent work and the perspectives from which the researchers tackle the problem
of parallel efficiency loss.

Tasirlar and Sarkar introduced the implementation of data-driven tasks as an
extension to the async-finish model to allow arbitrary runtime task graphs execu-
tion [10]. The authors focused mostly on the syntax and semantics of the model,
however, with little attention paid to data locality. Yan et al. abstracted the
memory hierarchy using a hierarchical place trees (HPT) model [12]. However,
HPT is not flexible enough to express arbitrary dependencies between tasks and
hence may result in a lack in parallel slackness. Furthermore, their data locality
incentive through the concept of places is weak, does not exploit spatial locality,
and does not tackle cache-thrashing issues. Olivier et al. explored the concept of
locality domains, similar to places, by extending OpenMP with runtime routines
that allow users to implement locality-aware divide-and-conquer algorithms [7].
This approach, however, shares the same data-locality issues as do places. In
addition, the study focused on loop parallelism and divide-and-conquer task-
parallel algorithms that are prone to parallel slackness issues.

Data-driven methods have been used (e.g., [5,8]) to tackle the irregular
nature of FMM. The FMM implementations used by these works did not exhibit
data-locality issues, however, and work focused mostly on parallel slackness. In
prior work we also characterized FMM implementations that exhibited opposing
trade-offs: a bulk-synchronous that suffered mostly from idle times and a fine-
grained data-driven implementation that was losing more on data locality [2].



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 159

Here, we strive for a better balance between the different trade-offs by exploiting
tiling in a data-driven execution. A preliminary description of this method was
introduced in the doctoral dissertation of the lead author [1]. Here, we provide
a more in-depth description, analysis, and evaluation of the method.

3 About the FMM Case Study

The fast multipole method is a technique developed to accelerate solving N -body
problems. The challenge is to evaluate pairwise interactions between N bodies.
A direct computation results in an O(N2) complexity, which makes it expensive
for large problem sizes. FMM was proposed as a fast solution that uses a rapidly
convergent method and has a O(N) complexity [4].

In this work we use the kernel-independent FMM variant developed by Ying
et al., which relies only on kernel evaluations and extends FMMs to a wider
range of engineering and scientific problems [13]. KIFMM operates on three-
dimensional domains containing the target simulation bodies. The domain is
hierarchically decomposed into smaller boxes, or cells, with each box containing
a maximum of q bodies, where q is an input parameter and the hierarchy of boxes
forms an octree. Computation of the effect of bodies in a source box on other
bodies in a target box depends on the proximity between the two boxes. For
close boxes, direct computation is employed; for far boxes, a multistep far-field
approximation is used instead. In KIFMM, proximity between boxes is repre-
sented by a set of interaction lists computed following Greengard notation [4]:
U, V, X and, W. KIFMM implements the force evaluation through the following
steps: U-list, Upward, V-list, W-list, X-list, and Downward. We distinguish two
independent flows of computation: the near field direct evaluation, which is rep-
resented by the U-list computation, and the far-field approximation, which starts
from the Upward step, proceeds with the V-list, W-list, and X-list computations,
and finishes with the Downward step.

The performance of KIFMM is highly dependent on the balance between its
kernels. The reason is the heterogeneity between them in terms of arithmetic
intensity, data accesses, and synchronization.2 This balance depends on the den-
sity and pattern of the body distribution and the maximum number of bodies
allowed in each cells, q. Large values of q result in small trees and converge
KIFMM toward a direct O(N2) complexity, which is expensive even on modern
hardware. Smaller values lead to larger trees, where most of the computation
is performed by the far-field approximation, a step dominated by the memory-
intensive V-list kernel and heavy synchronizations. This balance property allows
us to simulate application runs in different regimes and thus to generalize our
findings. Consequently, the primary challenge here is to ensure scalable per-
formance in all regimes. In the following, we present the existing thread-level
parallelization strategies that will serve as baselines.

2 For example, U-list kernels are compute intensive; V-list ones are memory intensive
and incur sparse memory accesses.



160 A. Amer et al.

Fig. 1. OpenMP parallel loop of the V-list step. The OMP SCHED macro controls the
scheduling policy and takes the values static or dynamic (chunk size defaults to 1).

Bulk-Synchronous with OpenMP: This is a highly optimized implemen-
tation for multicore architectures [3]. All steps rely on OpenMP work-sharing
constructs to parallelize the work on the target nodes of the octree. In par-
ticular, the Upward and Downward steps ensure parent-children dependencies
through OpenMP barriers. To better expose the trade-off between parallel slack-
ness and data-locality, we explored two opposing scheduling policies to implement
all phases: (1) a static approach that divides the target node list equally among
the threads without taking into account the workload variation and (2) a dynamic
approach that distributes dynamically the workload. Figure 1 shows how this is
applied to the V-list step, where OMP SCHED controls the scheduling policy.

Fine-Grained Data-Driven with Lightweight Threads: In this implemen-
tation, tasks operate at the tree node granularity and are spawned as lightweight
threads using the MassiveThreads library [6]. That is, the flow of execution goes
from source to the target boxes, where the far-field and direct evaluation compu-
tations are merged into a single flow by starting the Upward step and the direct
evaluation at the same time. Here, fine-grained synchronization is required in
order to respect data dependencies. Tasks are created only when their depen-
dencies are satisfied; dependency tracking is achieved through fork-join control
flows and atomic counters. Figure 2 gives an example of how a V-list task is
executed for a source cell (src) after being called by an Up task (see [2] for
more details about this implementation). Our analysis showed that the way the
tasks are spawned in this data-driven implementation generates subtree work-
ing sets that have a positive data locality impact on the Upward and Downward
steps, but it does not help with the communication-intensive V-list computation.
Despite exposing massive parallel slackness, this implementation scales poorly
for data-locality-sensitive scenarios.

Fig. 2. V-list computation in a fine-grained data-driven implementation. The
create task function is a generic wrapper around lightweight thread creation.



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 161

4 Tasking Through Temporal and Spatial Blocking

The difficulty of reconciling the factors affecting parallel efficiency lies in their
orthogonal effect. Reducing idle times requires high degrees of parallel slackness
and dynamic scheduling. The primary goal of dynamic scheduling is to balance
work across computational units and is often data locality agnostic. This results
in poor scheduling decisions that cause more cache thrashing from heteroge-
neous working sets than would a more homogeneous static scheduling approach.
Furthermore, work unit management costs is higher at fine-grained levels. The
previously described dynamic bulk-synchronous and fine-grained data-driven
approaches suffer from this problem because they operate3 without appropri-
ate data locality incentives. In this section, we present a method that retains
the advantages of dynamic scheduling while taking into account data locality
and work unit granularity in order to lower data movement and work unit man-
agement costs. This method was primarily designed for data-driven implemen-
tations, but was also applied to parallel loops for later comparison.

In KIFMM, steps operate on objects that are arrays of basic elements. Each
element is a data structure that encapsulates information required by a subset
of the computational steps at the tree node granularity. The access pattern of
each computational step can be modeled as a sparse matrix whose dimension
depends on the number of objects manipulated. In the bulk-synchronous case,
basic elements are written individually (dynamic scheduling) or in blocks (static
scheduling), but reading is sparse and depends on the interaction lists. The
lightweight-threads implementation has a similar pattern but is source centric;
reads are individual, and writes are sparse. The sparsity of the memory access
pattern is a major issue especially for the memory-intensive V-list step.

To improve the data locality of such sparse memory accesses, we present a par-
titioning scheme where tasks operate on every object in blocks of basic elements
(both reads and writes). The resulting partitioning is a multidimensional tiling
that clusters computational patterns that operate on contiguous data and exhibit
high temporal and spatial locality. This is similar to existing cache-blocking tech-
niques found in linear algebra optimizations. In KIFMM, however, we target the
high levels of the memory hierarchy (e.g., last-level cache) because operations on
tree nodes operate on larger data. For instance, an operation between two tree
nodes can be composed of matrix multiplications or FFT transformations. These
computations are carried out by external libraries and are often well optimized
for lower-level caches. Figure 3a shows a quad-tree for a two dimensional domain
where partitions are aligned to tree levels in order to avoid complex dependencies.
The resulting partitions serve as the tile size for one data object. Considering a
computation step that operates on two data objects, the resulting tiling is two
dimensional. Figure 3b illustrates how the data is partitioned for the V-list step.
In the following We use the same tile size for the tasks of all steps to simplify depen-
dency tracking and tuning. Exploring different tile sizes for the various steps is left
as a future work. We present below how the tiling method is applied for both to
parallel loops and to data-driven tasks.

3 Loop chunks or lightweight threads operate at the level of a single octree node.



162 A. Amer et al.

(a) Box partitions following the quad-tree (b) Applying the partitions to the V-list step

Fig. 3. Partitioning example for a two dimensional domain (resulting in a quad-tree):
(a) partition ranges within tree level boundaries to reduce unnecessary dependencies;
(b) example of V-list interaction pattern between source and target boxes. The same
partitioning scheme in (a) is applied to achieve two-dimensional tiles. A secondary
tiling level is applied within work units for V-list.

Fig. 4. Example of a bulk-synchronous tiled V-list computation with dynamic schedul-
ing. BS denotes the block size.

Tiled Bulk-Synchronous: We applied the previous tiling method to the bulk-
synchronous method. Figure 4 illustrates how the V-list phase is implemented
with OpenMP work-sharing constructs and a blocking factor (BS). Our imple-
mentation breaks the outer loop manually, but the same result could have been
achieved by using the OpenMP chunk parameter.

Tiled Data-Driven with OpenMP: Task-dependency tracking was intro-
duced in OpenMP 4.0 through the depend clause of the task construct. This
clause takes as arguments the input-output storage locations, which can be scalar
variables or arrays sections. In KIFMM, specifying individual array elements as
dependencies is impractical because of the task management overhead. Passing
the sparse storage locations directly (e.g., as a linked list) is not possible because
the depend clause accepts only scalar variables and array sections. Thus, we
express those dependencies conservatively by using array sections. This approach



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 163

Fig. 5. V-list computation in the tiled data-driven implementation using OpenMP
tasks. Here, eff val and eff den are the input and output vectors, respectively. BS

and VBS are the maximum task and V-list tile sizes, respectively.

expresses more dependencies than necessary but incurs less dependency tracking
overhead with large array sections. We then apply the tiling method by mapping
tiles or blocks to array sections. In addition, we expose another blocking factor
for the V-list step because communication-intensive kernels often perform worse
in a data-driven execution as a result of cache thrashing from sharing cache with
tasks that operate on different data4. Figure 3b illustrates how the data is parti-
tioned in KIFMM with particular attention to the V-list blocks. Figure 5 shows
how we implemented the V-list phase. We observe that this method is relatively
simple to implement with OpenMP. The resulting manual tiling, however, makes
the code less readable. We believe directive extensions to OpenMP to express
tiled algorithms would be beneficial. For instance, the taskloop construct could
be extended with tiling clauses. The rest of the stages are implemented similarly
to allow a full data-driven execution.

Tuning Method: One of the limits of tuning methods is the rapid growth
of the design space with the number of parameters and the ranges of discrete
values they can take. To reduce this complexity, we operate in several steps,
starting from tuning single-threaded performance, then moving to tuning the
parallel data-driven implementation. Previously, with KIFMM, single-threaded
performance was manually tuned [3]. We only tune q in single-threaded since it
affects performance significantly across input problems and hardware specifica-
tions. The most important step here is to explore the design space of the task
granularity and the V-list block size.

5 Characterization and Evaluation

We describe here a characterization study to identify the bottleneck sources of
each implementation. We then present a performance scalability evaluation.
4 Tiling with parallel loops achieves good data locality without this secondary tiling

factor as will be shown in Sect. 5.1.



164 A. Amer et al.

Table 1. Target machine specifications

Sandy Bridge Magny-Cours

Processor Xeon E5-2670 Opteron 6172

CPU Frequency (Ghz) 2.6 2.1

# Sockets 2 4

# NUMA-Nodes 2 8

#Cores/NUMA-Nodes 8 6

L3 Cache size (MB) 20 6-1

Compiler ICC 15.0.0 GCC 4.9.2

Experimental Setup: We follow the same input problems as in [3]. That is,
we simulate the evaluation of a single step where the bodies are spread following
two distributions: a randomly uniform and an elliptical distribution. For the
interaction that governs the physics, we use the Laplace kernel. We consider
only double-precision computation because of its higher pressure on the memory
subsystem, which we consider more insightful. For the target architectures we
select representatives of ccNUMA multicore architectures, with a two-socket Intel
Sandy Bridge and 8 four-socket NUMA nodes on an AMD Magny-Cours; detailed
specifications are given in Table 1.

Tuning Results: Tuning results for a uniform and an elliptical distribution on
both target platforms are shown in Fig. 6 for the bulk-synchronous approach and
in Fig. 7 for the data-driven approach. We observe that performance is highly
variable depending on the task granularity and the V-list block size. In addition,
we notice that the optimal parameters depend on the type of the input distribu-
tion and across hardware architectures. The portability of the tuned parameters

1 

2 

4 

8 

16 

32 

64 

128 

256 

1 

2 

4 

8 

16 

32 

64 

128 

256 

1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096 

E
xe

cu
tio

n 
T

im
e 

(s
) 

Block Size (# nodes) 

Uniform 

Elliptical 

(a) Sandy Bridge

E
xe

cu
tio

n 
T

im
e 

(s
) 

Block Size (# nodes) 

Uniform 
Elliptical 

(b) Magny-Cours

Fig. 6. Tuning the tiled bulk-synchronous implementation with 222 bodies and q = 128
at full concurrency on each machine.



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 165

sruoC-yngaMegdirBydnaS
U

n
ifo

rm
E

llip
tica

l

Fig. 7. Tuning the tiled data-driven implementation with 222 bodies and q = 128 at
fully concurrency on each machine.

with respect to the problem size and the parameter q is discussed further in a
subsequent section. An important observation is the time explosion for small
tasks when using an elliptical distribution. That inflation is due mostly to run-
time overheads. Unfortunately, we do not have a quantitative measure of the
runtime overhead, although we believe that this overhead is negligible for large
enough tasks and that idle times and data movement dominate.

5.1 Characterizing Data Locality and Idleness

Here we analyze all implementations under the same conditions and correlate
the performance differences with idle times and data locality.

Data Locality Characterization: Assuming work units are atomic, that is,
not susceptible to preemption,5 we show in Fig. 8a the cumulative execution
time of all instances of two kernels that are atomic and contribute to most of
the KIFMM work time. The Direct kernel is compute intensive and called by
all the higher-level kernels except V-list. This latter phase relies heavily on the
memory-intensive Pointwise kernel. Compared with a sequential execution, ker-
nel times with the parallel methods increase slightly for the compute-intensive
kernel but can increase significantly for the communication-intensive kernel for
some methods. Since the work units are atomic, runtime scheduling overheads
and idle times should not affect these results. Thus, data movement is the pri-
mary factor that influences the variation of kernel times across the parallelization
methods.

5 An atomic work unit executes to completion without interruption after being sched-
uled. In the context of parallel runtimes, such unit should not perform synchroniza-
tion and scheduling operations, such as yielding execution.



166 A. Amer et al.

20.28 
22.33 23.17 23.42 22.33 22.21 

7.43 8.86 

18.83 

11.40 
8.72 8.62 

0 

5 

10 

15 

20 

25 

30 

35 

seq
uen

tia
l 

bulk+sta
tic

 

bulk+dyn
 

fg-
data

-driv
en

 

bulk+dyn
+tile

 

data
-driv

e+
tile

 

C
um

ul
at

iv
e 

K
er

ne
l T

im
e 

(s
) Direct Kernel 

Pointwise Kernel 

(a) Kernel Times

1.19 

2.53 

1.53 

1.18 1.17 1.10 1.14 1.15 1.10 1.09 

0 

0.5 

1 

1.5 

2 

2.5 

3 

bulk+sta
tic

 

bulk+dyn
 

fg-
data

-driv
en

 

bulk+dyn
+tile

 

data
-driv

e+
tile

 

W
or

k 
Ti

m
e 

In
fla

tio
n 

Fa
ct

or
 Direct Kernel 

Pointwise Kernel 

(b) Work-Time Inflation

Fig. 8. Data locality with an elliptical distribution, 222 bodies, and q = 128 on Sandy
Bridge.

To better capture the inflation when running such atomic work units in par-
allel, we rely on the work time inflation metric, which measures the factor of
the parallel execution time over a sequential execution for a given work unit
[7,9]. We measured the work time inflation for the aforementioned kernels on
the Sandy Bridge machine and show the results in Fig. 8b. We notice that all
methods have little inflation except the Pointwise kernel, which shows significant
inflation in the case of the dynamic bulk-synchronous and the fine-grained data-
driven implementations (2.53x and 1.53x inflation, respectively). Furthermore,
we observe that the inflation was reduced substantially by the tiled implemen-
tations, incurring less than 1.20x inflation.

Idleness Characterization: To characterize idleness, we manually instru-
mented the implementations to record the number of tasks running in parallel
per interval of time. This metric indicates idle threads if the number of run-
ning tasks is less than the number of threads. The metric involves a sampling
approach using the POSIX timer interface. Figure 9 shows the results with sam-
ple intervals of 5 ms that ensure a low tracing overhead. We confirm that the
data-driven approach exhibits the fewest idle threads among all approaches and
that it offers a major advantage over the bulk-synchronous approach even after
tuning the block sizes.

5.2 Performance Evaluation

The goals of this section are threefold: (1) evaluate all implementations in terms
of scalability; (2) discuss the portability of the tuning parameters; and (3) cor-
relate scalability and time to solution.

Scalability Evaluation: Figure 10 shows scalability results with an input prob-
lem of 222 bodies. We observe that the Sandy Bridge results reflect the previous



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 167

bulk-stat bulk-dyn fg-data-driven bulk-dyn-tiled data-driven-tiled

0 

4 

8 

12 

16 

# 
R

un
ni

ng
 T

as
ks

 

0 

4 

8 

12 

16 

# 
R

un
ni

ng
 T

as
ks

 

0 

4 

8 

12 

16 

# 
R

un
ni

ng
 T

as
ks

 

0 

4 

8 

12 

16 

# 
R

un
ni

ng
 T

as
ks

 

0 

4 

8 

12 

16 

0 0.5 1 1.5 2 2.5 3 3.5 4 # 
R

un
ni

ng
 T

as
ks

 

Execution Time [s] 

Fig. 9. Profiling idle time with an elliptical distribution and 222 bodies and q = 128
on Sandy Bridge.

Fig. 10. Scalability evaluation with 222 bodies and q = 128.



168 A. Amer et al.

Fig. 11. Portability of the tuning parameters with an elliptical distribution on Sandy
Bridge with respect to the input problem size and q.

characterization, where the tiled data-driven implementation is the most scal-
able, followed by the tiled bulk-synchronous method, because it suffers little work
time inflation and idleness. This method also performs the best on Magny-Cours,
although the parallel efficiency at full concurrency is not perfect. The reason is
the data movement costs since the platform is a heavy ccNUMA machine and
our data locality optimizations are not NUMA aware.

Tuning Values Portability: Here we fix the task block and V-list block sizes
after tuning them for 222 bodies in a uniform distribution and q = 128 on Sandy
Bridge. We then vary the input problem while monitoring the speedup (Fig. 11).
We observe that the tiled implementations perform the best in most cases except
for small problem sizes and large values of q. In this latter case, the resulting
octree is small; and since our decomposition is performed at the tree node level,
tasks are too coarse grained, and thus parallel slackness is severely hindered.
Furthermore, large values of q imply a compute-intensive regime that does not
benefit from our data locality optimizations.

Scalability vs. Efficiency: Figure 11 also shows that the fine-grained dynamic
implementations (bulk-synchronous and fine-grained data-driven) perform simi-
lar to or outperform the tiled implementations in compute-intensive regimes (i.e.,
large q). A misleading decision by application developers is to aim at generat-
ing a large number of compute-intensive tasks and schedule them dynamically;
the belief is that by having few memory-intensive tasks, the dynamic execution
should be able to scale almost linearly. Scalability, however, does not necessarily
mean optimal time to solution. Figure 12 shows the execution time necessary
for one KIFMM iteration to solve a large problem. We note that using large
values of q translates into worse performance, although Fig. 11 exhibits almost
linear scalability with all dynamic executions. The issue here is that a large
ratio of compute-intensive tasks moves the complexity of the whole application



Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures 169

1 

2 

4 

8 

16 

32 

64 

128 

q=128 q=256 q=512 q=64 q=128 q=256 

Uniform Elliptical 

T
im

e 
to

 S
ol

ut
io

n 
(s

) 
bulk-stat bulk-dyn fg-data-driven bulk-dyn-tiled data-driven-tiled 

Fig. 12. Time to solution at full scale (16 cores) for an elliptical distribution with
respect to the implementation method and the values of q for a large problem size (224

bodies).

toward O(N2), which is heavy and slow even on modern hardware. As a result,
managing data locality in the presence of memory-intensive tasks can be more
efficient. In addition, other applications might not have such balance between
heterogeneous kernels and might have a more homogeneous communication-
intensive nature and thus will require careful data locality optimizations.

6 Conclusion and Future Work

We presented in this paper a methodology to express parallelism while taking
into account data locality through tiling computation patterns when using work-
sharing and task constructs. The resulting tiled bulk-synchronous and data-
driven implementations showed substantial improvement, with the data-driven
method being the most scalable. In addition, the tuning parameters proved to
be fairly portable except when parallel slackness was severely reduced.

From a programming model perspective, the tiled implementations required
more extensive changes. One of the desirable feature that was missing was the
ability to write tiled algorithms readily. From a performance perspective, we
showed that optimizing for data locality not only requires spatial and tempo-
ral locality but also necessitates NUMA awareness in order to reduce expen-
sive remote data-movement. We plan to investigate methods of combining tiling
abstractions with NUMA awareness, by using OpenMP places for instance.

Acknowledgment. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, under Contract DE-AC02-06CH11357, and by JST,
CREST (Research Areas: Advanced Core Technologies for Big Data Integration; Devel-
opment of System Software Technologies for post-Peta Scale High Performance Com-
puting).



170 A. Amer et al.

References

1. Amer, A.: Parallelism, data movement, and synchronization in threading models
on massively parallel systems. Technical report, Tokyo Institute of Technology,
Department of Mathematical and Computing Sciences (2015)

2. Amer, A., Maruyama, N., Pericàs, M., Taura, K., Yokota, R., Matsuoka, S.: Fork-
join and data-driven execution models on multi-core architectures: case study of
the FMM. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol.
7905, pp. 255–266. Springer, Heidelberg (2013)

3. Chandramowlishwaran, A., Williams, S., Oliker, L., Lashuk, I., Biros, G., Vuduc,
R.: Optimizing and tuning the fast multipole method for state-of-the-art multi-
core architectures. In: 2010 IEEE International Symposium on Parallel Distributed
Processing (IPDPS), pp. 1–12 (2010)

4. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems, vol.
52. MIT Press, Cambridge (1988)

5. Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods (2012)
6. Nakashima, J., Taura, K.: Massivethreads: a thread library for high productivity

languages. In: Agha, G., Igarashi, A., Kobayashi, N., Masuhara, H., Matsuoka, S.,
Shibayama, E., Taura, K. (eds.) Concurrent Objects and Beyond. LNCS, vol. 8665,
pp. 222–238. Springer, Heidelberg (2014)

7. Olivier, S.L., De Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and mit-
igating work time inflation in task parallel programs. In: Proceedings of the 2012
ACM/IEEE Conference on Supercomputing, pp. 1–12. IEEE (2012)

8. Pericas, M., Amer, A., Fukuda, K., Maruyama, N., Yokota, R., Matsuoka, S.:
Towards a dataflow FMM using the OmpSs programming model. In: 136th IPSJ
Conference on High Performance Computing (2012)

9. Pericàs, M., Amer, A., Taura, K., Matsuoka, S.: Analysis of data reuse in task-
parallel runtimes. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS
2013. LNCS, vol. 8551, pp. 73–87. Springer, Heidelberg (2014)

10. Tasirlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: 2011 Inter-
national Conference on Parallel Processing (ICPP), pp. 652–661 (2011)

11. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

12. Yan, Y., Zhao, J., Guo, Y., Sarkar, V.: Hierarchical place trees: a portable abstrac-
tion for task parallelism and data movement. In: Gao, G.R., Pollock, L.L., Cavazos,
J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 172–187. Springer, Heidelberg
(2010)

13. Ying, L., Biros, G., Zorin, D., Langston, H.: A new parallel kernel-independent fast
multipole method. In: ACM/IEEE Conference on Supercomputing, p. 14 (2003)


	Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures
	1 Introduction
	2 Related Work
	3 About the FMM Case Study
	4 Tasking Through Temporal and Spatial Blocking
	5 Characterization and Evaluation
	5.1 Characterizing Data Locality and Idleness
	5.2 Performance Evaluation

	6 Conclusion and Future Work
	References


