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Abstract. Tasks offer a natural mechanism to express asynchronous
operations in OpenMP as well as to express parallel patterns with
dynamic sizes and shapes. Since the release of OpenMP 4 task depen-
dencies have made an already flexible tool practical in many more sit-
uations. Even so, while tasks can be made asynchronous with respect
to the encountering thread, there are no mechanisms to tie an OpenMP
task into a truly asynchronous operation outside of OpenMP without
blocking an OpenMP thread. Additionally, producer/consumer paral-
lel patterns, or more generally pipeline parallel patterns, suffer from the
lack of a convenient and efficient point-to-point synchronization and data
passing mechanism. This paper presents a set of extensions, leveraging
the task and dependency mechanisms, that can help users and imple-
menters tie tasks into other asynchronous systems and more naturally
express pipeline parallelism while decreasing the overhead of passing data
between otherwise small tasks by as much as 80 %.
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1 Introduction

The addition of tasks to OpenMP marked a fundamental shift in the programming
paradigms available to OpenMP users. Programs are no longer tied to statically
sized and shaped parallel algorithms, but support recursive or dynamic structures
as well. The addition of task dependencies in OpenMP 4.0, and more recently the
addition of the taskloop construct, have continued to build on this support for
dynamic parallelism. Despite these advances, some patterns remain elusive. This
paper presents proposed extensions to OpenMP to target two such patterns: effi-
cient interoperability with other asynchronous models, frameworks or hardware;
and efficiently expressing fine-grained producer/consumer relationships.

Much as OpenMP has incorporated progressively more dynamic parallelism
through the last several versions, many programming models and frameworks
have been building in support for asynchronous operations. Some of the more
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commonly used of the programming models include CUDA [1] and OpenCL [2],
both of which rely on asynchronous data motion and kernel execution for effi-
ciency. At the same time libraries and frameworks such as MPI [7], libuv, or
even Linux native asyncio expose programmers to ever more options for asyn-
chronous communication independent of their programming model. All of these
can be incorporated into the OpenMP task graph by wrapping a call to them in
a task, to be sure, but there is a downside to this approach. The call must block,
or be caused to block, within that task for dependencies to resolve correctly in
OpenMP. As a result, all of these potentially asynchronous options either must
not be integrated into the task graph, or must consume an OpenMP thread
for their entire duration, forcing them to effectively be synchronous. We pro-
pose an extension to the task and dependency system to support unstructured
tasks, tasks encompassing a dynamic region, to incorporate these models and
frameworks more efficiently and cleanly with the OpenMP model.

Producer/consumer models have been poster-children for OpenMP tasking,
especially since the advent of dependencies. Tasks are, in general, a natural way
to express producer/consumer and more general pipeline models, and OpenMP
tasks are no exception in this respect. Unfortunately however, OpenMP lacks
an efficient point-to-point data passing mechanism to support very fine-grained
producer/consumer parallelism. The built-in way to pass an element from a
producer to a consumer is for the producer to create a task, which is a relatively
expensive operation that must be amortized. We propose adding a new type of
dependency, queue dependencies, that carry typed concurrent queues to reduce
the necessity to create additional tasks while providing an efficient point-to-point
data transfer mechanism for OpenMP.

Our contributions are as follows:

— A design for unstructured tasks, allowing general interoperability between the
OpenMP task graph and external asynchronous models

— An extension to task dependencies to carry data channels, enhancing support
for fine-grained producer/consumer codes

— An evaluation of our queue-based producer/consumer dependencies.

The rest of this paper is laid out as follows. First we present the base global
dependency extension on which the others are built in Sect.2. Our design for
task interoperability with unstructured task regions follows in Sect. 3. Next we
discuss and evaluate our design for queue dependencies in Sect. 4, followed by
related work in Sect. 5.

2 Global Dependencies

Our extensions revolve around improving point to point synchronization between
tasks and integration of external synchronization mechanisms into the OpenMP
task graph. Both of these goals benefit from one base extension, the ability to
define a global, or at least cross-task, dependency or synchronization directed
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synchronization mechanism. Depending on the shape this takes, different exten-
sions become possible as either API routines or directives. This section discusses
the global dependency mechanism itself, as well as two extensions that either
make use of it or exploit the added potential for point-to-point synchronization
in a system that incorporates the concept. Specifically we propose extensions
for writing advanced interoperability interfaces that can help integrate other
asynchronous runtimes or mechanisms with the OpenMP task graph and inte-
grating producer consumer relationships either through dependency directives,
or through an analogous queue API.

For the purpose of this paper, we assume the existence of an extra attribute,
global, on the depend clause that can be specified before the dependency direc-
tion. For example, depend (global, inout: a) would introduce an input depen-
dency on all tasks, regardless of their parent task or sibling relationship, that
have an output dependency on a. Likewise it specifies an output dependency
that applies to all tasks created by all threads that specify an input dependency
on a thereafter. This kind of dependency can be thought of much like an omp
single directive for structured parallel regions, in that it ensures that only that
one task, of all tasks that have dependencies on a given list item, can be running
at a time. One example use would be to block work on a given data element, or
set of same, to synchronize or otherwise communicate with other processes in a
distributed memory setting. The nature of a global dependence is that its order-
ing with respect to specific tasks encountered in other threads is not guaranteed
without external synchronization, but it can provide a useful serialization point.

3 Unstructured Tasks

Especially with the uptake of heterogeneous architectures and computational
coprocessors, asynchronous operations are becoming more and more common in
high performance computing. OpenMP provides an interface to asynchronously
offloading work with the target directives, and memory motion if necessary, with
the device data constructs. If there is an operation that isn’t directly provided by
OpenMP however, integrating it without wasting a thread is less than straight-
forward for even the most advanced users.

As an example, a user writing an asynchronous version of omp_target_memcpy
with an underlying asynchronous call provided by their system might write the
code in Fig. 1. The resulting implementation is asynchronous with respect to the
encountering task and the encountering thread. Even so, if they take the simple
option, it requires a CPU thread to remain blocked in the async_wait() call
in order to ensure the memcpy is done before the task dependence is satisfied.
To avoid blocking the thread the entire time, the user may add polling using
taskyield to re-invoke the task scheduler. While this certainly works, it intro-
duces additional invocations of the task scheduler and of a polling interface to
function, where an asynchronous response mechanism may already be available
and may further be more efficient or may be the only mechanism available. To
address cases like this, where an already asynchronous event should be integrated
into the task dependency graph, we propose to introduce unstructured tasks.
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1 void naive_async_memcpy(void *dst, void *src,

2 size_t size, void #**dep) {
3 // Wait for all OpenMP tasks that have out depends on *dep
4 #pragma omp task depend(inout: *dep)

5 {

6 // start asynchronous memcpy

7 async_memcpy (dst, src, size);

8 // wait for the memcpy to complete

9 async_wait();

10 // OR

11 while(!async_poll_done()) {

12 #pragma omp taskyield

13 }

14 }

15 }

Fig. 1. A naive attempt at an asynchronous memcpy

Figure2 shows the constructs of the extension we propose for this use
case. Much like the device data constructs, specifically target enter data and
target exit data, the taskenter and taskexit directives form an unstruc-
tured region. Rather than an unstructured data environment however, these
form an unstructured task region to allow manipulation of dependency satis-
faction based on external factors. The taskenter directive takes an identifier
clause, which is used to fill a passed variable with the identifier later used to
satisfy the task dependency, and optionally accepts an associated block and a
depend clause. A taskenter without a depend clause is allowed, but is treated as
though it begins with a taskwait construct. If no block is provided, the encoun-
tering thread blocks on a task scheduling point until all input dependencies are
satisfied. Otherwise, if a block is provided, it is treated as a deferrable task
that will be executed when dependencies are resolved, allowing the encountering
thread to continue immediately.

The main difference between taskenter and a regular OpenMP task is that
output dependencies are not satisfied at the end of the taskenter construct. In
order to satisfy the output dependencies on an unstructured task, a taskexit
directive with a matching identifier clause must be used. If the dependency
is a standard, local, dependency then the taskexit must be encountered by the
task that encountered the taskenter construct. For a global dependency, any
thread executing on the same device is allowed to encounter the taskexit.

The example in Fig. 3 illustrates the usage of an unstructured task to improve
integration with a native asynchronous memcpy. This version uses a taskenter
directive to create a global input and output dependency on the value passed
in by the user, and since it has an associated block and no if clause, the task
is deferred. While the encountering thread continues, the task waits for input
dependencies to be satisfied. Once they are, the external asynchronous memcpy
is invoked, and a callback registered with the external library to satisfy the
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1 // Begin an unstructured task region:
2 | #pragma omp taskenter identifier(list-item) \

3 [depend([global,] \

4 [inlout/inout[:]] \
5 <list-items>) ...J] \
6 [untied] \

7 [if (<condition>)]

s |// {} Optional block to be Tun as a task when in dependencies
9 /7 are satisfied

10 // End an unstructured task region, satisfy out dependencies
11 #pragma omp taskezit identifier(list-item)

Fig. 2. Unstructured tasks

1 struct dep_ident {void #* dep; void * ident;};
2 void extended_async_memcpy(void *dst, void *src,
3 size_t size, void *x*dep) {

4 struct dep_ident *i = malloc(sizeof (struct dep_ident));

5 i->dep = dep;

6 // Wait for all OpenMP tasks that have out depends on *dep
7 #pragma omp taskenter identifier(i->ident) \

8 untied \

9 depend(global, inout: *dep)

10 {

11 async_memcpy(dst, src, size);

12 async_callback_on_complete(clear_dependency, 1i);

13 }// Note: *dep out is not satisfied here

|}

15 |void clear_memcpy_dependency (void *dep) {

16 struct dep_ident *i = dep;

17 // Satisfy the currently outstanding out dependency on *dep
18 // note: since this is a global dependency, any thread may clear the
19 // dependency

20 #pragma omp taskexit identifier(i->ident)

21 }

Fig. 3. Produce and consume as dependence types

OpenMP dependence on *dep once the copy is complete. Using the extension,
the external memcpy now offers nearly the same level of task integration that
unstructured device data constructs do through the nowait clause, but through
a wholly user-controllable mechanism.

It is worth noting that this interface would be meant for advanced users only,
primarily for those writing runtime systems, optimized native libraries support-
ing OpenMP or integrations with other systems. In giving the user control over an
unstructured dependency region, it is possible for a user to create a deadlock by
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never completing an unstructured task in the same way it is possible for them to
cause a deadlock by never unlocking a lock that threads are waiting on. That said,
the potential advantages of being able to integrate more tightly with the depen-
dency mechanisms of system libraries, or even communication libraries such as
MPI, are substantial.

4 Queue Dependencies

OpenMP tasks are frequently taught with certain specific dynamic workloads in
mind. The most common of these appear to be parallelizing recursive algorithms
and parallel processing of dynamically sized containers like linked lists. Right
behind these in lists of use-cases however is to model a parallel producer and
consumer. While this use-case appears in many lists, actual code for a task-
based producer consumer is rarely included in examples, preferring to fall back
on critical sections to create ad-hoc queues to implement the pattern. The
resulting code requires external dependencies, or manual implementation of data
transfers, neither of which is necessary for a version using tasks. As an example,
see Figs.4 and 5. Both figures implement the same pattern, but the critical
section version requires a queue to store intermediate work, and takes nearly
twice as many lines of code as the task version. Admittedly, the critical section
version offers a known first-in first-out order, which the task version does not,
but not all producer consume problems require such an ordering.

serial_queue_t sq = INIT_SERIAL_QUEUE;
int done = O;
#pragma omp parallel
while (!done) {
int product = 0;
if (omp_get_thread_num () == 0) {
done = produce(&product) ;
if (done) {
#pragma omp flush
break;

® N o A W N e

©

=
S)

3
#pragma omp critical (product_queue)
enqueue (&sq, product);

-
=

-
S

=
w

¥

#pragma omp critical (product_queue)
int status = dequeue(&sq, &product);
if (status == QUEUE_EMPTY) continue;
consume (product) ;
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Fig. 4. A simple single producer multiple consumer with critical sections
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#pragma omp parallel
#pragma omp serial
while (1) {
int product = 0;
int done = produce (&product);
if (done) break;
#pragma omp task firstprivate(product)
consume (product);

© W N o G ok W N =

Fig. 5. A simple single producer multiple consumer with tasks

While there are clear upsides to the task version, unfortunately there is also
a hidden downside. The task version incurs more overhead, for which we will
provide specific numbers below. What both of these have in common is that they
share the work of consumption across available threads by passing produced data
through an intermediate data structure. In Fig.4 the structure is an is explicit
queue. The task version in Fig. 5 uses an implicit structure, the task queue inside
the OpenMP runtime itself, to accomplish the same ends. Each task storing its
required data element to be consumed when a thread is available. In order to
improve the usability of this idiom in OpenMP, we propose to incorporate a new
dependency type that also serves to pass data between tasks, allowing them to
be reused rather than rebuilt.

The core of the extension is to add the new dependency types produce and
consume, along with corresponding directives omp produce and omp consume.
When a produce or consume dependency is encountered, a multi-producer multi-
consumer queue is logically created and associated with the address of the list-
item passed to the depend clause. If one already exists in the current thread,
it is found and reused, or if the dependency uses the global attribute it would
be found in any thread in the contention group. The queue thus created would
persist until either all producer tasks using it have completed and it is empty
or until the parallel region ends, whichever comes first. Within the region of a
producer task the omp produce(<arg>[[, <full>], <complete>]) directive
may be used to add items to the queue. The first argument to the directive
is copied into the queue as they would be by a firstprivate clause. If the
queue is full and the <full> variable is omitted, the operation blocks on a task
scheduling point until room is available. If the <full> argument is specified, then
the operation is non-blocking, and sets that argument a boolean representing
whether the <arg> was successfully placed into the queue or not. If the <full>
parameter is true, the application is responsible for caring for the argument
value until it can be passed. Finally, when all producer tasks for a given queue
are complete, the queue becomes closed, allowing consumers to detect that there
will be no more values to consume by specifying something to be set for the closed
argument.
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1 int done = 0;

2 #pragma omp parallel

3 |while (!done) {

4 int product = 0, more = 0;

5 #pragma omp master

6 #pragma omp task depend(global, produce: product)
7 while (1) {

s done = produce (&product);

9 if (domne) {

10 #pragma omp flush

11 break;

12 }

13 more = 1;

14 #pragma omp produce(product)

15 }

16 #pragma omp task depend(global, consume: product)
17 while(1) {

18 #pragma omp consume(product, more)
19 if (!more)

20 break;

21 consume (product);

22 }

23 }

Fig. 6. A simple single producer multiple consumer with queue dependencies

On the opposite side, a task with a consume dependence becomes a consumer
task, and uses the same mechanism to locate the queue it is to read from. Within
the region, the omp consume(<arg>[[, <more>], <complete>]) directive can
be used to retrieve a value from the queue into <arg>, a boolean represent-
ing whether the value retrieved is new or the queue was empty in <more> and
<closed> which denotes whether the queue has been closed. If a consumer is
encountered without a matching producer having been encountered, the con-
sumer will act as though the producer exists and is both empty and closed.

Using these constructs, we can produce the example presented in Fig. 6. This
example uses producer and consumer tasks to create a pipeline that can continue
as long as the queue has room in a parallel context, and yet retains a correct serial
elision when OpenMP is not used. This example shows the master encountering
a producing task while all the other threads, and subsequently the master itself,
encounter consuming tasks. All of these become logically connected by the same
multi-producer multi-consumer queue because the dependency specification on
each is global. The producer blocks when the queue is full, but due to the task
scheduling point therein it can be re-scheduled to continue in the original loop
and help process consuming tasks until the queue runs dry. Threads may spin
through the outer loop, but because the lifetime of the queue is tied to the
enclosing parallel region, it is only created and destroyed once in this construct.
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Fig. 7. Producer/consumer microbenchmark normalized element throughput

The main downside to this construction is the relative verbosity and com-
plexity, it is in fact longer than using a third-party queue with critical sections,
but it holds an advantage in potential throughput. The main complication is
maintaining serial elision correctness while using directives for the data passing
and synchronization mechanism. This could likely be alleviated by shifting to an
API-based approach somewhat, or certainly by providing a progress guarantee
between tasks even when run with one thread, but those options are outside the
scope of this paper.

Figure7 shows results for a simple producer/consumer microbenchmark
implemented with each of these three mechanisms. Each run uses a single pro-
ducer, the master thread, and eight consumers (one of which is also the pro-
ducer), one per thread on the 8-core Intel i7 CPU, 500,000 elements are produced,
retrieved and consumption is a simple sum for the small case or a loop over 5,000
elements in the large case. The underlying queue implementation for the concur-
rent queue is a blocking multi-producer multi-consumer queue equivalent to that
proposed by Scogland et al. [10]. These results show that for producer/consumer
problems with relatively small work, or a requirement for high throughput, the
queue extensions can be highly beneficial. For medium or larger, long running,
tasks the overhead is dwarfed by the task execution time.

5 Related Work

Integrating task systems with one another has been a popular topic of research in
recent years. OmpSs [4,6], a precursor to many of OpenMP’s tasking features,
incorporates both CUDA and OpenCL asynchronous communications into its
runtime, and provides the results to the user at the beginning of their tasks.
The runtime backing the StarPU [3] task system performs similar background
management of data as well. This approach differs from the one we propose
for OpenMP in that we want to give users control over the machinery that
allows OpenMP to coexist with another asynchronous model peacefully. The
automated asynchronous data movement these models use is a good candidate
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for optimizations of the device data constructs, and possibly other areas, but
does not address quite the same problem.

The concept of using channels, or queues, between independent tasks or
threads of control to provide synchronization and communication is certainly
not a new one. Discussions of a method like it go at least as far back as discus-
sions of communicating or cooperating sequential processes and coroutines by
Dijkstra [5] and Hoare [8] who discuss communication between coroutines via
a variety of mechanisms as fundamental to programming. In more recent times
the use of blocking channels in combination with lightweight tasks has been
popularized by the Go [9] language, which incorporates both a coroutine analog
and synchronous typed channels as basic language types. The main distinctions
between our extension and channels as used by Go are that Go’s channels sup-
port serial execution only with guaranteed progress despite blocking on channels,
where our extension is designed to always result in a valid serial elision that does
not require task swapping to be correct. A progress guarantee of this type might
be a useful future extension, but it is beyond the scope of this paper.

6 Conclusions

We have presented three extensions to OpenMP’s tasking model. First, at the
base, is allowing a global modifier to make a task dependency apply across a
contention group, rather than just to sibling tasks. Leveraging that, we present
unstructured tasks, which give users and runtime implementers a way to more
closely and efficiently integrate their asynchronous mechanisms with OpenMP’s
task graph. Finally we presented an extension for producer/consumer depen-
dencies, allowing OpenMP runtimes to provide a queue-like data-passing and
synchronization abstraction for producer/consumer models. We show that using
the queue mechanism allows a user to generate far fewer tasks, and pay less
overhead per iteration of each of the producer and consumer. For very small
consumer workloads, we found an improvement of as much as 80 % and no per-
formance decrease for larger tasks. In the future we would like to investigate
these mechanisms in terms of larger applications, and explore the possibility of
gracefully handling an unstructured task left unsatisfied as well as investigating
the possibility of a formal progress model for OpenMP tasking.
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