
A Cloud-Based Prediction Framework
for Analyzing Business Process Performances

Eugenio Cesario, Francesco Folino(B), Massimo Guarascio, and Luigi Pontieri

ICAR-CNR, National Research Council of Italy,
Via P. Bucci 41C, 87036 Rende, CS, Italy

{cesario,ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. This paper presents a framework for analyzing and pre-
dicting the performances of a business process, based on historical
data gathered during its past enactments. The framework hinges on an
inductive-learning technique for discovering a special kind of predictive
process models, which can support the run-time prediction of some per-
formance measure (e.g., the remaining processing time or a risk indicator)
for an ongoing process instance, based on a modular representation of
the process, where major performance-relevant variants of it are equipped
with different regression models, and discriminated through context vari-
ables. The technique is an original combination of different data mining
methods (namely, non-parametric regression methods and a probabilis-
tic trace clustering scheme) and ad hoc data transformation mechanisms,
meant to bring the log traces to suitable level of abstraction. In order
to overcome the severe scalability limitations of current solutions in the
literature, and make our approach really suitable for large logs, both
the computation of the trace clusters and of the clusters’ predictors are
implemented in a parallel and distributed manner, on top of a cloud-
based service-oriented infrastructure. Tests on a real-life log confirmed
the validity of the proposed approach, in terms of both effectiveness and
scalability.

Keywords: Data mining · Prediction · BPM · Cloud/grid computing

1 Introduction

In many real-life application contexts, business processes are bound to the
achievement of goals expressed in terms of performance measures (possibly
representing an indicator security/risk or a measurement of quality), which
are monitored continuously at run-time. Historical log data, gathered during
past enactments of a process, are a valuable source of hidden information on
the behavior of the process, which can be extracted with the help of process
mining techniques [1], and exploited to improve the process, and meet such
performance-oriented goals. In particular, it is definitely relevant to this regard
the recent stream of research on the automated discovery of predictive process

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
F. Buccafurri et al. (Eds.): CD-ARES 2016, LNCS 9817, pp. 63–80, 2016.
DOI: 10.1007/978-3-319-45507-5 5

64 E. Cesario et al.

models (see, e.g., [2,7]), capable to estimate a given performance measure
over new instances of a process, as long as they are carried out. Indeed, such
performance forecasts can help optimize the process at run time, by possibly
developing advanced operational support services, such as task/resource recom-
mendation [11], and the notification of alerts (possibly associated with some
form of diagnostics).

Technically, all current approaches to the (log-based) discovery of a perfor-
mance prediction model rely on abstracting the given log traces into a summa-
rized propositional form, suitable for recognizing patterns that are likely to be
correlated to the analyzed performance measure (constituting the target of the
prediction task). For example, in [2], an annotated finite-state machine (AFSM)
model is induced from a given log, where the states correspond to different
abstract representations of all the sequences of process activities appearing in
the log. The discovery of such AFSM models was combined in [7] with a context-
driven (predictive) clustering approach, so that different execution scenarios can
be discovered for the process, and equipped with distinct local predictors. How-
ever, choosing the right abstraction level is a delicate task, requiring to reach an
optimal balance between the risks of overfitting and of underfitting.

In order to free the analyst from the responsibility of choosing the right level
of abstraction for the log’s traces, it was proposed in [8] to induce the predic-
tion model of each discovered trace cluster by applying any standard regression
method to propositional representation of the traces falling in the cluster. The
context-aware prediction models obtained with such a clustering-based learning
strategy were empirically proven to improve the accuracy of previous solutions.
However, both the approaches in [7,8] require that a number of frequent struc-
tural patterns are preliminary extracted from the log traces, in order to map the
latter onto a space of performance-oriented target features, in order to guide the
clustering phase towards the discovery of groups of traces with similar perfor-
mance trends. Once such clusters have been discovered, a distinct performance
predictor can be induced from each cluster, by either using an AFSM-based
learner [7] or standard regression algorithms [8]. Such a pattern-based clustering
technique suffers from two main drawbacks: (i) the computation of structural
patterns is not guaranteed to scale well over large logs, seeing as the number of
discovered patterns may be, in general, combinatorial in the number of process
activities; (ii) the discovered trace clusters are not guaranteed to reach the high-
est predictive clustering model, due to the loss of information determined when
converting the log into a propositional dataset.

Contribution. Still relying on the core idea of [7,8] of combining performance pre-
diction with a clustering technique, we try to overcome the two major limitations
mentioned above at two levels. First, we resort to a rougher form of log sketch
than [7,8] for clustering the log traces, which can be quickly computed by pick-
ing up a fixed number of performance values at predefined positions within the
traces, but are yet capable of helping recognize groups of traces exhibiting similar
performance over the time—as confirmed by our experimental findings. More-
over, we replace the traditional (hard) clustering of the logics-based predictive

A Cloud-Based Prediction Framework for Analyzing Business Process 65

clustering framework [3] used in [7,8] with a probabilistic clustering scheme, in
order to reduce the risk of obtaining lowly accurate cluster predictors (due to the
greedy clustering algorithm and to the underlying approximated representation
of the log). In order to overcome the severe scalability limitations of [7,8] and
make our approach suitable for large logs, both the computation of (probability-
aware) trace clusters and of the clusters’ predictors are implemented in a parallel
and distributed manner, according to the Grid-services-based conceptual archi-
tecture defined in [4] for the specification and execution of Distributed Data
Mining (DDM) tasks. The underlying grid services were developed according to
the WSRF (Web Services Resource Framework) specifications of the WS-Core
(a component of the Globus Toolkit 4 (GT4) [9]), and deployed onto a pri-
vate Cloud-computing platform. By the way, the usage of a Cloud infrastructure
to automatically deploy virtual machines hosting a GT4 container is not new
(see, e.g., [10,12]), and it widely reckoned as a successful way of providing a high
flexible and customizable environment for transparently and efficiently running
costly computational tasks.

2 Preliminaries

Log Data. As usually done in the literature, we assume that for each process
instance (a.k.a “case”) a trace is recorded, storing the sequence of events hap-
pened during its unfolding. Let T be the universe of all (possibly partial)
traces that may appear in any log of the process under analysis. For any trace
τ ∈ T , len(τ) is the number of events in τ , while τ [i] is the i-th event of τ , for
i = 1 . . . len(τ), with task(τ [i]) and time(τ [i]) denoting the task and timestamp
of τ [i], respectively. We also assume that the first event of each trace is always
associated with task A1, acting as unique entry point for enacting the process.
This comes with no loss of generality, seeing as, should the process not have
such a such a unique initial task, it could be added artificially at the beginning
of each trace, and associated with the starting time of the corresponding process
instance.

Let us also assume that, like in [7], for any trace τ , a tuple context(τ) of
data is stored in the log to keep information about the execution context of τ ,
ranging from internal properties of the process instance to environmental factors
pertaining the state of the process enactment system. For ease of notation, let
AT denote the set of all the tasks (a.k.a., activities) that may occur in some trace
of T , and context(T) be the space of context vectors— i.e., AT = ∪τ∈T tasks(τ),
and context(T) = {context(τ) | τ ∈ T }.

Further, τ(i] is the prefix (sub-)trace containing the first i events of a trace τ
and the same context data (i.e., context(τ(i] = context(τ)), for i = 0 .. len(τ).

A log L is a finite subset of T , while the prefix set of L, denoted by P(L), is the
set of all the prefixes of L’s traces, i.e., P(L) = {τ(i] | τ ∈ L and 1 ≤ i ≤ len(τ)}.

Let μ̂ : T → R be an (unknown) function assigning a performance value
to any (possibly unfinished) trace. For the sake of concreteness, we will focus
next on a particular instance of such a function, where the performance measure

66 E. Cesario et al.

corresponds to the remaining time (denoted by μRT), i.e. the time needed to
finish the respective process instance. In general, we assume that performance
values are known for all prefix traces in P(L), for any given log L. This is clearly
true for the measure mentioned above. Indeed, for each trace τ , the (actual)
remaining-time of τ(i] is μ̂RT (τ(i]) = time(τ [len(τ)]) − time(τ [i]).

SOA, OGSA and WSRF. The Service oriented architecture (SOA) is a model
for building flexible, modular, and interoperable software applications. The key
aspect of SOA is the concept of service, a software block capable of performing
a given task or business function. The most popular implementation of SOA
is represented by Web Services, whose popularity is mainly due to the adop-
tion of widely accepted technologies such as XML, SOAP, and HTTP. Also the
Grid provides a SOA framework whereby a great number of services can be
dynamically located, balanced, and managed, so that applications are always
guaranteed to be securely executed, according to the principles of on demand
computing. The Grid community has adopted the Open Grid Services Architec-
ture (OGSA) as an implementation of the SOA model within the Grid context.
In OGSA every resource is represented as a Web Service that conforms to a set
of conventions and supports standard interfaces. OGSA provides a well-defined
set of Web Service interfaces for the development of interoperable Grid systems
and applications.

WSRF has been defined as an evolution of early OGSA implementations [5].
WSRF defines a family of technical specifications for accessing and managing
stateful resources using Web Services, as required by OGSA. In other words,
WSRF depicts some specifications to implement OGSA-compliant Web Services.
Another way of expressing this relation is that, while OGSA is the architecture,
WSRF is the infrastructure on which that architecture is built on [13]. The com-
position of a Web Service and a stateful resource is termed as WS-Resource.
The possibility to define a state associated with a service is the most important
difference between WSRF–compliant Web Services, and pre-WSRF ones. This
is a key feature in designing Grid applications, since WS-Resources provide a
way to represent, advertise, and access properties related to both computational
resources and applications. In order to implement services in a highly decen-
tralized way, it is commonly used a design pattern that allows a client to be
notified when interesting events happen in a server. The WS-Notification spec-
ification defines a publish/subscribe notification model for Web Services, which
is exploited to notify interested clients and/or services about changes that occur
to the status of a WS-Resource. In other words, a service can publish a set of
topics that a generic client can subscribe to; as soon as the topic changes, the
client receives a notification of the new status.

Cloud Computing. Cloud computing can be defined as a distributed computing
paradigm in which all the resources, dynamically scalable and often virtualized,
are provided as services over the Internet. Cloud systems are typically classified
on the basis of their service model (Software-as-a-Service, Platform-as-a-Service,
Infrastructure-as-a-Service) and their deployment model (public cloud, private

A Cloud-Based Prediction Framework for Analyzing Business Process 67

cloud, hybrid cloud). Software-as-a-Service (or SaaS) defines a delivery model in
which software and data are provided through Internet to customers as ready-to-
use services (e.g. Google Docs or MS Office 365). In this case, both software and
data are hosted by providers, and customers typically can access them in a easy
way (without using any additional hardware or software) on a pay-per-use basis.
Platform-as-a-Service (or PaaS) provides users with a programming environment
and APIs for creating Cloud-based applications exploiting the computational
resources of the platform (like e.g. Google App Engine, and Microsoft Azure).
Finally, Infrastructure-as-a-Service (or IaaS) is a model under which customers
ask for physical resources (e.g. CPUs, disks) to support their computational
requirements (e.g., Amazon EC2, RackSpace Cloud). Cloud computing services
are further classified according to three main deployment models: public, private,
and hybrid. In a public cloud model, providers directly manage their data centers,
and publicly delivers services built on top of them through the Internet. In a
private cloud schema, operations and functionalities are offered as-a-service and
usually hosted in a company intranet or in a remote data center. Finally, a hybrid
cloud is obtained by composing two or more (private or public) clouds that, yet
linked together, remain different entities.

3 Reference Architecture for Distributed Data Mining

This section is meant to briefly illustrate the service-oriented architecture pro-
posed in [4] for carrying out Distributed Data Mining (DDM) tasks over a Grid.

The architecture, shown in Fig. 1, supports the specification and execution on
the Grid of DDM algorithms, designed according to a master-worker pattern.
Specifically, it features two kinds of Grid Services: the GlobalMiner-WS and the
LocalMiner-WS. The architecture was conceived to follow a typical DDM schema
contemplating the presence of an entity acting as coordinator (the GlobalMiner-
WS) and a certain number of entities acting as miners (LocalMiner-WS) on local
sites. A resource is associated with each service: the GlobalModel Resource with
the GlobalMiner-WS and the LocalModel Resource with the LocalMiner-WS.
Such resources are used to store the state of the services, in this case represented
by the computed models (globally and locally, respectively). Additionally, the
resources are published also as topics, in order to be considered as “items of
interest of subscription” for notifications. As it appears clearly in Fig. 1, the two
types of nodes are equipped with code libraries that implement the mining algo-
rithms to be executed, which are named Global Algorithm Library (GAL) and a
Local Algorithm Library (LAL), respectively. In the following we describe all the
steps composing the whole process, by pointing out details of the interactions
between entities composing the architecture. Let us suppose that a client wants
to execute a distributed mining algorithm on a dataset D, which is split in N par-
titions, {D1, ...,DN}, each one stored on one of the nodes {Node1, ..., NodeN}.
In order to be processed correctly, any request to perform a mining task needs
to follow a three-step scheme.

In the first step, a client wanting to submit a request must invoke the
createResource operation of the GlobalMiner-WS to create a GlobalModel

68 E. Cesario et al.

Resource. In turn, the GlobalMiner-WS dispatches this operation in a sim-
ilar way: for each local site with a running LocalMiner-WS (assuming the
GlobalMiner-WS to hold a list of them), it invokes the createResource opera-
tion (of the LocalMiner-WS) to create a LocalModel Resource. At this point, the
client invokes the subscribe method to subscribe a listener (inside the Client) as
consumer of notifications on the GlobalModel topic. Finally, the GlobalMiner-WS
invokes the subscribe method to subscribe a listener as consumer of notifica-
tions on the LocalModel topic. As an effect of such subscription steps, as soon
as a resource changes, its new value will be delivered to its listener.

The second step constitutes the core of the application, i.e., the execu-
tion of the mining process and the result return. The Client invokes the
submitGlobalTask operation, by passing a GlobalTaskDescriptor, i.e. a complete
description of the task to be executed (algorithm name, parameters, initialization
type, etc.). By interacting with the Global Algorithm Library, the GlobalMiner-
WS runs the code executing the steps to be done. During this phase, suitable
data structures are initialized and a suitable set of LocalTaskDescriptor are cre-
ated. It invokes the submitLocalTask operation, by passing a LocalTaskDe-
scriptor. At this stage, each ith LocalMiner-WS begins the analysis of the local
dataset for computing a local model and local statistics. Such a task is executed,
with the support of the LocalAlgorithmLibrary, concurrently on different Grid
sites. While every local task is in progress, the GlobalMiner-WS does not need
to periodically poll if they are terminated: the notification mechanism, indeed,
is able to deliver asynchronous messages warning about the termination of local
tasks. As soon as a local computation terminates, the value of the LocalModel
Resource is set by the value of the computed local model. The changes in this
resource are automatically notified to the listener on the GlobalMiner-WS ; this
way, the local model computed at the ith local site is delivered to the global
site. As soon as all the local models are delivered to the GlobalMiner-WS, the
integration of all these local models is performed. According to the logic of the
chosen algorithm (provided by the GlobalAlgorithmLibrary), the GlobalMiner-
WS evaluates whether the algorithm is terminated (or not). If it is, the global
model computed by the GlobalMiner-WS is stored on the GlobalModel Resource,
which is immediately delivered (via the notification mechanism) to the client.
Otherwise, the GlobalMiner-WS asks for further processing, by invoking one
more time a submitLocalTask operation and waiting for the delivering of the
result. Such latter actions are executed as many times as the GlobalMiner-WS
needs, until the computation reaches some convergence condition.

In the final step, as soon as the computation terminates and its results
have been notified to the Client, the Client invokes the destroy opera-
tion of the GlobalMiner-WS, which eliminates the resource previously created
(GlobalModel). Similarly, the GlobalMiner-WS asks for the destruction of the
LocalModel.

From a practical (user-side) point-of-view, any new DDM task can be exe-
cuted on this architecture provided that it suitably implements the interfaces
globalAlgorithm and localAlgorithm. Specifically, they export the signatures

A Cloud-Based Prediction Framework for Analyzing Business Process 69

Fig. 1. Architectural model of distributed data mining services.

for those methods each distributed algorithm running on this architecture needs
to invoke, i.e. initialize, computeGlobalModel, needsMoreIteration and finalize
for the globalAlgorithm; initialize, computeLocalModel and finalize for the
localAlgorithm.

4 Formal Framework for Process Performance Prediction

The ultimate goal of this work is to devise a scalable approach to the discovery of
a (predictive) Process Performance Model (PPM), capable to accurately predict
the performance outcome of any ongoing process case, based on the information
stored in its associated (partial) trace. Such a model can be viewed as a function
μ : T → R that provides an estimate for μ̂ all over the trace universe —including
the prefix traces of all possible process instances. Discovering a PPM is an induc-
tive learning task, where the training set takes the form of a log L, and the value
μ̂(τ) of the target measure is known for each (sub-)trace τ ∈ P(L). Notably,
current approaches to this problem [2,7,8] rely on preliminary converting the
given process traces in to a propositional form, with the help of some suitable
trace abstraction function. The rest of this section provides the reader with a few
technical details on the trace abstraction functions considered in our approach,

70 E. Cesario et al.

as well as on the specific (clustering-based and probability-aware) kind of PPM
that we want to eventually learn from the abstracted traces.

Trace Abstraction. An abstracted (structural) view of a trace summarizes the
tasks executed during the corresponding process enactment. Two simple ways
to build such a view consist in regarding the trace as a tasks’ set or multiset
(a.k.a. bag), as follows.

Definition 1 (Structural Trace Abstraction). Let T be a trace universe
and A1, . . . , An be the tasks in AT . A structural (trace-) abstraction function
structmode : T → Rmode

T is a function mapping each trace τ ∈ T to an abstract
representation structmode(τ), taken from an abstractions’ space Rmode

T . Two
concrete instantiations of the above function, denoted by structbag : T → N

n

(resp., structset : T → {0, 1}n), are defined next, which map each trace τ ∈ T to
a bag-based (resp., set-based) representation of its structure: (i) structbag(τ) =
〈count(A1, τ), . . . , count(An, τ)〉, where count(Ai, τ) is the number of times that
task Ai occurs in τ ; and (ii) structset(τ) = 〈occ(A1, τ), . . . , occ(An, τ)〉, where
occ(Ai, τ) = true iff count(Ai, τ) > 0, for i = 1, . . . , n. �	

The two concrete abstraction “modes” (namely, bag and set) defined above
summarize any trace τ into a vector, where each component corresponds to a
single process task Ai, and stores either the number of times that Ai appears in
the trace τ , or (respectively) a boolean value indicating whether Ai occur in τ
or not. Notice that, in principle, we could define abstract trace representations
as sets/bags over another property of the events (e.g., the executor, instead of
the task executed), or even over a combination of event properties (e.g., the task
plus who performed it).

As a matter of fact, the structural abstraction functions in Definition 1 are
similar to those used in previous approaches to the discovery of predictive process
models [2,7,8].

PPM Discovery as Predictive Clustering: Limitations of Current Solutions.
From a conceptual point of view, we rephrase the induction of a PPM, out
of a given log, as a predictive clustering [3] task, similarly to [7,8]. Essentially,
the core idea underlying predictive clustering approaches is that suitably parti-
tioning the training instances into clusters and inducing a specific predictor from
each cluster helps obtain better predictions than using a single predictor (learnt
from the whole training set). At run-time, for any new instance, the prediction
is built by first assigning the instance to one of the clusters, and then making it
undergo the predictor of that cluster. More precisely, these approaches assume
that two kinds of features are available for any element z in the reference instance
space, say Z = X ×Y : descriptive features and target features (to be predicted),
denoted by descr(z) ∈ X and targ(z) ∈ Y , respectively. Then, a predictive clus-
tering model (PCM), for a given training set L ⊆ Z, is a function q : X → Y
of the form q(x) = p(c(x), x), where c : X → N is a partitioning function that
assigns x to a cluster, and p : N× X → Y is a (possibly multi-target) prediction

A Cloud-Based Prediction Framework for Analyzing Business Process 71

function. Clearly, whenever there are more than one target features, q encodes
a multi-regression model.

Following this general scheme, and similarly to [7,8], we adopt a modular
kind of PPM that consists of two different types of components: a partition-
ing function c that maps any trace to a distinguished cluster, and a collection
μ1, . . . , μk of PPMs, one per cluster. A propositional encoding enc(τ)is exploited
for any possible trace τ , which mixes up the context data possibly available for
τ with an abstracted view of the history of τ , obtained with the help of one of
the abstraction function in Definition 1. The features appearing in enc(τ) play
the role of descriptive attributes, while clearly considering the the performance
values μ(τ) as the target of prediction. Clearly, applying standard predictive
clustering solutions to such data would not make sense, since we are not inter-
ested in predicting the final performance measure of a complete trace (as are
those stored in the above-described training set), but rather in making predic-
tions on all possible prefixes (i.e. partial incremental versions) of any new trace
as far as it unfolds, in a step-by-step fashion—as discussed in [7], learning the
clustering model based on all partial traces in Pr(L) is costly and hardly effec-
tive. Therefore, both the approaches in [7,8] faced the problem heuristically, by
dividing it into two sub-problems: (1) induce a predictive clustering model out
of a summarized representation (named “log sketch”) of the given log, where
each (full) trace in the log is used as a single clustering instances, associated
with a number of target values that capture the evolution of the μ at several
relevant (“pivot”) stages of the process (2) induce a PPM out of each discovered
cluster. In particular, in [7,8], the computation of the target attributes for the
traces relied on the preliminary extraction of frequent structural patterns cho-
sen greedily, based on their apparent capability to discriminate among different
performance profiles.

However, such a approach suffers from two main drawbacks: (i) the com-
putation scheme cannot scale over large logs, mainly due to the fact that the
extraction of structural patterns may take a time that is combinatorial in the
number of process activities; (ii) the discovered clusters of traces are not guar-
anteed to reach the highest predictive clustering model (due to both the very
two-phase optimization scheme, and to the loss of information determined by
converting the original log into a propositional dataset).

A New Kind of (Clustering-Based) PPMs: PCB-PPM. We here try to overcome
both these limitations at two levels. First, we resort to a rougher form of log
sketch than [7,8] for clustering the log traces, which does not require the com-
putation of frequent structural patterns, but simply consists on extracting a fixed
number of performance values at predefined positions of the traces. These addi-
tional (target-oriented) features, which are formally defined in the next Section
(cf. Definition 3), are meant to introduce a bias towards the discovery of groups of
traces exhibiting similar performance patterns over the time. On the other hand,
we extend the traditional (hard) clustering of standard predictive clustering set-
tings with a probabilistic clustering scheme. This choice is meant to curb the
risk of obtaining a poorly accurate PPM as a result of the heuristics clustering

72 E. Cesario et al.

strategy adopted in [7,8] (due to both the very greedy clustering method and
the usage of an approximated representation of the traces). In particular, as
discussed in the following section, such a probabilistic clustering model is com-
puted efficiently through a parallelized distributed version of the well-known EM
method [6], hence solving the scalability limitations of [7,8].

We are now in a place to formally define the novel, probabilistic-aware
clustering-based, type of PPM that our learning approach is meant to extract
from a given log.

Definition 2 (Probabilistic Clustering-Based PPM Model (PCB-PPM)).
Let L be a log (over T), with context features context(T), structural abstract
representations structmode(T) (where mode ∈ {set, bag}), and μ̂ : T → R be a
performance measure, known for all τ ∈ P(L). Let also enc(τ) = context(τ) ⊕
structmode(τ) be the propositional encoding for each τ ∈ P(L), where ⊕ stands
for tuple concatenation. Then a probabilistic clustering-based performance pre-
diction model (PCB-PPM) for L is a pair M = 〈c, 〈μ1, . . . , μk〉〉 (where k is the
number of clusters found for L) encoding a probabilistic predictive clustering
model, where (i) c : enc(T)×{1, . . . , k} → [0, 1] is a probabilistic clustering func-
tion that assigns any (possibly partial) new trace τ to each cluster with a certain
probability (based on the encoding of τ), and (ii) μi : T → R is a PPM associ-
ated with the i-th cluster, for i ∈ {1, . . . , k}. Model M is meant to estimate the
unknown performance function μ̂ as follows: for any trace τ ∈ T , the correspond-
ing performance value μ̂(τ) is computed as

∑k
j=1 c(enc(τ), j) · μj(enc(τ)). �	

In such a model, each cluster is equipped with a separate PPM, tailored to
capture how μ̂ depends on both the structure and context of any trace that may
be assigned to the cluster. The prediction for any new trace τ is computed as a
linear combination of the predictions made by the PPMs of all the clusters τ is
estimated to possibly belong to, with their respective membership probabilities
used as weights. In general, such an articulated kind of PPM can be built by
inducing a predictive clustering model and multiple PPMs (as the building blocks
implementing c and all μi, respectively). In our approach, we face this sub-task
by resorting to standard regression methods, defined for propositional data. As
observed in [8], indeed, this frees the analyst from the burden of defining a
suitable level of details over the representation of the relevant states of the
process (as required in the case of the AFSM models used in [2,7]).

5 Solution Approach to the Discovery of a PCB-PPM

Figure 2 illustrates the main steps of our approach to the discovery of a PCB-PPM
model, in the form of an algorithm, named PCB-PPM Discovery. Essentially, the
problem is approached in three main phases. In the first phase (Step 1), the
given log L is transformed into a propositional dataset Dtraces, containing one
distinguished tuple for each trace of the log. As in [7,8], the tuple encoding any
trace τ in L stores both the context-oriented attributes of τ and the summarized
structural view structmode(τ), produced according to the abstraction criterion

A Cloud-Based Prediction Framework for Analyzing Business Process 73

Fig. 2. Algorithm PCB-PPM Discovery.

mode (specified as input to the algorithm)—these two kinds of information are
here represented as two different sub-tuples, concatenated one with the other.
A series of performance-oriented attributes (denoted as pProf(τ)) are stored
as well in the propositional representation of τ , in order to bias the clustering
phase towards the discovery of groups of traces that exhibit similar performance
patterns over the time. These trace attributes are formally defined next.

Definition 3 (Performance profile (for trace clustering)). Let T be a
trace universe, and μ̂ : T → R be a performance measure. Let h be a
number in N

+ chosen by the analyst1. For any trace τ in T , the perfor-
mance profile of τ (w.r.t. μ̂ and m) is an h-sized (sub-)tuple pProf(τ) =
〈pProf(τ, 1), pProf(τ, 2), . . . , pProf(τ, h)〉, such that, for each j ∈ {1, . . . , h},
it holds:

pProf(τ, j) =
{

τ [ij], if ij < len(τ)
NULL, otherwise

where ij = (j − 1) ×
⌊

len(τ)
h

⌋
+ 1. �	

Notably, computing such a representation of a trace’s performance profile sim-
ply amounts to picking up a fixed number of performance values at predefined
positions of the trace, which can be done in linear time in the size of the input
log. By converse, the propositional log sketch used in [7,8] for trace clustering
requires the preliminary extraction of frequent structural patterns, which is far

1 In all the tests described here, we simply set h as the 40th percentile of the log’s
traces length.

74 E. Cesario et al.

more expensive (possibly combinatorial in the number of process activities) in
terms of computation time.

In the second phase (Steps 2–3), a probabilistic clustering model is mined
out of Dtraces by exploiting a distributed version of popular algorithm EM [6],
implemented by function P-EM according to the data-parallel scheme of Fig. 1.
This function, described in details later on, requires the data to be preliminary
split into different datasets {D1, . . . , DM}, based on some partitioning strategy.
Specifically, here we simply divided the tuples of Dtraces into groups of (approx-
imately) the same size (Step 2).

In the third phase (Steps 4–5), a regression model is induced from each of the
discovered trace clusters, by applying the learning method REGR specified as
input to the algorithm. In order to obtain a predictive model that can be applied
to (new) ongoing process instances, the learner is provided with a set of training
instances representing partial (prefix) traces, labelled each with the respective
performance measurement. To this purpose, all the prefix traces in Pr(L) are
preliminary stored into a propositional dataset Dprefixes), which encodes all the
context-oriented and structure-oriented features of each trace (in addition to its
target performance value). The discovered clustering model C is then applied to
Dprefixes in a “hard” way, in order to obtain a partition D′

1, . . . , D
′
K of it, where

each tuple z ∈ Dprefixes is assigned to the cluster it appears the most likely to
belong to (Step 5). These clusters of prefix traces are then exploited to train a
list of regression models, one per cluster. This is accomplished by the distributed
function P-REGR (Step 6), following the same distributed paradigm as P-EM—
further details on the function too are given later on. Clearly, in such a regression
task, for each prefix trace τ , the features in context(τ) and structmode(τ) are
considered as input values, while the performance measurement μ̂(τ) is the target
variable to be predicted.

The rest of the algorithm is simply meant to put the discovered clustering
model and regression models in the form of a PCB-PPM, and to eventually return
the latter.

Function P-EM Expectation Maximization (EM). is a well-known method for
inducing a probabilistic clustering model. The method relies on the assumption
that the given dataset were generated by a mixture of K probability distrib-
utions of some given form (e.g., Gaussian), representing each a distinguished
cluster. The clustering task then consists in trying to maximize the fit between
the dataset and such a probabilistic model, by suitably setting, the membership
probabilities of the data instances and the parameters of the overall generative
model—indeed, this information is not assumed to be known in advance, and it
must be estimated from the given data. Classic EM algorithm needs to be pro-
vided with an initial (typically randomly chosen) setting of the mixture model’s
parameters. Each EM iteration computes new estimates for these parameters
that are proven not to decrease the likelihood of the model, denoted hereinafter
as PerfEM . The process is repeated until the value of PerfEM converges to a
local maximum.

A Cloud-Based Prediction Framework for Analyzing Business Process 75

Different distributed versions of EM algorithm have been presented in the
literature. Our approach essentially exploits the distributed computation scheme
defined in [4], in accordance with the DDM framework of Fig. 1.

In a nutshell, function P-EM takes as input different subsets, say D1, . . . , DN , of
the dataset, and the maximum number of clusters, say K. The clustering process
is distributed among N local miners (i.e., nodes equipped with an instance of
LocalMiner-WS, as explained in Sect. 3), storing each one of the sub-datasets
D1, . . . , DN , with a further node acting as coordinator (provided with an instance
of a GlobalMiner-WS).

Specifically, in the initialization phase (method initialize), the coordinator
randomly initializes, for each of cluster Ck (with k = 1, . . . ,K), the center mk,
the covariance matrix Σk and the mixing probability p(mk), and sends a copy
of these data to each local node.

The method computeLocalModel, implemented by each local miner, consists
of three steps that are described next. First, the local miner estimates (for each
x ∈ D, for each k = 1, . . . , K) the probability p(mk|x) that x belongs to cluster
Ck—precisely, it computes p(mk|x) = p(x|mk)·p(mk)∑K

k=1 p(x|mk)·p(mk)
, where p(mk) is the

mixing probability and p(x|mk) is the prior probability, taking the specific form
of a Gaussian distribution. Then, it computes a collection SS(i) of local statis-
tics, consisting of the following values: f (i) =

∑
x∈Di

[− log
∑K

k=1 p(x|mk)p(mk)];
s1

(i)
k =

∑
x∈Di

p(mk|x); s2
(i)
k =

∑
x∈Di

p(mk|x)x; and s3
(i)
k =

∑
x∈Di

p(mk|x)(x −
mk)T (x −mk), (with k = 1, . . . ,K). As a last step of computeLocalModel, these
local statistics are sent to the coordinator.

In order to implement method computeGlobalModel, the coordinator needs
to combine local information stored in the data summaries SS(1), . . . SS(N)

(received from the local nodes), and update the clustering model. In particu-
lar, for each cluster Ck, the updated versions of the center mk, the covariance
matrice Σk, the mixing probabilities p(mk) for k, k = 1, . . . , K are produced—
namely, mk =

∑N
i=1 s2

(i)
k /
∑N

i=1 s1
(i)
k , Σk =

∑N
i=1 s3

(i)
k /
∑N

i=1 s1
(i)
k , and p(mk) =

∑N
i=1 s1

(i)
k /|D|. Moreover, a performance measure PerfEM is computed for the

resulting clustering model as follows: PerfEM =
∑N

i=1 f (i).
At the end of each iteration of this computation scheme, the coordinator

must check (through an invocation of method needsMoreIteration) if the measure
PerfEM has converged to a (local) optimum or the number of iterations has
reached a given bound. If one of these conditions holds, the algorithm finishes;
otherwise a new iteration of the algorithm starts, where the coordinator sends a
copy of the novel clustering parameters (i.e., mk, Σk and p(mk), for k = 1, . . . ,K)
to the local miners, and so on.

Function P-REGR. Due to space limitations, we do not describe this function in
detail. In fact, rephrasing this function in terms of the framework in Fig. 1 is
simple enough for being explained without any precise formalization.

Basically, the method initialize of interface globalAlgorithm simply consists
in assigning the given K datasets to different local miners (i.e. instances of
LocalMiner-WS). Each local miner is responsible for extracting a single regressor

76 E. Cesario et al.

out of one of the datasets by using the selected regression algorithm REGR
(hence playing as the actual implementation of method computeLocalModel in
localAlgorithm). Once each local regressor has been induced, it is passed to the
global miner (i.e. the node implementing an instance of GlobalMiner-WS), which
does not need to perform any further computation—method needsMoreIteration
in globalAlgorithm is “immaterial” in that it always returns false. Finally,
the method computeGlobalModel of GlobalModel only must store all the local
regressors received from the remote sites, into a list, ensuring that they follow
the same mutual order as the clusters they have been induced from.

6 Experimental Results

In order to test our approach, we implemented both the distributed functions
P-EM and P-REGR (see Sect. 5) as a composition of Grid Services, according to
the model of Fig. 1. The services have been developed by using the Java WSRF
library provided by the WS-Core, a component of the Globus Toolkit 4 [9].
These GT4-based Grid Services were deployed onto a private Cloud computing
infrastructure, by instantiating a pool of virtual machines (one for each grid
node). Precisely, we used a physical Grid consisting of 18 nodes, each running
a Linux CentOS 7.0 distribution and equipped with 1TB (SATA) hard drive, a
dual-core processor Intel Xeon E2 2650 2GHz, and 128GB of RAM. For scalabil-
ity analyses, different subsets of these nodes, namely, of size N = 1, 2, 4, . . . , 16,
were allocated to the execution of the whole PCB-PPM Discovery.

The LocalMiner-WS services (using either in P-EM or in P-REGR) were distrib-
uted as uniformly as possible over a number of dedicated virtual machines in
the Cloud – in practice, M local miners were deployed onto V virtual machines
by assigning M/V local miners to each machine. Each virtual machine, instead,
is instantiated on a distinct node of the Grid. It is worth noticing that two
distinguished nodes were kept reserved for the GlobalMiner-WS services of the
functions P-EM and P-REGR, and another one for the main algorithm PCB-PPM
Discovery—acting as a client of those GlobalMiner-WS ’s.

The rest of the section discusses a series of experimental activities that we
conducted to assess the validity of our approach, in terms of both effectiveness
and scalability. To this purpose, we used a collection of 5336 log traces generated
by a real transshipment system. Each trace stores a sequence of major logistic
activities (4 on the average) that were applied to a distinguished container, pass-
ing through the system in the first third of year 2006. Basically, each container
is unloaded from a ship, temporarily placed by the dock, and then carried to a
yard slot for being stocked. Symmetrically, at boarding time, the container is first
placed close to the dock, and then loaded on a cargo. Different kinds of vehicles
can be used for moving a container, including, e.g., cranes, “straddle-carriers”,
and “multi-trailers”. This basic life cycle may be extended with further transfers,
devoted to make the container approach its final embark point or to leave room
for other ones. Several data attributes are available for each container as con-
text data, which include: the origin and final ports, its previous and next calls,

A Cloud-Based Prediction Framework for Analyzing Business Process 77

various properties of the ship unloading it, physical features (such as, e.g., size,
weight), and some information about its contents. As in [7], we also considered
several “environmental” context features for each container: the hour (resp., day
of the week, month) when it arrived, and the total number of containers that
were in the port at that moment.

In all the tests described next, the remaining processing time (for all the prefix
traces extracted by this log) was considered as the target performance measure
to predict.

Table 1. Average errors made by PCB-PPM Discovery (here denoted as Ours) and
the competitors, for different abstraction modes (namely, BAG and SET). The best
outcomes are in bold.

Metric BAG SET

Ours Ours AA-TP AA-TP CA-TP Ours Ours AA-TP AA-TP CA-TP

(IB-k) (RepTree) (IB-k) (RepTree) (IB-k) (RepTree) (IB-k) (RepTree)

rmse 0.217 0.213 0.205 0.203 0.291 0.299 0.294 0.287 0.286 0.750

mae 0.061 0.059 0.064 0.073 0.142 0.102 0.098 0.105 0.112 0.447

mape 0.117 0.111 0.119 0.189 0.704 0.225 0.189 0.227 0.267 2.816

Effectiveness Results. Since the ultimate goal of our approach is to predict a
performance measure (namely, the remaining processing time) over partial log
traces, the effectiveness of our approach was evaluated by computing (via 10-fold
cross validation) three standard error metrics, quantifying all how much the
predicted values differ from the real ones in the average: root mean squared
error (rmse), mean absolute error (mae), and mean absolute percentage error
(mape). For ease of interpretation, the results have been divided by the average
processing time (over all the log’s traces).

As a term of comparison we considered two approaches that were defined
in the literature for the discovery of a clustering-based PPM: AA-TP [8], and
CA-TP [7]. By the way, it is known from the literature such these techniques
were all capable to neatly improve the achievements of non clustering-based
predictors. In a sense, the quality of the forecasts that a clustering-based PPM
eventually provides can be considered as an indirect indicator of the validity
of its underlying clustering model (which has indeed a “predictive clustering”
nature, and serves the purpose of supporting the prediction task). Following this
line of reasoning, no quality measure is shown here for the discovered clusters,
in addition to the very accuracy of the predictions that they allowed to make.

For our empirical effectiveness analysis, we run PCB-PPM Discovery by heuris-
tically setting the number K of clusters to �log2(|L|)
, where |L| is the number
of traces in the given log, while always keeping M = 16.

Tables 1 shows the average errors made by our algorithm, for two different
instantiations of the regression method REGR (namely, and IB-k and Rep-
Tree)—in both cases we resorted to the implementations available in the popular
Weka [14] library. In particular, the first half of the table regards the case when

78 E. Cesario et al.

the bag mode is used for abstracting traces, whereas the second half concerns
the usage of set abstractions.

The values shown for AA-TP were computed by averaging the ones obtained
with different settings of its parameters, namely minSupp ∈ {0.1, . . . 0.4},
kTop ∈ {4,∞}, and maxGap ∈ {0, 4, 8,∞}. For CA-TP, instead, we report the
average of the results that it obtained with different values of the horizon para-
meter h (precisely, h = 1, 2, 4, 8, 16), and the best-performing setting for all the
remaining parameters.

In order to correctly interpret the results in Table 1, it is important to notice
that the kind of clustering used by AA-TP and CA-TP is more precise than the
one adopted in our approach, as discussed in Sect. 4. In spite of this, PCB-PPM
still achieves better results in terms of mae and mape than AA-TP (our rmse
outcomes, instead, are slightly worse than AA-TP’s ones), and more accurate
outcomes (over all error metrics) than CA-TP, irrespective of the abstraction
function (i.e. BAG or SET) used. The former behavior can be explained as an
effect of the probabilistic clustering scheme that underlies our PCB-PPM’s, and
makes the prediction of trace performances more robust to the discovery of sub-
optimal trace clusters. The lower prediction errors produced by both PCB-PPM
and AA-TP, w.r.t. CA-TP, find a justification on their capability to fully exploit
the context information available for the log traces in both the clustering and
prediction phases—whereas CA-TP uses them during the clustering step only.

Efficiency Results. To test the scalability of our approach, we first generated 4
distinct datasets with different sizes (namely, DS1, DS2, DS3, DS4), obtained
by replicating every trace in the given log L for 256, 512, 1024, and 2048 times,
respectively. We studied the scalability, speedup and efficiency performances
when varying the number of grid nodes (from 1 to 16) that were actually used.
For space reasons, we next focus on the case where REGR = RepTree and
mode = BAG—similar trends were obtained, indeed, with the SET abstraction
and IB-k. Similarly to what done in the effectiveness tests, the number of desired
trace clusters was set to �log2(|L|)
.

Figure 3(a) shows the execution times spent against each of the datasets, when
using 1 to 16 Grid nodes. We can simply observe that these times strongly
decrease for all datasets when increasing the number of available nodes. It
is important to observe that the time needed to process the dataset DS4
(i.e., the biggest one, with more than 10M traces and 43M of events) is longer
than 4 hours when using a single node, while it decreases to only 16.3 min when
exploiting 16 nodes. In Fig. 3(b) the execution speed-up curves are depicted for
each of the datasets. The speed-up is almost linear for all datasets up to the case
where 8 Grid nodes are used; an appreciable trend of gain is maintained over
higher numbers of nodes. Notably, a speed-up value of 15 is obtained for the
extreme case of dataset DS4 when using all of the 16 nodes, hence substantiat-
ing the scalability of our distributed computation strategy and of the underlying
framework. Finally, Fig. 3(c) shows the system efficiency, vs the number of nodes
and for different datasets. As shown in the figure, a good efficiency trend can
be seen as long as the number of nodes increases. As a matter of fact, for the

A Cloud-Based Prediction Framework for Analyzing Business Process 79

0 2 4 6 8 10 12 14 16
0

5000

10000

15000

Number of Nodes

T
im

e
(s

ec
.)

DS1
DS2
DS3
DS4

(a) Execution Time

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Nodes

S
pe

ed
up

DS1
DS2
DS3
DS4
Linear

(b) Speedup

0 2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

E
ffi

ci
en

cy

DS1
DS2
DS3
DS4

(c) Efficiency

Fig. 3. Efficiency results of PCB-PPM for different data sizes when RepTree is used as
regressor.

largest dataset DS4, the efficiency on 8 nodes is equal to 0.99, whereas on 16
nodes it is equal to 0.94, i.e. the 99 % and 94 % of the computing power of each
used node is exploited, respectively.

7 Conclusions

We have presented a novel context-aware clustering-based approach to the dis-
covery of predictive models for supporting the forecast of process performance
measures. The approach overcomes the severe scalability limitations of similar
solutions currently available in the literature, and takes advantage of a distrib-
uted implementation of its more expensive computational tasks, based on a col-
lection of ad hoc grid services, deployed on top of a cloud-computing platform.
It is worth noticing that, despite the approach introduces some approximation
in the computation of trace clusters (for the sake of efficiency), the accuracy
of the predictions obtained in a real-life application scenario is quite satisfac-
tory. This is likely due to the capability of our probabilistic clustering scheme
to compensate such a loss of precision in the clustering phase.

As future work, we plan to integrate more powerful regression methods into
our approach, as well as investigate the possibility to exploit sequence-oriented
kernel-based methods for both the clustering of the traces and for inducing each
cluster’s predictor.

80 E. Cesario et al.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

3. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)

4. Cesario, E., Talia, D.: Distributed data mining patterns and services: an architec-
ture and experiments. Concurr. Comput. Pract. Exp. 24(15), 1751–1774 (2012)

5. Czajkowski, K., et al.: From Open Grid Services Infrastructure To Ws-resource
Framework: Refactoring & Evolution (2004)

6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. 39(1), 1–38 (1977)

7. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for
predicting business process performances. In: Proceedings of the 20th Interna-
tional Conference on Cooperative Information Systems (CoopIS 2012), pp. 287–304
(2012)

8. Folino, F., Guarascio, M., Pontieri, L.: A data-adaptive trace abstraction approach
to the prediction of business process performances. In: Proceedings of the 15th
International Conference on Enterprise Information Systems (ICEIS 2013), pp.
56–65 (2013)

9. Foster, I.: Globus toolkit version 4: software for service-oriented systems. In: Jin,
H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer,
Heidelberg (2005)

10. Moltó, G., Hernández, V.: On demand replication of wsrf-based grid services via
cloud computing. In: Proceedings of the 9th International Meeting on High Per-
formance Computing for Computational Science (VecPar 2010) (2010)

11. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Support-
ing flexible processes through recommendations based on history. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

12. Sempolinski, P., Thain, D.: A comparison and critique of eucalyptus, opennebula
and nimbus. In: Proceedings of the 2nd IEEE International Conference on Cloud
Computing Technology and Science (CLOUDCOM 2010), pp. 417–426 (2010)

13. Sotomayor, B., Childers, L.: Globus Toolkit 4: Programming Java Services. Morgan
Kaufmann, San Francisco (2006)

14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2005)

	A Cloud-Based Prediction Framework for Analyzing Business Process Performances
	1 Introduction
	2 Preliminaries
	3 Reference Architecture for Distributed Data Mining
	4 Formal Framework for Process Performance Prediction
	5 Solution Approach to the Discovery of a PCB-PPM
	6 Experimental Results
	7 Conclusions
	References

