
Testing Safety Properties of Cyber-Physical
Systems with Non-Intrusive Fault Injection

– An Industrial Case Study

Joachim Fröhlich1(B), Jelena Frtunikj2, Stefan Rothbauer1,
and Christoph Stückjürgen1

1 Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
froehlich.joachim@siemens.com

2 Fortiss GmbH, Guerickestrasse 25, 80805 Munich, Germany

Abstract. Non-intrusive, deterministic fault-injection tests provide evi-
dence for making reliable statements about the behavior of safety-critical,
real-time systems in the presence of software faults and component fail-
ures. These tests are derived from system safety requirements for the
detection and handling of value and time errors. That the approach pre-
sented here works for distributed, time-triggered systems that process
data cyclically and reserve resources exclusively for testing purposes has
been demonstrated by an industry study confirming the feasibility of the
concepts for a fail-operational electric car.

Keywords: Cyber-physical system · Fault-tolerant system · Safety
requirement · Fault injection test

1 Introduction

An open question for fault-tolerant, cyber-physical systems is how to reliably
demonstrate their safety properties. Since the root causes of failures are faults,
fault injection is an established practice for testing systems. There are promis-
ing approaches for injecting hardware and software models with faults without
adversely affecting the simulation time during simulation runs [1,9]. However
simulation-based fault-injection of executable system models ultimately fails to
hold for operation systems, essentially for two reasons: (1) By their very nature,
system models abstract implementation details and cannot be fully accurate in
every aspect for operational systems in the field that need to execute under tight
real-time constraints. (2) System environment models are hard to parametrize
accurately with realistic simulation data. Software Implemented Fault Injection
(SWIFI) is an established technique for fault injection into operational software
systems, but has a significant disadvantage: SWIFI changes the timing behavior
due to probe effects. The same disadvantage applies for tests in general and in
particular for fault injection tests that stimulate and check the behavior of dis-
tributed systems online solely on the network level (see for example [6]). Another

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 105–117, 2016.
DOI: 10.1007/978-3-319-45480-1 9

106 J. Fröhlich et al.

issue is the limited observability and controlability of systems under test. The
limits of SWIFI tests define the fundamental objective of this work: to accurately
test real-time systems with tight schedules while running free of side effects. The
scope of the system which these tests observe and control shall be maximized
to let concise tests illuminate otherwise obscure locations and behaviors of the
system under test.

The contributions of this work are twofold: (1) demonstration of determinis-
tic tests of safety requirements to provide reliable statements on fault-tolerant
systems in operation; (2) an explanation of when, where, and why such tests
provide reliable statements.

This paper is structured as follows: Sect. 2 introduces a consistent set of
terms for characterizing target systems, assigned safety requirements and tests.
Section 3 presents safety requirements used as driving examples. Section 4 char-
acterizes target systems that implement fault-tolerance mechanisms and enable
the execution of fault-injection tests without inadmissible probe effects. Section 5
specifies tests in ALFHA1 [5] that verify the fulfillment of the safety require-
ments. The tests are executed with VITE2. Section 6 checks the plausibility of
results that the test system produces. We use RACE3 as our reference target
system [2,4,8].

2 Terms

Throughout the paper we use a consistent set of terms for characterizing target
systems, assigned safety requirements and tests for these requirements. Some
terms are implemented as system predicates and used in test procedures (Sect. 5),
such as Platform Node, Dual Platform Node and Master Host. Figure 1
provides an overview of selected terms explained in the following.

Fig. 1. An example target system with platform network (rings) (Color figure online)

1 Assertion Language for Fault-Hypothesis Arguments.
2 Verification and Integration Testing Environment, www.aviotech.de.
3 Reliable Automation and Control Environment, www.projekt-race.de/en.

www.aviotech.de
http://www.projekt-race.de/en

Testing Safety Properties of Cyber-Physical Systems 107

Platform Mechanism. Code block that implements a fault-tolerance mech-
anism such as, in general terms, error detection (ed), error recovery (er)
and/or error mitigation (em), or a basic operating system mechanism such as
input/output data processing and operation scheduling. Let M = {ed, er, em,
...} denote the set of all platform mechanisms. Each platform mechanism
m ∈ M can be instantiated to an instance i ∈ I(m), with I(m) denoting the
set of all instances {i1, i2, ...} of m.

Platform Node. Node for short. Computer n consisting of a CPU, a clock
generating cyclic ticks of constant duration, main memory, an access point to
the network of all platform nodes N = {n1, n2, ..., nn} of the target system,
an access point to a test network (not shown in Fig. 1 but in Fig. 3), and
deployed instances of platform mechanisms. Each computer n is connected to
either the “red” power circuit (nr) or to the “blue” power circuit (nb).

Platform. Instantiated and deployed platform mechanisms providing together
fault-tolerance (safety) mechanisms to platform applications.

Platform Application. Application for short. Code block that uses platform
mechanisms. Let A = {a1, a2, ...} denote the set of all platform applications.
Each platform application a ∈ A can be instantiated to an instance i ∈ I(a)
that is deployed on a platform node. I(a) denotes the set of all instances
{i1, i2, ...} of a. For clarity, we sometimes write ir or ib if the underlying
platform node n is connected to the “red” power circuit (nr) or to the “blue”
power circuit (nb).

Dual Platform Node. Dual node for short. Pair of platform nodes dn =
{ni, nj}, with ni, nj ∈ N running in lockstep mode and being connected
to the same power circuit. In context of a dual platform node ni and nj are
also called twin nodes.

Platform Control Computer. All dual platform nodes DN = {dn1, dn2, ...,
dnn}, with ∀dni, dnj ∈ DN : dni ∩ dnj = ∅; that is, dual platform nodes run
in disjoint node pairs.

Platform Periphery. All periphery nodes PN = {n : n ∈ N ∧ �dn ∈ DN :
n ∈ dn}. In other words, a node n belongs either to the platform periphery
(sensing process inputs or controlling process outputs) or to the platform
control computer.

Node Cycle. Instant of a cyclic process running in linear time [7] on a plat-
form node, also called local instant. The clock of platform node n generates
subsequent cycle numbers defined as numerical time series of node cycles
clock(n) = (0, 1, 2, ...). Cycle numbers of two different platform nodes ni, nj

can differ at the same global instant, e.g., when the platform is up and running
and when ni started before nj or when the clocks of ni and nj drift.

Platform Cycle. Instant of a cyclic process running in linear time on the plat-
form, also called global instant. At platform start, the cycles generated by
the clock of the first started platform node n determines the numerical time
series of platform cycles clock = (0, 1, 2, ...).

Variable. Addressable location v(n) in the data segment of the main memory
of platform node n. Platform mechanisms and platform applications exchange
values via variables during a cycle and between cycles. We denote the value of

108 J. Fröhlich et al.

a variable v(n) at cycle x as v(n)x, or simply vx if n is irrelevant. Depending
on the context, x denotes a (local) node cycle or a (global) platform cycle.
Variables also take on values of input signals (process inputs originating from
sensors in the platform periphery) and output signals (process outputs tar-
geting actuators in the platform periphery).

Data Store. Section V (n) in the data segment of the main memory of node n
which contains all variables; that is, V (n) = {v1(n), v2(n), ...}. The data store
of the platform contains all variables in the data stores of all nodes; that is,
V =

⋃

n∈N

V (n). Typically only a subset W = {v1, v2, ...} of all variables V is

in the test scope, that is W ⊆ V and v1, v2 are different variables of possibly
different nodes. The data stores of all nodes contain some common variables
with node-specific values, e.g., node cycle and node state.

Trace. Chronologically ordered values of all variables in the test scope denoted
as (Wi)i=x..y = (Wx,Wx+1, ...,Wy). Depending on the context, x and y denote
(local) node cycles or (global) platform cycles.

System Function. All functionally coherent platform applications which
together transform input signals from system sensors (related to nodes in
the platform periphery) to output signals for system actuators (related to
nodes in the platform periphery) defined as F ⊆ A × A × ... × A. Instances
of one or more platform applications instantiate a concrete system function.

Host. Platform node n that executes an instance i of platform application a at
cycle x; that is, H(i)x = n ∈ N . If x is not relevant then we write H(i).

Master Host. Dual platform node MH whose nodes ni and nj both execute
instances ii and ij of the same platform application a at cycle x; that is,
MH(a)x = (ni, nj) ∈ DN with ii, ij ∈ I(a), so that H(ii)x = ni and
H(ij)x = nj . MH(a) operates as an open gate in the sense that MH(a)
transports signals or data to (input) and from (output) application a.

Slave Host. Dual platform node SH whose nodes ni and nj both execute
instances ii and ij of the same platform application a at cycle x in hot-standby
mode to MH(a)x; that is, SH(a)x = (ni, nj) ∈ DN with ii, ij ∈ I(a), so that
H(ii)x = ni and H(ij)x = nj . In contrast to MH(a), SH(a) operates as a
half-side open gate in the sense that SH(a) only transports signals or data
to (input) application a.

3 Safety Requirements

3.1 Application Context

Our example system is an electric car built using software-intensive electronic
devices. Safety-critical car functions, such as steering and braking, must be highly
available and work reliably. In the following, we consider only car steering. In
basic configuration, the steering system takes input from the driver, i.e., steer-
ing wheel position, and translates it into control commands for car wheels. An
advanced variant of the steering system is controlled by additional parameters
such as car speed, weight, weight distribution, yaw angle, and road and weather

Testing Safety Properties of Cyber-Physical Systems 109

conditions. Regardless of the variant, the steering function, as well as the com-
munication network and the on-board power supply, must stay operational in
the presence of permanent or temporary faults in steering and non-steering car
components.

3.2 System Scope

We assume that every fault-tolerant function roughly consists of three parts:
input from the platform periphery (Fig. 1, sensors on the left), data processing in
the platform control computer (Fig. 1, central nodes) and output to the platform
periphery (Fig. 1, actuators on the right). Hence, the steering function consists of
three platform applications F = {(sws, sc, wc)} with: (1) steering wheel sensing
(sws) having two redundant instances I(sws) = {swsr, swsb} on two redundant
steering wheel sensors nr

1, n
b
2 ∈ PN : nr

1 = H(swsr) ∧ nb
2 = H(swsb); (2) central

steering control (sc) having four redundant instances I(sc) = {scri , scrj , scbi , scbj}
on four pairwise redundant, central nodes (nr

3,i, n
r
3,j), (n

b
4,i, n

b
4,j) ∈ DN : nr

3,i =
H(scri) ∧ nr

3,j = H(scrj) ∧ n4bi = H(scbi) ∧ n4bj = H(scbj) and (3) wheel control-
ling (wc) having two redundant instances I(wc) = {wcr, wcb} on two redundant
steering boxes nr

5, n
b
6 ∈ PN : nr

5 = H(wcr) ∧ nb
6 = H(wcb). Redundant commu-

nication links and redundant power circuits complete the system. The following
requirements concern availability properties of safety-critical system functions
and thereby the steering function.

3.3 Requirement R1: Redundant Input Signals

R1.1 Safety property: Continuous data available. Host n = H(i)x shall
provide a signal value to instance i of data processing application a in each node
cycle. The signal value shall be free from those errors that platform mechanisms
are responsible to detect and process.

For example, for car steering we assume the difference between two succeeding
steering angles (vx, vx−1) of a safe longitudinal movement to lie within variable
limits, that is, |vx − vx−1| ≤ delta, even when a redundant steering wheel sensor
fails. Driving situations, physical values and technical properties determine delta.

R1.2 Error detection. Host n = H(i)x shall check signal value v(n)x for errors
that the platform mechanisms shall detect before providing v(n)x to i.

R1.3 Error mitigation. Host n = H(i)x shall provide signal value v2(n)x to i
when v1(n)x is missing (no signal value received in cycle x) and if v2(n) is redun-
dant to v1(n) and free of errors. Redundant signals v1(n)x, v2(n)x from redundant
senders n1, n2 ∈ PN reach n in redundant, local variables v1(n), v2(n).

R1.4 Sender abstraction. Instance i of application a cannot distinguish redun-
dant signal values v1(n)x and v2(n)x.

110 J. Fröhlich et al.

3.4 Requirement R2: Fail-Operational Data Processing

R2.1 Safety property: Master host available. Exactly one master host
MH(a)x shall execute application a at platform cycle x.

R2.2 Error detection. Slave host SH(a) shall detect the failed MH(a) within
d > 0 cycles, that is, in the interval from cycle x+1 to cycle x+d, when MH(a)
fails at platform cycle x.

R2.3 Error recovery. Slave host SH(a) shall become MH(a) within s > 0
cycles, that is, in the interval from cycle x + d′ + 1 to cycle x + d′ + s, when
SH(a) has detected the failed MH(a) after d′ cycles, with d′ ≤ d, and if the
master-selection strategy selects SH(a).

R2.4 Safety property: Master unavailable. Application a can run without
MH(a) for d + s number of cycles, that is, in interval from cycle x to cycle
x + d + s. Properties of the containing system function F and the situation
dependent system environment determine the durations d and s.

R2.5 Host abstraction. Instances of application a cannot distinguish MH(a)
from SH(a) at platform cycle x.

4 Target System

4.1 Platform Safety Mechanisms

The car system must stay fail-operational. To operate dependably such systems
are realized as distributed, redundant components with replicated communica-
tion channels and redundancy control to tolerate all faults. System functions
rely on redundancy handling and fault processing mechanisms built into the
system platform. These mechanisms factored out into the platform simplify the
implementation, integration, and testing of platform applications.

The heart of the example target system is the platform control computer built
of several dual nodes (DN in Fig. 1). Single or redundant sensors and actuators
in the platform periphery (PN in Fig. 1) connect the system to the system
environment. Platform safety mechanisms ({ed = error detection, eh = error
handling, ...}) are instantiated once for each node. They automatically detect
and handle value errors and time errors [3] or combinations thereof (Table 1).

Safe steering, for example, relies on the availability, reliability and integrity
of the underlying system platform. In case of an inconsistency in the platform
control computer, the faulty node immediately backs out so as not to jeopardize
steering. For detecting inconsistencies, dual nodes pairwise monitor input data,
output data and node states in every cycle (Table 1: f). If the inconsistent dual
node is the master host of the central steering control, cyclic exchange of platform
states and checks within all other dual nodes detect the faulty master host
(Table 1: g). Then one of the hot standby slave hosts, still exchanging platform
states, takes over the role of the master host (Table 1: j, k). As the steering
function must constantly work alongside the redundant steering-wheel sensor,

Testing Safety Properties of Cyber-Physical Systems 111

Table 1. Detecting (ed) and handling (eh) of value (V) and time (T) errors

Platform mechanisms Examples V T

Data plausibility ed a. Host checks value range in cycle + -

b. Host checks value delta in subsequent
cycles

+ -

Protocol integrity ed c. Host checks CRC of frames in cycle + +

d. Host checks frame counters in subsequent
cycles

+ +

e. Host checks frame arrival time - +

Node integrity ed f. Nodes of dual nodes cyclically compare
status

+ +

Platform integrity ed g. Dual nodes cyclically compare status + +

Vote signals (error
mitigation)

eh h. Host selects one of several redundant
signals

+ +

Compensate signal
(error mitigation)

eh i. Host provides safe signal: last valid or
default

+ +

Reconfigure platform
(error recovery)

eh j. Dual nodes determine one master
host

+ +

k. Dual nodes isolate faulty nodes + +

the platform mechanisms of the platform control computer check steering angles
(and signal values in general, Table 1: a–e), vote, and select one per cycle to
ensure that instances of the central steering control application obtain quality
signal values in every cycle (Table 1: h).

4.2 Non-Intrusive Test Probe Mechanism

For demonstrating system safety in different system configurations of varying
degrees of redundancy, the system platform must enable by design the test sys-
tem to non-intrusively monitor and manipulate signal values, communication
packets, system states and data quality indicators. Tests must be able to inter-
vene simultaneously and instantaneously in different nodes. A target system is
testable if it permits these interventions without accidentally altering system
functionality and timing—neither in lab tests nor in field tests. The following
properties of the system platform meet these requirements (Fig. 2):

Time-triggered architecture. Time-triggered systems behave deterministi-
cally because systems control events and not vice versa (as in event-triggered
systems). Hence schedulers activate instances of platform applications and plat-
form mechanisms in a time-triggered way.

Node data store. Instances of platform applications and platform mechanisms,
on each node, communicate via a data store. A node data store captures signal

112 J. Fröhlich et al.

Fig. 2. Data flow in a node with built-in test probe

values, communication packets, node and platform states and quality indicators,
for one cycle and for every cycle anew.

Test probe. Each node contains a built-in test probe which is a platform test
service. Test probe operations are always scheduled at the very end of every
cycle. In this position, a test probe can (1) monitor data accumulated in the
data store during the last cycle (in Fig. 2: cycle x) and (2) manipulate data for
the next cycle (in Fig. 2, cycle x+1).

Exclusive test resources. Test probes use exclusive time slots (CPU times),
memory areas, and access points to a separate test network. Time, space and
bandwidth available to a test probe are set to upper limits, constant across all
node cycles. Other mechanisms and applications cannot use resources of a test
probe, even when it is deactivated. Otherwise test probes would be intrusive.

5 Safety Tests

Test requirement R1: Redundant input signals (Sect. 3.3). The minimal-
istic system under test consists of three nodes: two sensor nodes determine the
position of the steering wheel (in Fig. 1: nr

1, n
b
2) and provide redundant steer-

ing angles to any central node (in Fig. 1: one of {nr
3,i, n

r
3,j , n

b
4,i, n

b
4,j}) that hosts

(n = H(i)) any instance (i) of the central steering control application (i ∈ I(sc),
enumerated in Sect. 3.2). The test idea is to manipulate the output of a sensor
with different values for different time periods so that the central node must
assume that the sensor has a temporary or permanent problem. While one sen-
sor fails temporarily or permanently (controlled by different test data vectors),
the central steering control shall obtain steering angles from the redundant,
error-free sensor.

Testing Safety Properties of Cyber-Physical Systems 113

Test 1. Tolerate failing sensor
1: TEST Tolerate failing sensor WHAT 2 redundant sensors WHEN 1 sensor fails WITH
2: N1,a, N2,N3, // Control computer node N1, periphery nodes N2,N3 (sensors), application a

3: M, vM, vMx, // Node M where value vMx is injected into variable vM
4: c, cc, // Injection instant (cycle c) and injection duration (number of cycles cc)
5: t // Delta across two succeeding sensor (signal) values
6: EXPECT Application continuously receives correct signal values
7: PROVIDED THAT // System predicates checking the applicability of the test to the target
8: IsIn(DN, N1) AND IsIn(PN, N2, N3) AND N2 �= N3 // Sets DN and PN as def. in Sect. 2
9: IsHost(N1, a) // Node N1 executes an instance of application a as def. in Sect. 2
10: IsIn(V(M), vM) // Set V(M) of the names of all variables of node M as def. in Sect. 2
11: IsIn({N1, N2, N3}, M) // Via node M faults can be injected into one of N1, N2 or N3
12: CYCLE LENGTH 10 // Specified in milliseconds e.g., 10
13: MAX CYCLES 100 // Obtain definite verdicts within a maximum of 100 cycles
14: SETUP Tolerate failing sensor WITH N1, N2, N3 // Setup of target system (sys. under test)

15: START eNormal == N∗.State // Start test clock after SETUP when all nodes operate normally

16: INVARIANT // Safety property (R1.1, Sect. 3.3) must hold in each test clock cycle
17: N1.a.In == N1.a.In@[-1] DELTA t // In each test cycle compare current with former value

18: CYCLE // Test clock cycles
19: FROM c TO c + cc - 1 DO M.vM = vMx // Inject value vMx into variable vM of node M

20: STOP

Test 2. Tolerate failing master host
1: TEST Tolerate failing master WHAT 1 master and 1 slave WHEN Master fails WITH
2: N1i, N1j, N2i, N2j, a, // Dual nodes dn1, dn2 executing 4 instances of application a
3: vN1, vN1ix, vN1jx, // Inject values v1N1ix and v1N1jx in variables vN1 of N1i and N1j
4: c, cc, // Injection instant (cycle c) and injection duration (number of cycles cc)
5: d, // Number of cycles for the slave to detect the failed master (SH, MH in Sect. 2)
6: s // Number of cycles for switching the master
7: EXPECT Slave becomes master in time
8: PROVIDED THAT // System predicates checking the applicability of the test to the target
9: IsIn(DN, N1i, N1j, N2i, N2j) // Set DN as def. in Sect. 2
10: IsDN(N1i, N1j) AND IsDN(N2i, N2j) AND N1i �=N2i // Test for 2 different dual nodes
11: IsIn(V(N1i),vN1) AND IsIn(V(N1j),vN1) // Sets of variables V(N1i), V(N1j) as in Sect. 2
12: vN1ix �= vN1jx AND d > 0 AND s > 0
13: CYCLE LENGTH 10 // Specified in milliseconds e.g., 10
14: MAX CYCLES 100 // Obtain definite verdicts within a maximum of 100 cycles
15: CONDITIONS // System predicates which can change values during runtime
16: IsMH(Ni, Nj, A): eMaster == Ni.A.Authority AND eMaster == Nj.A.Authority
17: IsSH(Ni, Nj, A): eSlave == Ni.A.Authority AND eSlave == Nj.A.Authority
18: SETUP Tolerate failing master WITH // Setup of target system (system under test)
19: N1i, N1j, Delay1 = 0, // dn1 starts with no delay to become the master
20: N2i, N2j, Delay2 = 10, // dn2 starts with 10 cycles delay to become the slave
21: StateExpected = eNormal // Setup finished when all nodes operate normally
22: START IsMH(N1i, N1j) // Start test clock after SETUP, when dn1 is master.
23: INVARIANT // Safety property (R2.1 and R2.4, Sect. 3.4) must hold in each test clock cycle

24: (IsMH(N1i, N1j, a) XOR IsMH(N2i, N2j, a)) OR IsSH(N1i, N1j, a) OR IsSH(N2i, N2j, a)
25: CYCLE // Test clock cycles
26: FROM 0 TO c - 1 DO IsMH(N1i, N1j, a) // Master of a is dn1 because of starting earlier

27: FROM c TO c + cc - 1 DO N1i.vN1 = vN1ix; N1j.vN1 = vN1jx // Break the master
28: FROM c + d + s DO IsMH(N2i, N2j, a) // Master of a is dn2 after master switch
29: STOP

Test 1 checks safety property R1.1 throughout a test run as a test invariant
(line 17), also while manipulating a variable of one of the nodes under test for
cc cycles (line 19). It is not necessary for the test to simulate the environment
because, with RACE, nodes can start and run in a neutral mode processing
default values. With the steering wheel in neutral position (default), dependable

114 J. Fröhlich et al.

delivery of steering angles to the central steering control can be tested with the
following test vector:

N1 = nr
3,i, N2 = nr

1, N3 = nb
2, M = nr

1, // Nodes of the target system (Fig. 1)
a = SteeringControl, // Corresponds to a2 in Fig. 1
vM = Out.SteeringAngle, // Corresponds to v5(n) in Fig. 2 with n = M = N2
vMx = 0xDEAD, t = 1.0, c = 30, cc = 2 // Irregular steering angles for 2 cycles

To test the reaction on permanent sensor failure, we extend the fault injection
period cc from 2 to, say, 1000 cycles. For scoping the fault region differently, e.g.,
when looking for fault reasons with exploratory tests during system maintenance,
the test can intervene in the data flow in the central node by manipulating the
signal quality attribute on the side of the signal receiver, with all other test vector
arguments unchanged, as follows: M = nr

3,i, vM = In.SteeringAngle.Error, vMx
= eErrorConfirmed. If these tests pass, then we can say that the central steering
control application is indifferent to the sender of the steering angle (R1.4), as
well as to other tested faults.

Test requirement R2: Fail-operational data processing (Sect. 3.4). The
minimally realistic system under test is a core platform of two dual nodes: dn1 =
(nr

3,i, n
r
3,j), dn2 = (nb

4,i, n
b
4,j) in Fig. 1. The test idea is to shock the nodes of the

master host (MH(sc)) of the central steering control (sc) application so that
(MH(sc)) backs out. The slave host (SH(sc)) shall become MH(sc) within the
required time period, including the time needed for error detection plus the time
needed for error recovery (switching from SH to MH).

Test 2 checks safety properties R2.1 and R2.4 (line 24) throughout a test
run, also while the test injects (line 27) different values vN1ix and vN1jx in
the duplicated variables N1i.vN1 and N1j.vN1 (line 3). The safety mechanisms
of both nodes must detect this inconsistency (shock) and switch off the master
host. The slave host takes over the master role (line 28) and continues executing
the platform application. With the following test vector, Test 2 does not inject
a fault into an arbitrary memory cell or I/O buffer. Rather, Test 2 attacks the
system under test later in the data flow where the platform’s error detection
service stores the quality (error) indicator for further processing:

N1i = nr
3,i, N1j = nr

3,j , N2i = nb
4,i, N2j = nb

4,j , // Platform control comp. (Fig. 1)
a = SteeringControl, // Corresponds to a2 in Fig. 1
vN1 = Twin.ErrorIndicator, vN1ix = 7, vN1jx = 0, c = 10, cc = 1, d = 3, s = 2.

6 Plausibility Check and Test Analysis

Safety tests written in ALFHA provide reliable statements on system behavior
without probe effects, because: (1) Target systems are designed for testability
with lifelong built-in test probes (special modules) and data stores decoupling
modules (code blocks), see Sect. 4.2; (2) Accurate and understood tests are writ-
ten in an appropriate domain-specific language that describes fault-injection
tests of testable target systems, see Sect. 5; (3) A test system with a central test
controller is decoupled from target systems via test probes and separate test

Testing Safety Properties of Cyber-Physical Systems 115

networks, see Sect. 4.2 and sketched in Fig. 3; (4) Traces produced by the test
controller enable plausibility checks, e.g., Trace 1 for a tolerate failing master
host test (Test 2) of the target system RACE in operation, see Fig. 4.

Fig. 3. Test system connected to the target system (Fig. 1) by a separate star network
(Color figure online)

Fig. 4. Demonstration of the Tolerate failing master host test (Color figure online)

Once the test system and a testable target system are set up and connected,
the focus of plausibility checks moves to analyses of tests and related traces. Test
traces document the bindings between test (vector) arguments and parameters
of test procedures (Trace 1, lines 1–9) on the basis of structural descriptions
of target systems. The test controller uses target system descriptions also for
checking whether test cases can be applied to target systems before test runs
(e.g., Test 2, lines 9–11). In Trace 1 the test controller documents that in platform
cycle 298 test probes of nr

3,i and nr
3,j are instructed to manipulate variables

C (nr
3,i.Twin.ErrorIndicator) and G (nr

3,j .Twin.ErrorIndicator) in platform
cycle 308. Trace 1 filtered (1) for values that test probes send to the test controller
(gray lines, platform cycles 299, 300, ..., 309, ..., 398) and (2) for values of
variables that indicate the role of a dual node (green boxes, variables D and H
for dual node dn1, L and P for dual node dn2, MH = 3, SH = 1) shows that

116 J. Fröhlich et al.

the target system (platform control computer in Fig. 1) satisfies requirement R2
(Sect. 3.4) for this test run. Snapshots of a RACE-specific trace visualizer (Fig. 4)
for another tolerate failing master host test of a RACE system can be mapped
to Trace 1 as follows: snapshot (a) corresponds to, e.g., platform cycle 308 (test
cycle 9) and snapshot (b) corresponds to, e.g., platform cycle 398.

Test Trace 1 Trace of a Tolerate failing master host test
1: T-DS 1.1 :A: nr3,i.Cycle # N1i = nr3,i, Node cycle in scope by default

2: T-DS 1.8 :B: nr3,i.State # N1i = nr3,i, Node state in scope by default

3: T-DS 1.23:C: nr3,i.Twin.ErrorIndicator # N1i = nr3,i, vN1 = Twin.ErrorIndicator

4: T-DS 1.44:D: nr3,i.SteeringControl.Authority # N1i = nr3,i, a = SteeringControl

5: ...
6: T-DS 2.23:G: nr3,j.Twin.ErrorIndicator # N1j = nr3,j, vN1 = Twin.ErrorIndicator

7: ...
8: T-DS 3.44:L: nb4,i.SteeringControl.Authority # N2i = nb4,i, a = SteeringControl

9: ...
10: #: A:B:C:D: E:F:G:H: I:J:K:L: M:N:O:P:
11: #===
12: ...
13: CYCLE:298: :>: : :7: : : :0: : : : : : : : : : @9=1 // Controller tc in Fig. 3

14: instructs nr
3,i, nr

3,j to manipulate C, G in test cycle 9 for 1 cycle (see line 24 below)

15: CYCLE:299: 0:<:299:3:0:3:299:3:0:3:289:3:0:1:289:3:0:1: // Monitor A, B, ..., P
16: CYCLE:299: 0:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
17: CYCLE:299: 0:v: : : :3: : : :3: : : : : : : : : %26 // IsMH passes, line 26

18: CYCLE:300: 1:<:300:3:0:3:300:3:0:3:290:3:0:1:290:3:0:1: // Monitor A, B, ..., P
19: CYCLE:300: 1:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
20: ...
21: CYCLE:308: 9:<:308:3:0:3:308:3:0:3:298:3:0:1:298:3:0:1: // Monitor A, B, ..., P
22: CYCLE:308: 9:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
23: CYCLE:308: 9:v: : : :3: : : :3: : : : : : : : : %26 // IsMH passes, line 26

24: CYCLE:308: 9:c: : :7: : : :0: : : : : : : : : : %27 // tp manipulate C and G

25: CYCLE:309:10:<: : : : : : : : :299:3:0:1:299:3:0:1: // Monitor I, J, ..., P
26: CYCLE:309:10:w: : : : : : : : : : : :1: : : :1: %24 // Invariant holds, line 24
27: ...
28: CYCLE:398:99:<: : : : : : : : :388:3:0:3:388:3:0:3: // Monitor I, J, ..., P
29: CYCLE:398:99:w: : : : : : : : : : : :3: : : :3: %24 // Invariant holds, line 24
30: CYCLE:398:99:v: : : : : : : : : : : :3: : : :3: %28 // IsMH passes, line 28

31: VERD 0 #=== // Test passes (0: no errors)

7 Summary

The tests presented in this paper demonstrated a method of proving safety-
related statements about a fault-tolerant system, like “a steer-by-wire car
remains steerable when one computer of the central platform computer fails.”
More fault-injection tests for the same target at different points of attack (e.g.,
nodes and variables) and in different situations (e.g., degradation modes and
load levels) are necessary to increase the confidence in and precision of such
statements. Test probes permanently built into all nodes of a fault-tolerant,
cyber-physical system that executes time-controlled behavior provide the neces-
sary testability.

Testing Safety Properties of Cyber-Physical Systems 117

References

1. Ayestaran, I., et al.: Modeling and simulated fault injection for time-triggered
safety-critical embedded systems. In: 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
pp. 180–187, June 2014

2. Becker, K., et al.: RACE RTE: a runtime environment for robust fault-tolerant
vehicle functions. In: 11th European Dependable Computing Conference on CARS
Workshop - Dependability in Practice. IEEE, September 2015

3. Bondavalli, A., Simoncini, L.: Failure classification with respect to detection. In:
Proceedings of 2nd IEEE Workshop on Future Trends of Distributed Computing
Systems, 1990, pp. 47–53, September 1990

4. Büchel, M., et al.: An automated electric vehicle prototype showing new trends in
automotive architectures. In: International Conference on Intelligent Transportation
Systems (ITSC 2015). IEEE, September 2015

5. Frtunikj, J., et al.: Qualitative evaluation of fault hypotheses with non-intrusive
fault injection. In: 5th International Workshop on Software Certification (WoSoCer
2015). IEEE, November 2015

6. Kane, A., Fuhrman, T., Koopman, P.: Monitor based oracles for cyber-physical
system testing : practical experience report. In: 44th IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp. 148–155, June 2014

7. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Springer, New York (2011)

8. Sommer, S., et al.: RACE: a centralized platform computer based architecture for
automotive applications. In: Vehicular Electronics Conference and the International
Electric Vehicle Conference (VEC/IEVC). IEEE, October 2013

9. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: a MODel-
implemented fault injection tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS,
vol. 6351, pp. 210–222. Springer, Heidelberg (2010)

	Testing Safety Properties of Cyber-Physical Systems with Non-Intrusive Fault Injection -- An Industrial Case Study
	1 Introduction
	2 Terms
	3 Safety Requirements
	3.1 Application Context
	3.2 System Scope
	3.3 Requirement R1: Redundant Input Signals
	3.4 Requirement R2: Fail-Operational Data Processing

	4 Target System
	4.1 Platform Safety Mechanisms
	4.2 Non-Intrusive Test Probe Mechanism

	5 Safety Tests
	6 Plausibility Check and Test Analysis
	7 Summary
	References

