
An Approach for Systematic In-the-Loop
Simulations for Development and Test

of a Complex Mechatronic Embedded System

Amir Soltani Nezhad(B), Johan J. Lukkien, Rudolf H. Mak,
Richard Verhoeven, and Martijn M.H.P. van den Heuvel

Mathematics and Computer Science Department,
Eindhoven University of Technology (TU/e), P.O. Box 513,

5600 MB Eindhoven, The Netherlands
{a.soltaninezhad,j.j.lukkien,R.H.Mak,P.H.F.M.Verhoeven,

m.m.h.p.v.d.heuvel}@tue.nl

Abstract. Simulations are widely used in the engineering workflow of
complex mechatronic embedded systems in various domains, such as
healthcare, railway, automotive and aerospace, for analyzing, testing and
validating purposes. This paper focuses on the development and test of the
control software of complex mechatronic embedded systems from the per-
spective of software interfaces (e.g., driver APIs) and presents a systematic
approach for testing the control software during the various stages of an
engineering process. Since we assume that the physical (hardware) compo-
nents of an under-control plant could be replaced with simulation models,
various kinds of in-the-loop simulations, ranging from MiL to HiL, can be
consequently acquired. Additionally, we present a mathematical model of
MESes required to formally describe the approach and also a healthcare
case study to which our approach was applied.

Keywords: Development of mechatronic embedded systems · In-the-
Loop simulations · Software-in-the-Loop (SiL) · Hardware-in-the-Loop
(HiL) · Driver APIs

1 Introduction

A Mechatronic Embedded System (MES) typically consists of complex combi-
nations of hardware and software components. Such a system is often software-
intensive, and therefore the development and test or evolution of its control soft-
ware is largely costly (time and money) over the development process. Due to
this software complexity, manufactures and OEMs are interested in techniques
and tools to shorten the development, verification and validation engineering
workflow (typically V model-based), while maintaining or even improving the
quality of the control software and in turn the entire product.

For instance, in recent years, simulations have been widely used during
the development and test of MESes, especially for the control unit, in differ-
ent domains, such as healthcare, railway [5], automotive [7], and aerospace.
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 130–143, 2016.
DOI: 10.1007/978-3-319-45480-1 11

An Approach for Systematic In-the-Loop Simulations 131

The key reason is to discover faults and inconsistencies with design in advance
without postponing tests until the availability of implemented control software
or of hardware components of the plant, which might be under parallel develop-
ment. It can also be used for comparing different alternatives prior to taking a
critical design decision. In complex embedded systems, there are well-know sim-
ulation techniques in which a control unit can be tested against its under-control
plant, while different abstraction levels of the control and the components of the
plant could participate in the simulations. Some examples of these techniques
include Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), Processor-in-the-
Loop (PiL) and Hardware-in-the-Loop (HiL) simulations, which differ from each
other based on the level of abstraction.

For instance, MiL is a technique, with the highest abstraction, in which
there is no target hardware involved in the system and only simulation models
are integrated for testing and validating purposes. On the other hand, HiL,
among other definitions, is a simulation technique, with the lowest abstraction,
in which a target control unit is tested while connected to an under-control,
fully-simulated plant.

Deploying in-the-loop simulations, especially HiL, to accelerate the devel-
opment and test of embedded systems in various domains and applications has
been widely investigated [1–4]. However, these works mostly focus on in-the-loop
simulations to validate different control algorithms in various domains, such as
power electronic systems and mechanics.

In this paper, however, we are interested in looking at the problem of the
development and test of the control software of a MES from the higher-level
perspective of driver APIs of the plant. Through these APIs, a MES’s control
software controls the plant, typically via other sub-control systems. We consider
these sub-control systems as part of the MES’s plant. The in-the-loop simulation
works in the literature mainly focus on validating these sub-control systems
unlike this work that concentrates on the higher-level control software of a MES.
To clarify more the research question, assuming that the under-development
control software is going to be tested against the plant, given the driver APIs of
the plant components, such as motors and sensors, we investigate a systematic
way for testing such control software and its interaction with the plant through
the APIs. It is essential to note that not all the components of the plant must
be physically available. This means that we can arbitrarily replace any number
of physical components with their simulated counterparts.

By solving this problem, we can consequently provide the engineers of a
MES’s control software with a mechanism by which various in-the-loop simula-
tions in different abstractions could be realized.

Furthermore, observing the increasingly widespread adoption of the Model
Based System Engineering (MBSE) paradigm, our solution could benefit from
MBSE for the development of MESes. Because, since MBSE operates based on
models throughout an entire engineering process, our approach could enjoy from
MBSE by deploying, for example, early executable models of a plant for testing
the early model of the control software.

132 A. Soltani Nezhad et al.

A general idea of this paper was published in [6]. In this paper, we present
the following contributions:

1. A mathematical model for a MES and running in-the-loop simulations, which
can be found in Sect. 2.

2. A formal explanation of our methodology is addressed, which can be found
in Sect. 3.

3. A detailed explanation of an industrial case study from the healthcare
domain to which the methodology was applied, which can be found in Sect. 4.

Finally, Sect. 5 concludes this paper and presents the future directions of this
work.

2 System Model

In this section, we introduce the key concepts of our system model (see Fig. 1
for an overview). The model considers that a MES is composed of components
that interact solely via well-defined interfaces. For the scope of this paper, we
assume that all systems are built from a known set of components taken from a
fixed repository named R.

Definition 1 (Repository). The repository R is a pair (R.I,R.C), where R.I
is a set of interfaces and R.C is a set of components.

To enforce correct interaction patterns between components, some detail
about their interfaces needs to be available.

Definition 2 (Interface). An interface i ∈ R.I is a pair (i.n, i.s) where i.n
is a unique name, and i.s is a set of signatures (prototypes) of methods, i.e.,
method names with input/output parameters.

Fig. 1. System model overview

An Approach for Systematic In-the-Loop Simulations 133

Occasionally, we need to express that sets of interfaces are identical apart
from the names that make each interface unique. For this, we introduce the
notion of signature equivalence.

Definition 3 (Signature Equivalence). Two sets of interfaces I1, I2 ⊆ R.I
are signature equivalent, denoted by I1 ≡sig I2 when their bags of signatures are
equal, i.e., when

⊎
(n1,s1)∈I1

{s1} =
⊎

(n2,s2)∈I2
{s2}

A component uses interfaces both to provide functionality to its environ-
ment and to require functionality from other components. Thus, its provided
functionality arises as a combination of its own implementation and the func-
tionality obtained via the required interfaces.

Definition 4 (Component). A component C ∈ R.C is a quadruple
(C.n,C.Ip, C.Ir, C.m), where C.n is a unique name, C.Ip, C.Ir ⊆ R.I is the set
of its provided and required interfaces, respectively, and C.m is the C’s imple-
mentation, which is a set of implemented artifacts. Moreover, we denote the set
(C.Ip ∪ C.Ir) (i.e., all the interfaces) by C.I.

Based on the nature of its implementation, we distinguish two types of
components.

Definition 5 (Component Type). A component is called a hardware (physi-
cal) component when its implementation is given by actual piece(s) of hardware,
such as sensors or motors. It is, however, called a simulated component, if it is
made of executable simulation model(s). A component whose implementation is
of software but still need to be embedded in the targeted device is also called a
simulated component.

The interaction patterns between the components of a system are captured by
bindings. Each binding involves a pair of interfaces of opposite roles, such that
all methods required by one component are provided by the other. However,
within a binding, not all provided methods need to be required.

Definition 6 (Binding). A binding between components from R is a quadru-
ple (C1, i1, C2, i2), where C1, C2 ∈ R.C, i1 ∈ C1.Ip, and i2 ∈ C2.Ir such that
C1.n �= C2.n and i2.s ⊆ i1.s.

For the purpose of an in-the-loop simulation, a MES is divided into two parts:
control software1 and a plant. In contrast to the control software component,
which is of the simulated component type, the plant may consist of the both
component types, simulated and hardware. Furthermore, in order to perform
an in-the-loop simulation of a system, the bindings present between the control
software and the plant must satisfy certain rules.
1 In this work, our focus is on the software part of a MES’s control than on the entire

control unit.

134 A. Soltani Nezhad et al.

Definition 7 (Valid System). A valid system is a triple (S, P,B), where S ∈
R.C is a simulated component called the control software, and P ⊆ R.C \ {S}
is a set of components called the plant. In contrast to S, the components of P
may be of either type, i.e., a plant may consist of both simulated and hardware
components. Furthermore, B is a set of bindings such that:

1. ∀ir∈S.Ir :
[∃C∈P,ip∈P.Ip : (C, ip, S, ir) ∈ B

]

2. ∀ir∈P.Ir :
[∃C∈P,ip∈S.Ip : (S, ip, C, ir) ∈ B

]

where P.Ip =
⋃

C∈P C.Ip and P.Ir =
⋃

C∈P C.Ir.

In terms of this system model, a simulation is an execution of a valid system
in which one or more components of the plant are simulated components.

3 Methodology

In this section, we present our methodology that consists of the introduction of
two (special) components to be inserted at predefined locations into the archi-
tecture of our approach. First, we state the objectives that must be achieved
by these components. Next, we discuss the individual requirements imposed on
these components, their locations in the system in the architecture, and typical
usage in simulation.

The main consequence of our approach is to enable the executions of a variety
of valid systems at various stages of a MES development, resulting in in-the-loop
simulations at various levels of abstraction.

The first component we introduce is called the Simulation Wrapper (SW). It
will be inserted between the control software S and the plant P of a MES that
has the capability of both tracing all traffic between S and P and redirecting or
duplicating that traffic. Each system will contain a single SW , but its appearance
will depend on the system in which it is inserted.

The second component we introduce is called the Simulator Coordinator
(SC). It bridges the gap between the executable simulation models (a.k.a., sim-
ulators) and interfaces of a component of the plant simulated by these models.
Moreover, since most MESes are real-time systems, a simulator coordinator is
also responsible for aligning the simulator’s notion of time with the system time.
In principle, we consider one SC per simulated component. Figure 2 depicts the
general architecture of an in-the-loop system using this approach.

In the rest of this section, we discuss the components SW and SC in more
detail.

3.1 Simulation Wrapper (SW)

As indicated above, the simulation wrapper is inserted between the control soft-
ware S and the plant P . The rationale for this placement, as well as other possi-
bilities for placement, has been discussed in [6]. Since the simulation wrapper is
a component, i.e., SW = (SW.n, SW.Ir, SW.Ip, SW.m), we need to specify both

An Approach for Systematic In-the-Loop Simulations 135

Fig. 2. Overall architecture. Our solution’s components are highlighted in red. (Color
figure online)

its interfaces and its implementation. Its interface sets are determined by the
interface sets of S. For each required interface i ∈ S.Ir, it has three interfaces
i1, i2, and i3 that all have the same signature as i. Of these interfaces, i1 is a
provided interface that is intended to be bound to i. The other two are required
interfaces that forward method invocations by S along with i to either a driver
of a hardware component of the plant (i2) or to the interface of the simulated
version of that component (i3). Similarly, there are three interfaces for each
provided interface of S. Note that the provided interfaces of S correspond to
call-backs from the plant. Thus, we have:

SW.Ip = SW.Ip1 ∪ SW.Ip2 ∪ SW.Ip3

SW.Ir = SW.Ir1 ∪ SW.Ir2 ∪ SW.Ir3

where

S.Ip ≡sig SW.Ir1 ≡sig SW.Ip2 ≡sig SW.Ip3

S.Ir ≡sig SW.Ip1 ≡sig SW.Ir2 ≡sig SW.Ir3

The implementation of SW is more difficult to specify in a formal manner.
Therefore, we merely hint at the realization of its functional requirements. In
addition, we mention non-functional requirements that such a realization should
meet.

Functional Requirements:

– Interception: An important aspect of interception is that any invocation of
a method from a provided interface i1 ∈ SW.Ip1 needs to be forwarded to

136 A. Soltani Nezhad et al.

its destination under simulation. For this, SW.m must maintain references
to its corresponding signature-equivalent interfaces i2 ∈ SW.Ir2 and i3 ∈
SW.Ir3. Listing 1.1 contains a code snippet that shows how this can be done
by encapsulating such references in objects that possess the same interface.
For the sake of simplicity, various details, such as how to deal with parameters
that are themselves objects, or which object to return in case both the real
and the simulated methods are invoked are left unspecified.

– Traceability: The same code snippet in Listing 1.1 illustrates how forwarding
can be augmented with logging of invocation data.

Listing 1.1. Conceptual forwarding by the simulation wrapper

I n t e r f a c e 1 : : MethodA(p) {
i f (Object2) { // forwards to i2

RtnObj2 = Object2−>MethodA(p) ;
}
i f (Object3) { // forwards to i3

RtnObj3 = Object3−>MethodA(p) ;
}
i f (Tracing On) { // invoke custom l o g g i n g

LogInvocationData () ;
}
return (ReturnFrom2 () ? RtnObj2 : RtnObj3) ;

}

Non-functional Requirements:

– Transparency: To ensure that no modification in either plant or control soft-
ware is needed, when running a new valid system, interception of method invo-
cations needs to be transparent, i.e., neither the caller nor the callee should
be aware of the existence of SW .

– Small and Predictable Overhead: To ensure reliable simulation results, SW
must satisfy its functional requirements with small (preferably constant) and
predictable overhead in terms of computing resources (e.g., CPU and mem-
ory), and must not cause unpredictable delay on method invocations between
S and P .

– Automatic Generation: To support an efficient development process, generat-
ing and inserting the simulation wrapper into the architecture of a MES should
be automated as much as possible. Because the interfaces of the components
that make up a MES are available, and forwarding follows a standard pattern,
this is, to a large extent, feasible.

3.2 Simulator Coordinator (SC)

As indicated, a simulator coordinator is responsible for connecting executable
simulation models to the system. More specifically, it must take one or several
simulation models as the implementation of a potential simulated component

An Approach for Systematic In-the-Loop Simulations 137

from simulation tools such as Simulink, and attach interfaces to it. By doing so,
a simulator coordinator, in fact, transforms one or multiple simulation models
into a simulated component of P .

In a nutshell, any SC = (SC.n, SC.Ip, SC.Ir, SC.m) is an access point
for available executable simulation models that together simulate a component
C ∈ P . Hence, it immediately follows that SC.Ip ≡sig C.Ip. For SC.Ir, the sit-
uation is more complex. In general, it consists of two sets of interfaces. One set
assumes the role of the required interfaces of the plant’s component under simula-
tion. The other set of interfaces serves to connect the coordinator to the collection
of models. If we assume that M.Ip is the set of interfaces provided by the mod-
els, then SC.Ir = SC.Ir1 ∪ SC.Ir2, where SC.Ir1 ≡sig C.Ir and SC.Ir2 ⊆ M.Ip.
Figure 2 illustrates the overall architecture of an in-the-loop system in which sim-
ulators are connected to the simulation wrapper via a simulator coordinator.

To achieve its expected functionality, SC.m must meet the following require-
ments:

– Model Connectivity: For each interface i ∈ SC.Ip the methods of i must be
implemented using the executable simulation models of SC.m invoked through
SC.Ir2.

– Synchronization: In general, a simulator simulates the behavior of a simulated
component through a sequence of time-stamped state-transitions and associ-
ated events. For this, the simulator keeps track of a notion of logical time. In
order to obtain a correct in-the-loop simulation, the logical clocks of the simu-
lation models need to be synchronized with the real system-time. An example
of how this can be done in practice is shown in the next section.

As with the simulation wrapper, the automatic generation of SC.m is a
desirable property. For the generation of the provided interface, this is, to a large
extent, feasible. For the translation of interface methods into model methods,
however, this is less likely, since it is highly dependent on the primitives of the
simulation language and the plant component under simulation (Fig. 3).

Fig. 3. All the Interfaces of the entire components of our solution. I in this figure
actually represents any interface i ∈ I

138 A. Soltani Nezhad et al.

4 Case Study

In this section, we illustrate the approach introduced in Sect. 3 on an industrial
case study from the healthcare domain. More precisely, we explain the procedure
required for configuring an SiL simulation for the case study using this approach.

We consider a safety-critical MES, viz., an Interventional X-Ray (IXR)
machine (See Fig. 4). This is a case in which the control software manipulates
quite heavy hardware components, such as a C-ARM and a patient table whose
uncontrolled movements may harm patients or medical staff. In view of the cost
of the machine and the mentioned safety aspects, there is a strong motivation
not only to test the system with simulated hardware, but also to be selective on
which hardware components are simulated.

To avoid being overwhelmed by unnecessary details of a complete IXR plant,
we focus our attention on the simulation of a single component. In the sequel, we
refer to the selected hardware component as C2 and to its simulating counterpart,
connected to the IXR system by means of a simulator coordinator SC and
wrapper SW , as C1.

For C2.I, we selected an EtherCAT network driver, a third-party driver used
by the IXR control software to control motors and sensors of an IXR over an
EtherCAT network. Therefore, these motors and sensors are the implementation
(i.e., C2.m) of the component C2. Since we intended to configure an SIL, C2, as
a hardware component, is absent.

Fig. 4. An Interventional X-Ray (IXR) device

Fig. 5. Class diagram of the EtherCAT driver stub

An Approach for Systematic In-the-Loop Simulations 139

Figure 5 depicts the structure of the EtherCAT driver’s three main provided
interfaces, namely, Node, Axis, IO. Hence, together they constitute the interface
C1.Ip of the simulated component. For the latter’s implementation C1.m, we
deployed a Matlab Simulink model that simulates a motor responsible for moving
an IXR’s patient table up and down and a sensor that measures the pressure on
the patient table of an IXR. Both motor and sensor also simulate the original
hardware controlled by IXR’s S using the EtherCAT network driver.

To enable an SiL, the module of the IXR’s control software S responsible for
positioning the IXR’s patient table, not yet embedded in its dedicated hardware,
was used and the following objectives were pursued by this setup:

– To explore which type of motor is appropriate for the patient table, in terms
of speed, power and other properties.

– To test whether the control software works properly.

Figure 6 shows the instantiated version of the generic architecture introduced
in Fig. 2, for this particular case study.

SW: The main task of the simulation wrapper in this case study is forwarding
method calls from S to C1 through SC. Listing 1.2 shows the implementation
of this task for a method named ProduceData() belonging to C1.Ip.

The information determining which components are in P , introducing sim-
ulation models, if any, and their input and output parameters along with their
critical functions, such as their step functions is obtained through a configura-
tion file fed to each valid system. Using this file, prior to running a valid system,
an initialization process is performed to bind relevant components, such as S to
SW and SW to (simulated) components of P . For instance, the configuration
file created for this case study causes the initialization process to bind C1 to S
via SC via SW . As a consequence, when receiving a method call from S, SW
forwards the call to C1 through SC.

Fig. 6. Architecture solution for an IXR

140 A. Soltani Nezhad et al.

As mentioned in Sect. 3, in addition to just forwarding calls, SW could also
record these interactions for a later possible fault analysis (not yet implemented)
and for testing purposes.

Listing 1.2. Main functionality of the simulation wrapper

i f (C2 Object) {
// forwards to the p h y s i c a l component v ia the d r i v e r
RtnObj = C2 Object−>ProduceData (p) ;
}
i f (C1 Object) {
// forwards to the s imu la ted component v ia SC
RtnObj = C1 Object−>ProduceData (p) ;
}

SC: Recall that the purpose of the simulator coordinator is to solve two impor-
tant generic problems: model connectivity, i.e., realizing simulated component
interfaces using the methods offered by given simulation models’ objects, and
synchronization, i.e., aligning the passage of time in the control software with
that in the simulation models. In addition, there may be other system specific
issues. In this particular case, unit conversion is an example of the latter. We
now discuss each of these in some detail.

Model Connectivity: As discussed earlier, the SC must expose the same interfaces
as the Ethercat driver of the plant component whose simulation it coordinates.
In our case, these interfaces are the Node, Axis and IO interfaces, each of which
is implemented in SC by an object of a corresponding class. The actual imple-
mentation of the objects’ methods is in terms of Simulink models. For this case
study, the entire implementation has been done by hand, but using the configura-
tion file described earlier in the context of the initialization process, a large part
of the implementation of these classes, is skeleton code that can be generated
automatically.

Furthermore, to have a structured mechanism to import the required
Simulink simulation models, we made a design choice to encapsulate them in
objects of a single class named Model. This class contains attributes and meth-
ods of a typical simulation model, like input and output variables, step size and
step function. Thus, for every simulation model in C1.m, an object of class Model
is instantiated in the SC to be used by the Node, Axis and IO interface methods
for implementation of the simulation proper. The resulting class structure of SC
is shown in Fig. 7.

Synchronization: This issue addresses the difference in the handling of time
between S and simulated components of P (here only C1). The situation in
our case study is as follows. The control software periodically loops through a
sequence of control statements, whereas each simulation model steps through
a sequence of states. For this, the models provide a function stepFunc that
determines the next state and a parameter timeStep that indicates the advance
in time associated with each step. These time steps are much smaller than the
period of the control loop and, for the sake of simplicity, we assume in the sequel

An Approach for Systematic In-the-Loop Simulations 141

Fig. 7. SC class diagram for this case study

that the period of the control loop Tctrl is a multiple of the time step of every
model in C1.m.

Listing 1.3 displays a variant of the actual control loop that captures the
essential features, but uses fictional methods to simplify the explanation.

Listing 1.3. Basic control loop with fictional methods and period Tctrl

c on t r o l so f tware loop {
every (T c t r l time un i t s){

readStatus () ;
ana lyze () ;
wr i t eS ta tus () ;

}
}

Listing 1.4 displays an idealized implementation of method writeStatus() ∈
C1.Ip whose intended effect is that all models in C1.m synchronize their state
to the moment in time implicitly maintained by the control software state as it
iterates through its loop.

Listing 1.4. Synchronization by writeStatus

wr i t eS ta tus (){
for each (model m o f C1){

var dt = 0 ;
while (dt < T cr t l) {

m. stepFunc () ;
dt = dt + m. timeStep ;

}
}

}
Unit Conversion: Besides its standard responsibilities model connectivity and
synchronization, in this case study, the SC was also responsible for conversion
of values exchanged between C1 and S. This responsibility arose because the

142 A. Soltani Nezhad et al.

simulation models in C1.m only work with the SI base units, whereas the control
software S also works with SI derived units, such as volt. To overcome this
difference, information about units occurring in both the simulation models and
the system was gathered from the configuration file and used to add conversion
functionality to the SC, e.g. V = W/A = m2 · kg · s−3 · A−1.

5 Conclusion and Future Work

In this paper, we focused on the problem of the development and test of the con-
trol software of MESes from a high level perspective of software interfaces such
as driver APIs of the under-control plant. The idea is that given the interfaces of
the components of a plant, transparently to the control software, engineers have
freedom to provide these interfaces using either hardware components of the
plant or their simulated counterparts. As a consequence of solving this problem,
various in-the-loop simulations, such as SiL and HiL, required for verification
and validation of MESes are realized. Note that this paper does not fully solve
the problem of mixed simulations (a special interpretation of HiL) where a plant
consists of simultaneously hardware components and simulated ones.

It is important to note that our approach’s components, especially SW , does
not only play an essential role in the development and test of a MES, but it
may also exist in the final product for serving different purposes, for example
for logging interactions between control software and its plant for fault analysis.

The work in this paper could be extended in three directions. First, more
industrial case studies from different domains to be studied for ensuring the
applicability of this approach in other domains. Second, investigating the prob-
lem of the mixed simulations where there is the freedom of integrating hardware
components and simulated ones as a plant using this approach. Third, adding
a domain-specific language for this approach in order to extend it and make it
as a comprehensive framework with high amount of code generation, especially
on the SC side. This is because we believe that the more automated this code
generation is, the more valuable the solution is, and it can be easier integrated
into current development workflows of MESes.

Acknowledgments. This work was supported in part by the European Union’s
ARTEMIS Joint Undertaking for CRYSTAL (Critical System Engineering Acceler-
ation) under grant agreement No. 332830.

References

1. Choi, S.B., Young, T.C., Park, D.W.: A sliding mode control of a full-car electrorhe-
ological suspension system via hardware in-the-loop simulationg. Dyn. Syst. Meas.
122(1), 114–121 (2000)

2. Faruque, M., Dinavahi, V.: Hardware-in-the-loop simulation of power electronic sys-
tems using adaptive discretization. IEEE Trans. Ind. Electron. 57(4), 1146–1158
(2010)

An Approach for Systematic In-the-Loop Simulations 143

3. Hui, L., Steurer, M., Shi, K.L., Woodruff, S., Zhang, D.: Development of a unified
design, test, and research platform for wind energy systems based on hardware-in-
the-loop real-time simulation. IEEE Trans. Ind. Electron. 53(4), 1144–1151 (2006)

4. Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the design
and testing of engine-control systems. Control Eng. Pract. 7(5), 643–653 (1999)

5. Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A.: Model-driven engineer-
ing of a railway interlocking system. In: Proceedings of the Third IEEE Interna-
tional Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), pp. 509–519, February 2015

6. Soltani Nezhad, A., Ferreira, L.F.B., van den Heuvel, M.M.H.P., Verhoeven, R.,
Lukkien, J.J., Mak, R.H., Korff de Gidts, E.: Towards an interoperable framework
for mixed real-time simulations of industrial embedded systems. In: Proceedings of
IEEE International Conference on Emerging Technology and Factory Automation
(ETFA) (2014)

7. Sung Chul, O.: Evaluation of motor characteristics for hybrid electric vehicles using
the hardware-in-the-loop concept. IEEE Trans. Veh. Technol. 54(3), 817–824 (2005)

	An Approach for Systematic In-the-Loop Simulations for Development and Test of a Complex Mechatronic Embedded System
	1 Introduction
	2 System Model
	3 Methodology
	3.1 Simulation Wrapper (SW)
	3.2 Simulator Coordinator (SC)

	4 Case Study
	5 Conclusion and Future Work
	References

