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Preface

For many years, the annual SAFECOMP conferences have been complemented by a
series of workshops. This year, we accepted proposals for 7 domain-specific high-
quality workshops from which four were successful in the end in collecting a sufficient
number of high-quality papers or in organizing enough additional invited talks. This
volume presents the proceedings of these four workshops held on September 20, 2016,
preceding the SAFECOMP 2016 conference from 21 to 23 September, and organized
by the Norwegian University of Science and Technology in Trondheim. The SAFE-
COMP 2016 proceedings can be found in LNCS volume 9922.

Most workshops were sequels to earlier workshops, which show that the workshop
topics are relevant to the scientific and industrial community that deals with safety,
reliability, and security in programmable industrial systems. The workshops were
organized by well-known chairs and respected Program Committees. This year’s
workshops (all full-day) were the following:

• ASSURE 2016 - 4th International Workshop on Assurance Cases for Software-
Intensive Systems, chaired by Ewen Denney, Ibrahim Habli, and Ganesh Pai;

• DECSoS 2016 - ERCIM/EWICS/ARTEMIS Workshop on Dependable Embedded
and Cyber-physical Systems and Systems-of-Systems, chaired by Erwin Schoitsch
and Amund Skavhaug;

• SASSUR 2016 - 5th International Workshop on Next Generation of System
Assurance Approaches for Safety-Critical Systems, chaired by Alejandra Ruiz, Tim
Kelly, and Jose Luis de la Vara;

• TIPS 2016 - 1st International Workshop on the Timing Performance in Safety
Engineering, chaired by Laurent Rioux and Marc Geilen.

Another workshop, CPSELabs 2016 - Cyber-Physical Systems Engineering, chaired
by Christel Seguin, Holger Pfeifer, and Jérémie Guiochet, was based on invited
speakers only, without proceedings. The first four workshops had Calls-for-Papers and
a thorough review process. Criteria were different from the main conference since
authors were encouraged to submit workshop papers, i.e., on work in progress and
topics which may lead to controversial discussions. In total, 30 full papers were
accepted, plus 5 invited papers (talks with abstracts in TIPS 2016) and 4 short papers as
introductions to the respective workshop. Similar to the SAFECOMP conference, the
workshops provided a truly international platform for academia and industry.

It has been a pleasure to work with the publication chair Friedemann Bitsch, the
SAFECOMP 2016 program and workshop chairs, the workshop Program and Steering
Committees, and the authors. Thank you all for good cooperation and excellent work!

September 2016 Erwin Schoitsch
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1 Introduction

This volume contains the papers presented at the 4th International Workshop on
Assurance Cases for Software-intensive Systems (ASSURE 2016), collocated this year
with the 35th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP 2016), in Trondheim, Norway. As with the previous three editions of
ASSURE, this year’s workshop aims to provide an international forum for presenting
emerging research, novel contributions, tool development efforts, and position papers
on the foundations and applications of assurance case principles and techniques. The
workshop goals are to: (i) explore techniques to create and assess assurance cases for
software-intensive systems; (ii) examine the role of assurance cases in the engineering
lifecycle of critical systems; (iii) identify the dimensions of effective practice in the
development/evaluation of assurance cases; (iv) investigate the relationship between
dependability techniques and assurance cases; and, (v) identify critical research chal-
lenges towards defining a roadmap for future development.

2 Program

ASSURE 2016 began with an invited keynote talk by Clive Tomsett, Clinical Strategist
at the Cerner Corporation, on healthcare and clinical safety. Eight papers were accepted
this year, covering three themes: lifecycles, formal evidence and tool support, and
applications.

Papers under the lifecycles theme considered topics such as the use of agile
development processes in safety case creation, and processes to improve safety case
maintenance time. The theme of formal evidence and tool support included papers that
dealt with the use of model-checking of code, and the integration of those results into
safety cases; safety case contracts that are aware of configuration issues, and tool
support for achieving consensus in domains such as environmental safety. Finally, the
applications theme comprised papers concerned with models for systems assurance;
newer domains for the application of assurance cases such as synthetic biology; and the
integration of medical device hazard analysis with safety case development.



Similar to the previous year’s workshop, ASSURE 2016 concluded with a panel
discussion, comprising researcher and practitioner panelists discussing the role and
application of safety cases to a contemporary and emerging problem: the increasing use
of autonomy in safety-critical applications.
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The Agile Safety Case
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Abstract. During the last years, there has been an increasing use of agile devel‐
opment methods when developing safety-critical software in order to shorten the
time to market, to reduce costs and to improve quality. The Agile Safety Case
forces the applicant to be specific about the quality and safety process together with
technical safety aspects, enabling the certification process to be done in parallel
with development and enabling the certification body to evaluate the current infor‐
mation at any time in the project. Moving from a waterfall/V-model to an agile
model affect several parts of the safety case. Only a few international safety stand‐
ards, like e.g. EN 5129 (Railway) and ISO 26262 (Automotive), require a safety
case to be developed. In the future, we expect that more safety standards will
include a safety case approach. The railway safety standard EN 50129 does include
a list of topics that can be included in safety cases even for other domains.

Keywords: Safety case · Agile · SafeScrum

1 Introduction

Safety cases – also called assurance case or safety demonstration – have for a long time
been required for safety critical systems in important industrial areas such as nuclear,
automotive and railways. The earliest reference we have found is Def. 00-55:97 from
1997. Safety case is an efficient method for helping the developing company to focus
on the simple but important question “How do you know that your system is safe
enough?” The idea of a safety case is not to provide a mathematical or statistical proof,
but to argue as one would in a court of law – thus the name safety case.

All too often, developing companies have left the important task of creating a safety
case to the end of the project. The reason for this has often been that “we need to have
complete knowledge of the system before we write the safety case”. This has turned out
to be a costly solution. It is much more efficient to build the safety case by inserting
information when it becomes available during project development – an agile approach
also resulting in increased safety awareness and understanding.

Safety cases are used in more and more domain specific standards – e.g., ISO
26262:2011 for automotive – and we expect that the next edition of IEC 61508, which
is a generic standard, will require safety cases or have safety case as one option. We
have thus started the work to include safety case construction into SafeScrum (http://
safescrum.no/). This is part of our general work towards including all or most of the
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IEC 61508 requirements into SafeScrum. In order to achieve this, we need to include
all safety analysis into the agile process. A common approach is to start with evaluating
the hazard logs from earlier projects. The next step is often to base the analysis on
information such as architecture, operating environment and intended functionality. This
might be in conflict with agile development’s fear of a “big design up-front”. This paper
presents out initial thoughts and attempts for a solution to these problems.

2 Related Work

There is a large amount of papers published on safety cases and their use in software
assurance. A considerable part of these comes from the University of York, which is an
important player in this area. We will here just mention a few of the published papers,
covering experiences, methods, some discussions and some of the critique that has been
raised against the use of safety cases. For an extensive literature review on safety cases
and evidence, the reader should consult Nair et al. [1].

Feather and Marcosian [2] report on their experiences with using safety cases in a
NASA project. Their experience is mostly positive but they suffered under lack of expe‐
rience. Safety case is definitively a method where you need training and experience.
Denney et al. [3] also summed up their experience as largely positive. They used safety
case on software for an unmanned aircraft and augmented the process with Bayesian
belief networks for quantification. They suggest further research on the modularization
of the arguments via abstractions to aid argument comprehension. Agacdiken et al. [4]
(Euro Control) has reported positive effects of using safety cases as part of the certifi‐
cation activities, while Weinstock [5] has reported positive experience on using assur‐
ance cases for software in medical equipment.

A work by Kelly et al. [6] has some bearing on agile development since they start
with a preliminary safety case, which is amended throughout the development process.
Part of their conclusion is well worth quoting: “By evolving this structure in parallel
with development of the architecture, certification concerns were addressed as an inte‐
gral part of the design process and safety features were built into, rather than ‘bolted on’
to the design. In our experience, such an approach can help to reduce the risk of having
to perform large amounts of rework in order to obtain system certification.”

Another important work to amend the safety case method is reported by Greenwell
and Knight [7]. They have observed that faults that lead to failures – and the development
errors that introduced those faults – manifest themselves as fallacies in the safety argu‐
ment. They have thus built a tool called Pandora to identify fallacies. Examples of falla‐
cies are circular definitions and that correlation implies causality.

Kaur et al. [8] based their work on the IEC 61508 standard, which they used to
build the chain of safety evidence that underlies safety arguments. They have devel‐
oped a conceptual model which they claim will improve safety cases and prevent
many of the problems that often rise during certification. Braun et al. [9] have done
research on safety cases and have raised some important issues, such as “when is the
safety case complete” and “how can we be sure that the models used are suitable for
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safety cases”. Their conclusion is that “The current state-of-practice, FTA and FMEA,
are not sufficient for the complex and interconnected modern systems”.

Sun et al. [10] discuss the role of safety case arguments in aircraft certification. As also
mentioned by other authors, they observe that that “there is insufficient emphasis (i.e.
limited guidance and informal practice only) in existing guidance and practice concerning
the explicit reasoning that connects claims of overall safety to the available evidence, and
the adequacy of the safety analyses performed in existing guidance and practice”.

Safety cases, with their focus on structured arguments and evidences for safety will
benefit from a set of patterns. Weaver [11] has published a large set of useful patterns
and so has the company AugustaWestland – an Italian company developing helicopters
[12]. In addition, Denney and Pai [13] have presented a formal basis for safety cases in
a paper where they look into the possibilities of simplifying the safety case process by
including domain and safety case ontologies.

Most of the work referenced above has used diagrams – mostly the GSN (Goal
Structuring Notation). A lot of the industry, however, has used just unstructured text. A
good alternative to this is to use structured text, e.g., as suggested by Holloway [14].

N. Leveson has for a long time presented herself as a strong opponent to safety cases
[15]. Although she has written several papers on the subject we will quote only one,
which gives a clear view of what she thinks is the main problem with safety cases: To
avoid confirmation bias and compliance-only exercises, certification should focus not
on showing that the system is safe but in attempting to show that it is unsafe. It is the
emphasis and focus on identifying hazards and flaws in the system that provides the
“value-added” of system safety engineering. The system engineers have already created
arguments for why their design is safe. The effectiveness in finding safety flaws by
system safety engineers has usually resulted from the application of an opposite mind
set from that of the developers.

To sum up: there are several reports on positive experiences with the use of safety
cases. The main problem seems to be lack of training material. Most of the experi‐
ences reported have used GSN but there are also some examples of using textual
safety cases. There is a lot of research on ontologies, patters and evidence /fallacies
related to safety cases. There is, however, little research on the use of safety cases in
agile projects and no empirical research at all. The only example we have found is
work by Kelly on preliminary safety cases that are elaborated throughout the devel‐
opment project.

3 Some Current Safety Case Standards

Only a few safety standards mention safety case (or assurance case) as an approach to
demonstrate compliance with the specified safety requirements. The standard Def. Std.
00-55:97 (military), EN 50129:2003 (railway), DO-178C:2012 (avionics) and ISO
26262:2011 (automotive) requires the use of safety case for demonstration of compliance
with safety requirements, while important standards like IEC 61508:2010 (generic) and IEC
62304:2006 (medical) does not. AAMI, however, has issued a safety-assurance case guide
AAMI TIR38:2014 that present guidance and examples for how to develop a safety
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assurance case for medical device with emphasis on the requirements presented in ANSI/
AAMI/ISO 14971:2007/(R) 2010 Application of risk management to medical devices. One
of the requirements in Def. Std. 00–55:97 is fully in line with our SafeScrum approach
“The Software Safety Case shall be continually updated to provide a record of the progress
of the implementation and evaluation of the safety requirements for the SRS”. The railway
standard has detailed requirements for the contents of the safety case. The requirements and
information are distributed through the standard and its annexes.

Three categories of safety case are identified:

• GPSC: Generic product Safety Case (independent of application). A generic product
can be re-used for different independent applications

• GASC: Generic application Safety Case (for a class of application). A generic appli‐
cation can be re-used for a class/type of application with common functions.

• SASC: Specific application Safety Case (for a specific application) A specific appli‐
cation is used for only one particular installation. The SASC is divided into:

EN 50129 requires that a safety case shall be developed by the manufacturer and
assessed by an independent third party (safety assessor), before the safety authorities
approve commissioning of the system.

The requirements for safety case in the ISO 26262 series are presented in part 2 of
the standard series: Management of functional safety. The only requirement is “A safety
case shall be developed in accordance with the safety plan”. The safety case should
progressively compile the work products that are generated during the safety lifecycle.

4 Reuse Opportunities and Templates

4.1 Reuse Opportunities

Much of the work invested in generating a safety case can be reused in later safety cases.
The descriptions of what was intended for quality and safety management will not
change substantially, so only the corresponding evidence of what was actually done
needs to be updated. Reuse of documents and the use of templates have several benefits.

• Increased productivity of information and documents
• Reuse of documents and information available as part of the tools
• Reduce duplication effort
• Move information and documents more easily among projects
• Quick and effective process when developing new documents

In the subchapters below, we have first looked at reuse of information and documents
and the last chapter look at the use of templates.

If a safety product, for which a safety case already exists, is modified, the new safety
case can be based on the existing one. We mainly need to argue for the changes and their
effects. This is considerably less work than producing a whole new safety case every time.

Reusable documents have low extra costs. This is documents where parts are reused
as is, while remaining parts need to be adapted for each project and even for each sprint
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for some documents. If reuse is the goal right from the start, the changes between projects
or iterations will be small.

As part of a study of relevant proof of compliance documentation when certifying
products [16] according to IEC 61508, we found that more than 50 % of the documents can
be reused. It is important that the manufacturer make these documents as generic as
possible. For documents that has to be updated over several sprints, reuse solutions is
important. These documents could e.g. include tables or point lists that are easily updated.
Reusability of tests and analysis should also be included in these evaluations – see IEEE
1517:2010 for reuse processes for software. This is also an important part to perform
regression tests in an automatic and effective manner.

4.2 The Use of Templates

When doing modification of an already certified product, only a few documents are new
[16] e.g. documents required for new tools. These new documents can be based on
templates or reuse of similar documents or be automatically generated to further reduce
documentation costs.

New documents have high costs. These documents have to be written more or less
from scratch for each new project. It is therefore beneficial to make use of already avail‐
able templates that has been published as industry papers, e.g. [17], or published by
different organizations developing guidelines like e.g. Misra (www.misra.org.uk) and
AAMI (www.aami.org). Some standards, such as ISO/IEC/IEEE 29119-3:2013
includes procedures and templates for reports such as Test status report, Test completion
report, Test data readiness report, Test environment readiness report, Test incident
report, Test status report and Test completion report.

As part of the SafeScrum mind set it is important to reduce the amount of documen‐
tation and the assessor should be involved early in the project to discuss relevant level
of information to be delivered to the assessor. What could be the minimum of docu‐
mentation delivered to the assessor should therefore be discussed before starting to
develop any new document. Some of the information could be reviewed by the assessor,
as part of audits and technical meetings.

5 Building a Safety Case with SafeScrum

5.1 The Extended SafeScrum

The present version of SafeScrum includes mainly phase 10 of the IEC 61508
process model – see Fig. 1. For the new, extended version of SafeScrum, we want
to include safety cases. We thus also need to include phases 3–5, 7, 9, 13 and 15 of
the IEC 61508 process model. These phases are needed in order to have full control
over the safety analysis and the evidences produced in each of these phases. The new,
extended SafeScrum model is shown in Fig. 2. Even though modifications after
release – system maintenance – are handled in an agile way, it is kept outside the
development part of SafeScrum.
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Fig. 1. The EN 50129 and IEC 61508 process models

Fig. 2. IEC 61508 and SafeScrum
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The standard’s requirements for phases 3–5 will not require any changes when
applied in an agile setting. Parts of the process will have to be repeated when require‐
ments change or new requirements are added but that will also happen during non-agile
development even though it is not part of the planned process. We must keep in mind
that there also will be a need for feedback loops from phase 9 to the phases 3–5.

The plan made early in the process – phase 7 – is just the high-level plan. This plan
needs to be refined during the SafeScrum process before it is used in phase 13. The
refinement will take place when the activities contained in the plan are inserted into the
sprint backlog.

5.2 IEC 61508 – Building SSRS and Hazard Log

Before doing a hazard analysis, we need at least the high-level concepts – an extension
of the overall concept definition – and the system architecture. As pointed out by Ge
et al. [18]: “…for safety-critical projects, the up-front design/plan needs to be incre‐
mentally detailed to serve as input to hazard analysis, which in turn informs the safety
analysis and certification processes later. Domain-specific checklists or systematic tech‐
niques such as Functional Failure Analysis (FFA) are carried out at the start of the
development. As part of the design progresses, more detailed analyses are carried out
using techniques such as Fault tree analysis (FTA), Hazards and operability analysis
(HAZOP), or Failure modes and effects analysis (FMEA)”. See also Myklebust
et al. [19].

For using FFA or a domain-specific hazard checklist, the important thing is the rela‐
tionship between the system’s functionality – how it interacts with its planned environ‐
ment – and not how the functionality is realized inside the system. For ways to perform
an early hazard analysis, see also Stålhane and Myklebust [20].

In our opinion, safety experts, customer representatives (domain experts) and devel‐
opers should participate in the sprints concerning phase 3–5 and 9. Making phases 3–5
and 9 part of an agile approach will improve communication between the safety experts
and the developers and thus improve the quality of the hazard analysis and increase the
safety awareness of the developers. This will improve the company’s safety culture.

The initial safety analysis from phases 3–5 will give us the first set of hazards and
the necessary input to write the safety requirements – e.g., barrier requirements. The
hazards are entered into the hazard log. In addition, we will get safety requirements from
the standard. Together with the system’s functional requirements, this will be the first
product backlog for the SafeScrum development process.

Allocation of a requirement – phase 5 – assigns the requirement to a specific system
context. E.g., the derived temperature boundary requirements might be assigned to the
temperature measurement hardware, and to the diagnostic software module, respec‐
tively. The software safety requirements are derived from the safety requirements and
allocated to the software implementation. The intention is to identify all of the require‐
ments, which are related to the software, and to specify the behavior and attributes of
the software in testable terms, in order to fulfill the product safety requirements.

The final activity in each sprint should be to prepare the backlog for the next
sprint – commonly known as “backlog grooming or refinement”. Important activities
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here are e.g., to improve user stories that are poorly written, estimate resources need
for each backlog item, add acceptance criteria and to look deeper into the backlog
to do longer-range technical planning. To these activities, we should add work
needed to prepare for handling safety requirements in the next sprint, e.g. clarify
safety-related requirements and decide whether we need to include customer repre‐
sentatives, domain experts or safety experts (depending on the backlog items) in the
next sprint.

When we take work items out of the product backlog and insert them into the sprint
backlog, we need to discuss each requirement in details. Two issues are of special
importance (1) how shall we realize the safety requirements? A reference to the chosen
solution should be entered into the safety case document and (2) are there any new risk
related to the functional requirements. This question might lead to a new safety analysis,
which is done in the sprint or by sending the requirement back to phase 3–5.

The safety case will need to refer to relevant documents such as code, test results,
review results and solution rationales – see Myklebust et al. [20]. This will in some cases
put an extra burden on the developers and run counter to the agile concept. However, if
it is not done when the code is written it will have to be done later and then requirement
much more resources.

5.3 The Safety Case Document

5.3.1 On Safety Cases
Since IEC 61508 does not mention safety cases, we will use the safety case structure
suggest by EN 50129, 2003 as our starting point. This standard suggests that the docu‐
mented safety evidence for the system/sub-system/equipment shall be structured as
follows:

• Part 1 Definition of System (or sub-system/equipment). This shall precisely define
or reference the system/sub-system/equipment to which the Safety Case refers,
including version numbers and modification status of all requirements, design and
application documentation.

• Part 2 Quality Management Report. This shall contain the evidence of quality
management. This is similar to ISO 9001 requirements.

• Part 3 Safety Management Report. This shall contain the evidence of safety manage‐
ment.

• Part 4 Technical Safety Report. This shall contain the evidence of functional and
technical Safety.

• Part 5 Related Safety Cases. This shall contain references to the Safety Cases of any
sub-systems or equipment on which the main Safety Case depends. It shall also
demonstrate that all the safety-related application conditions specified in each of the
related sub-system/equipment Safety Cases are either fulfilled in the main Safety
Case, or carried forward into the safety-related application conditions of the main
Safety Case.
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• Part 6 Conclusion. This shall summarize the evidence presented in the previous parts
of the Safety Case, and argue that the relevant system/sub-system/equipment is
adequately safe, subject to compliance with the specified application conditions.

Large volumes of detailed evidence and supporting documentation need not be
included in the Safety Case and in its parts, provided precise references are given to such
documents and provided the base concepts used and the approaches taken are clearly
specified. We will focus on part 4 – Technical safety Report – which again consists of
six parts. The most important parts are (2) Assurance of correct operation, (3) Effect of
faults, (4) Operations with external influences and (5) safety-related application condi‐
tions. These issues are contained in the safety case.

5.3.2 Constructing Safety Cases
There are several methods that can be used to present a safety case – e.g. the GSN method
and the structured prose method. The GSN-method has several strengths, e.g., a large
amount of published patterns, which will simplify the work of developing a safety case.
However, a large segment of the relevant industries has used just text. In our opinion,
structured text will be an important improvement over plain prose and we will thus start
there. GSN should come later. We will take Holloway’s work as our starting point. His
idea is simple and effective – use the text structure to show the relationships between
goals, contexts, strategies, claims, evidences and justifications. The following example
is taken from Holloway’s paper [14] Chap. 3.3 “Argument outline” – key words in bold.
Note the difference between strategy and argument. The strategy describes which type
of argument that is best suited for the issue at hand – e.g., hazards or design (inspection)
or code (testing). The argument is about what we consider as evidence, e.g., argue that
a certain item in the hazard log has been treated in a satisfactory way.

Claim 1: System is acceptably safe
Context 1: Definition of “acceptably safe”

Claim 1.1: All identified hazards have been eliminated or sufficiently mitigated.
Context 1.1-a: Tolerability targets for hazards
Context 1.1-b: Reference to current version of the hazard log

Strategy 1.1: Arguments over all items in the hazard log
Claim 1.1.1: Hazard H1 has been eliminated
Evidence: Document reference, e.g., to the relevant part of the hazard log.
Claim 1.1.n: Hazard Hn has been satisfactory mitigated
Evidence: Reference to code analysis and test results
Claim 1.2: …

This notation is simple to read and provides the necessary structure without being
overburdened with too much text. It is also simple to update, which is important in an
agile setting. It is important to keep just the structure information in the safety case and
use references for all information – e.g., evidences. In this way, we will have a safety
case structure that is easy to read and understand.

Both the hazard log and the safety case will change over time, especially in an agile
setting. We will start with the hazards found in the hazard log when phase 4 is finished.
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After this, necessary updates to the hazard log and to the safety case should be part of
the agenda for each sprint retrospective. The structure suggested above makes it simple
to add, change and remove items in the safety case. While new hazards can be added to
the hazard log as soon as they are identified, the claims, context and evidences must be
added later. The need for new evidences will in most cases require new activities, which
must be inserted into the sprint backlog. Thus, it is important that we keep a list or library
of acceptable evidences related to type of hazard. This must be agreed with the assessor
and can then later be reused. We need information on (1) necessary contexts – what do
we need as context for a specific type or category of claim and (2) strategies – which
strategies are acceptable to the assessor, depending on the type of issue.

By creating and maintaining such a list or library, constructing a safety case will be
greatly simplified, and help the author in developing the safety case incrementally. It is,
however, important that this approach does not make the safety case construction an
automatic process. The list is not intended to be a replacement for thinking, it is just a
support intended to remove the more mundane parts of the process of building a safety
case.

6 Discussions

Building a safety case will require a certain amount of resources. As mentioned above,
several standards require a safety case while some others are on the threshold of requiring
it – e.g. IEC 61508. For the rest of us, the important question is whether it is worth it.
For people using an agile approach, another important question is how difficult it is to
include building a safety case into an agile process such as SafeScrum. In our opinion,
all projects that develop safety-critical software should build a safety case, if not for the
certification then in order to convince oneself that the system really is safe.

The first important activity is to build a safety validation plan based on the safety
requirements. Already here several important questions will surface, such as how do we
validate each safety requirement? The safety validation plan is just the high-level plan.
We will refine it and add details when we take the high-level activities out of the product
backlog and move then into the sprint backlog. In this way, the safety case will be an
integrated part of the project and the safety case document will grow incrementally just
like the code.

Already during sprint planning, we will get a fruitful discussion in the team, which
will increase safety awareness and improve the team’s safety culture. In addition we
will get an early focus on the certification process and make all participants understand
that it is important and needs to be done.

The down side to all this is that a lot of the work will not directly contribute to the
development of running software and only indirectly contribute to the test and verifica‐
tion activities. A lot of the documentation necessary will have to be written anyway due
to standard requirements but it will still require some extra paper work and extra activ‐
ities that do not benefit the customer and thus run counter to the agile manifesto’s idea
of customer focus.
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Reuse of documents and use of document templates, however, will reduce the extra
effort needed for building a safety case. Working with the safety case will increase
system understanding and will thus lead to a more efficient process.

7 Conclusions

Based on the discussions above we can make the following important conclusions, namely:
(1) there are no problems building a safety case when using SafeScrum, (2) working with
safety cases will increase the team’s safety awareness, (3) IEC 50129 provides a good
template for writing safety cases, also for other domains than railway, (4) safety cases can
be developed incrementally (or continuous as mentioned in DO-55:1997) and (5) struc‐
tured text works well for writing and presenting safety cases.
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Abstract. The development of safety cases has become common prac-
tice in many safety critical system domains. Safety cases are costly since
they need a significant amount of time and efforts to be produced. More-
over, safety critical systems are expected to operate for a long period
of time and constantly subject to changes during both development and
operational phases. Hence, safety cases are built as living documents that
should always be maintained to justify the safety status of the associ-
ated system and evolve as these system evolve. However, safety cases
document highly interdependent elements (e.g., safety goals, evidence,
assumptions, etc.) and even seemingly minor changes may have a major
impact on them, and thus dramatically increase their cost. In this paper,
we identify and discuss some challenges in the maintenance of safety
cases. We also present two techniques that utilise safety contracts to
facilitate the maintenance of safety cases, we discuss the roles of these
techniques in coping with some of the identified maintenance challenges,
and we finally discuss potential limitations and suggest some solutions.

Keywords: Safety case · Safety argument · Maintenance · FTA ·
Sensitivity analysis · Safety contracts · Impact analysis

1 Introduction

The size and complexity of safety critical systems are considerable. Without a
clear demonstration for the safety performance of a system, it is difficult for
inspector organisations or system engineers themselves to build a confidence in
the safety performance of the system. System engineers of some safety criti-
cal systems are required to demonstrate the safety performance of their systems
through a reasoned argument that justifies why the system in question is accept-
ably safe (or will be so) [10]. This argument is communicated via an artefact that
is known as a safety case. The safety case is the whole safety justification that
comprises every appropriate piece of evidence to make a convincing argument
to support the safety performance claims [13].
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Moreover, safety critical systems can be evolutionary as they are subject to
perfective, corrective or adaptive maintenance or through technology obsoles-
cence [24]. Changes to the system during or after development might invalidate
safety evidence or argument. Evidence might no longer support the developers’
claims because it reflects old development artefacts or old assumptions about
operation or the operating environment. After a change, original safety claims
might be nonsense, no longer reflect operational intent, or be contradicted by
new data [17]. Eventually, the real system will have diverged so far from that
represented by the safety case argument and the latter is no longer valid or use-
ful [13]. Hence, it is almost inevitable that the safety case will require updating
throughout the operational lifetime of the system. In addition, any change that
might compromise system safety involves repeating the certification process (i.e.,
re-certification) and repeating the certification process necessitates an updated
and valid safety case that considers the changes. For example, the UK Ministry
of Defence Ship Safety Management System Handbook JSP 430 requires that
“the safety case will be updated ... to reflect changes in the design and/or opera-
tional usage which impact on safety, or to address newly identified hazards. The
safety case will be a management tool for controlling safety through life including
design and operation role changes” [12,25]. Similarly, the UK Health and Safety
Executive (HSE) — Railway safety case regulations 1994 — states in regulation
6(1) that “a safety case to be revised whenever, appropriate that is whenever any
of its contents would otherwise become inaccurate or incomplete” [6,12].

However, a single change to a safety case may necessitate many other con-
sequential changes — creating a ripple effect [24]. Any improper maintenance
in a safety argument might cause unforeseen violations of the acceptable safety
limits, which will negatively impact the system safety performance conveyed by
the safety case. Hence, a step to assess the impact of this change on the safety
argument is crucial and highly needed prior to updating a safety argument after
a system change. Despite clear recommendations to adequately maintain and
review safety cases by safety standards existing standards offer little advice on
how such operations can be carried out [24].

The concept of contract has been around for a few decades in the system
development domain. There have been significant works that discuss how to
represent and to use contracts (e.g., [3,26]). Also, researchers have used assume-
guarantee contracts to propose techniques to lower the cost of developing soft-
ware for safety critical systems. Moreover, contracts have been exploited as a
means for helping to manage system changes in the system domain or in its cor-
responding safety case [5,9,18]. However, using contracts as a way of managing
change was discussed in some works [2,9], but deriving the contracts and their
contents have received little support yet [16].

In this paper, we present and discuss techniques that utilises the concept
of contracts to facilitate the accommodation of system changes in safety cases
to ultimately support the maintainability of safety cases. Our work focuses on:
1. How and where to derive safety contracts and their contents, 2. using the
derived contracts to support the decision as to whether or not apply changes,
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and 3. using the derived contracts to guide developers to the parts in the safety
case that might be affected after applying a change. This paper is composed of
three further sections. In Sect. 2, we present background information and we also
present some safety cases’ challenges. In Sect. 3, we describe two techniques to
facilitate the maintenance of safety cases. In Sect. 4 we discuss some limitations,
draw a conclusion and propose potential future work.

2 Background and Motivation

2.1 Safety Contracts

In 1969, Hoare introduced the pre- and postcondition technique to describe the
connection (dependency) between the execution results (R) of a program (Q)
and the values taken by the variables (P ) before that program is initiated [7].
Hoare introduced a new notation to describe this connection, such as: P {Q} R.
This notation can be interpreted as: “If the assertion P is true before initiation
of a program Q, then the assertion R will be true on its completion” [7].

Contracts are widely used in software development. For instance, Design by
Contract (DbC) was introduced by Meyer [14,15] to constrain the interactions
that occur between objects. Moreover, contract-based design is an approach
where the design process is seen as a successive assembly of components where
a component behaviour is represented in terms of assumptions about its envi-
ronment and guarantees about its behaviour [4].

The following is an example that depicts the most common used form of
contracts [11]:

Guarantee: The WCET of task X is ≤ 10 ms
Assumptions:
X is:
1. compiled using compiler [C],
2. executed on microcontroller [M ] at 1000 MHz with caches disabled, and
3. not interrupted

A contract is said to be a safety contract if it guarantees a property that
is traceable to a hazard. There have been significant works that discuss how
to represent and to use contracts [3,26]. In the safety critical systems domain,
researchers have used, for example, assume-guarantee contracts to propose tech-
niques to lower the cost of developing software for safety critical systems. More-
over, contracts have been exploited as a means for helping to manage system
changes in a system domain or in its corresponding safety case [5,9,18].

2.2 The Goal Structuring Notation (GSN)

A safety argument organizes and communicates a safety case, showing how the
items of safety evidence are related and collectively demonstrate that a sys-
tem is acceptably safe to operate in a particular context. GSN [1] provides a
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graphical means of communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence (solutions), and (2)
the relationships between these elements. The principal symbols of the notation
are shown in Fig. 1 (with example instances of each concept).

Requires further 
development

Goal InContextOf

SolvedBy

Away Goal

      <Module Name>
SolutionModule Reference 

Assumption
A

Strategy Justification
J

Context

Fig. 1. Notation keys of the Goal Structuring Notation (GSN)

A goal structure shows how goals are successively broken down into (‘solved
by’) sub-goals until eventually supported by direct reference to evidence. Using
the GSN, it is also possible to clarify the argument strategies adopted (i.e., how
the premises imply the conclusion), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated.

2.3 Safety Cases Maintainability: What Does it Mean?

The goal of the work which is being discussed in this paper is to facilitate
the accommodation of system changes in safety cases to ultimately
enhance safety case maintainability. Hence, it is vital to explicitly define
what do we mean by safety case maintainability. We refer to “Safety Case Main-
tainability” as the ability to repair or replace the impacted elements of a safety
case argument, without having to replace still valid elements, to preserve the
validity of the argument. The maintainability degree is said to be high whenever
the following three activities are done efficiently:

1. Identifying the impacted elements and those that are not impacted.
2. Minimising the number of impacted elements.
3. Reducing the work needed to make the impacted elements valid again.

However, the work presented by this paper does not focus on how to measure
the efficiency of achieving these three activities, but rather it strives to enable
them and improve on them. In order to achieve this goal, we should resolve the
problems that affect the accommodation of system changes in safety cases.

2.4 Safety Cases Maintainability: Why Is it Painstaking?

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical embedded systems [10].
A key reason behind this is because the increasing complexity and size of these
systems combined with their growing market demands. The cost of system
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changes including the cost of the activities that will follow them (e.g., regression
testing), are another key reason that exacerbates the problems of cost and time
in safety certification. Coherent strategies are required to reduce the cost and
time of safety certification.

One of the biggest challenges that affects safety case revision and mainte-
nance is that a safety case documents a complex reality that comprises a complex
web of interdependent elements. That is, safety goals, evidence, argument, and
assumptions about operating context are highly interdependent. Hence, seem-
ingly minor changes may have a major impact on the contents and structure
of the safety argument. Basically, operational or environmental changes may
invalidate a safety case argument for two main reasons as follows:

1. Evidence is valid only in the operational and environmental context in which
it is obtained, or to which it applies. During or after a system change, evidence
might no longer support the developers’ claims because it could reflect old
development artefacts or old assumptions about operation or the operating
environment.

2. Safety claims, after introducing a change, might be nonsense, no longer reflect
operational intent, or be contradicted by new data. Changing safety claims
might change the argument structure.

In order to deal with problems that impede safety cases maintenance, we
start by identifying and describing these problems.

Main Problem: Maintaining safety cases after implementing a system change
is a painstaking process. This main problem is caused by three sub-problems.

Sub-problem (1): The lack of documentation of dependencies among the safety
cases contents.

Developers of safety cases are experiencing difficulties in identifying the direct
and indirect impact of change due to high level of dependency among safety case
elements. If developers do not understand the impact of change then they have to
be conservative and do wider verification (i.e., check more elements than strictly
necessary) and this increases the maintenance cost. The use of GSN might help
to produce well-structured arguments that clearly demonstrate the relationships
between the argument claims and evidence. However, GSN has not solved the
problem of documenting dependencies among the safety cases contents [22]. In
other words, a well-structured GSN argument helps the developers to mechan-
ically propagate the change through the goal structure. However, it does not
evaluate whether the suspect elements of the argument are still valid or not (or
it does not show why the element is impacted), but rather it can bring these
elements to the developers’ attention [22].

Safety is a system level property; assuring safety requires safety evidence
to be consistent and traceable to system safety goals [24]. Moreover, current
standards and analysis techniques assume a top-down development approach
to system design. One might suppose that a safety argument structure aligned
with the system design structure would make traceability clearer. It might, but
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safety argument structures are influenced by four factors: (1) modularity of evi-
dence, (2) modularity of the system, (3) process demarcation (e.g., the scope of
ISO 26262 items [8]), and (4) organisational structure (e.g., who is working on
what) [2]. These factors often make argument structures aligned with the sys-
tem design structure impractical. However, the need to track changes across the
whole safety argument is still significant for maintaining the argument regardless
of its structure.

As explained in Sect. 2.1, a contract is conceived as an extension to the specifi-
cation of software component interfaces that specifies preconditions and postcon-
ditions to describe what properties a component can offer once the surrounded
environment satisfies one or more related assumption(s). Based on this descrip-
tion, safety contracts can be used as a means to record the dependencies among
system components. If we assume a one-to-one mapping between a system com-
ponent and all the claims that are articulated about it, dependencies among
safety argument elements can be conceived through the dependencies between
components of the corresponding system that are recorded in contracts. In prac-
tice, this notion is far from straightforward because it is infeasible to be achieved
and impossible to prove the completeness of the generated contracts, and the
expected number of contracts will be too large to easily manage.

Sub-problem (2): The lack of traceability between a system and its safety case.
We refer to the ability to relate safety argument fragments to system design

components as component traceability (through a safety argument). We refer to
evidence across a system’s artefacts as evidence traceability.

System developers need both top-down and bottom-up impact analysis
approaches to maintain safety cases. A top-down approach is dedicated for
analysing the impacted artefacts from the system domain down to the safety
argument. In contrast, a bottom-up approach is dedicated for analysing impacted
elements from the argument to the corresponding artefacts such as a safety analy-
sis report, test results or requirements specification, etc. The lack of systematic
and methodical approaches to analysing impact of change is a key reason behind
the maintenance difficulties. However, conducting any style of impact analysis
requires a traceability mechanism between the system and safety arguments.

There has been significant work on how to use safety contracts as a means to
establish the required traceability [2]. The guaranteed properties in the contracts
can be mapped to safety argument goals. If the derived safety contracts are
associated with the corresponding argument elements, any broken contracts will
reveal (i.e., highlight) the associated argument elements and thus enabling easier
identification for the impacted parts in the argument due to a system change.
However, this is not as simple as it first appears because we still do not know
which contracts were affected by the change. In other words, how does a change
lead to broken contracts?

Predicting system changes before building a safety argument can be useful
because it allows the safety argument to be structured to contain the impact of
these changes. Hence, anticipated changes may have predictable and traceable
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consequences that will eventually reduce maintenance effort. Nevertheless, plan-
ning the maintenance of a safety case still faces a key problem.

Sub-problem (3): System changes and their details cannot be fully predicted
and made available up front.

Modularity has been proposed as the key element of the ‘way forward’ in
developing systems [19,21]. Although the most influential approach for using
modularity effectively in software design is information hiding, modularity can
also be beneficial for systems maintenance. For modular systems, it is claimed
that the required maintenance efforts to accommodate predicted changes can be
less than the required efforts to accommodate arbitrary changes. This is because
having a list of predicted changes during the system design phase allows system
engineers to contain the impact of each of those changes in a minimal number of
system’s modules. Predicting system changes before building a safety argument
can be useful because it allows the safety argument to be structured to contain
the impact of these changes. Hence, predicted changes may also have predictable
and traceable consequences that will eventually reduce the maintenance efforts.
Nevertheless, planning the maintenance of a safety case still faces two key issues:
(1) system changes cannot be fully predicted and made available up front, espe-
cially, the software aspects of the safety case as software is highly changeable
and harder to manage as they are hard to contain and (2) those changes can be
implemented years after the development of a safety case [16].

3 Sensitivity Analysis for Enabling Safety Argument
Maintenance (SANESAM)

Sensitivity analysis can be defined as: “The study of how uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” [23]. The analysis helps to establish reason-
ably acceptable confidence in the model by studying the uncertainties that are
often associated with variables in models.

In our previous work [16], we introduced a Sensitivity ANalysis for Enabling
Safety Argument Maintenance (SANESAM) technique, in which we apply sen-
sitivity analysis on FTAs to measure the sensitivity of outcome A (e.g., a safety
requirement being true) to a change in a parameter B (e.g., the failure proba-
bility in a component). The sensitivity is defined as ΔB/B, where ΔB is the
smallest change in B that changes A (e.g., the smallest increase in failure proba-
bility that makes safety requirement A false). The failure probability values that
are attached to FTA’s events are considered input parameters to the sensitivity
analysis. A sensitive part of a FTA is defined as one or multiple FTA events
whose minimum changes (i.e., the smallest increase in its failure probability due
to a system change) have the maximal effect on the FTA, where effect means
exceeding failure probabilities (reliability targets) to inadmissible levels. SANE-
SAM was extended by SANESAM+ [11] to consider the change’s impact on:
(1) intermediate events of FTAs, (2) multiple events, and (3) duplicated events.
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Step 3:
Derive safety 
contracts from 
FTAs

Step 4:
Build the safety argument 
and associate the derived 
contracts with it

Step 2:

sensitive parts with 
system developers 

Step 1: 
Apply Sensitivity 
Analysis to 
probabilistic FTA(s)

Step 6:
Specify the affected parts 
of the safety argument

Step 5: 
Analyze the impact of 
change 

The SANESAM Phase 

The Safety Argument Maintenance Phase

Step 7:
Update the argument

Fig. 2. Process diagram of SANESAM and SANESAM+ [16]

The key principle of both techniques is to determine, for each system compo-
nent, the allowed range for a certain parameter within which a component may
change before it compromises a certain system property (e.g., safety, reliability,
etc.). Sensitivity analysis is used in the techniques as a method to determine
the range of failure probability parameter for each component. The techniques
assume the existence of a probabilistic FTA where each event in the tree is spec-
ified by a current estimate of failure probability FPCurrent|event(x). In addition,
they assume the existence of the required failure probability for the top event
FPRequired(Topevent), where the FTA is considered unreliable if:

FPCurrentl(Topevent) > FPRequired(Topevent) [16].

The steps of SANESAM are shown in Fig. 2 and described as follows [16]:

Step 1 . Apply the sensitivity analysis to a probabilistic FTA: In this
step the sensitivity analysis is applied to a FTA to identify the sensitive
events whose minimum changes have the maximal effect on the FPTopevent.
Identifying those sensitive events requires the following steps to be performed:

1. Find the Minimal Cut Set (MC) in the FTA. The minimal cut set defin-
ition is: “A cut set in a fault tree is a set of basic events whose (simulta-
neous) occurrence ensures that the top event occurs. A cut set is said to
be minimal if the set cannot be reduced without losing its status as a cut
set” [20].

2. Calculate the maximum possible increment to the failure probability para-
meter of event x before the top event FPRequired(Topevent) is no longer
met, where x ∈ MC, and

(FPIncreased|event(x) − FPCurrent|event(x)) �

FPIncreased(Topevent) > FPRequired(Topevent).

3. Rank the sensitive events from the most sensitive to the less sensitive.
The most sensitive event is the event for which the following formula is
the minimum:

FPIncreased|event(x) − FPCurrent|event(x)
FPCurrent|event(x).
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Step 2 . Refine the identified sensitive parts with system developers:
In this step, the generated list of sensitive events from Step 1 should be
discussed by system developers (e.g., safety engineers) as they should choose
the sensitive events that are most likely to change. The list can be extended
to add any additional events by the developers. Moreover, it is envisaged that
some events might be removed from the list or the rank of some of them might
change.

Step 3 . Derive safety contracts from FTAs: In this step, a safety contract
or contracts should be derived for each event in the list from Step 2. The
main objectives of the contracts are to: (1) highlight the sensitive events
to make them visible up front for developers attention, and (2) to record
the dependencies between the sensitive events and the other events in the
FTA. Hence, if the system is later changed in a way that increases the failure
probability of a contracted event where the increased failure probability is
still within the defined threshold in the contract, then it can be said that the
contract(s) in question still hold (intact) and the change is containable with
no further maintenance. The contract(s), however, should be updated to the
latest failure probability value. On the other hand, if the change causes a
bigger increment to the failure probability value than the contract can hold,
then the contract is said to be broken and the guaranteed event will no longer
meet its reliability target. It is worth noting that the role of safety contracts
in SANESAM is to highlight sensitive events, and not to enter new event
failure probabilities. Figure 3 an example of a derived safety contract from
FTA.

Current FP 1.5E-06
Required FP 3.30E-05

4.71E-08

2.17E-04

6.75E-05

BSCU Fault Causes 
Loss of Braking 

Commands
BSFCLOBC

BSCU System 1 and 2 
Do Not Operate

BSS1&2DNO

Loss of BSCU 
System 1

LOOBS1

Loss of BSCU 
System 2

LOOBS2

BSCU 
System 1 

Electronics 
Failure 

BSS1EF

BSCU 
System 1 Power 
Supply Failure

BSS1PSF

BSCU 
System 2 

Electronics 
Failure 
BSS2EF

BSCU System 
2 Power 

Supply Failure

BSS2PSF

1.50E-04

2.17E-04

6.75E-051.50E-04

Cont...

ContractID: Contr_BSS2EF
G1: The Failure probability for the top event BSFCLOBC is  
1.13E-02 
A1: Only event BSS2EF increases its failure rate
A2: BSS2EF failure rate increases by  7.364E-01
A3: The failure of BSS2EF remains independent of any other event
A4: The logic in fault tree WBS1_FTA remains the same

Contr_BSS2EF

Fig. 3. Example of a derived safety contract
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Step 4 . Build the safety argument and associate the derived contracts
with it : In this step, a safety argument should be built and the derived
safety contracts should be associated with the argument elements. Essen-
tially, SANESAM calculates the maximum possible increment to the fail-
ure probability parameter of only one event at a time before the top event
FPRequired(Topevent) is no longer met. It considers the events within the MC
only. SANESAM+ was introduced to provide more freedom by considering
multiple events at a time and not only the events in the MC. The key prin-
ciple of SANESAM+ is to distribute ΔFP(Topevent) over all of the events in
FTA, or over the events that are relevant to a particular change. Hence, the
difference between SANESAM and SANESAM+ is observed only in Step 1,
all other steps are identical.

3.1 The Roles of Safety Contracts in SANESAM and SANESAM+

SANESAM and SANESAM+ derive safety contracts for the identified sensi-
tive parts. The main objectives of the contracts is to (1) highlight the sensitive
events to make them visible up front for developers attention and (2) to record
the dependencies between the sensitive events and the other events in the FTA.
Hence, if any contracted event has received a change that necessitates increasing
its failure probability where the increment is still within the defined threshold
in the contract, then it can be said that the contract(s) in question still holds
(intact) and the change is containable with no further maintenance. The con-
tract(s), however, should be updated to the latest failure probability value. On
the contrary, if the change causes a bigger increment in the failure probability
value than the contract can hold, then the contract is said to be broken and the
guaranteed event will no longer meet its reliability target. Hence, SANESAM
and SANESAM+ may address the first and the second identified sub-problems
in Sect. 2.4.

3.2 Support the Prediction of Potential System Changes

Expectedly, if we ask system engineers to anticipate the potential future changes
for a system they might brainstorm and come up with a list of changes. How-
ever, the list can be incomplete or contain unlikely changes that might influence
the system design to little or no avail. Instead, we propose providing system
developers a list of system parts that may be more problematic to change than
other parts and ask them to choose the parts that are most likely to change. Of
course our list can be augmented by additional changeable parts that may be
provided by the system developers. Hence, SAMESAM and SANESAM+ may
address the third identified sub-problem in Sect. 2.4.

4 Conclusion and Future Work

System developers should understand the change and the potential risks that it
might carry before they identify the impacted parts. For example, a change might
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turn some implicit assumptions about the context in which a system should
operate to be wrong. Misunderstanding the change might lead to skip those parts
of the system which are dependent on that assumptions. Also, the developers
need to understand the dependencies between the system parts to identify the
affected parts correctly. Hence, there is a pressing need for acceptable methods
and techniques to enable easier change accommodation in safety critical systems
without incurring disproportionate cost compared to the size of the change.

In this paper, SANESAM and SANESAM+ were discussed as techniques to
facilitate the maintenance of safety cases. The techniques were introduced and
illustrated in our previous work. More specifically, we proposed SANESAM [16]
through which we: (1) measure the sensitivity of FTA events to system changes
using the events’ failure probabilities, (2) derive safety contracts based on the
results of the analysis, and (3) map the derived safety contracts to a safety argu-
ment to improve the change impact analysis on the safety argument. We used
an aircraft Wheel Braking System (WBS) to illustrate the application of SANE-
SAM. We also developed SANESAM+ [11] as another version of SANESAM to
cover wider variety of change scenarios, where we also used the WBS to illustrate
it. This paper also identifies some challenges in the maintenance of safety cases,
and shows how the techniques might help to address them.

A foreseen limitation in the techniques is that they can be less useful while
dealing with software changes as it is recognised as being difficult to quantify
the failure probabilities of the system software components.

To further develop the approach, SANESAM+ is being migrated to timing.
More specifically, the problem of the Worst Case Execution Time (WCET) is
considered as the property where sensitivity is judged in terms of its impact
on the ability to meet the system’s timing requirements. We also plan to create
several case studies to validate both the feasibility and efficacy of the techniques.
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Abstract. Software bounded model checkers (BMC) are today power-
ful tools to perform verification at unit level, but are not used at their
potential in the safety critical context. One reason for this is that model
checkers often provide only incomplete results when used on real code
due to restrictions placed on the environment of the system in order
to facilitate the verification. In order to use these results as evidence
in an assurance case, one needs to characterize the incompleteness and
mitigate the assurance deficits. In this paper we present an assurance
case pattern which addresses the disciplined use of successful but pos-
sibly incomplete verification results obtained through C-level bounded
model checking as evidence in certification. We propose a strategy to
express the confidence in incomplete verification results by complement-
ing them with classical testing, and to mitigate the assurance deficits
with additional tests. We present our preliminary experience with using
the CBMC model checker and the mbeddr environment to verify three
safety-critical software components.

Keywords: Assurance cases · Bounded model checking · Confidence
arguments

1 Introduction

Modern software model checkers are powerful enough to verify complex proper-
ties of programs at unit level. In the field of safety critical systems development,
formal verification is used only for highest critical functions and when it is highly
recommended by safety standards like IEC 61508 [2]. Instead, current functional
verification of software is mostly based on testing.

Figure 1 presents three fragments of an assurance case (in a Goal Structuring
Notation-like notation [3]) for the correct implementation of a safety requirement
by a software component. In test-based verification (Fig. 1-left-up), the assurance
of the correctness of the developed software is split into two parts: the confor-
mance of the implemented behavior with the test-suite demonstrating the validity
of the correctness claim with respect to the selected test case, and the analysis
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Fig. 1. Existing approaches for providing evidence in assurance cases: testing or formal
proofs (left); Our approach proposes to combine model checking with testing (right).

of the coverage of the implemented behavior by the selected test-cases demon-
strating the confidence in the correctness claim. The required coverage grows
with the assurance level, in case of the IEC 61508 from statement via branch
to MC/DC. In the case of verification by formal proofs (Fig. 1-left-down), one
argues the confidence in the results by claiming adequacy and trustworthiness
of the proof as a demonstration that SwC fulfills R.

The idea of splitting the argumentation in a part focusing on the conformance
of the implemented behavior with the requirements, and a part focusing on the
confidence [14] can also be applied in the verification which uses bounded model
checking (Fig. 1-right). In this case, we split the argumentation into the proof
of the correctness of the implemented behavior with respect to a specification
under restricting assumptions, and the demonstration of sufficient confidence in
the respective restricting assumptions. If the confidence argument is not strong
enough, we propose to use classical testing for compensating the identified assur-
ance deficits.

In this paper, we present an assurance case pattern which can be used at the
interface between developers, verification engineers, safety managers and third
party assessors to tackle the following questions: (Q1) How can we use success-
ful verification results of software bounded model checkers as evidence for the
correctness of the implementation of software components? (Q2) How can we
cover the assurance deficits due to incomplete verification using classical testing?
This work is part of our efforts at fortiss GmbH and Siemens to enable practic-
ing engineers to use successful results of code level bounded model checking as
evidence for certification.



32 C. Cârlan et al.

Contributions. We present a pattern to use successful, but possibly incomplete
bounded model checking verification results as evidence in assurance cases. In
case these verification results are incomplete, we develop a confidence argument
by comparing the input and the state coverage of incomplete model-checking
with coverage requirements for classical testing. We present our experience
with using bounded model checking on three real-world safety-critical software
components.

Structure of this Paper. In Sect. 2, we present an assurance case pattern to incor-
porate results of the bounded model checker-based verification as evidence for
assurance (Q1). In Sect. 3, we characterize the confidence in incomplete verifica-
tion results and the additional testing in an argument structure pattern (Q2).
In Sect. 4, we present our experience with verifying three software components.
In Sect. 5, we discuss variability points of our approach. The last two sections
contain the related work and conclusions.

2 Using BMC Results as Formal Verification Evidence

Testing is the state-of-the-practice verification method. However, safety stan-
dards recommend the usage of formal verification results as evidence for certi-
fication, because formal verification allows exploration of all possible behaviors
while assessing the satisfaction of a certain safety property. When complete ver-
ification is not possible, standards require that the limits of the coverage of the
performed verification are explicitly expressed. If bounded model checking is
used (as alternative verification method), DO-178C recommends the construc-
tion of an assurance case in order to argue the adequacy and trustworthiness
of the verification results for demonstrating that safety goals have been met. In
the following, we develop an assurance case pattern for arguing that the objec-
tive related to the functional correctness of a software module has been met by
bounded model checking accompanied by testing, when needed.

System Under Verification. Our focus is on code-level functional verification
of reactive software components. A software component (SwC) possesses an
internal state, a set of input variables with different types I = {i1 : T1, ..., in :
Tm} and a set of output variables. Each type Tl defines a set of possible values
which can be taken by an input variable. Being a reactive system, the component
is called in a (possibly infinite) main loop. For each of the steps of the loop, each
of these input variables can take a different value – let itl denote the value of an
input variable il at time step t. The value itl conforms to the type of il, namely
itl ∈ Tl.

Main Pattern. Figure 2 presents a pattern that captures the structure of an assur-
ance argument, which uses as evidence bounded model checking results together
with classical testing, if the verification is incomplete. Our top-level goal G1 is
that a software component SwC implements a safety requirement formalized
as a property P , given the environmental constraints EnvSwC (C0). EnvSwC

assigns to each input variable its step-dependent range: EnvSwC(il)(t) ⊆ Tl.
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Fig. 2. Main pattern for arguing that a software component implements a safety
requirement. The argument’s strategy is to use results from bounded model check-
ing verification complemented, when necessary, by testing.

Strategy 1: Argument by Combining BMC with Testing. Our strategy to decom-
pose the top-level goal is to use bounded model checking on the source code of the
component (C1), possibly combined, when needed, with testing. The bounded
model checker uses the environment definition EnvBMC (C2), and the checking
is performed with a given model checker tool (C3). The environment definition
determines whether the verification is performed completely or just partially.
As an answer to our research question Q1, there are two main possible out-
comes of the verification: either the verification is complete (in which case the
pattern is instantiated with the choice of Strategy 2); or, in the case when the
system under verification is too complex, compromises are made (i.e. environ-
ment restrictions and limited loop unwindings) and thereby the verification is
incomplete (in which case Strategy 3 is applied).

Strategy 2: Argument by Complete Verification Using BMC. There are many
cases in which verification results obtained with bounded model checking are
complete. In these cases the functional correctness of the implementation of
property P by SwC is guaranteed by the model checker itself. The bounded
model checking verification is complete when the environment constraining the
inputs of the model checker EnvBMC (verification harness) is relaxed enough to
cover all inputs of the environment EnvSwC specified by the requirement ReqId:
EnvSwC ⊆ EnvBMC . In this case, the verification results can be used with the
highest confidence as evidence, under the assumption (A1).

Strategy 3: Argument by Incomplete BMC Verification and Testing. Due to the
complexity of the system under verification, often exhaustive verification is not
possible, and the verification is performed under several restrictions of EnvSwC ,
namely EnvBMC

i , where
⋃
EnvBMC

i = EnvBMC . There are two orthogonal
dimensions in which the environment is restricted: (1) EnvBMC restricts the
set of possible values taken by the inputs of the software component, or, (2)
EnvBMC restricts the number of steps which are used to verify the component.
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In both cases, only a part of the space of behaviors is covered by the model
checker. Consequently, there are behaviors possible in the environment of the
component which are specified by the requirement (EnvSwC), but not captured
in the verification environment (EnvBMC). Thus, the assurance deficits caused
by incomplete verification must be accompanied by additional evidence in a con-
fidence argument. In the following section, we elaborate on the assurance deficits
of incomplete bounded model checking verification and how to compensate for
this deficits.

3 Confidence in Incomplete Results

Testing is the most common evidence for functional verification required by
safety certification standards. Thereby, in order to be accepted as evidence, the
results of a formal verification technique must be shown to be more trustworthy
than the results of testing required by the standards [13].

In Fig. 3, we describe an argument structure pattern for combining incom-
plete bounded model checking verification with manually written tests. Intu-
itively, the main confidence argument is that the simplifying assumptions under
which the bounded model checking is performed are permissive enough to cover
test vector sets which satisfy the requirements of the certification standard. If
this is not the case, additional test-cases are added to cover the deficits of the
bounded model checking verification results (Q2).

Strategy 3 deals with incomplete bounded model checking verification (G3.1)
and additional manually written test cases (G3.2). The amount of additional

"

Fig. 3. Pattern for combining the incomplete bounded model checking results with
testing. We argue the confidence in bounded model checking results by comparison to
testing.
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testing should be enough to reach the required confidence (G3.3). The strategy
for arguing confidence (Strategy 4) is to explicitly mitigate the assurance deficits
caused by incomplete bounded model checking due to environment restrictions
(G4.1, G4.2).

Adequacy of Environment Partitioning. We argue that the sum of environment
restrictions (EnvBMC

1 , ..., EnvBMC
i ) adequately covers the environment EnvSwC

(G4.1.1) – e.g., adequacy can be defined by IEC 61508, which recommends the
partitioning of the valid input domain in equivalence classes and the consider-
ation of boundary values. Environment black-spots (EnvSwC \ EnvBMC) are
parts of the environment which were not covered by the environment definition
for the model-checker. These black-spots must be identified, made explicit in an
assurance case, and a mitigation method for the risk that they could lead to
bugs must be developed. The black-spots are considered by manually writing
additional test cases (G4.2.1).

Sufficiency of the Code Covered by Bounded Model Checking. Similarly to mea-
suring the code coverage of tests, we can measure the code covered by the
bounded model checker when it is run under the verification assumptions. To do
this, we use test case generation from the same environment as the verification.
Test vectors which satisfy required coverage criteria (e.g. statement, condition,
MC/DC) can be generated by the model checker starting from the environment
definition (G4.1.2). When the required coverage cannot be achieved, it is an indi-
cation that the environment restrictions are too narrow. In this case, either the
environment must be relaxed such that the required coverage can be reached, or
additional test cases must be manually written (G4.2.2).

4 Preliminary Experience

In order to operationalize our approach we use the CBMC model checker [9]
integrated in the mbeddr development environment [18]. Besides checking asser-
tions, CBMC also possesses the needed capabilities to generate test cases with
a specified coverage. We use the same environment restrictions and CBMC set-
tings to perform the functional verification and to generate test cases. We use
mbeddr because it features a user friendly integration of CBMC.

In the following, we present our experience with the verification of three
software components, which implement critical functionality. The purpose of
our experiments is to investigate the extent to which bounded model checking
verification can achieve better coverage than classical testing on software com-
ponents. These experiments mirror the verification strategies proposed in the
patterns.

4.1 Traffic Collision Avoidance System

In our first experiment we verified a software component which implements part
of the Traffic Alert and Collision Avoidance System (TCAS) available from the



36 C. Cârlan et al.

benchmark algorithms for testing [12]. The TCAS component implements a
highly critical functionality because its malfunctioning could lead to collision
of planes. The component uses as inputs the positions and speeds of the planes
and does not have internal state.

We have checked two properties of the system, namely P1: Safe advisory
selection and P2: Best advisory selection, as in [12]. We have chosen to restrict
the values of the variables representing the tracked altitudes of the two planes,
based on the constraints on the valid inputs given by the TCAS standard [1].
CBMC managed to fully verify the specified properties under no additional input
restrictions in a few seconds and hence obtain 100 percent input coverage. This
experiment confirmed us the fact that, with bounded model checking, one can
provide, for certain cases, results of exhaustive verification much easier than with
any testing method.

4.2 Hamming Error Detection and Correction Algorithm

For our second experiment we chose to verify a commonly used algorithm for
detecting and correcting errors based on Hamming codes. We took an algorithm
which uses Hamming codes which is based on [16]. This algorithm is represen-
tative for a class of error detection and correction algorithms which are often
used as parts of the critical functions. Standards like IEC 61508 or ISO 26262
explicitly recommend the use of these algorithms for detecting data failures.

Fig. 4. Environment definition, error injection and verification condition for the Ham-
ming coding algorithm. On the left-hand an initial definition which prevented us to
reach branch coverage (left-bottom). On the right-hand side is the corrected environ-
ment definition which considers also messages without error.
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Figure 4 shows an example of a harness definition for the Hamming coding
algorithm using mbeddr. On the upper-left-hand side there is an initial definition
of the environment – at first we initialize the message to be sent (stored in binary
form in the vector info), then we encode this message using the Hamming algo-
rithm, we choose an arbitrary position where the error is injected (error pos)
and correct the message. The verification condition checks that the initial mes-
sage is the same as the message decoded upon receival. This harness covers
exhaustively all possible vectors of size of info and all possible one bit errors
which can occur within the transmitted vector (transmitted data contains the
information together with the corresponding parity bits).

When trying to generate test-cases with branch coverage based on this envi-
ronment, CBMC could not cover all branches – e.g. the branch from Fig. 4-
left-bottom was always taken. Manual investigation revealed the fact that our
harness did not consider the case when no error happens during transmission.
At this point we could have either relaxed the verification environment or we
could have manually written some test cases to also verify the uncovered branch.
We chose to enhance the harness (Fig. 4-right) with a non-deterministic choice
to inject/not-inject the error and thereby we could obtain a higher branch cov-
erage. In Fig. 5, we present the running time required by CBMC for different
lengths of the message. We could exhaustively verify the correct functioning of
the algorithm for messages with a length up to 64 bits. Exhaustive testing of
these messages would require 258 test-cases and thereby is completely unfeasi-
ble. Our conclusion is that bounded model checking can be used to exhaustively
check the correctness of the algorithm for relatively small input messages. Cor-
rect encoding of messages with a higher length could not be verified by the
model checker because the time step bound k was less than the diameter of the
transition system that abstractly models the program. In order to cover this
assurance deficit, the embedded engineers must manually write additional test-
cases, which comply with standards. This experiment shows that the bounded
model checker can exhaustively verify cases when the length of the input message
is small enough.

number of parity bits 4 6 7

size of info 11 bits 58 bits 121 bits

analysis time 2s 60s > 600s (timeout)

Fig. 5. Time required by CBMC when choosing different lengths of the message to be
encoded. CBMC is fast up to messages with total length 64 bits (58 info + 6 parity).

4.3 Case Study 3: Patients Trolley

Our third experiment is the verification of a controller for a smart trolley which
assists healthcare professionals in drug administration and other bedside pro-
cedures. The smart trolley has several drawers and can serve multiple patients.
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The trolley responds with different actions to the inputs given by a doctor. We
chose this system because (1) it is built as a state machine and can be run infi-
nitely (2) it is a safety-critical system because, if it does not function properly,
the patient might get the wrong medicine, a fact which might endanger his life.

We chose two properties of the system to verify, namely: P1: There are never
two drawers open at the same time and P2: Only the drawers corresponding
to the selected patient can be opened. Both properties come directly from the
requirements specification document of the system. Figure 6-left shows the har-
ness definition for the property P1 – in the main loop we send an arbitrary
event to the state machine and we check that in between two events for opening
drawers (EVENT OPEN DRAWER) there is always an event for closing the drawer
(EVENT DISPLAY CLOSED). This only works under the assumption that there is
no transition that opens two different drawers at once. This assumption could
be checked by code reviewing. In Fig. 6-right we present the harness definition
for P2. We check that the system opens only the valid drawers for a patient.

The state-machine can run infinitely, but we chose to restrict the num-
ber of steps in the main loop and thereby the number of events that we
send to the state-machine. Thus we performed complete verification up to
MAX EVENT NUMBER. Even with a small value of MAX EVENT NUMBER we were able
to cover all statements of the state-machine. However, the trolley can run for
much longer time, and thereby our verification is incomplete. The assurance
deficit occurs for long runs of the trolley system. For these cases the developers
must use additional manual tests, which comply with standards. The patients
trolley example shows the usefulness of bounded model checker based verification
on a reactive system which runs infinitely.

Fig. 6. Environment definition and verification condition for the smart trolley system:
on the left we check property P1 and on the right we check property P2.
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5 Discussion

On Simplifying Assumptions. In practice, there are a multitude of factors that
must be considered when analyses tools replace the execution of the tests on
the target hardware. For example, the C compiler used to produce the binary
from the sources might have itself bugs or have a different interpretation of
corner cases of the C language than the verification tool. Furthermore, hardware
particularities like the endianess, word length or memory model must be treated
soundly by the verification tool. These aspects are not in the scope of this paper,
but should be thoroughly considered during the development of a real-world
assurance case.

On Automating the Complementary Testing. When the bounded model checking
is incomplete, we propose to cover the assurance deficits using manually written
test-cases. However, recent developments in verification based on conditional
model checking [7] are able to characterize the state space of the program covered
by the verification tool and use this information to generate test-cases for the
uncovered parts [10]. The information about the uncovered code parts can be
used in the confidence argument and part of the test vectors can be obtained in
an automatic manner.

On Using Tests Vectors Generation to Measure Confidence. One of the means
we proposed to measure the completeness degree of incomplete verification is to
generate test vectors starting from the same enviromental assumptions. How-
ever, empirical studies on the effectiveness of coverage-directed tests generation
to uncover bugs show disappointing results [17]. Thereby, structural coverage cri-
teria can indicate weaknesses in our assumptions (when these criteria are NOT
fulfilled) and offer only a weak confidence in the verification when the criteria
are fulfilled.

On Practicality and Costs. Our approach builds a bridge between two extreme
cases. The first case is when the model checker can explore the space of behaviors
exhaustively; the second case is when the model checker cannot produce any
meaningful result, even when a narrow environment is used. In the first case, the
verification is complete; in the second case, we rely completely on the results of
traditional testing. In this paper, we argue for a middle way to complement the
verification results with testing. Finding a sweet-spot, in which the cost-benefits
of applying formal verification is the highest, is of a paramount importance for
the adoption of the approach, especially for functions at lower criticality levels.

On Using the CBMC Bounded Model Checker. CMBC is still in need of verifi-
cation and validation in order to be used as assurance evidence generator. How-
ever, the reason for using CBMC in our work is that it provides out-of-the-box
features which are key enablers for our approach. Firstly, the CBMC analyses
are bit-precise and thereby accurate. Secondly, CBMC offers the possibility to
instrument loops (and recursion) to detect insufficient unwindings and to warn
about incomplete results. Thirdly, CBMC offers the function to generate tests
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with a given code coverage and we use these tests as backing evidence for the
coverage degree of the bounded model checking verification. Last but not least,
CBMC allow the specification of verification environment. There are, however,
other bounded model checking tools which could be used instead of CBMC.

6 Related Work

Formal Verification for Assurance. Habli [13] and Denney [11] present a generic
safety argument for the use of formal methods results for certification. Basir
[5] proposes a method to derive safety cases from formally verified code using
Hoare-style inferences. Bennion [6] develops an assurance case for arguing the
compliance of the Simulink Design Verifier model checker to DO-178C. We pro-
pose an argument structure pattern for using successful, but possibly incomplete
bounded model checking results as certification evidence. For the cases when the
verification is incomplete, our pattern uses results of additional testing as evi-
dence and comprises a confidence argument.

Confidence of Evidence. Habli [13] emphasizes the need of including all the known
limitations of the used formal verification technique in order to achieve trust in
the results. Hawkins [14] defines assurance deficits as a prohibiting factor of
perfect confidence in a claim about an assurance evidence. Ayoub [4] proposes
the usage of separate argumentation legs for arguing that certain confidence
exists in a certain assurance evidence. This is done by explicitly listing iden-
tified assurance deficits and the measures taken against them. They call these
argumentation legs confidence arguments. The usage of complementary diverse
evidence is encouraged by Littlewood [15], who demonstrates an increase of con-
fidence in the argument about the system safety when having both a verification
and a testing argument leg. We propose a confidence argumentation structure
for explicitly describing the assurance deficits of this verification method and for
providing corresponding backing arguments.

Complementing Verification with Testing. Conditional model checking [7] is a
technique to characterize the state space of the program which was covered by
the model checker and use this information for subsequent analyses or to gen-
erate test cases for the uncovered parts Czech [10]. Christakis [8] uses a similar
technique in order to explicitly specify all assumptions which the verification
engine performed and thereby, to enable collaborative verification. The focus of
these works is on making the deficits of model checking explicit and cover these
deficits by other verification methods. The above mentioned works are comple-
mentary to our work and they can be used to better characterize the confidence
in incomplete results, to increase the automation of the tests generation, or to
use other complementary verification methods to minimize the deficits.

7 Conclusions

In this paper, we presented an approach to use successful results of software
bounded model checking in an assurance case. We propose to use additional
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testing to mitigate the possible assurance deficits of incomplete bounded model
checking. Our longer term goal is to enable practitioners who develop safety
critical systems to benefit from the bounded model checking technology. As
future work, we plan to investigate in detail heterogeneous backing evidence
from other verification methods (e.g., code review) to reinforce incomplete model
checking results.
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Abstract. Assumption/guarantee contracts represent the basis for
independent development of reusable components and their safety assur-
ance within contract-based design. In the context of safety-critical sys-
tems, their use for reuse of safety assurance efforts has encountered some
challenges: the need for evidence supporting the confidence in the con-
tracts; and the challenge of context, where contracts need to impose
different requirements on different systems.

In this paper we propose the notion of configuration-aware contracts
to address the challenge contract-based design faces with multiple con-
texts. Since reusable components are often developed with a set of con-
figuration parameters that need to be configured in each context, we
extend the notion of contract to distinguish between the configuration
parameters and the other variables. Moreover, we define a multi-context
reusable component based on the configuration-aware contracts. Finally,
we demonstrate the usefulness of the multi-context components on a
motivating case.

1 Introduction

Software intensive safety-critical systems are nowadays rarely developed from
scratch or by a single company. Instead, parts of the system are usually either
reused or developed independently of the system [11]. To move towards compo-
nents with pedigree and thus to fully benefit from reuse within safety-critical
systems, the integrator companies need to reuse not only the components them-
selves, but also the accompanying safety artefacts [7]. The difficulty with reusing
safety artefacts is that they are often context-specific. To enable out-of-context
development, the notion of Safety Element out-of-Context (SEooC) was intro-
duced within ISO26262 [5] as well as a corresponding life-cycle. This SEooC-
related life-cycle requires that a set of context assumptions is identified for the
reusable component and validated when the component is reused in the context
of a particular system. These assumptions represent a way for the supplier of the
reusable component to impose certain requirements on the usage of the provided
component, in order to guarantee the specified behaviour of the component.

The term context is usually described as any information that can be used
to characterise the situation of an entity [4]. In terms of SEooC, in-context is
defined as all the information about the particular system, while out-of-context
means that very little or no information is known about the environment in which
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the component will execute. Moving a SEooC to a particular context means that
we are gradually increasing the knowledge about the environment in which the
component will execute until we gain the full knowledge about the environment.

Component contracts in software engineering represent a way to support
independent development of reusable components by specifying behaviours of
the components in assumption/guarantee pairs [1]. The guarantees state the
behaviours of the component, provided that the environment behaves according
to the assumptions. By supporting such contracts with evidence and relating
them to the safety requirements allocated to the component, they can be used
to semi-automatically generate assurance case argument-fragments [10]. A char-
acteristic of the assumptions and guarantees is that they represent properties
of entire traces, unlike assertions in program analysis that constrain the state
space of a program at a particular point. In the traditional assumption/guarantee
contracts [1] this means that the assumptions cannot include detailed informa-
tion about different contexts, which are often contradictory. The distinction on
strong and weak contracts allows for capturing those context-specific proper-
ties within the weak contracts [9], while the strong contracts capture properties
of behaviours in all the different contexts. The weak contract assumptions are
not required to be satisfied, while the strong contract assumptions, just as the
traditional ones, are required to be satisfied.

Contract assumptions allow the developer of the component to impose
requirements on the environment in which the component is used. But currently
this imposing of requirements can be done only for all contexts, and since not
all requirements are safety relevant in every context, an approach is needed to
facilitate imposing requirements on only some contexts where they are actually
safety-relevant. For example, an integrator company asks one of its suppliers
for a reusable component and provides the specification on how this component
should behave. These specifications should be addressed by the guarantees of the
contracts of the reusable component. The supplier develops the component and
in that process identifies assumptions under which the component exhibits the
guaranteed behaviours. For such a component to be used in a particular system,
all of the assumptions stated in the component contracts need to be satisfied by
the system. The contract assumptions thus represent a way in which the supplier
can constrain the set of environments in which the component can be used. Such
reusable components are often developed with a set of usage profiles in mind that
are characterised by different configuration parameters of the component. The
different configuration parameters imply different behaviour of the component,
and may require different constraints on different environments to guarantee the
same safety requirement. Since the assumptions need to be consistent, otherwise
no environment could fulfil them, the suppliers of reusable components are forced
to weaken the assumptions of the contracts for the sake of specifying behaviour
of the component under different configuration parameters. One way of achiev-
ing this weakening is by specifying the context-specific information in the weak
contracts. But weak contracts do not impose any constraints on the component
environment, since its assumptions are not required to be satisfied.
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In this work, we extend the notion of contract to handle the multi-context
setting of reusable components by explicitly distinguishing between assump-
tions on configuration parameters and operational variables. We introduce the
configuration-aware contracts and demonstrate how they can be used to achieve
similar flexibility as the strong and weak contracts, while providing the possi-
bility to the supplier to explicitly impose requirements on only some contexts.
Finally, we demonstrate the usefulness and the applicability of the configuration-
aware contracts on a motivating case where a safety-relevant component is devel-
oped for reuse within a family of wheel-loaders.

The rest of the paper is structured as follows: In Sect. 2 we recall essential
background information. We present the configuration-aware contracts and the
related reasoning in Sect. 3. In Sect. 4 we present the application of the proposed
extensions on a motivating case. We present related work in Sect. 5. Finally, we
bring conclusions and future work in Sect. 6.

2 Background

In this section we recall the essential information on contracts. Moreover, we
introduce the motivating case we use for illustrative purposes as well as demon-
stration of usefulness of the configuration-aware contracts.

2.1 The Assumption/Guarantee Contracts

The component model of the assumption/guarantee contract theory is based
on a set V of variables, where each variable represents some relevant informa-
tion about a component (e.g., input and output ports) [1]. A contract C is
defined over the set of variables V as a pair C = (A,G) of assertions, called the
assumptions (A), and the guarantees (G).

We denote the strong contracts with (A, G) and the weak contracts with
(B, H) [9]. The strong assumptions (A) need to be met by the environment of
the component, and in return the component provides the guarantees (G). In
contrast, the weak guarantees (B) are not necessarily offered in every environ-
ment. Only when both the strong and the weak assumptions are met, the corre-
sponding weak guarantees(H) are offered. Such strong and weak contracts can
be represented as traditional contracts by transforming the weak contracts into
implications stated in the guarantees. The resulting contract is in conjuncted
form where only the strong assumptions remain as the contract assumptions,
while the guarantees represent the conjuncted strong guarantees and the impli-
cations from weak contracts, i.e., (A,G) and (B,H) can be represented as a
single traditional contract (A,G ∧ (B ⇒ H)).

Just as the contracts, the environment E and implementation I are also
defined in terms of the assertions over the set of variables V . When dealing with
distinct sets of variables an environment is defined as a tuple E=(VE ,PE)
and implementation is defined as I=(VI ,PI), where VE and VI are the sets
of variables of the environment and implementation respectively, and PE and
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Fig. 1. The assumed structure of the lifting arm unit context

PI are the sets of behaviours over the corresponding set of variables for the
environments and implementations respectively. An implementation I is said
to implement a contract C = (A,G) if it provides the contract guarantees G,
subject to the assumptions A, i.e., PI ∩ A ⊆ G. An environment E satisfies the
contract C if it fulfils its assumptions, i.e., PE ⊆ A. A component S is defined
as a tuple S = (V,CS , I) where CS is a set of contracts over the set of variables
V , while I is a possibly empty set of implementations of the contracts [1].

2.2 Motivating Case

In this section we present the motivating case based on a real-world scenario
where a single component Loading Arm Automatic Positioning (LAAP) is devel-
oped for reuse in different wheel-loaders.

Wheel-loaders are usually equipped with a loading arm, which can perform
up and down movements. The software controller Loading Arm Controller Unit
(LACU) handles both manual and automated arm movement. LACU calculates
the arm movement commands based on the sensory data and user input, and
then issues them to a hydraulic controller that moves the arm physically. The
assumed structure of a representative LACU is shown in Fig. 1.

LACU is composed of two main subcomponents: the LAAP component that
handles automatic arm positioning; and the Arm Controller component that
issues the final command for both automatic and manual arm positioning. LAAP
monitors the control lever that is used to lift/lower the arm manually and an
automatic position request button that positions the arm in a predefined posi-
tion. LAAP is activated by pressing the automatic positioning button, and it
can be stopped by moving the control lever, as LAAP gets deactivated on detec-
tion of any movement of the control lever. When active, LAAP uses an arm
angle sensor to determine the current arm position, while the target position is
indicated by the recorded position port. The recorded position port is related
to the recordedPositionStatic configuration parameter, which indicates whether
the recorded position is predefined and constant, or if it can be set to a custom
value. The ground speed port indicates the current ground speed of the vehicle
and is used together with the groundSpeedThreshold configuration parameter
such that the component deactivates if the current speed is greater than the
specified threshold. Moreover, LAAP uses maxGroundSpeed that indicates the
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maximum ground speed of the vehicle to determine whether a faulty ground
speed sensor can influence LAAP to move the arm when not supposed to.

3 The Configuration-Aware Contracts

In this section we define the context and the configuration-aware contracts. More-
over, we define the reusable component for the multi-context based on the notion
of the configuration-aware contracts. Finally, we discuss the differences between
the configuration-aware contracts and the corresponding traditional contracts.

3.1 A Component Configuration Context

As mentioned in Sect. 1, the context represents all information about a partic-
ular system. The fact that a component is developed out-of-context does not
mean that no information about the system is known. Reusable components are
usually developed with a set of usages in mind that are characterised by different
configuration parameters of the component. We refer to the set of such parame-
ters as the configuration context of the component. To define the configuration
context, we first partition the set V of variables of the reusable component S:
V = VSop � VSconf; such that we distinguish between the operational (VSop) and
the configuration (VSconf) variables. The distinction between the two types of
variables is that the configuration variables, also referred to as parameters, can
have only one value in a particular environment. The parameters allow compo-
nent implementations to be prepared for use in different environments.

For each environment where the component may be used, there is a cor-
responding set of parameter values, which is why they can be viewed as con-
stants when the component is used in a specific configuration context. We define
a configuration context of a component as an assignment of a value to each
variable from the set of configuration parameters VSconf. For example, ground-
SpeedThreshold and recordedPositionStatic in our motivating example are con-
figuration variables that are constant in the context of a particular vehicle. Based
on the values of these two parameters we can distinguish between different con-
figuration contexts of the LAAP component. The recorded position can be fixed
and the ground speed threshold set to zero, which represents the environment
where likelihood of propagation of failures through LAAP is minimal. Another
configuration context could be when the recorded position is dynamic and the
ground speed threshold is at a higher vehicle speed e.g., 20 kmph. To reduce the
likelihood of failures propagating through LAAP in environments that fit this
context, requirements on the failure behaviours of the components providing
recorded position and ground speed need to be imposed.

3.2 Configuration-Aware Contracts

As discussed in Sect. 1, using traditional contract assumptions to capture both
the configuration and operational variables can lead to unwanted weakening of
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the assumptions. To overcome this problem we define the notion of configuration-
aware contract to clearly distinguish between the assumptions on the configura-
tion parameters and those over the operational variables. A configuration-aware
contract is defined as a tuple C = (Ac, Ao, G) where:

– Ac represent assumptions over the configuration variables, and is defined as
an assertion over the set of configuration variables VSconf;

– Ao represent assumptions over the operational variables, and is defined as an
assertion over the set of operational variables VSop;

– G represent the contract guarantees defined as an assertion over V .

The contract C states that the assertion Ao needs to be satisfied in all contexts
satisfying Ac, and under these conditions G is guaranteed. While we model
assertions over operational variables as sets of traces, assertions over the set of
configuration variables can be simply modelled as sets of configuration contexts.

A correct implementation of a configuration-aware contract behaves accord-
ing to the specified guarantees, provided that the corresponding assumptions on
both types of variables are met. We define a configuration-aware implementation
over the set of variables V as I = (V, PIc, PIo) where:

– PIc represent a set of configuration contexts over the set of configuration
variables VSconf;

– PIo represent an assertion over the set of operational variables VSop.

While an implementation considers the different values of the configuration
parameters, an environment establishes a single configuration context, i.e., it
considers only a single value for each configuration parameter. We define an
environment over the set of variables V as E = (V, pEc, PEo) where:

– pEc represent the configuration context of the environment E over the set of
configuration variables VSconf;

– PEo represent an assertion over the set of operational variables VSop.

3.3 A Multi-context Component

As mentioned earlier, a reusable component can exhibit different behaviours in
different configuration contexts. This makes the configuration context interest-
ing for contract-based development because once a configuration context of a
component is determined by a particular environment, then only behaviours of
the component exhibited in that particular configuration need to be analysed.
Hence, the configuration context information of an environment allow us to filter
out the contracts relevant for the particular environment.

We define a multi-context component by considering its configuration con-
texts and the corresponding configuration-aware contracts. Formally, we define
multi-context component as S = (V, PSc, CS , IS) such that

– V is the set of variables composed of the sets of operational and configuration
variables V = VSop � VSconf;
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– PSc is the set of configuration contexts over VSconf;
– CS is the set of configuration-aware contracts over V such that the set of

configuration contexts of each of the contracts is a subset of PSc;
– IS is a possibly empty set of implementations over V .

As a multi-context component S is moved to the context of a particular
system, it needs to be instantiated to an in-context component. We define an
in-context component as a special case of a multi-context component where the
set of configuration contexts PSc contains only one configuration context. Con-
sequently, the set of contracts is reduced to only those matching the particular
context. Given an environment E1 = (V, pE1c, PE1) such that pE1c ∈ PSc, we
define an instantiation of an in-context component from the component S as
S1 = (V, pS1c, CS1, I), where:

– pS1c = pE1c

– CS1 = {c ∈ CS | c = (Ac, Ao, G) ∧ pS1c ∈ Ac}

3.4 From Configuration-Aware Contracts to Traditional Contracts

To transform a set of configuration-aware contracts to a traditional contract, we
conjunct them such that the assumptions that need to hold for all configuration
contexts are preserved, while other operational assumptions together with the
assumptions on configuration variables are transferred to the traditional con-
tract guarantees. The latter is done by implications in guarantees, expressing
that if the transferred assumptions are satisfied they imply the corresponding
configuration-aware contract guarantees. This is similar to how the strong and
weak contracts are conjuncted into traditional contracts. This way the assump-
tions and guarantees transferred as implications behave as the weak contracts,
while the assumptions and guarantees that hold in all configuration contexts
behave as assumptions and guarantees of strong contracts.

The traditional conjuncted form does not distinguish between the different
configuration contexts. While the two types of contracts are the same in terms
of implementations, i.e., implementations of the conjuncted contract are the
same as the implementations of the configuration-aware contracts, they differ in
terms of environments. A correct environment of a contract in conjuncted form is
every environment that satisfies only the overall contract assumptions, while the
configuration-aware contracts of an in-context component offer the possibility for
a more fine-grained constraining of the different environments without weakening
the assumptions to only the assumptions that hold in all configuration contexts.

For example, if we consider groundSpeedThreshold configuration parameter
in our motivating case from Sect. 2.2. LAAP is disabled when the ground speed
value is greater than the threshold parameter. For contexts where the threshold
value is lower than the maximum speed of the vehicle, the groundSpeed port fail-
ure can contribute to LAAP running when not supposed to, e.g., when ground-
Speed is faulty and shows that the vehicle is moving slower than it actually is. For
such contexts it is important to impose a requirement on the groundSpeed port
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value to be highly reliable. But when the threshold value is equal or greater than
the maximum speed of the vehicle, then even if the groundSpeed port reports
faulty value it cannot lead to LAAP running when not supposed to. Hence for
the first set of contexts, it is important to impose the requirement on reliability
of the groundSpeed port, while for the second case such requirement is not nec-
essary and in fact is too strong. For traditional contracts, this can be expressed
only in the conjuncted form where no requirements on the environment would
be made regarding the reliability of groundSpeed, or if such requirement would
be made for all contexts, it would be too strong for certain cases.

The concept of configuration-aware contracts can be used to facilitate cap-
turing optional behaviours in terms of weak contracts by defining a boolean
parameter and using it only for the particular configuration-aware contract that
is intended to be optional. This concept facilitates similar flexibility of the weak
contracts, although it may result in a large number of configuration parameters
for the different weak contracts.

4 Ilustrative Case

In this section we demonstrate, using the motivating case introduced in Sect. 2.2,
how capturing of the contracts as configuration-aware can influence the con-
straints imposed by the contract assumptions in a specific environment. Since
the component is intended for a family of wheel-loaders, the requirement that
needs to be satisfied in all the systems of the family is that the LAAP does not
move the loading arm when not supposed to. Hence, the property that the LAAP
outputs are not faulty needs to be satisfied in all the different systems. We model
LAAP as a multi-context component and demonstrate how configuration-aware
contracts can provide the mechanism for ensuring that the LAAP is not faulty in
the different configuration contexts without making the assumptions too strong.

To compare the configuration-aware and traditional way of capturing the
contracts, we consider how would capturing the same information using the two
contract approaches influence the strength of the assumptions that a particular
environment needs to fulfil. We first capture the configuration-aware contracts,
shown in Table 1. The example shows five configuration-aware contracts where
the first LAAP1 contract is valid for all the configuration contexts, since it
checks whether the received values on the input ports are in the specified range.
If not, then it disables the component outputs. The LAAP2-LAAP5 contracts
are specific to the four different configuration contexts described in Sect. 2.2. The
LAAP2 contract specifies the LAAP component behaviour when the maximum
ground speed is greater than the ground speed threshold and the predefined
arm position does not change. In this configuration context, for the component
not to propagate any failures, the assumptions need to be made so that the
ground speed value will not be faulty, while any faults of the recorded position
do not influence the LAAP output. In contrast to this configuration context,
when ground speed threshold is greater or equal to the maximum ground speed,
as specified in the LAAP4 contract, the environment does not need to fulfil the
requirement that the ground speed value is not faulty.
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Table 1. A set of LAAP configuration-aware contracts

Ac−LAAP1: -;

Ao−LAAP1: groundSpeed within [0, 200] km/h AND angleSensor within [0,3] rad AND
controlLever within ± 1 rad AND recordedPosition within [0,3] rad;

GLAAP1: (groundSpeed not within [0, 200] km/h OR angleSensor not within [0,3] rad

OR controlLever not 0 rad OR recordedPosition not within [0,3] rad;)
implies (Active = false and Flow = 0);

Ac−LAAP2: groundSpeedThreshold < maxGroundSpeed AND recordedPositionStatic;

Ao−LAAP2: not faultAngleSensor AND not faultAutoPositionReq AND not
faultControlLever AND not faultGroundSpeed ;

GLAAP2: not faultFlow AND not faultActive;

Ac−LAAP3: groundSpeedThreshold < maxGroundSpeed AND not recordedPositionStatic;

Ao−LAAP3: not faultAngleSensor AND not faultRecordedPosition AND not
faultAutoPositionReq AND not faultControlLever AND not
faultGroundSpeed ;

GLAAP3: not faultFlow AND not faultActive;

Ac−LAAP4: groundSpeedThreshold � maxGroundSpeed AND recordedPositionStatic;

Ao−LAAP4: not faultAngleSensor AND not faultAutoPositionReq AND not
faultControlLever ;

GLAAP4: not faultFlow AND not faultActive;

Ac−LAAP5: groundSpeedThreshold � maxGroundSpeed AND not recordedPositionStatic;

Ao−LAAP5: not faultAngleSensor AND not faultRecordedPosition AND not
faultAutoPositionReq AND not faultControlLever AND not
faultGroundSpeed ;

GLAAP5: not faultFlow AND not faultActive;

Table 2. The corresponding LAAP traditional contract

Acf−LAAP : Ao−LAAP1 AND not faultAngleSensor AND not faultAutoPositionReq
AND not faultControlLever ;

Gcf−LAAP : GLAAP1 AND (((Ac−LAAP1 AND not faultGroundSpeed) OR (Ac−LAAP2

AND not faultRecordedPosition AND not faultGroundSpeed) OR
(Ac−LAAP3) OR (Ac−LAAP4 AND not faultRecordedPosition)) implies
(not faultFlow AND not faultActive));

Since the traditional way of specifying contracts cannot capture the configu-
ration variables in the contract assumptions, the assumptions need to be weak-
ened to exclude the configuration variables. As described in Sect. 3.4, we trans-
form the set of configuration-aware contracts to a traditional contract (Table 2)
and also to the resulting in-context component overall contracts (Table 3). By
comparing the assumptions of the traditional contract and the specific in-context
overall contracts derived from the multi-context LAAP component, we notice
that the assumptions for the different configuration contexts are in-general
stronger than the assumptions of the traditional contract. This can for instance
be seen on the in-context overall contract LAAP-C1 (Table 3), which besides
the assumptions included in the traditional contract and the context-specific
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Table 3. The in-context LAAP overall contracts of the LAAP configuration contexts

Acf−LAAP−C1: Ao−LAAP1 AND not faultAngleSensor AND not faultAutoPositionReq
AND not faultControlLever AND not faultGroundSpeed AND
Ac−LAAP2;

Gcf−LAAP−C1: GLAAP1 AND not faultFlow AND not faultActive;

Acf−LAAP−C2: Ao−LAAP1 AND not faultAngleSensor AND not faultAutoPositionReq

AND not faultControlLever AND not faultGroundSpeed AND not
faultRecordedPosition AND Ac−LAAP3;

Gcf−LAAP−C2: GLAAP1 AND not faultFlow AND not faultActive;

Acf−LAAP−C3: Ao−LAAP1 AND not faultAngleSensor AND not faultAutoPositionReq
AND not faultControlLever AND Ac−LAAP4;

Gcf−LAAP−C3: GLAAP1 AND not faultFlow AND not faultActive;

Acf−LAAP−C4: Ao−LAAP1 AND not faultAngleSensor AND not faultAutoPositionReq
AND not faultControlLever AND not faultRecordedPosition AND
Ac−LAAP5;

Gcf−LAAP−C4: GLAAP1 AND not faultFlow AND not faultActive;

configuration parameters, also assumes that the ground speed value is not faulty.
The strengthening of the in-context overall contract assumptions is done not only
in terms of configuration parameters, but also in terms of assumptions over oper-
ational parameters. This way of deriving an in-context overall contract based on
the configuration-aware contracts allows us to impose additional requirements
in terms of assumptions that the corresponding environment of the particular
in-context component needs to fulfil.

5 Related Work

Contract-based design has emerged as an interesting approach that facilitates a
range of activities such as independent development, requirements structuring,
compositional verification, and safety assurance argument generation, all useful
for the development of safety-critical systems. Westman et al. [12] generalises
the established contract theory [1] to environment-centric contracts to provide
support for practical engineering and expressing of safety requirements using con-
tracts. The environment-centric contracts relax the constrains on the scope of the
assumptions and guarantees beyond the interface of the corresponding compo-
nent. While environment-centric contracts theory does not distinguish explicitly
between the rigid variables such as configuration parameters and other opera-
tional variables, Cimatti et al. [2] present a tool-supported contracts-refinement
proof system that distinguishes between the two types of variables. Although
they can be separately specified, they are treated equally within the contract
assumptions, and hence the explicit distinction does not alleviate the challenge
contracts have with the different context.

Schneider et al. [8] introduce the Digital Dependability Identities (DDIs) as
a way to assure dependability of cyber-physical systems. DDIs represent modu-
lar, composable and possibly executable specification. One of the main goals of
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DDIs is to provide the basis for run-time certification for the dynamically recon-
figurable systems. Conditional Safety Certification (ConSert) represent an initial
implementation of DDIs. The conditions in ConSerts are captured between the
potentially guaranteed safety requirements (guarantees), and the corresponding
demanded safety requirements (demands). In contrast, in our work we use con-
tracts to capture the safety-relevant behaviours needed for satisfaction of safety
requirements. Similarly to the conditions in ConSert, we extend the notion of
contracts to act as conditions based on the configuration parameters and identify
which component behaviours are relevant for a particular system. Since contracts
can be used for generation of argument-fragments [10], the configuration-aware
contracts can be viewed as means to achieve conditional safety arguments offline.
Although configuration-aware contracts have potential for run-time certification
for reconfigurable systems, that work is out of the scope of this paper.

Oliveira et al. [3] present a method for automatic allocation of safety require-
ments to components of a Software Product-line (SPL) by building upon HiP-
HOPS (Hierarchically Performed Hazard Origin & Propagation Studies) [6]. The
proposed method enumerates the SPL products enriched with hazard and fail-
ure information, and then uses HiP-HOPS for automatic allocation of ASILs
(Automotive Safety Integrity Levels). Based on the ASIL allocations for each of
the products, the proposed method identifies the most stringent allocation for
each of the SPL components across the entire product family. In contrast, the
configuration-aware contracts of a component can be used to verify that the SPL
products in which the component is reused meet the minimum needed require-
ments to ensure that the requirements allocated to the reusable component are
met. By using configuration-aware contracts, we alleviate the need for all the
neighbouring components of the reusable component to be allocated with the
most stringent ASIL in all configuration contexts.

6 Conclusions and Future Work

Contract-based design is a promising approach to facilitate independent devel-
opment of components and their safety assurance within safety-critical systems.
One of the challenges it faces is the troublesome issue of context when deal-
ing with safety requirements. While one requirement can be safety-relevant in
the context of a particular system, it may not be relevant in the context of
some other system. In this paper we have argued that there is a need for more
fine-grained handling of the context within the contracts. We have proposed to
clearly distinguish between assumptions on configuration parameters and other
operational variables. Unlike the operational variables, the configuration para-
meters have constant values within a particular system, and this makes them
a useful source of information when developing a reusable component for a set
of different contexts. We have proposed extended configuration-aware contracts
that use the configuration parameters to filter out the assumptions over the
operational parameters for the different configuration contexts. We have demon-
strated on a real-world example how the multi-context components enriched with
configuration-aware contracts provide a mechanism for imposing requirements
on only those environments where actually needed.
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As our future work, we intend to align this work with product-line engineer-
ing for safety-critical systems. While product-line feature modelling is done at
a higher level, the configuration-aware contracts allow for tailoring the safety
behaviour and the corresponding safety assurance case. We plan to investi-
gate the usefulness of configuration-aware contracts for systems where cloud-
computing is used to provide service to safety functions. We also plan to explore
how configuration-aware contracts can be used to assist reuse of safety assurance
artefacts across different system concerns such as safety and security.
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Abstract. Systems have been connected and interacted with each other
around our daily lives. The boundaries of the systems are no more exist,
and the safety of the systems involves various stakeholders including pro-
fessionals, governments, and ordinary citizens. Therefore, for the safety of
systems and the environments, consensus building among various stake-
holders (e.g., professionals, developers, government, citizens) is crucial.
However, ordinary citizens usually does not have sufficient knowledge
about the safety and risk of systems around them. To solve this prob-
lem, we aim to develop methods and tools for consensus building specially
with citizens using assurance cases written in GSN. This paper specifies
the initial study for the goal. We take radiation information as an exam-
ple. We implement prototype tools for visualizing structured argument
by GSN about radiation information for citizens, and conduct an exper-
iment for the effectiveness of the tool. The preliminary result indicates
that the tool based on GSN is statistically significantly effective for shar-
ing correct radiation information with citizens.

1 Introduction

Systems have been connected and interacted with each other around our daily
lives. The boundaries of the systems are no more exist, and the safety of the
systems involves various stakeholders including professionals, governments, and
ordinary citizens. In particular, ordinary citizens usually does not have sufficient
knowledge about the safety and risks of systems around them.

In the Fukushima nuclear plant disaster in 2011, a very serious problem was
that scientifically correct information about radiation did not necessarily dis-
tributed to ordinary citizens. SNS (Social Networking Service) such as Twitter
and Facebook were widely used by ordinary citizens for getting fast information
about the radiation disaster. However, unfortunately, incorrect information was
also distributed through the internet. Figure 1 shows a typical incorrect discus-
sion in SNS (modified from actual discussion in Facebook). This discussion is
wrong: radiation doze measurement changes according to the weather. In this
paper, we aim to develop methods and tools to correct such scientifically incor-
rect discussion, and facilitate more discussion.
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 55–62, 2016.
DOI: 10.1007/978-3-319-45480-1 5
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– User A: When I used dosimeter when raining, radiation dose becomes twice!!
Yesterday it was 0.1 µSv/h, but now it becomes 0.2 µSv/h! This must be by
Radioactive iodine from the collapsed Fukushima nuclear plants!

– User B: Radiation dose is not increased by raining. Water absorbs radiation
dose, so radiation dose must be decreased. Then why...

– User C: I have never heard that radiation dose measurement significantly
changes by the weather. It might be due to measurement error.

– User D: Oh, my god! I heard that re-criticality of the nuclear plant is in
the process. The Fukushima disaster seems not ending... I will take care of
radiation when raining.

Fig. 1. An example of Facebook discussion about radiation doze measure

To avoid such incorrect discussion on SNS, our main idea is to use assur-
ance cases [1] written in GSN (Goal Structuring Notation) [6] as reference for
ordinary citizens discussing about radiation on SNS to lead scientifically correct
discussion. Figure 2 shows the architecture of tool chain. The tool chain consists
of two tools: Smart Structure and Crowd Talks.

Fig. 2. Architecture of tool chain

– Smart Structure. When SNS user wants to share related information of the
SNS discussion, Smart Structure presents the related information in GSN.
GSN is generated semiautomatically by a database of the newspaper infor-
mation and the government office, public, including the Web information.
“Smart” is meant to expect that the tool to be used easily like smartphones.

– Crowd Talks. It analyses argument contents on SNS and passes the ana-
lyzed results to Smart Structure. Based on the information, Smart Structure
presents appropriate GSN to the users. “Crowd” is meant to expect that the
tool to be used by crowds (ordinary citizens), not only by experts.
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Currently prototypes of Smart Structure and Crowd Talks have been imple-
mented, and tested the feasibility by a preliminary experiment with 20 subjects.
The functions of semi-automatically generating GSN (Smart Structure) and SNS
argument content analyzing (Crowd Talks) are in initial phases. Assurance cases
in GSN used in the preliminary experiments are made manually with radiation
experts. Figure 3 shows a screenshot of Smart Structure. In the screenshot, a
GSN diagram for the SNS discussion in Fig. 1 is shown (in Japanese), which
is translated into English in the righthand side. The top goal of the GSN is
“Weather affects measurement of radiation dose.” For the top goal, we use the
strategy node “Argument over weather.” The sub goals are “Measured radia-
tion dose is decreased by snowing” and “Measured radiation dose is increased
by raining.” For these sub goals, evidence “Measured radiation dose data when
snowing” and “Measured radiation dose data when raining” are attached. In
Smart Structure, for each node in GSN, more detailed documents can be pre-
sented by clicking the node. For the evidence, the actual measured radiation
dose data are attached. The case for snowing is not directly necessary, but with
multiple cases including raining, ordinal citizens could understand that radiation
doze is affected by the weather.

Fig. 3. A Screenshot of smart structure and GSN

Screenshots of Crowd Talks is shown in Fig. 4. Crowd Talks analyses Face-
book discussions using LDA analysis [5], and elicits discussion topics in the
Facebook discussions. It also visualises the topics.
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Fig. 4. Screenshots of crowd talks

As a mean for risk communication, assurance cases have been introduced
mainly in safety-critical area for showing that the system is safe under a given
environment in a goal oriented manner, based on evidence. Assurance cases are
based on a general scientific research field called argumentation theory [3], in par-
ticular on Toulmin’s model [11]. We observe that if assurance cases are effective
for system assurance in safety-critical area, then they are also effective in more
general risk communications with citizens, discussing in SNS. Our contributions
are as follows.

– We develop prototype tools to present scientifically correct information in
GSN, when users are discussing about the safety of systems and environment
in SNS (e.g., radiation in the environment).

– We conduct a preliminary experiment with 20 subjects (undergraduate stu-
dents), comparing the effectiveness of newspapers, web browsing, and GSN.
The result indicates GSN is more effective than newspapers and web browsing
for leading the users to scientifically collect discussion.

The structure of the paper is as follows. In Sect. 2, we explain preliminary
experiment and the results. Section 3 discusses related work. In Sect. 4 we state
concluding remarks.

2 Preliminary Experiment

To show the effectiveness of assurance cases (GSN) for leading SNS discussion
scientifically correct discussion, we conduct a preliminary experiment with 20
subjects (undergraduate students). A snapshot of the experiment is shown in
Fig. 5.

We assume that the 20 subjects have similar knowledge on radiation as ordi-
nary citizens. 20 subjects are asked to see Facebook discussion as in Fig. 1. Then
they are asked to use either newspapers, web browsing, or GSN for complement-
ing the SNS discussion:
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Fig. 5. A snapshot of experiment

– Newspapers: a set of articles related to the radiation topic.
– Web browsing: the subjects are allowed to use the internet freely.
– GSN: the subjects can use prototyped Smart Structure and see related GSN

of the Facebook discussion. Currently, GSN is manually written with experts
of radiation.

They are asked to do three tasks of different topics on radiation information.
For each task, they can refer to either newspapers, web, or GSN. 20 subjects
are divided into 6 groups (each of group consists of 3 or 4 subjects), and takes
three tasks as in Table 1, in order to reduce order effect. The three topics are as
follows.

– Weather affects radiation dose measurement (GSN for this topic is shown in
Fig. 1).

– Iodine preparation is not necessary for ordinary citizens.
– Measuring equipment for radiation doze should be correctly chosen according

to the purpose.

Sometimes incorrect information on radiation has been distributed in the inter-
net. For example, some web pages propagates that Iodine preparation is a must
thing for citizens living near Fukushima. We aim to provide scientifically correct
information in GSN, and reduce adverse effect of such web pages.
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Table 1. Structure of preliminary experiment

2.1 Experimental Result

After each task, we asked the 20 subjects how do they think that the Facebook
discussions are correct or not (by questionnaire). Actually, all the Facebook
discussions used in our experiments were scientifically wrong. This implies

Our hypothesis is that by the content of GSN with its argument structure
and evidence, the subjects can reach to scientifically correct conclusion with the
group members, and not so well by newspapers and web browsing.

Currently we are analyzing the experiment result. The preliminary analysis
is shown in Fig. 6. We conduct analysis of variance for two criteria: satisfaction of
tool usage and correctness. These criteria are measured by results of several ques-
tionnaire. For example, satisfaction score is calculated using five questionnaire (1
to 5 points scored by the subjects): usefulness of the information, understand-
ability, degree of agreeing, degree of interest, and degree of facilitation using
GSN, newspaper, or web browsing.

Fig. 6. Preliminary result of the experiment

For satisfaction criteria, our GSN presenting tool is not statistically advance
on web browsing, but on newspapers. This indicates that reading articles of
newspapers is not convenient for the subjects (undergraduate students). They
tend to like web browsing, and our GSN tool is liked by them in similar level. For
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the correctness criteria, GSN leads the subjects to more correct conclusion than
newspaper (the p value is 0.0007) and web browsing (the p value is 0.00002). This
indicates that the structure of GSN is a better media for presenting information,
comparing with newspaper (un-structured document) and web browsing (easy
to use, but contains incorrect and huge information).

There are several considerations. One interest topic is that is there really
a different between presenting just a top goal or a whole GSN tree structure.
A comment of the subjects indicates that a whole GSN tree is valuable for
understanding why the top goal is supported, by following the argument steps
(strategy nodes in GSN) and evidence. It is interesting to conduct an experiment
for difference between the two cases.

There are also several threats to validity. One is that the subjects are under-
graduate students, so they might not be representatives of general public. Also,
the results of the experiment are biased because the GSN diagram is a “distilled”
and correct argument, whereas the other sources were not refined, and were not
correct. Our main aim of this experiment is to show the effects of the tools
(Smart Structure and Crowd Talks) when they are fully developed. Therefore
we compare the current usage of SNS with newspapers and web browsing and
our proposed usage of GSN. It is worth experimenting on such basic compar-
isons, including comparing natural language text and its corresponding GSN,
where both have the same information.

3 Related Work

Assurance cases and GSN have been introduced for risk communication including
safety regulations. There are, however, some criticisms of assurance cases. In [8],
Leveson wrote, “Most papers about safety cases express personal opinions or
deal with how to prepare a safety case, but not whether it is effective.” This
paper has conducted a preliminary experiment for evaluating the effectiveness
of GSN with statistical argument. We believe our tool and experiment is a first
step for evaluating the effectiveness of GSN in a statistical setting with subjects.

In [2], Cheikes et.al. conducted an empirical analysis of Toulmin’s argument
structure. The results were mixed, with the formalism having a positive impact
for only one of the two articles. The paper focused on the impact of generating
Toulmin’s argument structure by the participants, and not directly compar-
ing the understandability of natural text and argument structure of the same
information. We also plan to do experiment of generating GSN by participants,
because such active behavior would make more positive effect to participants.

4 Concluding Remarks

This paper has described our prototype tool for sharing scientifically correct
information among citizens using GSN. The preliminary experiment suggests
that the structure of assurance cases in GSN is effective, comparing with other
methods such as newspapers and web browsing. Currently we are extending the
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tool and planning more general experiment not limited to on radiation informa-
tion, but also on such as whether automatic driving cars are good or not. The
tool will be freely used by the public on our web page1. We would like to report
our progress in near future.
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Initiative on Advanced Software Engineering in 2015” supported by Software Reliability
Enhancement Center (SEC), Information Technology Promotion Agency Japan (IPA)
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Abstract. The basis of an assurance argument must be built on top
of explicit specification of the target system. Nevertheless, identification
of a municipal disaster management system out of existing documents
is a non-trivial task. We propose an approach applying 6W1H models.
A 6W1H model is a tree of actions equipped with “6Ws” (Who, What,
Whom, When, Where, Why) that provide necessary explication of the
system for assurance argument. The approach is exemplified by identify-
ing a system and building an assurance case out of water supply activities
prescribed in the Local Disaster Management Plan of Hiratsuka city.

Keywords: Assurance argument · Systems modelling · Disaster
management

1 Introduction

This paper introduces an approach using a 6W1H model to specification of
systems for the purpose of assurance argument. A 6W1H model is a tree of
actions equipped with “6Ws” (Who, What, Whom, When, Where, Why) that
provide necessary explication of the system for assurance argument.

The 6W1H model is a part of our ongoing work on assuring the dependabil-
ity of the disaster management activities in Hiratsuka city. The procedure for
dependability argument contains three phases as follows (Fig. 1):

1. Identify a disaster management system out of the documents which prescribe
disaster management activities1;

2. Specify a system life cycle of the disaster management system;
3. Develop assurance cases that demonstrate that the disaster management sys-

tem life cycle has a dependability.

Identification of a system out of the documents (Fig. 1, highlighted in yellow)
is a non-trivial task. The municipal disaster management activities are prescribed
1 The term “activity” here is used as an everyday word, not as a technical word in

system life cycles.

c© Springer International Publishing Switzerland 2016
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Fig. 1. Three phases for assuring systems dependability (Color figure online)

in Local Disaster Management Plan (LDMP) by each local governments. These
LDMPs are neither easy to grasp a complete view of the system, nor easy to
comprehend the system in detail.

The “6W1H model” provides an ontological framework or taxonomy that
gives uniform structure to the contents of LDMP documents. It supports explicit
system specification that works as a basis of assurance argument on LDMP by
means of a tree whose nodes correspond to actions specified by six items (6Ws:
Who, What, Whom, When, Where and Why). An action may be decomposed
by “How” relation into a set of other actions.

The proposed approach is exemplified by identifying a system and building an
assurace case out of water supply activities prescribed in the LDMP of Hiratsuka
city. The purpose of water supply subsystem is to supply water to disaster-
affected people in emergency response. By application of the 6W1H approach, a
system of water supply activities is specified explicitly with satisfiable rigour.

The main contributions of this paper are: (i) spotting the research problem
for identification of a system out of activities provided in a set of documents, not
necessarily assuming the concept of systems; (ii) proposal of “6W1H” taxonomy
(modelling approach) for identification of a system out of a set of documents
that provide activities. Unlike the case of computer software and hardware, the
concept of system is weakly presumed in the description of human intensive
systems such as disaster management activities. 6W1H approach is anticipated
to be effectively applicable to building the specification of those systems.

The rest of the paper is organised as follows: Sect. 2 gives relevant background
information. Section 3 gives a leading example of water supply activities that
have the inherent complexities in the specification documents. Section 4 presents
the 6W1H models and their usage. Section 5 gives a case study of applying 6W1H
model to water supplying activities. Section 6 shows related work and Sect. 7
concludes the paper.

2 Background

The procedure for dependability argument of the municipal disaster management
activities is based on the notion of “Open Systems Dependability” [1]. In this
section, we give details of them and the definition of “system” in international
standards, which is a guideline to identify the system.
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2.1 Disaster Management Activities in Hiratsuka City

The disaster management activities of each municipal in Japan are documented
by Local Disaster Management Plan (LDMP) [2]. The national government set
up the law “Disaster Countermeasures Basic Act” [3] in 1961 that prescribes pro-
vision of an LDMP by each local government. This means there are more than
thousand LDMPs. The target disasters of LDMPs are both natural disasters
(e.g., earthquake, tsunami, storm and flood, volcano, snow) and accident disas-
ters (e.g., maritime, aviation, railroad, nuclear disaster). Each LDMP describes
several disaster management issues, such as disaster prevention and prepared-
ness, disaster emergency response, disaster recovery and reconstruction.

Hiratsuka city, where our university is located, has many natural disaster
risks. Earthquakes and typhoons must be considered all over Japan. In partic-
ular, there is also heavy tsunami risks in this city, facing the Sagami bay. The
latest public damage estimation [4] shows that tsunami height is expected to
exceed 5 m around the Hiratsuka area when heaviest earthquake occurs. Fur-
thermore, recent volcanic activity in Hakone (only 30 km from Hiratsuka) must
be taken into account.

Against these disaster risks, the Hiratsuka LDMP [5] have developed and
revised over and over from 1960s. As a result, they become large and complex
documents. Table 1 shows the LDMP of Hiratsuka city, which describe its disaster
management activities. In this paper, the emergency response activities against
Earthquake are in focus.

Table 1. The LDMP of Hiratsuka city

Title of fascicle Number of pages

LDMP against Earthquake 196

LDMP against Storm & Flood 181

LDMP against Tokai Earthquake 24

LDMP against Extraordinary Disasters 33

Appendices 288

2.2 Open Systems Dependability

Open Systems Dependability is a new dependability concept in the sense that it is
for an open system, which boundaries, functions and structure change over time
and are recognised differently from different points of views. Various methods
are proposed, such as D-Case (an extension of assurance case) [1, Chap. 4], D-
Case in Agda (a tool support for formal assurance argument) [1, Chap. 6] [6].
The international standard IEC 62853 [7] is forthcoming.

Municipal disaster management activities are “open systems” in the sense
that these activities change by the estimation of disaster risks (e.g., earthquake
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damage estimation), the national/international regulation (e.g., exposed dose
from nuclear plants) or public opinion.

2.3 International Standards for Systems

We employ the definition of “system” in ISO/IEC/IEEE 15288 [8], which defines
system life cycle processes. Since Open Systems Dependability can be clarified
as requirements for system life cycle in the sense of ISO/IEC/IEEE 15288 [1,
Chap. 10]. The standard provides a framework of process descriptions for speci-
fying the life cycle of systems created by humans.

The term “system” is defined as “combination of interacting elements orga-
nized to achieve one or more stated purposes” [8, 4.1.45]. This imply the hierar-
chical relationship between the system and its complete set of system elements.
Figure 2 show this hierarchical tree structure of a system. Our proposed “6W1H
model” employ this structure, because one of our aim is to reformulate the
municipal disaster management activities in the form suitable for application of
ISO/IEC/IEEE 15288.

Fig. 2. System-of-interest structure (source: [8, 5.2.2 System structure])

3 Leading Example: Water Supply Activities

Our study of 6W1H model is motivated by our investigation of LDMP to identify
a “system” in the sense of [8]. In this section, we describe the following two
difficulties inherent in the LDMP. (i) grasp a complete view of the system; (ii)
comprehend the system in detail. As an example, consider water supply activities
in emergency response.

Water supply activities supply water to disaster-affected people in emergency
response. The activities includes possessing water, preparing for water supplying,
transferring vehicles, supplying water at evacuation centres and other relevant
activities. Note that the daily water and sewage services are not included in
these activities.
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3.1 Grasp a Complete View of the System

Tables 2 and 3 both show the list of water supplying activities in emergency
response against earthquakes. According to the staff at the disaster management
department of Hiratsuka city office, the source of Table 2 is a definition of all
activities of every division in emergency response. On the other hand, the source
of Table 3 is documented in the section of Water supplying activities. Therefore,
Table 3 should be the refinement of Table 2. It is appropriate that one activity
in Table 2 is decomposed into a set of individual activities in Table 3.

Table 2. Excerpt of the list of activities in Hiratsuka disaster management headquar-
ters (source: [5, Appendices, p. 13], translated by the authors)

Division Activities

Water supply division 1. Activity related to possession of drinking water

2. Activity related to water supplying and transferring to
the evacuation centres

3. Activity related to communication and coordination
between the Water and Sewage Service Office and other
relevant organisations

4. Activity related to water supplying from other
organisations

5. Activity related to emergency response missions

However, there is not such a good correspondence between two tables. For
example, Activity 1 in Table 2 corresponds to Activity (1), (2) and (4) in Table 3.
Activity 2 in Table 2 corresponds to Activity (2), (3), (4) and (5) in Table 3.
Moreover, these correspondence are neither specified in this document nor com-
mon sense for the staff.

3.2 Comprehend the System in Detail

Table 4 indicates the excerpt of the detailed description of water possession in
water supplying activities. At a glance, there is no ambiguous statement and it
describes one activity precisely. However, the following issues must be addressed:

– “In case of no road damage” assumes that we can know whether there is some
road damage or not without any problems. Who investigate the level of road
damage and how do we know them?

– There is no subject word in this sentence. Who possess the water, who transfer
the truck?
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Table 3. List of water supply activities in Water supply division (source: [5, Earthquake
Fascicle, p. 131], translated by the authors)List of water supply activities in Water
supply division (source: [5, Earthquake Fascicle, p. 131], translated by the authors)

Relevant organisations Activities

Water supply division (1) Collecting information regarding damaged area,
outlook for recovery and other relevant information
related to water supplying, communication and
coordination with Hiratsuka Water & Sewage Service
Office and organisations with agreement

(2) Grasping the total demands of water, Coordinating the
places and the methods for supplying water

(3) Possession of tanks for supplying water and request for
cooperation with Truck Association and other relevant
transportations through the General affairs division

(4) Possession of water and transferring to the water
supplying place and medical institution, supplying water

(5) Supplying water by employing emergency water storage
tanks

(6) Request for cooperation with the local governments
which have the agreement on supporting activities, the
Prefectural government, the Self-Defence Forces through
the General response division, receiving and
coordination of activities

Table 4. Excerpt of the methods of water possession (source: [5, Earthquake Fascicle,
p. 133], translated by the authors)

Order Methods of possession

1st In case of no road damage, possess drinking water and water for medical
inst. from the Hiratsuka Service Reservoir by employing water trucks or
water containers

3.3 Discussion

As shown above, the current description in the LDMP is not directly regarded
as a specification of the disaster management system and not suitable for appli-
cation of ISO/IEC/IEEE 15288 to build system life cycle. The complexity of
LDMP is an issue not only in Hiratsuka city but in many other municipalities
in Japan, according to our investigation.

The law [3] prescribes what to provide rather than how to provide them in
disaster management activities. This result in increasing complicatedness and
an underlying ontological structure is necessary to make it comprehensive to the
stakeholders. The 6W1H modelling is our solution to this problem.



The 6W1H Model as a Basis for Systems Assurance Argument 69

4 6W1H Model

The 6W1H model is a framework for supporting system specification as a basis
for systems assurance argument. This is inspired by the “5W1H” or “five Ws” in
journalism. This framework specifies a system into a tree of “actions”. An action
is a task which can be implemented by some person or some organisation. The
description of each action is equipped with the hexad called “6Ws” (Who,
What, Whom, When, Where, Why).

In general, an action may be implemented by means of other actions. “How”
provides a functionality that decomposes an action into several, that gives a
hierarchical tree structure to a set of actions. A level of a node corresponds to a
level of abstraction. This tree structure of 6W1H model enables us to do stepwise
refinement of the specification through arguments between stakeholders.

Fig. 3. An example of the specification of food supply system employing 6W1H model

Figure 3 shows a simple example of the specification of food supply system
in emergency response employing 6W1H model and supplementary graphical
notations. The top of action is “To save citizens, division X supplies food to the
disaster-affected people at every evacuation centres in emergency response”. This
action is decomposed into four actions with detailed specification such as “Inves-
tigate the needs”, “Decide the provision”, “Prepare food and equipments” and
“Transfer and supply food”. These four action can be recursively decomposed
into several actions until stakeholders of the system agree with the execution of
“leaf” actions of the tree. For example, Action A1 (To supply food, Sect. 1 of
division X investigate the needs over the whole area of the city within 24 h.) can
be decomposed into several actions equipped with a specification of the area.

The steps for building the specification of a system by employing 6W1H
model are as follows:

1. Specify a “What” of top action out of existing documents.
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2. Fill in the other 6Ws of it by searching adjacent or relevant statements. If
not possible, discuss with the stakeholders of a system and specify them.

3. If you would like to, decompose the action into several actions. Specify
“What” of several actions out of existing documents (recursively cont’d).

These “6Ws” are suitable for identifying a system out of documents with
complexity as follows: “What” is the basis of 6Ws. Nothing can be done with-
out clear specification of “What”. “Who” clarifies an owner of the action. This
is particularly effective for null-subject languages like Japanese. “Whom” sug-
gests other actions which have “Who” field as its “Whom”. This prevents lack of
actions. “When” suggests an order of actions. The order of actions give us an
opportunity for discussing necessary condition of the action. “Where” clarifies
communication channel between actions. Namely, if a product of an action is
information, how to inform is an issue. This is essential for disaster manage-
ment systems, since communication channels are often out of service in case
of emergency. “Why” emphasises a purpose of the action. An action is to be
implemented to achieve its “Why”. To specify “Why”, the following issues can
be discussed:

– Is this action necessary to implement a parent action (Should it be moved to
other branches or not)?

– Is this group of actions fully implement a parent action (Should we add more
actions or not)?

5 Building an Assurance Argument of Water Supply
Subsystem from Water Supply Activities

Now we show how to apply our “6W1H” modelling approach to identifying a
system and building an assurance argument. The examples are as same as shown
in Sect. 3. A “6W1H” specification of water supply subsystem is developed out
of water supply activities in LDMP. An assurance case can be built from the
specification.

5.1 Grasp a Complete View of the System

A top of specification of water supply subsystem as a “6W1H” tree of height 2
is developed (Fig. 4). This is based on Tables 2, and 3, other relevant statements
in [5] and discussion between the staff. At first, we specified Action W (To
save the life of citizens, disaster management headquarters supply water to the
disaster-affected people at evacuation centres etc. in emergency response). Then
we divided Action W into three basic actions (Action W1, W2, W3) such as
“Decide the provision”, “Prepare the provision” and “Provide water supplying”
(specified with “What”).

In comparison with the Table 2 (5 activities) and Table 3 (6 activities), this
6W1H tree has few actions. However, this division can classify several activ-
ities naturally. For example, the statement “Collecting information regarding



The 6W1H Model as a Basis for Systems Assurance Argument 71

Fig. 4. Top of the specification of Water supply subsystem by 6W1H model

damaged area” of Activity (1) in Table 3 belongs to Action W1 “Decide the
provision”, since collected information is a basis for decision to supply water.
Activity (2) in Table 3 apparently belongs to Action W2 “Prepare the provi-
sion”. This means that the top of specification is suitable to grasp a complete
view of water supply subsystem.

5.2 Comprehend the System in Detail

Seven actions are developed out of the statement in Table 4 (Fig. 5). Action W,
W1, W2 and W3 is equivalent to that of Fig. 4. Out of the statement “In case
of no road damage”, we specified Action W1-03 (Investigate road damage) and
W1-04 (Report road damage) as child node of W1 (Decide the provision). Out
of the statement “possess drinking water and water for medical inst. from the
Hiratsuka Service Reservoir”, we specified Action W2-03 (Confirm amount of
water) and W2-04 (Report amount of water) as child node of W2 (Prepare the
provision). Note that there is no difference between “drinking water” and “water
for medical institution” according to the staff. Out of the latter statement and
“by employing water trucks or water containers”, we specified Action W3-01
(Transfer water truck from the disaster management headquarters office to the
reservoir), W3-02 (Transfer water) and W3-03 (Transfer water truck from the
reservoir to evacuation centres) as child node of W3 (Provide water supplying).
Through the discussion, we specified that the transferring activities are in the
provision rather than the preparation.

Some of specification came from other relevant statements in [5] and discus-
sion between the staff. For example, “Facility Reconstruction Division” (“What”
of W1-03, W1-04) are from other pages in [5]. We specified “Water & Sewage
Service Office” (“What” of W2-03, W2-04) through the discussion with the staff.
This means that the 6W1H modelling framework promote explicate system spec-
ification to comprehend the system in detail. As a result, 7 actions under the
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Fig. 5. Excerpt of the detailed specification of Water supply subsystem by 6W1H model

action W1, 23 actions under the action W2, 19 actions under the action W3 are
specified. The details of them is beyond the scope of this section.

5.3 Building an Assurance Case Based on the 6W1H Model

An assurance case can be built from the hierarchical tree structure of 6W1H
model as follows:

1. Specify each goals out of each “6Ws” action nodes of the 6W1H model.
2. Connect each goals and sub-goals by specifying precise strategies.
3. Develop a glossary of the 6W1H model and add to the assurance case as a

context.

Each evidence of sub-goals may be a detailed description of actions for operation,
or a report of disaster drill, which is out of the 6W1H model. Note that the
assurance case is not a result of the phase 3 of Fig. 1. For assuring Open Systems
Dependability of the disaster management system, a system life cycle of the
system must be specified and assurance cases for its system life cycle must be
developed on the basis of the 6W1H model and the assurance case.

An argument pattern can be found in the 6W1H model. Namely, the three
basic actions in Fig. 4 (Action W1, W2, W3) such as “Decide the provision”,
“Prepare the provision” and “Provide water supplying” indicate the argument
pattern “Decide, Prepare and Provide” (Fig. 6). This pattern would be applica-
ble for other activities in emergency response such as food supply and human
resource management.
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Fig. 6. The argument pattern “Decide, Prepare and Provide”

6 Related Work

There has been some work on systems modelling for disaster management sys-
tems. Sommerville et al. [9] employ responsibility modelling [10] for analysis of
contingency planning documents in Cumbria County, England. Their purpose is
to analyse the complex documents to improve understandings, which is similar
to ours. They developed the model with an emphasis on “responsibility”, which
is expressed as relationships between stakeholders.

The responsibility relation may be formulated by “How”, the parent-child
relation between the action nodes. For example, Action W1 and W1-03 in Figs. 4,
and 5 indicates the following issues in the sense of [9].

– Facility Reconstruction Div. are responsible for investigating road damage.
– Disaster Management Headquarters is the authority for the responsibility.

7 Conclusion and Future Work

This paper introduced “6W1H models” for supporting system specification as a
basis for systems assurance argument. The effectiveness of proposed approach
was exemplified by a specification of water supply subsystem of the municipal
disaster management system.

As shown in Fig. 1, this paper is only a first step towards our goal. To improve
the dependability arguments of municipal disaster management activities, the
following work remains: (i) to specify a system life cycle of the disaster manage-
ment system, where the definition of “system” follows ISO/IEC/IEEE 15288;
and (ii) to develop and evaluate assurance cases that demonstrate the depend-
ability of the system life cycle.
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We anticipate that the 6W1H modelling applies to any system with intensive
human aspects, such as food safety management or governmental policy making.
Application of 6W1H modelling to improvement of these activities remains as
future work.
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Abstract. Recent research advances in modifying and controlling DNA
have created a booming field of biological engineering called synthetic
biology. In synthetic biology engineers manipulate and modify living
organisms to change (and produce entirely novel) functionality, which
has led to new fuel sources or the ability to mitigate pollution. Syn-
thetic biology research is also expected to lead to methods of intelli-
gent drug delivery. In synthetic biology, designs are first built using bio-
logical programming languages and then implemented in a laboratory.
These synthetic organisms can be considered living programs that will
sense, respond and interact with humans while they persist in the nat-
ural environment. We argue that we should view these as safety critical
devices which can be both regulated and certified. Since the synthetically
engineered organisms follow a regular cycle of reproduction and replica-
tion that involves mutations, they will eventually adapt and evolve new
behavior over time. In this paper we propose the use of an assurance
case for synthetically engineered organisms, and present an orthogonal
dimension, an assurance timeline, that can be used to reason about the
dynamic, evolving aspects of these systems. We present a case study
based on a real application to illustrate our ideas.

Keywords: Assurance case · Synthetic biology · Evolution

1 Introduction

The emerging science of synthetic biology is providing novel tools for the design,
realization, and control of biological processes through the programming of cells’
genetic code [21]. These tools are allowing engineers to study and access the
basis of molecular information processing, and to develop software with specific
functionality that can be engineered into living organisms [33]. Synthetically
engineered biological organisms (SEBOs) are leading to novel applications that
include the enhancement of soil quality [6], the creation of novel sources for
biofuels [36], the development of engineered biological tissue [26,31], and the
synthesis of biocompatible intelligent drug delivery systems [24].

SEBOs are created by manipulating and combining genetic components in the
laboratory to modify existing organisms’ traits or to generate entirely new func-
tionality, including computational components (both analog and digital [32]).

c© Springer International Publishing Switzerland 2016
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This will open the road to the development of biological computers [5]. From
the identification of sequences of DNA genetic code with precise biological func-
tions, to the design of components into more complex programs with information
processing and logical control capabilities, software principles are used in every
SEBO. As a consequence, SEBOs are truly software-intensive systems [17].

While synthetic biology is opening doors to the programming of living organ-
isms, questions should be posed about the interaction of these programs with
human life and the environment. Even if we ignore the possible malicious uses
of this technology [22], or the bioethical aspects [2], faults and failures in biolog-
ical programs can pose serious threats, such as by the inadvertent production
of compounds toxic to humans, or by polluting the environment, or colonizing
ecological niches. If SEBOs are used for drug delivery or to protect us from
harm, then we must also rely on the intended behavior occurring as expected.
However, SEBOs are living and therefore their programs are dynamic in nature.
They are subject to mutations, and regular evolution, and this has made it diffi-
cult to build a framework for their certification, and ultimately for governmental
regulation and guidance [1,25].

To date, there has been little research that provides systematic techniques to
verify biological systems in general [8]. In this paper we argue that it is possible
to build assurance cases (more specifically safety cases) for reasoning about the
behavior of SEBOs. We first show how they are similar to software systems, and
as such we can build arguments and evidence for their safety. However, we also
identify some key challenges due to the their mutation and evolution over time.
We propose a new dimension to the assurance case, the assurance timeline, which
leverages recent work on dynamic assurance cases [10], and at the same time
addresses a new problem, random changes in the system to be assured. Since the
software code itself mutates as it evolves, it can change functionality over time.
The assurance timeline captures this new dimension through the identification
of intervals that may require either new evidence or a new set of claims and
arguments. We present an example of an SEBO assurance case and discuss its
potential evolution, based on a real SEBO project from the literature.
The contributions of this paper are:

– The proposed use of assurance cases for SEBOs;
– A new kind of assurance case - the assurance timeline; and
– An illustrative example demonstrating how these might be applied to a real-

world SEBO.

The rest of the paper is organized as follows. In the next section we present
some background on synthetic biology and motivation for the use of assurance
cases. We follow this with an example of applying the assurance case and an
assurance timeline in Sect. 3. We then present related work in Sect. 4 and finally
conclude in Sect. 5.

2 Background and Motivation

Consider a strain of high yield soybeans that thrives on a specific type of protein.
If that protein is only produced by bacteria that also produce a toxic protein
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which can seep into the water supply, the cultivation of these soybeans would be
an environmental hazard. A synthetic biologist might recognize an opportunity
and solve this problem by (i) modifying the soybeans to utilize a different protein
while retaining a high yield, or by (ii) designing a program with protein inhibitors
and repressors that will prevent the production of the toxic protein in the pre-
existing bacteria, or by iii) developing a new version of the bacteria that only
produces the beneficial protein and does not output the toxin at all. In the rest
of this section we describe how this type of programming is achieved in SEBOs
and then discuss the need for building assurance cases.

2.1 Synthetic Biology

In synthetic biology, engineers design plasmids and insert them into living cells.
A plasmid is a DNA sequence that is not part of a cell’s chromosome but that
can trigger the ribosomes to synthesize new proteins. Ribosomes are responsible
for creating proteins, which underlie most cellular functions [4]. Engineers have
already implemented various logic gates within SEBOs including AND, NOR,
and NOT gates [4]. They have also realized more complicated systems, including
feedback loops, intercellular signaling, biological on/off switches, oscillators, and
counters, leading also to the idea of cellular memory [4].

A language called the Synthetic Biology Open Language (SBOL) [14] has
been developed to represent programs for SEBOs (or SEBO parts). Figure 1(a)
shows a small (abstract) program in SBOL. At the top left is a promoter. A
promoter is a short DNA sequence that causes transcription to occur (transcrip-
tion is how DNA copies itself). It is followed by a ribosome binding site that
allows ribosomes to bind to the transcribed mRNA to start its translation into a
protein. This is followed by a coding sequence which contains the information to
synthesize a protein. Finally, it ends with a transcription terminator which indi-
cates where to stop the transcription of DNA into mRNA. The circular line back
to the promoter indicates a repetition operator in this process. A concrete ver-
sion of this program would indicate specific instances of promoters, terminators,
ribosome binding sites, etc. If we consider SBOL as a programming language,
we can view the DNA sequences as our byte code and the transcription and
translation of the DNA into proteins as compilation, after which point we have
proteins which perform as binary code, yet are not humanly readable.

The International Genetically Engineered Machine (iGEM) Competition,
hosted by MIT since 2004, is an exemplar of the widespread use of SEBO pro-
gramming. It is a competition for students ranging from high school through
to graduate school. Teams are given a kit of biological parts and develop novel
functionality. The parts are added to biological chassis such as E. coli or other
common bacteria. iGEM encourages modularity, reusability, and interoperability
of parts. As such there are over 20,000 parts, or BioBricks, with known func-
tionality in the iGEM parts registry [19]. An example of a Reporter part from
the registry, which causes an organism to fluoresce under certain conditions, is
shown in Fig. 1(b). This part can be obtained from iGEM and added to a team’s
own program in combination with a multitude of other parts.
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Fig. 1. An example of (a) an SBOL program and (b) concrete instance of a reporter
part that creates fluorescence from [18]

2.2 An Argument for SEBO Assurance Cases

Given the ability to mix and match thousands of promoters, ribosome binding
sites, sequences, terminators, etc. and to define concrete logic for their combina-
tion, we can view this in a similar fashion to designing a program. We have an
abstract model and should be able to predict behavior under a variety of condi-
tions (inputs). While the programs and parts developed by iGEM are by default
restricted to the laboratory environment, students are required to present infor-
mal safety arguments about their systems (if they were to be released) and the
long term goal of synthetic biology is to make variants of organisms that can
actually co-exist in the environment. Given that these new programs will inter-
act with humans and their environment, we need confidence that the devices
work safely as expected. In this direction, it is possible that synthetic biological
systems can be designed with kill switches, which force the bacteria to die under
specific conditions, but these too must be reliable. Assurance safety cases seem
to be the natural way to provide the necessary evidence for these systems.

While we believe that safety cases are a good starting point for SEBOs, we
also argue that they have novel characteristics which may add challenges to their
formal definition. Given that they are living systems, once the code is compiled,
we cannot assume (as in most software systems) that the software will remain
unchanged. In fact, we expect that random mutations will occur during each
generation of the organisms lifecycle and that new (previously unknown) func-
tionality may appear over time. While a single mutation is unlikely to dramat-
ically change an SEBO’s function, the cumulative effect over many generations
can lead to strains that do not adhere to the original safety case. At the same
time, SEBOs are subject to evolution, where natural selection will tend to pro-
mote mutated strains that best fit the environmental conditions, by growing and
reproducing at a faster rate than others. Hence, while SEBOs share character-
istics with other dynamic systems and may benefit from a dynamic safety case,
the peculiarity of their mutation and evolution processes differentiates them
from other systems studied in previous literature, such as unmanned aircraft
systems (UASs)[10]. However, we also believe that the seemingly overwhelming
complex nature of SEBO mutations and evolution can be successfully captured
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at regular time intervals, which can allow identifying when new evidence (or new
safety cases) are needed. This will lead to what we call the assurance timeline,
presented in the next section.

3 Assuring SEBOs: An Illustrative Example

To illustrate our ideas we have studied a project from the 2012 iGEM competi-
tion and used their safety documents as the basis for our example. This project,
called the Food Warden, was created by the Groningen team [16]. The goal of
Food Warden is to engineer Bacillus subtilis to change color when it detects
spoiled meat in a refrigerator. Spoiled meat releases ammonia, and ammonia
contains nitrogen. The team uses the PsboA promoter that causes a color change
in the bacteria Bacillus subtilis (or B. subtilis for short) to alert in the presence
of nitrogen. The design includes a semi-permeable “sticker” with an outer mem-
brane made from an FDA-approved material, Polymethylpentene, which has
nanopores large enough to allow passage of gases, but small enough to prevent
the bacteria from escaping. The sticker relies on sensing nitrogen molecules from
the rotten meat through a process known as quorum sensing. When a threshold
number of signaling molecules is detected by a sufficient number of bacteria,
it will trigger a response. The bacteria will produce yellow fluorescent proteins
to visually indicate meat spoilage. The sticker also features a breakable inner
packet of Luria broth as a growing medium, which is activated when ready to
use. If the bacteria escape the packet, the team claims that the bacteria cannot
live without the food source in the sticker, and that the original bacteria are
known to be non-harmful to humans or to the environment.

The team identified five separate threads of safety requirements. The first
two, general safety of synthetically engineered organisms, and safety in the lab,
are out of the scope of our assurance example presented here. The other three, we
discuss briefly. First, the team identifies the safety of their sticker design which
contains the engineered organisms. They consider this a public safety issue, since
B. subtilis needs to remain isolated from the consumer and the meat. Second,
they highlight food safety, which includes protecting the consumer from the
effects of eating spoiled meat, i.e. the color must be visible and reliable. Last they
highlight environmental safety, in the case the bacteria should accidentally be
released into the environment (all iGEM projects are laboratory based, however
if this project was to move out of the laboratory, it would become an issue).

3.1 Initial Assurance Case

We have built an initial (partial) safety assurance case using the goal structuring
notation (GSN), to demonstrate its feasibility for SEBOs. We show this in Fig. 2.
The top level Goal (G0) is that Food Warden is safe for humans. Using arguments
over identified hazards as the strategy (S0) there are four subgoals for this case
(G1-G4). G4 has an open diamond showing that it is not complete. G1 is the
goal that the sticker will keep the bacteria isolated under normal conditions.
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Fig. 2. Food Warden (partial) SEBO assurance case using GSN

This goal has a claim that the sticker membrane will not allow leakage of the
bacteria. G2 says that the sticker is not harmful to humans. Both use a strategy
(S1) that identifies known material properties, which connects to three subclaims
(C3-C5), namely, the membrane material is smaller than 0.5µm in diameter, it is
made of a known material with strong properties, and, finally, it is safe (C4) for
humans. Evidence for these claims includes testing the diameter of B. subtilis,
confirming the strength of the material, and the existence of FDA approval of
human safety of the material.

Subgoal G3 reasons about the safety of the system’s logic – it will correctly
identify meat that is unsafe for humans. It states that spoiled meat will result
in observable fluorescence of the bacteria. This has a subclaim that the sticker
works for 30 days once the inner packet is broken. For these goals the strategy
used is that of existing food standards. Two assumptions are included. A0 states
that spoiled meat will emit ammonia consistent with the total aerobic microbial
count (TAMC) which is used to measure the degree of spoilage as determined
by FDA acceptable levels. Since the bacteria sense the ammonia which then
cause them to fluoresce, this assumption must hold. The second assumption
(A1) states that the inner packet contains Luria broth with a 30-day supply of
glucose (required for growth). Claims 6, 7 and 8 argue that the bacteria fluoresce
once the TAMC threshold is reached, that this is visible under a range of light
conditions and that there is sufficient nutrients for 30 days.

Finally, Goal 4 requires that release into the environment will not be harm-
ful to humans. We have only partially expanded this goal (the team identified
several other subgoals). Claim 2 says that the bacteria cannot live outside of the
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sticker, with evidence (E0) that shows via laboratory tests that B. subtilis will
die without the glucose in the broth.

3.2 Evolution in SEBOs

While we show that a safety case can be built for a system such as Food Warden,
this case is static. It does not account for evolution. Denney et al. [10] describe
the need for dynamic assurance cases for systems such as unmanned aircraft
systems. We argue that SEBOs are also dynamic. Not only do their environmen-
tal conditions change, so too does their “software” which is subject to random
changes at regular intervals via evolution and natural selection. Since B. subtilis
are living, there will be mutations to the organism’s DNA. However, we have
models of the organisms and know their evolution frequency and magnitude,
therefore we should be able to reason about the likelihood of a behavior change
at a point in time. Assuming that we have this information, we can allow the
safety case to hold for a specified regular time interval before re-assurance.

We show how the safety case can evolve in two ways (see Fig. 3). First it
may require a change in evidence. Second, it is possible that the entire structure
of a branch of the assurance case will change. We discuss each of these next.
Assume the bacteria are engineered to only digest glucose in the Luria broth
and that there is only enough glucose to keep the bacteria alive for 30 days. If
the bacteria evolve or mutate to digest an alternate sugar such as lactose as
well, then we would need new evidence for assumption 1 (A1) and claim 8 (C8),
because the system has changed [20]. We can either provide evidence that there
is no lactose in the Luria broth or the meat, or that there is an insufficient
combination of lactose in the Luria broth to keep the bacteria alive for more
than 30 days. We depict this evolution in Fig. 3A where E0 has been updated to
E0’ at time interval 1 and A1 has been updated to A1’. This type of evolution
does not change the assurance case - it simply requires that new evidence and
assumptions are provided.

Fig. 3. Two types of SEBO assurance case evolution. A. shows a change required in
the evidence and arguments, while B. shows a change in the assurance case structure.
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A second possibility for evolution, is that the bacteria develop the ability to
digest the gases from the spoiled meat, and they no longer fluoresce to warn
consumers since the gas has been consumed. It is possible, that an inhibitor
protein may need to be added to the bacteria to prevent this behavior from
happening. This would require a change in the structure of the safety case itself.
We would need a new claim that provides evidence for the functionality of the
inhibitor. We show this in Fig. 3B.

3.3 The Assurance Timeline

We now present the assurance timeline, an orthogonal assurance case that rea-
sons about our confidence in the stability of the current assurance case. It argues
that within specific times slices, evolution is unlikely to impact the existing case.

While biological mutations are random, if we use known models of organ-
isms, we can infer the possible trajectories of evolution at a given point in time
and group the potential changes into an evolution envelope. The envelope then
contains a set of possible behavior changes which are reflected as changes to
our current assurance case. We illustrate this idea in Fig. 4. Based on the set
of possibilities within an envelope, we can analyze the evolved system to select
the new assurance case. In Fig. 4 we see that at time T2, a change in evidence
occurs, while at T3 a change in structure occurs. Within each time slice, there
is a decay in our confidence of the current assurance case.

The assurance timeline itself can be viewed as an assurance case. Figure 5
shows this view (note that this is generic and may not be accurate for a specific
organism such as B. subtilis). The top goal states that the system behavior is
stable for 10 days (our time interval for this assurance case). The subgoals and
claims are based on the known evolution of the organism. The evidence comes
from empirical data or in silico computational models. The timeline can be

Fig. 4. Assurance timeline informs times intervals for re-assurance. Confidence decay
occurs between timeslices. Evolution envelope contains set of possible changes at that
interval. Selected changes are shown.
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Fig. 5. Assurance timeline as an assurance case.

combined with other elements of a dynamic assurance case such as increased
traceability for a through-life assurance as proposed by Denney et al. [10].

4 Related Work

Safety assurance cases have been applied to a wide variety of domains. The
list includes offshore drilling operations, railroads, nuclear power plants, avion-
ics, national defense, automobiles, and medical devices [11,23]. There has been
research on how to build safety cases, such as showing evidence traceability
[30], automating the collection of evidence [28], creating a controlled and struc-
tured textual language [3], arguing the need for a hierarchical structure [12], and
automating safety case generation from tabular requirements specifications [9].
Although the trend has been to build more structure, formalism, and consis-
tency, there have been arguments against formalism because safety cases require
natural language which is open to multiple interpretations [15]. This work differs
in that we are applying an assurance case to a biological domain.

The most closely related area to synthetic biology is the medical and medical
devices domain. Within the medical domain there has been a push towards using
assurance cases [7,27,35], however there have also been arguments against this
idea [34]. Sujan et al. argue that since the healthcare industry is one where the
“level of maturity of safety management systems is arguably still lower than in
traditional safety-critical industries” it might be best to use safety cases only for
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internal purposes, rather than to have regulators mandate them. SEBOs may
suffer similar issues.

There has been research on formal methods for biological organisms. David
et al. [8] proposed use model checking and Petri nets for runtime verification
of a biological oscillator, while Ellis et al. and Lutz et al. applied automated
software requirement analysis and probabilistic model checking to DNA self-
assembly [13,29]. Both of these threads focus on a single biological function
rather than the entire system within their environment, including mutations
and evolution, and neither propose the use of formal assurance cases.

Finally, Denney et al. [10] propose dynamic safety cases which consider
through-life assurance. In this type of safety case, environmental conditions
change and emergent behaviors appear and the notion of continuous assurance
over the life of the system is needed. We view our assurance timeline as a vari-
ation a dynamic safety case, where not only the environment, but the software
itself is subject to random changes.

5 Conclusions and Future Work

In this paper we have shown that the emerging field of synthetic biology is a
novel direction for building safety assurance cases. We have illustrated how we
can build a safety case for an existing project from the iGEM competition. How-
ever, we also differentiate an SEBO assurance case in that there is an expected
evolution over time given the living nature of these systems. We show how the
assurance case can evolve in two ways. One simply requires new evidence, how-
ever the other may change the structure. We argue that the evolution itself can
be reasoned about and propose the use of an assurance timeline, an assurance
case for the evolution itself. This will provide arguments and evidence for the
necessary time intervals at which the assurance case will change. As future work
we will build larger, more complete assurance cases for other projects and work
with biological engineers to develop evidence. We will also explore the use of
regression testing techniques to reason about impactful change.
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Abstract. Safety case is one of system safety lifecycle products and should be
consistent with other lifecycle products like hazard analysis results. In this paper
we present a method of safety case integration with hazard tables based on the
use of parametrized argument patterns. We describe a hazard table metamodel, a
safety argument pattern and a mechanism of pattern instantiation using a linking
table which represents references to system lifecycle artefacts. We report and
comment results of a feasibility study of pattern application for medical device
hazard analysis. Finally we discuss the opportunities of applying such solution
to safety case development and maintenance and the perspectives of further
development of this approach.

Keywords: Safety case � Hazard table � Safety argument pattern � Infusion
pump � Medical device

1 Introduction

A safety case is a way of arguing system’s safety used in many industry sectors. In
recent years a growing interest in application of safety cases in healthcare can be noticed
[1–3]. Such interest is also reflected in regulatory requirements, in particular U.S. Food
and Drug Administration (FDA) published a guidance document for manufacturers of
medical devices (infusion pumps), strongly recommending delivering safety cases as a
part of pre-market notification [4]. It is expected that the safety case approach will be
extended for other medical devices in the coming years. The mentioned guidance is
complemented by other documents which address other safety-related aspects of
medical devices like software components [5] and security [6].

Safety cases are usually based on the results of hazard analysis. FDA recommends
tabular form of hazard analysis results presentation for medical devices containing
software premarket notifications [5]. The recommended standard describing the process
of hazard analysis for medical devices is ISO 14971 [7], which does not impose any
particular form of hazard analysis results presentation. Tabular presentation is descri-
bed by Jones and Taylor [8], who present an idea of transforming hazard tables into
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instantiations of argument patterns to be included in a safety case. They also provide an
example of a generic pattern.

Our goal is to develop a method to establish and maintain relationship between
safety case elements and hazard analysis results through the pattern instantiation pro-
cess. We use NOR-STA tool [9, 10] to develop safety cases and argument patterns. The
tool allows to save the safety argument in XML format conformant to OMG SACM
standard [11]. The approach we present is based on processing XML data for safety
cases and hazard analysis.

In Sect. 2 we present the background and related work including safety cases for
medical devices, safety argument patterns and pattern instantiations. In Sect. 3 we
describe the metamodel of hazard table and the safety argument pattern mapping to
hazard table elements. A case study of the instantiation process is presented in Sect. 4.
The achieved results and future work is discussed in Sect. 5. In Sect. 6 we discuss the
main conclusions to summarize the presented work.

2 Background

The work presented in this paper concerns safety cases for medical devices, safety case
patterns and pattern instantiation.

2.1 Safety Cases for Medical Devices

Safety cases (or assurance cases as referred to in many papers) are a relatively new tool
for managing safety of medical devices. One of the first research reports on safety cases
for medical devices was published in 2009 by Weinstock and Goodenough [12]. They
presented the example of an assurance case for the generic infusion pump and dis-
cussed the applicability of assurance case approach for medical devices, especially in
the context of FDA’s review processes. Ray and Cleaveland [13] introduce an approach
to the creation of assurance cases for pre-market submissions of medical devices. It
includes argumentation schemes of addressing hazards and providing mitigation
mechanisms. Wassyng et al. [14] propose capturing the requirements of a standard (or a
guideline) in the form of an assurance case template. As already mentioned, Jones and
Taylor [8] designed a safety argument pattern using data from hazard tables docu-
menting risk analysis process for a medical device.

A large repository of safety-related resources for medical devices can be found at
the Generic Infusion Pump Research Project website [15]. A number of contributions
from University of Pennsylvania was dedicated to several aspects of assurance cases
for medical devices e.g. a pacemaker assurance case [16], from_to pattern [17] or a
high-level safety argument for the PCA closed-loop system [18]. Also, Larson
developed a draft assurance case for Open PCA infusion pump as an example to
illustrate how to apply FDA guidelines [19].
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2.2 Safety Argument Patterns

The first ideas of safety argument patterns and their role in development of safety cases
were described by Kelly and McDermid in [20, 21]. The first catalogue of patterns was
included in Kelly’s PhD thesis [22]. In the following years the concept and applications
of patterns were further elaborated, mostly by the researchers affiliated with the
University of York (e.g. [23, 24]).

A number of pattern catalogues was published over the years: [22, 25–28].
Recently, Denney and Pai summarized the existing catalogues and provided a
description of six new patterns [29]. An online pattern catalogue including a substantial
set of patterns derived from the available sources has been published by Gdańsk
University of Technology in NOR-STA tool [30].

The process of pattern application is called instantiation and it requires to define
values for pattern parameters, which are specific for a given system [22]. Hauge and
Stølen [31] introduce a pattern-based method, called Safe Control Systems (SaCS),
which focuses on pattern compositions (integrating sets of patterns) and their instan-
tiations. Khalil et al. [32] describe a reusable pattern library for automotive safety cases
and the mechanism for their instantiation.

Denney and Pai [29] provide a formalized definition of safety argument patterns
which includes aspects of their instantiation. The mechanism of patterns instantiation
consists of an algorithm and data tables, which store traces between template elements
and their instantiations. The mechanism was implemented in AdvoCATE tool [33]. The
presented instantiation requires interaction from the user of the tool, who is supposed to
provide concrete values for pattern parameters. The earlier paper of the same authors
[34] focuses on assembling parts of a safety case on the basis of external artefacts in
tabular form: hazard tables and two kinds of requirements tables. Two argument pat-
terns for representing contents of hazard tables and requirements tables are proposed.
The contents of a hazard table and the structure of corresponding argument pattern are
specific to NASA standards and guidelines.

Hawkins et al. [35] present a way of pattern instantiation using a weaving model,
which is the main source of information for the instantiation program. The weaving
model stores the dependencies between the elements of safety argument patterns and
reference information metamodels, as well as additional interdependencies. Reference
information models of various notations and tools, based on different metamodels (e.g.
system components, errors) can be used to provide values for pattern parameters.

3 Safety Case to Hazard Table Relationship

Safety cases refer to hazards, their causes and control measures. Our work is based on
the hazard table format specified in [8] which includes the following table columns:

• Hazardous situation – circumstances in which people, property or environment are
exposed to a hazard;

• Causes of the hazardous situation – events and circumstances necessary to the
occurrence of hazardous situation;
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• Risk estimation before mitigation or severity of harm – risk arising from a haz-
ardous situation, calculated on the basis of probability of occurrence and severity of
consequences (or just severity if probability cannot be assessed);

• Control measure(s) – mechanisms applied by the manufacturer to reduce unac-
ceptable risk by addressing causes of the hazardous situation;

• Safety decision rationale – justification why a control measure is chosen and
considered to be effective;

• Verification of effectiveness (methods & objective evidence) – verification whether
control measure is effective in the context of design specifications and expected
behavior;

• Verification of implementation & objective evidence (validation) – validation
whether the control measure is fit for purpose in the context of device intended use.

We have specified a hazard table metamodel in the form of an UML class diagram
to precisely specify hazard analysis artefacts and their relationship (Fig. 1).

The model in Fig. 1 corresponds to top-down approach. We accept optional rela-
tionships (0..*) to address situations when hazard analysis is still in progress and is not
complete (for example control measures are not yet defined for a given cause). On the
other hand we do not accept low level artefacts (e.g. validation evidence) not connected
to any control measure. The hierarchy presented in Fig. 1 can be directly mapped to the
safety case argument hierarchy. The mapping is described in Table 1.

Safety argument pattern presented in Fig. 2 is based on this hierarchical relation-
ship. The pattern is expressed in textual hierarchical notation used in NOR-STA
software tool [36]. The notation is compatible to OMG SACM and includes its main
concepts. The types of the elements are denoted by icons and by mnemonics: C –

claim, A – argumentation strategy, F – fact, R – rationale, Ctx – context. Argument
elements related to hazard table columns are marked with a corresponding column
number (ID) specified in Table 1. One should note that NOR-STA notation does not
currently implement structural abstraction relations such as multiplicity and choice.
Temporary solution presented in Fig. 2 is to describe the relation in UML-like style:
“1..*”. NOR-STA notation is planned to be extended to cover structural abstraction.

Fig. 1. A metamodel of hazard table elements and their relationships.
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Table 1. Mapping between a hazard table and a safety case.

ID Hazard table column Safety case element

1 Hazardous situation Claim: hazardous situation is
mitigated

Context: hazardous situation
definition

2 Risk estimation/severity of harm Context: severity
3 Causes of the hazardous situation Claim: cause is addressed by control

measures
Context: cause description

4 Control measure(s) Claim: control measure is effective
Context: control measure description

5 Safety decision rationale Rationale: rationale for the choice of
control measures

6 Verification of effectiveness – methods and
objective evidence

Fact: control measure’s effectiveness
verified

Evidence: verification evidence
7 Verification of implementation and objective

evidence (validation)
Fact: control measure validated
Evidence: validation evidence

Fig. 2. A structure of a safety argument pattern based on hazard table.
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The presented safety argument pattern is simplified and does not cover issues like:
hierarchical hazard decomposition, re-evaluation of the residual risk following appli-
cation of control measures, mitigation strategies other than addressing causes of haz-
ardous situations. The real safety case would also have to be extended by arguments
and evidence demonstrating the confidence in safety claims. For example, one could
doubt whether hazard identification uncovered all hazardous situations. Such doubts
should be addressed by a separate confidence case or by local confidence arguments
supporting Rationale elements [37], in this case a confidence argument for R0 in Fig. 2.

4 Hazard Table Integration with Safety Case

Hazard analysis results mapping to safety case elements can be established in the safety
case pattern instantiation process. In this section we will present the use of para-
metrized patterns to integrate safety case and hazard table and to track the relationships.
First we will describe safety argument instantiation mechanism and then present how it
can be applied to safety case integration with hazard tables.

4.1 Pattern Instantiation Process

The objective of the instantiation process is to produce a safety argument compiled
from an argument pattern and references to the artefacts of types specified by pattern
parameters. Pattern parameters may refer to any system model or artefact.

Our basic assumption for pattern instantiation process is the use of XML repre-
sentation for all system models, the safety case and patterns. We introduce a linking
table to track relationships between models. The linking table is divided into two parts:

• Abstract part is created for each pattern to specify the type of referenced models and
the type of target elements for each pattern parameter. For example we can specify a
pattern parameter to be related to a ControlMeasure type specified in the hazard
object model (Fig. 1).

• Instantiation part defines relationships on detailed system model level. For each
pattern parameter a specific model element can be selected by the user or the
parameter value is entered manually.

Both parts of the linking table are presented in their context in Fig. 3. During the
instantiation process, a user has to select elements of a specified type in the system
model. Let’s take an example of {H1} parameter in the pattern presented in Fig. 2. The
abstract linking table can specify that {H1} parameter is related to objects of
HazardousSituation type in the hazard table class model (Fig. 1). During the instan-
tiation process, the user will be asked to point to an XML file for hazard table data and
then select objects of the HazardousSituation type. As a multiplicity operator [1..*] is
defined for {H1} parameter in the template, the user will be asked to select any number
of objects and an argumentation subtree will be created for each of them.
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4.2 Integration with Hazard Table Case Study

We will demonstrate the instantiation process for a simple example of a hazard
decomposition argument. All the input information used in the process is represented in
XML formal, as well as the final output. From a technical point of view it is an XML
transformation process. We will present model excerpts in XML format or GSN-like
diagrams. NOR-STA tool generates graphical argument diagrams, however some
symbols used differ a bit from standard GSN, for example the context elements. We
assume the differences will not impede understanding of the diagrams.

The pattern presented in Fig. 4 is a fragment of the pattern from Fig. 2. As XML
representation takes much more space than the diagram, we present only a small
excerpt containing claim C1 and context Ctx1.2, represented as XML in Fig. 5.

There are three parameters in this pattern fragment: hazardous situation {H1},
severity {Sev} and cause {H1.1}. The abstract linking table (Table 2) allows us to map
these parameters to hazard analysis metamodel elements (Fig. 1).

Fig. 3. Linking table and referenced models (arrows show references).

Fig. 4. Safety case pattern excerpt for hazard decomposition by causes.
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To instantiate the pattern we will need a hazard model for the system under
analysis. Our safety case example refers to PCA infusion pump system [38]. Excerpt of
the hazard analysis in XML format is presented in Fig. 6. This fragment describes one
cause (sensor failure) for a hazardous situation ‘air in line’. The possible consequence
is the injection of air into the patient bloodstream which can be dangerous for patient
life and health.

During safety argument’s instantiation the user has to select value for each pattern
parameter. The value can be an element of the hazard model of appropriate type or the
value may be entered manually by the user. The result of this step is recorded in the
instantiation linking table (Table 3). For each parameter, the table specifies corre-
sponding safety case elements (presented in Fig. 7) and system model elements (XML
excerpt of a hazard table in Fig. 6),

Fig. 5. XML representation of C1 and Ctx1.1 elements of the pattern from Fig. 4.

Table 2. Abstract linking table.

Pattern parameters System metamodel
Pattern name Parameter name Model type Element type

HazardDecomposition H1 HazardAnalysis HazardousSituation
HazardDecomposition Sev HazardAnalysis Severity
HazardDecomposition H1.1 HazardAnalysis Cause

Fig. 6. Model excerpt for one hazardous situation and one of its causes.
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The instantiation linking table directly points argument elements to the values of
the specified model elements.

The instantiation linking table is not deleted after the instantiation as it allows for
tracking the relationship even in case the model changes. In case any hazard table
element is modified, the change can be propagated to dedicated safety case elements
provided objects identifiers are maintained.

5 Summary of the Case Study and Further Work

The presented case study demonstrates how the linking table can be used to establish
the lasting relationship between a safety case and a hazard table. The established
relationship should be maintained throughout the system lifecycle. The linking table
can be used to track and propagate changes. Let’s consider a situation when a hazard
cause has been modified in the hazard table. Having the linking table filled in, we can
detect the change and react to it. When the change is to be propagated to the safety
case, we can re-instantiate safety case elements affected by the change or even restart
the whole instantiation process and produce new and up-to-date safety case. If we want
this process to be effective, we should forbid manual safety argument modifications or
limit them to safety case areas not covered by the automatic instantiation process.

Change propagation in the opposite direction is also possible, however we should
be careful in allowing changes to be propagated from a safety case to a hazard table.
From a technical point of view it will not be difficult to implement a two way change
propagation mechanism. The issue is whether it is necessary and secure to allow
changing the safety case without the actual update of the hazard analysis.

Propagation of structural changes is more difficult and will require extending the
linking table with additional information. As a structural change we understand adding
or removing any model element. For example when a new hazard cause has been

Table 3. Instantiation linking table.

Parameter name
(abstract linking table)

Safety case System model
Pattern root element id Elements ids Filename Element id

H1 C1 C1, Ctx1.1 PCA_hazards.xmi H1
Sev C1 Ctx1.2 PCA_hazards.xmi S1
H1.1 C1 C1.1 PCA_hazards.xmi C1

Fig. 7. Excerpt from the instantiated argument pattern.
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identified. Change propagation would require creation of a new argument subtree. And
vice versa, when an element is deleted (let’s imagine we have to delete one of the
hazard causes) from the hazard table, the change propagation mechanism would cause
removal of the related argument parts as specified in the linking table.

We plan to extend the linking table to comprehend data necessary for propagation
of structural changes in the hazard table. This would enable continuous consistency
maintenance between a safety case and a hazard table.

The pattern described in Sect. 3 bears similarities to Extended Hazard Directed
Breakdown Pattern [29], however the latter includes hierarchical decomposition of
hazards into lower-level ones. This is possible with the use of loop construct which is
not available in NOR-STA notation (as NOR-STA data structure is based on directed
graph, not hypergraph). We can use dedicated Link elements to represent loops in
NOR-STA notation to achieve the same effect.

6 Conclusions

We presented the approach of integrating safety cases and hazard tables based on the
use of parametrized safety argument patterns. The essential concept is the use of the
linking table which stores references to the elements of safety case and hazard table
both on abstract (pattern parameters, hazard table columns) and instantiation (claims,
hazardous situations etc.) levels. On the abstract (pattern) level we map pattern
parameters to metamodel elements and then on the instantiation level we map each
parameter value to a particular model element. The linking table allows to track the
relationships and maintain consistency between the safety case and hazard table.

This approach can be generalized from the hazard table presented in this paper to
other system models, provided we can specify a metamodel and provide an XML
interface, for example for AADL specifications. The approach can also be applied to
other safety argument patterns however the user would need to specify appropriate
system models for all pattern parameters.

This paper presents work in progress and the linking table may evolve as the
approach matures. The presented approach will be developed further to effective man-
agement and maintenance of the relationship between safety cases and hazard tables.
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1 Introduction

The DECSoS workshop at SAFECOMP follows already its own tradition since 2006. In
the past, it focussed on the conventional type of “dependable embedded systems”,
covering all dependability aspects as defined by Avizienis, Lapries, Kopetz, Voges and
others in IFIP WG 10.4. To put more emphasis on the relationship to physics,
mechatronics and the notion of interaction with an unpredictable environment, the
terminology changed to “cyber-physical systems” (CPS) and “Systems-of-Systems”
(SoS). Collaboration and co-operation of these systems with each other and humans, and
the interplay of safety, security and reliability are leading to new challenges in verifi-
cation, validation and certification/qualification respectively. Examples are e.g. the
smart power grid with power plants and power distribution and control, smart transport
systems (rail, traffic management with V2V and V2I facilities, air traffic control sys-
tems), advanced manufacturing systems (“Industry 4.0”), mobile co-operating autono-
mous robotic systems, smart health care, smart buildings up to smart cities and the like.

Society as a whole strongly depends on CPS and SoS - thus it is important to
consider dependability (safety, reliability, availability, security, maintainability, etc.),
resilience, robustness and sustainability in a holistic manner. CPS and SoS are a
targeted research area in Horizon 2020 and public-private partnerships such as the
ECSEL JU (Joint Undertaking) (Electronic Components and Systems for European
Leadership), which integrates the former ARTEMIS (Advanced Research and Tech-
nology for Embedded Intelligence and Systems), ENIAC and EPoSS efforts, where
industry and research (“private”) are represented by the three industrial associations
ARTEMIS-IA, AENEAS (for ENIAC, semiconductor industry) and EPoSS (for “Smart
Systems Integration”), the public part are represented by the EC and the national public



authorities of the member states which take part in the ECSEL Joint Undertaking.
Funding comes from the EC and the national public authorities (“tri-partite funding”:
EC, member states, project partners).

2 ARTEMIS/ECSEL: The European Cyber-Physical
Systems Initiative

This year the workshop is co-hosted by the ARTEMIS and Horizon 2020 projects

• CRYSTAL (“Critical Systems Engineering Factories”, http://www.crystal-artemis.eu),
• ARROWHEAD1 (“Ahead of the Future”, http://www.arrowhead.eu/),
• EMC2 (“Embedded Multi-Core systems for Mixed Criticality applications in

dynamic and changeable real-time environments”, http://www.artemis-emc2.eu/)
and

• R5-COP (“Reconfigurable ROS-based Resilient Reasoning Robotic Co-operating
Systems”, http://www.r5-cop.eu/)

• CP-SETIS (“Towards Cyber-Physical Systems Engineering Tools Interoperability
Standards”, http://cp-setis.eu/), which is not an ARTEMIS but a Horizon 2020
project, funded only by the EC, but executed by ARTEMIS-IA members.

The recently started co-hosting ECSEL projects are AMASS (Safety & Security
Multi-Concern Assurance), ENABLE-S3 (Automated Vehicles), IoSENSE (IoT and
Industry 4.0) and SemI40 (Semiconductor - Industry 4.0).

ARTEMIS was one of the European, industry-driven research initiatives and is now
part of the ECSEL PPP. The current ARTEMIS projects will, however, be continued
according to the ARTEMIS rules, but managed by the ECSEL JU. The five co-hosting
ARTEMIS projects are described briefly, the “newcomers” have just started this year so
it was too early to present first results before the deadline Spring 2016:

R5-COP focuses on agile manufacturing paradigms and specifically on modular
robotic systems. Based on existing and newly developed methods for a formal mod-
elling of hardware and software components, R5-COP will support model-based
design, engineering, validation, and fast commissioning. Using existing interface and
middleware standards, R5-COP will strongly facilitate integration of components from
various suppliers.

CRYSTAL, a large ARTEMIS Innovation Pilot Project (AIPP), aims at fostering
Europe’s leading edge position in embedded systems engineering by facilitating high
quality and cost effectiveness of safety-critical embedded systems and architecture
platforms. Its overall goal is to enable sustainable paths to speed up the maturation,
integration, and cross-sector reusability of technological and methodological bricks in
the areas of transportation (aerospace, automotive, and rail) and healthcare providing a
critical mass of European technology providers. CRYSTAL will integrate the contri-
butions of previous ARTEMIS projects (CESAR, MBAT, iFEST, SafeCer etc.) and
further develop the ARTEMIS RTP (Reference Technology Platform) and Interoper-
ability Specification.
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CP-SETIS (“Towards Cyber-Physical Systems Engineering Tools Interoperability
Standards”) is a H2020 support-action-like IA which aims to leverage on these various
initiatives mentioned in context of CRYSTAL by proposing and implementing sus-
tainable cooperation and governance structures to (a) facilitate long-term and sus-
tainable cooperation between all involved stakeholder organizations – End Users, Tool
Vendors, Research Organizations, Standardization bodies, R&D projects, etc. – and
(b) support extensions, advancements and formal standardization of the IOS.

ARROWHEAD, a large AIPP addressing the areas production and energy system
automation, intelligent-built environment and urban infrastructure, is aiming at enabling
collaborative automation by networked embedded devices, from enterprise/worldwide
level in the cloud down to device level at the machine in the plant. The goal is to achieve
efficiency and flexibility on a global scale for five application verticals: production
(manufacturing, process, energy production and distribution), smart buildings and
infrastructures, electro-mobility and virtual market of energy.

EMC2 is up to now the largest ARTEMIS AIPP bundling the power of innovation
of 100 partners from embedded industry and research from 19 European countries and
Israel with an effort of about 800 person years and a total budget of about 100 million
Euro. The objective of the EMC2 project is to develop an innovative and sustainable
service-oriented architecture approach for mixed criticality applications in dynamic and
changeable real-time environments based on multi-core architectures.

It provides the paradigm shift to a new and sustainable system architecture which is
suitable to handle open dynamic systems:

• Dynamic Adaptability in Open Systems, scalability and utmost flexibility,
• Utilization of expensive system features only as Service-on-Demand in order to

reduce the overall system cost,
• Handling of mixed criticality applications under real-time conditions,
• Full scale deployment and management of integrated tool chains, through the entire

lifecycle.

The AIPPs ARROWHEAD and EMC2 are addressing “Systems-of-Systems”
aspects in the context of critical systems, whereas CRYSTAL and CP-SETIS are
devoting their major efforts towards creating a sustainable eco-system of a CRTP
(Collaborative Reference Technology Platform) and the harmonization of efforts
towards an IOS (set of standards, specifications and guidelines for tool interoperability).

3 This Year’s Workshop

The workshop DECSoS’15 provides some insight into an interesting set of topics to
enable fruitful discussions during the meeting and afterwards. The mixture of topics is
hopefully well balanced, with a certain focus on cybersecurity & safety co-analysis and
on modelling, simulation and verification. Presentations are mainly based on the
ARTEMIS/ECSEL projects mentioned above and on nationally funded (basic) research
respectively industrial developments of partners’ companies and universities.
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The session starts with an introduction and overview to the ERCIM/
EWICS/ARTEMIS DECSoS Workshop setting the European Research and Innova-
tion scene. The first session on Analysis, Test and Simulation comprises four pre-
sentations: (1) An industrial case study on fault injection (Siemens and fortiss,
Germany), (2) “Reliability assessment of mobile robotics systems” (R5-COP project),
(3) “In-the-loop Simulations for Development and Test of a Complex Mechatronic
Embedded System” (CRYSTAL project) and (4) “Gate-Level-Accurate Fault-Effect
Analysis at Virtual-Prototype Speed” (German project EffektiV, Federal Ministry of
Education and Research, BMBF).

The second session covers the Automotive Domain by three papers: (1) “The use
of Standard SAE J3061 for Automotive Security Requirement Engineering” (EMC2

project, SCRIPT project (Vienna Business Agency)), (2) “Dynamic Safety Contracts
for Functional Cooperation of Automotive Systems” (Germany) and (3) “Time-
of-Flight based Optical Communication for Safety-Critical Applications in Autono-
mous Driving” (EMC2).

The session after lunch is dedicated to Safety & Cybersecurity Analysis and
Co-Engineering: (1) The new hazard analysis technique STPA based on system
thinking, as proposed by Nancy Leveson not long ago, is extended by STPA-SEC for
safety and security co-analysis and evaluated in a practical use case (ECSEL project
AMASS), (2) “Security Services for Mixed-Criticality Systems based on Networked
Multi-Core Chips” describes the results of the DREAMS project (Framework Program
FP7), and (3) “Analysis of Informed Attacks and Appropriate Countermeasures for
Cyber-Physical Systems” allows modelling and analysis of cybersecurity attacks on
CPS, as achieved through the German project SMARTEST funded by the Federal
Ministry of Economic Affairs and Energy (BMWi).

The last session of the day is about large and small Dependable Industrial
Applications: (1) “Advanced Security Considerations in the Arrowhead Framework”
is about results of the ARROWHEAD project on secure collaborative automation,
(2) “The Role of the Supply Chain in Cybersecurity Incidents at Drilling Rigs” covers
an important safety and security topic in a complex safety and environmental critical
industrial automation application, and (3) “Control of Cyber-Physical Systems using
Bluetooth Low Energy and Distributed Slave Microcontrollers” covers the small
(SME-related, low cost) side of dependable industrial CPS applications in industrial
control.

As chairpersons of the workshop, we want to thank all authors and contributors
who submitted their work, Friedemann Bitsch, the SAFECOMP Publication Chair, and
the members of the International Program Committee who enabled a fair evaluation
through reviews and considerable improvements in many cases. We want to express
our thanks to the SAFECOMP organizers, who provided us the opportunity to organize
the workshop at SAFECOMP 2016 in Delft. Particularly we want to thank the EC and
national public funding authorities who made the work in the research projects pos-
sible. We do not want to forget the continued support of our companies and organi-
zations, of ERCIM, the European Research Consortium for Informatics and
Mathematics with its Working Group on Dependable Embedded Software-intensive
Systems, and EWICS, the creator and main sponsor of SAFECOMP, with its working
groups, who always helped us to learn from their networks.
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We hope that all participants will benefit from the workshop, enjoy the conference
and accompanying programs and will join us again in the future!

Erwin Schoitsch

AIT Austrian Institute of Technology,
Digital Safety & Security Department,
Vienna, Austria
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Abstract. Non-intrusive, deterministic fault-injection tests provide evi-
dence for making reliable statements about the behavior of safety-critical,
real-time systems in the presence of software faults and component fail-
ures. These tests are derived from system safety requirements for the
detection and handling of value and time errors. That the approach pre-
sented here works for distributed, time-triggered systems that process
data cyclically and reserve resources exclusively for testing purposes has
been demonstrated by an industry study confirming the feasibility of the
concepts for a fail-operational electric car.

Keywords: Cyber-physical system · Fault-tolerant system · Safety
requirement · Fault injection test

1 Introduction

An open question for fault-tolerant, cyber-physical systems is how to reliably
demonstrate their safety properties. Since the root causes of failures are faults,
fault injection is an established practice for testing systems. There are promis-
ing approaches for injecting hardware and software models with faults without
adversely affecting the simulation time during simulation runs [1,9]. However
simulation-based fault-injection of executable system models ultimately fails to
hold for operation systems, essentially for two reasons: (1) By their very nature,
system models abstract implementation details and cannot be fully accurate in
every aspect for operational systems in the field that need to execute under tight
real-time constraints. (2) System environment models are hard to parametrize
accurately with realistic simulation data. Software Implemented Fault Injection
(SWIFI) is an established technique for fault injection into operational software
systems, but has a significant disadvantage: SWIFI changes the timing behavior
due to probe effects. The same disadvantage applies for tests in general and in
particular for fault injection tests that stimulate and check the behavior of dis-
tributed systems online solely on the network level (see for example [6]). Another

c© Springer International Publishing Switzerland 2016
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issue is the limited observability and controlability of systems under test. The
limits of SWIFI tests define the fundamental objective of this work: to accurately
test real-time systems with tight schedules while running free of side effects. The
scope of the system which these tests observe and control shall be maximized
to let concise tests illuminate otherwise obscure locations and behaviors of the
system under test.

The contributions of this work are twofold: (1) demonstration of determinis-
tic tests of safety requirements to provide reliable statements on fault-tolerant
systems in operation; (2) an explanation of when, where, and why such tests
provide reliable statements.

This paper is structured as follows: Sect. 2 introduces a consistent set of
terms for characterizing target systems, assigned safety requirements and tests.
Section 3 presents safety requirements used as driving examples. Section 4 char-
acterizes target systems that implement fault-tolerance mechanisms and enable
the execution of fault-injection tests without inadmissible probe effects. Section 5
specifies tests in ALFHA1 [5] that verify the fulfillment of the safety require-
ments. The tests are executed with VITE2. Section 6 checks the plausibility of
results that the test system produces. We use RACE3 as our reference target
system [2,4,8].

2 Terms

Throughout the paper we use a consistent set of terms for characterizing target
systems, assigned safety requirements and tests for these requirements. Some
terms are implemented as system predicates and used in test procedures (Sect. 5),
such as Platform Node, Dual Platform Node and Master Host. Figure 1
provides an overview of selected terms explained in the following.

Fig. 1. An example target system with platform network (rings) (Color figure online)

1 Assertion Language for Fault-Hypothesis Arguments.
2 Verification and Integration Testing Environment, www.aviotech.de.
3 Reliable Automation and Control Environment, www.projekt-race.de/en.

www.aviotech.de
http://www.projekt-race.de/en
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Platform Mechanism. Code block that implements a fault-tolerance mech-
anism such as, in general terms, error detection (ed), error recovery (er)
and/or error mitigation (em), or a basic operating system mechanism such as
input/output data processing and operation scheduling. Let M = {ed, er, em,
...} denote the set of all platform mechanisms. Each platform mechanism
m ∈ M can be instantiated to an instance i ∈ I(m), with I(m) denoting the
set of all instances {i1, i2, ...} of m.

Platform Node. Node for short. Computer n consisting of a CPU, a clock
generating cyclic ticks of constant duration, main memory, an access point to
the network of all platform nodes N = {n1, n2, ..., nn} of the target system,
an access point to a test network (not shown in Fig. 1 but in Fig. 3), and
deployed instances of platform mechanisms. Each computer n is connected to
either the “red” power circuit (nr) or to the “blue” power circuit (nb).

Platform. Instantiated and deployed platform mechanisms providing together
fault-tolerance (safety) mechanisms to platform applications.

Platform Application. Application for short. Code block that uses platform
mechanisms. Let A = {a1, a2, ...} denote the set of all platform applications.
Each platform application a ∈ A can be instantiated to an instance i ∈ I(a)
that is deployed on a platform node. I(a) denotes the set of all instances
{i1, i2, ...} of a. For clarity, we sometimes write ir or ib if the underlying
platform node n is connected to the “red” power circuit (nr) or to the “blue”
power circuit (nb).

Dual Platform Node. Dual node for short. Pair of platform nodes dn =
{ni, nj}, with ni, nj ∈ N running in lockstep mode and being connected
to the same power circuit. In context of a dual platform node ni and nj are
also called twin nodes.

Platform Control Computer. All dual platform nodes DN = {dn1, dn2, ...,
dnn}, with ∀dni, dnj ∈ DN : dni ∩ dnj = ∅; that is, dual platform nodes run
in disjoint node pairs.

Platform Periphery. All periphery nodes PN = {n : n ∈ N ∧ �dn ∈ DN :
n ∈ dn}. In other words, a node n belongs either to the platform periphery
(sensing process inputs or controlling process outputs) or to the platform
control computer.

Node Cycle. Instant of a cyclic process running in linear time [7] on a plat-
form node, also called local instant. The clock of platform node n generates
subsequent cycle numbers defined as numerical time series of node cycles
clock(n) = (0, 1, 2, ...). Cycle numbers of two different platform nodes ni, nj

can differ at the same global instant, e.g., when the platform is up and running
and when ni started before nj or when the clocks of ni and nj drift.

Platform Cycle. Instant of a cyclic process running in linear time on the plat-
form, also called global instant. At platform start, the cycles generated by
the clock of the first started platform node n determines the numerical time
series of platform cycles clock = (0, 1, 2, ...).

Variable. Addressable location v(n) in the data segment of the main memory
of platform node n. Platform mechanisms and platform applications exchange
values via variables during a cycle and between cycles. We denote the value of
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a variable v(n) at cycle x as v(n)x, or simply vx if n is irrelevant. Depending
on the context, x denotes a (local) node cycle or a (global) platform cycle.
Variables also take on values of input signals (process inputs originating from
sensors in the platform periphery) and output signals (process outputs tar-
geting actuators in the platform periphery).

Data Store. Section V (n) in the data segment of the main memory of node n
which contains all variables; that is, V (n) = {v1(n), v2(n), ...}. The data store
of the platform contains all variables in the data stores of all nodes; that is,
V =

⋃

n∈N

V (n). Typically only a subset W = {v1, v2, ...} of all variables V is

in the test scope, that is W ⊆ V and v1, v2 are different variables of possibly
different nodes. The data stores of all nodes contain some common variables
with node-specific values, e.g., node cycle and node state.

Trace. Chronologically ordered values of all variables in the test scope denoted
as (Wi)i=x..y = (Wx,Wx+1, ...,Wy). Depending on the context, x and y denote
(local) node cycles or (global) platform cycles.

System Function. All functionally coherent platform applications which
together transform input signals from system sensors (related to nodes in
the platform periphery) to output signals for system actuators (related to
nodes in the platform periphery) defined as F ⊆ A × A × ... × A. Instances
of one or more platform applications instantiate a concrete system function.

Host. Platform node n that executes an instance i of platform application a at
cycle x; that is, H(i)x = n ∈ N . If x is not relevant then we write H(i).

Master Host. Dual platform node MH whose nodes ni and nj both execute
instances ii and ij of the same platform application a at cycle x; that is,
MH(a)x = (ni, nj) ∈ DN with ii, ij ∈ I(a), so that H(ii)x = ni and
H(ij)x = nj . MH(a) operates as an open gate in the sense that MH(a)
transports signals or data to (input) and from (output) application a.

Slave Host. Dual platform node SH whose nodes ni and nj both execute
instances ii and ij of the same platform application a at cycle x in hot-standby
mode to MH(a)x; that is, SH(a)x = (ni, nj) ∈ DN with ii, ij ∈ I(a), so that
H(ii)x = ni and H(ij)x = nj . In contrast to MH(a), SH(a) operates as a
half-side open gate in the sense that SH(a) only transports signals or data
to (input) application a.

3 Safety Requirements

3.1 Application Context

Our example system is an electric car built using software-intensive electronic
devices. Safety-critical car functions, such as steering and braking, must be highly
available and work reliably. In the following, we consider only car steering. In
basic configuration, the steering system takes input from the driver, i.e., steer-
ing wheel position, and translates it into control commands for car wheels. An
advanced variant of the steering system is controlled by additional parameters
such as car speed, weight, weight distribution, yaw angle, and road and weather
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conditions. Regardless of the variant, the steering function, as well as the com-
munication network and the on-board power supply, must stay operational in
the presence of permanent or temporary faults in steering and non-steering car
components.

3.2 System Scope

We assume that every fault-tolerant function roughly consists of three parts:
input from the platform periphery (Fig. 1, sensors on the left), data processing in
the platform control computer (Fig. 1, central nodes) and output to the platform
periphery (Fig. 1, actuators on the right). Hence, the steering function consists of
three platform applications F = {(sws, sc, wc)} with: (1) steering wheel sensing
(sws) having two redundant instances I(sws) = {swsr, swsb} on two redundant
steering wheel sensors nr

1, n
b
2 ∈ PN : nr

1 = H(swsr) ∧ nb
2 = H(swsb); (2) central

steering control (sc) having four redundant instances I(sc) = {scri , scrj , scbi , scbj}
on four pairwise redundant, central nodes (nr

3,i, n
r
3,j), (n

b
4,i, n

b
4,j) ∈ DN : nr

3,i =
H(scri ) ∧ nr

3,j = H(scrj) ∧ n4bi = H(scbi ) ∧ n4bj = H(scbj) and (3) wheel control-
ling (wc) having two redundant instances I(wc) = {wcr, wcb} on two redundant
steering boxes nr

5, n
b
6 ∈ PN : nr

5 = H(wcr) ∧ nb
6 = H(wcb). Redundant commu-

nication links and redundant power circuits complete the system. The following
requirements concern availability properties of safety-critical system functions
and thereby the steering function.

3.3 Requirement R1: Redundant Input Signals

R1.1 Safety property: Continuous data available. Host n = H(i)x shall
provide a signal value to instance i of data processing application a in each node
cycle. The signal value shall be free from those errors that platform mechanisms
are responsible to detect and process.

For example, for car steering we assume the difference between two succeeding
steering angles (vx, vx−1) of a safe longitudinal movement to lie within variable
limits, that is, |vx − vx−1| ≤ delta, even when a redundant steering wheel sensor
fails. Driving situations, physical values and technical properties determine delta.

R1.2 Error detection. Host n = H(i)x shall check signal value v(n)x for errors
that the platform mechanisms shall detect before providing v(n)x to i.

R1.3 Error mitigation. Host n = H(i)x shall provide signal value v2(n)x to i
when v1(n)x is missing (no signal value received in cycle x) and if v2(n) is redun-
dant to v1(n) and free of errors. Redundant signals v1(n)x, v2(n)x from redundant
senders n1, n2 ∈ PN reach n in redundant, local variables v1(n), v2(n).

R1.4 Sender abstraction. Instance i of application a cannot distinguish redun-
dant signal values v1(n)x and v2(n)x.
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3.4 Requirement R2: Fail-Operational Data Processing

R2.1 Safety property: Master host available. Exactly one master host
MH(a)x shall execute application a at platform cycle x.

R2.2 Error detection. Slave host SH(a) shall detect the failed MH(a) within
d > 0 cycles, that is, in the interval from cycle x+1 to cycle x+d, when MH(a)
fails at platform cycle x.

R2.3 Error recovery. Slave host SH(a) shall become MH(a) within s > 0
cycles, that is, in the interval from cycle x + d′ + 1 to cycle x + d′ + s, when
SH(a) has detected the failed MH(a) after d′ cycles, with d′ ≤ d, and if the
master-selection strategy selects SH(a).

R2.4 Safety property: Master unavailable. Application a can run without
MH(a) for d + s number of cycles, that is, in interval from cycle x to cycle
x + d + s. Properties of the containing system function F and the situation
dependent system environment determine the durations d and s.

R2.5 Host abstraction. Instances of application a cannot distinguish MH(a)
from SH(a) at platform cycle x.

4 Target System

4.1 Platform Safety Mechanisms

The car system must stay fail-operational. To operate dependably such systems
are realized as distributed, redundant components with replicated communica-
tion channels and redundancy control to tolerate all faults. System functions
rely on redundancy handling and fault processing mechanisms built into the
system platform. These mechanisms factored out into the platform simplify the
implementation, integration, and testing of platform applications.

The heart of the example target system is the platform control computer built
of several dual nodes (DN in Fig. 1). Single or redundant sensors and actuators
in the platform periphery (PN in Fig. 1) connect the system to the system
environment. Platform safety mechanisms ({ed = error detection, eh = error
handling, ...}) are instantiated once for each node. They automatically detect
and handle value errors and time errors [3] or combinations thereof (Table 1).

Safe steering, for example, relies on the availability, reliability and integrity
of the underlying system platform. In case of an inconsistency in the platform
control computer, the faulty node immediately backs out so as not to jeopardize
steering. For detecting inconsistencies, dual nodes pairwise monitor input data,
output data and node states in every cycle (Table 1: f ). If the inconsistent dual
node is the master host of the central steering control, cyclic exchange of platform
states and checks within all other dual nodes detect the faulty master host
(Table 1: g). Then one of the hot standby slave hosts, still exchanging platform
states, takes over the role of the master host (Table 1: j, k). As the steering
function must constantly work alongside the redundant steering-wheel sensor,
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Table 1. Detecting (ed) and handling (eh) of value (V) and time (T) errors

Platform mechanisms Examples V T

Data plausibility ed a. Host checks value range in cycle + -

b. Host checks value delta in subsequent
cycles

+ -

Protocol integrity ed c. Host checks CRC of frames in cycle + +

d. Host checks frame counters in subsequent
cycles

+ +

e. Host checks frame arrival time - +

Node integrity ed f. Nodes of dual nodes cyclically compare
status

+ +

Platform integrity ed g. Dual nodes cyclically compare status + +

Vote signals (error
mitigation)

eh h. Host selects one of several redundant
signals

+ +

Compensate signal
(error mitigation)

eh i. Host provides safe signal: last valid or
default

+ +

Reconfigure platform
(error recovery)

eh j. Dual nodes determine one master
host

+ +

k. Dual nodes isolate faulty nodes + +

the platform mechanisms of the platform control computer check steering angles
(and signal values in general, Table 1: a–e), vote, and select one per cycle to
ensure that instances of the central steering control application obtain quality
signal values in every cycle (Table 1: h).

4.2 Non-Intrusive Test Probe Mechanism

For demonstrating system safety in different system configurations of varying
degrees of redundancy, the system platform must enable by design the test sys-
tem to non-intrusively monitor and manipulate signal values, communication
packets, system states and data quality indicators. Tests must be able to inter-
vene simultaneously and instantaneously in different nodes. A target system is
testable if it permits these interventions without accidentally altering system
functionality and timing—neither in lab tests nor in field tests. The following
properties of the system platform meet these requirements (Fig. 2):

Time-triggered architecture. Time-triggered systems behave deterministi-
cally because systems control events and not vice versa (as in event-triggered
systems). Hence schedulers activate instances of platform applications and plat-
form mechanisms in a time-triggered way.

Node data store. Instances of platform applications and platform mechanisms,
on each node, communicate via a data store. A node data store captures signal
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Fig. 2. Data flow in a node with built-in test probe

values, communication packets, node and platform states and quality indicators,
for one cycle and for every cycle anew.

Test probe. Each node contains a built-in test probe which is a platform test
service. Test probe operations are always scheduled at the very end of every
cycle. In this position, a test probe can (1) monitor data accumulated in the
data store during the last cycle (in Fig. 2: cycle x ) and (2) manipulate data for
the next cycle (in Fig. 2, cycle x+1 ).

Exclusive test resources. Test probes use exclusive time slots (CPU times),
memory areas, and access points to a separate test network. Time, space and
bandwidth available to a test probe are set to upper limits, constant across all
node cycles. Other mechanisms and applications cannot use resources of a test
probe, even when it is deactivated. Otherwise test probes would be intrusive.

5 Safety Tests

Test requirement R1: Redundant input signals (Sect. 3.3). The minimal-
istic system under test consists of three nodes: two sensor nodes determine the
position of the steering wheel (in Fig. 1: nr

1, n
b
2) and provide redundant steer-

ing angles to any central node (in Fig. 1: one of {nr
3,i, n

r
3,j , n

b
4,i, n

b
4,j}) that hosts

(n = H(i)) any instance (i) of the central steering control application (i ∈ I(sc),
enumerated in Sect. 3.2). The test idea is to manipulate the output of a sensor
with different values for different time periods so that the central node must
assume that the sensor has a temporary or permanent problem. While one sen-
sor fails temporarily or permanently (controlled by different test data vectors),
the central steering control shall obtain steering angles from the redundant,
error-free sensor.
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Test 1. Tolerate failing sensor
1: TEST Tolerate failing sensor WHAT 2 redundant sensors WHEN 1 sensor fails WITH
2: N1,a, N2,N3, // Control computer node N1, periphery nodes N2,N3 (sensors), application a

3: M, vM, vMx, // Node M where value vMx is injected into variable vM
4: c, cc, // Injection instant (cycle c) and injection duration (number of cycles cc)
5: t // Delta across two succeeding sensor (signal) values
6: EXPECT Application continuously receives correct signal values
7: PROVIDED THAT // System predicates checking the applicability of the test to the target
8: IsIn(DN, N1) AND IsIn(PN, N2, N3) AND N2 �= N3 // Sets DN and PN as def. in Sect. 2
9: IsHost(N1, a) // Node N1 executes an instance of application a as def. in Sect. 2
10: IsIn(V(M), vM) // Set V(M) of the names of all variables of node M as def. in Sect. 2
11: IsIn({N1, N2, N3}, M) // Via node M faults can be injected into one of N1, N2 or N3
12: CYCLE LENGTH 10 // Specified in milliseconds e.g., 10
13: MAX CYCLES 100 // Obtain definite verdicts within a maximum of 100 cycles
14: SETUP Tolerate failing sensor WITH N1, N2, N3 // Setup of target system (sys. under test)

15: START eNormal == N∗.State // Start test clock after SETUP when all nodes operate normally

16: INVARIANT // Safety property (R1.1, Sect. 3.3) must hold in each test clock cycle
17: N1.a.In == N1.a.In@[-1] DELTA t // In each test cycle compare current with former value

18: CYCLE // Test clock cycles
19: FROM c TO c + cc - 1 DO M.vM = vMx // Inject value vMx into variable vM of node M

20: STOP

Test 2. Tolerate failing master host
1: TEST Tolerate failing master WHAT 1 master and 1 slave WHEN Master fails WITH
2: N1i, N1j, N2i, N2j, a, // Dual nodes dn1, dn2 executing 4 instances of application a
3: vN1, vN1ix, vN1jx, // Inject values v1N1ix and v1N1jx in variables vN1 of N1i and N1j
4: c, cc, // Injection instant (cycle c) and injection duration (number of cycles cc)
5: d, // Number of cycles for the slave to detect the failed master (SH, MH in Sect. 2)
6: s // Number of cycles for switching the master
7: EXPECT Slave becomes master in time
8: PROVIDED THAT // System predicates checking the applicability of the test to the target
9: IsIn(DN, N1i, N1j, N2i, N2j) // Set DN as def. in Sect. 2
10: IsDN(N1i, N1j) AND IsDN(N2i, N2j) AND N1i �=N2i // Test for 2 different dual nodes
11: IsIn(V(N1i),vN1) AND IsIn(V(N1j),vN1) // Sets of variables V(N1i), V(N1j) as in Sect. 2
12: vN1ix �= vN1jx AND d > 0 AND s > 0
13: CYCLE LENGTH 10 // Specified in milliseconds e.g., 10
14: MAX CYCLES 100 // Obtain definite verdicts within a maximum of 100 cycles
15: CONDITIONS // System predicates which can change values during runtime
16: IsMH(Ni, Nj, A): eMaster == Ni.A.Authority AND eMaster == Nj.A.Authority
17: IsSH(Ni, Nj, A): eSlave == Ni.A.Authority AND eSlave == Nj.A.Authority
18: SETUP Tolerate failing master WITH // Setup of target system (system under test)
19: N1i, N1j, Delay1 = 0, // dn1 starts with no delay to become the master
20: N2i, N2j, Delay2 = 10, // dn2 starts with 10 cycles delay to become the slave
21: StateExpected = eNormal // Setup finished when all nodes operate normally
22: START IsMH(N1i, N1j) // Start test clock after SETUP, when dn1 is master.
23: INVARIANT // Safety property (R2.1 and R2.4, Sect. 3.4) must hold in each test clock cycle

24: (IsMH(N1i, N1j, a) XOR IsMH(N2i, N2j, a)) OR IsSH(N1i, N1j, a) OR IsSH(N2i, N2j, a)
25: CYCLE // Test clock cycles
26: FROM 0 TO c - 1 DO IsMH(N1i, N1j, a) // Master of a is dn1 because of starting earlier

27: FROM c TO c + cc - 1 DO N1i.vN1 = vN1ix; N1j.vN1 = vN1jx // Break the master
28: FROM c + d + s DO IsMH(N2i, N2j, a) // Master of a is dn2 after master switch
29: STOP

Test 1 checks safety property R1.1 throughout a test run as a test invariant
(line 17), also while manipulating a variable of one of the nodes under test for
cc cycles (line 19). It is not necessary for the test to simulate the environment
because, with RACE, nodes can start and run in a neutral mode processing
default values. With the steering wheel in neutral position (default), dependable
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delivery of steering angles to the central steering control can be tested with the
following test vector:

N1 = nr
3,i, N2 = nr

1, N3 = nb
2, M = nr

1, // Nodes of the target system (Fig. 1)
a = SteeringControl, // Corresponds to a2 in Fig. 1
vM = Out.SteeringAngle, // Corresponds to v5(n) in Fig. 2 with n = M = N2
vMx = 0xDEAD, t = 1.0, c = 30, cc = 2 // Irregular steering angles for 2 cycles

To test the reaction on permanent sensor failure, we extend the fault injection
period cc from 2 to, say, 1000 cycles. For scoping the fault region differently, e.g.,
when looking for fault reasons with exploratory tests during system maintenance,
the test can intervene in the data flow in the central node by manipulating the
signal quality attribute on the side of the signal receiver, with all other test vector
arguments unchanged, as follows: M = nr

3,i, vM = In.SteeringAngle.Error, vMx
= eErrorConfirmed. If these tests pass, then we can say that the central steering
control application is indifferent to the sender of the steering angle (R1.4), as
well as to other tested faults.

Test requirement R2: Fail-operational data processing (Sect. 3.4). The
minimally realistic system under test is a core platform of two dual nodes: dn1 =
(nr

3,i, n
r
3,j), dn2 = (nb

4,i, n
b
4,j) in Fig. 1. The test idea is to shock the nodes of the

master host (MH(sc)) of the central steering control (sc) application so that
(MH(sc)) backs out. The slave host (SH(sc)) shall become MH(sc) within the
required time period, including the time needed for error detection plus the time
needed for error recovery (switching from SH to MH).

Test 2 checks safety properties R2.1 and R2.4 (line 24) throughout a test
run, also while the test injects (line 27) different values vN1ix and vN1jx in
the duplicated variables N1i.vN1 and N1j.vN1 (line 3). The safety mechanisms
of both nodes must detect this inconsistency (shock) and switch off the master
host. The slave host takes over the master role (line 28) and continues executing
the platform application. With the following test vector, Test 2 does not inject
a fault into an arbitrary memory cell or I/O buffer. Rather, Test 2 attacks the
system under test later in the data flow where the platform’s error detection
service stores the quality (error) indicator for further processing:

N1i = nr
3,i, N1j = nr

3,j , N2i = nb
4,i, N2j = nb

4,j , // Platform control comp. (Fig. 1)
a = SteeringControl, // Corresponds to a2 in Fig. 1
vN1 = Twin.ErrorIndicator, vN1ix = 7, vN1jx = 0, c = 10, cc = 1, d = 3, s = 2.

6 Plausibility Check and Test Analysis

Safety tests written in ALFHA provide reliable statements on system behavior
without probe effects, because: (1) Target systems are designed for testability
with lifelong built-in test probes (special modules) and data stores decoupling
modules (code blocks), see Sect. 4.2; (2) Accurate and understood tests are writ-
ten in an appropriate domain-specific language that describes fault-injection
tests of testable target systems, see Sect. 5; (3) A test system with a central test
controller is decoupled from target systems via test probes and separate test
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networks, see Sect. 4.2 and sketched in Fig. 3; (4) Traces produced by the test
controller enable plausibility checks, e.g., Trace 1 for a tolerate failing master
host test (Test 2) of the target system RACE in operation, see Fig. 4.

Fig. 3. Test system connected to the target system (Fig. 1) by a separate star network
(Color figure online)

Fig. 4. Demonstration of the Tolerate failing master host test (Color figure online)

Once the test system and a testable target system are set up and connected,
the focus of plausibility checks moves to analyses of tests and related traces. Test
traces document the bindings between test (vector) arguments and parameters
of test procedures (Trace 1, lines 1–9) on the basis of structural descriptions
of target systems. The test controller uses target system descriptions also for
checking whether test cases can be applied to target systems before test runs
(e.g., Test 2, lines 9–11). In Trace 1 the test controller documents that in platform
cycle 298 test probes of nr

3,i and nr
3,j are instructed to manipulate variables

C (nr
3,i.Twin.ErrorIndicator) and G (nr

3,j .Twin.ErrorIndicator) in platform
cycle 308. Trace 1 filtered (1) for values that test probes send to the test controller
(gray lines, platform cycles 299, 300, ..., 309, ..., 398) and (2) for values of
variables that indicate the role of a dual node (green boxes, variables D and H
for dual node dn1, L and P for dual node dn2, MH = 3, SH = 1) shows that
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the target system (platform control computer in Fig. 1) satisfies requirement R2
(Sect. 3.4) for this test run. Snapshots of a RACE-specific trace visualizer (Fig. 4)
for another tolerate failing master host test of a RACE system can be mapped
to Trace 1 as follows: snapshot (a) corresponds to, e.g., platform cycle 308 (test
cycle 9) and snapshot (b) corresponds to, e.g., platform cycle 398.

Test Trace 1 Trace of a Tolerate failing master host test
1: T-DS 1.1 :A: nr3,i.Cycle # N1i = nr3,i, Node cycle in scope by default

2: T-DS 1.8 :B: nr3,i.State # N1i = nr3,i, Node state in scope by default

3: T-DS 1.23:C: nr3,i.Twin.ErrorIndicator # N1i = nr3,i, vN1 = Twin.ErrorIndicator

4: T-DS 1.44:D: nr3,i.SteeringControl.Authority # N1i = nr3,i, a = SteeringControl

5: ...
6: T-DS 2.23:G: nr3,j.Twin.ErrorIndicator # N1j = nr3,j, vN1 = Twin.ErrorIndicator

7: ...
8: T-DS 3.44:L: nb4,i.SteeringControl.Authority # N2i = nb4,i, a = SteeringControl

9: ...
10: #: A:B:C:D: E:F:G:H: I:J:K:L: M:N:O:P:
11: #===========================================
12: ...
13: CYCLE:298: :>: : :7: : : :0: : : : : : : : : : @9=1 // Controller tc in Fig. 3

14: instructs nr
3,i, nr

3,j to manipulate C, G in test cycle 9 for 1 cycle (see line 24 below)

15: CYCLE:299: 0:<:299:3:0:3:299:3:0:3:289:3:0:1:289:3:0:1: // Monitor A, B, ..., P
16: CYCLE:299: 0:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
17: CYCLE:299: 0:v: : : :3: : : :3: : : : : : : : : %26 // IsMH passes, line 26

18: CYCLE:300: 1:<:300:3:0:3:300:3:0:3:290:3:0:1:290:3:0:1: // Monitor A, B, ..., P
19: CYCLE:300: 1:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
20: ...
21: CYCLE:308: 9:<:308:3:0:3:308:3:0:3:298:3:0:1:298:3:0:1: // Monitor A, B, ..., P
22: CYCLE:308: 9:w: : : :3: : : :3: : : :1: : : :1: %24 // Invariant holds, line 24
23: CYCLE:308: 9:v: : : :3: : : :3: : : : : : : : : %26 // IsMH passes, line 26

24: CYCLE:308: 9:c: : :7: : : :0: : : : : : : : : : %27 // tp manipulate C and G

25: CYCLE:309:10:<: : : : : : : : :299:3:0:1:299:3:0:1: // Monitor I, J, ..., P
26: CYCLE:309:10:w: : : : : : : : : : : :1: : : :1: %24 // Invariant holds, line 24
27: ...
28: CYCLE:398:99:<: : : : : : : : :388:3:0:3:388:3:0:3: // Monitor I, J, ..., P
29: CYCLE:398:99:w: : : : : : : : : : : :3: : : :3: %24 // Invariant holds, line 24
30: CYCLE:398:99:v: : : : : : : : : : : :3: : : :3: %28 // IsMH passes, line 28

31: VERD 0 #=========================================== // Test passes (0: no errors)

7 Summary

The tests presented in this paper demonstrated a method of proving safety-
related statements about a fault-tolerant system, like “a steer-by-wire car
remains steerable when one computer of the central platform computer fails.”
More fault-injection tests for the same target at different points of attack (e.g.,
nodes and variables) and in different situations (e.g., degradation modes and
load levels) are necessary to increase the confidence in and precision of such
statements. Test probes permanently built into all nodes of a fault-tolerant,
cyber-physical system that executes time-controlled behavior provide the neces-
sary testability.
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Abstract. This article proposes a systematic approach to statistical testing for
cooperative systems consisting of autonomous mobile agents. Based on
Coloured Petri Net models of cooperative behaviour, it analyses different
sources of randomness and defines an automatic test case generation procedure
to derive cooperative scenarios according to a given operational profile. As an
example, the approach is applied to a model of trolleys moving within a com-
mon environment. The results allow for quantitative reliability estimations of
cooperative behaviour on the basis of statistical sampling theory.

Keywords: Reliability � Robots � Autonomous agents � Cooperation � CPN
modelling � Statistical testing � Operational profile

1 Introduction

For reasons of flexibility and cost efficiency there is an increasing tendency towards the
operation of autonomous systems in a common environment, thus yielding complex
systems-of-systems. These differ in an essential way from classical component-based
systems, in that components are newly developed or re-usedwithin a development project
in order to serve a common purpose, i.e. the service(s) to be provided by the system they
compose; on the other hand, the integration of independently developed and autono-
mously working agents into a new system-of-systems additionally requires sophisticated
a posteriori checks about the fulfilment of complex co-existence and cooperation rules.

The benefits offered at this higher level of interaction evidently concern both
economy and performance; in fact, this novel development and operation paradigm
allows to re-use pre-developed applications, at the same time aiming at enriching their
behaviour by additional functionality “emerging” from their interplay.

Intended emergent behaviour usually concerns the provision of complex services
requiring the cooperative performance, or at least the safe co-existence of different ser-
vices in a common operational environment. Typical examples concern robotic appli-
cations or car-to-car communication, where mobile agents perform individual tasks as
autonomously as possible, but can contribute to increase safe co-existence and perfor-
mance by easing individual decision-making through provision of diverse feedback
information, enabling agents to temporarily delegate decision-making or actions to other
agents provided with more appropriate sensing, perception or action capabilities,
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achieving a complex task by cooperative use of complementary individual capabilities,
supporting the safe parallelization of individual, heterogeneous operations within a
common environment.

Obviously, all benefits mentioned involve an increase in functional complexity due
to the resulting combinatorial behavioural multiplicity; if not appropriately analysed,
such complexity may induce unintended emergent behaviour, i.e. unpredicted inac-
ceptable behaviour resulting from the inappropriate interplay of autonomous systems.
Therefore, a thorough reliability analysis is of utmost importance; as usual, it must rely
on two successive assessment phases: a preliminary qualitative verification and vali-
dation phase devoted to maximising the chances of fault detection by means of sys-
tematic testing techniques, followed by a successive quantitative verification and
validation phase devoted to the probabilistic assessment of correct performance under
expected operational conditions.

While the former issue built the focus of past research effort, e.g. within the
ARTEMIS project R3-COP, the latter one still poses a serious challenge to the robotic
community and is being currently investigated in the ongoing successor project R5-COP.
The present article aims at illustrating some of the preliminary results meanwhile
achieved. It is structured as follows: after these introductory remarks, the benefits of
Coloured Petri Nets (CPN) in offering the required expressiveness and scalability are
shortly recollected and illustrated by an example addressing the cooperative behaviour of
linen-carrying trolleys within a hospital environment (Sect. 2). Successively, Sect. 3
addresses in more detail the difference between qualitative and quantitative reliability
analysis and summarise the progress already achieved with respect to the first target,
while stressing the challenge still posed by the second one. The following Sect. 4 pro-
poses a systematic procedure to analyse the operational variability of a cooperative
mobile application for the purpose of generating independent, operationally represen-
tative test data on which to base statistical testing. The procedure is subsequently
instantiated in terms of the example previously introduced. The results obtained are
presented in Sect. 5. They include the derivation of quantitative results as well as some
conclusions on benefits and limitations of the technique developed.

2 Modelling Cooperative Behaviour

2.1 Coloured Petri Nets

Especially for applications with ultrahigh reliability requirements as in case of safety
demands, the challenge posed by the task of verifying and validating the logic of
systems-of-systems is even higher than is already the case for ordinary centralised
automatic control software. In fact, an accurate reliability analysis of mobile agents must
address, in addition to classical reliability considerations concerning the autonomous
behaviour of each individual agent in a stand-alone operational mode, the combination of
several further aspects like the usage profile of the whole system-of-systems, the potential
modes of interplay between agents (such as communication, physical cooperation or
collision avoidance), the potential impact of environmental anomalies on individual and
cooperative system performance. The coincidental consideration of so diverse
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information evidently requires appropriate formal modelling techniques allowing to
address the underlying behavioural multiplicity at an adequate abstraction level. CPN
reveals as a particularly suitable modelling formalism; after a short recollection of its
highlights and benefits, its application to cooperative mobile agents will be demonstrated
in the light of an example inspired by a hospital logistic system based on
linen-transporting trolleys.

The modelling formalism offered by Coloured Petri Nets (CPN, [1]) revealed as
particularly suitable to achieve this task. Like for classical Petri Nets, the operational
semantic of the model is defined by allowing actions to take place via the “firing” of
corresponding CPN transitions. Such a transition firing takes place under given
pre-conditions captured by

• expressions annotating the ingoing arcs of the CPN transition to be evaluated in the
light of the data-specific tokens present in the corresponding input places; a legal
assignment of expression variables with available tokens is denoted as an enabling
variable binding;

• additional arc-unspecific predicates annotating the transition considered (so-called
transition invariants) and required to be fulfilled.

After firing a transition, the effect of the corresponding action is captured by a new
marking (CPN state) resulting from the previous one by

• removing from each input place of the CPN transition tokens in type and number as
indicated by the input arc expression w.r.t. the enabling variable binding;

• adding to each output place of the CPN transition tokens in type and number as
indicated by the output arc expression w.r.t. the same variable binding.

For further details concerning CPN syntax and semantics the reader is kindly
referred to [1]. A major benefit of CPN is the fact that it easily allows to separate

• static information on the net structure (places and transitions as well as directed arcs
connecting a place with a transition or vice versa) which can be taken to represent
all application-specific, invariant information like actions enabled by robot capa-
bilities within a pre-defined plant topology, and

• dynamic information on data-specific tokens (marking the CPN places) which can
be taken to represent all relevant, time-dependent information concerning current
tasks, agent states and temporary environmental conditions.

This neat separation between static and dynamic information by different graphical
entities adds to the scalability of the CPN language, as it allows an arbitrary increase in
number of cooperating agents without need to adapt the underlying net structure.
Moreover, it supports also the enrichment of regular behaviour by capturing additional
reconfiguration techniques via appropriate composition of generic actions.
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2.2 Example

The benefits and potential of CPN for the purpose of capturing and verifying complex
cooperative behaviour are illustrated by means of the following example inspired by a
hospital application based on autonomously moving, linen-carrying trolleys.

As sketched in Fig. 1, the working environment traversed by the trolleys is
assumed to consist of 4 concentric rings, each partitioned into 10 numbered segments,
resulting on the whole in 40 pairwise disjoint areas with the following properties:

• segments consist of inner borders, inner lanes, outer lanes and outer borders;
• for safety reasons, each area must be traversed by at most one trolley at any time;
• a subset of inner and outer borders provide working or parking facilities;
• a subset of inner and outer borders provide energy charging facilities;
• ease of moving or working may vary from segment to segment;
• inner lanes are to be traversed in clockwise, outer lanes in anti-clockwise direction.

The operator-defined missions to be assigned to the trolleys are characterised by

• a segment number to be targeted by the entrusted trolley;
• a subset of capabilities from {move, lift, tow}, where move is always required;
• the present mission status revealing the progress achieved so far, i.e. available,

assigned, completed or degraded (i.e. only partially achieved).

Available missions are assigned to idle trolleys fulfilling corresponding functional
requirements. As soon as it is assigned a new mission, the entrusted trolley approaches
as far as possible its target by moving in the direction requiring to traverse the shortest
distance, and proceeding as far as possible on free areas and with its energy resources.
When reaching its target, the trolley accesses the adjacent border, if free. In case a

Fig. 1. Plant topology with charging stations and hazardous areas
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passive obstacle or a parking trolley occupy the target border, it moves to the next free
border area on its way; finally, if the target border is momentarily occupied by a trolley
intending to leave, it switches its position with this trolley.

Before being assigned a new mission, trolleys recharge their battery. The following
reconfiguration strategies help increase flexibility and efficiency:

• as soon as it perceives an obstacle (including a defect trolley) on its way, a trolley
informs the operator and changes its direction by moving to the alternative lane;

• as soon as its energy level falls below a predefined threshold, the trolley accesses
the closest free charging station on its way, recharges its battery and resumes its
original mission, unless it can reach its target before the charging station;

• trolleys moving in consecutive areas build a common platoon led by the front
trolley in a queue-like way [2]; platoons are split as soon as a member needs to
branch off to reach its target border or to recharge.

In order to reduce the risk of deadlocks, it is assumed that the plant operator
manually initiates a shutdown if at least 2 obstacles were sensed and reported.

The CPN modelling the application described above allows to store the temporary
information concerning trolleys, missions and environment in 4 CPN places:

• ‘Mission Pool’ stores information on current missions still available or ongoing;
• ‘Finished Missions’ stores information on missions totally or partially concluded;
• ‘Robot Platoons’ stores information about trolleys including moving formations;
• ‘Areas’ stores information about variable environmental properties.

The behavioural model is based on 11 CPN transitions representing corresponding
atomic actions, where the following 5 CPN transitions relate to regular behaviour not
requiring any conflict resolution:

• ‘Assign Mission’ represents the entrustment of idle trolleys with new missions;
• ‘Move Forward’ represents the stepping forward of a single trolley or of a whole

trolley formation by one segment length either on the inner or on the outer lane;
• ‘Move To Border’ represents the movement from lane areas to adjacent border

areas;
• ‘Finish Mission’ represents the successful conclusion of a mission;
• ‘Charge’ represents a trolley recharging its battery.

On the other hand, the following CPN transitions help avoid occupied areas pre-
venting trolleys from proceeding:

• ‘Change Lane’ represents the movement of an individual trolley or of a trolley
platoon towards the adjacent area on the alternative lane;

• ‘Switch Border Lane’ represents the switch of position between a trolley on a lane
area encountering a trolley on an adjacent border area;

• ‘Switch Lane’ represents the position switching of facing trolleys on adjacent lanes;
• ‘Find Alternative Finish Area’ represents the movement to an alternative target

border.
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Finally, the following 2 transitions model the building and splitting of formations:

• ‘Join Platoon’ represents the autonomous partial and temporary release of deci-
sional autonomy of a trolley determining to follow another trolley;

• ‘Leave Platoon’ represents the restoring of the full decisional autonomy of a pla-
toon member leaving a platoon formation.

In view of the variety of data types and of the control logic complexity involved, a
complete and legible CPN representation illustrating all transitions guards and arc
expressions is beyond the spatial scope of this article. For this reason, the represen-
tation shown in Fig. 2 is limited to the underlying net structure.

3 Model-Based Reliability Analysis

Qualitative Reliability Analysis. A preliminary approach consists of validating the
robot behaviour w.r.t. test scenarios covering as accurately as possible the functionality
encoded in the CPN. Based on different CPN entities, several objectively reproducible
coverage measures have been considered, e.g. [3, 4]. While [4] focuses on generic
actions or system snapshots by use of CPN transitions, transition pairs and states, [3]
allows for different levels of behavioural expressiveness by use of CPN transitions,
events and state pairs.

Corresponding test case generation tools based on analytical search algorithms or
heuristic multi-objective optimization techniques were successively developed [3].
Conclusions on system reliability as perceived during structural testing can be merely of
qualitative nature, as test case selection exclusively depends on the CPN net structure and
marking and does not refer in any way to the expected, planned or experienced usage.
Moreover, most CPN coverage criteria depend on the initial marking; CPN events and
state pairs, for example, are defined w.r.t. given initial conditions which are likely to vary
throughout plant operation. Therefore, though beneficial as a preliminary, fault detection

Fig. 2. Net structure of CPN model (rectangles denote CPN transitions, ellipses denote CPN
places)
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approach, structural testing is not considered as appropriate for the purpose of deter-
mining meaningful reliability estimations at predefined confidence levels.

Quantitative Reliability Analysis. By definition, reliability denotes the probability of
survival of an agent in a given time interval under given operational conditions. The
latter refer to any variable aspect potentially exerting influence on system performance.
In case of centralised applications, the major variability factor typically concerns the
user-specific demand profile reflecting both the relative frequency of functional
demands and the distribution of data per functional demand. An estimation of the
expected operational profile can be used for the purposes of

• generating a data-independent sample of operationally representative test cases
executing independently (i.e. by memoryless sequencing), or

• extracting from operational experience such a data-independent sample of opera-
tionally representative runs executing independently [5].

In both cases, the resulting sample can be analysed in the light of statistical sam-
pling theory to derive sound reliability figures [6]. More precisely, in case of an event
occurring a number k of times within a sample of size n, its probability p can be bound
at a given confidence level a by

pað0Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi

1� an
p

if k ¼ 0 ð1Þ

paðkÞ ¼
ðkþ 1Þ � F2 kþ 1ð Þ;2 n�kð ÞðaÞ

n� kþðkþ 1Þ � F2 kþ 1ð Þ;2 n�kð ÞðaÞ
otherwise ð2Þ

While the estimation of the operational profile already poses serious problems in
case of centralised automatic controllers, this challenge becomes even harder in case of
parallel multi-tasking operation where several agents are assigned individual missions
in a fully asynchronous way; in addition, agents may influence each other in terms of
decision-making and action and must react to anomalous internal or environmental
conditions by counteractions. In such cases the nature of randomness governing the
operational profiles is not simply restricted to the intended user’s demands, but must be
rather extended to include unintended random effects like hazardous environmental
conditions, premature consumption of resources and conflicting decision-making
among agents. An extensive, systematic analysis of random sources is proposed within
the scope of the next chapter.

4 Model-Based Instantiation of Operational Profile

4.1 Systematic Analysis and Generation of Random Events

In analogy to the definition of the CPN model it is suggested to structure a preliminary
analysis of the operational profile on the basis of the triple (users’ demands, agents,
environment) [7], distinguishing for each of the 3 elements between permanent
information and variable information:
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• users’ demands consist of a time-varying number of individual demands, where
some demands already exist upon operation start, while others follow and each
demand includes a permanent part (the functionalities to be provided and the
location(s) to be accessed) and a variable part (its current progress status);

• the set of agents consists of a fixed number of units, each characterised by its
identification number and variable information on the availability of its resources;

• the environment consists of a fixed number of areas characterised by permanent
information (identification number, facilities hosted, risk), as well as of variable
information on accessibility.

Therefore, the randomness governing operation must be simulated by two-fold ran-
dom generation: first, an initial marking is generated according to a preliminary estima-
tion of the users’ needs. Successively, intermediate markings are repeatedly manipulated
to represent the arising of newmissions or the accidental occurrence of functional failures
and/or of passive obstacles according to predefined probabilistic distributions. To do so,
inherent dependencies between the occurrences of such anomalies must be analysed
beforehand. Moreover, in order to be able to apply formulae (1) resp. (2) relying on
statistical sampling theory, it must be taken care that test case definition supports the
independence of test case executions, preferably without enforcing an external resetting
intervention. Both aspects will be considered in the next section.

4.2 Example

Test data generation must rely on predefined data types underlying the token marking.

Areas. At any time, an area is represented as a 5-tuple consisting of: segment number
(integer between 1 and 10); area type (inner border/inner lane/outer lane/outer border);
occupation status (free/active robot/passive robot/further obstacle); danger
(normal/risky); availability of charging station (Boolean).

Robots. At any time, a robot is represented as a 7-tuple consisting of: unique identifier
(integer between 1 and 5); segment number (integer between 1 and 10); area type (inner
border/inner lane/outer lane/outer border); target segment (integer between 1 and 10);
rotation movement (clockwise/anti-clockwise); functional capabilities offered (Boolean
triple formoving, lifting and towing capabilities); energy level (integer between 0 and 60).

Missions. At any time, a mission is represented as a quadruple consisting of: target
segment (integer between 1 and 10); functional demands (Boolean triple for moving,
lifting and towing capabilities); status (available/assigned/completed/degraded); robot
entrusted (integer between 1 and 5 or −1 if status available).

In addition to the basic properties introduced in Sect. 2, operation was assumed to
rely on the functional capabilities provided by the 5 robots as shown in Table 2 and on
risk levels and availability of charging facilities per area as shown in Table 3.

Moreover, forward movement by one segment was assumed to require 3 energy
units in case of autonomous stand-alone or formation front trolleys, while trolleys
passively following a front robot were assumed to consume only 2 energy units for the
same movement thanks to the simpler sensing and recognition tasks involved.
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Dependencies. Before starting with the random generation of scenarios, it is important
to identify stochastic correlations restricting test data selection as the following ones:

• between mission targets and areas: the probability of a segment being a target is
likely to depend a. o. on its being suitable for loading tasks (see Table 4);

• between mission functions and areas: given functionalities (except for moving) are
more likely to be required in certain locations than in others (see Table 5);

• between initial robot positions and areas: as long as robots can successfully carry
out their missions, they will end on an inner or an outer border, where they will start
their next mission (see Table 6);

• between functional failures and areas: the failure probability of robot functions is
likely to depend on the risk level of its sojourn area (see Table 7).

Based on these inherent dependencies, test case generation must take into account
both intended and unintended random sources. Intended demands are initially simu-
lated by uniform random generation of 3 to 7 missions. During execution, new
available missions were randomly added to the mission pool such that after each
transition firing at most one new mission was generated and that the number of tran-
sitions firing between successive mission generations was assumed to be binomially
distributed with parameters n = 30 and p = 0.3.

Unplanned behaviour includes random physical failures of robots (where aging and
wear-out effects were outside the scope of the article) as well as the occurrences of
external obstacles. Both are simulated by random manipulation of initial and inter-
mediate marking(s). For any robot, random physical failures are independently injected
before any transition firing by changing its corresponding functional capability
parameter at a probability determined by the risk level associated with its momentary
sojourn area (see Table 7). On the other hand, the sudden occurrence of a passive
obstacle in a free area can be simulated before any transition firing by changing its
occupation parameter at probability 0.005 %.

This random mission generation procedure is interrupted as soon as one of the
following stopping criteria is fulfilled:

• every intact robot has successfully achieved at least one mission;
• every intact robot has been assigned a mission but cannot proceed due to deadlock;
• 2 or more obstacles are present in different areas (leads to operation shutdown).

After every test case execution, any functional incapability and any obstacle are
assumed to be removed. By further requiring that after mission completion the suc-
cessful robots fully recharge their batteries, the independent execution of successive
test cases can be ensured, thus enabling the application of statistical sampling theory.

5 Results

The test case generation procedure introduced in Sect. 4 was implemented with the
help of CPN Tools [8] to derive an independent sample of 4606 test cases. These test
cases were subsequently evaluated in terms of model-based reliability and availability
estimates by distinguishing between the following cases:
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• whether the presence of at least 2 obstacles would have resulted in a human
intervention (case denoted as shutdown);

• whether 1 or more intact robots could be prevented from moving further by 1
obstacle or any other intact robots (case denoted as livelock);

• whether all robots could continue operating in the absence of obstacles and even in
the presence of at most 1 obstacle (case denoted as OK).

The results are shown in Table 1, where the 54 livelocks identified could be further
partitioned into 2 disjoint classes:

• type 1-livelocks denote the case where 1 intact trolley is prevented from leaving a
border area by an obstacle on the adjacent lane area;

• type 2-livelocks denote the case where 4 robots on 4 adjacent lane areas prevent
each other from carrying out a circular manoeuvre.

The application of sampling theory (see Sect. 3) to this independent sample
yields the following estimations at a confidence level of 95 %:

p0:95ðshutdownÞ ¼
ð96þ 1Þ � F2 96þ 1ð Þ;2 4606�96ð Þð0:95Þ

4606� 96þð96þ 1Þ � F2 96þ 1ð Þ;2 4606�96ð Þð0:95Þ
� 0:0246

Similarly, the livelock probability can be bounded by p0:95ðlivelockÞ � 0:0147.
On the other hand, unreliable behaviour due to shutdown or livelock conditions was

observed in 150 test cases, its probability being bounded by p0:95ðshutdown
or livelockÞ � 0:0372:

In particular, this means that – assuming model accuracy and faithful implemen-
tation – the probability of reliable operation (in spite of sporadic obstacles) would
amount to ca. 0.9628 at the same confidence level. Obviously, accurate reliability
estimations can only be achieved by running the test sample in a real environment.
When this may require a prohibitive effort, it may be considered to restrict field testing
to the most critical scenarios identified as well as to filter operational data in order to
obtain operational independent samples of operating experience [5].

Table 1. Results (‘n.a.’, denoting ‘not applicable’, refers to impossible combinations of events)

# test cases

# obstacles Shutdown Livelocks OK
Type 1 Type 2 Types 1 and 2

0 0 n. a. 10 n. a. 3975
1 1 failed robot 0 7 0 0 28

1 passive object 35 2 0 453
Partial sum 42 2 0 481

� 2 96 n. a. n. a. n. a. n. a.
Sum 96 54 4456
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6 Conclusion

This article proposed a systematic approach to statistical testing for cooperative sys-
tems consisting of autonomous mobile agents. Based on Coloured Petri Net models of
cooperative behaviour, it analysed different sources of randomness and defined an
automatic test case generation procedure to derive independent cooperative scenarios
according to a given operational profile.

As an example, the approach was applied to a model of 5 trolleys moving within a
hospital environment. The evaluation of the resulting sample allowed for both quali-
tative insight in terms of types of anomalous scenarios and quantitative insight in terms
of conservative reliability estimations based on statistical sampling theory.

To overcome the main limitations of the approach presented, namely its depen-
dence on model accuracy and its requiring considerable testing effort, it is suggested to
make use of operating experience such as to extract significant independent samples by
appropriate filtering of operational data.
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Appendix

See Tables 2, 3, 4, 5, 6 and 7.

Table 2. Initial function availability of robots (-: function unavailable, X: function available)

Trolley ID Move Lift Tow

1 X X -
2 X X -
3 X - X
4 X - X
5 X X X

Table 3. Risk level and charging facility per area (-: normal, X: risky, N: no charge, Y: charge)

Segment no./type 1 2 3 4 5 6 7 8 9 10

Inner border -, N -, N -, N -, N -, N X, Y -, N -, N -, N -, N
Inner lane -, N -, N -, N -, N -, N -, N -, N -, N X, N X, N
Outer lane -, N -, N X, N -, N -, N -, N -, N -, N -, N -, N
Outer border -, Y -, N X, N -, N -, N -, N -, N -, N -, N -, N
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Table 4. Probability of areas being mission targets

Segment number 1 2 3 4 5 6 7 8 9 10

Probability 0 1/6 1/6 1/12 1/12 0 1/6 1/6 1/12 1/12

Table 5. Probability of areas being mission targets with given functional demands

Segment no. 1 2 3 4 5 6 7 8 9 10

Only move - 0.1 0.1 0.1 0.1 - 0.1 0.1 0.1 0.1
Move and lift - 0.5 0.5 0.3 0.3 - 0.3 0.3 0.1 0.1
Move and tow - 0.3 0.3 0.2 0.2 - 0.5 0.5 0.6 0.6
Move, lift and
tow

- 0.1 0.1 0.4 0.4 - 0.1 0.1 0.2 0.2

Table 6. Probability of segment types being robot starting positions

Inner border Inner lane Outer lane Outer border

0.5 0 0 0.5

Table 7. Failure probability of robot functions in normal and risky areas

Area function Move Lift Tow

Normal 0.01 % 0.1 % 0.1 %
Risky 1.00 % 0.1 % 0.1 %
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Abstract. Simulations are widely used in the engineering workflow of
complex mechatronic embedded systems in various domains, such as
healthcare, railway, automotive and aerospace, for analyzing, testing and
validating purposes. This paper focuses on the development and test of the
control software of complex mechatronic embedded systems from the per-
spective of software interfaces (e.g., driver APIs) and presents a systematic
approach for testing the control software during the various stages of an
engineering process. Since we assume that the physical (hardware) compo-
nents of an under-control plant could be replaced with simulation models,
various kinds of in-the-loop simulations, ranging from MiL to HiL, can be
consequently acquired. Additionally, we present a mathematical model of
MESes required to formally describe the approach and also a healthcare
case study to which our approach was applied.

Keywords: Development of mechatronic embedded systems · In-the-
Loop simulations · Software-in-the-Loop (SiL) · Hardware-in-the-Loop
(HiL) · Driver APIs

1 Introduction

A Mechatronic Embedded System (MES) typically consists of complex combi-
nations of hardware and software components. Such a system is often software-
intensive, and therefore the development and test or evolution of its control soft-
ware is largely costly (time and money) over the development process. Due to
this software complexity, manufactures and OEMs are interested in techniques
and tools to shorten the development, verification and validation engineering
workflow (typically V model-based), while maintaining or even improving the
quality of the control software and in turn the entire product.

For instance, in recent years, simulations have been widely used during
the development and test of MESes, especially for the control unit, in differ-
ent domains, such as healthcare, railway [5], automotive [7], and aerospace.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-45480-1 11
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The key reason is to discover faults and inconsistencies with design in advance
without postponing tests until the availability of implemented control software
or of hardware components of the plant, which might be under parallel develop-
ment. It can also be used for comparing different alternatives prior to taking a
critical design decision. In complex embedded systems, there are well-know sim-
ulation techniques in which a control unit can be tested against its under-control
plant, while different abstraction levels of the control and the components of the
plant could participate in the simulations. Some examples of these techniques
include Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), Processor-in-the-
Loop (PiL) and Hardware-in-the-Loop (HiL) simulations, which differ from each
other based on the level of abstraction.

For instance, MiL is a technique, with the highest abstraction, in which
there is no target hardware involved in the system and only simulation models
are integrated for testing and validating purposes. On the other hand, HiL,
among other definitions, is a simulation technique, with the lowest abstraction,
in which a target control unit is tested while connected to an under-control,
fully-simulated plant.

Deploying in-the-loop simulations, especially HiL, to accelerate the devel-
opment and test of embedded systems in various domains and applications has
been widely investigated [1–4]. However, these works mostly focus on in-the-loop
simulations to validate different control algorithms in various domains, such as
power electronic systems and mechanics.

In this paper, however, we are interested in looking at the problem of the
development and test of the control software of a MES from the higher-level
perspective of driver APIs of the plant. Through these APIs, a MES’s control
software controls the plant, typically via other sub-control systems. We consider
these sub-control systems as part of the MES’s plant. The in-the-loop simulation
works in the literature mainly focus on validating these sub-control systems
unlike this work that concentrates on the higher-level control software of a MES.
To clarify more the research question, assuming that the under-development
control software is going to be tested against the plant, given the driver APIs of
the plant components, such as motors and sensors, we investigate a systematic
way for testing such control software and its interaction with the plant through
the APIs. It is essential to note that not all the components of the plant must
be physically available. This means that we can arbitrarily replace any number
of physical components with their simulated counterparts.

By solving this problem, we can consequently provide the engineers of a
MES’s control software with a mechanism by which various in-the-loop simula-
tions in different abstractions could be realized.

Furthermore, observing the increasingly widespread adoption of the Model
Based System Engineering (MBSE) paradigm, our solution could benefit from
MBSE for the development of MESes. Because, since MBSE operates based on
models throughout an entire engineering process, our approach could enjoy from
MBSE by deploying, for example, early executable models of a plant for testing
the early model of the control software.
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A general idea of this paper was published in [6]. In this paper, we present
the following contributions:

1. A mathematical model for a MES and running in-the-loop simulations, which
can be found in Sect. 2.

2. A formal explanation of our methodology is addressed, which can be found
in Sect. 3.

3. A detailed explanation of an industrial case study from the healthcare
domain to which the methodology was applied, which can be found in Sect. 4.

Finally, Sect. 5 concludes this paper and presents the future directions of this
work.

2 System Model

In this section, we introduce the key concepts of our system model (see Fig. 1
for an overview). The model considers that a MES is composed of components
that interact solely via well-defined interfaces. For the scope of this paper, we
assume that all systems are built from a known set of components taken from a
fixed repository named R.

Definition 1 (Repository). The repository R is a pair (R.I,R.C), where R.I
is a set of interfaces and R.C is a set of components.

To enforce correct interaction patterns between components, some detail
about their interfaces needs to be available.

Definition 2 (Interface). An interface i ∈ R.I is a pair (i.n, i.s) where i.n
is a unique name, and i.s is a set of signatures (prototypes) of methods, i.e.,
method names with input/output parameters.

Fig. 1. System model overview
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Occasionally, we need to express that sets of interfaces are identical apart
from the names that make each interface unique. For this, we introduce the
notion of signature equivalence.

Definition 3 (Signature Equivalence). Two sets of interfaces I1, I2 ⊆ R.I
are signature equivalent, denoted by I1 ≡sig I2 when their bags of signatures are
equal, i.e., when

⊎
(n1,s1)∈I1

{s1} =
⊎

(n2,s2)∈I2
{s2}

A component uses interfaces both to provide functionality to its environ-
ment and to require functionality from other components. Thus, its provided
functionality arises as a combination of its own implementation and the func-
tionality obtained via the required interfaces.

Definition 4 (Component). A component C ∈ R.C is a quadruple
(C.n,C.Ip, C.Ir, C.m), where C.n is a unique name, C.Ip, C.Ir ⊆ R.I is the set
of its provided and required interfaces, respectively, and C.m is the C’s imple-
mentation, which is a set of implemented artifacts. Moreover, we denote the set
(C.Ip ∪ C.Ir) (i.e., all the interfaces) by C.I.

Based on the nature of its implementation, we distinguish two types of
components.

Definition 5 (Component Type). A component is called a hardware (physi-
cal) component when its implementation is given by actual piece(s) of hardware,
such as sensors or motors. It is, however, called a simulated component, if it is
made of executable simulation model(s). A component whose implementation is
of software but still need to be embedded in the targeted device is also called a
simulated component.

The interaction patterns between the components of a system are captured by
bindings. Each binding involves a pair of interfaces of opposite roles, such that
all methods required by one component are provided by the other. However,
within a binding, not all provided methods need to be required.

Definition 6 (Binding). A binding between components from R is a quadru-
ple (C1, i1, C2, i2), where C1, C2 ∈ R.C, i1 ∈ C1.Ip, and i2 ∈ C2.Ir such that
C1.n �= C2.n and i2.s ⊆ i1.s.

For the purpose of an in-the-loop simulation, a MES is divided into two parts:
control software1 and a plant. In contrast to the control software component,
which is of the simulated component type, the plant may consist of the both
component types, simulated and hardware. Furthermore, in order to perform
an in-the-loop simulation of a system, the bindings present between the control
software and the plant must satisfy certain rules.
1 In this work, our focus is on the software part of a MES’s control than on the entire

control unit.
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Definition 7 (Valid System). A valid system is a triple (S, P,B), where S ∈
R.C is a simulated component called the control software, and P ⊆ R.C \ {S}
is a set of components called the plant. In contrast to S, the components of P
may be of either type, i.e., a plant may consist of both simulated and hardware
components. Furthermore, B is a set of bindings such that:

1. ∀ir∈S.Ir :
[∃C∈P,ip∈P.Ip : (C, ip, S, ir) ∈ B

]

2. ∀ir∈P.Ir :
[∃C∈P,ip∈S.Ip : (S, ip, C, ir) ∈ B

]

where P.Ip =
⋃

C∈P C.Ip and P.Ir =
⋃

C∈P C.Ir.

In terms of this system model, a simulation is an execution of a valid system
in which one or more components of the plant are simulated components.

3 Methodology

In this section, we present our methodology that consists of the introduction of
two (special) components to be inserted at predefined locations into the archi-
tecture of our approach. First, we state the objectives that must be achieved
by these components. Next, we discuss the individual requirements imposed on
these components, their locations in the system in the architecture, and typical
usage in simulation.

The main consequence of our approach is to enable the executions of a variety
of valid systems at various stages of a MES development, resulting in in-the-loop
simulations at various levels of abstraction.

The first component we introduce is called the Simulation Wrapper (SW). It
will be inserted between the control software S and the plant P of a MES that
has the capability of both tracing all traffic between S and P and redirecting or
duplicating that traffic. Each system will contain a single SW , but its appearance
will depend on the system in which it is inserted.

The second component we introduce is called the Simulator Coordinator
(SC). It bridges the gap between the executable simulation models (a.k.a., sim-
ulators) and interfaces of a component of the plant simulated by these models.
Moreover, since most MESes are real-time systems, a simulator coordinator is
also responsible for aligning the simulator’s notion of time with the system time.
In principle, we consider one SC per simulated component. Figure 2 depicts the
general architecture of an in-the-loop system using this approach.

In the rest of this section, we discuss the components SW and SC in more
detail.

3.1 Simulation Wrapper (SW )

As indicated above, the simulation wrapper is inserted between the control soft-
ware S and the plant P . The rationale for this placement, as well as other possi-
bilities for placement, has been discussed in [6]. Since the simulation wrapper is
a component, i.e., SW = (SW.n, SW.Ir, SW.Ip, SW.m), we need to specify both
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Fig. 2. Overall architecture. Our solution’s components are highlighted in red. (Color
figure online)

its interfaces and its implementation. Its interface sets are determined by the
interface sets of S. For each required interface i ∈ S.Ir, it has three interfaces
i1, i2, and i3 that all have the same signature as i. Of these interfaces, i1 is a
provided interface that is intended to be bound to i. The other two are required
interfaces that forward method invocations by S along with i to either a driver
of a hardware component of the plant (i2) or to the interface of the simulated
version of that component (i3). Similarly, there are three interfaces for each
provided interface of S. Note that the provided interfaces of S correspond to
call-backs from the plant. Thus, we have:

SW.Ip = SW.Ip1 ∪ SW.Ip2 ∪ SW.Ip3

SW.Ir = SW.Ir1 ∪ SW.Ir2 ∪ SW.Ir3

where

S.Ip ≡sig SW.Ir1 ≡sig SW.Ip2 ≡sig SW.Ip3

S.Ir ≡sig SW.Ip1 ≡sig SW.Ir2 ≡sig SW.Ir3

The implementation of SW is more difficult to specify in a formal manner.
Therefore, we merely hint at the realization of its functional requirements. In
addition, we mention non-functional requirements that such a realization should
meet.

Functional Requirements:

– Interception: An important aspect of interception is that any invocation of
a method from a provided interface i1 ∈ SW.Ip1 needs to be forwarded to
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its destination under simulation. For this, SW.m must maintain references
to its corresponding signature-equivalent interfaces i2 ∈ SW.Ir2 and i3 ∈
SW.Ir3. Listing 1.1 contains a code snippet that shows how this can be done
by encapsulating such references in objects that possess the same interface.
For the sake of simplicity, various details, such as how to deal with parameters
that are themselves objects, or which object to return in case both the real
and the simulated methods are invoked are left unspecified.

– Traceability: The same code snippet in Listing 1.1 illustrates how forwarding
can be augmented with logging of invocation data.

Listing 1.1. Conceptual forwarding by the simulation wrapper

I n t e r f a c e 1 : : MethodA(p) {
i f ( Object2 ) { // forwards to i2

RtnObj2 = Object2−>MethodA(p ) ;
}
i f ( Object3 ) { // forwards to i3

RtnObj3 = Object3−>MethodA(p ) ;
}
i f ( Tracing On ) { // invoke custom l o g g i n g

LogInvocationData ( ) ;
}
return ( ReturnFrom2 ( ) ? RtnObj2 : RtnObj3 ) ;

}

Non-functional Requirements:

– Transparency: To ensure that no modification in either plant or control soft-
ware is needed, when running a new valid system, interception of method invo-
cations needs to be transparent, i.e., neither the caller nor the callee should
be aware of the existence of SW .

– Small and Predictable Overhead: To ensure reliable simulation results, SW
must satisfy its functional requirements with small (preferably constant) and
predictable overhead in terms of computing resources (e.g., CPU and mem-
ory), and must not cause unpredictable delay on method invocations between
S and P .

– Automatic Generation: To support an efficient development process, generat-
ing and inserting the simulation wrapper into the architecture of a MES should
be automated as much as possible. Because the interfaces of the components
that make up a MES are available, and forwarding follows a standard pattern,
this is, to a large extent, feasible.

3.2 Simulator Coordinator (SC)

As indicated, a simulator coordinator is responsible for connecting executable
simulation models to the system. More specifically, it must take one or several
simulation models as the implementation of a potential simulated component
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from simulation tools such as Simulink, and attach interfaces to it. By doing so,
a simulator coordinator, in fact, transforms one or multiple simulation models
into a simulated component of P .

In a nutshell, any SC = (SC.n, SC.Ip, SC.Ir, SC.m) is an access point
for available executable simulation models that together simulate a component
C ∈ P . Hence, it immediately follows that SC.Ip ≡sig C.Ip. For SC.Ir, the sit-
uation is more complex. In general, it consists of two sets of interfaces. One set
assumes the role of the required interfaces of the plant’s component under simula-
tion. The other set of interfaces serves to connect the coordinator to the collection
of models. If we assume that M.Ip is the set of interfaces provided by the mod-
els, then SC.Ir = SC.Ir1 ∪ SC.Ir2, where SC.Ir1 ≡sig C.Ir and SC.Ir2 ⊆ M.Ip.
Figure 2 illustrates the overall architecture of an in-the-loop system in which sim-
ulators are connected to the simulation wrapper via a simulator coordinator.

To achieve its expected functionality, SC.m must meet the following require-
ments:

– Model Connectivity: For each interface i ∈ SC.Ip the methods of i must be
implemented using the executable simulation models of SC.m invoked through
SC.Ir2.

– Synchronization: In general, a simulator simulates the behavior of a simulated
component through a sequence of time-stamped state-transitions and associ-
ated events. For this, the simulator keeps track of a notion of logical time. In
order to obtain a correct in-the-loop simulation, the logical clocks of the simu-
lation models need to be synchronized with the real system-time. An example
of how this can be done in practice is shown in the next section.

As with the simulation wrapper, the automatic generation of SC.m is a
desirable property. For the generation of the provided interface, this is, to a large
extent, feasible. For the translation of interface methods into model methods,
however, this is less likely, since it is highly dependent on the primitives of the
simulation language and the plant component under simulation (Fig. 3).

Fig. 3. All the Interfaces of the entire components of our solution. I in this figure
actually represents any interface i ∈ I
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4 Case Study

In this section, we illustrate the approach introduced in Sect. 3 on an industrial
case study from the healthcare domain. More precisely, we explain the procedure
required for configuring an SiL simulation for the case study using this approach.

We consider a safety-critical MES, viz., an Interventional X-Ray (IXR)
machine (See Fig. 4). This is a case in which the control software manipulates
quite heavy hardware components, such as a C-ARM and a patient table whose
uncontrolled movements may harm patients or medical staff. In view of the cost
of the machine and the mentioned safety aspects, there is a strong motivation
not only to test the system with simulated hardware, but also to be selective on
which hardware components are simulated.

To avoid being overwhelmed by unnecessary details of a complete IXR plant,
we focus our attention on the simulation of a single component. In the sequel, we
refer to the selected hardware component as C2 and to its simulating counterpart,
connected to the IXR system by means of a simulator coordinator SC and
wrapper SW , as C1.

For C2.I, we selected an EtherCAT network driver, a third-party driver used
by the IXR control software to control motors and sensors of an IXR over an
EtherCAT network. Therefore, these motors and sensors are the implementation
(i.e., C2.m) of the component C2. Since we intended to configure an SIL, C2, as
a hardware component, is absent.

Fig. 4. An Interventional X-Ray (IXR) device

Fig. 5. Class diagram of the EtherCAT driver stub
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Figure 5 depicts the structure of the EtherCAT driver’s three main provided
interfaces, namely, Node, Axis, IO. Hence, together they constitute the interface
C1.Ip of the simulated component. For the latter’s implementation C1.m, we
deployed a Matlab Simulink model that simulates a motor responsible for moving
an IXR’s patient table up and down and a sensor that measures the pressure on
the patient table of an IXR. Both motor and sensor also simulate the original
hardware controlled by IXR’s S using the EtherCAT network driver.

To enable an SiL, the module of the IXR’s control software S responsible for
positioning the IXR’s patient table, not yet embedded in its dedicated hardware,
was used and the following objectives were pursued by this setup:

– To explore which type of motor is appropriate for the patient table, in terms
of speed, power and other properties.

– To test whether the control software works properly.

Figure 6 shows the instantiated version of the generic architecture introduced
in Fig. 2, for this particular case study.

SW: The main task of the simulation wrapper in this case study is forwarding
method calls from S to C1 through SC. Listing 1.2 shows the implementation
of this task for a method named ProduceData() belonging to C1.Ip.

The information determining which components are in P , introducing sim-
ulation models, if any, and their input and output parameters along with their
critical functions, such as their step functions is obtained through a configura-
tion file fed to each valid system. Using this file, prior to running a valid system,
an initialization process is performed to bind relevant components, such as S to
SW and SW to (simulated) components of P . For instance, the configuration
file created for this case study causes the initialization process to bind C1 to S
via SC via SW . As a consequence, when receiving a method call from S, SW
forwards the call to C1 through SC.

Fig. 6. Architecture solution for an IXR
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As mentioned in Sect. 3, in addition to just forwarding calls, SW could also
record these interactions for a later possible fault analysis (not yet implemented)
and for testing purposes.

Listing 1.2. Main functionality of the simulation wrapper

i f ( C2 Object ) {
// forwards to the p h y s i c a l component v ia the d r i v e r
RtnObj = C2 Object−>ProduceData (p ) ;
}
i f ( C1 Object ) {
// forwards to the s imu la ted component v ia SC
RtnObj = C1 Object−>ProduceData (p ) ;
}

SC: Recall that the purpose of the simulator coordinator is to solve two impor-
tant generic problems: model connectivity, i.e., realizing simulated component
interfaces using the methods offered by given simulation models’ objects, and
synchronization, i.e., aligning the passage of time in the control software with
that in the simulation models. In addition, there may be other system specific
issues. In this particular case, unit conversion is an example of the latter. We
now discuss each of these in some detail.

Model Connectivity: As discussed earlier, the SC must expose the same interfaces
as the Ethercat driver of the plant component whose simulation it coordinates.
In our case, these interfaces are the Node, Axis and IO interfaces, each of which
is implemented in SC by an object of a corresponding class. The actual imple-
mentation of the objects’ methods is in terms of Simulink models. For this case
study, the entire implementation has been done by hand, but using the configura-
tion file described earlier in the context of the initialization process, a large part
of the implementation of these classes, is skeleton code that can be generated
automatically.

Furthermore, to have a structured mechanism to import the required
Simulink simulation models, we made a design choice to encapsulate them in
objects of a single class named Model. This class contains attributes and meth-
ods of a typical simulation model, like input and output variables, step size and
step function. Thus, for every simulation model in C1.m, an object of class Model
is instantiated in the SC to be used by the Node, Axis and IO interface methods
for implementation of the simulation proper. The resulting class structure of SC
is shown in Fig. 7.

Synchronization: This issue addresses the difference in the handling of time
between S and simulated components of P (here only C1). The situation in
our case study is as follows. The control software periodically loops through a
sequence of control statements, whereas each simulation model steps through
a sequence of states. For this, the models provide a function stepFunc that
determines the next state and a parameter timeStep that indicates the advance
in time associated with each step. These time steps are much smaller than the
period of the control loop and, for the sake of simplicity, we assume in the sequel
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Fig. 7. SC class diagram for this case study

that the period of the control loop Tctrl is a multiple of the time step of every
model in C1.m.

Listing 1.3 displays a variant of the actual control loop that captures the
essential features, but uses fictional methods to simplify the explanation.

Listing 1.3. Basic control loop with fictional methods and period Tctrl

c on t r o l so f tware loop {
every ( T c t r l time un i t s ){

readStatus ( ) ;
ana lyze ( ) ;
wr i t eS ta tus ( ) ;

}
}

Listing 1.4 displays an idealized implementation of method writeStatus() ∈
C1.Ip whose intended effect is that all models in C1.m synchronize their state
to the moment in time implicitly maintained by the control software state as it
iterates through its loop.

Listing 1.4. Synchronization by writeStatus

wr i t eS ta tus ( ){
for each ( model m o f C1){

var dt = 0 ;
while ( dt < T cr t l ) {

m. stepFunc ( ) ;
dt = dt + m. timeStep ;

}
}

}
Unit Conversion: Besides its standard responsibilities model connectivity and
synchronization, in this case study, the SC was also responsible for conversion
of values exchanged between C1 and S. This responsibility arose because the
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simulation models in C1.m only work with the SI base units, whereas the control
software S also works with SI derived units, such as volt. To overcome this
difference, information about units occurring in both the simulation models and
the system was gathered from the configuration file and used to add conversion
functionality to the SC, e.g. V = W/A = m2 · kg · s−3 · A−1.

5 Conclusion and Future Work

In this paper, we focused on the problem of the development and test of the con-
trol software of MESes from a high level perspective of software interfaces such
as driver APIs of the under-control plant. The idea is that given the interfaces of
the components of a plant, transparently to the control software, engineers have
freedom to provide these interfaces using either hardware components of the
plant or their simulated counterparts. As a consequence of solving this problem,
various in-the-loop simulations, such as SiL and HiL, required for verification
and validation of MESes are realized. Note that this paper does not fully solve
the problem of mixed simulations (a special interpretation of HiL) where a plant
consists of simultaneously hardware components and simulated ones.

It is important to note that our approach’s components, especially SW , does
not only play an essential role in the development and test of a MES, but it
may also exist in the final product for serving different purposes, for example
for logging interactions between control software and its plant for fault analysis.

The work in this paper could be extended in three directions. First, more
industrial case studies from different domains to be studied for ensuring the
applicability of this approach in other domains. Second, investigating the prob-
lem of the mixed simulations where there is the freedom of integrating hardware
components and simulated ones as a plant using this approach. Third, adding
a domain-specific language for this approach in order to extend it and make it
as a comprehensive framework with high amount of code generation, especially
on the SC side. This is because we believe that the more automated this code
generation is, the more valuable the solution is, and it can be easier integrated
into current development workflows of MESes.
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Abstract. The cost of efficient fault-effect analysis on gate-level (GL)
and register-transfer level models is increasing due to the rising complex-
ity of safety-critical systems on chip (SoCs). Virtual prototypes (VPs)
based on transaction-level models are employed to speed-up safety ver-
ification. However, VP structures correlate poorly to GL models. This
leads to the injection of pseudo-faults into VPs and to the development
of suboptimal safety mechanisms for the SoC. To mitigate these draw-
backs, in this paper, we propose a safety-verification flow for VPs to
maintain 100 % correlation to GL models and to ensure the injection
of realistic faults into VPs. Our approach’s key aspects are: matching
points across abstraction levels and selective abstraction of GL function-
ality using compiled-code simulation. Measurements show two orders of
magnitude speed-up over RTL models and three orders of magnitude
over GL models. Moreover, the speed-up increases with design size.

Keywords: Automotive · Fault injection · ISO 26262 · Safety
verification · SystemC · TLM · Virtual prototyping

1 Introduction

Safety-critical systems on chip (SoCs) are becoming increasingly larger and more
complex as the amount of safety mechanisms within an SoC also steadily increases.
To successfully develop optimal safety mechanisms, fault-effect analysis must be
conducted on the SoC’s hardware models prior to its production release.

Fault injection is an established method within the domain of (functional)
safety verification and is a valuable approach to not only determine a system’s
robustness, but the effectiveness of a system’s safety mechanisms as well.

Currently, fault injection is mainly performed on register-transfer level (RTL)
models (mostly transient faults) and gate-level (GL) net-lists (stuck-at faults).
Parts 5 and 10 of ISO 26262, the standard for safety-critical automotive applica-
tions, refer to GL net-lists as “appropriate for fault injection” since they contain
sufficient information about a system’s structure [1]. Furthermore, RTL models
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are also “an acceptable approach for stuck-at faults, provided that the correlation
with [the] gate level is shown” [1]. Thus, fault injection into lower abstraction
levels (e.g., transistor level) is not necessary for safety-critical SoCs.

However, fault injection into GL or RTL models can only take place late in
the development cycle (i.e., after the hardware system was modeled and suffi-
ciently debugged). At this time, a change within the SoC becomes expensive and
increases the redesign effort. Therefore, a different modeling approach is needed
to address the problem of developing optimal safety measures.

One solution for the above mentioned limitations is to perform safety ver-
ification on SystemC/TLM-based virtual prototypes (VPs) [2] as they allow
safety-architecture exploration early in the design phase [3]. However, the inser-
tion of a sufficient number of realistic faults into such models is an ongoing
challenge; for example, VPs are highly abstracted behavioral models and lack
many implementation details found in GL or RTL models. For this reason, fault
injection into VPs is significantly less reliable than into other abstraction levels.
As a consequence, faults injected into VPs may lead to failures (i.e., fault effects
at the system’s output) which cannot be reproduced at the GL abstraction (i.e.,
pseudo-faults). Furthermore, this may lead to the development of suboptimal
safety mechanisms both qualitatively and quantitatively.

Our focus lies in the insertion of realistic faults into VPs. For this reason, we
follow a structured bottom-up approach of fault abstraction (Fig. 1). We start
at the transistor level since every fault originates here. Next, we follow the tra-
ditional abstraction from transistors to RTL models via the gate level. At this
stage, permanent and transient faults conceptually remain the same. However,
as we move from RTL models to VPs, fault models become more abstract (e.g.,
bus-arbitration fault, instruction-decode fault, memory-access fault). Further-
more, complex RTL or GL implementations (e.g., carry-save, carry look-ahead
adders) are replaced by a simple mathematical operation within a VP (e.g., addi-
tion). These limitations negatively impact the efficient mapping of VP faults to
RTL or GL faults. Thus, the results of fault injection into VPs and other hard-
ware models (e.g., RTL, GL) become uncorrelated. Finally, this leads to the
reduced capability to define realistic faults on VPs and it makes VPs unreliable
as reference models for (functional) safety verification of safety-critical SoCs.

Fig. 1. Fault matching-points on multiple heterogeneous abstraction levels
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Currently, the aforementioned limitations are addressed through mixed-level
safety-verification flows [4]. Here, VPs and RTL models are co-simulated while
faults are injected into the RTL model’s interface. Fault effects (i.e., failures) are
observed at the VP outputs. However, such approaches require manual imple-
mentation of a wrapper to bridge the communication across the two abstraction
levels. Additionally, since faults are injected just into the RTL model’s boundary,
only a suboptimal amount of matching points is added to the VPs.

To address the drawbacks of mixed-level safety verification and to enhance
the reliability of VP fault injection, in this paper, we present a method to improve
the correlation between SystemC/TLM-based VPs and GL hardware models. We
achieve this by automatically enriching VPs with GL information and by execut-
ing fault-injection simulations using a compiled-code approach [5]. As a result,
the enriched models become structurally identical to their GL counterparts. In
other words, the same faults can be injected into both abstraction levels. There-
fore, we successfully improve the correlation factor across the two heterogeneous
abstraction levels to 100 %. Finally, our approach enables the definition of com-
mon fault-injection locations (e.g., module interfaces, internal registers), also
called matching points, across VPs and GL models (Fig. 1).

To define effective matching points, we developed a safety-verification plat-
form, which automatically transforms GL net-lists into C++ code, integrates
the C++ code into existing VPs, and inserts permanent faults (i.e., stuck-at-0
and stuck-at-1) into the enriched VPs using the Monte Carlo approach. After
applying our approach on several adders and different components of a MIPS
core, all faults injected into the SystemC/TLM models were successfully repro-
duced on the corresponding GL models. Furthermore, even though our enhanced
SystemC/TLM models are more detailed than the original ones, our method’s
simulation performance is still close to that of the original VPs. Finally, only
realistic faults are injected into the enriched VPs using our approach.

The remainder of this paper is structured as follows. Section 2 presents exist-
ing contributions related to the topics of fault injection and safety verification
into hardware models. Section 3 describes the automatic generation of enriched
VPs and the simulation framework used to inject faults into the VPs. Simulation
results and measurements made on several adders and a MIPS core are discussed
in Sect. 4. Finally, Sect. 5 contains the paper’s summary.

2 Related Work

GL fault-injection techniques are highly effective for the safety verification of
SoCs [1,6,7]. However, large-scale safety-critical microcontrollers such as the
STMicroelectronics SPC5TM [8] or the Infineon AURIXTM [9] families are too
large for effective system-level safety verification on the gate level.

Currently, RTL-based fault-injection techniques are widely used in safety-
verification flows [10]. However, such frameworks have several drawbacks. First,
matching points are not analyzed at all since many techniques inject faults
only into RTL systems and exclude comparisons with the corresponding GL
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models [11,12]. Second, finding matching points between different levels of
abstraction (e.g., RTL-GL models) is influenced by the models’ implementa-
tion details [13]. Finally, fault-injection campaigns on RTL or GL models suffer
from slower development, debugging, and simulation speeds compared to VPs.

Formal-based flows employ mathematical properties to exhaustively analyze
the reliability and robustness of hardware models (e.g., VPs, RTL, GL) [14,15].
Currently, these methods are becoming more efficient and user friendlier [16].
However, formal methods do not scale for large safety-critical SoCs. Hence, they
are mainly used to reduce the effort of simulation-based techniques; for example,
in [17], the author formally verified only safety-critical registers.

FPGA (field-programmable gate array) [18,19] and GPU (graphics process-
ing unit) [20] emulation are also widely used for safety verification thanks to
their fast execution speed, improved debugging, and higher fault-injection con-
trollability. However, hardware emulation still presents three fundamental draw-
backs: (i) high development cost, (ii) complex usability for large net-lists (e.g.,
AURIX), and (iii) different timing properties between FPGA/GPU and target
SoC technologies.

SystemC/TLM-based VPs are created more frequently since they offer faster
simulation speeds than RTL and GL models [21]. However, VPs are too abstract
for reliable safety verification, which leads to two main problems. First, there is
a lack of matching points across the analyzed VPs and RTL models. Second, if
matching points are found, distinct fault-propagation effects are observed after
injecting the same faults into the different abstraction levels.

VPs are currently mainly employed in mixed-level safety-verification flows [4,
22,23], which co-simulate VPs and RTL/GL models. Thus, faults are injected
into the more detailed models and the failures are observed on the VP level.
This approach improves fault-effect analysis by providing the highly abstract
VPs with missing matching points (e.g., wires, ports), into which to inject faults.

However, faults injected through existing mixed-level safety-verification
methods provide suboptimal results compared to fault injection into GL mod-
els [24]. As a consequence, this inaccuracy has a considerable negative impact on
the efficient design of safety mechanisms in the early SoC development phase.
Therefore, an approach is needed to provide better correlation of heterogeneous
hardware models across different abstraction levels.

To address the above mentioned limitations of mixed-level safety-verification
approaches, in this paper, we present an approach that improves the fault-
injection correlation across VPs and GL models. By using SystemC/TLM-based
VPs and by aiming to link the results of fault injection across multiple abstrac-
tion levels, our work is complementary to [4]. However, we focus on GL models
since they contain all implementation details required by the ISO 26262. Addi-
tionally, we automated our approach by eliminating the manual wrapper and by
enhancing our SystemC/TLM-based VPs with GL information using a compiled-
code approach [5]. Moreover, we sped-up fault injection by using a special C++
class instead of mutants. Thus, we inject faults during simulation time without
needing to recompile the models and with minimal simulation overhead.
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3 Mixed-Level Safety Verification

Matching points rely on structural similarities among different hardware mod-
eling languages to be correctly and efficiently defined. Thus, while RTL and GL
models are both functionally and structurally homogeneous (e.g., interfaces, reg-
ister definitions), VPs and RTL/GL models are mainly functionally similar, but
structurally heterogeneous. Furthermore, hardware models are mainly developed
manually and the granularity of their implementation is application dependent.
As a consequence, the definition of matching points across multiple abstraction
levels becomes a challenging task to automate.

Nevertheless, we developed a method to fully automate the definition of
matching points across SystemC/TLM-based VPs and GL models. We achieved
this by transforming GL net-lists into C++ code using VERITAS [5], an in-
house Verilog-to-C++ compiler. Thus, the original VPs are enhanced with GL
structural details (e.g., signals, registers, hierarchy levels) (Fig. 2). VERITAS
transforms GL wires into instances of special C++ objects (Sect. 3.1) and com-
binational blocks into C++ functions (e.g., adder 2bit). Furthermore, buses are
broken down into boolean variables using shifting and masking operations.

Fig. 2. Transformation of combinational logic gates into C++ code using VERITAS

Next, we replaced basic combinational blocks within VPs with the C++ code
generated by VERITAS. We call the resulting VPs GL-accurate transaction-level
(TL) models since they are SystemC/TLM components with GL granularity
(Fig. 3). These models use the socket interface of a SystemC/TLM target mod-
ule. Furthermore, the C++ code is executed by the module’s (non-)blocking
transactions.

Fig. 3. Integration of gate-level-accurate C++ code into virtual prototypes
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Thus, faults can be injected into the same locations (e.g., signals, registers)
on the VPs as on the GL net-lists.

The enrichment of VPs with GL information effectively increases the correla-
tion factor across the VP and GL abstraction levels to 100 % while only adding
an acceptable simulation overhead (Sect. 4).

To obtain the SystemC/TLM-based VPs and GL models necessary for the
definition of matching points, we used a top-down development approach, in
which functionally equivalent TL and RTL models are implemented simultane-
ously from a common hardware specification. After sufficient testing (Fig. 4), the
RTL models were synthesized using a commercial tool. Next, the resulting Ver-
ilog GL net-list is transformed into C++ code using VERITAS. The generated
C++ code is used to replace combinational blocks from the original VP, which
only execute one operation (e.g., addition). Finally, we injected permanent faults
randomly into the GL-accurate TL models using the Monte Carlo approach.

Fig. 4. SoC development flow prior to fault-injection regression

3.1 Fault Injection

Faults were inserted into the enriched SystemC/TLM-based VPs using a fault
injector developed as a C++ class. All signals and registers from enriched VPs
were instantiated using our fault-injection object (FIO).

Apart from the classic read and write methods of a SystemC signal, our
FIO contains extra methods for injecting transient as well as permanent faults.
The transient-fault method simply flips a signal’s value at a given bit location.
This value can be overwritten by the simulator during the FIO’s next write
cycle. Conversely, the permanent-fault methods effectively block the FIO’s value
update process during subsequent write cycles. The permanent fault’s effect can
be removed during a simulation by calling the FIO’s release method.

3.2 Fault Models

We focused our fault-effect analysis on the effects of permanent faults (i.e., stuck-
at-0 and stuck-at-1) since the effects of transient faults in combinational circuits
is still relatively low [25].
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We inserted faults into individual bit locations of VPs at the beginning of
the simulation. Fault effects persisted until the simulation’s end.

We did not inject any logical bugs within our models as we expected them
to be bug free during our analysis. Furthermore, the injection of bridging faults,
timing faults as well as the modeling of aging effects are out of the scope of this
paper.

3.3 Simulation Environment and Flow

The C++ code generated by VERITAS is integrated into existing VPs. After-
wards, the GL-accurate TL models (i.e., enriched VPs) are introduced into a
fault-injection simulation environment (Fig. 5) called SaVer. The environment
contains a stimulus generator, a transaction monitor, and a fault injector. The
stimulus generator drives data either randomly, or targeted (i.e., from a stimulus
library) onto the VP’s inputs. The fault injector accesses the model’s internal sig-
nals and injects faults therein from a fault library. The monitor detects changes
at the model’s output ports. When the output values change, the monitor sends
the observed data to an analyzer for processing. Finally, a controller regulates
the driven stimulus, the injected faults, and the life time of a simulation.

Fig. 5. SaVer’s verification environment with fault-injection features

All safety-verification simulations are executed using SaVer’s flow (Fig. 6).
First, one fault-free reference simulation is executed for each workload as a golden
run and the simulation results are dumped into a log file. Next, multiple fault-
injection simulations are executed concurrently and the model’s outputs are
compared to the reference results. Permanent single-bit faults (i.e., stuck-at-0,
stuck-at-1) are injected before the start of each faulty simulation. If no mismatch
is detected at the model’s outputs, the fault is considered masked. Otherwise,
the mismatch is a failure caused by the fault’s propagation through the system.

4 Case Studies and Results

To comprehensively cover the safety-verification space of our hardware systems,
we randomly injected one fault per simulation into the GL-accurate TL models.
Additionally, the effects of the injected faults were monitored at the outputs of
the TLM verification environment.
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Fig. 6. SaVer’s fault-injection regression flow

We injected faults only into internal signals and output ports (i.e., matching
points) of GL-accurate TL models. Input ports were excluded since they are
already accessible from the stimulus generator.

We simulated all Verilog GL net-lists as well as the MIPS RTL models with
a commercial event-driven simulator and all GL-accurate TL models with the
SystemC reference simulator [2].

All simulations were performed on a 64-bit machine with an Intel R© Xeon R©
E5 CPU @3.00 GHz, L3 cache 25600 kB, and 264 GB RAM.

We measured the simulation speeds of all our case studies with the UNIX
time command. We excluded the measurement of compilation and elaboration
times of the co-simulated models.

4.1 Adder Architectures

We chose adders with overflow to analyze the relationship among different hard-
ware architectures because the VP model of an adder only represents a call
to C++’s ‘+’-operator, whereas the GL implementation contains multiple logic
operations. As a consequence, the only viable matching points between the VP
and the GL net-list of the adders are their output ports. Thus, the two abstrac-
tion levels are on average only 17 % correlated (Table 1). Furthermore, the corre-
lation factor decreases with the adder’s increasing complexity (e.g., carry look-
ahead).

It is possible to manually improve the correlation across an adder’s VP and
its GL net-list by implementing a VP structure, which is more similar to the GL
net-list. However, such a time consuming and error-prone task renders the VP
unusable for early-architecture exploration.

We provide a more adequate solution by automatically transforming the GL
net-list into C++ code and integrating it into the existing VP. Hence, the VP
is enriched with all signals (i.e., matching points) present in the GL net-list. As
a result, the correlation factor increases to 100 % for all analyzed models.

Furthermore, the GL-accurate TL models are on average about 6x slower
than the original VPs (Table 1), but also on average about 2x to 5x faster than
the original GL models (Fig. 7). Finally, the performance of the enriched VPs
increases with the complexity of the simulated model (i.e., the 32-bit adder VP
is over 6x faster than the 2-bit adder VP) (Fig. 7).
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Table 1. Comparison in number of fault-injection locations and simulation slow-down
for several adder architectures

A B C D = B/C E F G = E/F

Model name Injectable fault- Correlation Simulation Slow-down

locations (#) factor (%) time (s) factor

Original GL-Accurate GL-Accurate Original

VP TL model TL model VP

full adder 2 6 33.33% 0.041 0.040 1.03x

adder 2bit 3 9 33.33% 0.097 0.087 1.11x

nibble adder 5 31 16.13% 0.260 0.087 2.13x

adder 4bit 5 35 14.29% 0.310 0.122 2.54x

addsub 8bit 9 69 13.04% 0.690 0.194 3.57x

adder 8bit 9 77 11.69% 1.600 0.194 8.27x

adder 16bit 17 163 10.43% 3.470 0.405 8.58x

adder 32bit 33 339 9.73% 13.550 1.142 11.87x

carry lookahead 32bit 33 523 6.31% 16.040 1.142 14.05x

Average 16.48% 5.91x

Fig. 7. Simulation-speed comparison between each gate-level and gate-level-accurate
TL model

4.2 MIPS CPU Architecture

The MIPS RTL model contains an integer-based instruction set, five pipeline
stages, hazard detection, and forwarding. The MIPS VP is a pipelined behavioral
model functionally equivalent to the RTL implementation.

We measured the correlation factor of the MIPS VP to its GL counterpart.
Similar to the previous case study, we observed on average less than 17 % corre-
lation (Table 2). Nevertheless, after enriching the individual VPs with GL infor-
mation, the correlation factor increased to 100 %.

To test the performance of our GL-accurate TL models, we replaced individ-
ual components from the original MIPS VP with enriched sub-blocks generated
by VERITAS (e.g., adder, shift unit, logic unit). Afterwards, we simulated the
complete MIPS VP with and without enriched sub-blocks. Finally, we simualted
the MIPS RTL and GL models.
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Table 2. Comparison in number of fault-injection locations and simulation slow-down
for a MIPS CPU

A B C D = B/C E F G = E/F H I = E/H

Model Injectable fault- Correlation Simulation Slow-down Simulation Speed-Up

name locations (#) factor (%) time (s) factor time RTL (s) factor

Original GL-Accurate GL-Accurate Original

VP TL model TL model VP

shift 32 931 3.44% 13.564 0.24 56.51x 70.831 5.22x

hazard detection 4 73 5.48% 1.610 0.24 6.71x 70.831 37.01x

id control 11 116 9.48% 1.914 0.24 7.98x 70.831 43.99x

ex forwarding 4 38 10.53% 1.192 0.24 4.97x 70.831 59.40x

logic unit 32 266 12.03% 2.761 0.24 11.50x 70.831 25.65x

adder 33 209 15.79% 2.593 0.24 10.80x 70.831 27.32x

subtractor 33 174 18.97% 2.164 0.24 9.02x 70.831 32.73x

jump 3 10 30.00% 0.408 0.24 1.70x 70.831 173.56x

write back 38 82 46.34% 0.380 0.24 1.58x 70.831 186.40x

Average 16.89% 12.31x 65.70x

Since we used the same original models as reference and only replaced indi-
vidual VP sub-blocks, the simulation times for the original VP and the RTL
models from Table 2 remain the same.

The enriched VPs only suffered an average simulation slow-down of one order
of magnitude compared to the original VPs (Table 2). Furthermore, our enriched
VPs were on average one to two orders of magnitude faster than the RTL models
and over three orders of magnitude faster than the GL models (i.e., simulation
time of 14.37 h).

These results offer a conclusive benefit for performing fault-effect analysis
and safety-architecture exploration on SystemC/TLM-based VPs early in the
development cycle of a safety-critical SoC.

4.3 Fault-Injection Object’s Performance

We benchmarked our fault-injection object against C++ boolean variables using
232 read and write accesses over 10 simulations and observed only a 2 % sim-
ulation slow-down. After applying the GNU C++ compiler’s optimizations, a
simulation with our FIO took on average 253.706 ms, compared to the simula-
tion with C++ boolean variables which needed on average 248.639 ms.

4.4 Fault-Effect Analysis

Over 95 % of the faults injected into combinational circuits propagated to the
system’s output and became failures (Fig. 8). This renders our fault-injection
framework highly effective.

The missing failures can be easily triggered by extending the VP’s work-
load and fault libraries with directed input and faulty vectors instead of using
Monte Carlo simulations.
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Fig. 8. Accuracy of our fault-injection campaigns based on the ratio of injected faults
to observed failures (Color figure online)

5 Summary

In this paper, we presented a comprehensive methodology to completely corre-
late the results of fault injection across heterogeneous abstraction levels (i.e.,
SystemC/TLM-based VPs and GL net-lists). The correlation factor across VPs
and corresponding GL net-lists was increased from 17 % to 100 % by automati-
cally enhancing the original VPs with complete GL-specific fault-injection loca-
tions (e.g., signals, registers).

We also presented a mixed-level framework to automatically inject all realistic
single-bit faults as requested by the ISO 26262.

Our method offers faster simulation speeds than equivalent RTL models, GL
net-lists, and existing safety-verification flows. Nevertheless, our framework still
maintains a simulation speed close to that of traditional VPs.

The effectiveness of implemented safety mechanisms can be tested on the
VP abstraction level, at GL accuracy, and at a simulation speed slightly slower
than classic VPs. Additionally, fault-effect analyses may be conducted to detect
if safety mechanisms are missing, ineffective, or redundant.

Thus, we effectively bridged the safety-verification gap across heterogeneous
abstraction levels.
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istry of Education and Research (BMBF) in the project EffektiV (contract no.
01IS13022).

References

1. ISO, CD. 26262, Road Vehicles-Functional Safety. International Standard
ISO/FDIS, 26262 (2011)

2. Open SystemC Initiative et al.: IEEE Standard SystemC Language Reference Man-
ual. IEEE Computer Society (2006)



Gate-Level-Accurate Fault-Effect Analysis at Virtual-Prototype Speed 155

3. Oetjens, J.-H., Bringmann, O., Chaari, M., Ecker, W., Tabacaru, B.-A., et al.:
Safetyevaluation of automotive electronics using virtual prototypes: state of the
art and research challenges. In: 51st ACM/EDAC/IEEE Design Automation Con-
ference (DAC), pp. 1–6. IEEE (2014)

4. Baranowski, R., Hatami, N., Kochte, M.A., Prinetto, P., et al.: Efficient multi-level
fault simulation of HW/SW systems for structural faults. Sci. Chin. Inf. Sci. 54,
784–1796 (2011)

5. Tabacaru, B.-A., Chaari, M., Ecker, W., Kruse, T., Novello, C.: Fault-effect analysis
on multiple abstraction levels in hardware modeling. In: DVCon, USA, pp. 1–12
(2016)

6. Amyeen, M.E., Nayak, D., Venkataraman, S.: Improving precision using mixed-
level fault diagnosis In: IEEE International Test Conference, ITC 2006, pp. 1–10.
IEEE (2006)

7. Espinosa, J., Hernandez, C., Abella, J.: Characterizing fault propagation in safety-
critical processor designs. In: IEEE 21st International On-Line Testing Symposium
(IOLTS), pp. 144–149. IEEE (2015)

8. STMicroelectronics: 32-bit Power Architecture Microcontroller for Automotive
SIL3/ASIL-D Chassis and Safety Applications. SPC56 Datasheet. Rev 11 (2014)

9. Infineon Technologies, A.G.: AURIX-TriCore Datasheet. Accessed 22 Feb 2016
10. Leveugle, R., Cimonnet, D., Ammari, A.: System-level dependability analysis with

RT-level fault injection accuracy. In: Proceedings of the 19th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, DFT 2004, pp. 451–
458. IEEE (2004)

11. Schwarz, M., Chaari, M., Tabacaru, B.-A., Ecker, W.: A meta model based app-
roach for semantic fault modeling on multiple abstraction levels. In: DVCon,
Europe (2015)

12. Vidrascu, I.-D.: Implementation of a safety verification environment (SVE)
based on fault injection. Master’s thesis, Fachhochschule Kärnten, Klagenfurt am
Wörthersee, Austria (2015)

13. Zarandi, H.R., Miremadi, S.G., Ejlali, A.: Dependability analysis using a fault
injection tool based on synthesizability of HDL models. In: Proceedings of the 18th
IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
pp. 485–492. IEEE (2003)

14. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the safety of a flight-critical system. In: Bjørner, N., Boer, F. (eds.) FM
2015. LNCS, vol. 9109, pp. 308–324. Springer, Heidelberg (2015)

15. Sharma, V.C., Haran, A., Rakamaric, Z., Gopalakrishnan, G.: Towards formal
approaches to system resilience. In: IEEE 19th Pacific Rim International Sympo-
sium on Dependable Computing (PRDC), pp. 41–50. IEEE (2013)

16. Brinkmann, R.: OneSpin CEO cites 8 “insufficiencies” in Jim Hogan’s Formal
Guide. Accessed 8 Mar 2016

17. Busch, H.: An automated formal verification flow for safety registers. In: DVCon,
Europe (2015)

18. Kastensmidt, F., Rech, P.: FPGAs and Parallel Architectures for Aerospace Appli-
cations: Soft Errors and Fault-Tolerant Design. Springer, New York (2015)

19. Bernardeschi, C., Cassano, L., Domenici, A.: SRAM-based FPGA systems for
safety-critical applications: a survey on design standards and proposed method-
ologies. J. Comput. Sci. Technol. 30(2), 373–390 (2015)

20. Fang, B., Pattabiraman, K., Ripeanu, M., Gurumurthi, S.: GPU-Qin: a methodol-
ogy for evaluating the error resilience of GPGPU applications. In: 2014 IEEE Inter-



156 B.-A. Tabacaru et al.

national Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 221–230. IEEE (2014)

21. Chang, K.-J., Chen, Y.-Y.: System-level fault injection in SystemC design platform.
In: Proceedings of 8th International Symposium on Advanced Intelligent Systems
(ISIS). Citeseer (2007)

22. Kochte, M., Zoellin, C.G., Baranowski, R., Imhof, M.E., Wunderlich, H.-J.,
Hatami, N., et al.: Efficient simulation of structural faults for the reliability evalu-
ation at system-level. In: 2010 19th IEEE Asian Test Symposium (ATS), pp. 3–8.
IEEE (2010)

23. Santos, M.B., Teixeira, J.P.: Defect-oriented mixed-level fault simulation of digital
systems-on-a-chip using HDL. In: Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition. IEEE (1999)

24. Cho, H., Mirkhani, S., Cher, C.-Y., Abraham, J.A., Mitra, S.: Quantitative
evaluation of soft error injection techniques for robust system design. In: 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10. IEEE (2013)

25. Dodd, P.E., Shaneyfelt, M.R., Felix, J.A., Schwank, J.R.: Production and propa-
gation of single-event transients in high-speed digital logic ICs. IEEE Trans. Nucl.
Sci. 51(6), 3278–3284 (2004)



Using SAE J3061 for Automotive Security
Requirement Engineering

Christoph Schmittner1, Zhendong Ma1(B), Carolina Reyes2,
Oliver Dillinger3, and Peter Puschner4

1 Austrian Institute of Technology, Vienna, Austria
{christoph.schmittner.fl,zhendong.ma}@ait.ac.at

2 TTTech Computertechnik AG, Vienna, Austria
carolina.reyes@tttech.com

3 TTControl GmbH, Vienna, Austria
oliver.dillinger@ttcontrol.com

4 Department of Computer Engineering,
Vienna University of Technology, Vienna, Austria

peter@vmars.tuwien.ac.at

Abstract. Modern vehicles are increasingly software intensive and con-
nected. The potential hazards and economic losses due to cyberattacks
have become real and eminent in recent years. Consequently, cybersecu-
rity must be adequately addressed among other dependability attributes
such as safety and reliability in the automotive domain. J3061, officially
published in January 2016 by SAE International, is a much anticipated
standard for cybersecurity for the automotive industry. It fills an impor-
tant gap which is previously deemed irrelevant in the automotive domain.
In this paper, we report our activities of applying J3061 to security engi-
neering of an automotive Electronic Control Unit (ECU) as a commu-
nication gateway. As an ongoing work, we share our early experience on
the concept phase of the process, with a focus on the part of Threat
Analysis and Risk Assessment (TARA). Based on our experience, we
propose improvements and discuss its link to ISO 26262.

Keywords: SAEJ3061 ·Automotive ·Cybersecurity ·Safety · ISO26262

1 Introduction

Automobiles have undergone a profound technological shift in recent years. The
automotive industry puts more and more electronics and computational power
into traditionally mechanical systems. Innovations in software and connectivity
enable new features and business models at a stunningly rapid pace. The flip side
of this trend, however, is the increasingly serious cybersecurity concern, mani-
fested in theory and practice [4,6,10] in recent years. The automotive industry
implements the ISO 26262 standard [8] for functional safety of on-board elec-
trical and electronic systems. But cybersecurity is not sufficiently addressed in
any of the previous automotive standards, despite ongoing work to extend ISO
26262 to include cybersecurity [14]. The J3061 [12] Cybersecurity guidebook for
c© Springer International Publishing Switzerland 2016
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cyber-physical vehicle systems, first published in January 2016 by Society of
Automotive Engineers (SAE), is a much anticipated standard to fill this gap in
security engineering of modern vehicles.

This paper reports our ongoing work to apply J3061 for the secure develop-
ment of an in-car Electronic Control Unit (ECU) as a communication gateway.
Specifically, we share our experience of using the standard for the concept phase
in the system development lifecycle. The main focus is to identify threats and
assess associated risks in order to derive high-level security requirements. Our
main contributions include the experience and lessons learned from applying
J3061 to security engineering of an automotive component, the extension of the
method for threat identification and the tables for risk assessment from the orig-
inal standard, and the discussion of the linkage between J3061 and ISO 26262.
In the following, we briefly describe the concept phase of J3061 in Sect. 2 and
then detail our experiences with the standard in Sect. 3. We discuss the link of
J3061 to ISO 26262 in Sect. 4 and conclude the paper in Sect. 5.

2 Overview of J3061

SAE J3061 defines a process framework for a security lifecycle for cyber-physical
vehicle systems. It provides high-level guidance and information on best prac-
tice tools and methods related to cybersecurity, which can be adapted to existing
development processes in an organization. It builds on many existing work on
security engineering and secure system development methodologies and has a
strong relation to the automotive system functional safety standard ISO 26262.
In fact, the security lifecycle defined in J3061 is strongly influenced by the
safety lifecycle defined in ISO 26262. Interaction points between the security
and safety process are explicitly defined in J3061 to coordinate the two engi-
neering processes. In some sense, it is an information security standard tailored
to the automotive safety process. J3061 divides the system lifecycle into con-
cept phase, product development (including system, hardware, and software),
production, operation, and service. It also suggests supporting processes such as
requirement, change, and quality management.

This paper focuses on the concept phase of J3061. The concept phase consists
of 7 steps, illustrated in Fig. 1. The objective of the concept phase is to define
high-level cybersecurity goals and strategy. The goals and strategy will then
be refined to include technical details in the product development phase. The
concept phase starts with the feature definition that identifies the physical and
trust boundaries of the system, the system under consideration, and the scope
of the work. In the initiation of cybersecurity lifecycle, the project is planned
and documented with respect to the cybersecurity process. The main activity
in the concept phase is the threat analysis and risk assessment (TARA). As the
name suggests, its goal is to identify potential threats, and assess and rate the
risks associated with the threats. J3061 provides suggestions of methods and
some supporting material for TARA. A sub-activity under TARA is to identify
high-level cybersecurity requirements (i.e. identifying cybersecurity goals) after
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Fig. 1. J3061 concept phase

analyzing the risks. The goals can be stated in terms of what to avoid or the
inverse of the threat. The cybersecurity concept includes the high-level cyberse-
curity strategy that satisfies cybersecurity goals for identified threats. The strat-
egy will be refined to a technical strategy later in the production development
phase. Based on the high-level strategy, functional cybersecurity requirements
are defined in identify functional cybersecurity requirements. These requirements
are derived from the cybersecurity strategy that satisfies the cybersecurity goals.
In perspective, the functional cybersecurity requirements are derived from the
strategy. The strategy is derived from the goals based on the outcome of identi-
fied threats and risks from TARA.

The last two steps in the concept phase are initial cybersecurity assessment
and concept phase review. Initial cybersecurity assessment conducts an assess-
ment of the level of security of the system. J3061 suggests that the initial assess-
ment contains only the high-level cybersecurity goals, the risks, and open security
issues. Concept phase review acts as a quality control gate that reviews the whole
concept phase.

3 Application of J3061

In this paper, we apply J3061 to security engineering of an automotive ECU,
functioning as a communication gateway. The purpose as follows: first, we follow
the guidance in J3061 for automotive cybersecurity in a standard-conform way;
second, we are interested to evaluate the guidance specified in J3061 and compare
it with our previous experiences of security engineering in other domains.
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Fig. 2. System diagram

3.1 System Description

The system under development is an automotive ECU including hardware and
software installations that offers remote connectivity for the on-board network.
It is intended as a gateway for various remote services including data acquisition,
remote control, maintenance and over-the-air (OTA) software update. However,
it also provides a human-machine interface (HMI) for an operator for certain
control actions (e.g. movements of the vehicle) in the cockpit.

The hardware is based on off-the-shelf controller with network interfaces
supporting planned features. Illustrated in Fig. 2, it is equipped with cellular
and wireless local area network (WLAN) communication interfaces for wireless
connectivity. It includes an Ethernet interface for debugging and connecting to
local devices (e.g. Ethernet cameras). The USB port is used for local software
update and application provision. The CAN interface connects this ECU to other
on-board ECUs. The main usage of the ECU is to provide remote connectivity
for various access and control activities, previously only possible via the local
interface and the HMI. The software for the functionality is based on standard
Linux distribution. Note that the example presented in this paper is a simplified
version of the actual system.

The first step in the J3061 concept phase is to define physical and trust
boundaries and the scope of the features. Based on the system description, the
scope is decided to be the remote network access, i.e. access through cellular and
WLAN interfaces. Although physical access is a viable attack vector (e.g. from
Ethernet or USB port, or physical access to firmware and file system), in our
work, we decided to focus on the new attack surface and scenarios emerged from
the remote connectivity. Therefore, the physical boundary and trust boundary
is the local perimeter of the system, indicated by the dotted line in Fig. 2. In
other words, we assume that the cellular and the WLAN interface are the only
entry points for an attack.

The next step in the concept phase is the initiation of the cybersecurity
process. This is mainly about project planning for cybersecurity. We loosely fol-
low this step by planning and agreeing on the cybersecurity activities in the team
and creating a running document to record all steps and corresponding outcomes.
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3.2 Threat Analysis and Risk Assessment

The third step in the concept phase is TARA, which includes threat identifica-
tion, risk assessment/threat classification, and risk analysis. Note that at this
stage, we have only partial information about the system, i.e. the “concept”
or a vague description of the system architecture and the planned features etc.
Therefore, the objectives of the TARA is to identify potential threats and to
assess the associated risks, which helps us to prioritize cybersecurity activities
in terms of efforts and resources.

J3061 Appendix A provides suggestions for methods and techniques, includ-
ing the approach originated from the E-Safety Vehicle Intrusion Protected Appli-
cations (EVITA) project [1], ETSI Threat, Vulnerability, and implementation
Risk Analysis (TVRA) standard [5], Operationally Critical Threat, Asset, and
Vulnerability Evaluation (OCTAVE) [3], HEAVENS security model [2], and
attack trees [11]. Beside the ones mentioned in J3061, existing approaches also
include Cybersecurity HAZOP [16] and STRIDE [17]1. Cybersecurity HAZOP
identifies potential security-caused deviations by combining the functions with
specific guide words. While this approach works well for threats to the availabil-
ity or operational performance of a system, it is challenging to apply it to data-
centric assets. STRIDE is another common method for threat identification, e.g.
in SAHARA [9]. STRIDE method considers systems with assets and operational
performance to reason about threats, based on assets and potential attributes
that can be threatened or misused. However, it is based on detailed data flow
models among system components and software modules. Our challenge is that
the TARA at this preliminary stage is based on incomplete information.

J3061 has not stipulated specific methods and techniques for TARA. In our
case, after evaluating existing approaches, based on our experiences we decide to
use the Confidentiality, Integrity, and Availability (CIA) analysis. As an estab-
lished concept in information security, the CIA model is straightforward and the
analysis is easy to apply. Confidentiality is concerned with dynamically produced
data or static data; integrity is concerned with the manipulation or tampering
of software and data; and availability is concerned with the availability of sys-
tem functions and the communication. CIA considers data in three forms, i.e. in
use, in motion, and at rest, in the system and network. Moreover, integrity also
concerns the injection of falsified and spoofed data and packets into the system
or into the communication channels.

Guided by the CIA model, we conduct brainstorming sessions to go through
the identified assets, while considering the following questions:

– What are the threats/attacks on the confidentiality of the asset?
– What are the threats/attacks on the integrity of the asset?
– What are the threats/attacks on the availability of the asset?

The assets are the potential targets of an attacker that are critical for the
correct functioning of the system and the stakeholders’ interests, i.e. things to
1 Due to page limit and the scope, we refer interested readers to the appendix of J3061

standard or the references for more details.
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be protected. In other words, the identification of assets should be aligned with
the business goals and mandatory regulatory frameworks such as road safety.
We identify and choose three sets of assets: software (software intellectual prop-
erty and applications), functionality (remote control, remote maintenance, and
remote update), and data (measurement and configuration).

For each identified asset, we identify attack scenarios and threats for a fine-
granular threat description. The difference between an attack scenario and a
threat is that a threat is the goal which an attacker wants to achieve; an attack
scenario is the means (attack method) to reach the goal. For example, the same
attack scenario (e.g. sniff network traffic) can pose multiple threats (e.g. copy
proprietary data or reveal credentials). The brainstorming sessions are conducted
by the project team including system developers and security experts. Since
the goal is to enumerate as many potential threat scenarios as possible, we do
not set limitation on whether a proposed scenario is “realistic enough” during
brainstormings. Instead, the scenarios are refined and consolidated afterwards.
Although there are currently no criteria on whether attack and threat scenar-
ios are “complete”, our approach is to have several brainstorming sessions and
reviews and ensure that all publicly known attack scenarios are considered.

Note that we intentionally enumerate the attack scenarios and threats in
parallel. This means we use a threat (i.e. the attack goal) to justify the con-
sideration of an attack method. At the same time, the existence of an attack
scenario allows us to derive a specific threat or identify the motivation of the
attacker. For each identified threat, we identify its corresponding effect, i.e. the
consequence or the impact on the system resulting from the attack. Given the
nature of automotive when identifying effects, we focus mainly on the safety and
security aspects as advocated in [14,15]. The first three columns of Table 1 show
examples of our TARA result.

The identified attack scenarios, threats, and effects form the basis for risk
assessment, i.e. the assessment and classification of risks associated with a par-
ticular threat. In J3061, risk assessment includes the likelihood of a successful
attack and the severity of the possible outcome. Several examples are given in
the appendix. For instance, in the EVITA method, a similar concept of “attack
probability” is used. It is calculated as the sum of the scores of “attack poten-
tial”, divided into elapsed time, expertise, knowledge, window of opportunity,
and equipment required. Whereas for severity, the EVITA method breaks it
down into specific terms including financial, operational, privacy, and safety.

In J3061, the supporting materials for making qualitative risk decisions are
given as suggestions and examples. We improved their applicability to our specific
use case by constructing a slightly different attack probability table (cf. Table 2),
based on guidance from the HEAVENS project, which is one of the proposed meth-
ods in J3061 and [13]. Attack probability is estimated based on the difficulty to exe-
cute an identified attack scenario. Especially during the concept phase, informa-
tion about the system architecture and hardware/software elements may change or
be not yet determined. Focusing on the difficulty instead of vulnerabilities allows
a first estimation of the risk. Capabilities point to the minimal general knowledge
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Table 1. Example threats and risk rating

Attack scenario Threat Effect Attack prob. Severity Risks

Asset: Software/Applications

Exploit known

vulnerabilities in OS

or applications

remotely

Install rootkit,

Trojan

Take control of

system ECU

operations,

change

parameters,

and access

data

9 (2 + 1 + 3 + 3) 4 High

Exploit known

vulnerabilities in OS

or applications

remotely

Delete software

component

Reduce

functionality

of ECU

9 (2 + 1 + 3 + 3) 2 Medium

Asset: Remote control functions

Man-in-the-middle attack

on communication

Eavesdropping

password used

for remote

connection

Hijack established

connection

and disturb

normal

operation

8 (1 + 1 + 3 + 3) 2 Medium

Brute force or guess

remote connection

password

Reveal password Exploit remote

connectivity to

disturb normal

operation

7 (1 + 2 + 2 + 2) 2 Medium

Asset: Remote maintenance functions

Compromise and control

a device in the

communication link

between ECU and

Web server

Eavesdrop com-

munication to

intercept

maintenance

data

Intercept sensitive

configuration

and

maintenance

data

7 (1 + 2 + 2 + 2) 3 Medium

Man-in-the-middle attack

on communication

Send manipulated

maintenance

data to Web

server

Cause unnecessary

maintenance

actions by

sending

crafted

maintenance

data

8 (1 + 1 + 3 + 3) 1 Low

Asset: Remote update functions

Send multiple updates to

exhaust storage of

ECU

Temporarily

disable normal

function of OS

or applications

Partial reduction

of system

function,

storage space

exhausted

5 (1 + 1 + 2 + 1) 0

Compromise server to

transmit data to ECU

Change of

operating

conditions,

leading to

potential

unsafe

conditions

Change operating

conditions of

one or

multiple ECUs

8 (1 + 2 + 3 + 2) 4 High

Asset: Measurement & configuration data

Exploit known

vulnerabilities in OS

or applications

remotely

Unauthorized

access to data

on ECU

Access to usage or

configuration

data on ECU

8 (1 + 1 + 3 + 3) 1 Low

Man-in-the-middle attack

on communication

Unauthorized

access to

transmitted

data

Access to certain

usage data

8 (1 + 1 + 3 + 3) 1 Low
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Table 2. Attack probability parameter

Parameter Score

3 2 1 0

Capability Amateur Mechanic, Repair

shop

Hacker, Automotive

expert

Expert team from

multiple domains

Availability of

informa-

tion

Information

publicly

available

Information

available for

maintenance or

for cus-

tomer/operator

Information available

for production,

OEM, system

integrator

Information available

in company of

ECU supplier

Reachability Always accessible

via untrusted

networks

Accessible via

private networks

or part time

accessible via

untrusted

networks

Part time accessible

via private

networks or

easily accessible

via physical

Only accessible via

physical

Required

Equipment

Publicly available

standard IT

devices/SW

Publicly available

specialized IT

devices/SW

Tailor-

made/proprietary

IT devices/SW

Multiple Tailor-

made/proprietary

IT devices/SW

about theproduct andmethods requiredbyanattacker.Availability of information
describes how easy it is to access the needed information. Reachability describes
the difficulty to reach the system for an attack. Required equipment refers to the
needed devices to conduct the attack. Summarizing the scores for each parame-
ter gives an estimation of the attack probability, where a higher scores indicates
a higher attack probability. For example, to remotely compromise a system and
replace a legitimate software component with a crafted malware that can send mes-
sages to the CAN bus, the attacker must at least be a Hacker/Automotive expert
with information available for production, OEM, system integrator, with access to
the system via private network or “ease” physical interfaces, and equipped with
tailor-made/proprietary IT devices/SW. This gives the attack probability score of
1+1+1+1 = 4. Note that the purpose of the assessment is not to calculate exact
numeric values of attack probability, but to generate relative values to cluster and
rank the associated the risks.

For the evaluation of the severity we adapt the EVITA severity classes [7].
Due to different usage scenarios, not all ratings are directly applicable. For exam-
ple, while privacy is an important issue for passenger vehicles, our system is not
intended for passenger transportation, thus our focus here is on the confidential-
ity of critical business data and intellectual property instead of an individual’s
privacy. Unauthorized changing of data is considered to be operational and safety
losses. Table 3 gives the details for determining the severity levels.

The last step of TARA is risk analysis, i.e. threat ranking and the deter-
mination of whether a risk associated with a particular threat is acceptable.
J3061 provides the example of the HEAVENS security model, which combines
the threat and impact level to derive a security level. We adapt the security
model to a risk matrix. Shown in Table 4, the range of a particular risk class is
based on scores from attack probability and severity class. For example, attack
probability of 4 and severity class of 4 will result to a risk of Medium (cf. Table 4).
Recall that a high score of attack probability indicates an attack is more likely
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Table 3. Cybersecurity severity classes

Severity

classes

Safety Confidentiality Financial Operational

0 No injuries No unauthorized

access to data

No financial loss No impact on operational

performance

1 Light or moderate

injuries

Configuration

data only

Low-level loss Impact not discernible to

operator

2 Severe injuries or

moderate injuries

for multiple

vehicles

Partial data

(access to a

single update

or one

application)

Moderate loss Low losses for multiple

vehicles. Operator

aware of performance

degradation

Indiscernible impacts

for multiple vehicles

3 Life threatening or

fatal injuries

Severe injuries for

multiple vehicles

Access to

complete data

Heavy loss Moderate

losses for multiple

vehicles

Significant impact on

performance

Noticeable impact for

multiple vehicles

4 Life threatening or

fatal injuries for

multiple vehicles

Access to data

from multiple

ECUs in the

vehicle

Heavy losses for

multiple vehicles

Significant impact on

multiple vehicles

Table 4. Risk matrix

Risk Attack probability

Severity class 0–2 3–5 6–8 9–11 >11

0

1 Low Low Low Medium

2 Low Medium Medium High

3 Low Medium High High

4 Low Medium High High Critical

to occur, e.g. due to lower technical barrier or availability of information. If such
attack leads to high severity, then the risk is deemed as high.

The last three columns in Table 1 shows the results of the risk assessment
and analysis. Note that for attack probability, we include the sum as well as the
individual scores to show how they are calculated based on Table 2.

Through the TARA process, preliminary results are refined to identify
“acceptable” risks and to prioritize the risks in order to define the scope of the
following work. At this stage, we decide that risks rated with Low are acceptable
and focus on Medium and High risks.

J3061 requires the identification of cybersecurity goals in the end of TARA.
The goals describe the highest level cybersecurity requirements and goals for
achieving cybersecurity. They are a high-level and concise description of what
should be avoided, detected or prevented. In our case, the cybersecurity goals
include things like:

– Prevent eavesdrop of wireline and wireless communication
– Prevent tampering of wireline and wireless communication
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– Avoid unauthorized or wrong (unfinished) software update
– Prevent application of unauthorized or wrong configuration data
– Prevent exploitation of known vulnerabilities
– Prevent and detect attacks on web server for software update

3.3 Cybersecurity Concept and Requirement

The cybersecurity concept describes the high-level strategy for achieving cyber-
security, e.g. the strategy how to satisfy the defined cybersecurity goals. J3061
states that security strategies that address the identified threats need to cover
aspects such as embedded system, standard IT, (wireless) communication, and
a secure development lifecycle. Some of our cybersecurity concepts include:

– Use secure communication channels whenever possible, e.g. VPN, SSL, or
WPA2

– Digitally sign exchanged data, including software update, configure data etc.
– Minimize vulnerabilities and weakness during development and operation (by

secure coding practice and review, vulnerability scanning, process and tech-
niques for patching)

– Disable all debugging and maintenance, interfaces, ports, and functions in
operation mode

– Leverage build-in security features in hardware and software, whenever
possible

The functional cybersecurity requirements are derived from the cybersecu-
rity strategy as well as cybersecurity goals. Therefore, towards the end of con-
cept phase, we derive functional cybersecurity requirements that are clustered
into identification and authentication control, secure communication, system
integrity, cryptographic keys. Some examples are given below.

– The system shall support different levels of access rights and remote user rights
– The system shall provide the capability to identify and authenticate itself

during its life time
– The system shall be able to verify the origin of a software packet in the software

update process
– The system shall be able to verify the origin of a remotely issued command
– The system shall provide security communication capability when communi-

cating with external hosts over wireless and wireline
– The system shall provide additional integrity protection for the storage of

critical operational data such as configuration data
– If Public Key Infrastructure (PKI) is used, the system shall provide capability

to securely store and manage cryptographic keys and credentials, and operate
PKI according to common best practices
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3.4 Final Steps in Concept Phase

The final steps in the concept phase are an initial cybersecurity assessment and
the final concept phase review. The initial cybersecurity assessment contains the
assessment of high-level cybersecurity goals identified during TARA, risks asso-
ciated with the goals, and open issues identified. In the assessment, we conduct a
high-level assessment of whether cybersecurity functional requirements are capa-
ble of mitigating threats and risks. In the concept phase review, we verify the
completeness, correctness and consistency of all the conducted steps in a review
workshop and the document review by all project team.

4 Discussion

ISO 26262 is a domain specific instantiation of the generic safety standard IEC
61508 and follows a risk based approach around safety integrity levels, safety
goals, and safety concepts [14]. Since J3061 is based on ISO 26262 and envisions
a process tightly interwoven with other automotive engineering activities, we
start the discussion with a comparison of the concept phase in ISO 26262 and
J3061. While J3061 uses the term “feature” and ISO 26262 uses the term “item”,
both have the same meaning, i.e. system or multiple systems that implement a
function at the vehicle level, to which the respective standard is applied.

Currently the guidance regarding safety and security co-engineering (i.e. a
combined approach to safety and security engineering) is more extensive in J3061
than in ISO 26262. In 2018 a new version of ISO 26262 should be published
which contains guidance for the interaction between safety and security from
the safety side. While the number and goal of most process steps in the concept
phase is relatively similar between ISO 26262 and J3061, there are differences
between Hazard Analysis and Risk Assessment (HARA) in ISO 26262 and TARA
in J3061. The most obvious difference is the direction of consideration. HARA
focuses on identifying and categorizing of malfunctions in the item which can
lead to a hazard, whereas TARA focuses on threats to a feature (cf. Fig. 3).

In addition, the rating of risks differs between HARA and TARA. Both ana-
lyzes aim at identifying risks without exact probabilities in the concept phase.
For HARA this is due to insufficient information about the system architecture,
used hardware components, and how a function will precisely be implemented.
For TARA, besides the already mentioned points, in general vulnerability infor-
mation and threat intelligence is often incomplete without detailed information
of the exact design and implementation. HARA focuses on the potential severity
of a hazard, probability of exposure to operational situations in which the mal-
function leads to a hazard and controllability of the malfunction. Risks are classi-
fied in Automotive Safety Integrity Levels (ASILs) and there is a relatively clear
guidance on which actions and risk reductions are necessary for certain ASILs.
In cybersecurity the guidance is less clear. J3061 suggests different methods for
the rating of risks and the usage of controllability as additional parameter only
for threats which may impact the safety. While this is done in order to be con-
sistent with ISO 26262 we would suggest to either extend this also to operational
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Fig. 3. Direction of consideration for threats and malfunctions

impacts or to remove this parameter. Considering controllability for cybersecu-
rity threats, when the distribution of control between machine and driver is still
open and rather difficult. Controllability should rather be considered as a potential
cybersecurity control which can be used for risk reduction, after the TARA phase.
HARA and TARA are iterative processes throughout the development lifecycle.

In general, the scope of TARA is wider than HARA. HARA focuses on devi-
ation from the intended functionality which are caused by failures and may lead
to hazards. TARA focuses, besides functionality, also on the data and extends
the scope from safety-related losses to impacts on confidentiality or financial
losses. Another related topic under development is the potential extension of
the scope of Safety of the intended Functionality (SotiF) and Fail Operational.
SotiF describes safety impacts not caused by failures but by insufficient nominal
behavior and minimum performance levels for safety critical vehicle functions.
SotiF is currently considered as a NWIP (New work item proposal) for a future
ISO Standard.

According to the agenda of ISO 26262, the relation between the two stan-
dards and how to interact J3061 with ISO 26262 will be included in the upcoming
guidance in new versions of ISO 26262.

5 Conclusion

Cybersecurity has becomes a serious concern in the automotive domain in recent
years due to the increasing integration of computers and connectivity in modern
vehicles. In this paper, we share our experience of applying the guidance in the
newly published automotive cybersecurity standard J3061 to a communication
gateway ECU in the concept phase. We report our experience of following the
standard for identifying threats and risks and derive high-level security require-
ments. We also show specific methods and techniques used during the process.
We compare J3061 with ISO 26262 to discuss their alignment.
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We belief that these experiences and lessons learned need to be shared
with the automotive safety and security community to push forward automo-
tive cybersecurity and to improve the standard in the long run. For next step,
we will continue the application of J3061 to the development phase to gain more
insight.
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Abstract. Going along with current research trends like Cyber-Physical Sys-
tems it is assumed for future embedded systems to enable a better intercon-
nection of distributed systems. Besides mutual awareness, they should provide a
deeper integration on the level of functional cooperation. By today, runtime
aspects of system adaptation for functional safety are not sufficiently addressed.
As predicted for the near future, especially collaboration scenarios of autono-
mous driving vehicles like platooning will make it necessary to address safety
across the classical boundaries of single automotive systems. Therefore,
extending the vehicle safety architecture to an open and adaptive one, implies
that there is a need for a runtime assessment of safety. To ensure that the current
operational situation based on cooperative functionalities is safe, we propose a
safety evaluation with dynamic safety contracts between involved parties. The
approach is based on a continuous monitoring, sharing and calculation of safety
related quality characteristics of systems at runtime.

Keywords: Cooperative systems � Dynamic safety contracts � Condition
monitoring � Safety � Autonomous vehicles � Conditional certificates � Dynamic
adaptation

1 Introduction

With concepts like Cyber-Physical Systems or Industry 4.0 a new era of electronic
devices is evolving. This evolution was enabled by ever increasing capabilities of
embedded computing devices and declining prices. Today´s technical devices contain
more and more powerful sensors with the ability to monitor system conditions as well as
environmental parameters. Based on that new research areas about connecting those
distributed systems evolved. In such networks each system could allocate its limited
functionality to a wider context and thus improve the capabilities to reach its own and
superordinated system goals. As an illustrative application domain we selected the
vehicle domain as it is part of our current research, but as it was outlined the approach is
not limited to it. Driven by the current trend towards full autonomous vehicles, coop-
eration of single vehicles can lead to a safer and more efficient traffic flow. Emerging
wireless technologies for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications have the potential to interconnect these distributed systems of public
road users and infrastructure for more coordinated interactions. Higher-level services

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 171–182, 2016.
DOI: 10.1007/978-3-319-45480-1_14



beyond the ability of isolated vehicles can then be realized. Introducing shared safety
related data into the individual vehicle safety architecture paves the way for powerful,
but safety critical cooperative functionalities. Concrete applications are manifold like
collaboration groups of vehicles driving in a platoon with sharing of sensor data or
building master-slave cooperation groups in the commercial vehicle domain (e.g.
agriculture) to certify motion of the subordinated driverless slave vehicle. Since the
availability of subsumed functionalities from these cooperating systems is changing, we
have to establish safety evaluation techniques at runtime.

Ensuring safety for such cooperative functionalities is an essential requirement for
getting accepted by the certification bodies. If this is not done, cooperative function-
alities have no chance to get introduced to the market. In today´s safety standards
shifting parts of the safety evaluation to runtime is not considered. The complete safety
evaluation for system and environment is done at development time. For cooperating
systems this is inappropriate since the “adaptation space” would be too large by
assessing all possible operational situations at development time. Related cooperative
functionalities could not only vary in available or not but also in a predefined set of
intermediate stages. The aggregation of system properties of the collaborating system
to safe or unsafe is an additional degree of freedom which depends on the current
operational situation. In addition considering always the worst case would degrade the
system performance to a large extent. Another aspect is the dynamic behavior of
collaborating systems. Cooperative functionalities as considered for safety evaluation
are inherently safety critical. If the current operational situation is evaluated to be
unsafe an adequate predefined reaction behavior is required to reduce or eliminate
potential risks for the collaborating system. Depending on the use case of the coop-
erative functionality it could be sufficient to deactivate this functionality like for
information services in wearables, but it could also be possible that a more situation
adapted reaction is required like in the area of cooperative driving. Such situation
dependent reactions could only be realized by monitoring safety properties at runtime.
Traditional safety engineering approaches have therefore to be enhanced to also
address the demands of collaborating systems to establish cooperative functionalities.
Consequently, new approaches for ensuring safety are the only feasible path for the
introduction of dynamical adaptive systems.

2 State of the Art

In recent years runtime trust assurance [1] and runtime safety certification [2] in open
and adaptive systems are upcoming research topics since there is a rising demand for
more flexible technical products, which can be adapted to user needs, to dynamic
changes in service/device availability or resource situations [3]. The demand for
shifting parts of the safety evaluation from development time to runtime results from
technical systems which are not fully known at design time. For system concepts like
Industry 4.0 a flexible modular architecture is a key factor for a high performance of the
assembly line. In such technical systems safety certified modules with predefined
functions can be combined in a most flexible way at runtime to adapt the system to
rapidly changing customer demands and to accelerate repair times [4]. Ideally diverse
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previously unknown modules could be added in an easy way like plug and play and the
overall system functionality should be evolved at runtime. To ensure safety for such
open adaptive systems Schneider introduced the Conditional Safety Certificates
(ConSerts) [5], which is the most important contribution for our approach. At runtime it
is then possible to evaluate a safety certified higher level static functionality based on
available safety certificates and runtime evidences (RtEs) of subordinated systems.
Sharing of safety related runtime data for a system cooperation on the functional level
was not in the scope of this work. Especially in vehicle domain, but also in other
domains as described before, sharing of safety related data seems to be a promising
approach for safety and efficiency. In today’s safety standards like ISO 26262 [6] it is
not considered yet. Oestberg dealt with the question how to integrate shared safety
related data of vehicles into standards like AUTOSAR [7, 8]. As a result he suggested
to introduce an individual data base to each vehicle, where safety related vehicle sensor
data is stored. In the next step the data bases are synchronized between the collabo-
rating vehicles to optimize their safety assessment. Based on that he concluded a safety
contract concept for dynamic safety assessment is needed, but he provided no concrete
one. Also Priesterjahn introduced a runtime safety analysis for cooperating vehicles
based on failure propagation models [9]. But for this only development time knowledge
was considered. Cooperation especially demands from participating systems that they
are able to adapt themselves to provided services to gain advantage from cooperation.
As a conclusion for this section it can be stated that there is at the moment no
appropriate approach available which tackles the specific demands of cooperative
functionalities for safety assurance and certification.

3 Dynamic Safety Contracts

In the following, the collaboration concept of dynamic safety contracts (DSCs) is
explained with the already introduced example of platooning. This application provides
various technical optimization opportunities along with a straightforward reaction
behavior. In the use-case scenario we demonstrate the evaluation of DSCs for the
follower vehicle of a platooning group, which has in case of an accident with the
vehicle ahead a higher liability risk. Based on a cooperative autonomous cruise control
(CACC) the platooning functionality is integrated into the vehicle. This is shown in
Fig. 1. The two important performance parameters are the distance to the front vehicle
and the speed, which is prescribed by the speed limit. Driving very close to the vehicle
ahead leads to a more efficient highway driving, but at the same time it becomes more
dangerous and has to be granted by safety considerations. To access the current
operational situation in an optimal way, we consider internal safety related data from
the vehicle and external data from the environment together in a unified safety contract,
defined at development time and aggregated at runtime. Specifically to each situation,
such a contract model should always give the maximum range of possible safety related
guarantees. Thinking about continuously changing runtime parameters like speed and
distances to objects, we have to consider, next to a qualitative description like
‘Function works properly’, also a quantitative one for safety contract modeling.
Combining qualitative and quantitative runtime data as a safety quality metric leads to
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safety contract modules with qualitative or quantitative output guarantees, which are
described in the following subsections.

3.1 Qualitative Safety Contract Module

A contract module for qualitative safety assessment as shown in Fig. 2 consists of a
predefined number of qualitative safety guarantee output ports (at the top of the
modules). As a modeling convention they are arranged based on decreasing output
guarantees from left to right. This also represents the evaluation order at runtime after
the model is transformed into a computable representation. The demand-input ports
consists out of qualitative and quantitative demand ports. These input ports are linked
to the output ports based on Boolean logic. Qualitative input ports only check for the
availability of required RtEs and change to true of false. With quantitative input ports it
is checked whether certain continuous parameters fulfill predefined requirements such
as lying in specified value range. Based on this module intern check a qualitative
runtime proof is derived and forwarded.

Implementation of Qualitative DSCs for CACC Scenario. The qualitative safety
contract module “Detection Quality” in Fig. 2 consists of two qualitative output ports.
The qualitative output port Safe Redundant Detection of V1 & V2 represents the
maximum output guarantee. It guarantees a successful counterwise detection of the two

Fig. 1. Adaptation concept for CACC-system based on functional cooperation
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vehicles. The qualitative output port No Safe Redundant Detection of V1 & V2 rep-
resents the default guarantee which actually provides no guarantee level. The first one
means that a safe redundant detection between two vehicles could be guaranteed and
the second one shows that this is not possible, but at least the module is active. To
guarantee a safe redundant detection it is defined in the safety module that from both
vehicles a guarantee for a sufficient detection quality of the other one must be available.
This means vehicle intern and shared data from the other vehicle have to be combined
at runtime based on a qualitative RtE. In addition to this quality metric of detection the
derived distance as the most important runtime parameter is checked for plausibility.
Accordingly both quantitative current distance parameters are compared as a redun-
dancy check. Another qualitative safety contract module “Speed Check” is shown in
Fig. 2 on the right side. The module compares the internal current speed measurement
with the external speed limit information. In this scenario a speed limit certificate is
shared by the highway infrastructure or the platooning group via wireless communi-
cation. Thinking about platooning with regular street signs could have some disad-
vantages. In such scenarios street signs could be missed caused by the short distances
between vehicles or they are not adaptive enough for an efficient platooning in the
current operational situation. The speed limit value varies with time and place, con-
sequently the up-to-dateness of the received speed limit has to be guaranteed. In
addition the authenticity of the value origin has to be checked. Making this certificate
available for safety contract evaluation in the vehicle requires that it has been suc-
cessfully checked for safety and security consideration in advance, which is expressed
by the qualitative input check Valid Speed Limit.

Based on the availability of this evidence and the accordance of the current speed
value with the speed limit the internal safety property Speed OK can be guaranteed. If
the certificate for a valid speed limit is available, but the current speed value is outside
its specification, at least the internal safety property Limit Speed can be provided. The
contained valuable information is that although the current speed is outside its
boundaries, the system is able to recover the system to the specification, namely due to
braking to the speed limit in an automated way. A missing valid speed limit in the
vehicular infrastructure would activate the default case, which reports that the system is
not able to evaluate this safety relevant aspects by itself. Consequently, the CACC
system has to warn the regular driver and ask for assistance.

Fig. 2. Qualitative DSC modules: detection quality and speed check
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3.2 Quantitative Safety Contract Module

A contract module for a quantitative safety assessment as shown in Fig. 3 consists of
one quantitative safety guarantee output port and an undefined number of qualitative as
well as quantitative demand input ports. Quantitative input ports are used in this
module to either define a quantitative degradation of the output guarantee more
specifically to internal runtime parameters or to build module intern qualitative runtime
proofs to check if certain parameters fulfill predefined requirements.

To the quantitative safety contract module is an ideal quantitative value assigned,
which is visualized as a circle. It represents the best possible output value of the
module. The ideal value is only forwarded to the guarantee output if all necessary input
demands are fulfilled at runtime. Missing runtime guarantees cause a predefined
degradation of the ideal value. The degradation logic is described in the constraint sub
modules similar to the qualitative DSC modules based on Boolean decisions. With
Boolean algebra the working principle of degradation remains understandable for
safety considerations and lightweight for fast computations. Thereby the number of
constraints is not limited. In the best case scenario each constraint module, if its optimal
input demands are fulfilled, forwards the ideal value remaining constant, otherwise it
degrades the ideal value in accordance to the contained degradation logic.

Implementation of Quantitative DSCs for CACC Scenario. In the quantitative safety
contract module “Safe Distance Evaluation” in Fig. 3 the maximum quantitative safety
guarantee in the sense of the smallest safe distance to the front vehicle is evaluated. The
ideal value represents the shortest possible distance to the front vehicle, which is the
optimum from process view. To guarantee a safe operation for the shortest distance the
highest demands from Constraints 1 and 2 have to be fulfilled. The inner degradation
logic from Constraints 1 and 2 for different input guarantees is shown in Fig. 4. Evalu-
ating a safe distance to the front vehicle dependsmostly on the reaction (Constraint 1) and
detection (Constraint 2) capability of a vehicle, so we divided them accordingly. Such

Fig. 3. Quantitative DSC module: safe distance evaluation
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scenario dependent partitions of constraints should support modeling and comprehension
of complex dependencies, but should not be considered as mandatory.

In Constraint 1 it is defined that, if the internal Traction OK certificate (no traction
problems are detected) and the external Platooning OK certificate from the vehicle
ahead is available, the ideal value of a safe distance is not reduced based on the reaction
capability. The availability of the Platooning OK certificates should guarantee that
there is no hazard detected in the vehicle ahead and confirms that warnings are directly
propagated to the follower vehicle. In case of an emergency braking of the leading
vehicle the follower vehicle should brake accordingly without substantial time delays.
In addition the availability of the safety guarantee Platooning OK in the follower
vehicle implicitly expresses that there is a working communication link between the
collaborating systems and the collaboration was accepted to be trustworthy e.g. based
on encryption code. But the authentication process and technical implementation of a
communication link is not part of this work. If the Traction OK certificate is available
and the Platooning OK guarantee is missing, there is no direct warning for the follower
vehicle. For this case the CACC-system considers a short additional reaction time to
detect sudden speed changes of the front vehicle. Depending on the current speed the
traveled distance during the reaction time waiting for its own emergency braking
varies. In Constraint 1 the reaction time is represented by the degradation of the ideal
value with the transformation function Fusion by Transformation Graph based on the
current speed as an input parameter. A missing Traction OK certificate always leads to
a maximum degradation. Because of missing grip the CACC-system is not able to give
any kind of reliable guarantees for the safe distance. In the Boolean logic the missing
Traction OK guarantee is described with the Default demand, where no input guar-
antees have to be fulfilled. In Constraint 2 in Fig. 4 it is checked independent of the
previous demands, which safety quality certificates are available for the detection of the
vehicle ahead. Depending on the detection quality we defined two different safe dis-
tances since the variability of the detection quality is limited. One case is the regular
detection of the vehicle ahead described with the safety certificate Safe Detection of V2
which degrades the evaluated safe distance slightly (here 20 %). By the use of coop-
eration the following vehicle can compare its knowledge to the measurement data of
the vehicle ahead. If their measurement data about their mutual position can be suc-
cessfully checked for plausibility, they establish a higher safety integrity level of
detection based on redundancy. A more safety critical platooning like smaller distances

Fig. 4. Constraints 1 and 2 of DSC module “safe distance evaluation”
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between vehicles could be granted by safety considerations. In Constraint 2 this is
examplified with the No Degradation guarantee. Additional information about the
working principle of the “Detection Quality” module for redundancy checks was given
in the previous section. In this modeled scenario we did the evaluation of the detection
quality in a separate module, which supports reuse in different safety evaluation con-
texts. A missing vehicle intern certificate for a sufficient detection quality of the vehicle
ahead makes a determination of a safe distance impossible. This is specified with the
maximum degradation of the safe distance in Constraint 2. The degradation of the ideal
platooning distance based on missing guarantee certificates for the superordinated
modul “Safe Distance Evaluation” is built like the following exemplary equation: Safe
Distance = Optimal Value * Constr.1 * Constr.2. In case all input demands of the
constraints are fulfilled, the safe distance guarantee is equal to the optimal value. In
case the Platooning OK certificate is missing, the current speed value is considered for
the transformation function. For instance, based on the current speed as input value the
transformation function provides 200 % as the degradation output value and the
optimal distance was set to 10 m. Besides that only the Safe Detection of V2 certificate
for the detection quality of Constraint 2 is available, which leads to an additional
degradation (Safe Distance = 10 m * 200 % * 120 % = 24 m).

3.3 Composition of DSC Moduls and Evaluation Procedure

To guarantee a fast and reliable computation of runtime safety contracts we decided to
model their dependencies with direct allocations as shown in Fig. 5. For this reason we
arranged the DSC moduls according to their required order of evaluation of runtime
guarantees for higher level safety properties and connected them via their module ports
to forward qualitative and quantitative safety related data. Thereby, safety related data
which requires no preevaluation can be introduced in a flexible way to all levels of
DSC evaluation. Considering unsafe situations of cooperation based on degraded DSC
modules requires a predetermined reaction concept. At runtime the evaluated safety
contracts represent the current valid safety properties of the vehicle cooperation. Based
on the remaining safety properties predefined reactions are defined in the “Safe
Reaction Manager” Module. This is introduced on the top level of the composed DSC
moduls in Fig. 5 as they represent the top level safety properties of the cooperation. In
the next section and Fig. 6 the reaction concept is explained more detailed. Since the
complete static dependency modeling of DSC evaluation is done at development time,
computation time can be minimized due to forwarding runtime guarantees without
previously checking requirements from other modules. Direct assignments of runtime
safety properties between modules enable a traceable and predictable evaluation for
safety considerations. Doing a runtime safety analysis requires an ongoing check of
safety related properties to assert that the current operational situation is safe.

We also considered a flexible propagation model between safety contracts, but this
would make the evaluation process much more complex and less predictable due to
ongoing rearrangements processes. Since evaluation errors always force a system
reaction, which could have an impact on safety and availability of the vehicular system,
we decided to keep the model as lightweight as possible. Nevertheless the advantages
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of static dependency modeling are reached with a reduction of openness and flexibility.
Previously unknown runtime safety guarantees cannot be considered in this evaluation
model without further measures. Considering a restricted set of cooperation partners
like in a master-slave vehicle cooperation scenario this concept is directly applicable,
since all available service types for a cooperation can be taken into account at devel-
opment time. Whereas, in an open adaptive system approach like the presented pla-
tooning scenario, at first a check for a possible certified cooperation between available
vehicles has to be done. In this context the ConSerts approach introduced by Schneider
fits best to introduce a preliminary check to the DSC evaluation. Based on conditional
certificates it evaluates with a demand-guarantee runtime check of related systems a
possible integration to a static higher level functionality. We propose to assign an
individually adjusted DSC evaluation concept (as presented in Fig. 5) to each func-
tional guarantee definition of a ConSert Tree.

Fig. 5. Composition of DSC modules
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3.4 Top Level Safety Quality Attributes and Reaction Behaviour

To define reactions for degraded safety properties at runtime we use a qualitative safety
contract module based on qualitative and quantitative input guarantees as shown in
Fig. 6. The demand input ports represent the different facets of degraded runtime safety
properties of the system. Quantitative input ports are used again to build module intern
qualitative runtime proofs to check if certain parameters fulfill predefined requirements.
In addition they can be used to propagate quantitative data, which was evaluated during
the safety analysis, to the module for the reaction specification.

The “Safe Reaction Manager” Module in Fig. 6 defines how the system should
react based on available runtime safety guarantees. The different levels of reaction of
the safety analysis in the CACC-system were graphically illustrated in Fig. 1. In the
use-case scenario the CACC-system informs the driver that it can be activated in case
of a successfully detected front vehicle. In the same way the regular leaving of the
vehicles field of vision initializes a deactivation of the CACC-system.

In case the Speed OK guarantee in Fig. 6 is available and the current distance to the
front vehicle is larger or equal to the evaluated minimum safe distance, the adaptation
manager sets the limits for the safe driving distance and the current speed limit for
actuator activation for the regular CACC feedback control (Fig. 1). Since the safe
distance, unlike the speed limit, is evaluated as part of the runtime safety analysis we
have to make sure that the quantitative data is available for the reaction phase. In this
case this is done due to forwarding the quantitative value to the reaction phase. If the
feedback control is working according the permitted limits of speed and distance, safety
of motion for these degrees of freedom can be guaranteed. In case the distance to the
front vehicle is sufficient but the vehicle is driving too fast, the adaptation manager
initializes a brake command, which is dominant to the regular feedback control. At that
moment the vehicle has sufficiently reduced the speed regarding the speed limit the
“Speed Check” module switches from Limit Speed to Speed OK, which shifts also the
reaction in the “Safe Reaction Manager” module back from the brake command to the
regular driving mode. In case the vehicle is not complying with the evaluated safe
distance to the front vehicle, the system initializes a brake command similar to

Fig. 6. Safe reaction manager
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exceeding the maximum allowed speed and brakes until a safe operational state is
recovered. Considering both threats at the same time as an exceptional case leads to a
prioritized reaction of recovering a safe distance. This is done because we assumed for
this scenario that a too short distance to the front vehicle is probably more dangerous
than violating the speed limit. The prioritization is reached due to requiring operational
safety for current closings as an additional demand for the reaction to threats which are
assumed to be less dangerous. At runtime the reaction manager would activate a break
command until a safe distance is reached and then it is continued until the speed limit is
reached. We use the safe distance evaluation straightforward to establish a reaction, to
keep the use case simple. To check if the safe distance evaluation is still reliable we
introduced an additional runtime proof in the reaction manager for the reaction case of
braking to a safe distance. An evaluated safe distance value, which is greater than the
value of maximum degradation determined by a missing Platooning OK certificate, a
high velocity and a degraded detection capability inside the “Safe Distance Evaluation”
module, indicates that either the vehicles reaction or detection capability (or both) is lost.

The worst case scenario means that the vehicle’s CACC-system is not able to
guarantee a safe autonomous driving anymore, because it cannot check whether the
current operational situation is safe. In this case the default reaction case is activated
since no input demands from other reaction scenarios can be fulfilled. This can be
caused by a total loss of the vehicles reaction capability due to traction problems of the
vehicle where no guarantee about the braking distance is possible. Alternatively this
can be caused by a total loss of the vehicles detection capability due to sensor prob-
lems, where the vehicle is not able to detect the front vehicle or is not able to gather
other safety related information like the speed limit. In all of these cases the driver
should be warned that the safety of motion cannot be guaranteed and asked to take over
control whereby in parallel preventive safety measures like braking should be initial-
ized. Thinking about a platooning group driving on a slippery surface the front vehicle
would act like an additional sensor for follower vehicles and detect traction problems
first. As a consequence of traction problems, the front vehicle would stop providing the
Platooning OK certificate, and the follower vehicle would immediately start enlarging
the spacing between them. Sharing safety related data has therefore not only the
potential to optimize collaboration processes, but also to make them safer due to
preventive safety measures.

4 Operationalization of DSC Evaluation

For the modeling of the DSC Moduls we utilized Magic Draw. At the moment we are
developing a dedicated Plug-In, which should support automated code generation from
the GUI. To adapt the system to current available safety guarantees (Fig. 1) the system
has to continuously monitor the available safety guarantees and react in a predefined
way. Recently we build a test environment based on the V-REP (Virtual Robot
Experimentation Platform) simulation environment and the realtime robot control
framework Finroc from RRLab at TU Kaiserslautern. We implemented the platooning
scenario according the described use-case. The front vehicle is controlled with a virtual
control panel, while the second vehicle is following in an autonomous way by
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interpreting its environment with sensor networks based on an integrated behaviour
based control (iB2C). The two performance parameters (speed and distance) are
evaluated inside the Finroc framework at runtime. The different safety contract modules
are connected to each other inside the framework. The activation of different safety
properties can then be checked due to a runtime visualization of the modules. The
correct reaction behaviour can be observed in the V-REP cooperation scene.

5 Conclusion

We believe that building collaboration networks especially in the domain of autono-
mous vehicles based on concepts like dynamic safety contracts will make mobility
safer and more efficient. DSCs could help to assess safety in a more formalized way at
runtime and enable new cooperative functionalities. In our future work we want to
integrate scenarios with a stronger dependency of cooperation like driverless vehicles
in a master-slave configuration as they could be used for harvester scenarios in the
agricultural domain. Furthermore we want to investigate how the validity period of the
involved runtime safety guarantees can be determined properly.

References

1. Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey. In: Bencomo,
N., France, R., Cheng, B.H., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378,
pp. 279–318. Springer, Heidelberg (2014)

2. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 21–
35. Springer, Heidelberg (2008)

3. Schneider, D., Becker, M., Trapp, M.: Approaching runtime trust assurance in open adaptive
systems. In: Proceedings of the 6th International Symposium on Software Engineering for
Adaptive and Self-managing Systems, pp. 196–201. ACM (2011)

4. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manufact. Lett. 3, 18–23 (2015)

5. Schneider, D., Trapp, M.: Conditional safety certification of open adaptive systems. ACM
Trans. Auton. Adapt. Syst. (TAAS) 8(2), 8 (2013)

6. ISO/CD26262. Road vehicles, functional safety part 6: Product development at the software
level, part 10, guidelines (2011)

7. Östberg, K., Bengtsson, M.: Run time safety analysis for automotive systems in an open and
adaptive environment. In: SAFECOMP 2013-Workshop ASCoMS (Architecting Safety in
Collaborative Mobile Systems) of the 32nd International Conference on Computer Safety,
Reliability and Security (2013)

8. Östberg, K., Johansson, R.: Use of quality metrics for functional safety in systems of coop-
erative vehicles. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol.
7613, pp. 174–179. Springer, Heidelberg (2012)

9. Priesterjahn, C., Heinzemann, C., Schäfer, W., Tichy, M.: Runtime safety analysis for safe
reconfiguration. In: 2012 10th IEEE International Conference on Industrial Informatics
(INDIN), pp. 1092–1097. IEEE (2012)

182 S. Müller and P. Liggesmeyer



Time-of-Flight Based Optical Communication
for Safety-Critical Applications

in Autonomous Driving

Hannes Plank1(B), Gerald Holweg1, Christian Steger2, and Norbert Druml1

1 Infineon Technologies Austria AG, Graz, Austria
Hannes.Plank@infineon.com

2 Institute for Technical Informatics, Graz University of Technology, Graz, Austria
http://www.infineon.com/

Abstract. The automotive field has seen tremendous research effort
in the past years to increase safety by using vehicle to vehicle (V2V)
communication. There are however several issues in RF based V2V com-
munication impairing the safety applications requiring hard-reality com-
munication. Channel congestion, latency and the vulnerability to denial
of service attacks demand for an alternative solution to transmit time-
critical safety messages.

In this work, we discuss the security and safety aspects of free-space
optical communication solutions for line-of-sight V2V communication.
We show scenarios to demonstrate the high demand of a reliable low-
latency communication link between cars and evaluate the requirements
in communication security.

Image sensor based communication is widely accepted as the most
promising optical communication link for V2V. This work offers a
detailed discussion on how it is possible to increase speed and robustness
by using Time-of-Flight 3D image sensors for communication. Finally,
we show how communication partners can be localized and how location-
aware communication can greatly benefit secured communication by mit-
igating relay and denial-of-service attacks.

1 Introduction

As long lasting field tests like Google’s self-driving car project [9] prove,
autonomous cars have a significant lower accident rate, compared to human
drivers. In fact, cars operated by humans and pedestrians are the main threat
for autonomous cars, due to their sometimes irrational or unpredictable behav-
ior. In certain scenarios, autonomous cars are unable to prevent accidents, when
the front view is occluded by other cars. An example is shown in Fig. 1, where a
pedestrian steps on the road between two subsequent cars. The accident might
be preventable by a reliable communication link between the cars. The car in the
front can sense the pedestrian and can detect the fatal movement in the moment
of passing by. The front car can send a warning message to the back car, which
can take immediate action.

c© Springer International Publishing Switzerland 2016
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Fig. 1. Example for the need of low delay V2V communication: if vehicle 1 detects a
movement of the pedestrian towards the street, it can warn vehicle 2.

Such scenarios require reliable real-time and low latency V2V communi-
cation. In this work, we show how recent RF based V2V communication is
unable meet these requirements and how optical communication can tackle this
problem.

In V2V communication, vehicles in a certain area form an RF ad hoc net-
work. Since they share the same channel, a delay is introduced due to collision
avoidance protocols. While RF based V2V communication is successfully used
to transmit accident warnings over a longer range, problems appear in close
domain, where time requirements are more critical.

Optical line-of-sight communication between subsequent cars has the huge
advantage that the communication is limited between two partners and no colli-
sions can appear. Messages can be transmitted directly with very low delay and
without the risk of channel congestion. Such free-space optical communication
has been traditionally conducted by narrow field of view photo detectors. In a
dynamic environment like between moving cars, image sensor based detectors are
better suited. Image sensor based communication systems offer a wide field of
view and the ability to locate the communication partner, separating the source
of information from other interfering light sources creating a robuster commu-
nication link. A rather unexplored aspect of image sensor based communication
is location-awareness, where the information source during communication can
be assigned to a position.

Time-of-Flight sensors are image sensors, originally designed for capturing
depth images. However as we show in this work, they are a promising technology
enabling robust image sensor based communication with a novel, more efficient
modulation method. While traditional image sensors measure an induces charge,
proportional on the amount of incoming photons, Time-of-Flight cameras apply
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a modulation to each pixel and are able to measure phase shift differences of
pulsed incoming light. The signal of non-pulsed light is drained from the pixel,
eliminating all background interference.

Security is a crucial aspect in V2V communication and certain attack scenar-
ios exist, which can impact the safety of vehicular networks. The nature of image
sensor based optical communication offers the significant advantage of localiz-
ing the communication partner. Even if the distance cannot be determined by
the image sensor itself, localization data is available from other sensors, such as
RADAR, LIDAR, or other depth sensing systems. We propose a V2V communi-
cation concept, enriching state-of-the-art cryptographic security protocols with
localization information, which mitigates relay attacks.

This work is structured the following way: Sect. 2 discusses V2V communica-
tion with focus on its limitations in safety and security in low-delay applications.
Recent image sensor based free-space optical communication approaches in the
automotive domain are then introduced in Sect. 3. In Sect. 4, we provide insight
about the workings of Time-of-Flight sensors, and how it can be used for robust
image sensor based communication links. Finally we introduce our own concept
for a secure and location-aware optical communication link.

2 Problems of RF Based V2V Communication

Vehicular ad hoc networks (VANET) are going to make huge contributions to
the safety and convenience of assisted and autonomous driving. Using the RF
channel for communication however is not the ideal solution for applications
which require very low latency and high reliability. In the RF domain, the com-
munication medium is shared among multiple entities and thus requires collision
avoidance protocols. According to Cailean et al. [5], channel congestion is the
main reason for unreliability of otherwise properly configured VANETs. Even
if a channel is reserved for high priority emergency warnings, a certain delay
is always introduced by collision avoidance mechanisms. As shown by Bilstrup
et al. [3], current V2V can experience large channel access delays and can not be
considered a real-time communication protocol. Mass events like large car crashes
can event trigger a broadcast storm [21], where many nodes in a VANET broad-
cast messages at high frequencies. Agarwal et al. therefore emphasize the need
of directional communication for safe and reliable message exchange in dense
environments [1].

Crash prediction and avoidance mechanisms are the most common applica-
tions, requiring low latency communication. Even if a crash is unavoidable, crash
prediction can improve passenger safety by airbag pre-triggering [10]. Crash sce-
narios as presented in Sect. 1 exemplify the requirement of low latency in V2V
communication.

Optical communication between subsequent cars is a promising technology
which is congestion free and can offer a very low communication delay. Cailean
et al. [5] propose a combination of visible light communication and RF based
solutions, being the key to meet modern demands of safety critical V2V com-
munications systems.
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2.1 Security

The dynamic environment of VANETs introduces certain security threats, which
are not easily countered by cryptographic methods. VANETs based on RF are
vulnerable to denial of service (DoS) attacks, which are simple to execute by
RF jamming. Different countermeasures are discussed by Hasbullah et al. [11],
however they are based on switching to different channels, RF transmission tech-
nologies or the utilization of multiple transceivers. While these countermeasures
can mitigate the severity of a DoS attack, a sophisticated jamming attack can
also block evasion channels.

False accident warnings [22] can impair the traffic flow, as they cause a slow
down of the surrounding vehicles. In a network where all cars are authenticated
and communication packets are signed, the warnings could be matched with the
driver. This however compromises privacy, since vehicles could be tracked by an
attacker or authority.

3 Image Sensor Based V2V Communication

The problems in the RF domain of V2V communication can partially be solved
by additionally connecting vehicles with an optical line-of-sight based commu-
nication system. A line-of-sight connection will limit the communication to two
cars and thus prevent channel congestion issues and therefore also reduce latency.

The dynamic environment of V2V communication is a special application of
visible light communication, which requires a wide field of view. If a traditional
optical communication system with a single photo detector is used, the wide
field of view would bundle all lightsources onto the sensor, which would result
in a comparatively low SNR. It is therefore necessary to separate lightsources,
which is conveniently archived with cameras. The incoming light is projected
by the lens onto the sensor, separating the lightsources. When the pixels on the
image sensor are used to sample the communication partner’s light source, it is
possible to only select suitable pixels.

In the past years, various image sensor based communication approaches for
V2V communication appeared [5]. The first advances were driven by the fact that
cars usually already frequently encounter lightsources [24]. Road, tunnel, traffic
or brake lights are increasingly driven by LEDs, which can be modulated. Mod-
ulation schemes have been proposed, enabling to modulate visible lightsources
without inducing perceivable flickering [4].

Originally most image sensors are designed to produce video streams with
typically 30 fps and thus lack of sampling speed for communication. Since most
sensors require a full readout of all pixels, the frame rate is severely limited,
and dedicated high speed hardware is required to reach feasible speeds for V2V
communication [15].

An approach to boost the bandwidth of mostly conventional image sensors
are multiple input, multiple output (MIMO) approaches where information is
emitted by multiple LEDs in parallel [18]. MIMO approaches rely on the separa-
bility of lightsources which however limits the distance. Increasing the resolution
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of image sensors could counteract the distance problem, but either requires a
larger camera or smaller pixels reducing the light sensitive surface area.

A general problem of free-space visible light communication are atmospheric
turbulences, which are discussed further in Sect. 3.1. These turbulences are a
severe problem for MIMO communication approaches. When light is scattered
by small participles like raindrops or fog, the different light sources in MIMO
approaches are mixed and can no longer be separated by the receiver.

The demand for fast image sensor based communication lead to the devel-
opment of dedicated optical communication image sensors (OCI). The sensor of
Takai et al. [19] features dedicated communication pixels which are interleaved
with imaging pixels. The imaging pixels directly provide a flag image, using com-
parator circuits. This flag image is used to detect the position of high intensity
objects such as LEDs. The communication pixels are designed to be very sen-
sitive to illumination changes, and can be read out separately using an address
generator.

3.1 The Influence of Atmospheric Turbulences

A challenge for free-space optical communication are atmospheric turbulences
which involve all kinds of obstructions such as fog, rain, snow or dust. Kim et al.
[12] simulate rainy conditions on an optical communication channel. They use
on/off keying for transmission and measure a SNR loss of 60 %. They show that
using modified fixed decision thresholding (MFDT) reduces the bit error rate
dramatically.

Fog is the most challenging obstruction, since it absorbs, scatters and reflects
light. This means that the sender might also sense a reflection of his own signal.
Kim et al. also investigate the influence of fog on visible light V2V communica-
tion [13]. Experiments with a fog chamber show massively decreased SNR, which
could be compensated to a certain degree by focusing more light on the sensor
with an additional lens. Interestingly, their experiments also show that red light
exhibits the lowest attenuation coefficient. This confirms the use of red taillights
or (invisible) near infrared light (NIR) for optical communication under foggy
conditions.

4 Time-of-Flight Sensors

Time-of-Flight cameras are designed to measure the distance on each pixel
between the camera and the scene. The basic principle, as illustrated in Fig. 2,
is to measure the time it takes emitted light to travel from the camera to the
scene and back to the sensor.

During a measurement, an active illumination unit next to the sensor emits
pulsed infrared light. The ToF image sensor registers the phase difference
between emitted and reflected light. Each pixel is equipped with a photonic
mixture device (PMD) [14], capable of converting a phase shift to a measurable
voltage. The basic principle of a PMD is illustrated in Fig. 3. When photons
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Fig. 2. The principle of Time-of-Flight depth sensing, obtained with changes from [6].

Fig. 3. The working principle of a ToF pixel. A: a pixel is supplied with a modulation
signal um. B,C: charges are sorted into bucket A or B, depending on the modulation
signal. Obtained with changes from [20].

arrive at the sensor, they induce charges in the sensor. Each PMD is equipped
with two buckets to store the charges. A reference signal decides into which
bucket the charges are transferred. The reference signal is a pulsed signal with
the same frequency as the signal emitted by the illumination unit. After a cer-
tain integration time, the contents of the buckets are read-out and digitized. The
charge difference between the buckets is proportional to the phase-shift of these
signals and thus proportional with distance between camera and scene. Because
ToF sensors are designed to measure the phase shift of pulsed light signals, ToF
sensors can be used as novel visible light receivers for optical communication.

Captured raw images are usually severely biased by different amount of light
being reflected by different surface materials. It is common to capture multi-
ple raw images with different phases shifts of the illumination signal and use
post-processing methods to reconstruct depth images. Most ToF cameras fea-
ture therefore an integrated phase shifting unit (PSU) for emitting phase shifted
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signals. This enables phase shift modulation of the emitted signal without addi-
tional hardware.

Conventional free-space optical communication suffers from background
light. Direct lightsources like the sun and a bright environment will reduce the
SNR of direct detection based systems. A significant advantage of Time-of-Flight
based optical communication is that the pixels are exclusively sensitive to pulsed
light. The reason is that PMD pixels of a ToF sensor measure charge differences
between two buckets. If non-pulsed light arrives at the pixels, the photons are
evenly distributed into both buckets with no change of the charge difference.
The pulse frequency of ToF cameras depends on the intended application and is
typically in the range between 1 and 100 MHz.

The sender and the receiver must use the same frequency, otherwise the signal
is suppressed. This enables to establish multiple non interfering VLC connections
in a close environment by using different frequencies.

Each pixel has a limited capacity to store charges during exposure. The ToF
sensor we use in our work features a suppression of background illumination
(SBI) circuit on each pixel [20]. The SBI circuit actively drains the buckets of
the PMD element during exposure. This prevents the pixels from saturating
from background illumination, and enables to use ToF sensors for robust depth
sensing and communication in bright environments (Fig. 4).

Fig. 4. Pulsed signal detection characteristics of a PMD pixel with (right) and without
(left) suppression of background illumination. Obtained from [8]. (Color figure online)

4.1 Optical Communication with Time-of-Flight Sensors

Phase shift keying (PSK) of pulsed light has not been widely considered as
viable modulation method in visible light communications [16]. The first and
to our knowledge only approach to use Time-of-Flight cameras for optical com-
munication has been accomplished by Yuan et al. [25]. They established a one-
way MIMO communication link, using a ToF camera in depth sensing mode
as receiver. Photodiodes are used to sense the pulsed illumination signal of a
ToF camera. This signal is amplified and phase shifters are used to modulate
information using PSK. The modulated signal is then emitted back to the ToF
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camera with an LED array. The signal is received by the ToF camera and the
encoded information is extracted by analyzing the depth image.

In our approach, we use two ToF cameras for mutual communication, serving
as receiver and sender. Capturing depth data is optional, and raw images are
used for communication. Limiting the exposure time to a minimum enables high
frames. The integrated phase shifting unit is used for PSK modulation and the
illumination unit is used as emitter.

Compared to on-off keying, pulse position or pulse shift keying based modu-
lation schemes, phase shift keying offers certain advantages. At first, phase shift
keying is more robust to signal intensity variations. In a dynamic environment,
modulated light does not arrive homogeneously on a set of pixels. During the
exposure time, a moving lightsource illuminates an undefined number of pixels
with varying intensity. This motion blur might prevent to recover the intensity
and consequently causes an information loss. A phase shifted pulsed signal how-
ever will have a consistent phase shift, independent of the number of photons
arriving at the sensor. The SNR suffers from less sensed photons, but can be
compensated by averaging all influenced pixels.

Image sensors produce a relative large amount of data, which takes significant
time to read and digitize, limiting the frame rate. Using a high speed camera for
optical communication counters this problem, but requires powerful hardware.
Phase shift keying however increases the symbol size per transmitted frame. On-
off keying is able to transmit one bit per frame on a synchronized system, while
it is possible to transmit multiple bits per frame using PSK.

While lightsources are separated by projection onto image sensors, there
might be the possibility of interference from other optical communication sys-
tems. Usually, the signal strength from a direct connection is so significantly
stronger than light from indirect paths, that interference is not problematic.
Fog might however reflect sufficient light from other ToF lightsources. Optical
interference can be avoided with ToF sensors, by using different pulse frequen-
cies for communication. Unlike RF, pulsed optical communication does not need
channel permissions and can be used without limitations over a wide spectrum.
Time-of-Flight cameras are also designed to use a wide range of modulation
frequencies. Due to the requirement of unambiguous range extension in depth
sensing, ToF cameras are able to alternate between multiple modulation fre-
quencies. Our experiments and simulations show that a frequency difference of
hundred Hertz is sufficient to effectively suppress a signal.

5 Secured and Robust Communication
with Time-of-Flight Sensors

While a lot of attack risks are mitigated by the nature of optical line-of-sight
communication, location and context-awareness can further enhance security. In
this Section we analyze how the position of a communication partner can be
determined and how this localization benefits secure communication.
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5.1 Context and Location-Aware Communication

Despite the separation of lightsources, camera based optical communication has
the advantage that the sensor can help to provide valuable information about the
communication partner. When a line-of-sight connection is established between
two subsequent cars for crash prevention, it is important that the cars are located
in the same lane.

When image sensors are used for communication, it is not always the case
that the produced images are recorded. High sampling speeds, optical filters or
active suppression of background light can be the reason that 2D images cannot
be used to classify communication partners directly. It is however feasible to fuse
data from the communication sensor with other sensors such as LIDAR, 2D or
3D stereo cameras, which are increasingly available in modern cars. The position
of the projected lightsource on the image sensor can be used to determine the 3D
direction of the communication partner. To determine the direction vector

−→
d ,

the camera is approximated with the common pinhole model. The pixel position
of the projected light source xi,j is multiplied with the pseudo inverse of the
camera calibration matrix P̃D.

−→
d = P̃Dxi,j (1)

The relative direction between camera and communication partner can be
transformed to the global coordinate system of the car, when the position of the
camera to the origin of the global coordinate system is known. The result is a
line-of-sight vector, starting at the center of the camera. This vector can be used
to localize the partner’s illumination source by combining it with data from
other sensors. It is possible to calculate the intersection between the optical
line-of-sight and the sensed 3D pointcloud from on-board depth sensors. The
intersection point is the 3D position of the communication partner’s illumination
source.

The line-of-sight can also be directly projected onto 2D images. The projected
line can be used as search space to determine the exact source of information
using 2D information. Given the fact that car models can be robustly determined
by 2D cameras [2], it is possible to use a database to determine and verify
the expected lightsource position. Then it is also possible to use triangulation
between the communication image sensor and the 2D camera to determine the
distance.

5.2 Benefits for Secured Communication

When two subsequent cars communicate over a line-of-sight connection, the
transmitted data is already hard to manipulate. Denial of service attacks take
a lot more effort, as the line-of-sight connection needs to be either blocked, or
overridden by a stronger signal. When using Time-of-Flight sensors, blocking a
line-of-sight connection is even harder, as overriding a lightsource need to be done
with modulated light at the same pulse frequency. While message manipulation
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and eavesdropping is hard, state-of-the-art encryption is highly recommended.
Wasef et al. [23] propose a public key infrastructure for ad hoc vehicular net-
works, which can be extended to line-of-sight connections. The security of state-
of-the-art encryption, authentication and key exchange protocols can be further
be enhanced by location-awareness.

A problem that still impairs secured connections of all kinds are relay attacks.
These attacks forward unaltered encrypted connections between two unsuspect-
ing parties. Francillion et al. demonstrate the severeness of these attacks in
passive keyless car entry systems [7]. In the application of line-of-sight commu-
nication between cars, an adversary could for instance relay the signal of the
front car to the car in the back, allowing a potential appearing road hazard to
be undetected.

As we previously showed [17], location-aware communication can mitigate
relay attacks by the exchange of localization information. Each communication
partner forwards the sensed relative position of the other partner over a secured
connection. The exchanged localization information has to correspond to the
measured position of the communication partner. During a relay attack, the
origin of information is not identical with the communication partner. Using GPS
position data as localization information is simple, but vulnerable to spoofing
attacks. A more reliable way is to use localization information determined by
using an additional depth sensing system as described in Sect. 5.1. The mutual
relative distance is sufficient for a successful localization verification.

6 Conclusion and Future Work

In this work, we discussed the issues of RF based V2V communication with
applications demanding low latency. We showed why camera based optical com-
munication is a viable solution for location-aware communication. Our own app-
roach is based on Time-of-Flight depth sensing technology, which has the novel
ability to use phase shifted pulsed light signals for communication. Along with
suppression of background illumination and robustness against interference, this
makes it a promising technology for optical communication in the V2V domain.
Location-aware communication benefits communication security as it can miti-
gate relay attacks.

For our future work, we will implement a reliable communication solution,
using Time-of-Flight cameras and an FPGA based processing system. We will
implement a secured communication protocol, using state-of-the-art hardware
security anchors. Interfaces are going to be added, so our solution can be inte-
grated into a diversity of embedded systems and can serve as a reliable secured
communication solution.
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Abstract. Safety-critical Cyber-physical Systems (CPS) in vehicles are
becoming more and more complex and interconnected. There is a press-
ing need for holistic approaches for safety and security analysis to address
the challenges. System-Theoretic Process Analysis (STPA) is a top-
down safety hazard analysis method, based on systems theory especially
aimed at such systems. In contrast to established approaches, hazards are
treated as a control problem rather than a reliability problem. STPA-Sec
extends this approach to also include security analysis. However, when
we applied STPA-Sec to real world use cases for joint safety and security
analysis, a Battery Management System for a hybrid vehicle, we observed
several limitations of the security extension. We propose improvements
to address these limitations for a combined safety and security analysis.
Our improvements lead to a better identification of high level security
scenarios. We evaluate the feasibility of the improved co-analysis method
in a self-optimizing battery management system. We also discuss the gen-
eral applicability of STPA-Sec to high level safety and security analysis
and the relation to automotive cybersecurity standards.

Keywords: Cyber-physical systems · Safety and security co-analysis ·
STAMP · STPA-Sec · Automotive cybersecurity

1 Introduction

Safety-critical cyber-physical systems (CPS) become increasingly complex and
interconnected. For example, the future transportation system is envisioned to
be intelligent and interconnected, in which heterogeneous Information and com-
munications technologies (ICT) and physical elements, from vehicular systems
(e.g. hybrid vehicles) to energy provider and infrastructure components, interact
with each other and the physical environment to be self-organizing for an opti-
mized multi-modal mobility strategy for drivers, passengers, and goods. Such an
interconnection introduces cybersecurity risks which might threaten the safety
of the system. As a results, system analysis must consider safety and security in
order to define system goals and a concept for a safe and secure system.
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One of the challenges is to identify potential safety and security risks at the
beginning of a system’s development lifecycle where only high level information
is available for the analysis (i.e. the “concept phase”), in order to reduce and
mitigate the risks to an acceptable level. As one of the new approaches, STPA-
Sec [1] is an extension of the System-Theoretic Process Analysis (STPA) [2,3]
that extends the safety analysis method with security considerations. In STAMP,
systems are modeled as hierarchical structures in which higher level controllers
control processes at lower levels via actors. The lower levels send feedback to
the higher levels via sensors. The output of STPA-Sec is a list of system-level
scenarios which can lead to losses. In this paper, we identify several limitations
of STPA-Sec and propose improvements when applying STPA-Sec for safety and
security co-analysis. Specifically, we improve the annotated control loop used in
STPA for causal analysis for identifying unsafe control actions due to security
attacks. We evaluate and demonstrate the improved STPA-Sec by applying it to
a connected and self-optimizing battery-management system (BMS) for hybrid
vehicles.

In the following, Sect. 2 gives an overview of the State of the Art, Sect. 3 intro-
duces and discusses STAMP (Systems-Theoretic Accident Model and Processes),
STPA and STPA for Security (STPA-Sec). Section 4 presents our improvements
to STPA-Sec for safety and security co-analysis. Section 5 applies the improved
STPA-Sec to the case studies and a real-world scenario. Section 5.3 discuss the
general applicability of STPA-Sec to safety and security co-analysis and its rela-
tion to automotive cybersecurity standards, followed by the conclusion in Sect. 6.

2 State of the Art

The automotive safety standard ISO 26262 [4] divides the system lifecycle into
Concept, Development (System, Hardware, Software) and Productions, Opera-
tion and Maintenance phase. In each phase specific activities and work results
are defined. The main goal during the concept phase is to define functional
safety requirements and functional safety concept. Both are based on the safety
goals which result from the hazard and risk analysis (HARA). During HARA,
hazards and risks are identified and rated. Based on this rating, an automotive
safety integrity level (ASIL) is defined, which denotes the required risk reduc-
tion. Recently the first automotive cybersecurity standard SAE J3061 [5] was
published, proposing a security engineering process in parallel or joint with the
safety lifecycle. Regarding the application of a cybersecurity process in conjunc-
tion with a safety process tailored to ISO 26262, the standard proposes the
following:

The integration of these activities may be done by keeping the Cybersecu-
rity and safety activities separate, but performing these activities in con-
junction with each other and with the same team, or parallel activities may
be done by developing an integrated technique that covers both safety and
Cybersecurity at the same time. An example of this is to develop a tech-
nique to perform both a hazard analysis and risk assessment, and a threat
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analysis and risk assessment at the same time using a single integrated
template and method. A tightly integrated process for Cybersecurity and
safety has the advantage of a common resource set, thus, requiring fewer
additional resources [5].

In recent years, multiple methods for safety and security co-analysis have been
developed, aiming at a combined approach towards safety and security. SAHARA
(A Security-Aware Hazard and Risk Analysis Method) [6] extends the classical
Hazard and Risk analysis with security related guide words and an evaluation of
risks. FMVEA (Failure Mode, Vulnerabilities and Effects Analysis) [7] extends
the Failure mode and effects analysis with threat modes and vulnerabilities.
CHASSIS (Combined Harm Assessment of Safety and Security for Information
Systems) [8] is a methodology for safety and security assessments and formula-
tion of mitigation measures, based on use case and sequence diagram modeling.
Other approaches focus less on the identification of security related hazards but
more on a detailed analysis via extended Fault Trees [9–11].

In this paper, we will investigate STPA-SEC [1], a top-down safety and secu-
rity analysis method, to the concept phase of an automotive use case and evalu-
ated the results according to the requirements provided by ISO 26262 and SAE
J3061.

3 Review of STPA-Sec

System-theoretic Process Analysis for Security (STPA-Sec) [1] extends the
safety-focused System-theoretic Process Analysis (STPA) method for security
analysis. Both methods are based on the theory of STAMP (Systems-Theoretic
Accident Model and Processes) [2]. In STAMP, systems are modeled as hier-
archical structures in which higher level controllers control processes at lower
levels via actors. The lower levels send feedback to the higher levels via sen-
sors. STAMP views safety accidents as a result of a lack of control, instead of a
chain or sequence of events. Since modern systems are increasingly complex with
multiple interacting elements, it is difficult to identify root causes for accidents.
STPA-Sec examines each control action under different possible conditions and
guide words and identifies loss scenarios. Losses are interpreted as insufficient or
missing controls or safety constraints.

Step 1: Establishing the Systems Engineering Foundation. STPA-Sec
takes a top-down approach focusing on identifying unacceptable losses and vul-
nerable states in order to locate essential system services and functions to be
protected and controlled. The first step identifies such unacceptable losses.

Step 2: Creating a Model of the High Level Control Structure. In this
step the control model of the system is generated. A control model consists of the
controlled processes, controller, sensors and actors and relevant control actions
and sensed process variables.
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Step 3: Identifying Unsafe/Insecure Control Actions. All control actions
from the control model are reviewed. Unsafe or unsecure control actions or con-
trol actions leading to hazards (or vulnerable system states) are identified, based
on four guide phrases (i.e. “control action not given”, “control action given incor-
rectly”, “wrong timing or order of control action”, and “control action stopped
too soon or applied too long”).
Step 4: Developing SecurityRequirements andConstraints/Identifying
Causal Scenarios. In this step, unsafe/insecure control actions are extended to
unsafe/insecure scenarios in order to identify missing high level safety/security
constraints. An unsafe/insecure scenario consists of an unsafe/insecure control
action, context and potential causes. Intentional causal scenarios, e.g. attack sce-
narios, are identified by analyzing the physical and logical infrastructure similar
to established security analysis. An annotated control graph (cf. Fig. 1) supports
the identification of potential causes for unsafe control action.

During our application of STPA-Sec, we identified two limitations in the
co-analysis of safety and security. First, guidance for the identification of inten-
tional causal scenarios is challenging to apply. While some terms in Fig. 1 can
be interpreted in an intentional and security related way (e.g.“incorrect or no
information provided” could be interpreted as result of a Denial of Service),
we found it helpful to explicitly include such guidance. Second, another restric-
tion of the control loop model is the exclusion of security relevant elements.
The control loop describes the control process for the system in the intended

Fig. 1. Control loop annotated with potential starting points for the identification of
unintentional causes for unsafe control actions [3]
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configuration. However, attackers, undesired influences from elements outside
the intended control model, and the exchange of sensitive information not rel-
evant for the control model are not included. While the control model is an
important view on the system and its behavior, it does not adequately capture
the view of a potential attacker.

4 Extension of STPA-Sec

We propose the following extensions to improve the aforementioned limitations.

4.1 Alignment of Terminology

The safety and security community have developed their own terminologies.
Safety and security co-analysis and interaction require clear and correct com-
munication between the two communities. Some of the STPA-Sec terms are
safety-oriented, leading to ambiguity and misunderstanding for security analy-
sis. The problem is aggravated because some terms in STPA even deviate from
standard safety terminology.

We address this issue by aligning important terms used in STPA-Sec in a
safety and security context. First, we identify the terms in STPA-Sec that cause
ambiguities. When possible, we use STPA terms as anchors and align the security
terms to them. Second, we provide definitions for these terms that are valid for
both safety and security. Third, we resolve potential differences between safety
and security terminology, and add security-oriented terms that are necessary for
co-analysis. We also add definitions to terms in STPA-Sec that are different from
common safety terminology. We base our security definition on [12], commonly
accepted in the security community. Table 1 shows the resulting terminology.
Note that our intention is not to define a comprehensive vocabulary, but rather
to establish a common understanding, helpful for safety and security co-analysis.

Table 1. Safety and security terminology

Terms Definition

Attack Attempt to gain unauthorized access to or make unauthorized use of an asset

Accident Event which causes undesired losses of life, availability etc.

Control In general, alter the operation condition of a system; in security, measure that is

modifying risk

Control loop Model describing the control flow of a system or process. The model consists of

one or more controllers, controlled processes, sensors and actuators

Event Occurrence or change of a particular set of circumstances, also refers to an

incident or accident

Hazard Dangerous system states which can lead to accidents

Threat Potential cause of an unwanted incident, which may result in harm to a system

Unsafe control action Control action which can cause, under certain circumstances, hazards

Unsafe control scenario Scenario which describes context and potential causes for the execution of an

unsafe control action

Loss event Accident

Vulnerability Vulnerable system state, STPA-Sec uses it to refer to hazard; in security,

weakness of an asset or control that can be exploited by one or more threats
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Fig. 2. Control loop with starting points for the identification of malicious scenarios
(Color figure online)

4.2 Guidance for the Elicitation of Intentional Scenarios

In order to improve the guidance for the identification of intentional unsafe
control scenarios (e.g. attack scenarios leading to the activation of an unsafe
control action), we propose an extension to the security approach in STPA. The
control model is reviewed by a team of experts for potential causal scenarios
for the intended and malicious activation of unsafe control actions. We extend
the annotated control graph as a starting point for the investigation of inten-
tional scenarios. This guidance should not be seen as a checklist which covers
all possibilities. It is intended as a starting point for further thoughts and the
investigation of unsafe and insecure scenarios.

Figure 2 shows the classic guidance for the investigation of unintentional sce-
narios and, in red and cursive, our extensions for the investigation of intentional
scenarios. In addition to the annotations, we add a spoofed controller in order to
note the potential that conflicting control actions are intentionally introduced in
the system. It is important to consider external unplanned interactions during
the investigation of potential causes.

5 Case Study

We evaluate our extended approach by reviewing a number of already identified
scenarios in order to backtest if these scenarios are identifiable with the improved
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guidance for identifying intentional scenarios. In addition, we demonstrate the
application to a real-world complex and connected automotive system.

5.1 Backtest of Existing Scenarios

The first reviewed scenario is from the automotive domain. Miller and Valasek
identified the missing authentication of control actions in automotive on-board
networks as a major vulnerability [13]. If there is no control over the source of a
control action, the safety and security depend completely on the insulation of the
control system. Guaranteeing that a system is completely free from undesired
control actions is much harder than restricting the allowed sources for control
actions. Injecting manufactured control actions in an otherwise unaltered sys-
tem will cause conflicts between legitimate and illegitimate control actions and
the consequences and system reactions are not predictable. Such intentional sce-
narios for unsafe control actions are identifiable with the new guidance sending
manufactured control actions/input, overriding legitimate control actions/input.

Kundur et al. [14] presented a typical cyber attack scenario for smart grids.
The scenario includes fabricating or tampering sensor information which causes
incorrect decision for the controller regarding necessary control actions for the
load management. Such incorrect decisions or unsafe control actions could result
in generator trip out. This scenario and similar are covered with the extended
guidance for the control path between sensor and controller, especially with
Tampered of fabricated sensor signal, in the extended annotated control graph
from Fig. 2.

Dadras et al. [15] presented an interesting attack scenario on vehicular pla-
tooning. An adversary vehicle is able to exploit the control logic and destabilize
the platoon or influence position and velocity of other vehicles through local
changes. By accelerating and braking in a certain frequency range they caused
the control algorithm of other vehicles to become instable and oscillating. This
manipulation is aimed at the sensor input and exploits known weaknesses in the
control algorithm to cause unsafe control algorithm. Such attacks are difficult
to perform and require knowledge of the internal workings of the attacked sys-
tem. Since they are also very difficult to detect and defend against there is some
interest to explore such threats. Krotofil et al. [16] demonstrated similar behav-
ior in an industrial context, the process in a chemical plant was attackable by
manipulating the input of a few sensors. Such scenarios are identifiable with the
extend guidance for considering tampered feedback from the controlled process.

Although not comprehensive, the backtesting of existing scenarios shows that
our approach is better at identifying unsafe and unsecure scenarios using limited
and high level information in the system development concept phase.

5.2 Analysis of Battery Management System

We apply our extended STPA-Sec approach to the analysis of a Battery Manage-
ment System (BMS) for hybrid vehicles [6]. A BMS optimizes the driving strat-
egy, e.g. usage of the electrical engine or combustion engine, based on multiple
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factors (including the goal for the driving experience chosen by the driver, e.g.
minimizing energy consumption, maximizing acceleration and external factors
like chosen route, charging opportunities, temperature). Besides, the BMS also
directly controls the high-voltage battery system that provides power supply for
the electrical engine, and charges the battery from external or internal sources.
The different charging scenarios include charging from an external source, the
plug-in charging, or charging from internal sources, regenerative braking and the
usage of the on-board (internal) combustion engine as generator.

Step 1 - System Description and Hazard and Accident Identification.
Figure 3 gives an overview of the architecture of the BMS and the on-board
network. The BMS estimates the state of the battery system by monitoring
total and cell voltage, cell temperature and current. Based on the measured
values and an internal model of the battery behavior, it calculates the state of
charge and state of function(health). It controls discharging and charging of the
battery and ensures the safe operation, ensured by restricting the system to its
safe operating area. The BMS can partially control the environment (heating or
cooling) and request a restricted usage of the battery by sending a message via
the CAN-Bus to other control units. The complete high-voltage system can also
be de-energized. The CAN communication is utilized for the communication with
other control units and to receive information about external parameters which
influence the control strategy. External communication and remote connectivity
is accessed via the Telematic Unit. In addition, the BMS is directly connected
to the outside via the charging interface [17].

Figure 4 shows the control model for the Battery Management System. This
control model is the result of an iterative process of extending and refining.

Fig. 3. Architecture of the battery management system [6]
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Fig. 4. Control Loop of the battery management system

We started with a rather simple model of the battery as a controlled process
and the BMS as controller and refined it.

The low level BMS estimates the state of charge, based on the internal process
model of the battery, e.g. how voltage and current relate to the overall charge in
the battery. It influences the energy consumption of the vehicle and maintains
safe operation of the battery. This is done by controlling the environment and
restricting or influencing the discharge of the battery. It is responsible for the
short term control strategy for the battery.

The high level BMS is responsible for the long term control strategy for the
battery. The goal is to optimize the battery usage. This system relies on the state-
of-charge and state-of-health data from the low level controller and combines
this information with external data about charging options, costs, route and
traffic situation. It interconnects with other vehicles and the infrastructure and
optimizes the driving strategy for each vehicle based on the overall traffic flow
and energy consumption.

While the driver is not directly involved in controlling the battery, most
hybrid vehicles tend to give feedback to the driver on whether he or she is driving
ecologically [18]. In some vehicles this information is also available via mobile
apps [19]. These apps also allow some level of remote control of the Battery
Management System.
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Table 2. Table of identified hazards

ID Hazard Comment

H1 Over current Different for charging or discharging

H2 Over voltage Only relevant during charging

H3 Under voltage May permanently damage battery performance

H4 Over temperature May damage battery

H5 Under temperature Temporary reduces battery performance

H6 Over pressure May damage battery

H7 Ground fault or leakage current Undesired flow of power

H8 Reduced Control over vehicle speed Undesired acceleration or deceleration

Table 3. Table of identified accidents

ID Accident Related Hazards

A1 Electric Shock for vehicle passengers or persons touching
the vehicle

H7

A2 Battery causes a vehicle fire H1, H2, H4, H6

A3 Collision with object or other vehicle H1, H2, H4, H6, H8

In Table 2, we list some of the possible hazardous scenarios for the battery
management system.

Based on the list of identified hazards, the following accidents are related to
the BMS (Table 3). We focused on safety related loss events and excluded other
losses like financial or operational losses.

Step 2 - Identification of Unsafe Control Action. Due to the high number
of unsafe control actions generated by STPA-Sec we present only an excerpt of
all identified unsafe control actions. In order to identify unsafe control actions
all control action from the control loop model of the system Fig. 4 are reviewed,
using the guide phrases Sect. 3. Identified unsafe control actions are then linked
to the hazards.

Control Action: Charging Request

1. Control Action not given
(a) Battery is not charged (non-hazardous)

2. Control Action given incorrectly
(a) Excessive charging request1 is transmitted to charging unit during plug-in

charging (H1, H2, H4, H6)
3. Wrong timing or order of Control Action

(a) Charging request to charging unit for plug-in charging is transmitted
before battery system is ready to charge (H4)

1 Depending on the phase in the charging cycle and the battery there are limits to
voltage and current which, when exceeded, may damage the battery.
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(b) Charging curve is transmitted to charging unit in wrong order for plug-in
charging, constant current and constant voltage phases are swapped (H1,
H2, H4, H6)

4. Control Action stopped too soon or applied too long
(a) Charging Request to charging unit for plug-in charging is transmitted

after battery has been fully charged (H1, H2, H4, H6)
(b) Transmission of charging request to charging unit for plug-in charging has

been stopped too soon (non-hazardous)

Control Action: Battery Usage

1. Control Action not given
(a) Battery usage strategy is not transmitted to low-level BMS, State of

charge or driving strategy is not considered for the discharge of the bat-
tery (H3, H8)

2. Control Action given incorrectly
(a) Command given to charge battery during driving by recuperative braking

while battery is fully charged (H1, H2, H4, H8)
(b) Command given to charge Battery while vehicle is driving in electric mode

(H8)
(c) Command given to use battery for electrical engine is given while battery

charge is critically low (H3).
3. Wrong timing or order of Control Action

(a) Command to charge battery by combustion engine is given during plug-in
charging (H1, H2, H4)

4. Control Action stopped too soon or applied too long
(a) Battery usage requested while Battery voltage is critically low (H3)

Step 3 - Identification of Intentional and Unintentional Scenarios for
Unsafe Control Actions. Based on the extend annotated control loop (cf.
Fig. 2), we identified intentional and unintentional causal scenarios for the unsafe
control actions. The identification of the causal scenarios is done via an review
of the unsafe control actions, the control model and the annotated control model
by experts from the safety, security and automotive domain.

Excessive Charging Request is Transmitted to Charging Unit (H1,
H2, H4, H6)

– An excessive charging request can be caused by a modified charging request
from the BMS to the charging unit due to tampered process model in the BMS
software to enable fast charging for non-fast chargeable batteries. Potential
motivation for the owner is that he is interested in faster charging and does
not care about longevity of battery due to leasing contract for battery.

– A wrong charging request from BMS to charging unit may be caused by a
failure/design error in the temperature sensor for a battery. Due to financial
reasons a malicious manufacturer could reduce the number of sensors per
battery cells below the number required for a reliable reading.
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– Even when the vehicle BMS requests the correct power level a manipulation
on the communication between BMS and charging unit could lead to an unsafe
charging request. Such a manipulation could be directed at the charging unit
or the central charging management system at the backend.

Command Given to Use Battery for Electrical Engine is Given While
Battery Charge is Critically Low (H3, H8).

– Battery usage strategy is “optimized” and replayed battery messages are
injected into the CAN Bus via the On-board diagnostics interface while
the battery charge is critically low. This increases vehicle performance while
decreasing life time of the battery and may cause permanent damage to the
battery or even the vehicle. Owner is interested in maximized battery usage
and does not care about longevity of battery due to leasing contract for bat-
tery.

– The battery is replaced with a different model with a changed behavior. The
corresponding process model in the controller is not changed which leads to a
mismatch between physical process and assumed process behavior. A mechanic
shop could do this in order to save money or because they have no access to
the internal process models in the controller.

– A compromised telematic unit could be used to send messages which imper-
sonate the high level BMS. This is easy in a CAN Network since messages only
carry a receiver ID and no sender ID. Therefore any compromised Electronic
Control Unit (ECU) could be used to send commands which trigger unsafe
control actions. The telematic unit is especially vulnerable, because most of
the external communication is done via this ECU.

5.3 Evaluation and Discussion

STPA-SEC is strongly focused on the considered and intended control model to
identify deviations. While this is sound for the identification of safety related
effects, it does not cover more information-security centric considerations such
as privacy, as recommended in SAE J3061 to apply cybersecurity engineering
to all elements including Personally Identifiable Information (PII). Hence losses
related to privacy and confidentiality are currently not considered in STPA-Sec
or in the control model. STPA-Sec excludes the flow and exchange of data not
directly connected to the control of a process, e.g. battery usage information
collected for insurance reasons. Connections not directly related to the control
flow but can be misused might be difficult to identify within STPA-Sec. An
analysis based on an architectural or dataflow model would be better suited for
the identification of such risk scenarios.

In addition the general approach of STPA, applying the four guide phrases to
all control actions from the control loop model of the system to identify multiple
unsafe control actions and then developing multiple unsafe scenarios leads to a
very high number of unsafe scenarios which need a strict filtering.
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With respect to the automotive cybersecurity guideline SAE J3061 [5], we
have the following opinions. The list is divided according to the lifecycle steps
in SAE J3061, which are modeled after the lifecycle presented in ISO 26262 [4].
Item Definition. Step 1 in STPA-Sec requires similar information about the
system as the item definition. There is a stronger focus on potential interactions
and interfaces with systems outside the control model in the existing standard
guidance. This is probably based on the fact that even if there is no direct
intended influence on a considered control process, there could be an influence
due to a manipulation or malfunction in an adjacent system. This extends to
the consideration of the system and the system architecture and the distribution
and allocation of functions among the involved systems and elements.
Initiation of the Safety/Security Engineering. The initiation of the safety
lifecycle is missing from the activities required by STPA-Sec. This step is used to
clarify responsibilities and tailor the safety/security lifecycle for the development
and is therefore in our opinion outside of the scope necessary for a analysis
method.
Hazard and Threat Analysis and Risk Assessment. Automotive safety
and security engineering follows a risk based approach. The objective of the haz-
ard and threat analysis and risk assessment is to identify and categorize hazards
and threats, determine potential causes and formulate the safety and security
goals for preventing or migrating them. The safety and security goals are based
on the concept of avoiding unreasonable risks and reducing risks to a tolerable
level. SAE J3061 requires additionally a identification of threats to Personally
Identifiable Information (PII), this is currently not contained in STPA-Sec.

After the identification and classification of hazards and threats scenarios,
STPA-Sec can be used to derive a set of constraints for a system to avoid such
scenarios. Constraints, which restrict the system behavior, are only a part of the
safety goals. Other concepts which ensure safe and secure operation like a transi-
tion to a safe state with reduced functionality or connectivity or fault/intrusion
tolerant solutions are not directly mappable to constraints.
Functional Safety/Security Concept. The functional safety and security
concept defines the functional safety and security requirements necessary to ful-
fill the safety and security goals. While a subset of the requirements can be
derived from the constraints defined in STPA-Sec, there are additional aspects
addressed in a functional safety and security concept. This is partially caused by
different approaches towards safety and security engineering currently pursued
in the standards and in STPA-Sec. The standards follow the strategy of fault or
vulnerability prevention and fault or vulnerability tolerance [20]. This includes
more than trying to limit a system to only execute safe actions, the STPA app-
roach. There are some overlaps between fault prevention and constraining a
system to safe actions but this is currently a rather unexplored area.
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6 Conclusion

In this paper we discussed the limitations of STPA-Sec and proposed several
improvements for using it for top-down identification and analysis of unsafe and
insecure scenarios for the concept phase in CPS design and development. We
applied our proposed improvements in an automotive Battery Management Sys-
tem case study. Despite the improvements suggested in this paper, there are
still open issues and it is very likely that a single approach will not be suf-
ficient to satisfy all needs during the safety and security engineering of CPS.
In general, STPA-Sec is suitable in the concept phase for safety & security co-
engineering, but the results could be improved by combining the method with
other approaches that focus more on the network and system architecture. In
addition, STPA-Sec requires additional methods for the identification of poten-
tial hazards and the rating of risks. It is also still unclear if STPA-Sec is capable
of handling large systems with a higher complexity and size.

There are some issues in STPA-Sec that do not align completely with current
safety and security standards and activities. This requires extensions and the use
of additional methods when developing a system in a standard-conform way. This
is also addressed in ISO26262 with the requirement to use both, top-down and
bottom-up analysis techniques. Addressing the aforementioned issues will be our
research activities in the immediate future.
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Abstract. Modern cyber-physical systems are designed to execute
safety-critical applications with different criticality levels on the same
platform. Security is an emerging topic in this domain and gains more
and more importance since security vulnerabilities in the systems are
accompanied by the risk of malicious attacks. Targeting these vulnera-
bilities allows an attacker to manipulate the system which results in a
decrease of dependability and safety. Therefore, security mechanisms are
required to ensure an adequate protection against malicious attacks. The
European FP7 project DREAMS introduces a service-based architecture
to implement mixed-criticality systems on networked multi-core chips.
The architecture is a cross-domain architecture and is based on core ser-
vices for communication, execution, time synchronization and resource
management. The security services extends these core services to provide
secure communication, time synchronization and resource management
for the architecture. This paper defines the required security proper-
ties to harden the DREAMS architecture against malicious attacks. The
security properties are mapped to concrete security services that serve
as basis for the implementation of the architecture. These services are
categorized into different security levels and applied to the core services
of the DREAMS architecture.

Keywords: Mixed-criticality · Security · Service-based architecture ·
Cyber-physical systems · Embedded systems

1 Introduction

Mixed-criticality systems that execute applications of different criticality levels,
come into use in a steadily growing number of application areas such as avionics,
industrial control or health care systems. These systems are often used for safety
critical applications requiring precisely defined levels of dependability and safety.
But security vulnerabilities can lead to a decrease of dependability and safety.
To avoid this decrease, security in mixed-criticality systems is becoming a major
topic.
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Today’s mixed-criticality systems are often defined to operate in trusted envi-
ronments without direct physical access from outside as for instance in the avion-
ics domain. Nevertheless, future use cases for mixed-criticality systems build on
sharing data with systems of the outside world that are not part of the trusted
environment. Examples are applications in the internet of things or the smart
factory (industry 4.0) domain that need to exchange data with other systems
over potentially insecure networks. In the wake of the recent information leakages
and cyber attacks, information security has become an integral part of modern
systems.

The European FP7 research project Distributed Real-time Architecture for
Mixed Criticality Systems (DREAMS) introduces a distributed real-time archi-
tecture for networked multi-core chips executing applications of different criti-
cality levels. This paper defines the security requirements for the service-based
architecture executed on networked multi-core chips including the communica-
tion on network as well as application level and explains the security solution.

The remainder of the paper is organized as follows. Section 2 presents an
overview of related work. Section 3 describes the DREAMS architecture and its
system structure. The architecture and its system levels are analyzed with regard
to security in Sect. 4. Afterwards, Sect. 5 defines the appropriate security proper-
ties. In Sect. 6, the required security services for the DREAMS architecture are
defined. These services are categorized into different security levels in Sect. 7.
Section 8 introduces core services of the DREAMS architecture that are using
the security services and classifies them into the security levels. Finally, Sect. 9
concludes the paper and outlines future work.

2 Related Work

The importance of security in mixed-criticality systems is not only given by the
request for data privacy, but also by the fulfillment of safety and dependability
requirements since these systems are often operated in safety critical domains.
Furthermore, a direct relation exists between security and safety, therefore secu-
rity vulnerabilities can affect the safety of the overall system. More detailed
information on the relationship between safety and security is available in [4].

Two levels of communication need to be distinguished in systems with net-
worked multi-core chips. Communication on chip level comprises all communi-
cation between the processor cores via the network-on-chip (NoC), while cluster
level communication targets the interconnectivity between the multi-core proces-
sor nodes.

There are several approaches for securely transferring data on a NoC. [7] pro-
poses a NoC firewall to protect the NoC from malicious instructions. Similar
solutions to secure the NoC are described in [3,5,6].

Security aspects of time-triggered system-on-chip (TTSoC) architectures
have been elaborated in [13]. [8] describes a security architecture using partition-
ing with secure channels for the ACROSS [11] multi-processor system-on-a-chip
(MPSoC).
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Communication on cluster-level can be secured with techniques, such as
MACsec [1] including [2], if Ethernet is used, or IPsec [12], if IP is used.

The DREAMS architecture combines different integration levels of mixed-
criticality systems (i.e., cluster, chip and software execution environment) and
offers real-time capabilities. Since this kind of architecture is new for the this
domain, security solutions have not yet been investigated. The research work pre-
sented in this paper presents the ongoing research on security in mixed-criticality
systems to close the gap.

3 DREAMS Architecture

The system structure of a mixed-criticality system executing on networked multi-
core chips based on the DREAMS architecture can be described by a combination
of physical and logical view as defined in [10] (Fig. 1).

The physical view consists of nodes interconnected by an off-chip network
which in turn forms a cluster. The system can consist of a set of clusters. In
a node, different tiles are interconnected using a network interface (NI) by a
NoC. These tiles can be comprised of one ore more processor cores, they can
be a memory or they are formed by other resources, e.g., an I/O resource. In
the former case, a processor core can run a hypervisor which in turn provides
partitions. These partitions, which are separated by time and space partitioning,
executes software components.

In the logical view these software components form application subsys-
tems which are part of different criticality domains. Application subsystems
are assigned to criticality levels. Application subsystems with the same criti-
cality level can form a criticality domain. Components communicate through
message-based interfaces with messages using virtual links. These virtual links
are realized as end-to-end simplex multicast channels.

Applications located in the partitions of a tile use these virtual links to
exchange data with communication partners, such as memories, peripherals or
other applications. These communication channels consist of on-chip and off-chip
parts. The different parts are connected via gateways as depicted in Fig. 2.

An example of these applications is the resource management in DREAMS.
The components of the resource management, i.e., global resource manager
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Fig. 1. DREAMS system architecture as defined in [10]
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Fig. 2. On-chip/off-chip network

(GRM), local resource managers (LRMs), local resource schedulers (LRSs) and
resource monitors (MONs), are placed in different locations of the system which
cause that the communication between the components includes the on-chip and
the off-chip network.

DREAMS defines a waistline structure of domain-independent platform ser-
vices. Towards the bottom, a variety of implementation choices is supported to
instantiate these services on different platforms. The waistline services comprise
a secure and fault-tolerant global time base as well as timely and secure commu-
nication, execution and integrated resource management services for time and
space partitioning. Optional services with increased functionality and flexibility
are built upon this waistline.

More detailed information on the DREAMS architecture is available in [9,10].

4 Security in the DREAMS Architecture

Security needs to be considered at different levels of the DREAMS architecture.
This includes security of data in the memory, on the chip, off the chip, trans-
mission of data from the chip to the off-chip network, in the hypervisors and in
the software design of the applications running on the DREAMS architecture.

The focus for securing the physical communication is laid on the off-chip
network which connects the different chips. The off chip network is for a attacker
one of the easiest accessible parts of the system. Approaches to secure the NoC
are presented in [3,5–7].

Depending on the view on these secure communication services, there are
different end points for the communication services. This means that end-to-end
communication is seen differently as described in the following. Based on the
classification of the communication at the physical level and the logical level
(Sect. 3), there are two classes of secure communication services.
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End-to-end security for the off-chip network (physical level) means that
the communication between the two communication end points, the gateways
between the on-chip and the off-chip network, is secured and provides the
requested security services. In this case, the NoC is treated as a secure trusted
zone.

End-to-end security for the logical communication refer to the secure com-
munication from an application to another application (Fig. 3). This includes
the entire virtual link.

Based on this classification, three security domains for the DREAMS archi-
tecture can be distinguished:

Fig. 3. Communication levels

– Chip-level security covers the requirements for on-chip security, e.g., pro-
tection against an attacker having access to the chip and tries to attack com-
ponents on the same chip.

– Cluster-level security covers the requirements of off-chip security, i.e., the
communication between different chips to prevent attacks such as man-in-
the-middle attacks, replay attacks, spoofing attacks, denial-of-service (DoS)
attacks and data masquerading attacks. The requirements in this section also
concern secure communication between the GRM, LRMs, LRSs and MONs,
as instantiations of these components can be located on different nodes.
In addition, a global time base is essential for predictable virtualization of
resources and time and space partitioning in DREAMS. The time distribution
and synchronization is performed on network level and needs to be protected
against active attacks.

– Application-level security covers the complete end-to-end communication
channel (virtual link) between two applications. This includes the on-chip
(chip-level) and off-chip (cluster-level) parts.

In all of these security levels an adjusted key management is required. The
key management for chip-level, cluster-level and application-level security has
different requirements, since symmetric key or asymmetric key techniques can
be used.
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5 Required Security Properties

First step in the process of defining the DREAMS security services is the identifi-
cation of required security properties. The following set is the result of a security
analysis performed on the DREAMS architecture.

– Integrity is required on application level for applications such as the
resource management. Configuration messages must not be modified unno-
ticeably. Every intended and unintended modification of the message should
be detectable. The same applies for the cluster-level communication between
the off-chip components and the off-chip gateways.

– Authenticity is required on application level to ensure that data is genuine
and that the actual origin of the data is the same as the claimed origin.
Especially for the resource management it has to be ensured, that only a valid
GRM can reconfigure the system.
On cluster level, authenticity ensures that two components in the off-chip
network are able to verify each other, e.g., two nodes including the components
in between.

– Confidentiality is required in use cases like health care applications where
private data must not be exposed. In this case, confidentiality is requested on
application level.
On cluster level, confidentiality is required for messages that are exchanged
between the different nodes through the off-chip network. Applications that
do not implement the confidentiality services on application level can use the
cluster-level service of off-chip communication.

– Access Control is required to restrict access to a component.
On application level, not every application should be able to use a service
provided by another application.
On cluster level, only authorized nodes and off-chip components should be
able to access the system.

6 Definition of Security Services

The majority of the security services and mechanisms is integrated transparently
into the DREAMS architecture. Applications use them implicitly, e.g., by using
the network level communications without knowing that the communications
take place with integrated security services. The security services for application-
level security have to been used explicitly by the applications.

The security services for the DREAMS architecture are defined by mapping
the security properties of Sect. 5 to the system levels of Sect. 4.

6.1 Integrity

The integrity service generates a cryptographic checksum for a message, which
is transmitted together with the message. The integrity check service verifies
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the integrity of a message by recalculating the cryptographic checksum on the
received message and comparing it with the received checksum. The checksum
is realized by a message authentication code (MAC). With this checksum, any
modification in the message is detectable.

Using the integrity check service for off-chip communication, the receiver of the
message detects changes in the data that occur in the off-chip communication.

The integrity service for end-to-end communication ensures that all changes
are noticeable and that not only the changes during the off-chip communication
are detectable. For example, this service can be used by the resource management
components (GRM, LRMs, LRSs and MONs) to ensure the integrity of the
communication.

6.2 Authenticity

The authentication code generation service generates a MAC tag (symmetric
algorithms) or a digital signature (asymmetric algorithms) on the message for
ensuring the data origin as well as to verify the communication partner.

The authentication code verification service verifies the data origin or the
communication partner by verifying the received MAC tag or digital signature
along with the message. It is used by the on-chip/off-chip gateways and the
switches for authenticating the off-chip communication and by the applications
to verify the authenticity of the application-level end-to-end communication.

6.3 Confidentiality

To provide confidentiality, encryption and decryption services are required. The
encryption service encrypts data with a given cryptographic key. It transforms a
plain text into a cipher text. The decryption service in turn transforms a cipher
text into a plaintext. If the key is correct and there was no transmission error,
the plaintext is correctly recovered.

The encryption and decryption service for off-chip communication is used for
confidential communication between two components, e.g., between on-chip/off-
chip gateways and switches, respectively.

The encryption and decryption service for end-to-end communication is used
for a confidential communication between two applications. Even the system
components between the two applications, e.g., gateways and switches, cannot
interpret the content of the communication.

On both levels, attackers and the unintended recipients, such as malicious
applications cannot construe the messages because they do not possess the key to
decrypt the exchanged messages. Only the legitimate communication partners,
owning the correct cryptographic key, can decrypt the exchanged data.

6.4 Access Control

The access control service verifies, if a system resource is allowed to access the
requested object.
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For off-chip communication the access control service checks, if a component
has the permission to communicate through the on-chip/off-chip gateway. The
gateway checks both directions, the on-chip/off-chip communication and the off-
chip/on-chip communication.

For end-to-end communication it checks the permission if an application is
allowed to communicate with another application or a component, e.g., with the
secure memory or a different partition.

6.5 Additional Services

To provide the main security services, additional security services are required.
These includes the key management comprising the key storage.

Key Generation and Destruction Service. The key generation and destruc-
tion service generates cryptographic keys needed for secure communication and
destructs (securely removes) the keys that are note longer needed. The service
can generate both symmetric keys and asymmetric key pairs. Symmetric keys
are used for encrypted communication. Asymmetric keys are used for the shar-
ing of the symmetric keys or with some additional effort, they can be used to
authenticate a communication partner or the origin of the data. If a crypto-
graphic key is no longer needed by the application for which it was created, the
service destructs the key which is usually stored in the secure storage.

Key Exchange Service. The key exchange service exchanges cryptographic
keys between the communication partners. Considering the threat assumptions
for the on-chip and the off-chip network (Sect. 4), this service is mainly used
for the off-chip communications. For application-level communication, there are
two different options: Using symmetric algorithms, the key exchange can be
performed in a similar way as for the cluster-level. Using asymmetric algorithms
(or a hybrid combination with symmetric and asymmetric algorithms), a public
key infrastructure (PKI) has to be established. The key exchange is performed
in a secure way so that an adversary cannot get hold of the keys transferred
through the network.

Secure Storage Service. The secure storage service saves important data,
such as cryptographic keys, in a secured part of the memory. Applications can
use it to save sensitive data in the storage. No other application has access to
this part of the memory and so, it cannot interpret the sensitive data. The access
to the storage is controlled by an access control list. The secure storage service
can be used by the key generation and destruction service for managing the
cryptographic keys for the application-level security.
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7 Security Service Classification

The security properties and the resulting security services can be used jointly.
The common usage of the security properties are classified into four categories
as presented in Table 1. A classification into different categories allows an selec-
tion of a security level that is required by a concrete service or application in
the DREAMS architecture. Not every combination is reasonable, just the same
as an independent usage of confidentiality. In the latter case, an attacker can
manipulate the encrypted data and, depending of the content of the plain data,
the receiver cannot recognize the manipulation.

Table 1. Classification of security properties

Security level Security property

0 No security property

1 Integrity

2 Integrity & Authenticity

3 Integrity & Authenticity & Confidentiality

On security level 0, no security property is used. Security level 1 provides
integrity that allows to recognize manipulation of the data. In addition to integrity,
security level 2 provides authenticity. A manipulation of data is detectable and the
data origin as well as the communication partner can be verified. Confidentiality
is provided on security level 3. It is always used in combination with integrity and
authenticity. As described above, using confidentiality without integrity would not
protect against data manipulation. Authenticity is included because of the usage
of the authenticated encryption (AE) or authenticated encryption with associated
data (AEAD) mode of operation. This saves the necessity to provide a fifth security
level providing only integrity and confidentiality.

Access control is a security service which is independent of the described
security levels and is not listed in the table. If the service is required, it can be
used in parallel to the selected security level.

The security services are provided by security mechanisms described in
Sect. 6. Table 2 summarizes the security mechanisms used for the different secu-
rity levels. No security mechanism is required on level 0. A MAC provides
integrity on level 1. On level 2, depending of the usage of symmetric or asym-
metric algorithms, MACs or digital signatures can be used. Using the symmetric
MAC, the authenticity is proved by applying the correct common key. To pro-
vide confidentiality on level 3, encryption and decryption mechanisms are used.
Integrity and authenticity are provided in the same way as on level 2.
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Table 2. Classification of security mechanisms

Security level Security mechanism

0 No security mechanism

1 MAC

2 MAC or Digital signature

3 MAC or Digital signature & Encryption/Decryption

8 Use Cases in the DREAMS Project

The communication between resource management components and the time
synchronization are two examples of DREAMS core services that use the security
services and mechanisms.

8.1 Resource Management

The resource management is located on application level. Attacks on the resource
management can lead to wrong configurations of the system or of individual
resources, e.g., an attacker could masquerade himself as a GRM and select an
inappropriate configuration. One aspect that has to be secured are the mes-
sages that are exchanged between the resource management components. These
messages may contain sensitive data. Additionally, the messages must not be
manipulated and the origin of the message has to be verifiable. These require-
ments demands the security level 3 and the security services have to be provided
on application level.

8.2 Time Synchronization

The time synchronization service is located on cluster level. Each node of the
system possess a clock that has to be synchronized. Attacks on the time syn-
chronization service can lead to wrong time values in the entire system or in
individual components. If the time values are wrong in the entire system, this
can cause an incorrect behavior regarding the real time and time triggered mea-
surements can be taken at the false point in time. If individual components are
attacked, they will perform actions at the false point in time. This causes an
untimely behavior, e.g., untimely messages. Confidentiality is not important for
time synchronization messages. But the integrity and the authenticity have to
be guaranteed. Security level 2 fulfills the requirements for the time synchro-
nization service. This security service has to be provided on cluster level. As the
security services of the cluster-level communication are integrated transparently
into the off-chip communication, the time synchronization service does not have
to implement them explicitly.
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9 Conclusion

Security services have been identified as mandatory part of the DREAMS archi-
tecture when it comes to hardening it against vulnerabilities. The set of required
security properties comprises authenticity, integrity, confidentiality and access
control that need to be guaranteed on different system levels, namely chip, clus-
ter and application. The security services for the cluster-level have been defined
in a way that their use is transparent for the applications. Security services for
the application-level provide end-to-end security for the communication between
two applications. The security services have been classified into different security
levels. For the core services and applications, it allows an easy selection of the
required security level. An exemplary classification has been introduced for the
resource management service and the time synchronization service. Next step
is the implementation of the security services for the DREAMS architecture,
namely for the DREAMS core services communication, execution, time synchro-
nization and resource management.
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Abstract. Based on considerations about the knowledge required to carry out
different types of network attacks, this article discusses the logical demands
posed to the attacker in order to circumvent the most classical checks for
message trustworthiness. In view of the limitations of existing avoidance and
detection techniques, the article stresses the need for targeted testing strategies
aimed at the identification of exploitable code vulnerabilities. For this purpose, it
proposes a paradigm for the generation of intelligent test cases meant to max-
imize the chances of anticipating challenging scenarios during early verification
phases.
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Arithmetical overflow � Buffer overflow � Testing

1 Introduction, Motivation and Intention

It is well-known that the threat of IT attacks is continuously increasing and provoking
high losses due to non-productivity and maintenance costs [1]. In case of safety-
relevant information the effect of IT threats goes beyond economic concerns as soon as
they may severely affect the possibility of timely intervention on physical entities
requiring urgent support – be it the case of hospital patients crucially requiring medical
treatment or of critical technical processes subject to appropriate automatic control, as
is the case in industrial plant control or car-to-car communication.

For several reasons, including distance, distribution and logistics, the communi-
cation between controlling and controlled entities typically makes use of increasingly
complex networks joining sensors with computer nodes via corresponding terminals
over which the operators may need to update relevant plant configuration data. Even in
case of proprietary networks the connection complexity and the user facilities of such
architectures complicate the task of analysing the risk of potential misuse and of
excluding severe IT attacks [2].

The intention of the present article is to address this problem in a systematic way by
considering the chances and the impact of attacks dependent on the amount of
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application-specific knowledge available to potential attackers and on the complexity
of the underlying logical constraints. With respect to the expertise required in the
application and control domain considered, the following levels of application- and
control-specific knowledge resp. information may be distinguished:

• a mere network-specific insider knowledge is likely to suffice in order to identify the
location of communication media, to perceive the transfer of bit streams, or to
access protocol meta-data (in the following denoted as “low level”, see Sect. 2);

• additional insight concerning the technical process to be controlled and the envis-
aged control system behaviour is required in order to allow for a meaningful
interpretation of messages (in the following denoted as “medium level”, see
Sect. 3);

• full information is available to insider attackers in case they additionally know the
software-based control system including potential code vulnerabilities (in the fol-
lowing denoted as “high level”, see Sect. 4).

The levels considered are summarized in Table 1.

Especially in view of the classes of insider attacks involving the highest level of
insight, the present article aims at evaluating strengths and weaknesses of existing
avoidance and detection counter-measures. Based on the identified limits of the
state-of-the-art, the article will successively focus on the need and on the chances of
developing dedicated intelligent testing strategies targeted at optimizing the chances of
anticipating informed attacks during a preliminary security-based verification phase
(see Sect. 4).

2 Network Attacks Based on Network Knowledge

Evidently, the term “cyber-physical systems” refers to a wide range of applications
which may vary in terms of several attributes. Common to them is the inclusion of one
or more physical processes communicating via sensors and actuators with one or more

Table 1. Levels of knowledge with corresponding domains of knowledge

Levels of network,
application, control
knowledge

Knowledge/information domains

High Medium Low Cable location
Bit streams
Protocol and protocol meta-data

Process behaviour and data
Control system behaviour and
specification

Control system code and potential vulnerabilities
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logical units. Depending on several attributes, among them number, distribution and
distance of communicating entities, networking complexity and criticality this may
give rise to a wide range of patterns. In order to ease the analysis of attacks, the
following considerations will focus on a simplified, low-sized scenario consisting of the
following entities (see Fig. 1):

• a physical process (e.g. the production process of an industrial plant) sending
information on its current physical state via sensors and subject to changes initiated
by actuators;

• a computer-based control system receiving and processing the process information
sent by the sensors to identify whether an intervention is needed; in this case, a
corresponding message is sent to the process actuators;

• a communication network supporting message passing between the physical process
and the control system;

• one or more human(s) able to influence the communication between the senders and
the receivers.

Even if it limits the following considerations to a mere quadruple of communicating
agents, the proposed analysis does not restrict generality to an unacceptable degree, as
any network attack over a – however complex – net topology will involve misuse along
at least one communication edge; this makes it reasonable to consider such a “one-
edge-attack” in more detail.

The potential of communication misuse depends on the level of knowledge of the
attacker(s): evidently, very simple attack scenarios not requiring any plant knowledge
nor network access, e.g. cable disruption or magnetic influence on communication
cables, typically result in permanent or temporary communication disturbances usually
resulting in service interruption. As such actions may jeopardize operation and even
safety, they must be prevented by physical protection measures.

More subtle than the physical attacks just considered are actions attempting at the
simulation of regular communication between process and software. Attackers enabled

Fig. 1. Attack scenario considered
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to access the network and familiar with protocol meta-data, for example, may gain
further knowledge regarding communication frequency and topology by educated
guesses. The resulting information may enable them to remove, insert or modify rel-
evant messages without violating the protocol. For example, by copying relevant
message portions and resending them at regular frequency, the attackers may falsify
process information for the purpose of preventing the control system from taking
appropriate decisions.

Such attacks go beyond threatening classical information security values [3], as
they target inappropriate, possibly highly unsafe physical states by mere intervention
on the communication medium and without necessarily jeopardizing stored data or
service availability.

On the other hand, whether interfering by physical action or by ad hoc message
manipulation, the uninformed attacks considered so far are usually easily recognizable
by standard control software capable of identifying missing or semantically irregular
message streams. Depending on the reliability and availability demands of the appli-
cation considered, such control systems have to initiate upon detection proper reactions
like operator alerts or plant shutdowns.

3 Network Attacks Based on Application/Control Knowledge

3.1 Classification of Constraints on Attacks

As mentioned in the previous chapter, intelligent control systems must be designed to
analyse data trustworthiness in order to identify message manipulation. This section is
devoted to an analysis of this attack under the additional assumption that the attacker(s)
are application experts fully informed

• on the technical process under control, as well as
• on the behaviour of the digital control system in use.

More precisely, in this section the attacker is not (yet) required to know about the
details of the internal logic of the digital control system, but possesses knowledge about
the control system specification, i.e. about the software response to the messages it
receives. In addition to this expertise, the attackers are also assumed to be able to

• legally access the network over which the technical process under control com-
municates via sensors with its control system to inform about its current physical
status and on the need of intervention via actuators;

• interpret the semantics of the message(s) sent over the network;
• read, remove, modify and insert messages.

In this case the attacker may try to influence the control system behaviour by
manipulating the stream of messages such as to simulate a world different from the real
one and thus to trigger a controlling intervention different from the one really required.
In order to achieve this goal, the attacker is forced to make sure that neither the network
nor the control system is able to identify the manipulation of the message stream as
such (be it by copies, deletion or modification of single messages).
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To achieve this, the sequence of messages sent over the network has to fulfil three
different requirements coincidentally:

• first, it must not violate any of the constraints posed by the network to ensure
regular communication (in the following denoted as communication constraints);

• moreover, it must not violate any of the constraints required by the control software
in order to consider the input data as trustworthy measurements (in the following
denoted as confidence constraints);

• finally, it must fulfil data constraints [2] (in the following denoted as control
constraints) such as to impose to the control system the incorrect behaviour
envisaged by the attackers, either by simulating the occurrence of relevant fake
events or by masking the occurrence of relevant real events.

In the following, the three classes of constraints just introduced are further analysed
and refined in more detail:

Communication Constraints. Usually, regular message communication between
real-world and computer is subject to constraints of various nature which may be
further classified as follows:

• constraints on protocol meta-data refer to information characterizing the transport
of process data over a communication medium, like message origin (sender),
message destination (receiver), action intended to be carried out on message data
upon reception (e.g. read/write), communication correctness (redundancy bits);

• constraints on message stream refer to information characterizing legal message
sequences and may concern time intervals between the arrivals of serial messages as
well as the order of consecutive messages;

• constraints on message structure refer to information characterizing the syntax of
messages as defined by the input specification of the control software.

As soon as one or more communication constraints are ostensibly violated, the
underlying message-passing can be regarded as affected by intentional or accidental
events reducing or annulling the trustworthiness of the information transported. In such
cases, the control system will initiate a predefined countermeasure like an operator
warning or an automatic shutdown.

Confidence Constraints. A further category of constraints addresses the actual pro-
cess data contained in the message(s); the following constraint classes can be
distinguished:

• validity constraints relate to information characterizing the acceptability of sensor
measurements in terms of their lying within predefined physical ranges corre-
sponding to the instrument accuracy;

• consistency constraints refer to information characterizing the level of agreement
between redundant sensor measurements required to consider them as sufficiently
accurate;

• plausibility constraints refer to information related to the quantitative relationship
between valid measurements of different process variables connected by inherent
physical dependencies.
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As soon as one or more confidence constraints are violated, the process measure-
ments received can be regarded as irregular; this indicates that some anomalous event
takes place which requires a timely counteraction. On the other hand, as long as all
communication constraints are fulfilled, there is no reason for the control system to
mistrust data accuracy.

Control Constraints. As already mentioned, upon fulfilling communication and
confidence constraints, the attack target may be two-fold:

• on the one hand, attacker(s) may intend to simulate anomalous process behaviour
such as to initiate countermeasures which under regular circumstances may reveal
wasteful at the best, but potentially hazardous by contributing to destabilize the
balance of the technical application supervised;

• on the other hand, they may want to simulate regular process behaviour while
manipulating or even sabotaging the technical process such that any safety-related
intervention required to be immediately initiated by the automatic control system
may be crucially delayed or jeopardized for an indefinite time.

In both cases the attackers need to consider so-called control constraints whose
fulfilment characterizes regular process behaviour and whose violation characterizes
anomalous process behaviour. Typical examples of control constraint classes are:

• constraints on the value of a single process variable refer to information charac-
terizing the range of a particular process variable during regular operation;

• constraints on a tuple of values of different process variables refer to information
characterizing the combined ranges of several process variables; combined con-
straints may be more stringent than individual ones as they address the coincidental
approach of boundaries by different process indicators;

• trend constraints refer to information characterizing regular time-dependent evo-
lution of any process variable as indicated by consecutive messages.

3.2 Examples

The constraint classes and types are summarized in Table 2 together with a few typical
examples illustrating them.

3.3 Avoidance and Detection Techniques

Among the major countermeasures classically applied for the purpose to avoid network
attacks is encryption which undoubtedly can significantly contribute to reduce the
chances of cyber-criminal actions in general. Signing signals at their source can
increase data integrity as far as the encryption technique can be considered as secure.
With respect to informed attacks, however, encryption is likely to find its limits in the
need to allow insider network users to intervene on communication by legal updating
of relevant process parameters. This may require to allow them access to encryption
information.
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The constraints considered and classified above contribute to filtering the com-
munication messages in order to identify corrupt communication and sensing. The
more complex and extensive the constraints and corresponding filtering techniques, the
more difficult it is for the potential attacker(s) to carry out unidentifiable attacks. In
addition, network decentralization also contributes to prevent attacks by restricting the
access of potential attackers to only a part of the relevant message information. In this
case the scope of attack of each attacker would be limited such that the fulfilment of
consistency and plausibility constraints would require the synchronized action of
several attackers.

Table 2. Constraint classes and types illustrated by examples, partly inspired by [4]

Constraint
classes

Constraint types Examples

Communication Protocol meta-data Profibus meta-data referring to source
and destination address, function
code (e.g. request or send/request,
station type)

Message stream Minimal time/maximal time between
consecutive messages; sequence
number of previous message
incremented by 1 modulo memory
size of the counter

Message structure Header, sequence number,
sensor_data_1, … sensor_data_n,
checksum, trailer

Confidence Validity of measurement S Smin � S � Smax

where [Smin; Smax] denotes the
accuracy range of the sensing
instrument

Consistency of valid redundant
measurements S1, S2, S3 with
S1 � S2 � S3

IF S1� 0.95�S3: average {S1,S2,S3}
IF S1� 0.975�S2 ^ 1.05�S1 � S3:
aver.{S1,S2}
IF S2� 0.975�S3 ^ S1 � 0.95�S3:
aver.{S2,S3}

Plausibility of relations
between non-redundant
measurements

Thermodynamic dependencies
between steam level and pressure

Control Single boundary on pressure P P � Pmax

where [0; Pmax] denotes the pressure
range for regular operation

Combined boundary on
(pressure P, steam level L)

P � 0.9 � Pmax and
L � 0.9 � Lmax

Trend of pressure P DP � DPmax

where DP denotes the rate of change of
P by quadratic interpolation
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4 Network Attacks Based on Code Knowledge

In this section it is assumed that – in addition to the levels of knowledge considered so
far – the attacker(s) also possess full information about the code inside the control
system. This applies for example in case the network users have been previously
involved in code development when they may have had opportunities to identify or
insert code portions potentially increasing system vulnerability.

4.1 Overflow-Based Network Attacks

Typical sources of code vulnerability are overflows occurring when data is greater than
actually storable or data size is greater than supported by a given buffer; typical
examples are the following cases:

Arithmetic Overflow. Arithmetic overflows occur when (intentionally or uninten-
tionally) computer calculations result in values which are out of the permitted range.
The effects are false values for relevant variables possibly resulting in dramatically
incorrect behaviour. On the other hand, arithmetic overflows must not be banned in
general, as they may provide suitable solutions for specific problems like the man-
agement of circular buffers.

Stack Buffer Overflow. In case of a stack buffer overflow a program stores part of its
data inside the call stack, but outside of the specified memory area reserved. This may
result in overwriting

• a variable residing close to the buffer, or
• the return address by a new pointer. This is particularly critical if the new pointer

leads to the execution of malicious code previously inserted, possibly after
traversing no-op instructions intended to close the gap between the jumping point
and the start of the shellcode.
Further overflow variants involve similar considerations for heap buffers or for

combinations of overflow types, e.g. in case of arithmetic overflows of an integer
variable meant to determine the size of the free buffer space left.

4.2 Overflow Avoidance, On-Line Checks and Static Analysis

Overflow effects such as those mentioned above are meanwhile well-known; for the
purpose of their avoidance and detection, a number of existing techniques reveal
different strengths and weaknesses.

Avoidance Techniques. During development, constructive techniques can help avoid
the problem by making use of particular languages like Java or C# which prevent buffer
overflows from occurring by providing mechanisms for checking buffer boundaries.
For performance and licensing reasons, however, programming language prescription
may represent an unacceptable restriction. Buffer overflows can also be avoided by
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exclusive use of safe library functions including boundary checking instead of unsafe
functions like strcpy() or gets().

Online Detection Techniques. Countermeasures preventing the execution of code
residing on a stack are supported by some operating systems based on so-called exe-
cutable space protection (ESP). A further countermeasure for online overflow detection
is provided during compilation by tools which, like StackGuard [5], reorganise the
stack by including a so-called canary value just before the return address. After any
function call, this value is checked for any modification. Attackers aiming at over-
writing the return address must also overwrite the canary value. If a modification is
detected, the program is usually terminated. This and all other countermeasures based
on dynamic checks are evidently limited by the execution time overhead involved.

Static Analysis Techniques. During early verification phases, different analysis
techniques may be applied. Among the static ones, there are techniques targeted at the
early identification of unsafe functions by means of appropriate tools [6]. More
sophisticated techniques analyse the data flow for the purpose of identifying overflow
hazards; among them, integer range analysis [7] maps the problem of buffer overflow
identification onto an integer constraint problem. Although beneficial, such approaches
are doomed to incompleteness, as they can only address statically identifiable overflow
causes.

4.3 Overflow Detection by Testing Techniques

The limitations of the state-of-the-art identified above reveal the need for novel testing
techniques targeted at the early detection of exploitable vulnerabilities like overflows.
Depending on the control and data flow complexity of the program considered such
testing techniques may rely on analytical reasoning or require heuristics-based
approaches. Their potential is the focus of the authors’ ongoing investigations.

Whether systematic or random-based, such approaches are aimed at the simulation
of intelligent attackers operating under an application- and network-specific profile.
Intelligent test data must be generated such as to maximize the chances of activating
code vulnerabilities under the given profile conditions.

The underlying mathematical problem to be addressed involves multi-objective
optimization pursuing the following targets:

• target 1: in order to prevent an early attack detection, test data must fulfil all
network-specific communication constraints as well as all application- and
control-specific confidence and consistency constraints (see Sect. 3.1); this target
may be systematically achieved by means of constraint-based test data generation
techniques;

• target 2: in order to provoke an overflow, test data must maximize the chances of
enabling writing operation(s) outside of the allocated memory space (see Sect. 4.1);

• target 3: in order to support both search width w.r.t. target 2 and test confidence in
case of unsuccessful search, test data must maximize a predefined control or data
flow coverage measure.
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On the whole, a solution to this multi-criteria optimization problem would provide
either a meaningful message stream actually capable of exploiting a code vulnerability
or at least significant quantitative evidence against the potential of such a class of
attacks by means of objective measures reflecting the amount and the coverage of
secure behaviour observed.

Concerning testing targeted at reliability- rather than security-based properties,
similar test data generation problems were successfully approached by genetic algo-
rithms. Such heuristics revealed as useful in many testing contexts, including unit
testing based on control and data flow coverage [8], integration testing based on
component interaction coverage [9], statistical testing based on operationally repre-
sentative coverage of component interactions [10] as well as testing of cooperating
robots based on agent interaction [11] and operational coverage [12].

It is well-known that genetic algorithms consist of stepwise generating successive
populations of individuals based on a given initial population. Successive generation
are derived by

• evaluating each individual of the current population by means of a fitness function
reflecting the degree of fulfilment of the target-based criteria;

• applying genetic operators (like selection, recombination and mutation) on the
current individuals based on the fitness values obtained as well as on predefined
probabilistic parameters.

This iterative process is concluded as soon as the criteria are considered as
acceptably met, at the latest after a maximum number of iterations or even after a given
number of iterations lacking any meaningful improvement. Genetic algorithms involve
a wide range of variants, e.g. concerning elitism strategies applied to transfer the fittest
individuals to the next generation in order to support monotonic improvement, while
ensuring at the same time the enrichment of genetic material by mutation.

For the particular case of security-targeted testing considered in this section, the
fitness of an individual, i.e. of a message stream, is captured by a measure reflecting the
degree of its meeting the target criteria. Target 1 addresses a must criterion which may
be constructively enforced such as not to require any particular fitness evaluation
procedure. Target 3, on the other hand, addresses maximal code coverage; depending
on the coverage metric considered, this may allow for an absolute fitness measurement,
or at least for an evaluation of the relative improvement of a population when compared
with the previous one. Finally, target 2 addresses the exploitation of a potential vul-
nerability, i.e. the fulfilment of a condition of unknown satisfiability. Therefore, the
definition of an appropriate fitness measure is not straightforward. An option currently
under investigation consists of measuring the distance of the current buffer fill level to a
(lower or upper) buffer boundary and in rewarding individuals approaching such a
boundary.
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5 Conclusion

This article analyzed the impact of network attacks classifying them in terms of the
level of network, application, control or code knowledge required; hereby, it focused
on the highest levels of knowledge which assume extensive expertise in the
application-specific domain, in process control and, in particularly challenging situa-
tions, even in the details of the logic residing in the control system code.

On the basis of a variety of informed attacks, the article elaborates on the logical
demands posed to the attacker in order to circumvent the most classical checks for
message trustworthiness.

Finally, the article considers the state-of-the-art in prevention and detection tech-
niques by comparing strengths and weaknesses of a selection of existing constructive
and analytical approaches. As a result, it stresses the need for more targeted testing
techniques aimed at an early detection of exploitable vulnerabilities; for this purpose, it
proposes a paradigm for the generation of intelligent test cases meant to maximize the
chances of anticipating challenging scenarios during early verification.

Acknowledgment. The authors gratefully acknowledge that a major part of the work presented
was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi),
project SMARTEST. The project is carried out in cooperation with the partner institutions
University of Magdeburg, University of Applied Sciences of Magdeburg-Stendal and AREVA
GmbH. In particular, the authors thank Robert Fischer und Robert Clausing for inspiring
discussions.

References

1. Zetter, K.: Countdown to Zero Day. Stuxnet and the Launch of the World’s First Digital
Weapon. Crown, New York (2014)

2. Krotofil, M.: Rocking the pocket book: hacking chemical plants for competition and
extortion, white paper, Black Hat Conference (2015)

3. Bundesamt für Sicherheit in der Informationstechnik (BSI): IT-Grundschutz-Standards,
BSI-Standards 100-1, 100-2, 100-3, 100-4 (2008)

4. Quirk, W., Wall, D.N.: Customer functional requirements for the protection systems to be
used as the DARTS example. In: European Project “Demonstration of Advanced Reliability
Techniques for Safety Related Computer Systems” (DARTS), Research Programme ESPRIT
II, Project Final Deliverable (1990)

5. Cowan, C., Pu, C., Maier, D., et al.: StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: 7th Conference on USENIX Security Symposium,
USENIX Association (1998)

6. Viega, J., Bloch, J.T., Kohno, T., McGraw, G.: ITS4: a static vulnerability scanner for C and
C++ code. In: 16th Annual Conference on Computer Security Applications (ACSAC 2000).
IEEE Xplore (2000)

7. Wagner, D., Foster, J.S., Brewer, E.A., et al.: A first step towards automated detection of
buffer overrun vulnerabilities. In: Network and Distributed System Security Symposium
(NDSS 2000). The Internet Society (2000)

232 F. Saglietti et al.



8. Oster, N., Saglietti, F.: Automatic test data generation by multi-objective optimisation. In:
Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 426–438. Springer, Heidelberg
(2006)

9. Saglietti, F., Pinte, F.: Automated unit and integration testing for component-based software
systems. In: Workshop on Dependability and Security for Resource Constrained Embedded
Systems. ACM Digital Library (2010)

10. Meitner, M., Saglietti, F.: Target-specific adaptations of coupling-based software reliability
testing. In: Fischbach, K., Krieger, U.R. (eds.) MMB & DFT 2014. LNCS, vol. 8376,
pp. 192–206. Springer, Heidelberg (2014)

11. Saglietti, F., Winzinger, S., Lill, R.: Reconfiguration testing for cooperative autonomous
agents. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338,
pp. 144–155. Springer, Heidelberg (2015)

12. Saglietti, F., Spengler, R., Meitner, M.: Quantitative reliability assessment for mobile
cooperative systems. In: Skavhaug, A., Guiochet, J., Bitsch, F., Schoitsch, E. (eds.)
SAFECOMP Workshops 2016. LNCS, vol. 9923, pp. 118–129. Springer, Heidelberg (2016)

Analysis of Informed Attacks and Appropriate Countermeasures 233



Advanced Security Considerations
in the Arrowhead Framework
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Abstract. The Arrowhead Framework aims to create collaborative
automation using networked embedded devices by establishing a service
oriented approach to govern them. Various cyber-physical Systems can
provide and consume Services from one another in closed automation
clouds. These System-of-Systems has been introduced by the Arrowhead
framework as Local Clouds. These clouds – being high value targets –
can then be subject to an extensive amount of threats. This paper is ded-
icated towards revising the Arrowhead framework to further enhance its
security solutions. A certificate-based architecture is presented to solve
authentication and authorization tasks not just within, but in-between
Local Clouds by using a token concept applied for services. This schema
also allows the integration of resource constrained devices in coexistence
with different levels of security.

Keywords: Internet of Things · Collaborating system of systems ·
Authorization · Authentication · Certificates · Ticketing

1 Introduction

The Arrowhead project defines a framework for creating distributed industrial
systems by collaborative networked embedded devices [2,12]. This framework
intends to integrate popular application layer protocols using a unique Service
Oriented Architecture (SOA).

In an Arrowhead automation cloud environment, communications can be sub-
ject to an extensive amount of threats. These include i.e. spoofing, tampering or
Denial of Service attacks, and can compromise the security and integrity of the
whole infrastructure. These System-of-Systems still possess a general infrastruc-
tural vulnerability, despite its decentralized architecture [11].

In order to prevent such threats, the Arrowhead Framework has to provide
strict authentication and authorization capabilities (AA). These functionalities
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are indispensable, considering the involved cyber-physical Systems and business
processes. Furthermore, the framework targets the collaboration and interoper-
ability of embedded, and often resource-constrained devices using proprietary or
industrial protocols. In many cases the devices have limited capability of per-
forming security tasks such as advanced encryption and decryption utilized by
modern secure transmission protocols such as Transport Layer Security (TLS)
or the Internet Protocol Security (IPSec) [10]. For such cases, a ticketing-based
approach has been developed in [7], which works with CoAP. For MQTT and
REST – which use the Transmission Control Protocol (TCP) –, security based
on TLS would be desirable.

In this work we present the certificate-based security concept for the Arrow-
head multi-cloud environment. We investigate how this can co-exist for the other
ticket-based security concept within Arrowhead, and how translation between
the protocols can work, while keeping security transparent.

2 The Elements of the Arrowhead Framework

2.1 Local Automation Clouds

It is a great challenge to get heterogeneous systems (or architectures) work
together – especially in the automation domain, which has very specific real-time,
and security requirements. Legacy protocols, commercial off-the-shelf products
and monolithic architectures often cripple interoperability and dynamic recon-
figurability. The Arrowhead Framework uses the approach of Service Oriented
Architectures (SOA) [4] to tackle this problem: it aims at providing interoper-
ability by facilitating the service interactions within closed or at least separated
automation environments.

Fig. 1. Arrowhead Local Clouds deployed in different domains

These Arrowhead Local Clouds might fulfill various tasks and can have their
own sets of appointed stakeholders (e.g. their operators or developers). These Local
Clouds all have their operational boundaries, let those be functional, geographi-
cal or network-segmented. Nevertheless, they must be governed through their own
instances of the Arrowhead Core Systems, as Fig. 1. suggests. These are clouds in
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the sense that they use common resources: the Core Systems of that domain. These
common Core System resources (e.g. related to Service Registry, Authorization or
Orchestration) are usedby all kinds of other entities – applications – in the network,
and can also be implemented in a distributed way. This means that the scalability
of the Local Cloud mostly depends on the scalability of the Core Systems (e.g. by
implementing them using virtualization and Web Services [1] technologies).

2.2 Systems and Services

In the Arrowhead Local Clouds there can be an arbitrary number of Systems
that can provide and consume Services from one another: they create and fin-
ish servicing instances dynamically in run-time. Services are defined so that
loose-coupling, late binding, and service discoverability can be realized. Here,
Arrowhead-compatible Systems must use the mandatory Core Systems and their
Core Services provided by the Framework, to realize their operational targets
(as shown in Fig. 2.). These Core Services also support to set up the initial field
for information-exchange. There are two main groups of the Core Systems: the
mandatory ones that need to be present in each Local Cloud, and the automation
supporting ones that further enhance the capabilities of a Local Cloud.

Fig. 2. Arrowhead Core Systems and their use

2.3 Core Systems and Services

In accordance with [12], this work attributes the same functionality to each of
the Core Systems. There are three mandatory Core Systems:

– The Service Registry stores all the Systems (that are currently available in the
network) and their service offerings. Systems have to announce their presence,
and the services they can offer. The registry takes note of this information
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when systems come online, and might have to revoke them when they go
offline.

– The Authorization System – as its name suggests – manages authentication
and authorization (AA) tasks.

– The Orchestrator is responsible for instrumenting each System in the cloud:
where to connect. It instructs Systems so by pointing towards specific Service
Providers to consume specific Service(s) from. This has to be done by a simple
request-response sequence, which ends with the requester System receiving a
Service endpoint. After these, the System is obligated to consume from that
Service instance.

There are further automation supporting Core Systems available, in order
to provide additional core services such as event handling, system configura-
tion, factory description, or inter-cloud orchestration, which should otherwise be
implemented within many of the systems. This way these services are available
for any of the systems, without consuming their local resources.

2.4 Inter-cloud Servicing

Arrowhead Local Clouds are generally autonomous and independent from each
other, since they are deployed separately for various reasons. However, there are
specific cases, where Systems from different clouds need to consume Services from
one another. To this end, an inter-Cloud servicing architecture was introduced
in [13]. This comes up with two additional Core Systems to the framework: the
Gatekeeper, and the Network Manager.

The Gatekeeper provides essentially two services for the mandatory Core
Systems:

– the Global Service Discovery (GSD) process, that aims at locating adequate
service offerings in neighboring Clouds;

– the Inter-Cloud Negotiations (ICN) process, in which mutual trust is estab-
lished between two Clouds and the actual connection between endpoints is
then built up.

The concept is depicted by Fig. 3. After these processes, the Network Manager
is responsible for creating the data path between the Service Provider and the
Consumer.

This setup includes some security considerations taking place, e.g. declaring
inter-Cloud access rights (from and to other Local Clouds) in the Authorization
Systems, or setting up the trusted neighborhood domains.

3 Security in the Arrowhead Framework

3.1 Issues to Tackle

Assuring security in distributed architectures is not as trivial as in centralized
systems: the roles for authentication and authorization are not bounded to one
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Fig. 3. Inter-cloud service discovery between Gatekeepers

single entity but are to be taken up by everyone. We need to define a novel secu-
rity solution in order to fulfill the strict security requirements of the automation
world. A threat analysis methodology elaborated in [8,9] suggests that the fol-
lowing possible vulnerabilities have to be tackled here:

1. Confidentiality: Data is only to be available for those who were intended to
access it. This objective needs to be assured by proper authorization paired
with authentication. Threats like spoofing and information disclosure can
violate this objective.

2. Integrity: Data and system resources are only to be changed in appropriate
ways by the appropriate people. This can be assured by proper encryption
(or digest) and can be exploited by tampering type of attacks.

3. Availability: Systems should be ready when needed and perform acceptably.
Denial of Service (DoS) attacks can endanger this objective.

4. Authenticity: The identity of users is to be verified (unless it is acceptable to
service anonymous users). Spoofing type of threats aim to violate this.

5. Accountability: Users should not be able to deny performing their earlier
actions. Proper and verifiable logging needs to be implemented to prevent
this.

It is worth noting that while authentication should be mandatory for all
communications, at least three further levels of application security should be
acceptable for Application Systems within Arrowhead (even in co-existence).
Besides having no additional security, there can be cases where only integrity is
required and cases where both integrity and confidentiality is essential.
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3.2 A Ticketing Approach

Resource-constrained (but Arrowhead-compatible) Systems might not be capa-
ble of implementing advanced security measures. A lightweight authentication
solution has been developed for such Systems, based on the Constrained Appli-
cation Protocol (CoAP), and the Kerberos protocol [7]. It uses a centrally issued
ticket as a token of identity but does not contain any identity information
directly. To authenticate Application Systems within a Local Cloud one must
contact the AA server to verify its identity and privileges.

Besides its protocol-restricted implementation (supporting merely CoAP),
the weak points of this authentication method make it vulnerable to a number
of attacks. Firstly, the challenge-response nature on an insecure channel implies
that the ticket itself does not verify the authenticity of the sender – and can
be exploited with a man in the middle approach. Secondly, since the service
provider has to request the local ticketing AA server to validate the ticket (and
therefore authenticate the consumer), it is also easy to bypass this control loop.
Thirdly, this validation process is requested at every inbound connection and
therefore the AA server is vulnerable to a DoS attack.

On the other hand, this approach is advantageous for a number of reasons.
The service providers are relieved from the processing burden of identifying
and verifying the consumers: it is done by the central AA entity. It also bears
the future capability of integrating it with admission control functions: service
providers can assert whether the inbound connection is ratified by the Core
Systems – and can be serviced – or not.

3.3 The Public Key Infrastructure

Public Key Infrastructure (PKI) [5] defines how to create certificates that can be
used to achieve authentication, message integrity and confidentiality. PKI builds
on Public-key cryptography (PKC), which employs an asymmetric encryption
scheme. This means that it uses different keys for the encryption and the decryp-
tion processes, compared to symmetric key encryption methods, where the same
key is used for the encryption and decryption.

There are two type of keys in a PKI architecture: these are called the public
and the private keys. As their name suggests, they differ in their confidential-
ity level. While private keys belong to its owner and must be kept as a secret,
whereas the public key can be freely distributed. Information encrypted by the
public key can only be decrypted using the private key – and vice versa. There-
fore, the validity of the information can be assured both ways (inbound and
outbound) when the recipient/sender possesses one of the keys. However, pre-
designated trust is still required in certificate-based authentication and encryp-
tion methods that build on the features of the PKI. In order to achieve the
mutual trust between entities, a Certificate Authority (CA) must be appointed
in the system. The role of a CA is basically to sign certificates (and thereby to
validate their identity and content). All entities in the system trust (and know)
their CA and can only validate the received certificates that contain information
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about its counterpart (its public key) and is signed by the local CA. Certificates
can be used to both verify the authenticity of the parties, as well as to check the
integrity of messages in the communication. Therefore, parties that have signed
certificates from the same CA can communicate securely.

As a consequence, if an entity A wishes to communicate with another entity
(B), it will need to get the signed certificate of B containing the public key of B.

In the new Arrowhead Service, the functionality of a CA is realized and
combined with an authorization methodology embedded in the orchestration
process.

4 Enhancements in the Arrowhead Framework

4.1 Creating a Certificate Hierarchy

To fulfill the security requirements set in Sect. 3.1., we propose an application
level AA architecture based on the X.509 [5] PKI infrastructure. Each capable
Arrowhead System should be provided with a certificate and should therefore
have its identity binded to its public key. Every Local Cloud has a Certificate
Authority that issues and signs these System certificates. This CA is the root
of the trust chain within its Local Cloud and has its own certificate signed by
a parent CA. This entity also possesses the Certificate Revocation List defined
in the standard: certificates that have been invalidated and therefore not to be
accepted.

Fig. 4. Arrowhead certificate hierarchy

This chain of trust model fits well into to System hierarchy concept of the
Arrowhead framework, as depicted in Fig. 4. A general, master Arrowhead certifi-
cate can be signed by a well-known trusted CA (such as Comodo or GlobalSign)
and issued to the the Arrowhead domain owner (e.g. the project consortia). This
administrator entity then can issue and sign Local Cloud certificates for oper-
ators in its own application process for establishing new Local Clouds. Within
these new Clouds then the Authorization System realizes the CA tasks and owns
the cloud certificate. The benefits of this approach:
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– The Arrowhead community has oversight over new Local Cloud establishments
– Inter-Cloud interactions are secured by the certificate hierarchy
– Local Cloud owners can issue and revoke certificates for Systems in a deploy-

ment procedure
– System bootstrapping and authentication is certificate-secured within its

Cloud (can also be bounded to tamper-proof hardware)
– All communications can be signed and/or encrypted with SSL/TLS.

If an Application System in a Local Cloud requires a certificate (e.g. during
its deployment procedure), it will have to generate a private-public key pair and
submit a Certificate Signing Request (CSR) containing the pair and its identity.
There are other fields in a CSR used to verify the identity of the requester.
This way the Arrowhead bootstrapping procedure can be automated [14], and
augmented with certificate generation.

Subject: C=HU, L=Budapest, O=Manufacturer1,

OU=Fleetcloud1,

CN=TempSensor1.Car1.FleetCloud1.Manufacturer1.arrowhead.eu

Fig. 5. Identity and hierarchical information stored in certificates

We propose a certificate structure to implement the above discussed hierar-
chy, as depicted on Fig. 5. This format is a customization of the general X.509
certificate and it bounds the identity of the system specifically to a Local Cloud
(which makes spoofing attacks more difficult). This approach might seem l’art
pour l’art, but is a very convenient way of providing authorization, as discussed
in the following section.

4.2 Managing Access Rights

Building on the PKI infrastructure and the certificate distribution capabilities
described in Sect. 4.1, a new level of security can be added at the servicing level.
Since message decryptability only lies with the party owning the appropriate
keys, the Core Systems can supervise and provide authorization for Application
Systems in a Local Cloud.

There are a number of fundamental questions that describe an automation
scenario regarding authentication, authorization or data ownership. The Arrow-
head Framework defined Local Clouds that are governed through their own
instances of the Core Systems, as described in Sect. 2. However, full central-
ization is not desired for multi-stakeholder scenarios.

When Application Systems are introduced in a Local Cloud, there are fur-
ther bootstrapping tasks besides certificate distribution and the establishment
of general trust, a process has been examined in [6]. Such automated bootstrap-
ping procedures require that the operators of the Cloud have properly configured
the Core Systems about the new Application System’s to-be deployment. These
include the followings:
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1. Orchestration rules: how it can be orchestrated (e.g. whether it has static
servicing connections).

2. Authorization status: where it might be allowed to consume Services from.
3. Further deployment descriptors also have to be configured: e.g. in the QoS

Manager or Plant Description Systems.

In Arrowhead, Application Systems generally give up certain autonomy and
are to be instructed by the Core Systems on how to operate [14]: which Ser-
vices they have to consume from which Service Providers. This centralization
of control helps managing the System-of-Systems via the Arrowhead Core Sys-
tems. However, there are certain cases where Application Systems should retain
parts of their autonomy and have the possibility to reject connections even
though they have been properly orchestrated. In such exception handling cases
re-orchestration will be required.

Moreover, Systems acting as Service Providers should also be able to ver-
ify that inbound servicing requests are properly authorized and verified by the
Core Systems. To this end, an orchestration process was introduced in [3] and
described in Sect. 2 to include process and resource-allocation based restrictions
when composing Services.

To this end, we introduce an authorization token building on the ticketing
schema that will provide application-level security. A such token is only valid
for one servicing instance: one Service Consumer is authorized one-time to con-
sume a specific Service from the Service Provider at hand. This information
(Consumer-Service-Provider) can be stored in a string and should be decrypt-
able and parseable by Application Systems that require such advanced admission
control functionalities. These tokens have the following characteristics:

– It builds on the certificate hierarchy introduced in Sect. 4.1;
– Generated by the Authorization System based on access rights during the

orchestration process, see Fig. 6;
– This token is then passed on to the Consumer by the Orchestrator;
– It is only decryptable by the Service Provider and its private certificate key;
– It assures that proper orchestration took place and the Consumer is verified

to access the Service;
– Based on this, the Service Provider can either accept or reject the connection.

This methodology reduces Provider-side authorization and admission con-
trol to a string-based validation of the Consumer’s identity declared in its cer-
tificate based on the contents of the encrypted token. Although this requires
that Application Systems implement and evaluate this process at every single
inbound Service request.

4.3 Integration with the Ticketing Schema

Extending the works of [7], we propose to integrate the authorization token
approach with the ticketing based authentication service in order to provide
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Fig. 6. Authorization tokens generated in the orchestration process

admission control for all Systems in a Local Cloud: let those be certificate or
ticket based.

This requires that the ticket issued for a System should not only authenticate
but authorize it as a Service Consumer. In this case, the orchestration response
message does not contain a token. Instead, we propose the following process
for cases where resource-constrained Consumers only possess the authentication
ticket:

1. The orchestration process instructs the ticket-owner Consumer to connect to
a specific Service Provider.

2. The Consumer tries connecting with its authentication ticket on an insecure
channel instead of using certificates and the token.

3. The Service Provider will try to verify the ticket with the Authorization
System.

4. The Authorization System will only respond positively if the Consumer was
orchestrated properly before.

This methodology does not rely on the Service Provider’s authentication method.
It only requires that the Authorization System stores the result of the last orches-
tration process for the Consumer (with a validity period) and its currently active
authentication ticket. However, when mutual identity verification is required (the
Consumer validating a ticket-based Provider), it will require an other round of
verification with the Authorization System, but the roles reversed.
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4.4 Integration with the Inter-cloud Architecture

The authorization token approach is also an adequate solution to the security
issues arisen with inter-Cloud servicing requirements, as discussed in Sect. 4.1.
This token is generated by the Service Provider’s Cloud in cooperation with the
Consumer’s Cloud Core Systems. Therefore, this token is valid even if it was
issued for a “foreigner” Consumer in an inter-Cloud orchestration process: it is
completely transparent from the Provider’s point of view (it is still issued by its
own Authorization System).

For scenarios where the inter-Cloud data path is realized via tunneling (using
the services of the Network Manager [13]), this token can also help to establish
it. This is achieved by orchestrating every System on the data path properly
with its own authorization token that validates the partners along the tunneling
chain.

5 Summary

This paper presented an enhancement for the security-related capabilities of
the Arrowhead Framework. Since any Local Cloud of this automation-specific
Internet of Things domain can be subject to extensive threats, providing proper
security mechanisms for them is of major interest. After a brief recap on the
Arrowhead Framework, we described some security requirements and related
issues. The currently used ticketing approach for authorization and authentica-
tion has some drawbacks. We can overcome them by using a certificate-based
approach.

In order to solve authentication and authorization issues not just within, but
in-between Local Clouds, we introduced a few enhancements. First, we applied
the concept of certificate hierarchies. In this, every Local Cloud has a Certificate
Authority that issues and signs its System certificates. This CA is the root of the
trust chain within its Local Cloud, and has its own certificate signed by a parent
CA. Second, we described how the certificate and the ticketing approaches can
co-exist, and even be translated to one another (within some limitations).

Moreover, we described how to manage access right within Local Clouds by
using this approach. For this, we introduced an authorization token, building on
the ticketing schema – but being valid only for one servicing instance. Another
advantage of this token approach is that it naturally fits in the inter-Cloud
servicing scenarios: the token is valid even if it was issued for a “foreign” cloud.

Future work includes creating a reference implementation of the proposed
concept which can be used by any distributed system of systems to manage
inter-cloud authentication and authorization.
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Abstract. This paper presents a characterisation of the oil and gas
drilling supply chain in the context of cybersecurity incident handling.
Coordination and collaboration between stakeholders are critical factors
in incident handling. However, the number of organisations and stake-
holders involved in drilling is high and, thus, it is relevant to understand
better their interactions during incident handling. This paper provides a
high-level overview of these stakeholders interactions during cybersecu-
rity incident handling, as a basis for future research. This characterisation
shows the suitability of modelling the supply chain from the incident per-
spective to understand, more clearly, the ramifications of incidents and
the coordination needs.

Keywords: Oil and Gas · Drilling · Cybersecurity · Incident response ·
Supply chain · Value chain

1 Introduction

Digital systems have become critical in oil and gas drilling. In the last decade,
most of the equipment has been integrated with control systems, automating
tasks that decades ago were performed manually. In addition, information sys-
tems became more integrated with remote operation centres, improving drilling
knowledge and decision-making.

The digitalisation of drilling installations paved the way to cybersecurity
incidents, which are events that involve malicious or unwarranted actions in
information or control systems, such incidents might escalate causing incidents
in business or engineering operations. Cybersecurity in drilling shares with other
sectors a series of challenges at securing information and control systems in
industrial facilities. First, the importance of having full control of the status of
the equipment and the industrial process. Second, the potential operational and
physical consequences of cybersecurity incidents in industrial control systems.
Third, the need for making decisions in real time to handle incidents as quick as
possible and avoid escalation. And fourth, the incorporation, in risk analysis, of
the uncertainties of operational risks.

In the last decade, cyber attackers moved the focus towards industrial control
systems (ICS) and critical infrastructure such as oil and gas (O&G) [1]. In 2008,
c© Springer International Publishing Switzerland 2016
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hackers blew up a Turkish oil pipeline. In the control room, the operators console
showed that everything was running as planned before a phone call from the field
triggered the alarm. In 2009, a disgruntled former employee remotely disabled
the safety controls of an offshore rig in the US. During 2012, a virus infected
an Iranian oil facility, shutting down the terminals of the control system. In
2012, the worlds largest oil company, Saudi Aramco, was the victim of an attack
disabling 30.000 computers for 11 days. Overall, reports from the U.S. ICS-
CERT show that the energy sector, which includes O&G, is one of the mayor
targets, reaching 56 % of the incidents reported in 2013 [2]. Major incidents in
control systems are unlikely but possible: around 7 % of cyber attacks to critical
infrastructure penetrate into critical systems [3].

The harsh and uncertain conditions during drilling represent a serious safety
and environmental risk. The major risk in offshore platforms is a blowout, which
poses a risk of explosion in the installation [4,5]. Incidents with heavy equipment
on the rig also represent a serious safety risk, as well as the risk of ruining the
drilling operation if the equipment breaks [4]. The harsh conditions might also
affect the integrity and viability of the well, affecting extraction costs or reducing
the amount extracted during production. The value of the reservoir is in the
range of millions of Euros. An injection of drilling fluids in the reservoir might
difficult the construction of the well or the future extraction of the hydrocarbons.

These actions are extremely difficult to trigger from a cyberattack, however,
a poor security status of the control system might facilitate incidents or difficult
their handling. In addition, operational incidents involving the control systems
might cause loss of time in the drilling operations and difficult and costly recov-
eries. Offshore drilling rigs are isolated and bringing specialists or equipment
requires a helicopter trip. In fact, given the high cost of these platforms, a delay
of even a few hours could represent ten of thousands of Euros. Drilling can cost
more than e 250,000 per day, representing an important cost aspect in producing
oil and gas offshore.

This paper deals with an additional challenge in this domain: the relative
complexity of the stakeholder map. This is specially relevant during incident
handling, because coordination and collaboration are critical factors for a suc-
cessful response. The goal of the paper is to characterise this stakeholder map in
the context of cybersecurity incident handling of the main system of the instal-
lation, namely, the drilling control system (DCS). This characterisation might
serve as a high-level starting point for further research on the topic.

The rest of the paper is structured as follows: Sect. 2 introduces the reader
to the drilling supply chain; Sect. 3 characterises the drilling supply chain dur-
ing an incident in the drilling control system; and Sect. 4 provides an example
stakeholder case characterisation.

2 Background

This section provides an introduction to the drilling supply chain and the gen-
eral challenges of handling incidents. Section 2.1 introduces the concepts of value
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and supply chain. Section 2.2 describes the drilling supply chain and the stake-
holders present in the drilling installation. Section 2.3 summarises the need for
cooperation and coordination during incident handling.

2.1 Value Chain and Supply Chain

The value chain [6] consists in the activities an organisation performs to create
and deliver a valuable product. The focus of the value chain is on the business
level and its main goal is maximising value. On the other hand, the supply
chain consist in the parties involved in producing and delivering that valuable
product. In this case, the focus of the supply chain is on the operational level
and its general goal is optimising the execution of operations. From the supply
chain point of view, incidents disrupt the execution of operations. From the value
chain point of view, incidents perturb the secure and safe state of operations,
reducing the value creation in those operations.

2.2 The Drilling Sector as Part of the General Supply Chain
of the Oil and Gas Industry

The oil and gas or petroleum industry is divided in the following three sectors [7]:

– Upstream: Exploration and extraction of oil and gas from hydrocarbon reser-
voirs.

– Midstream: Transportation and storage of oil and gas products.
– Downstream: Processing crude oil and raw gas into derived products such as

gasoline, petrochemicals, purified sale gas, or propane.

O&G drilling is part of the upstream sector together with exploration and
production. The first step in upstream is exploring and analysing hydrocarbon
reservoirs and obtaining leases for exploiting them. The purpose of drilling is
building a well to tap a reservoir and preparing the well for production. Finally,
production involves the extraction of oil and gas and its stabilization for trans-
porting them to downstream refineries and plants.

Figure 1 depicts the general oil and gas supply chain.
Drilling [4] is performed by installations such as immobile platforms, mobile

semi-submersible rigs, or drill ships. The drilling operation usually takes two
or three months, and requires drilling, casing, and cementing the well. Another
important activity is controlling the well to prevent blowouts or fluid exchanges
between the well and the reservoir.

Stakeholder relationships in drilling rigs are complex since several companies
have different roles in the operations [4].

There are four types of organisations present on drilling rigs:

– The oil company owns the reservoir and directs drilling operations as part of
the overall upstream process of exploring, drilling, and producing. Therefore,
the oil company creates value by maximising hydrocarbon production at a
minimum cost and, thus, focuses on the technical and financial viability of the
well.
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Fig. 1. Oil and gas industry supply chain. The arrows indicate the supply process from
the discovery of the reservoir (exploration) to the delivery of refined oil and processed
gas to the industries and homes

– The drilling contractor owns the drilling rig and carries out the drilling opera-
tions under the directions of the oil company. Drilling contractors drill dozens
of wells during the 15–20 year lifespan of a rig. Therefore, the drilling contrac-
tor creates value by delivering the well with the minimal time delay.

– Service companies carry out specialized operations, such as cementing, and
create value by delivering their services with minimal time delay.

– Equipment providers are not involved in drilling but they provide support
for their equipment and, therefore, create value by maintaining the reliability
and reputation of their equipment. In the cybersecurity context, there are two
relevant equipment providers. The first one is the system integrator, which pro-
vides control or information systems. The second one is the product supplier,
which provides components (e.g., servers, PLCs1, or HMIs2) to the system
integrator.

An additional goal of all stakeholders is keeping operations safe and with a
limited environmental impact.

Our focus is on the relevant stakeholder relations during the handling of an
incident in a drilling control system. Drilling stakeholders are directly relevant,
however most part of the O&G supply chain does not participate directly in the
drilling operations. Therefore, their indirect involvement can be integrated in the
oil company (e.g., exploitation costs, production expectations) and into an over-
all market consideration of the midstream and downstream sectors, regarding
the prices and delivery of the oil or gas production.

2.3 The Need for Coordination During Incident Handling

Incidents are dynamic, complex, uncertain, and stressful. Handling an incident
requires a balance between meticulous incident preparedness and spontaneous
1 Programmable Logic Controllers.
2 Human-Machine Interfaces.
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incident handling. One of the main challenges during incident handling is having
a coordinated response by the stakeholders affected by the incident. In the case of
oil and gas, it involves the primary stakeholder with direct relation with the inci-
dent, but also secondary stakeholders in the rig operations, directly affected by
or affecting the incident. Lessons learnt from emergency response studies [8–10]
highlight the importance of achieving a shared vision of the incident preparedness
to achieve a consistent incident handling. Another recommendation is avoiding
the compartmentalisation of information and decision-making: external collab-
oration provides incident handlers with more resources and knowledge, whereas
good communication is critical to obtain a more global vision of the incident
ramifications.

The assessment of the drilling supply chain and their role during cybersecu-
rity incidents is relevant due to the combination of two challenges: the challenge
of managing incidents in a multi-stakeholder environment, and the challenge
of cybersecurity incidents on drilling rigs. In the next section we present an
schematic overview of the drilling supply chain that is used for assessing the role
of the stakeholders during a cybersecurity incident.

3 Drilling Supply Chain During Cybersecurity Incidents

This section provides, in Sect. 3.1, a structured characterisation of the supply
chain from the point of view of handling an incident in a drilling control system.
Section 3.2 provides additional considerations to complement the characterisation.

3.1 Characterisation of the Supply Chain During Cybersecurity
Incidents in a Drilling Control System

Figure 2 provides an overview of the supply chain involved in cybersecurity inci-
dent handling for drilling rigs. More specifically, the figure shows the supply
chain from the drilling control system point of view. This system is in charge of
the equipment that drills the well through the earth’s surface.

The white boxes represent the supply chain, whereas the grey boxes repre-
sent the supply chain activities related with handling an incident in the drilling
control system. From the point of view of the incident, the core activity is the
drilling system operation, depicted in black.

The activities that precede the drilling system operation are relevant for two
reasons. The first one is that they provide support for solving incidents. The
second one is that they could be sources of cybersecurity incidents that can
affect or infect the drilling control system.

The system integrator provides the drilling systemof the rig. Product suppliers,
on the other hand, provide the components of the drilling system (e.g., computers,
controllers, network devices) to the system integrator. The value of these organi-
sations during incident handling relies on the support, experience, and knowledge
about the technologies they provide.
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Fig. 2. Drilling supply chain and cybersecurity incident handling activities. White
boxes represent relevant stakeholders. Grey boxes represent relevant activities in the
context of a cybersecurity incident in the drilling system. Arrows represent which activ-
ities are supporting others in the creation and maintenance of value

Surrounding systems might be a source of risks or incidents that can affect
the drilling control system. There are multiple systems from multiple stakehold-
ers on the rig: corporate systems of the oil company or the drilling contractor,
other control systems of the drilling contractor or service providers, and com-
munication systems to the operational centres onshore.

The activities following the drilling system operation are the major activities
supported by the control system, and determine the goals and constraints of the
incident handling. The drilling contractor is in charge of the drilling operation,
focusing on delivering it without delay. In addition, the oil company is in charge
of the overall project of exploiting the reservoir, focusing on optimising the
profitability of the reservoir. Finally, the market is the downstream sector of
oil and gas where the oil company provides the crude oil or raw natural gas.
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Market goals of price, delivery, or market share determine the overall goals that
the oil company has for the reservoir exploitation.

3.2 Additional Considerations for a Coordinated Incident Handling

There are four additional aspects to consider when analysing stakeholders in
incident handling:

Goals: The previous characterization of activities in the supply chain helps
to understand the main goals of the organisations and, thus, their objectives
during incident handling. However, it is also important to consider other goals
such as safety, environment, reputation, or compliance. In addition, a PESTLE3

analysis [11] could be helpful to identify the social constraints and requirements
of the different organisations.

Departments: Most companies in the drilling supply chain are multinationals
with several departments and roles involved in the drilling operation. Drilling
operations involve several roles on the rig with different security responsibilities
(e.g., oil company’s site leader, drilling contractor’s installation manager and
toolpusher), as well as higher-level managers and engineers onshore in charge
of multiple installations. Regarding cybersecurity, it involves people from the
control systems domain and IT domain.

Visibility : Parties during incident handling will have a different point of view
on what is happening during an incident. People and teams have different goals,
activities and experience. Each party will see the incident from the point of view
of how it affects their systems or activities, or from their perspective on the entire
drilling process. Each party will be more aware of the ramifications of incidents
in their domain than in other domains. An example of this is the different points
of view of control system teams and IT teams regarding cybersecurity.

Capabilities: Similarly, they will have different resources and abilities for
detecting, responding, and recovering from incidents. A control system user
might have successfully detected a problem in the system, but she might only be
able to respond partially. For example, a system user might be able to respond
to a malware by substituting the device or reinstalling the operating system.
However, the complete solution will not be in place until the system integrator
or product supplier provide a security update for the device.

4 Example Case: Malware Infection of a Controller

In this section, we provide a general example on how the characterization of the
supply and value chain is useful for assessing the stakeholder roles. The example
is a malware infection in the drilling control system.

This malware infection consists of the following steps:

– Step 1 – Infection: Somebody uses an infected USB stick or laptop within the
rig network, i.e., the surrounding systems in our characterization.

3 Political, Economic, Social, Technological, Legal, and Environmental.
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– Step 2 – Propagation: The malware propagates to the different systems of the
rig including the drilling control system.

– Step 3 – Controller infection: The malware infects a critical component of the
drilling control system. For example, the mud pump PLC.

– Step 4 – Digital consequence: The malware shuts down the controller.
– Step 5 – Physical/operational consequence: The mud pump stops operating.

4.1 Supply Chain Characterisation in the Case of Malware Infection
of a Controller

The response for steps 1 and 2 involve actions such as eradicating or containing
the infected devices, or checking whether other systems are infected. Protections
in place (e.g., firewalls) might contain the propagation but they do not offer a
complete protection since the malware could bypass the firewall, for example,
by exploiting firewall or user-enabled vulnerabilities. Therefore, eradicating the
virus or ensuring that it does not expand further involves a coordinated response
with the other system owners, potentially all the supply chain stakeholders.

Regarding step 1, in case the person that brings the infected device has
no intention of harm, the response actions might involve changing the secu-
rity policies. This is not really an incident response action but rather a lesson
learnt for future risk management. However, whether the insider is malicious or
not, response actions might involve activities for identifying who is the insider
amongst the people interacting with the first infected system.

Regarding step 3, the malware might be harmless to the drilling operations
and, as long as there is no operational risk, it might be a low priority incident.
Even so, response options could be actions such as reinstalling the controller soft-
ware, substituting the device, and checking whether other devices are infected.
The priority in these actions is avoiding as much disturbance as possible to the
drilling operations. In addition, system integrators and product suppliers might
be involved at this level. These suppliers provide support to contain or erase
the malware in their devices, or recovery solutions such as the substitution of
the device or a software update to eliminate the vulnerability exploited by the
malware.

During step 4 it is important to coordinate with the drilling operators. This
might also be essential during step 3 in case the risk assessment indicates a
relevant operational risk. Furthermore, the coordination might involve the par-
ticipation of other departments of the drilling contractor or the involvement of
the oil company (as the owner of the reservoir being drilled). In this case, the
focus of the response is to minimise the impact on operations, as the most likely
risk is delaying operations. That said, and depending of the equipment and oper-
ations, the shutdown of the controller poses a safety and environmental risk due
to the degradation of the drilling operations or the well control. The presence of
safety systems and the engineer’s oversight reduces the likelihood of any of these
risks, but the potential serious impact might require a diligent response. This is
the case, for example, for the mud pump, as this piece of equipment injects a
fluid that facilitates the perforation of the hole and the stabilisation of the well
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pressure to a point in which neither collapses nor fluid is injected accidentally in
the reservoir. Therefore, any cybersecurity response is conditioned by the overall
response strategy from the engineers in charge of drilling and well control.

4.2 Supply Chain Considerations in the Case of Malware Infection
of a Controller

From the description of the event, we see that the further the incident escalates,
the costlier and riskier the response might be. Therefore, it is important to
deal with the incident as early as possible. In our example, an early response
at digital system-level, such as containment or substitution of devices would be
relatively cheaper and less time-consuming compared to the potential impact of
the operational delays, failures, and risk in case the mud pump fails.

A first observation is that the operators of the rig systems might be unaware
of the escalation potential of the incident. In this case, a downwards communi-
cation in the supply chain, from the drilling engineers to the system engineers,
would provide a more complete view of the potential increase in the risk if the
malware is not contained. Regarding upwards communication in the chain, it
would relevant to check whether the malware would affect the controller in a
way that would impact operations. If so, informing drilling engineers would be
important for a timely response without perturbing operations.

In the malware example, the best response from the system point of view
might be refreshing the system and eradicating the virus. However, this response
will probably cause a delay in the drilling operations. In case the malware does
not harm operations, waiting to a maintenance time might be a better response
than an immediate action, as this could be even worse than the malware, in terms
of operational or safety risk if the system is performing a critical operation.

Overall, we emphasise the need for coordination and communication. A coor-
dinated risk response and information flow between stakeholders is advantageous
if not critical during incident handling. This recommendation might sound gen-
eral and obvious, but taking into account the stakeholders role is not a trivial
activity during incident handling. Incident or risk handling actions in a rig set-
ting might require or recommend coordination of actions and information flow.
Therefore, it is relevant, in a cybersecurity context, to have a characterisation
of the stakeholders, their activities, goals, and departments in drilling systems
operations.

5 Conclusion

The assessment of the drilling supply chain and its role during cybersecurity
incidents is relevant due to the challenge of managing incidents in a multi-
stakeholder and high risk environment. It is important to understand the goals,
activities, and perspectives of the different stakeholders, because these factors
contextualise the coordination and collaboration necessary to handle incidents.
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Stakeholder and supply chain assessment has been a relevant topic in O&G
drilling for a long time due the need for operational coordination during drilling.
However, the traditional characterisation is a top-down approach from the point
of view of the entire drilling operation. Therefore, we provide a high-level charac-
terisation that depicts this stakeholder map from the point of view of protecting
the main system in the installation - the drilling control system. This might serve
as a starting point for understanding, in a structured manner, the ramifications
of a cybersecurity incident in the rig systems and for eliciting a more complete
picture of relevant threats, countermeasures and impacts during incident or risk
analysis.

This paper is part of the innovation project Cybersecurity Incident Response
Framework for the O&G Industry to Optimize Oil Production and Prevent Safety
and Environmental Disasters funded by the Regional Research Fund of West
Norway (project 245291). Future work will focus on the development of a stake-
holder model for supporting incident and risk analysis during a cybersecurity inci-
dent in the control systems on a rig. Our aim is including this model in a risk-based
framework for cybersecurity incident handling for drilling rigs. The inclusion of
stakeholder considerations will facilitate the evaluation of the risks and potential
responses and is critical because of the need for stakeholder coordination.
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Abstract. In this paper, Bluetooth Low Energy is used for communication
between master computers and distributed slave microcontrollers that perform
low-level tasks that the master is unable or not suitable to do, e.g. hard real-time
and low-level I/O. The wireless communication with the master computer allow
slaves to be added, replaced or removed without the need for rewiring. Depend‐
ability can be increased as implementation of redundancy, both for masters and
slaves, does not require wired connections between them. This concept has been
utilized in an industrial prototype and evaluated in an experiment presented in
this paper. The experiment evaluated the communication latency with Bluetooth
Low Energy, compared to a wired alternative, which is important for reliable
operation. The results showed a similar average latency, but the worst case was
less favorable for Bluetooth Low Energy. However, since the slaves are intended
to manage time critical operations locally, with the master computer in a super‐
visory role, these delays will be acceptable in many applications, when consid‐
ering the advantages of a wireless master-slave communication.

Keywords: Bluetooth low energy · Linux · Distributed · Dependability · Real-time

1 Introduction

Bluetooth Low Energy [1] (BLE) is a wireless network technology for low latency and
low power consumption transfer of small data packets, with low bandwidth as a tradeoff.
This makes it suitable for the transfer of status and command messages within a distrib‐
uted control system, especially when parts of the system are physically separated from
each other, e.g. moving or rotating equipment. In this paper we argue that the flexibility
afforded by wireless communication can be beneficial even for communication between
devices where wired communication is a viable alternative.

Bluetooth Low Energy is a widely used technology, that has become commonplace
over the last years, in computers, phones and Internet of Things devices. Multiple
microcontrollers and single-board computers have built in support, or support can in
most cases be added.
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In a previous paper [2], we investigated the use of consumer-grade single-board
Linux computers, which have gained in popularity over the last years, for control of
cyber physical systems [3, 4]. These computers offer high computational power in small,
inexpensive devices, with various capabilities and interfaces. There are also advantages
to using Linux, which has large amount of drivers, libraries etc. and easy access to
support through active communities. Linux also offer an environment that many devel‐
opers are familiar with.

However, cyber-physical systems interact with the real-world, where the real-time
performance of low-level I/O might be important and necessary for dependable opera‐
tion. This means they should be guaranteed to react to certain events within specified
time constraints or deadlines [5]. Linux is not considered a real-time operating system
and in order for it to behave as one, it is common to use a real-time microkernel between
the hardware and the Linux kernel [6, 7]. A popular implementation of this today is
Xenomai. Extensions as this add a layer of complexity and require significant additional
development time and specialized knowledge. Some of the main reasons for using Linux
are lost, e.g. drivers and available support. Linux drivers can be used, but will operate
in the non real-time context of Linux, not the real-time context of Xenomai. It can even
reduce the performance compared to Linux alone, due to unnecessary context switches
between real-time and non real-time.

A commonly used alternative to improving the real-time capabilities of a control
system is to delegate the real-time tasks and low level I/O operations to one or more
slave microcontrollers. Communication between the master computer and slave micro‐
controller(s) will typically be serial communication using a UART or a bus such as I2C.
The master takes a supervisory role and perform the tasks it is most suited for, while the
slave(s) perform specialized tasks. With real-time operating systems or no operating
system at all, the slaves, can do tasks and local control loops where timing, low-level I/
O operation and deterministic behavior are important. However, a limitation is that
masters and slaves are hardwired, often with a one to one relationship, which makes it
difficult to extend a system with additional slaves or replace faulty slaves on the fly.

Section 2 of this paper describes the use of BLE instead of a wired solution for
master-slave communication in a cyber-physical control system, and how this can be
used to improve the dependability. Section 3 describes an experiment that was performed
to test the real-time capabilities of the proposed solution, in order to evaluate its viability,
and gain knowledge about the applications it is suitable for. The results of the experiment
are presented in Sect. 4 and discussed in Sect. 5. Section 6 ends the paper with concluding
remarks.

2 Bluetooth Low Energy

Bluetooth Low Energy, sometimes referred to as Bluetooth Smart, use the same 2.4 GHz
spectrum as classic Bluetooth (and WiFi). However, the protocol is different and not
compatible. ZigBee is a competing technology with similar specifications as BLE, and
a comparison between classic Bluetooth, BLE and ZigBee is given in [8]. BLE was
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chosen due to better support on both embedded and general purpose computers and smart
phones.

BLE has a star topology, with a BLE central that can connect to multiple BLE
peripherals. A BLE peripheral cannot accept connections from more than one central at
the time. Connections and advertising of BLE peripherals are performed by the Generic
Access Profile (GAP).

When a connection is established, the data transfer is defined with Generic Attribute
Profile (GATT). The BLE peripheral acts as a server that has defined one or more serv‐
ices. Each service is intended to represent a function of the peripheral, and can have one
or more characteristics, which represents a data value or a part of the service.

Data transfer is performed periodically, with a connection interval (CI). The periph‐
eral suggests a CI between 7.5 ms and 4000 ms, but it is up to the BLE central to decide
the period by how often it will attempt to initiate data transfers by sending requests.
There is also a slave latency parameter that specify whether the slave should respond to
all data transfer requests or ignore some of them. Combined, these parameters set the
effective communication period, and therefore the expected latency in the control
system. There is a correlation between the communication period and power use [9],
thus if low power use is desirable, e.g. battery powered, it could be an alternative to
accept longer latency.

Each connection interval, the BLE central can read or write attributes exposed by
the GATT server. It can also subscribe to notifications and indications from peripherals,
which means that the peripheral can notify the central within the data transfer during a
connection interval. The difference between notifications and indications is that indica‐
tions are acknowledged.

2.1 Description of Solution

The solution presented in this paper uses BLE between master computers and slave
microcontrollers, as shown in Fig. 1, instead of more traditional wired solutions as
UART or I2C. The master computers can be any computer with a BLE interface, which
means most modern laptops, smart phones, some single board computers, or any

Fig. 1. Description of solution using three redundant BLE slave microcontrollers, and two
redundant master computers
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computer able to use a BLE USB device. This paper focus on a single board Linux
computer, as they have low cost compared to their capabilities and are often useful for
embedded and cyber-physical systems. The method is transferrable to other types of
masters, and it would be a convenient way to use a mobile phone in a control system,
since most modern smart phones have BLE, but few or none wired connectors.

Wireless communication has the obvious benefit of allowing for communication
between master and slaves that are separated from each other. In addition, it can be used
to make modules, each controlled by a BLE slave that can be added, removed or replaced
in a system with minimal hardware changes. BLE and BLE microcontrollers typically
have very low power consumption, thus some slave modules would be able to use a
battery as a power source, making it entirely wireless.

The reliability and availability aspects of dependability of a control system can be
improved by having multiple modules capable of performing the same tasks, i.e. redun‐
dancy. There are several ways to implement this, a common type is a K out of N system
that uses a central, often complex, voting logic to decide on the result, which could be
implemented with a number of BLE slaves. However, this paper focus on another type
of redundancy, where two or more modules are able to perform the same tasks. Each
module has its own sensors and actuators as shown in Fig. 1, and the master can seam‐
lessly switch between which of them to use. This solution greatly reduces possible
common cause failures, as there is no voting logic required and the master slave commu‐
nication does not require a multiplexer or shared bus to communicate with multiple
slaves.

It is assumed that the master is able to detect if one of the slaves fail, either because
it fails silently, or with sanity checks. If this occurs, the system can continue using
another slave, thus the mean time between repairs can be reduced. This is especially
relevant for systems that are deployed at a location where repairs are difficult to perform,
such that the cost of repairing a system is significantly higher than the additional cost
of redundancy.

Redundancy on the master side can be achieved by having multiple BLE enabled
computers. Only one master can be connected to any one slave at a given time, thus, one
of the masters will be active and the rest are standby masters ready to take over if needed.
Multiple, inexpensive computers can be deployed together for high dependability. None
of the masters has to be wired to the slaves, thus changes to the system or replacement
of masters are easy, which is beneficial to the maintainability of the system.

The dependability aspects of security and safety, which often can be of concern for
wireless communication. Potential problems include eavesdropping to the communica‐
tion, impersonation of either a master or slave and vulnerability to radio jamming. BLE
have built in encryption and frequency modulation to prevent these problems, but this
have not been investigated in detail in this paper.

2.2 Implementation

The presented solution has been implemented in an instrumentation platform prototype,
intended for remote inspections of industrial plants at locations that are difficult to visit,
e.g. offshore wind turbines. The remote location of the system means it should be able
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to operate unattended with a minimum of repairs. One of the strategies that have been
used to achieve this is to have two master computers, and four slaves (two able to operate
each of the two separated parts of the system). Since the communication between the
masters and slaves is wireless as shown rightmost in Fig. 2, both masters are able to
communicate directly to all slaves. A wired solution would not allow this, unless an
additional component that would be a single point of failure. It is also possible to extend
the capabilities of the system by adding more slaves.

Fig. 2. Variants of master/slave communication

Master Computer. For the master computers we used Variscite VAR-SOM-DUAL
CPU modules [10], with integrated BLE interfaces. This CPU module has a dual core
ARM 1 GHz CPU and 512 MB RAM, similar to what you can find on consumer-grade
ARM computer boards. However, it does not have the typical connectors, as USB,
Ethernet, HDMI etc., instead it has a SO-DIMM socket and connects to a motherboard
customized for a specific application.

The master computer used a Linux system created with Yocto Fido [11], an
embedded Linux build system. The Linux system was configured to be command-line
only. The Linux kernel version was 3.14.38 and BlueZ version 5.28 [12] was used for
Bluetooth communication.

Slave Microcontroller. The NRF51822 microcontroller [13] from Nordic Semicon‐
ductor was used as slaves. It is a 32-bit ARM M0 microcontroller with a built-in BLE
interface, running at 16 MHz. It was programmed using the Nordic NRF51 SDK version
10.0.0 and built with GCC on Windows 10, using the S110 SoftDevice [14] for BLE
communication.

3 Testing the Communication Delay

Traditional wireless communication, as WiFi and classic Bluetooth, would not be suit‐
able in the concept presented here, both due to high and unpredictable latency and
because it is difficult to implement on low-powered slave microcontrollers. BLE, on the
other hand, has specifications that could make it a viable alternative. We performed an
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experiment to evaluate how a master/slave BLE communication performed compared
to a UART communication that we consider to be a typical alternative.

The results from the experiment provide a better understanding of how BLE commu‐
nication would work, and which limitations the solution would have. It is not expected
that the BLE communication would be suitable to be a part of real-time control loops
that run with a very short period, as this should be handled by the slave by itself. Thus
the communication latency would affect how quickly the slave would react to commands
from the master, and how updated the information the master received from the slaves
are, which are important for the performance and reliability of the system.

3.1 Test Device

The same VAR-SOM-DUAL CPU module and Linux system described in 2.2 were used
in the test, but on a VAR-SOLOCustomBoard, which serves as a generic development
board for the platform, instead of our custom board. Two small BLE Nano development
boards, with NRF51822 devices, were used as slaves.

An Arduino Pro board [15] was used to make a test program that measured the time
from sending a signal to a slave, until a response was received. Arduino was used for
convenience, and since the test program was relatively simple. It uses the 16 bit TIMER1
of the AVR microcontroller on the Arduino to measure the time, and the value was
converted to milliseconds. The resolution of the measurement was 4 μs.

The test program performs a test, print the result and wait for a random number of
milliseconds between 40 and 100 before starting a new test. The delay was chosen to be
at least 40 ms, to allow at least a few connection intervals to pass before the next test.
It also has to be random, with a range of multiple connection intervals, to make sure that
each test is started at a random point within the intervals.

3.2 Experiment Description

This experiment compared wireless BLE and wired UART roundtrip communication
between a slave microcontroller and a Linux master computer. A minimal application
was developed for the master that would listen for and respond to either UART or BLE
messages. This was the only user application that was running on the minimal Linux
system during the test. The test equipment is shown in Fig. 3, with the master, two slaves
and the test program running on an Arduino. Three different methods, shown in Fig. 4,
were tested. For each method, 50000 individual tests were performed.

UART Response. In this case, the response time of a signal sent from a slave, to the
master and back again using UART was measured. When the tester sends a signal, it
triggers an interrupt in the slave that will immediately sends a short message on the
UART connection to the master. The master will receive this, and return another short
message. When the slave receives this, it will send a response pulse back to the tester.
A baud rate of 38400 was used, and a total of 4 bytes were transferred during each round-
trip, which corresponds approximately 100 μs.
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BLE Response. In this case, the response time of a signal sent from a slave, to the
master and back again using BLE was measured. When the tester sends a signal, it
triggers and interrupt in the slave that will immediately sends a short message on the
BLE connection to the master. The master will receive this, and return another short
message. When the slave receives this, it will send a response pulse back to the tester.
The BLE response test was performed with both the minimal 7.5 ms connection interval
and a larger interval of 20 ms.

Figure 5 show the expected timeline for the roundtrip communication. Since it will
be impossible for the master to respond within the same period as it receives, there will
be a minimum latency equal to the connection interval. The slave response time (both
to the start test signal and to the response from the master), the actual transfer time and

Fig. 3. Test system with master board (right), two slaves (bottom left) and test program running
on Arduino (upper left)

Fig. 4. Different communication methods used in the experiment
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the time the slave has to wait for a BLE period to start the transfer are all adding to the
total time. Of these, the waiting time for BLE period is expected to be the most signif‐
icant, and it will be a random time between 0 and the connection interval, depending on
when in the BLE period the slave is ready to transmit.

Fig. 5. Expected BLE roundtrip communication.

Slave to Slave BLE Response. In this case, the response time of a signal sent from one
slave, to the master and back to another slave using BLE was measured. This was tested
because BLE slaves are not able to communicate directly.

4 Results

The measurements are summarized in Table 1. The distribution of the BLE tests are
illustrated in Fig. 6, with a line indicating the average (very stable) response time from
the UART test.

Table 1. Summary of results in communication delay test.

UART BLE CI = 7.5 ms BLE CI = 20 ms BLE slave to slave CI = 7.5 ms
Mean 11.40 14.12 25.60 12.69
Min 11.36 9.17 17.15 2.72
Max 13.91 64.62 79.31 47.75
St.dev 0.03 4.35 6.25 5.9
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Fig. 6. Distribution of results in communication delay test.

5 Discussion

The average UART response was 11.4 ms, which is somewhat longer than expected,
and much longer than the time required to transmit the data. The overhead is assumed
to originate from the Linux system. An advantage with the UART response is that there
is very little difference between the samples.

The average BLE response was slightly higher than the UART response, and also
varied more. This was expected due to the periodic nature of BLE communication. For
connection intervals of 7.5 ms, the minimum response time was lower than for UART.
The majority of the samples was within approximately one connection interval (7.5 ms)
of the minimum value, which is as expected by a periodic communication method. We
did not observe any significant unexpected overhead in the communication, as with the
UART communication. However, we can also see a group of values that is between 1
and 2 connection intervals of the minimum value, and an even smaller group that is
between 2 and 3. These are samples where one or two connection intervals were
“missed”. This could be due to the master response time shown in Fig. 5 was longer than
the time available before the next BLE period, or that there was a problem with the
wireless data transfer. Both of these problems would result in the response getting
delayed by one (or more) periods. A similar effect is observed for the longer connection
interval, but there are fewer “misses”, possibly due to more time being available for the
master to respond.

If the minimum connection interval is used, then the average master-to-slave
communication delay for BLE is comparable to UART, while the worst case was 4–5
times longer. A less predictable communication latency is not favorable, but since the
most time critical tasks are performed by the slave, the relatively small difference
between BLE and the wired alternative means that BLE would be a viable alternative
in many applications.
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BLE communication between two slaves, via the master, was actually faster than the
communication from a slave to the master and back to the same slave. The reason for
this is explained in Fig. 7, where the connection intervals of the two slaves are shown
to be out of phase with each other, which allow the master to respond to the second slave
at an earlier time than it would have been able to respond to the first. The minimal latency
of 2.72 ms was surprisingly low, and would have required a nearly “perfect” timing,
where both data transfers were ready to be sent just before the BLE data transfer was
initiated.

Fig. 7. Expected best-case slave to slave communication, where it is assumed no waiting time
for BLE period.

6 Concluding Remarks

The solution proposed in this paper is a variant of the commonly used concept of having
slave microcontrollers to do specific, often low-level I/O or real-time, tasks on behalf
of a master computer. This has many applications, e.g. in embedded systems or cyber-
physical systems. Bluetooth Low Energy (BLE) is used instead of a typical wired
communication method between the master and slave. An obvious advantage with wire‐
less communication is that slaves can be distributed without having to consider how it
should be wired. In addition, the wireless communication makes it easy to add, change
and remove slaves without rewiring or even shut down the system.
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Improved dependability could be achieved, since both redundant masters and slaves
are possible, and communication between all masters and all slaves is possible without
a multiplexer or a shared bus that would be single-points of failure.

The specifications of BLE makes it more suitable for use within a control system
compared to earlier wireless communication methods, as WiFi and classic Bluetooth,
due to low latency. This was evaluated in an experiment that compared BLE master/
slave communication with UART based communication. The results showed that the
latencies of BLE communication were more varied to that of UART. However, due to
the advantages to using BLE, as presented in the paper, it could be advantageous in many
applications.

7 Future Work

The experiment could be extended to include simultaneous communication between two
or more slaves with a common master, to determine how BLE communication scale
compared to wired alternatives. Another possibility is to perform a similar test that
compare BLE with other similar technologies, as ZigBee.
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SASSUR 2016 is the 5th edition of the International Workshop on Next Generation of
System Assurance Approaches for Safety-Critical Systems. With this edition we have
tried to consolidate and to keep the main objective of the workshop while we introduce
the new challenges and trends in the assurance domain. This is in line with our
intention to explore new ideas on compositional, evolutionary, and efficient approaches
to assurance and certification.

Systems and scenarios such as the wider use of autonomous air vehicles and its
regulation, recent incidents with autonomous cars, regulation changes for medical
devices, national authorities’ request for information and comments on new assurance
standards, and potential security threats in safety-critical systems, all motivate the need
for new and cost-effective forms of assurance. The topics of interest in the workshop
include, among others, cross-domain product certification, integration of process-
centric and product-centric assurance, compliance management, evolutionary approa-
ches for safety and security assurance, metrics for safety assurance and certification
processes, safety and security co-assurance, assurance case-based approaches, seamless
development tool chain for safety-critical systems, evolution of standards and practices,
human factors in assurance and certification, COTS and management of third-party
assurance evidence, mixed-criticality system assurance, and safety assurance on new
types of systems (e.g. adaptive systems).

The program of SASSUR 2016 consists of eight high-quality papers. We have
divided the papers into three categories based on their focus and the topics that they
cover:

– Safety Concept and Requirements Definition

1. “Automotive Safety Concept Definition for Mixed-Criticality Integration on a
COTS Multicore”, by Irune Agirre, Mikel Azkarate-Askasua, Asier Larrucea
Ortube, Jon Perez, Tullio Vardanega and Francisco J Cazorla.



2. “Defining Autonomous Functions Using Iterative Hazard Analysis and
Requirements Refinement”, by Fredrik Warg, Martin Gassilewski, Jörgen
Tryggvesson, Viacheslav Izosimov, Anders Werneman and Rolf Johansson.

3. “ASIL Tailoring on Functional Safety Requirements”, by Markus Fockel.

– Assurance Approaches

1. “AMASS: Architecture-driven, Multi-concern, Seamless, Reuse-Oriented
Assurance and Certification of CPSs” by Alejandra Ruiz, Barbara Gallina,
Jose Luis de La Vara, Silvia Mazzini and Huascar Espinoza.

2. “Towards the Adoption of Model-based Engineering for the Development of
Safety-critical Systems in Industrial Practice” by Marc Zeller, Daniel Ratiu and
Kai Höfig.

3. “Goal-Oriented Co-engineering of Security and Safety Requirements in
Cyber-Physical Systems”, by Christophe Ponsard, Gautier Dallons and Philippe
Massonet.

4. “Practitioners’ Perspectives on Change Impact Analysis for Safety-Critical
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Abstract. Mixed-criticality systems integrating applications subject to
different safety assurance levels into the same multicore embedded plat-
form can provide potential benefits in terms of performance, cost, size,
weight, and power. In spite of this evidence, however, several hard
challenges related to the safety certification of multicore approaches
must be considered before endorsing their unrestrained adoption. This
paper describes an ISO-26262 compliant safety concept for an automo-
tive mixed-criticality case-study on top of a multicore platform. To this
end, key aspects such as time and space partitioning are evaluated and
enforced by means of hardware protection mechanisms.

Keywords: Mixed-criticality · Safety · Certification · Multicore

1 Introduction

Mixed-criticality systems integrate applications subject to different certification
assurance levels into the same embedded platform. Their integrated nature can
provide to the Critical Real-Time Embedded Systems (CRTES) outstanding
benefits over traditionally-followed federated architectures. These advantages
include reduction in the cost, size, weight and power factors, as well as, in
the amount of wiring and connectors. Nevertheless, the ever increasing demand
of CRTES for integrating a higher number of embedded functionality with
higher levels of performance requirements cause the traditionally-used single-
core processors hit their limit in terms of performance, complexity, power con-
sumption and heat dissipation. As a result, CRTES industries have started to
transition to multicore processors as an alternative to the infeasibility of further
increasing clock speeds and the limits of Moore’s law on single-cores.

c© Springer International Publishing Switzerland 2016
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Unlike conventional computing systems, where multicores are well estab-
lished, CRTES and mixed-criticality systems are bound to be certified given
the possible destructive effects that a failure in these systems can cause. Mixed-
criticality CRTES have been successfully integrated on single-core processors
while fulfilling the requirements posed by certification standards [3]. On the
contrary, there are no established approaches to achieve the safety certification
on existing multicore architectures yet. The main concerns result from their
inherent complexity, reduced temporal predictability, interferences coming from
shared resources, the lack of previous experience and the weak support on safety
certification standards [6]. To reduce this gap, this paper contributes with the
definition of a safety concept for an integrated mixed-criticality automotive case-
study on top of a Commercial Off-The-Shelf (COTS) multicore processor. The
core matter of the safety argumentation is based on a set of hardware protec-
tion mechanisms integrated on the automotive state-of-the-art AURIX processor
family [10]. Thanks to the protection mechanisms implemented at the hardware
layer, we show how to safely integrate mixed-criticality applications on a mul-
ticore complying with industrial safety standards (ISO-26262 [2]) without the
need of a hypervisor.

The rest of this paper is structured as follows. Section 2 gives overall back-
ground information and Sect. 3 describes the mixed-criticality requirements
posed by safety standards. Section 4 introduces the case-study and the main
safety features of its common-practice federated implementation. The federated
approach is transformed into an integrated mixed-criticality safety concept in
Sect. 5. Section 6 analyses the related work. Finally, Sect. 7 draws the main con-
clusions.

2 Background and Problem Statement

The ever increasing demand for additional embedded functionality leads to a
considerable complexity growth [12]. As a consequence, the continued viability
of the federated architecture paradigm conventionally followed by industry is
challenged, due to the large number of required Electronic Control Unit (ECU)s,
cables, electrical parts and connectors [18]. In the automotive domain this has
resulted in vehicles with up to 100 ECUs, 400 connectors with 3000 individual
terminals and over 3 thousand meters of cables that make the wiring the third
most expensive and heaviest part of a car [5,15].

The improved performance of multicore processors make them true enablers
for mixed-criticality systems, enabling the integration of a high number of appli-
cations on a single computing platform and overcoming, to a big extent, the
limitations of the traditional federated paradigm. Yet, mixed-criticality systems
must follow strict certification processes before they are allowed to be put in oper-
ation. To aid in this process, there are several certification standards to cover
different needs, often written to cover specific domain applications (e.g., IEC-
61508, Automotive ISO-26262, Railway EN-50128, Avionics DO-178). Standards
provide some guidance for mixed-criticality integration based on the concept of
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partitioning [19], but unfortunately, they have not been updated yet to cover
the new challenges involved by novel multicore architectures.

The most common approach to attain mixed-criticality requirements is to
rely on the use of a software separation layer (e.g., hypervisor) that provides
the required level of independence among the different applications. However,
the use of a hypervisor adds additional complexity to the software stack and
it needs to be certified according to the highest integrity level present on the
system. Additionally, the multicore versions of the hypervisors are not mature
enough yet and they lack in-service experience. In this paper we aim to overcome
this limitation by proposing a safety concept for mixed-criticality integration on
a multicore COTS architecture based on a set of hardware mechanisms without
the need of integrating a hypervisor.

3 Safety Requirements for Mixed-Criticality Integration

Standards provide two options for the certification of mixed-criticality systems:
(1) certify all components of the system - including the non safety-related soft-
ware - for the highest criticality level present on the system, or (2) provide
enough evidence of independence among the applications and certify each appli-
cation according to its criticality level in a composable manner (e.g., ISO-26262-
6 p.7.4.10 [2]). Considering the highest integrity level for the entire system is
generally cost and effort prohibitive. Therefore, a means to guarantee that the
co-existing applications do not endanger the functional behaviour and timing
correctness among each other is required.

This is commonly achieved by partitioning techniques that provide functional
separation and design fault containment among the applications. The goal of
partitioning is to achieve the same level of functional isolation as a federated
implementation [3]. This is commonly achieved by demonstrating freedom from
interference (i.e., independence) in both spatial and temporal domains as defined
in different safety standards (e.g., IEC-61508-3 Annex-F, ISO-26262-6 Annex-D,
DO-175 paragraph 6.3.3f):

– Spatial independence must ensure that one application cannot alter the code,
private data or command the peripherals of another application.

– Temporal independence must ensure that the execution of one application does
not obstruct, in the temporal domain, the execution of other applications (e.g.,
by taking too much processor execution time or by locking shared resources).

Based on the definition of partitioning, the particular strategy followed for
defining the automotive safety concept consists on transforming a federated
architecture with common-practice safety techniques and solutions into an inte-
grated mixed-criticality approach. To this end, in Sect. 4 we briefly review the
main safety properties of the federated implementation of an automotive use
case. Using the federated argumentation as a baseline, in Sect. 5 we describe a
solution for integrating such case-study on a COTS multicore platform while
preserving the required independence.
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4 Federated Safety Concept for an Automotive
Case-Study

This section defines a federated system level safety concept for an automotive
case-study with safety techniques and solutions that are common-practice in
industry. This safety concept is not described in detail but it serves as a baseline
for developing the integrated mixed-criticality safety concept.

4.1 Case-Study Definition

The automotive case-study defined for the evaluation of the mixed-criticality
safety concept has been derived from the CONCERTO European Research
project [7], and it is comprised of a safety-critical Cruise Control (CC) sys-
tem and a non safety-related subsystem. The main job of the CC is to control
the speed of a vehicle automatically without human intervention. The system
takes control over the throttle of the car to maintain the vehicle’s speed as set
by the driver. The CC is composed of two safety ECUs that perform the CC
functionality:

– Signal Acquisition ECU: Reads the set of input buttons, pedals and speed
sensor and transmits the commands to the Engine Control ECU via the car’s
vehicle bus.

– Engine Control ECU: Based on the received commands the monitor and con-
trol functionalities set the required torque value to control car’s speed, provide
feedback through a lamp and deactivate the CC system when necessary.

To give the mixed-criticality flavour to the case-study, a non safety-related
application is also considered (e.g., power window controller). The window con-
troller is usually part of the Body Computer Module (BCM) which implements
additional functionalities (e.g., mirror control, central locking). For the sake of
simplicity, only the power windows controller is considered in the scope of this
case-study and it is considered as a non safety-related subsystem. Figure 1 shows
the high level conceptual architecture of the federated implementation of the
case-study.

Fig. 1. Federated system architecture for the automotive use case
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4.2 Safety Requirements

The CC shall perform a set of Safety Goals (SG) compliant with Automotive
Safety Integrity Level (ASIL) D according to the automotive ISO-26262 stan-
dard. In this paper, we focus on the following safety goal for the definition of
the safety concept:

– SG-1: Avoid the inability to deactivate CC when required (ASIL D)

From this safety goal a number of safety requirements are derived for the
CC system (SR CC). Most relevant safety requirements are gathered in Table 1.
It must be noted that the CC is a fail-safe system. This means that in case of
failure or whenever a safety goals is not met, the system goes to a safe state as
defined in requirement SR CC 5 A of Table 1.

Table 1. Main safety requirements of the CC system

ID Description

SR CC 1 A The safety goal “Cruise Control Deactivation” avoids the inability to

deactivate the CC when required. In case of a fault leading to inability to

deactivate CC, the engine control unit shall switch to a “safe state” within the

Process Safety Time (PST) / Fault-Tolerant Time Interval (FTTI)

SR CC 1 B “Cruise Control Deactivation”must be provided with ASIL D level

SR CC 2 B The ‘CC commands’ transmitted by the Cruise Control Signal Acquisition

functional unit shall be consistent with the status of the buttons (set, speed+,

speed-, off, resume)

SR CC 3 B The “Cruise Control Monitor” function shall generate a ‘Cruise Control

Disengagement’ signal consistent with the input button/pedal requests

SR CC 5 A The ‘safe state’ shall be achieved by deactivation of the Cruise Control System

(by commanding safety digital-outputs connected to external safety-relays)

SR CC 6 A The PST (IEC-61508)/FTTI (ISO-26262) is 1 s

4.3 Federated Safety Concept

In the federated implementation each safety ECU has dedicated hardware as
depicted in Fig. 1 and executes safety software compliant with the following
features:

– Life-cycle and development Tools: The system, platform and software are
developed following a safety life cycle, using qualified tools and compilers and
applying the appropriate Functional Safety Management (FSM) compliant
with ASIL D requirements.

– Independence of execution: Each ECU has independent resources (i.e., mem-
ories, peripheral and clock). The vehicle communication bus is shared among
all ECUs.
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– Vehicle communication bus: Controller Area Network (CAN) based ‘safe com-
munication’ implemented either with Time-Triggered CAN (TTCAN) or with
a CAN based safety communication protocol that provides equivalent safety
techniques and attributes of interest:
• It is compliant with ISO-11898-4 [1].
• It establishes a global notion of time by means of a Time Master (TM)

that transmits a synchronization message to all the nodes (ISO-11898-4).
• It achieves interference freeness among safety-related (time-triggered) and

non safety-related communication (event triggered, rate constrained, best
effort, etc.). Safety-related nodes are assigned to time-triggered commu-
nication that provides the required temporal and spatial guarantees.

– External interfaces:
• The Signal Acquisition ECU reads safety-related digital inputs for the

CC driver interface buttons (SET/SPEED+, SPEED-, OFF, RESUME)
and safety-related analogue inputs (break, accelerator and clutch pedals
and speed sensor).

• The Engine Control ECU exclusively manages an external safety-relay
through a digital output for the hardware deactivation of the CC (safe
state activation).

• The fail-safe state of the safety digital output is de-energized.
• The default state of the safety digital output during no-power and ini-

tialization is de-energized (inherent fail-safe state).
– Safe State: The safe state is defined as the de-activation of the CC system (giv-

ing back control to the driver) as defined in the safety requirement SR CC 5
of Table 1. Whenever there is a violation of a safety goal or if the system,
hardware or software diagnosis detect an error, the safe state must be reached
and maintained.
• Safe state is achieved by means of de-energization of the safety digital

output connected to an external safety-relay that deactivates the CC.
• The safety-relay is monitored by means of a digital input to the Engine

Control ECU that represents the state of the contact.
– Diagnosis: The system includes diagnostic measures with a high coverage (DC
>99 %) for ASIL D (ISO-26262-5 Annex D).
• Diagnosis with a high diagnostic coverage are implemented on all relevant

components of each safety-related ECU (e.g., signature of a double word
in memories, Power Failure Monitor, watchdog timer, clock monitoring).

• The safety software application implements additional life-cycle related
techniques (e.g., defensive programming), Error correction/detection
techniques and complements the diagnosis techniques implemented in the
platform (e.g., refresh watchdog timer).

5 Mixed-Criticality Safety Concept on a COTS Multicore

With the aim of overcoming the limitations of the federated approach in this
section we integrate the CC system together with the non safety-related appli-
cation in a single multicore platform.
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5.1 The AURIX Platform

The chosen processor family is the AURIX TC27x, a COTS multicore pro-
vided by Infineon [11]. The AURIX is a very promising architecture for mixed-
criticality for a number of reasons. It embeds many safety features that makes it
suitable to host safety-critical applications up to ASIL-D level easing and reduc-
ing certification costs. Moreover, unlike most multicore processors, the AURIX is
designed with determinism in mind with features that ease the timing analysabil-
ity of the platform: it includes local scratchpad memories on each core for both
instructions and data and does not share cache memories among the cores. In
addition, as a result of the research held in [10], a number of hardware mecha-
nisms have been enhanced on its architecture to improve the isolation among the
cores at hardware level. The main components of the AURIX are the following:

– Three processing cores: Core 0 and Core 1 operate in lockstep mode, where
an additional CPU is transparently executing the same code in background
for safety comparison purposes. Each core has private instruction and data
scratchpad memories and first level instruction and data caches.

– Shared Memories: SRAM and Flash common for all cores.
– On-chip interconnect : High bandwidth peripherals (i.e., cores, DMA and

shared memories) are interconnected through a crossbar called Shared
Resource Interconnect (SRI). Those elements are then connected to medium
and low bandwidth peripherals through the System Peripheral Bus (SPB).

– Shared peripherals: The platform includes a number of peripherals connected
to the SPB, such as, timers, several communication interfaces (e.g.,CAN),
I/Os, etc.

Partition to Core Allocation: We allocate the different ECUs of the fed-
erated approach into three different partitions distributed in the AURIX cores
equivalently to the ECU distribution in the federated implementation as depicted

Fig. 2. Partition to core allocation (AURIX TC27X)
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in Fig. 2. Partition P0 encapsulates the CC signal acquisition ECU. P1 includes
both the CC monitor and control functionalities which are executed one after the
other in a sequential manner. Finally, the non safety-critical power windows con-
troller is implemented on partition P2. One additional partition is introduced
to perform software-based diagnostics, configuration and protection activities
(P3 ). Safety-related partitions are allocated to the two lockstepped processors
to attain increased diagnostic coverage. P3 has also safety implications and it is
therefore executed in core 0 together with partition P0. The non safety-related
partition is allocated to the remaining core without redundancy.

5.2 Cross-Acceptance of the Federated Safety Concept

Several new challenges arise from the transformation of the federated architec-
ture to an integrated mixed-criticality approach. However, some of the safety
properties described in the federated approach of Sect. 4.3 can be maintained.
Same safety life-cycle and FSM measures apply for system, platform and soft-
ware applications. In addition, the external interfaces shall be equivalent to those
described in the federated implementation and the fail-safe system requirements
shall be maintained to reach the safe state. The definition of required diagnostic
techniques can be reused taking into account the properties of the new hardware
platform and additional diagnostics shall be implemented to deal with the new
hazards that the sharing of a single computing platform involves.

The major difference in the integrated approach is that now the different appli-
cations share many on-chip resources and that off-chip CAN based communication

Table 2. Interference Sources in the AURIX platform

ID Element Event Interference

Spatial Interference Sources (SIS)

SIS 1 Core local data

scratchpad

Invalid memory access Write to the address belonging to the data

of another partition running in the same

core

SIS 2 Shared SRAM (LMU) Invalid memory access Write to the address belonging to the data

of another partition running in the same

or in a different core

SIS 3 Addressable devices Invalid memory access Write to the address belonging to the

control/configuration registers of a

peripheral device assigned to another

partition

Temporal Interference Sources (TIS)

TIS 1 Core local cache

memories

Coherency protocol,

cache line eviction,

cache pollution

Non-determinism in the system and delays

caused due to cache sharing among

different partitions on the same core

TIS 2 SRI Crossbar Simultaneous access by

various masters to the

same slave

Contention by simultaneous requests

arbitrated based on the configuration of

the arbiter on each slave (e.g., SRAM

memory)

TIS 3 SPB Bus Parallel transaction

requests

Contention by parallel access requests to the

bus arbitrated on a priority-based basis

TIS 4 Inter-core

communication

mechanism

Blocking communication Partition blocked by a delay in the

communication or if the transmission

ceases
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is replacedbyon-chipcommunication.Asaresult it is challengingtoguarantee inde-
pendence of execution among the applications.Table 2 gathers themain spatial and
temporal interference sources that must be addressed on the AURIX processor and
were not present in the federated approach.

5.3 Independence of Execution Among Partitions on the Same Core

Interference sources SIS 1 and TIS 1 of Table 2 arise among partitions assigned
to the same core (i.e., P0 and P3 in core 0). We address them by following the
common practices used on single-core architectures, i.e., memory segregation and
cyclic scheduling among partitions:

– Core Local Memory Protection: The CPU local memories on each core can
be configured in four memory Address Protection Sets (APS) per CPU with
specific permissions for code and data accesses based on the address generated
by an application. Figure 3(a) shows the configuration of the different memory
regions for the partitions executing on core 0. In this way, in each partition
switch or if an interrupt or trap handler is entered, the associated address
protection set is selected and accesses from other partitions are not permitted.

– To guarantee temporal independence among partitions P0 and P3, a sta-
tic cyclic scheduling algorithm is implemented on top of core 0 as shown in
Fig. 3(b). This scheduling is defined at design time based on Worst-Case Exe-
cution Time (WCET) estimates computed for each partition by an appropriate
timing analysis technique.

In each execution time window of core 0 only one of the Address Protection
Sets is active (Fig. 3(b)). The Operating System (OS) kernel is the responsible
for setting up the address protection correctly on each context switch. This OS
service shall be developed according to ASIL D safety requirements.

5.4 Independence of Execution Among Partitions on Different
Cores

Apart from the interferences within the cores, the sharing of resources at plat-
form level cause many other sources of interferences (see Table 2). We deal
with those interferences by applying the mechanisms provided by the AURIX
as follows:

– Shared memory (SIS 2 and TIS 2 in Table 2): The shared SRAM memory
can be configured in eight write protected address ranges. A specific memory
range with exclusive write permissions is configured for each safety-critical
partition as shown in Fig. 4 (PMR 0 for P0, PMR 3 for P3 and PMR 4 for
P1 ). Write accesses are protected by checking the ID used to initiate SRI
master transactions (Master TAG ID). Each core has two master interfaces
(code and data) to access to the SRI, each of it with an unique ID. For core 0,
where two different partitions are executed, the platform gives the option to
configure two additional IDs on the same core, by identifying the partitions
as safe (C0 DATA S) or regular (C0 DATA NS).
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t

Fig. 3. Memory and time segregation on Core 0

– Safe inter-partition communication (TIS 4 in Table 2) is guaranteed by means
of shared SRAM memory. Each shared memory is configured as a write pro-
tected address range where only one partition has write permissions. Accord-
ingly, inter-partition communication channels are unidirectional with an inde-
pendent shared memory for each of the required communication channels.
Three additional protected memory regions are defined in Fig. 4 for the com-
munication among P0 and P1 (PMR 1), P0 and P2 (PMR 2) and P1 and
P2 (PMR 5).

– Addressable on-chip resources (SIS 3 and TIS 3 in Table 2) are protected by
a firewall mechanism where the access to the SRI and SPB slaves is only
granted to the masters configured with such rights. The CC monitor and con-
trol partition (P1 ) is granted exclusive access to the digital output connected
to the external safety relay. Similarly, the diagnostics partition P3 has exclu-
sive access to the digital output for controlling the external watchdog. Each
of these digital output belongs to an independent GPIO port line to ensure
separation (Fig. 4(b)).

Regarding the scheduling at system level, in core 0 partitions are arbitrated as
shown in Fig. 3(b) but the rest of partitions have all processor time for themselves
and they are executed in parallel. Accordingly, sources of temporal interferences
caused by the parallel execution of partitions shall be addressed:

– The SRI crossbar supports parallel transactions between different SRI-Master
and SRI-Slave peripherals. Still, contention can be caused when two masters
simultaneously target the same SRI-Slave (i.e., on-chip memories). To ensure
a fair arbitration of the simultaneous requests and prevent one partition from
being starved by higher priority requests, a round-robin arbitration is estab-
lished.

– The SPB is implemented as a shared bus that provides mutual exclusive
accesses to the on-chip peripherals. Each master needs to be granted bus own-
ership to initiate a transfer, which is arbitrated on a priority-based basis. To
protect against bus starvation of lower priority masters, the AURIX includes
a prevention mechanism that guarantees that all masters are granted bus
access in a pre-defined period of time.
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Fig. 4. Protection mechanisms against spatial interferences

To guarantee that deadline overruns do not jeopardize safety, the system is
protected by a watchdog that in such circumstances puts the system into the
safe state. Still, not to compromise system’s availability a WCET analysis shall
be conducted to ensure that all partitions are able to meet their time deadlines
under the established design choices.

5.5 Platform Configuration

The configuration of the protection mechanisms described in previous sections
shall be static and defined during design stage: partition to core allocation,
protection sets, routing of interrupts to cores, scheduling and arbitration policies
in the SRI and SPB, watchdog time windows, etc. On the one hand, configuration
registers can only be accessed in Supervisor mode and a register protection
mechanism is also in place to define which masters may have modification rights
on the safety-related registers. In our case, only the diagnostics partition (P3 )
has such rights. On the other hand, after system initialization, whenever the
software in Supervisor mode and from an authorized master attempts to modify
a safety configuration register, it first needs to unlock a password protected bit.
Once this bit is unlocked, the software is allowed to modify the registers within
a predefined time period protected by the watchdog (the password protected bit
needs to be locked again before watchdog time-out).

6 Related Work

The development, and particularly the certification, of CRTES upon multi-
core processors is an ongoing challenge [4,13,16] which is further exacerbated
when mixed-criticality applications are involved [17,18,21]. As a result, current
research in the field of mixed-criticality has mainly focused on new mechanisms
capable to deal with the new demands of multicore architectures. Multiple solu-
tions are directed at virtualization and hypervisor tools [4,20,22]. The usage of
time deterministic architectures [9] is also considered, as it could significantly
simplify the collection of evidences required for a certification process. However,
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determinism is compromised in most modern COTS multicore platforms with
increasing intrinsic complexity. In this direction, the AURIX processor family,
designed for the automotive market, has a number of features (e.g., core local
scratchpad memories) that improve such determinism AURIX. Moreover, the
research held in the ARTEMIS-JU RECOMP project [10] enhances a number of
hardware properties to support mixed-criticality integration making the AURIX
a very promising architecture for mixed-criticality. Unfortunately, all those inno-
vative solutions are still not considered common-practice in the CRTES industry
and achieving certification of mixed-criticality systems integrating such novel
techniques becomes a challenging process. Few works consider the evaluation of
real-world mixed-criticality applications running on multicores and their end-to-
end certification processes. In this line, the research held in FP7-MultiPARTES
contributes with a certification strategy for mixed-criticality systems based on
multicore partitioning [17], successfully implemented in a wind power application
on top of a certifiable hypervisor [18].

7 Conclusion and Future Work

This paper has contributed with a safety concept definition for an automotive
mixed-criticality system integration on a COTS multicore with hardware protec-
tion mechanisms. This work tightens the big conceptual gap between multicore
and certification, as the assumptions and analysis considered at this design stage
have been reviewed and assessed by a certification body. Still, one key open sub-
ject in the described safety concept is the method to determine WCET bounds
of each software application to ensure temporal independence in an efficient way
(without excessive resource over-provisioning). The WCET estimation of mul-
ticore processors is highly complicated by the presence of shared resources and
the parallel execution of software applications. A common design principle to
deal with tming uncertainties rests on adding conservative safety margins to
the WCET value. However, in multicore architectures this results in overly pes-
simistic WCET estimates that lead to an ineffective use of the available resources.
From the system architect and system provider perspective, several limitations
arise regarding WCET estimation, timing analysis and providing sufficient evi-
dence to confirm that timing requirements are met. This is the main subject
of our ongoing work that seeks to overcome the WCET estimation problem
in multicores by the inclusion of the novel Measurement Based Probabilistic
Timing Analysis (MBPTA) [8,14] technique in the mixed-criticality architecture
described throughout the paper.
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Abstract. Autonomous vehicles are predicted to have a large impact on the field
of transportation and bring substantial benefits, but they present new challenges
when it comes to ensuring safety. Today the standard ISO 26262:2011 treats each
defined function, or item, as a complete scope for functional safety; the driver is
responsible for anything that falls outside the items. With autonomous driving, it
becomes necessary to ensure safety at all times when the vehicle is operating by
itself. Therefore, we argue that the hazard analysis should have the wider scope
of making sure the vehicle’s functions together fulfill its specifications for auton‐
omous operation. The paper proposes a new iterative work process where the item
definition is a product of hazard analysis and risk assessment rather than an input.
Generic operational situation and hazard trees are used as a tool to widen the scope
of the hazard analysis, and a method to classify hazardous events is used to find
dimensioning cases among a potentially long list of candidates. The goal is to
avoid dangerous failures for autonomous driving due to the specification of the
nominal function being too narrow.

Keywords: ISO 26262 · Functional safety · Autonomous vehicles · Hazard
analysis · Safety goals · Item definition

1 Introduction

Fully autonomous cars are expected to bring substantial benefits both to society at large
and the individual car users. Examples are fewer accidents due to elimination of human
driving errors, better traffic flow management leading to increased road capacity and
reduced pollution, and relieving the drivers from the task of driving.

However, automation also introduces new sources of error, including insufficient
understanding of the environment and failure to take proper action in all situations that
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can arise. In the case of manual driving, and even with advanced driver assistance
systems (ADAS), the human driver is always responsible for controlling the vehicle,
which means, for instance, that omission errors for an ADAS function can be acceptable.
In this paper we consider autonomous driving (AD) with a level of automation where
the system has full responsibility for the driving task in at least some situations (level 3
or above in the NHTSA definition [11]). This level of automation has a profound effect
on how to ensure functional safety, as the human driver (HD) no longer can be expected
to take over in an emergency situation. It is not only very difficult to maintain the required
level of vigilance as a passive overseer [10], but such a requirement would be contra‐
dictory to one of the basic promises of AD: to free up the drivers’ time. As a consequence,
it becomes necessary to make sure an AD vehicle can reach a safe state on its own in
all relevant situations when AD is activated.

In the functional safety standard for road vehicles, ISO 26262:2011 [7], the scope
and requirements of an electrical/electronic (E/E) function are parts of the item defini‐
tion, which is an input to the functional safety process and the hazard analysis. This
means only situations and hazards that affect the already defined function need to be
taken into account. In this work we argue that, in the context of AD functions, the hazard
analysis should have the wider scope of making sure the proposed function itself is
adequately specified so that it, possibly in conjunction with other functions contributing
to the AD functionality, covers all hazardous events (HEs) relevant to the goal of auton‐
omous operation. The result of this extended analysis may, in addition to safety goals,
be necessary changes to the scope and requirements of the proposed function. While
there is ongoing work on how to manage violations of safety goals due to limitations in
nominal functionality called ‘Safety of the Intended Functionality’ (SotIF), we claim
that the problem is rather a consequence of improper item definition and/or safety
requirement refinement (see also discussion in [4]).

In this paper, we propose a new structured iterative work process and analysis tech‐
niques where the hazard analysis is used not only to ensure functional safety, but also
as an aid when defining the scope of the function. Working iteratively is a natural choice
since the scope of the function affects the hazard analysis and vice versa in this process.
Input is an initial description of the goals and benefits of the proposed function. We call
it the preliminary feature description in order to make it clear that it is not a final work
product, but rather a starting point that will be refined and improved upon. The item
definition, which describes the final scope and requirements of the function, is an output
of the process, together with the item’s safety goals. The main goal of the approach is
to avoid dangerous failures due to the specification of the nominal function being too
narrow. To that end, generic situation and hazard trees are used as a tool to widen the
scope of the analysis beyond the limits of the initially proposed feature. The process
also integrates rules from [3] which are used to classify hazardous events and can find
omissions or overlaps in the set of HEs; i.e. finding the dimensioning HEs that will result
in unique safety goals.

Section 2 of the paper discusses related work. Section 3 describes the proposed
process in detail, with an integrated example. Finally, Sect. 4 concludes the paper.
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2 Related Work

There are a number of techniques that address the problem of identifying candidate
hazards. Methods such as Preliminary Hazard Analysis, HAZOP and FMEA are often
recommended. Other methods include one described by Jesty et al. in [8]; this method
is based on a state machine model of the transitions between a failure occurring in a
system and a hazardous event. While useful, these techniques are not aimed at aiding
the process of defining the scope of a function, which is our goal in this work.

One technique in our process is the use of generic situation and hazard trees to help
the safety engineers find all relevant situations and hazards. There is some previous work
on classifying generic situations. Jang et al. [1] decompose a situation into hierarchical
categories of properties where the top level properties vehicle, road, and environment
are followed by three levels of sub-factors. Situations are constructed by selecting prop‐
erties from the last level, called state. The purpose is to make situation analysis more
efficient, but how the classification is used is only discussed superficially. However, the
way situations are constructed from our situation tree is similar. Another effort, even
more related to our use of trees, is the situation classification described by Kemmann [5]
in the context of the SAHARA framework for structured hazard analysis and risk
assessment (note that this is not the same method as the safety/security-oriented
SAHARA described by Maher et al. [12]). The SAHARA framework is ontology-based,
and the situation analysis part, OASIS, organizes situation properties in trees which can
be reused and extended with increasing experience. The situations created by combining
the properties are meant for reuse between projects, together with their attached exposure
class which therefore only have to be assessed once. While we have opted for a less
formal, more light-weight way to construct and use situation trees in this work, the option
to integrate the SAHARA approach in our iterative process would certainly be feasible,
and could bring additional benefits for reuse and automation. The aim of OASIS, to
create a knowledge base and make sure important situations are not missed in the situa‐
tion analysis, is the same as ours. Neither the approach of Kemmann nor that of Jang
has the purpose of being part of the function definition process however. The German
organization VDA has created a standardized list of situations with the purpose of
harmonizing the use of exposure factors [2]. However, this list is not structured into
properties or useful for determining completeness of analysis like a situation tree.

Agile and lean development methods have gained in popularity during the last
decade. Although nothing in ISO 26262 explicitly forbids agile methods it can be diffi‐
cult to understand how to apply them, as the standard uses a conceptual V-model more
similar to traditional sequential development processes. Stålhane et al. [6], propose
SafeScrum to combine agile software development and safety according to IEC 61508.
SafeScrum is based on the assumption that safety requirements are rather static, and
refers to traditional processes for the safety lifecycle outside the agile software devel‐
opment. Another investigation into how to combine agile methods with safety standards
has been done by Vuori [9]. While our approach to conduct hazard analysis and require‐
ments elicitation in a semiformal and iterative process is partly inspired by agile ideas
and concepts, its usefulness is not limited to agile organizations.
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3 Iterative Hazard Analysis and Function Refinement Process

The upper part of Fig. 1 illustrates the proposed work process. It starts with a preliminary
feature description from which hazard analysis and risk assessment (HA&RA) and
function definition are iteratively refined (solid arrows). These steps are repeated until
they are mature enough to create both item definition and safety goals. This differs
somewhat from ISO 26262 (lower part of the figure), where the item definition is an
input to HA&RA, and the safety goals are the output. Even if not shown in the figure,
it is implicit that hazard analysis might be revisited and updated later in the design
process due to changes to function requirements or discovery of additional hazards. The
following subsections describe each of the steps in more detail.

Fig. 1. Proposed hazard analysis and function refinement process compared to ISO 26262.

3.1 Preliminary Feature Description

The aim of the preliminary feature description is to describe the expected (end customer)
benefits and define the initial scope of the proposed feature. The format for such input
(market research, input from previous projects, use cases, initial requirements etc.) can
be freely selected to fit the organization. For our example we borrow the concept of user
stories common in agile methodologies; a user story describes benefit from an end user
perspective, but is usually not written by end users. It should be noted that these user
stories will be at a higher level of abstraction than for their typical use in software
projects. The format of a story is: “As a <role>, I want <goal/desire> so that
<benefit>”. A full feature is described as a collection of user stories (sometimes called
a theme). This simple format allows for easy modification and expansion of the theme
as needed, and can be easily understood by all stakeholders, not only safety engineers.

Throughout Sect. 3, we will consider an example where an automated emergency
braking (AEB) feature for an autonomous vehicle is analyzed. This envisioned feature
has the purpose of avoiding accidents in the face of obstacles that appear suddenly and
therefore are not part of the tactical plan of a likewise envisioned AD function handling
normal autonomous operation. Keep in mind that the example is simplified to fit into
this paper, and therefore covers a much smaller number of situations than a real such
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feature would likely do. Table 1 shows the initial user stories, which describe some
conditions when the emergency brake must work. The level of detail for the initial input
is not critical since the subsequent steps have the purpose of bringing up questions
regarding the scope of the function. However, it is supposed to guide the hazard analysis
as to which situations and hazards are relevant for the feature. Very general stories are
less likely to be useful in that respect, making the process more difficult than it needs to
be. For instance, a single story saying simply “I want emergency braking” would be
more difficult to work with than the stories in Table 1.

Table 1. AEB example: initial user stories.

As a driver, I want AEB for crossing animals so that my automated car doesn’t run into animals
As a driver, I want AEB for other motor vehicles so that my automated car doesn’t hit vehicles

making unexpected maneuvers
As a driver, I want AEB for tricycles so that my automated car doesn’t hit children on tricycles

The preliminary feature description may also include other relevant information, for
instance limitations imposed if the feature includes or expands upon an already existing
component, or if part of the solution for some other external reason is given.

3.2 Hazard Analysis and Risk Assessment

The objective of the hazard analysis is to identify hazards that may occur in the E/E
function and operational situations where the occurrence of these hazards may be
dangerous; operational situations and hazards are combined to form hazardous events.
In order to reduce the risk of missing relevant operational situations and hazards in the
analysis we use tree structures representing a knowledge base of potential situations and
hazards to investigate. By systematically going through the trees, one can avoid omis‐
sions resulting from the anchoring bias that is likely to occur based on the initial idea of
the scope of the function. Furthermore, the trees both act as a tool to keep track of covered
aspects when performing hazard analysis for a new function, and make sure gained
experience is preserved for future projects.

Situation Analysis. An operational situation tree is shown in Fig. 2. The root of the
tree is the operational situation. Each successive level breaks down the situation in
different aspects of increasing detail, where the goal is that siblings on any given level
are mutually exclusive and collectively exhaustive with respect to their parent. The tree
in the figure does not fulfill the exhaustive property for space reasons; only selected
aspects are shown to illustrate the principle. Even given unlimited space, however, a
tree is unlikely to ever be perfect, instead it is meant to be continuously updated to reflect
current best understanding of potentially relevant situations.
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Fig. 2. Example of a generic situation tree.

Operational situations for use in the hazard analysis are composed by selecting and
combining leaves (properties) from the tree; the combination is what defines the unique
operational situation. Leaves sharing the same parent are of the same kind (aspect) but
describe mutually exclusive properties of a situation. If no leaf at all is selected from a
particular aspect, the situation is considered to be valid for all properties of that aspect.
For instance, the situation “automatic drive on highway or rural road with animal
obstacle”, using the highlighted properties in Fig. 2, would implicitly include “in all
physical environments, road layouts, and speeds”. In this way, we have a semi-formal
description of the situation that can be used to classify situations and find gaps in the
analysis, i.e. combinations that have not yet been considered.

It should be noted that any reference to “completeness of analysis” means with
respect to the currently used situation tree. Since the tree constitutes the known universe
of situations for the analysis, making sure the tree contains an adequate representation
of reality is also imperative. This is discussed further at the end of this section.

The initial selection of operational situations is guided by the preliminary feature
description. However, this selection does not have to be perfect. If relevant situations
or hazards have been omitted, or selected despite being out of scope for the feature, this
will be corrected as the iterative process progresses. For the AEB example, the specific
obstacles mentioned in the user stories are obvious candidates: vehicle, animal and
tricycle. The operational mode is also given: automatic drive. Beyond that, it is up to
using one’s best knowledge to add properties that may affect the way safety goals and
function requirements will look like. Table 2 includes some operational situations that
may result from such a process. When selecting situations and hazards, adding a rationale
to explain why certain aspects in the tree are not relevant for the function will strengthen
the argument of completeness of the hazard analysis and could be used as evidence in
a safety case.
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Table 2. AEB example: hazardous events and risk assessment.

HE Operational Situation Hazard E C S ASIL
1 AD on highway/rural road with animal obst. Undetected object 2 3 2 A
2 AD with tricycle obstacle Undetected object 2 3 3 B
3 AD with other vehicle obstacle Loss of braking 4 3 3 D
4 AD in bright light with other vehicle obst. Loss of braking 4 3 3 D
5 AD in high speed with stationary object obst. Mode confusion 2 3 2 A

Hazard Identification. Hazards are handled similarly to operational situations.
Figure 3 shows an example of a generic hazard tree. Again, for space reasons, the number
of hazards shown is limited. The basic structure is similar to the situation tree with the
hazard at the root, and several levels of subcategories. As opposed to the situation tree,
however, there is no combination of leaves. Each leaf by itself represents one possible
hazard that can be included in the hazard analysis if relevant for the function being
defined. For AD vehicles, where the E/E system moves beyond the operative level and
is also responsible for tactical decisions, we have included a class of tactical level hazards
to capture events where avoiding the tactical mistake may be the only way to prevent
an incident. Potential driver/operator interference for AD functions is included as fore‐
seeable misuse hazards. In Table 2, a hazard is combined with each operational situation
to form hazardous events for our AEB.

Hazard

Operative 
level

Tactical
level

Traffic rules

AD/HD 
interference

Car control

Environment

Loss of braking

Fire in E/E system

Loss of steering

Foreseeable misuse of AD

Mode confusion

Situation 
awareness Loss of V2x communication

Undetected object

AD unaware of local rules

Other vehicle breaking rules

Reckless
driving Tactical decision not in-line with

current sensor capabilities

Tactical decision not in-line with
current environmental conditionsForseeable

misuse

Fig. 3. Example of a generic hazard tree with operational and tactical hazards.

Risk Assessment. In ISO 26262, the result of risk assessment is assignment of an
automotive safety integrity level (ASIL) to each hazardous event. ASILs range from A
to D, where D is the most critical and hence requires the most elaborate measures in
order to avoid failures. ASIL is assigned by first evaluating the exposure (E0 to E4),
controllability (C0 to C3) and severity (S0 to S3) for occurrence of the hazard in the

292 F. Warg et al.



given situation. Based on the value of those factors, the standard prescribes a certain
ASIL. All these values are shown in Table 2 for the example HEs. For an autonomous
function, we generally assume controllability, i.e. the driver’s ability to mitigate the
effect of a failure in the E/E system, to be C3 (difficult to control or uncontrollable) since
the driver is out of the driving loop. The risk assessment has to be updated in every
iteration as new or modified situations and hazards are added.

Iteration and Extending the Trees. New hazardous events will be created in the same
manner in each iteration. It should be stressed that the generic situation and hazard trees
are only a starting point since generic trees cannot cover the needs for all items and all
contexts. As the function description matures and more known detail about the context
is taken into account, the generic trees should be extended with context-aware special‐
izations and additions. Such context information can be, for instance, functionality or
performance characteristics of the target vehicle or environment. The properties should
be selected by finding limits where one of the risk assessment factors (E, C, S) in the
resulting hazardous events is affected. Such changes may go into a context-aware tree
created for a specific project. Furthermore, new general aspects can be added to the
generic tree, thus contributing to the situation knowledge base to be reused in future
projects. Such additions can be made at any level of the generic tree below the root.

The “speed” property in Fig. 4 shows how more generic properties (“high” and
“low” in Fig. 2) are replaced with context-aware and more specific properties of the
same kind. For instance, 40 km/h might be a speed limit where the severity factor of a
collision is reduced. The “animal” property under obstacles is also extended with a new
level containing more detailed context-specific information. These are changes that may
go into a context-aware tree created for a specific project. Another addition shown in
the figure is “maneuver” with its own sub-properties. This is a more general aspect,
where extending the generic tree would be suitable.

Operational
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Surroundings

Weather

Road surface

Vehicle
Speed

Obstacle

Road layout

VRU

Curvature

Inclination
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Bicyclist

Pedestrian

Tricyclist
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v≥100 km/h

Acceleration Accelerating

Decelerating

Cons. speed

Bird

Land ≥20kg

Land <20kg

Fig. 4. Situation tree extended with new general and context-specific properties.
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3.3 Categorizing and Finding Dimensioning Hazardous Events

The previous step may easily give rise to a very large number of hazardous events (HEs).
While the situation and hazard trees are helpful in classifying HEs, they will not directly
show which ones are dimensioning, that is, which HEs are sufficient to cover all the
safety goals. In order to understand the relationship between HEs, we use the method
described in [3], which enables an arbitrarily long list of HEs to be reduced to only
contain the dimensioning ones by applying a set of rules. There are eight rules of which
four are to identify dominance, and four for non-dominance. In [3] it is shown that this
set of rules is consistent and complete. This means that by comparing each pair of HEs
in the list and applying these eight rules, the HEs which are sufficient to identify all
safety goals of concern can be identified.

The rules depend upon the ability to categorize situations and hazards using set
theory, i.e. determine if two situations are mutually exclusive, subsets, identical or
overlapping. An advantage of using the trees is that the situations and hazards are already
clearly defined making this trivial. For instance, one of the dominance rules state that
from the three HE table columns situation, hazard, and integrity (ASIL): Dominance
exists if two columns show relation ‘identical’ and the third one has the relation ‘⊂’ or
‘<’. With this rule, one can show that HE4 in Table 2 can be removed since it is domi‐
nated by HE3; the situation in HE4 is a subset of that in HE3 and the other properties
are identical.

This method enables a fine-grained approach when categorizing hazards and situa‐
tions, which mean the safety margins can be designed more precisely, avoiding unnec‐
essarily conservative ASIL implications on the entire E/E architecture.

3.4 Function Refinement

In this step requirements elicitation for the intended nominal functionality is performed.
The requirements should define a function that fulfills the user stories, and as is always
the case when designing a new function, additional concerns such as cost and technical
feasibility must be taken into account. The provisional list of HEs from the previous
step will complement the user stories by providing information of what it takes to main‐
tain safe operation. This knowledge will be used when defining the scope of the function
in more detail. The hazardous events are considered as part of the requirements elicita‐
tion, and one of three actions is performed for each HE:

1. Decide that the HE is within the scope of the function and add requirements to reflect
this. For instance, in our AEB example, HE5 considers what should happen when
encountering stationary objects on the road, which was not covered in the user
stories. In this case it may make sense to include stationary objects in the scope of
the function, since a braking function that reacts to i.e. moving vehicles but not
stationary would probably not be useful.

2. Break down the problem further since the HE is too general or abstract to classify
as within or outside scope. For instance, look at the HE on emergency braking for
animals. It may be the case that it will be technically difficult to design a sensor
system that detects birds and small fast animals like a rabbit. On the other hand, these
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are not likely to pose a threat to the passengers of the car, i.e. the severity factor is
low. Therefore, the situation tree is expanded with a new subclass for different types
of animals (see Fig. 4), and the HE updated to reflect what is within the scope of the
function. Table 3 shows that for the next iteration the original HE1 is marked as out
of scope and a new HE1b that deals with “land animal ≥ 20 kg” is added to the list.
It will also be necessary to update the classification as exposure should be lower but
severity higher compared to a collision with any animal.

Table 3. AEB example: changes to hazardous events for second iteration.

3. Restrict the scope of the function in order to find a feasible solution. Consider a case
where the analysis shows that constructing a function that works in any surrounding
poses too many technical or cost obstacles. Instead, it is decided to build an AD that
can only be used on highways. In the AEB example, this would likely change the
exposure for tricycles to E0, since highways are restricted areas where it is extremely
unlikely a tricycle would ever be. Table 3 shows how HE2 is updated to HE2b to
reflect this; but in fact, HE2b shows that the integrity level drops to QM, so even if
the user story about tricycles is kept, it will not result in any safety requirement that
needs to comply with ISO 26262. The other HEs are also updated to reflect that the
function is only available on highways.

After the first iteration, the function is delimited by a number of HEs, but the exact
scope may still be uncertain. For each subsequent iteration of refinement, it becomes
clearer what the capabilities of the function should be. Note that if more than one func‐
tion/item is involved in AD operation, it should be considered that the relevant HEs may
fall within the scope of any of those functions, so the aim of the analysis is to make sure
all HE are taken care of by these functions together.

The preliminary feature description is of less importance once we have an initial list
of HEs and requirements to continue refining in subsequent iterations. However, the
user stories could still serve a purpose, especially in an agile organization, if they are
kept updated. While HEs and function requirements are more detailed, they may not be
as suitable for e.g. prioritization and communication with a product owner. In the AEB
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case, one would add stories reflecting that we have restricted AEB to highways and
added stationary obstacles after the first iteration.

HEs considered outside the scope are removed from the dimensioning list, but
retained separately together with a rationale why it was not included. Where relevant,
these scope restrictions will become part of the user manual for the vehicle, e.g. “The
AEB function of this vehicle can only be used on highways”.

Sufficiency Checklist. After this step the iterative process continues with a new round
of situation analysis and hazard identification given the new decisions made during
function refinement. Iteration should continue until the list of HEs and function require‐
ments are stable, complete, and useful. Below is a checklist to help determine when this
is fulfilled, which also requires some engineering judgment:

• Sufficient situation and hazard coverage:
– The generic trees should be fully covered (i.e. all properties are used in the analysis

or have a rationale why they are not relevant for the function).
– It must be clear whether the remaining HEs are within or outside scope.
– Rules for dominance and non-dominance (see [3]) have been used to find potential

gaps among the identified HEs.
• Clarity for continued design process:

– Function requirements are useable for next steps of refinement.
– HEs have a suitable level of abstraction to make safety goals which will not result

in overly conservative ASIL assignment.

3.5 Item Definition, Safety Goals and Further Refinement

When the HEs and requirements are sufficiently elaborated, the final step of the process
is to create safety goals from the dimensioning HEs, and an item definition which
includes the functional requirements. This is input to the functional safety concept in
ISO 26262, and from this point on the standard can be followed without modification.

The further work is likely to be iterative as well. For instance, the item’s refinement
will need to be complemented with prototyping of the item’s elements, in correlation
with preparation of the system architecture work. This work will provide feedback to
item definition, functional safety concept and technical safety concept. It is possible that
both prototyping and system architecture work will effectively call for modification of
the item definition. It can be a result of, for example, not fulfilling physical constraints,
too much cost, or too much of development effort needed. Hence, the item will evolve
during the whole development process. In addition, in a constantly changing environ‐
ment for autonomous vehicles, such as new rules and regulations introduced and new
methods discovered, the item will likely have to be kept open to modifications even after
the product is released to the market. Whenever such modifications are called for, the
hazard analysis needs to be revisited to capture any necessary changes to the safety goals.
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4 Conclusions and Future Work

In this paper we argue that completeness of safety goals is a new challenge for autono‐
mous vehicles. When no driver is available to fill in potential gaps, under-specified
functions can pose a danger. We propose a method that can help reach completeness of
safety goals for the entire AD functionality by using hazard analysis as an aid when
defining the scope of the function. Since the scope of an advanced function will likely
make it difficult to perform all the steps manually while still keeping everything consis‐
tent, a suitable future improvement would be tool support, including further work to
make the process itself more suitable for automation.
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Abstract. Cyber-physical systems like self-driving cars are highly
complex and safety-critical. This results in a great number of safety
requirements that have different levels of criticality. In automotive, the
criticality is categorized in Automotive Safety Integrity Levels (ASIL). As
a high ASIL causes high development effort, the goal is to develop most
subsystems with lower ASIL requirements. To achieve this ASIL tailor-
ing, subsystems need to be separated or redundantly implemented. These
safety measures are usually integrated late in the development process
and thus cause costly development iterations. In this paper, we present
a systematic, tool-supported ASIL tailoring process for the requirements
analysis phase. It is applied on formal safety requirements and auto-
matically generated fault trees for a functional view of the system. The
process supports early planning of safety efforts for mixed-criticality sys-
tems and avoids costly late development iterations.

Keywords: ASIL tailoring · ASIL decomposition · Fault tree generation

1 Introduction

The safety requirements engineering dilemma [3] states, that possible failures
and hazards can best be found late in the development process where all the
system details are known (e.g., the software code is existing). But changing
the system to prevent or mitigate a failure then causes expensive development
iterations (changing requirements, changing architecture, changing code, . . . ).
Thus, failures ideally would be found early, already in the requirements analysis
phase. Because then, required safety measures and resulting effort and cost can
be planned from the start.

The complexity of mechatronic systems is rapidly increasing. In the automotive
industry, driver assistance systems start to perform automatic emergency braking
or emergency steering maneuvers – paving the way towards cyber-physical systems
(CPS) like self-driving cars. The control of brakes and steering is highly safety-
critical. To make safe decisions, the systems need to have a solid understanding
of the vehicle’s surroundings. For that, they use numerous sensors, cameras, nav-
igational data and Vehicle-to-X communication [19]. Furthermore, the develop-
ment of such systems requires a strong interplay of different engineering disciplines
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 298–310, 2016.
DOI: 10.1007/978-3-319-45480-1 24
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(i.e., mechanical, electrical and software engineering). This complexity makes it
difficult to find all possible failures early and plan safety measures.

The hazards caused by failures of a system have different safety-criticality.
A malfunction of a car’s infotainment system is less critical than a failure of
its brakes. To categorize hazards and safety requirements in terms of safety-
criticality, ISO 26262 defines the Automotive Safety Integrity Level (ASIL) [13]
ranging from ASIL D to ASIL A (in decreasing order) and QM for non-safety-
critical elements. The ASIL value represents the degree of rigor that should be
applied in development, implementation, and verification of a requirement in
order to avoid unreasonable risk in the final product [18].

As a high degree of rigor implicates high development effort, there naturally
is a demand to reduce the amount of high ASIL requirements and subsystems.
To achieve this goal, so-called ASIL tailoring [13] is applied to separate sub-
systems (and their safety requirements) with different ASIL and to decompose
safety requirements into redundant safety requirements with lower ASIL. The
increasing system complexity and interconnection hinders finding solutions for
separation and redundancy. Thus, many subsystems have to be developed with
a high degree of rigor causing high development effort. Furthermore, if ASIL tai-
loring solutions are found in late phases of development, high effort has already
been spent in previous phases to meet the degree of rigor required for the original
ASIL. To decrease the development effort for safety measures, system complex-
ity should already be addressed in the early discipline-spanning requirements
analysis phase. Since that is the earliest possibility to plan safety measures and
tailor the ASIL values of subsystems.

The contribution of this paper is a systematic, tool-supported ASIL tai-
loring process for the system requirements analysis phase. It is embedded in
a Model-based Systems Engineering method to deal with the interdisciplinary
development of CPS. To cope with complexity, it uses a functional abstraction
of the system under development. The tool-support automatically generates fail-
ure propagation models from formal requirements to reduce the effort for early
planning of safety measures and ASIL allocation. In this paper, we focus on the
process steps rather than on the algorithms used.

The following Sect. 2 presents related work. Section 3 describes the ASIL
tailoring approach using an automotive example. Section 4 concludes the results
and lists future work.

2 Related Work

To assist in the process of ASIL tailoring, automated approaches to calculate pos-
sible ASIL allocations to technical system and software architectures have been
developed [2,15]. These approaches require the set of hazards with their ASIL and
the system or software architecture with given failure propagation models as input.
The failure propagation models stem from the structure and behavior of the sys-
tem. So these approaches help in finding a cost-efficient allocation of ASIL values to
subsystems after their technical structure and behavior was defined. They do not
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consider the requirements that led to those work products. If a change of structure
or behavior would result in a better ASIL allocation, this leads to costly develop-
ment iterations because the requirements have to be changed as well. To reduce
development iterations, we apply ASIL tailoring already during system require-
ments analysis based on automatically derived failure propagation models. One of
the named ASIL allocation approaches could be integrated into our ASIL tailoring
process in future work.

3 ASIL Tailoring Process

The development of automotive systems is characterized by the cooperative
work of different engineering disciplines (i.e., mechanical, electrical and software
engineering). Development processes like Automotive SPICE [1] thus include
discipline-spanning system level development phases (cf. System Requirements

Analysis and System Architectural Design in the top of Fig. 1). In these phases,
Model-based Systems Engineering (MBSE) methods are used to bring together
disciplines and foster a common understanding of the system under development
(SUD) [12]. Based on the discipline-spanning System Architecture, the disciplines
start with their specific work products (cf. phases Mech., E/E and SW in Fig. 1).

III

II.1

II.4

II.2

II.3

I

Fig. 1. Dev. phases and work products annotated with ASIL tailoring process steps.

The ASIL tailoring process presented in this paper is embedded into the
MBSE method CONSENS (CONceptual design Specification technique for the
ENgineering of complex Systems) [7, Sect. 4.1]. Figure 1 shows the used work
products and associated process steps.

An automotive OEM (original equipment manufacturer) typically orders sub-
systems of a vehicle from different suppliers. Each supplier is provided with
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information about the environment of their subsystem (i.e., other subsystems in
its context that it has to interact with) and the hazards (incl. ASIL determined
by the OEM) that its failures could cause (cf. Environment + Hazards in Fig. 1).
The environment model is the first work product specified in the ASIL tailoring
process (Step I).

To cope with complexity, MBSE methods include different abstraction levels.
A functional level is introduced between the system requirements and the techni-
cal system architecture [5][7, Sect. 4.1][17, Chap. 5]. In CONSENS, the functional
level is specified by means of a function hierarchy (cf. Fig. 1). Before specifying tech-
nical elements of the system architecture, the functional level is used to abstract
from technical realization details and broaden the design space. A function spec-
ifies how its inputs are transformed into outputs, aiming at fulfilling a particular
task. To reduce complexity, the overall functionality of the system, represented
by a root function, is broken down into sub-functions (Step II.1) until technical
realizations can be found.

To plan safety measures and required effort in the system requirements analy-
sis phase, we apply ASIL tailoring on the function hierarchy. The first tailoring
option is separation: Functions (and their safety requirements) with different
ASIL are separated, such that functions with lower ASIL do not interfere with
higher ASIL functions. The second option is introducing redundancy: A safety
requirement is decomposed into redundant safety requirements with lower ASIL
whilst making sure that the corresponding functions do not interfere with one
another (there are no cascading nor common-cause failures). The second option
is commonly referred to as ASIL decomposition.

To find possible ASIL tailoring solutions and to verify that an applied tai-
loring meets the non-interference requirements, safety analyses have to be per-
formed. As requirements are iteratively refined while developing the function
hierarchy and applying ASIL tailoring, the safety analyses should require only
reasonable effort. Thus, we automatically generate a failure propagation model in
form of fault trees (Step II.3) to be used for safety analysis. For that, the require-
ments (esp. the safety requirements) are specified with a formal, scenario-based
language in Step II.2. The failure propagation model is used to allocate tailored
ASIL values to the functions of the function hierarchy in Step II.4.

The steps II.1 to II.4 are iterated until the detail level of the functions is
sufficiently trivial to be realized by technical elements of the system architecture.
In the final Step III the functions are thus allocated to their realizing system
elements.

In the following we describe the ASIL tailoring process in detail. To illustrate
the approach, we use the example of a rear door system. It is responsible for
electronic opening, closing, locking and unlocking the rear door of a vehicle. It
receives signals from electronic control units (ECUs) and mechanically moves
the rear door through an actuator. For all following diagrams we use the SysML
[16] which is based on the UML and designed to specify interdisciplinary models.
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Step I: Specify Environment and Hazards. To start the ASIL tailoring process,
first the technical environment of the SUD (esp. the interfaces) and the haz-
ards with their ASIL values have to be specified. The top of Fig. 2 shows the
environment of the RearDoorSystem and an ASIL B hazard RearDoorOpeningCom-

mission. The SUD is identified by the CONSENS stereotype �SystemTemplate�

and the systems that interact with the SUD are marked with the stereotype
�EnvironmentElementTemplate�. Ports are typed by interfaces or blocks. Send-
ing ports are specified as conjugated (∼).

The environment elementBodyControlModule is an ECU that receives the inputs
of the remotekeyandaccordingly sends opening/closingor locking/unlocking com-
mands to the RearDoorSystem. The environment element ElectronicStabilityControl

represents the ECU that is responsible for brake maneuvers and measuring the
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Fig. 2. Environment with hazard, function hierarchy, and system architecture.
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vehicle speed by wheel speed sensors. It sends the vehicle speed in km/h to theRear-
DoorSystem. The environment element RearDoorMechanics describes the mechanics
of the rear door. The RearDoorSystem moves the mechanics by applying torque and
locks/unlocks the mechanics by applying force to a bolt.

The SysML requirement RearDoorOpeningCommission with the stereotype
�hazard� represents the hazard that occurs when the rear door mechanics open
the rear door while the vehicle is moving. As the RearDoorSystem would apply
opening torque to the mechanics for this hazard to occur, it is connected to
the port:∼RDS2Mech via a trace-link. In this example, the hazard has a safety-
criticality of ASIL B and thus the RearDoorSystem has to be developed compliant
to ASIL B.

Step II.1: Derive Functions. In this step, functions of one level of the func-
tion hierarchy are derived based on the parent level or initially based on the
environment model from Step I.

The topmost level of the example function hierarchy (cf. middle of Fig. 2)
is derived from the environment model. Environment elements are transformed
into a functional representation marked with the stereotype �functionalDevice�.
The SUD is transformed into the top-level function of the function hierarchy.

To be able to specify information flow and failure propagation in the func-
tion hierarchy, we extended CONSENS to also specify ports and interfaces for
functions. The ports on the top-level of the function hierarchy are the same as
in the environment model. The only difference is, that we solely use interfaces
(no blocks) as port types and abstract from technical details. In the example,
the fact that mechanical torque or force is applied to the mechanics is irrelevant
on the functional level (cf. interface RDS2Mechanics). Also, the exact value and
unit (e.g., km/h, mph, wheel speed) of the vehicle’s speed do not matter. On the
functional level, event information that shall trigger certain behavior is required.
So in this example only the moments in which the vehicle starts or stops to move
are important (cf. interface ESC2RDS).

Step II.2: Specify Requirements for Functions. In this step, requirements are
specified and refined for the functions introduced in Step II.1.

To specify formal requirements on the functional level, we use Modal Sequence
Diagrams (MSDs) [10]. They extend UML sequence diagrams via a profile to dis-
tinguish provisional and mandatory behavior. Furthermore, they are applicable
for hierarchical architectures like a function hierarchy [11]. Requirements spec-
ifications modeled via MSDs can be validated by simulation with the so-called
play-out algorithm [4]. Furthermore, they can be formally verified for consistency
by synthesizing global controllers [9]. We use the formal semantics of MSDs to
automatically generate fault trees for the function hierarchy in Step II.3.

In the example, the requirements R-1 to R-4 and the safety requirement
FSR-1 from Fig. 3 are specified in the first iteration of Step II.2. The MSD R-1
describes the requirement that as soon as the body control module requests the
rear door to be opened, the rear door system shall open the rear door via the rear
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Fig. 3. Requirements specified as MSDs. (Color figure online)

door mechanics. Each lifeline of the MSD represents an instance of a function or
functional device in the function hierarchy.

Each message in an MSD has a temperature describing its modality
(i.e., whether it is provisional or mandatory). It can be hot (h) or cold (c). If it is
hot, then there must not be another message from the same MSD occurring while
the system is waiting for the hot message. Otherwise the specified requirement
would be violated. If it is cold and another message from the same MSD occurs
instead, the MSD is aborted but the specified requirement is not violated. A hot
message has a red color and a cold message is blue. Each message also has an exe-
cution kind. It can be executed (e) or monitored (m). If it is executed the system
has to make sure the message occurs eventually. If it does not occur, the require-
ment is violated. Executed messages are shown with a solid line and monitored
messages with a dashed line.

The cold and monitored (c/m) message openDoor in the MSD R-1 may occur
but does not have to. If it occurs, the hot and executed (h/e) message open gets
active and has to occur eventually and before the message openDoor occurs again.

The MSD FSR-1 in Fig. 3 specifies the safety requirement that as long as
the electronic stability control signals that the vehicle is moving, the rear door
system shall not open the rear door. A negative fragment in the bottom of an
MSD contains the messages that shall not occur while the diagram is active. So
if the hot message open occurs between the cold messages vehicleStartsMoving and
vehicleStoppedMoving, the requirement is violated.
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Step II.3: Generate CFT for Function Hierarchy. In this step, the failure prop-
agation model for the function hierarchy is generated from the requirements
specified as MSDs in Step II.2. To model failure propagation with the same lan-
guage and tooling as the function hierarchy, we use a SysML profile for so-called
Component Fault Trees (CFTs) [14][17, Chap. 8]. CFTs consist of sub-tree com-
ponents that can be mapped to functions of the function hierarchy. This fosters
traceability between the function hierarchy and its failure propagation.

The top diagram in Fig. 4 shows two connected CFTs. The top CFT (gray)
describes the correlation of the incorrectly sent message open that leads to the
hazard RearDoorOpeningCommission describing that the rear door mechanics open
the rear door while the vehicle is moving. This CFT is manually specified based
on the textual description of the hazard. The bottom CFT (white) describes the
failure propagation of the top-level function FRearDoorSystem. It is automatically
generated from the structure of the function hierarchy and the behavior described
in the requirements specified as MSDs.

Failures propagate over connectors that link fault tree events (rectangles),
basic events (circles), OR/AND-gates and input/output failure modes (triangles).
To distinguish between different types of failures, we type the input/output failure
modes and basic events by a failure type hierarchy based on Giese et al. [8]. In this
paper, we distinguish Omission, Commission and Crash failures. To distinguish
input from output failure modes, output failure modes are specified as conjugated
(e.g., open:∼C).

The CFT :FRearDoorSystemCFT in the top diagram of Fig. 4 was generated
from the requirements in the MSDs R-1 to R-4 and the safety requirement FSR-
1 in Fig. 3. The message open could have a commission failure if one of three
failures occurs: In the MSD R-1, if the message openDoor is wrongly sent by bcm.
In the MSD FSR-1, if the message vehicleStartsMoving is not sent or the message
vehicleStoppedMoving is inadvertently sent by esc (because in both cases open is
not forbidden). The failure unlock:∼C is caused by an input failure caused by
the body control module (R-3). The omission failure of the lock message is also
caused by an input failure from the body control module or by a crash of the
rear door system itself (R-4).

Step II.4: Calculate ASIL Allocation. In this step, the ASIL value of the haz-
ards is propagated through the functions of the function hierarchy based on the
generated CFTs from Step II.3. The CFTs show how failures propagate through
the functions based on the (safety) requirements. As failures lead to hazards,
they inherit the maximum ASIL of the hazards they are connected to. As the
CFTs represent functions, the functions inherit the maximum ASIL allocated to
an output failure mode of their corresponding CFT.

The hazard RearDoorOpeningCommission has the ASIL value ASIL B (cf. Fig. 2).
In the top diagram of Fig. 4 the hazard is directly caused by the output failure mode
open:∼C of the CFT :FRearDoorSystemCFT. Thus, ASIL B propagates over the fail-
ure modes to that CFT. The CFT represents the failure propagation through the
top-level function FRearDoorSystem, so that function has to be developed compliant
to ASIL B.
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As a hazard with ASIL B exists, there is no way to reduce the ASIL for the
system as a whole nor its overall top-level function below that ASIL value. But
to reduce effort and cost, the parts of the system that have to be developed with
the degree of rigor required for ASIL B should be as minimal as possible. Thus,
the top-level function should be decomposed into sub-functions in such a way,
that a lower ASIL allocation is allowed for some of them. This is realized by
ASIL tailoring through separation or redundancy.

Iteration of Steps II.1 to II.4: Refine Function Hierarchy and Requirements. The
functions of one level of the function hierarchy are decomposed into sub-functions
by iterating the steps II.1 to II.4. The MSDs of each function are refined for their
sub-functions. In addition, new or refined safety requirements are introduced to
tailor the ASIL of sub-functions.

The top-level function FRearDoorSystem can be decomposed into a function
OpenClose for opening and closing and a function LockUnlock for locking and
unlocking (cf. middle of Fig. 2). This obvious decomposition is underpinned by
the generated CFT in the top diagram of Fig. 4. It shows that failures of the
messages lock and unlock do not interfere with the failure open:∼C that causes
the hazard. So the separated function LockUnlock could be developed with a lower
ASIL.

To also reduce the ASIL of the function OpenClose, that can directly cause
the ASIL B hazard, redundancy needs to be added. If the hazard no longer is
caused by a single-point-failure (i.e., open:∼C), but by a two-point-failure of two
separate, non-interfering functions, then those two functions may be developed
with a lower ASIL [13].

In the example, this is done by adding safety requirements to automatically
lock the rear door when the vehicle starts moving and to prohibit its unlocking
while the vehicle is moving (cf. MSDs FSR-2, FSR-2.1, FSR-3, and FSR-3.1 in
Fig. 3). If the door is mechanically locked, it cannot open even if the rear door
system applies opening torque to the mechanics.

To check if the function decomposition and the added requirements lead to
a safe system and the ASIL of the sub-functions can be reduced, the steps II.3
and II.4 are repeated. The bottom diagram in Fig. 4 shows the regenerated CFT.
The gray top CFT was manually changed to reflect the added redundancy. The
hazard now only occurs if the open message is inadvertently sent and either the
unlock message is inadvertently sent as well or the lock message is omitted.

The CFT for the rear door system is automatically generated based on the
refined function hierarchy and the requirements specified as MSDs. The CFTs for
each sub-function are contained in the CFT for the parent function and failure
modes are connected according to the function ports and MSDs.

The CFT shows that there is no failure of the function OpenClose leading to
a failure of the function LockUnlock and vice versa. So they are free from inter-
ference. The CFT also shows, that the two input failure modes vehicleStartsMov-

ing:O and vehicleStoppedMoving:C of the top-level function lead to failures of both
sub-functions. This means that both sub-functions can fail for a common cause
(i.e., a single-point-failure). It is still allowed to reduce the ASIL of both sub-
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functions if the common-cause failures are handled with the rigor of the original
ASIL [13].

The ASILs annotated in the bottom diagram of Fig. 4 show the result of the
ASIL calculation step. The ASIL of the two sub-functions was reduced to ASIL A
because the two sub-functions are free from interference and their common-cause
failures are handled according to their original ASIL B. This puts a requirement
on the electronic stability control that may cause the according input failures.
The example assumes that the vehicle movement information is needed by other
more safety-critical ECUs anyway such that the ASIL B requirement causes no
additional effort.

The sub-functions could be refined into further hierarchy levels but in this
example we assume that they are sufficiently trivial to be realized in the system
architecture. The final function hierarchy shows that a decomposition of the
rear door system’s functionality into separate functions with lower ASIL than
the original ASIL of the hazard is generally possible. The system architecture
can thus be developed aiming at this goal.

Step III: Allocate Functions to System Architecture. Once the function hierarchy
is finished, it is used as a basis to develop the system architecture in the following
development phase. The sub-functions of the function hierarchy are allocated to
their realizing system elements via trace-links. The ASIL values allocated to the
system elements are taken from the ASIL allocation of the function hierarchy
and need to be verified by a safety analysis on the system architecture.

In the bottom of Fig. 2 the system architecture of the rear door system is
depicted. The final system consists of three elements that can be developed
compliant to ASIL A and only for the integration phases need to be compliant to
ASIL B (which is specified by the B in parentheses). This is realized by technical
safety measures that were already planned in the system requirements analysis
phase on the basis of an ASIL tailoring on the abstract function hierarchy.

4 Conclusion

The safety requirements engineering dilemma states, that failures can best be
found late in the development process but ideally would be found early, already
in the requirements analysis phase. Because then, required safety measures and
resulting effort and cost can be planned from the start. In the automotive
domain, safety-criticality is categorized in Automotive Safety Integrity Levels
(ASIL). To reduce the effort for safety measures, subsystems shall be assigned
with a low ASIL. This can be achieved by so-called ASIL tailoring that separates
subsystems or introduces redundancy.

In this paper, we presented a systematic, tool-supported ASIL tailoring
process for the system requirements analysis phase. It is embedded in the Model-
based Systems Engineering method CONSENS to deal with system complexity
introduced by interdisciplinary development. The tool-support automatically
generates Component Fault Trees (CFTs) from formal requirements specified
with Modal Sequence Diagrams (MSDs).
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The approach supports early planning of safety measures during requirements
analysis and thus avoids costly late development iterations. It provides a broad
design space for ASIL tailoring because it abstracts from technical details and
instead uses a functional view of the system based on the requirements. The time
and effort spent for safety analyses to verify applied ASIL tailorings is reduced
by automatically generating the CFTs.

For future work we plan to reduce the effort of specifying requirements as
MSDs by adapting an approach that combines natural language and model-
based requirements [6]. In addition, we want to evaluate the approach with
further examples from industry.

Acknowledgments. We thank the students of the project group Aramid for devel-
oping the tool-support for CFT generation and ASIL allocation.

References

1. Automotive Special Interest Group (SIG): Automotive SPICE: Process Reference
Model, v4.5 (2010)

2. Azevedo, L.S., Parker, D., Walker, M., Papadopoulos, Y., Araujo, R.E.: Assisted
assignment of automotive safety requirements. IEEE Softw. 31(1), 62–68 (2014)

3. Berry, D.M.: The safety requirements engineering dilemma. In: Proceedings of the
Ninth International Workshop on Software Specification and Design, pp. 147–149,
April 1998

4. Brenner, C., Greenyer, J., Panzica La Manna, V.: The ScenarioTools play-out
of modal sequence diagram specifications with environment assumptions. In: 12th
International Workshop on Graph Transformation and Visual Modeling Techniques
(2013)

5. EAST-ADL Association: EAST-ADL Domain Model Specification, v2.1.12 (2013)
6. Fockel, M., Holtmann, J.: A requirements engineering methodology combin-

ing models and controlled natural language. In: 4th International Model-Driven
Requirements Engineering Workshop (MoDRE). IEEE, Karlskrona, August 2014
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Abstract. Unlike practices in electrical and mechanical equipment engineering,
Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized
practices for assurance and certification that ensures safe, secure and reliable
operation with typical software and hardware architectures. This paper presents
a recent initiative called AMASS (Architecture-driven, Multi-concern and Seam‐
less Assurance and Certification of Cyber-Physical Systems) to promote harmo‐
nization, reuse and automation of labour-intensive certification-oriented activities
via using model-based approaches and incremental techniques. AMASS will
develop an integrated and holistic approach, a supporting tool ecosystem and a
self-sustainable community for assurance and certification of CPS. The approach
will be driven by architectural decisions (fully compatible with standards, e.g.
AUTOSAR and IMA), including multiple assurance concerns such as safety,
security and reliability. AMASS will support seamless interoperability between
assurance/certification and engineering activities along with third-party activities
(external assessments, supplier assurance). The ultimate aim is to lower certifi‐
cation costs in face of rapidly changing product features and market needs.

Keywords: Assurance · Safety · Security · Certification · System architecture ·
Reuse · Seamless interoperability

1 Introduction

Embedded systems have significantly increased in number, technical complexity, and
sophistication toward open, interconnected, networked systems (such as “the connected
car”). This has brought a “cyber-physical” dimension with it, exacerbating the problem
of assuring safety, security and reliability in the presence of human, environmental and
technological risks. Furthermore, the products into which these Cyber-Physical Systems
(CPS) are integrated (e.g. aircrafts) need to respect applicable standards for assurance
and in some areas they even need certification.
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Unlike practices in electrical and mechanical equipment engineering, CPS do not have
a set of standardized and harmonized practices for assurance and certification that ensures
safe, secure and reliable operation with typical software and hardware architectures. As a
result, the CPS community often finds it difficult to apply existing certification guidance.
Ultimately, the pace of assurance and certification will be determined by the ability of
industry and the certification and assessment authorities to overcome technical, regula‐
tory, and operational challenges. Another key difficulty appears when trying to reuse CPS
products between projects and even from one application domain to another. Product
evolutions become costly and time consuming because they entail regenerating the entire
body of evidence or their certification can be constrained by different standards. This may
imply that the full assurance and certification process is applied as for a new product, thus
reducing the return on investment of such reuse decision.

This paper presents a recent initiative called AMASS (Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems) [1] to
promote harmonization, reuse and automation of labour-intensive certification-oriented
activities via using model-based approaches and incremental techniques. Section 2
describes the main challenges faced by AMASS in the light of current state of the art
and Sect. 3 summarizes the proposed directions to solve those challenges.

2 Current State and Challenges

AMASS builds upon two large-scale past projects, OPENCOSS [2] and SafeCer [3],
which dealt with the problem of certification of safety-critical systems in multiple
domains using model-based approaches and incremental techniques. Among the main
targeted tangible results, AMASS will produce a Reference Tool Architecture (ARTA).
The ARTA (Fig. 1) represents a virtual entity that embodies a common set of tool

Fig. 1. AMASS high-level tool architecture
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interfaces/adaptors, working methods, tool usage methodologies and protocols that will
allow any stakeholder of the assurance and certification/qualification activities to seam‐
less integrate their activities (e.g., product engineering, external/independent assess‐
ment, component/parts supply) into tool chains adapted to the specific needs of the
targeted CPS markets, such as industrial automation, automotive, space, railway,
avionics or air traffic management.

Figure 1 also shows the AMASS Platform Basic Building Blocks, which are the
result of merging existing technologies from OPENCOSS and SafeCer. These building
blocks include tools for specification of system components, specification of assurance
cases as structured argumentation trees, evidence management, and compliance
management. In addition to these, the basic building blocks include user access manage‐
ment and data management tools, as well as the Common Assurance and Certification
Metamodel (CACM). CACM is an evolution of the OPENCOSS and SafeCer metamo‐
dels. Using a common metamodel for different application domains and assurance
activities will also enable management of assurance/certification assets in a common
format, sharing patterns of technology and architecture, and cost-effective reuse between
different domains and standard frameworks.

Supported on the basic building blocks, AMASS will work on four pillars, which
corresponds to specific challenges and Scientific and Technical Objectives (STO):

• Architecture-Driven Assurance. The standard architectures (such as AUTOSAR
in the automotive industry and IMA in avionics) needed to handle these new large,
networked systems are only now being equipped with mechanisms to handle depend‐
ability-related aspects. OPENCOSS and SafeCer approaches are agnostic regarding
system architectural and engineering choices. This is an intentional feature to meet
key requirements about cross-domain harmonization and flexibility. The architec‐
ture-agnostic approach is in the right direction since it permits to benchmark indus‐
trial case studies and demonstrate the feasibility of using a common framework for
multiple application domains. However, the need for more cohesively integrated
approaches (assurance/certification versus engineering activities) requires further
research and industrial validation with standard and modern engineering practices
(e.g., AUTOSAR-driven model-based development).

• Multi-concern Assurance. OPENCOSS and SafeCer were oriented to safety
aspects. The synergies between safety and security (among other dependability prop‐
erties) seem to offer clear opportunities for the reuse of assurance assets, although
prior research in this area has suggested that the domain-specific standards do not
always support such reuse. Also, the contract-based approaches to compositional
assurance developed in OPENCOSS and SafeCer depend, in some respects, on
precise mechanisms associated with safety characteristics. There is a need to refine
this approach to support the management of trade-offs between various system char‐
acteristics (including safety, security, reliability and the like).

• Seamless Interoperability. Providing a seamless interoperability between assur‐
ance/certification activities and engineering activities (e.g., design, implementation,
validation and verification- V&V), along with third-party activities (e.g., external
assessments and supplier assurance) is of prime importance to lower the threshold
of product assurance and certification in face of rapidly changing product features
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and market needs. The challenge is to be able to gather evidence from different types
of tools by means of standardized and well-defined adapters or exchange tools.

• Cross and Intra-domain Reuse. The OPENCOSS and SafeCer approaches aim to
reduce the assurance effort when reusing products, by promoting flexible and system‐
atic reuse approaches that are fully cognizant of the similarities and differences
between approaches to safety assurance across the main safety-critical system
domains. While these approaches are a first proof of concept of cross- as well as intra-
domain reuse and many safety-critical industries are convinced of the benefits to
share some development with other industries, one obstacle to the cost-effective reuse
of cross-domain assets is the fact that the terminology and semantics used to describe
and manage assurance across different application domains are not consistent.

3 Approaches

3.1 Architecture-Driven Assurance

The architecture represents a major aspect for ensuring dependability of a CPS and for
meeting assurance and certification needs and requirements. It describes the realization
of the system and consists of the components and all the mechanisms necessary to fulfill,
among others, safety, security, reliability, and availability requirements.

The architecture components shall have specific dependability characteristics. These
characteristics impose constraints on component reuse, that can refer to both technical
aspects (e.g., a component can only be deemed safe for a given operational context) and
economical (e.g., component reuse will have an impact on CPS cost). In addition a CPS’
architecture must conform to the applicable standards so that a system can be effectively
certified according to them.

The AMASS architecture-driven reuse will build on the results of the OPENCOSS
and SafeCer projects, and address the additional architecture-related features that can
greatly increase the opportunities of cost reduction and of reuse for CPSs, as well as
facilitate the analysis for assurance and certification.

System Architecture Modelling for Assurance. Architecture-driven reuse will build on
the component model and contract-based verification facilities developed in the SafeCer
project. The OPENCOSS CCL metamodel for assurance will be extended with a more
detailed formalism for the definition of the system architecture and for analysis of the
system dependability with the inclusion of the SafeCer component and contract models,
enriched with “white box” information (e.g., fault, error, and failure), “black-box”
annotations, and all the other concepts that would allow to improve the analysis of all
the aspects that affect assurance activities.

We plan to study the relation of the OPENCOSS and SafeCer assurance models with
different system modelling languages (e.g. UML, SysML, AADL, EAST-ADL, etc.),
safety modelling profiles, and specific platform models and architectures like
AUTOSAR for automotive and IMA for avionics. A finer-grained analysis of a CPS and
its assurance and certification information will allow industry to make more informed
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decisions regarding what can be reused between systems (including different versions
of systems) and reuse consequences.

Assurance Patterns Library Management. OPENCOSS and SafeCer have straightfor‐
ward mechanisms to specify assurance patterns for argumentation and for compliance
with standards. However, further research and case studies are necessary to cohesively
integrate these patterns in specific assurance and certification activities. This includes
safety/security architectural patterns definition and application (e.g. 3-level-monitoring,
E2E protection, and partitioning, among others), and auto-generation of platform models
and configurations based on these patterns (e.g. for AUTOSAR and IMA). The use of
patterns speeds architecture specification and facilitates the (re)use of components,
especially if developed to be used in such patterns. Moreover, it enables the reuse of
models and associated analysis results, e.g. guarantees of tolerance on failure commu‐
nication associated with E2E protection [4] or security-related non-interference associ‐
ated with partitioning [5].

Assurance of Specific Technologies. AMASS will consider technology trends such as
the use of new multi-core hardware platforms, the introduction of middleware solutions
(such as AUTOSAR in the automotive domain), deterministic communication technol‐
ogies, and new networked functionalities such as remote diagnosis, software upgrading,
towards vehicle and aircraft autonomy. Since OPENCOSS and SafeCer results are tech‐
nology-agnostic, they do not directly support the assurance and certification of many
characteristics of the new technologies for CPS. However, these characteristics have a
great impact on how CPS assurance and certification has to be managed for highly-
critical CPSs. Therefore, the characteristics thus must be carefully taken into account as
part of the technology patterns, and benchmarked in case studies to determine the
circumstances under which they can be reused, assured, and certified.

Contract-Based Assurance Composition. The concepts of contracts in OPENCOSS and
SafeCer will be integrated in AMASS. In particular, the AMASS approach for the argu‐
mentation that a system architecture is compliant with the system properties will follow
the contract refinement defined in the system model. Therefore, the guarantees of the
system will be ensured by the composition of the components contracts, while the
assumptions of a component will be ensured by the context provided by the system
architecture. In case contracts are specified and analyzed with formal methods, evidence
for the contracts refinement argument will be provided by verification tools such OCRA
[6], developed in the SafeCer project. Safety analyses based on the contract specification
will enrich the assurance case with fault trees showing the dependency of system failures
on the component failures.

V&V-based Assurance Impact Assessment. Automatic V&V-oriented techniques will
enrich the OPENCOSS and SafeCer assurance approaches. These techniques include
automated search of compliant arguments in a set of components to define a new safe
application that conforms to a set of safety/security requirements, search of adequate
component candidates for a project (e.g. in railway: segregated safety controller, reduce
footprint of hardware, safe communication protocol) starting with several functional and
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safety requirements (or safety patterns), formal techniques to validate that the require‐
ments specification is complete, correct, and unambiguous, and automated support of
assurance decisions by provision of what-if scenarios when changing any engineering
feature.

3.2 Multi-concern Assurance

The OPENCOSS project has developed an approach for mapping safety assurance arte‐
facts, techniques and requirements across domains, using the OPENCOSS CCL, to
resolve the inconsistencies in terminology across the target domains and to support
informed reuse of assurance assets. Also, the compositional certification approaches
developed in OPENCOSS and in SafeCer further support reuse by encapsulating assur‐
ance concerns for individual components into reusable assurance argument modules and
by providing a mechanism to configure these modules to form an overall system assur‐
ance case. In order to fully leverage the benefits of development methodologies based
on the informed reuse of components, however, it is important to consider other aspects
of the system’s design as part of the assurance framework: characteristics such as reli‐
ability, availability, maintainability, durability, performance and security also have an
impact on safety, and need to be considered in the assurance of critical CPS.

In the AMASS project, we aim to exploit the existing OPENCOSS and SafeCer
approaches and extend them to provide a tool-supported methodology for the develop‐
ment of assurance cases which address multiple system characteristics. There are three
aspects to this work.

Dependability Assurance Modeling. The OPENCOSS CCL metamodel is relatively
generic, and its extension to support the reuse of assurance data relating to other depend‐
ability-related requires considerable further domain modelling, but no fundamental re-
engineering of the approach. Similarly, the CCL vocabulary will require the addition of
further concepts, but the vocabulary-based and model-based techniques for using
mappings between concepts are readily transferable. From a methodological point of
view, the SafeCer Safety-oriented Process Line Engineering remains valid. However,
its modeling means may require to be extended (through the AMASS CACM meta‐
model) to explicitly address additional dependability-related attributes.

Contract-Based Multi-concern Assurance. The contract-based approaches to compo‐
sitional certification developed in OPENCOSS and SafeCer depend, in some respects,
on precise mechanisms associated with safety characteristics. AMASS proposes to refine
this approach to support the management of trade-offs between system characteristics.

System Dependability Co-Analysis/Assessment. The synergies between safety and
security (among other dependability properties) seem to offer clear opportunities for the
reuse of assurance assets, although prior research in this area has suggested that the
domain-specific standards do not always support such reuse [7]. The AMASS project
will focus initially on extending the OPENCOSS and SafeCer approaches to address
those aspects of security which impact on safety issues for critical CPS, where the
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potential to save costs through reuse is high. The project will then integrate and extend
existing architecture-driven approaches to the assurance of system and security, such as
the D-MILS approach [8], where the system architecture is the key element for hinging
the assurance of both safety and security aspects such as partitioning and redundancies,
or the SESAMO [9] component-oriented design methodology, based on model-driven
technology and jointly addressing safety and security aspects and their interrelation for
networked embedded systems in multiple domains. The interplay between security and
safety will also be considered in terms of process requirements. The recently introduced
notion of Security-informed Safety-oriented Process Line [10] will be further investi‐
gated in AMASS in order to enable the alignment of safety and security standards.

3.3 Seamless Interoperability

This area aims at guaranteeing the interoperability of the AMASS tool framework with
other tools used in the lifecycle of CPS, such as design and V&V tools, whereby assur‐
ance evidence can be generated either manually or automatically by the tools themselves
(code generators, testing tools, safety analysis tools, etc.). The challenge is to be able to
gather evidence from different types of tools by means of standardized and well-defined
adapters or exchange tools. There are some axes in this direction that can considerably
improve the opportunities of AMASS adoption.

Tool Integration Management. AMASS will deal with the problem that (1) assurance
information is present at each lifecycle phase (e.g. concept, design, implementation, and
V&V) and (2) multiple different tools can be involved at each phase, so the AMASS
tool framework needs to interwork with each of these tools. One promising approach is
to use OSLC [11], by extending it to assurance aspects (safety, security, etc.). As part
of this work, the AMASS consortium plans to reuse existing results from the Crystal
(http://www.crystal-artemis.eu/) and MBAT projects (http://www.mbat-artemis.eu/) for
OSLC-based tool interoperability, since many of their partners are also in AMASS. The
data models for tool integration will be also part of the AMASS CACM metamodel. In
addition, further assurance and certification needs for the integrated information must
be considered, e.g. traceability requirements and analysis of information completeness
and consistency according to the applicable standards.

Collaborative Work Management. We mean supply chain and collaborative issues
when developing, assuring and certifying CPS. AMASS needs to address aspects and
needs such as DIA definition (ISO 26262 OEM-Supplier interaction definition), the
development of a platform to exchange safety related information (potentially as cloud-
based collaboration services, and private), issues related to information composition,
versioning and update, security and scalability problems, and provision of server side
services, e.g. intelligent search, cross project consistency checks.

Tool Quality Assessment and Characterization. The engineering of CPS increasingly
relies on the use of tools that automate, replace, or supplement complex development
and V&V tasks. CPS safety can be compromised if the tools fail. To mitigate this risk,
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safety standards (e.g. DO-178C/DO330, IEC 61508, EN 501258, and ISO 26262) define
tool qualification processes, including tool characterization. Compliance with these
processes can be required for (re-)certification purposes, thus a system supplier can need
to collect information about tool qualification and to provide this information as assur‐
ance evidence for the overall system certification process. Within SafeCer, a tool qual‐
ification process line was investigated in order to reduce time and cost via reuse. Within
AMASS, this exploratory work will be deepened and broadened to consider also
AMASS-related tool-chains.

3.4 Cross/Intra-domain Reuse: The Ubiquitous Need for Reuse

The higher complexity and size of CPS products combined with the growing market
demand requires the industry to redefine its core and non-core activities, and to imple‐
ment a coherent and systematic reuse strategy instead of relying exclusively on in-house-
developed applications. For example, if the engine control computer from the automo‐
tive industry is to be reused in aerospace industry, the full certification process is applied
as for a new product, thus reducing the return on investment of such decision. In such
circumstances, systematic cross-domain reuse would be crucial to reduce the cost of re-
certification. In circumstances where a new version of a product comes from a previously
certified version of that same product, systematic intra-domain reuse would be crucial.
Systematic intra-domain reuse would also be crucial in case of incremental certification
(e.g., from a generic product to a specific one, obtained via addition of functionalities).

The OPENCOSS and SafeCer approaches aimed to reduce much of this repeated
assurance effort, by promoting a flexible and systematic reuse approach that is fully
cognizant of the similarities and differences between approaches to safety assurance
across the main safety-critical system domains. In particular, on the one hand the CCL
allows OPENCOSS tool users to model “equivalence maps” between different standards
and regulations (including intra- and cross-domain) in order to facilitate reuse decisions
between assurance projects from different application domains. On the other hand,
safety-oriented process lines allow users to model process commonality and variability
enabling systematic reuse.

While these approaches are a first proof of concept of cross- as well as intra-domain
reuse and many safety-critical industries are convinced of the benefits to share some
development with other industries, it first and foremost requires a common and strongly
validated assurance and certification platform. This way, the certification results for a
system or component originally developed for a different domain or for a different crit‐
icality level can be carried over to other domains. Also, a number of open technical
aspects need further research:

Semantic Standards Equivalence Mapping. One obstacle to the cost-effective reuse of
cross-domain assets is the fact that the terminology and semantics used to describe and
manage assurance across different application domains are not consistent. For example,
there is some degree of overlap between concepts such as ‘fault’, ‘hazard’ and ‘mishap’
and what constitutes a ‘component’ or a ‘subsystem’, but there are also gaps between
the definitions of these concepts across the standards. OPENCOSS started to solve this
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issue by using the CCL Vocabulary approach. The CCL Vocabulary is a structured and
harmonised way to store and communicate knowledge about assurance artefacts and
concerns. However, no complex, real cases were explored with this approach. Within
SafeCer, an ontology-based method for process elements reuse was explored [12].
AMASS shall extend the CCL Vocabulary (though the AMASS CACM metamodel)
approach by automating its creation and usage via deepened usage of the SafeCer
ontology-based method. An automated CCL Vocabulary approach will also allow us to
perform informed gap analysis on the standards and mitigate against the danger of inap‐
propriate reuse where a given assurance asset does not appropriately match the require‐
ments of the reuse context.

Cross-concern Reuse. In addition to mappings between standards related to the same
concern, we need to identify mappings between standards that focus on different
concerns in order to enable cross-concern reuse. It is well known for instance that the
safety and security communities could be merged within a unified terminological frame‐
work under the dependability umbrella. This potential merge could foster the identifi‐
cation of commonalities and thus reusable artefacts.

Reuse Assistant (Cross/Intra-Domain). In addition to semantic mappings, we need to
understand how the concepts work in terms of their relationship with one another to
define the objectives of the standards – i.e. the intent which informs requirements and
process activities, and the artefacts they result in -, in order to come to a clearer under‐
standing of the role played by each activity and artefact in the overall assurance effort.
AMASS will support users to understand whether reuse of the assurance assets is
reasonable or determine what further analysis is required to justify claims of compliance.
For example, AMASS will provide tool assistance to highlight the reasons why fault
analysis is performed and the point in the development of the system at which it is applied
(and hence the degree of detail involved). The compositional argument approach devel‐
oped by SafeCer and OPENCOSS will evolve to get the ability to characterise pre-
existing argument modules in terms of the intent of the applicable standards. This char‐
acterisation will rely on a clear understanding and statement of the assurance objectives
of each standard, and of the assurance assets used to evince the claims made to demon‐
strate their satisfaction.

Product/Process/Assurance Case Line Specification. Variability management creates
a pain in the industry. Various methods have been developed to manage variability and
thus relieve industry from such a pain. For software, subversion and git are already an
improvement to manage variability due to product evolution. Subversion, however, does
not satisfy the management of all sources of variability. A systematic approach is needed
to deal with software/hardware variability management, but also process and assurance
case-related variability. The AMASS project will focus on extending and integrating
the current methods in order to manage for instance ripple-effects that changes on
product requirements might have on processes as well as assurance cases. The objective
is to promote a fully integrated approach addressing the fundamental dimensions for
certification purposes.
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4 Conclusion

Despite the wide adoption of the concept of cyber-physical systems (CPS), its entrance
in critical domains such as automotive, medical or aerospace is not advancing at the
pace that the designers and producers would want in order to exploit the many benefits
brought to these domains. While CPS can more efficiently react to changing require‐
ments and adapt to different environments, these properties are challenging for the
adoption in critical domains. Connectivity and complexity introduce new risks and
extend potential risk causes towards security threats.

The validation and certification of the new-implemented solutions is the main barrier
preventing this adoption. Critical domains present a long tradition of certification proce‐
dures and standards since the very early stages of software and systems engineering
history. Unfortunately, this long history translates into complex validation procedures
that require extensive testing and long certification campaigns, increasing the associated
costs and preventing fast adoption of new concepts. In addition due to the isolation of
critical systems validation, the certification focus was mainly restricted to safety and not
threats from malicious causes. Furthermore, the increase in the complexity of the
systems has been handled by extending exponentially the validation test campaigns.

The AMASS project brings a new vision into these assurance and certification
procedures where extensive testing and validation and black box models are replaced
by an intelligent approach based on the underlying architecture of the CPS system. The
procedures will profit not only from previous certification results of pre-existing
modules, but also from equivalent or similar architectures already validated.

This process of learning from similar architectures is performed more or less uncon‐
sciously by all the designers during early architectural design phases. All the designers
and companies rely on a series of architectures that are well known “to work properly”.
AMASS project will provide a systematic methodology and tooling to pass from this
qualitative and intuitive approach into a formal validation procedure where the under‐
lying architecture of the CPS to be certified plays a key role in defining and executing
the validation process. AMASS will extend this approach to architectures with inherent
safety and security properties. AMASS will bridge between safety and security valida‐
tion and certification, and ease both.

AMASS will shape this approach in a complete toolset that will integrate all the
experience and developments of previous projects such as OPENCOSS and SafeCer and
extend it towards cybersecurity. The AMASS approach should allow to handle the
changing system security over the product lifetime. A safe system is designed once and
is not changed over the product lifetime. A secure system can change massively due to
e.g. software updates and therefore also the security has to be ensured in these changing
lifetime process. This toolset approach is a key element in the impact strategy, as it will
reduce dramatically the entry barriers of new actors in the CPS business by providing
them with a consistent and easy-to-use validation toolset that shall reduce their learning
curves and increase their chances to perform a “right-first-time” validation of new CPS
architectures.

To obtain the maximum impact from this new approach it is necessary that the
proposed methodologies and tooling are perfectly aligned with both the industrial
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validation procedures and standards, and with the emerging architectures derived from
cutting edge cyber-physical systems. Here is where the full potential of AMASS will
develop. The project includes the complete value chain of actors involved in CPS vali‐
dation procedures, from tool providers to industrial end users, including top-notch tech‐
nological providers. This allows AMASS to identify the most commonly used archi‐
tectures and those new emerging ones identified by the industry as the most promising
ones, adapting the tools and procedures to them and therefore guaranteeing the applic‐
ability of the results in the domains included in the project, as well as easing its fast
extension into those domains not included in the project.
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Abstract. Model-based engineering promises to boost productivity and
quality of complex systems development. In the context of safety-critical
systems, a traditionally highly regulated and conservative domain, the
use of models gained importance in the recent years. In this paper, we
present a set of practical challenges in developing safety-critical sys-
tems with the help of several examples of development projects that
belong to different application domains. Following this, we show how
could the adoption of model-based engineering for the development of
safety-critical systems cope with these challenges.

1 Introduction

Model-based development is currently one of the key approaches to cope with
increasing development complexity in general. Particularly the development of
todays safety-critical systems underlies a series of legislative and normative reg-
ulations making safety the most important non-functional property of embedded
systems. Applying model-based approaches during the development of complex
products means the use of adequate models for different aspects of the system.
Such models ease the development, increase the quality and enable a systematic
reuse. This has the potential to help the industry to meet even tighter deadlines
for new products and decrease the costs.

Along with the growing system complexity the effort needed for safety assess-
ment is increasing drastically in order to guarantee the high quality demands.
However, this trend is contrary to industry’s aim to reduce development costs
and time-to-market of new products. The use of models would help along two
directions. Firstly, it makes safety engineering as a standalone sub-task of sys-
tem development more efficient. Secondly, and even more important, this is an
essential step towards a holistic model-based development approach which closes
the gap between functional development and safety assessment. Reusing devel-
opment models for safety analyses and feeding back the results of safety analyses
in the development models is a key step for reaching synergies.

Although a large body of research results about using model-based devel-
opment for safety-critical system already exists, they did not found their way
into the industrial practice yet. In this paper, we outline the current practice in
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, pp. 322–333, 2016.
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developing safety-critical systems and derive a set of challenges. Based on this,
we describe how would the adoption of Model-Based Engineering (MBE) in the
development of safety-critical systems cope with these challenges. Therefore, we
present how can models help to assess that a system is sufficiently safe (models
for safety) and how models can be applied for the development of safety-critical
systems (safety for models).

2 Safety Assessment at a Glance

The goal of the safety assessment process is to identify all failures that cause
hazardous situations and to demonstrate that their probabilities are sufficiently
low. In the application domains of safety-relevant systems, the safety assurance
process is defined by the means of safety standards (e.g. IEC 61508 [1]). Although
each domain has its own standards and regulation, the safety assessment includes
a generic set of activities which are related to the system engineering process
(see Fig. 1).
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Fig. 1. Development of safety-critical systems in current industrial practice

As a first step, safety goals are defined according the system requirements.
Based on the system requirements the architecture of the system is designed.
After performing a hazard and risk analysis, Safety Integrity Level (SIL) infor-
mation is obtained and allocated to the elements in the system architecture
(e.g. the components of the systems). In the next step, the detailed design of the
system is built which is the basis for the implementation of the system. Based on
the detailed system design, the safety engineer is developing a safety analysis for
the specified system. Traditionally, safety analysis consists of bottom-up safety
analysis approaches, such as Failure Mode and Effect Analysis (FMEA), and
top-down ones, such as Fault Tree Analysis (FTA), to identify failure modes,
their causes, and effects with impact on the system safety. The result of a (quan-
titative) analysis is a set of failure rates for the hazardous events which are used
for the verification of the safety requirements defined in the safety case.
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3 Current Practice in Developing Safety-Critical Systems

In the following, we present four examples which illustrate the current practice
of developing safety-critical systems in different domains at Siemens.

3.1 Example 1: Modular Certification for Trains

Traditionally, trains have high requirements in terms of safety. Modern trains
are built using a modular platform concept. Such a platform concept enables the
manufacturer to build various train configurations in a flexible way and reuse
certain parts.

Currently, a clone and own strategy is used in order to build a new trainset
based on the existing platform. However, every new trainset developed based on
the same platform requires an individual certification. Even more, the certifi-
cation needs to be granted by different certification authorities of the countries
in which the trains will run. Furthermore, in the railway domain, there is a
substantial legacy and constraints imposed by the existing infrastructure. For
instance, there are different train protection systems in use by railways across
Europe. These control systems have both on-board components and side-track
components which must interoperate flawlessly in order to ensure safe operation.

In current practice, model-based development is applied to isolated sub-
systems of trains. The system development and safety assessment are mainly
based on multiple specification and analysis documents. However, the modu-
larization of specific parts of a train enables their reuse for multiple trainsets.
But changing one specific part of the train impacts multiple analysis documents.
Thus, the adjustment of the safety analysis is a very time-consuming and com-
plex manual task.

3.2 Example 2: Reusable System for Industry Automation

In the industry automation domain, compositional system development fosters
individual solutions for customers with high potential for modular certification.
Thereby, every specific system consists of an individual set of solvers, sensors as
well as actuators of different types and vendors. Each system is an individual
combination of parts according to the customer’s requirements. The architecture
of industry automation systems is very flexible in terms of involved sensors and
actuators. Moreover, the system is composed by reusing standardized compo-
nents from a repository.

In current projects use, safety assessment is based on reusable certificates
for the quality of the process. Process-based certification involves organization
aspects, qualification of involved personnel and proof of quality goals for system
elements. However, with the growing system complexity process-based certifica-
tion is becoming more and more expensive. Moreover, it does not support the
compositional and flexible way current systems in industry automation are built.

To enable efficient product-based certification of the individual system, mod-
ular safety assessment as well as the systematic reuse of safety artifacts must
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be possible. Moreover, the safety assessment processes of the industry automa-
tion system should be embeddable into customers’ certification processes for the
overall manufacturing system.

Model-based development is solely applied for describing the components
functionality of PLCs by using domain specific modeling languages (e.g. Contin-
uous Flow Charts, CFCs).

3.3 Example 3: Medical Devices

Modern medical devices realize complex safety-critical functionalities due to mul-
tiple system states, placing of the machinery within the clinical environment and
high sensitivity requirements. Requirements for healthcare systems in terms of
safety are single-fault protection and partial fail-operational by two options:
First, risk avoidance by bringing the system in a safe state. Second, providing
independent redundancy.

In the current industrial practice, manually maintained tables are used to
calculate failure rates, separate failure classes and to guide the safety analysis
process and show that a medical system is sufficiently safe. The reuse of indi-
vidual component or sub-systems is managed manually by copy-and-paste and
cell references.

However, with the growing complexity of the functions of medical devices,
which involve even larger circuits with increased reuse, more sophisticated meth-
ods and tools are needed for safety assessment in order to fulfill high quality
demands in this domain and meet fail-operational requirements in the future.

3.4 Example 4: Future Automotive ICT Platform

Today’s vehicles are filled with more information and communication technology
(ICT) than ever before. A paradigm shift from the array of control units used
today to a flexible set of software-implemented features stored on just a few
central platform computers enables a cost-effective way to implement current as
well as novel functionalities. Such an architecture, e.g. developed in the German
national funded project RACE1, provides a central platform computer concept
with fail-operational behavior. Moreover, the platform aims to offer plug-and-
play capabilities to easily enhance or integrate new features and components
while the car is in the field. Therefore, run-time (re-)qualification of the system
w.r.t. safety is the central future business case to ensure that the impact of the
extension has no negative results.

In current practice, a fault containment region-based analysis provides
reusable hardware failure rates for a later qualification of specific functionali-
ties planed to run on the central ICT platform w.r.t. safety [2].

However, this approach for system qualification is solely used during the
development to assess the system in terms of safety. Run-time (re-)qualification
based on the current approach is not yet possible.

1 http://www.projekt-race.de/en/.

http://www.projekt-race.de/en/
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4 Challenges

The current practice in developing safety-critical systems in the context of indus-
trial projects faces the following challenges w.r.t. safety assessment:

4.1 Efficient Construction of Safety Analyses

In current practice, constructing a safety assessment (e.g. using fault trees or
FMEAs) and maintaining its quality through the development is a challenging
and time-intensive manual task (see Sect. 3). With the increasing system com-
plexity the manual construction of a safety analysis model for an entire system
is becoming very hard or even unfeasible. Moreover, incremental and iterative
development processes used in industry require safety analyses to be performed
along the complete design process and provide immediate feedback to the system
engineers about the safety aspects of the systems being developed.

To perform safety analysis efficiently in large-scale industrial projects, meth-
ods are required to construct safety analysis models in a structured way based
on the information available in the detailed system design.

4.2 Evolution of the System Design

During most industrial development projects, change requests can come from
various stakeholders such as the client, certification authorities or development
teams of the different sub-projects. But changes can also be a part of a devel-
opment strategy, if an existing product can be evolved in a new system in an
incremental manner with small changes and adjustments (e.g. in the development
of trains based on a platform concept, see Sect. 3.1). In case of modifications of
the system design during the development process, the safety analysis must be
adapted accordingly to guarantee that the results of the safety analysis are still
valid. Since traceability between the artifacts in the system design and the safety
assessment is solely achieved manually in current practice, each change within
the system design results in time-consuming manual adjustment performed by
the safety engineer. For instance, after each modification all FMEA tables or
fault trees of the system must be completely reviewed and all parts affected by
the modification must be adapted.

In order to decrease the time-consuming adaptation of the safety analyses,
traceability between the elements in the safety analysis and the related elements
in the system design must be established [3]. Moreover, automated synchroniza-
tion of the safety analysis model with changing system design in a continuous
manner is needed.

4.3 Systematic Reuse of Safety Artifacts

In industrial practice, developers often have existing development artifacts which
are reused to compose a system (see Sect. 3.1 or 3.2). Such development artifacts
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are for instance stored within a repository and put together as a new configura-
tion for a product. This compositional development strategy allows automated
system construction from preexisting building blocks. With the motivation for
reusing the results of safety analyses of existing development artifacts, the safety
assessment needs to be aligned with compositional system design. Hence, safety
artifacts on the granularity of component-level must be exchangeable within the
safety analysis model.

To enable systematic reuse the safety artifacts related to system components
should be stored within a repository and used to compose a system-wide safety
analysis model. The composition of the safety artifacts should be performed at
best in an automated way.

4.4 Seamless Traceability

In practice, the results of the safety analysis process cannot be mapped easily
with the systems’ safety goals, since their relation is often not clearly traceable
and maybe ambiguous. Therefore, the verification of the systems’ safety goals
with the results of the safety analyses is a complex task itself. This is a challenge
in the development of safety-critical systems in large-scale industrial projects
across all domains within Siemens (see Sect. 3). In order to enable an unambigu-
ous mapping between the safety goals and the safety analyses results, seamless
traceability between the safety goals, system specification, and safety analyses
must be established.

For an efficient connection of different artifacts (e.g. specification, high-level
design, and low-level design) within the system engineering process, informa-
tion should be integrated automatically without the manual establishment of
traceability links.

4.5 Automated (Re-)Qualification

Adaptations and modifications of an embedded system are traditionally per-
formed solely during the development. However, there is a strong trend to build
open and adaptive system platforms (see the example of a future automotive ICT
platform in Sect. 3.4). These systems can be enhanced during run-time with novel
functionalities and may be coupled temporary with other systems which dissolve
and give place to other configurations. The key problem in assessing the safety of
such systems is that the configurations over its lifetime are unknown and poten-
tially infinite. State-of-practice safety analysis techniques are currently applied
during development and require an a priori knowledge of the configurations that
provide the basis of the analysis of system. Such techniques are not applicable to
open, adaptive systems that build up a new configuration at run-time. Therefore,
safety analyses must be applicable to assess novel system configurations ad-hoc
during run-time in an automated way. Such that the adaptation or modification
of the system in the field can be assessed in terms of safety.
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5 Leveraging Models in the Development
of Safety-Critical Systems

In this section, we show how to cope with the previous mentioned challenges by
using models for the assessment that a system is sufficiently safe (Sect. 5.1) as
well as using models in the development of safety-critical systems (Sect. 5.2).

5.1 Models for Safety

The idea of model based safety assessment is to support automatic generation of
classical safety artifacts such as fault trees or FMEA tables from system models
[4–6]. Therefore, the system models are often annotated with failure propaga-
tion models to construct the safety artifacts. Examples for such an approach
are HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Stud-
ies) [7] or Component Fault Trees (CFTs) [8]. These failure propagation models
are commonly combinatorial in nature thus producing static fault trees. This is
also driven by the industrial need to certify their system with static fault trees
or FMEA tables. Only rarely more advanced safety evaluation models, such as
Dynamic Fault Trees (DFTs) [9], Generalized Stochastic Petri Nets (GSPNs)
[10], State-Event Fault Trees (SEFTs) [11], or Markov models [12], exist in prac-
tice. Besides annotating the architecture specification, there are also approaches
in current research to synthesize safety artifacts via model checking techniques
(e.g. FSAP/NuSMV-SA [13]). However, such approaches have not found the way
yet in the current industrial practice.

5.2 Safety for Models

Model-based development aims to address the high complexity of current systems
by the use of adequate and rich models through all development phases from
requirements engineering, to design, implementation, integration and deploy-
ment. Models are envisioned to be used at different granularity levels: Abstract
models describe the entire system, and subsequently more concrete models are
used at sub-system level until finest granular models are used at the component
level. Thereby, the high-level models are kept in sync with lower level models.
In an ideal world, the entire development is supported by a seamless and deeply
integrated set of adequate models that address development concerns [14].

However, the adoption of model-based development in practice varies strongly
between different industrial application domains. In general, the current adop-
tion and benefits of using model-based development is by far not reaching the
promises given by the research community (see also [15]):

Requirements are very weakly modeled if at all – they are written using plain
natural language text or they are captured in a hierarchical tree-like structure
like that provided by DOORS. Besides the natural language text, requirements
should be associated to meta-data such as the “safety integrity level” (for safety
requirements).
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Architectures are described informally with the help of “boxes and lines”
pictures drawn in tools like MS Visio. When the architecture is modeled, it is
done with SysML tools, like MagicDraw or Enterprise Architect. Many times
the architecture is described in a hierarchical manner like systems consisting
of subsystems, etc. The behavior specification of system-level abstract compo-
nents is not a common practice (e.g. annotating interfaces of components with
invariants, specifying pre/post conditions in a machine readable form). After the
initial design, keeping the architecture consistent with the system implementa-
tion during the life-cycle and across product families requires a huge manual
effort and long review cycles.

Behavior of atomic components is implemented using models or code, such
as C/C++. When control- or state-based-like algorithms are being developed,
then one of the mostly used tools is Simulink/Stateflow. For more hardware-close
functionality however like device drivers or communication protocols, the plain
code is used instead of models. Different domains already use domain specific
modeling languages for describing the components functionality like SIBAS (rail-
way), Simulink (controls) or PLC (industry automation) in large-scale projects.

However, besides the control algorithm modeling activities, which are current
practices across different Siemens business units, the use of models for the system
development is rather sporadic. Furthermore, most of the times ad-hoc tool-
chains are used which comprise and extend commercially available tools with
specific customizations.

5.3 Integrating MBE with Safety-Critical Systems Development

Using both models to analyze a system in terms of safety and models for the
development of safety-critical systems, the practical challenges in industry, as
previously described in Sect. 4, can be addressed as follows:

Efficient Construction of Safety Analyses. Models used in safety analysis,
such as CFTs or HiP-HOPS, annotate the system models with failure propa-
gation models. This enables the construction of the safety analysis model in a
structured way. Due to the use of models in the assessment of functional safety,
advances of MBE such as providing traceability, tool support and consistency
checks can be utilized. Moreover, model-based safety engineering approaches
allow the (semi-)automated generation of safety artifacts such as Fault Trees or
FMEAs, if the system design is specified by using models (e.g. [4,5]). Hence,
the use of models for development improves the efficient construction of safety
analysis models, since they reuse the information available in the system design
and offer a sound methodology. As a result, safety analyses may be applied more
frequently during the entire product development process.

From industrial adoption viewpoint, the construction of safety analysis mod-
els from the information in the system design models must be clearly traceable
and understood by developers. Moreover, system and safety engineers must still
be able to work with methodologies and models, with which they are familiar.
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Fig. 2. Adaption of MBE in the development of safety-critical systems

Evolution of the System Design. When a model-based development strat-
egy is used, traceability between system design and safety analysis artifacts is
established. Thus, the impact of changes in the system design is narrowed to
encapsulated parts in the safety analysis model. The validity of the unchanged
parts of the safety analysis is preserved. For example, the modification of a spe-
cific system component does only affect the corresponding component within
a CFT model. Instead, in classic fault tree analysis, each fault tree must be
reviewed manually whether to adjust certain sub-tress or not.

Also the information within both kinds of models must be consistent during
the complete development process. For instance, if a certain system element is
deleted or renamed, the safety analysis model must be adjusted accordingly. By
using models in system design and safety assessment the synchronization can be
performed (semi-)automatically to guarantee that the safety as well as the system
engineers always work on consistent data. Since the time-consuming maintenance
of the safety analysis model is reduced significantly and safety analysis is kept
in sync with the system design, safety analyses may be repeated during the
complete development process. Thus, iterative development processes as used
currently in industry can be supported in terms of safety assessment [16].

Systematic Reuse of Safety Artifacts. Since the models used in model-
based safety assessment interlink safety with the system design artifacts, it is
possible to reuse these safety artifacts in the safety assessment of different con-
texts. Hence, it is possible to construct a safety analysis model based on the
reuse of preexisting parts and the specification of the newly created parts (com-
positional safety assessment). In terms of top-down safety analysis, one possible
direction is to use the CFT methodology and to establish a framework to syn-
chronize with the system design model and to store and exchange specific CFT
elements [17]. Another direction is to enable reuse in bottom-up safety analysis,
e.g. by introducing model-based FMEA techniques [18]. However, in order lever-
age compositional safety assessment in industrial practice, techniques for the
automated composition of safety artifacts are need [19]. First, as a preliminary
approach, to give system engineers a first feedback w.r.t. system’s safety in the
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early stages of the development. Second, to automate the system qualification
in terms of functional safety.

Seamless Traceability. By the use of model-based approaches for safety analy-
sis, traceability between system design elements (e.g. components) and safety
artifacts (e.g. the failure propagation within a component) is established [7,8].
Hence, it is possible to synchronize system design and safety artifacts and prevent
inconsistencies during the development. However, to be able provide an unam-
biguous relation of the results of the safety analyses and the systems’ safety
goals, we need to make the argumentation explicit by describing the safety goals
and providing links to the analysis results which prove that the goal is fulfilled.
Model-based approaches for constructing safety argumentation, such as the Goal
Structuring Notation (GSN) [20], close this gap by providing links between safety
goals, system design elements, safety analysis, and their results (see Fig. 2). Thus,
seamless traceability in the development of safety-critical systems is achieved by
combining models for development, safety analysis and building safety concepts
in a pragmatic way. However, this is an intermediate step on the way towards the
use of a holistic product model which provides deep, coherent and comprehen-
sive integration of requirements, specification, implementation, test/verification
& safety models [14].

Automated (Re-)Qualification. The safety of upcoming embedded systems
cannot be fully assured prior to deployment (see Sect. 3.4). In order to assure
the safety of such reconfigurable system, the degree of automation in safety
assessment must be further increased. Using models for the system design and
the safety analysis provides a relation of system design elements and safety
artifacts and enables the reuse of safety artifacts. By providing techniques to
compose safety analysis automatically from preexisting building blocks, the
(re-)qualification of the system in terms of safety can be automated. Moreover,
to enable the in-the-field safety assessment of a system, the methodology must be
able to deal with system parts which provide no or incomplete information about
its failure propagation. This is because upcoming embedded systems may inter-
act spontaneously during operation including parts which are produced by dif-
ferent companies. Therefore, methods are needed to automatically fill up empty
safety analysis artifacts [21] in order to be able to perform a safety assessment
of a system configuration, which is not know a priori.

6 Related Work

Many papers (e.g. [22,23]) discuss the challenges in MBE from an industrial prac-
tice. However, the specific characteristics in the development of safety-critical
systems are not considered.

The use of models in safety assessment processes has gained increasing atten-
tion in research within the last decade [24–27]. But to our knowledge this is the
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first work which deals with the actual challenges that model-based safety engi-
neering faces in industrial practice.

7 Conclusion

In this paper, we outline the current practice in developing safety-critical sys-
tems with the help of several examples of different business domains of Siemens.
Based on this experience, we derive the challenges in the industrial practice.
Moreover, we describe how the adoption of MBE for the development of safety-
critical systems can cope with these challenges from a practitioners viewpoint.
Therefore, we advocate that there is a dual perspective of the use of models in
the context of safety-critical systems development. First, by using models for the
assessment, that a system is sufficiently safe (models for safety). Second, using
models for the design of safety-critical systems (safety for models). Only if these
two perspectives are addressed jointly, models can leverage the development of
safety-critical systems efficiently.
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Abstract. Many safety critical systems are integrating more and more
software based systems and are becoming increasingly connected. Such
Cyber-Physical Systems require high assurance both on safety and secu-
rity but also on how such properties affect each other. This covers not
only design time aspects but also the run-time: as cyber-security threats
evolve constantly, it is necessary to consider how to perform updates
of the software without breaking any safety properties. This paper pro-
poses a method to co-engineer them based on sound techniques taken
from goal-oriented requirements engineering. The approach is illustrated
on a case study from the automotive domain. The case study illustrates
the challenges to safety and security co-engineering created by the trend
of growing connectivity and the evolution towards more autonomous
vehicles in the transportation domain.

1 Introduction

Transportation systems are increasingly relying on software for monitoring and
controlling the physical world, including to assist or replace human operation
(e.g. drive assistance in cars, automated train operations), resulting in higher
safety-criticality. Several such systems are also becoming increasingly connected
and are referred to as Cyber Physical Systems (CPS) [20]. Those characteristics
expose CPS to security threats that in turn can lead to safety hazards.

Transport domains such as railroad, automotive or aeronautics are heavily
regulated to ensure transportation safety. Many transport systems are safety crit-
ical and must respect many safety standards such as ISO 26262 [7] (automotive)
or EN 50128 [3] (Railways). Cyber-security must deal with a constantly evolving
threat landscape. New cyber-security vulnerabilities, attacks and threats appear
on a continuous basis, requiring new counter measures to be designed constantly.
To maintain the security of safety critical cyber-physical transport systems it is
necessary to continuously update cyber-physical system security software and
data via their live communication connection. A key research challenge is how
to update the security functions and data of cyber-physical systems without
breaking any safety properties. This calls for a co-engineering approach of secu-
rity and safety [26]. Security updates can be made at different times, e.g. during
c© Springer International Publishing Switzerland 2016
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planned system downtime or while the system is running, but can unintentionally
lead to outages and unplanned downtime. In some cases security functions and
data may be redeployed, reconfigured and verified before the system is returned
to operational status. In other cases, where the system must continue running
and modifications can only be made via a live update, verification is more com-
plex because you have to consider the cyber-physical system itself as well as the
communicating system and its links. So, this calls for co-engineering approaches
that can decompose systems into subsystems while preserving some global sys-
tem safety properties.

In order to develop systems that can deal with such scenarios, it is important
to be able to precisely identify and reason about the requirements that are
involved and especially the safety and security requirements. Our approach is
to take a sound Requirements Engineering (RE) approach on the problem using
Goal-Oriented Requirements Engineering (GORE) which has shown very good
capabilities for modelling requirements and reasoning about them [10] and which
can address the need of decomposition while preserving global properties.

Our contribution on this paper is to illustrate our on-going work on how
GORE can cope with the co-engineering of security and safety properties in
cyber-physical systems. GORE has already been used to reason both on safety
and security but most of the time independently of each other. In this paper
we explore how to deal with the interplay of safety and security in GORE.
The approach can be used for the initial co-engineering of security and safety
requirements, and for specifying under which conditions and assumptions run-
time adaptation of security functions and data may be made. The approach
allows subtle conflicts between safety and security goals to be identified and
resolved. Our work is illustrated with an example from the automotive domain.

This paper is structured as follows. Section 2 presents a state of the art in
co-engineering of security and safety requirements. In Sect. 3, we present our
goal-oriented co-engineering approach as well as the tool support we developed.
Then Sect. 4 illustrates and discusses it on an automotive case study. Finally
Sect. 5 draws some conclusions and identifies some future work.

2 State of the Art

2.1 Overview of Alternative Approaches

The problem of addressing the security and safety for CPS is heavily stud-
ied both in the literature and both within communities of experts in the fields
concerned. A quite exhaustive literature review has been consolidated by the
MERGE project [8]. It specifically examines the need to address these two dimen-
sions for the design of CPS [15,18,19] and identified four different approaches to
consider the links between security and safety:

1. Security and safety (in particular the processes) are considered totally sepa-
rately. In this case, only interactions between processes are needed.
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2. Security is considered at the service of safety. In this case the Safety engi-
neering processes, methods and tools are updated with concepts and consid-
erations from the security field. Conventional techniques for analyzing Safety
risks (HAZOP, FMEA, fault tree, ...) are modified to take into account secu-
rity giving rise to specialized versions of these methods (e.g. FMVEA, CHAS-
SIS [25]).

3. Safety is considered as a way to improve security practices benefiting from
the maturity of safety practices. This leads security to provide a system view.

4. Security and safety are addressed together by co-engineering. This approach
is supported by the formal methods community and leads to a unification of
processes, methods and tools.

The second approach is the most conservative for safety critical systems like
transportation. Because it does not bring much change in current practices to
safety procedures, one might expect to see it recommended in those domains.
However, the directions taken by the areas of transport are not yet clear or still
frozen. For example, in the field of automotive, there is still no specific safety
or security standard forcing a direction in the way of considering these two
dimensions [18,24]. The changes proposed in the literature are either to push
safety methods [25] (approach 2) or to recommend co-engineering (approach 4)
[27]. In the railway domain, there is also not yet a clear choice [18].

Despite this situation, the most reasonable choice seems to be the co-
engineering for the following reasons:

– The separate approach to security and safety leads to important costs for
companies due to the duplication of processes, methods, tools and the need
of many synchronization between the approaches. This approach, that can be
used at the beginning, cannot remain appropriate for interconnected systems
with increasing complexity.

– Considering security at the service of safety might result in wrong priori-
ties. Particularly some security properties are less important in this context
(e.g. confidentiality rarely impacts safety). In addition, some components may
have security needs disconnected from safety that are not correctly addressed
and others may have mixed needs. Making security a mere concern of safety
would not address all the necessary dimensions to the specific needs of the
components.

– Safety as a means of improving security will not achieve the safety objectives
of CPS.

2.2 Requirements Engineering Approaches for Security and Safety

The literature is stressing the need for methods that:

– align security RE and safety RE [15,28]
– decompose systems to separate the safety/security/mixed components and

other components while ensuring global properties [15,28]
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– support formal methods [2,15,28]
– use attack trees as a best practice of security engineering [5,9,16].

Requirements engineering (RE) is a key step in all system development. Over
the years, very efficient methods have been developed both for dealing with safety
and security aspects and among them Goal-oriented requirements Engineering
(GORE) [10]. Such methods rely on the central concept of goals in order to cap-
ture, at different levels of abstraction, the various objectives the system under
consideration should achieve. GORE is concerned with the use of goals for elic-
iting, elaborating, structuring, specifying, analysing, negotiating, documenting,
and modifying requirements [10].

Different goal oriented modelling methods covering security [21] and safety
can be considered: SecureTropos [14], KAOS (which means “Keep All Objective
Satisfied”) [11–13,30] and secure i* [21].

In the rest of this paper, we will consider the KAOS method because it is quite
representative, has well documented approaches both for safety [12] and security
[13]. Actually it was initially developed in the safety context and subsequently
extended to security [30] proposing a notation close to “attack trees” which
makes it particularly suitable to the problem considered in this paper. Some
other candidates have some limitations, e.g. secure i* does not support formal
methods [6] and SecureTropos does not allow the analysis of threats [6]. This
choice can however be transposed to other GORE methods.

3 Background on the KAOS Goal-Oriented RE
Methodology

In KAOS, different abstraction levels to express goals can range from high-level
strategic goals like “Maintain[Safe Car Operation]” down to operational goals
such as “Achieve[Immediate deactivation of cruise control when braking]”. High-
level goals can be progressively refined into more concrete and operational ones
through relationships linking a parent goal to several sub-goals, with different
fulfilment conditions using either “AND-refinement” (all sub-goals need to be
satisfied) or “OR-refinement” (a single sub-goal is enough, i.e. possible alterna-
tives). The “WHY” and “HOW” questions can be used to conveniently navigate
to parent and sub-goals, respectively. This results in a goal tree structure. The
goal decomposition stops when reaching a goal controllable by an agent, i.e.
answering the “WHO” question about responsibility assignment. These goals
are either requirements on the software or expectations on the behaviour of
agents in the environment. Domain properties can also be taken into account to
justify a refinement. Such properties are intrinsically valid like the law of physics
relating car deceleration with its mass.

Although the goal part is central, a KAOS model is actually structured on
the following four sub-models (Fig. 1):

– The goal model structures functional and non-functional goals of the con-
sidered system. It also helps identify potential conflicts and obstacles related
to goals and reason about their resolution. It is graphically represented as a
goal tree.
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– The object model defines and interrelates all concepts involved in goal spec-
ifications. Its representation is aligned with UML class diagrams and allows
structuring entities, relations, events and agents.

– The agent model identifies the agents of both the system and the environ-
ment as well as their interface and responsibilities. They can be shown as part
of goal trees or in more specific diagrams.

– The operations model describes how agents functionally cooperate to ensure
the fulfilment of the requirements assigned to them and hence the system goals.
Functional flow diagrams are used here.

Fig. 1. Overview of the KAOS generic meta-model

3.1 A Goal-Oriented Co-Engineering Approach

The state of the art calls for a deeper study on how GORE-based methods can
support co-engineering to address the safety and security dimensions simulta-
neously. It should be also remain flexible enough to be compatible with other
approaches, especially when safety is critical (approach 2).

3.2 Safety vs Security Approach

As a first step, Table 1 shows a side-by-side comparison of how safety and secu-
rity are addressed. Actually, KAOS allows working on safety and security in a
common or separate manner, and allows linking those specific objectives with
the overall objectives of the system. In addition, it provides a systemic approach
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Table 1. Comparison of safety and security engineering approaches

Safety Engineering Security Engineering
Goal Category Safety Goal Security goal
Obstacle variant Hazard Anti-goal (or Threat)
Finest refinement Root cause Vulnerability

Agent Environment (unexpected) Attacker (malicious)

Impact
Damage to people and things, prior-
ity over all other requirements (e.g.
availability)

Measured in business terms, e.g.
system availability, reputation

Refinement Methods Fault Tree Analysis, HAZOP,
FMECA

Attack trees, Threat trees

Risk managementtechniques
Obstacle elimination
Obstacle reduction
Obstacle tolerance (goal restoration)

Vulnerability removal/isolation
Attack recovery
Attack impact reduction

Analysis Type
Design-time analysis. Update not fre-
quent. But learning from past acci-
dent important activity.

Run-time monitoring for discov-
ery of vulnerabilities, suspect be-
haviours. Frequent updates to
patch.

Standards
IEC61508 (generic), ISO26262 (au-
tomotive), IEC50128 (railways),
DO178B/C, etc

Common criteria

while allowing decomposition into subsystems. Finally, it can be linked with for-
mal methods that can be used to demonstrate some system properties (safety
properties, security properties or mixed properties) in a unified way. Two key
modelling concepts come into play:

– In the safety context: an obstacle can be considered as any undesirable
property or hazards (e.g. gearbox malfunction) that directly obstructs system
goals (e.g. passenger safety) which are desired properties. Obstacles can be
refined using obstacle refinement trees that are the dual as goal refinement
trees [12].

– In the security context: the notion of malicious agents having interest in the
realisation of some threats, is used as the dual of normal agents cooperating
to the achievement of a system goal [13]. They can be structured using attack
trees [30].

Classical risk management techniques are applied both to safety and security
aspects. This risk-based approach is formalised for security by referring to SIL
and quantifying the residual risks. OECD is also stressing that “Digital security
risk should be treated like an economic rather than a technical issue, and should
be part of an organisation’s overall risk management and decision-making” [17].
Or course both security and safety risks need to be considered together. Tactics
like attack recovery can thus also be applied as long as it does not impact safety
critical functions.

3.3 Towards Combining Safety and Security

While generally considered separately, we considered combining them for co-
engineering purposes, especially given their strong common foundation, including
the ability to drive the discovery of hazards/threats and to identify how to address
them. The following principles highlighted in the state of the art are key drivers:
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– Models are used both for safety and security. Safety impact of security failures
are considered, hence making a connection between both kinds of analysis.

– Safety is at the inner core of the system, providing de facto better isola-
tion. Security layers or different criticality levels are deployed around it. Using
this principle enables to stay aligned with approach 2. It will also lead to a
sound architecture, especially to cope with the conflict between heavy security
update procedures and the need for flexible security updates.

– Both security incidents and system failures are monitored to keep evaluating
the global system dependability. This enriches the knowledge base on how to
update the system and to better design future systems.

The global method can cope both with top-down and bottom-up analysis
processes. The top-down process is composed of the following main steps:

– the starting point are safety and security requirements. The requirements are
explicitly tagged with their nature. For security requirements, a possible high
level attacker can already be identified.

– mixed threats and obstacles are carried out on such high-level goals. For safety
requirements, the main driver is a hazard analysis and for security goal, it is
an attack analysis. Hazards are marked with a safety nature while threats are
marked with a security nature.

– threats may be identified as potential causes of some hazard based on some
heuristics such as the ability of an attacker to control the occurrence of an
obstacle or the security critical nature of an involved asset.

– hazards may also be identified in threats analysis with other kinds of heuris-
tics. E.g. considering some known failure might enable some attacks and lead
attackers to provoke such failure on purpose.

– the refinement process stops when elementary hazard/threats are identified.
For hazards it corresponds to root cause while for threats it corresponds to
vulnerabilities.

The bottom-up process starts from known vulnerabilities and root-cause, and
tries to see how they can challenge security or safety aspects. The global process
generally proceeds by a mix of both approaches: refining top goals and trying to
match known (class of) hazards and vulnerabilities.

Once the analysis is complete a second stage of resolution can be applied.
Such resolution follows the strategies described in the respective methods. How-
ever combining the analysis also enables to propose more efficient resolution
tactics, e.g. addressing both security and safety issues. This area is still under
investigation and part of our future work.

3.4 Tool Implementation

In order to support the above approach, we extended the Objectiver GORE
tool [22] mainly with the ability to tag goals and obstacles with their safety or
security nature. The nature is modelled as an extra meta-model attribute. This
nature is also graphically shown as decorator on the goal diagram. It can be used
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to filter them in reports and diagrams. In addition the notion of attacker which
was not yet supported in the tooling was also added. Our extension takes the
form of a tool plug-in that is easy to install and is illustrated in Fig. 2. Similar
extensions can also be developed for other tools such as [29].

Fig. 2. Objectiver tool extension for safety and security co-engineering.

4 Automotive Case Study

Our case study is a connected car. Figure 3 shows the variety of subsystems and
communication channels that can be found in a connected car. Our analysis is
mainly inspired by the case study by Lotfi Ben Othmane [1] which considers a
broader application framework initially before focusing on a safety case for the
automatic braking subsystem. We also relied on a deeper threat model classifying
communication channels that can be compromised [4].

For our case study, we start from that safety case and in particular the
attack tree that we put in perspective through a co-engineering approach
of safety and security with the KAOS method. Through this method of co-
engineering, we make explicit the links between security and safety, links between
attacks/hazards and the security/safety objectives and links with the counter-
measures. By linking thus all the elements in this approach, we open pathways
to semi-formal or formal validations and verifications.

We used our developed extension to experiment with some variants of co-
engineering. Different scenarios involving different roles working together on
the same model where experimented: the system engineer for the global sys-
tem behaviour and architecture, the safety engineer to identify failure modes
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Fig. 3. Connected car subsystems and connection channels [4]

and their propagation, and security engineers to analyse possible attacks. A sec-
ond step was then envisioned for reviewing the proposed resolutions addressing
security and safety concerns. Regular reviews can also take place to perform a
global validation gathering all analysts.

Fig. 4. Attack tree on a safety function.

Figure 4 shows an excerpt from the security/safety co-engineering of a con-
nected car featuring automated braking based on SAE recommended practices
[23]. The top level shows the general system structure and identifies the main
sub-systems. The automated braking sub-system is then detailed based on two
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key milestones: condition detection and then braking. Next to each requirement,
a mixed view of the result of the hazard/threat analysis is shown (those are usu-
ally presented in separate diagrams). Specific obstacles are tagged as SAFE or
SEC depending on the process that identified them. Specific attacker profiles can
also be captured (unique here). Some resolution techniques proposed in [12,13]
can then be applied, e.g. to make the attack unfeasible or to reduce its impact.
Some resolutions can also address mixed threats and reduce the global cost to
make the whole system dependable.

Fig. 5. Analysis of a distributed security problem

Figure 5 shows a security oriented analysis related to compromised cars
reporting wrong traffic information. Safety could be impacted if the driver was
to trust an immediate danger information like “Obstacle on the road at 20 m”
and engaging in some braking (or even if the car was to engage the braking
itself). This threat can be analysed using both ends of the chain: identifying the
compromised car, e.g. by using data analytic techniques on the traffic informa-
tion server. Such an information can be filtered out to avoid that it will reach
the targeted car. Of course the compromised car should be quickly contacted for
analysis and upgrade.

5 Conclusion and Perspectives

In this paper, we motivated the interest to develop a co-engineering approach
for addressing safety and security requirements in systems like in the transport
domain (automotive or railway) or smart cities/manufacturing where there is
a growing trend to connect the related cyber-physical systems to the Internet.
This possibly exposes safety critical cyber-physical systems to a new range of
threats which are constantly evolving.

We presented on-going work on an approach to jointly address safety and
security properties as well as compliance obligations during the requirements



344 C. Ponsard et al.

engineering phase. It was argued that a goal-oriented requirements engineer-
ing approach could be followed for initial specification of security and safety
properties. It was also argued that the conditions and assumptions under which
run-time adaptation of security functions and data may be made must also
be specified thanks to the decomposition support offered by GORE-based co-
engineering while assuring global safety properties. The approach was illustrated
with an automotive case study showing how to model security threats on safety
goals. From our limited current experiment, we already gained interesting knowl-
edge about how different roles can interact. The approach is applicable to cyber-
physical systems in general and was illustrated on an automotive case study.

Future work will conduct a deeper assessment of the feasibility of the app-
roach in an industrial context, particularly considering the runtime case. We plan
to carry out industrial case studies more specifically in the railway domain where
cyber-security is becoming a growing concern while safety is a core requirement.
The main aim of the work will be to co-engineer security and safety properties
while taking into account compliance and certification obligations.
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Abstract. Safety standards prescribe change impact analysis (CIA) during
evolution of safety-critical software systems. Although CIA is a fundamental
activity, there is a lack of empirical studies about how it is performed in practice.
We present a case study on CIA in the context of an evolving automation system,
based on 14 interviews in Sweden and India. Our analysis suggests that engineers
on average spend 50–100 h on CIA per year, but the effort varies considerably
with the phases of projects. Also, the respondents presented different connotations
to CIA and perceived the importance of CIA differently. We report the most
pressing CIA challenges, and several ideas on how to support future CIA.
However, we show that measuring the effect of such improvement solutions is
non-trivial, as CIA is intertwined with other development activities. While this
paper only reports preliminary results, our work contributes empirical insights
into practical CIA.

Keywords: Change impact analysis · Safety-critical systems · Case study
research

1 Introduction

Safety-critical software systems evolve during their lifecycle. As changes are made to
the systems, change impact analysis (CIA) is needed, defined as “identifying the poten‐
tial consequences of a change in a system, or estimating what needs to be modified to
accomplish a change” [2]. CIA is essential for safety assurance, and it is indeed
prescribed by safety standards, e.g. IEC 61508 states that “if at any phase of the software
safety lifecycle, a modification is required pertaining to an earlier lifecycle phase, then
an impact analysis shall determine (1) which software modules are impacted, and (2)
which earlier safety lifecycle activities shall be repeated.”

CIA is often a difficult task in practice due to the size and complexity of safety-
critical systems [2, 7]. Inadequate CIA has further been among the causes of accidents
and near-accidents in the past [10]. Industry can clearly benefit from new CIA tech‐
nology and knowledge to more cost-effectively perform this safety assurance activity,
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enabling better risk avoidance and mitigation. Such technology and knowledge must be
linked to current practices and targeted at meeting industry needs and expectations.

Despite the importance of CIA for safety-critical systems, the current knowledge
about the state of the practice is limited. Our literature review identified no publications
that studied the CIA activity in depth. The available knowledge is based on studies that
(1) dealt with non-safety-critical systems, (2) analyzed data from past projects, (3) did
not focus on CIA, or (4) surveyed practices for safety-critical systems from a general
perspective. For example, Rovegård et al. [14] interviewed software practitioners to
analyze CIA issue importance, whereas Borg et al. [3] studied past issue reports of an
industrial control system. Some insights have been provided in studies on e.g. the align‐
ment of requirements with verification and validation [1] and on traceability [13].
Regarding the surveys, Nair et al. [12] studied safety evidence management practices,
including certain aspects related to change management, and de la Vara et al. [7]
conducted a survey on safety evidence CIA to explore the circumstances under which
it is performed, the tool support used, and the challenges faced.

We have conducted an industrial case study on CIA for safety-critical systems in
practice, particularly exploring engineers’ views on the work involved. The context is
a distributed development organization offering industrial control systems to a global
market. We interviewed 14 engineers in two units of analyses, constituted of two teams
located in Sweden and India, respectively. This paper reports a preliminary analysis
covering a subset of the interview guide.

Our long term goal is to support architectural decision making when evolving cyber-
physical systems, an endeavor in which the CIA is fundamental. As a step in this direc‐
tion, we explore three research questions: (RQ1) How extensive is the CIA work task?,
(RQ2) What are the engineers’ attitudes toward CIA?, and (RQ3) How could CIA be
supported? By better understanding CIA in a particular case, we can take steps toward
understanding how previous knowledge could be stored to support decision making in
software evolution, in line with our previous work on traceability reuse [3] and knowl‐
edge repositories [6].

The rest of the paper is structured as follows: Sect. 2 presents the case, and Sect. 3
describes the research methodology. We report our results and discuss their implications
in Sect. 4 and Sect. 5 concludes the paper and outlines future work.

2 Case Description

The case company develops safety-critical industrial control systems. The system under
study has evolved since the 1980s and needs to fulfill the IEC 61511 standard via Safety
Integrity Level 2 certification, according to the IEC 61508 standard. The developed soft‐
ware must be of high quality and therefore all changes to source code need to be analyzed
prior to implementation. Moreover, detailed system documentation is created and mapped
to the vertical abstraction layers in the V-model. The projects follow a rigid development
process with hundreds of collaborating engineers distributed globally. The code base is
over one million lines, dominated by C/C++ and some newer extensions in C# or VB.

Prioritized features originating from various customers (and sometimes pre-ordered
feature requests) are incrementally added and extensively tested. When developing new
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features and also when fixing issues to previously delivered features, several changes
are made to the source code. When the development is over, the development organi‐
zation needs to present a safety case for an external assessor, illustrating that the system
is acceptably safe for a given application in a given operating environment. The set of
CIA analyses is a crucial component of the safety case. Therefore, the safety engineers
at the case company have developed a semi-structured CIA report template, cf. Table 1,
to support the safety case in relation to the IEC 61508 safety certification. The developers
use this template to document their CIA before committing source code changes.

Table 1. CIA template used in the case company, adapted from Klevin [8].

(Q1) Is the reported problem safety critical?
(Q2) In which versions/revisions does this problem exist?
(Q3) How are general system functions and properties affected by the change?
(Q4) List modified code files/modules and their SIL classifications.
(Q5) Which library items are affected by the change? (e.g., library types, firmware)
(Q6) Which documents need to be modified? (e.g., reqts. specs, architecture)
(Q7) Which test cases need to be executed? (e.g., design/functional/sequence tests)
(Q8) Which user documents, including online help, need to be modified?
(Q9) How long will it take to correct the problem, and verify the correction?
(Q10) What is the root cause of this problem?
(Q11) How could this problem have been avoided?
(Q12) Which requirements and functions need to be retested by test organization?

Currently there is limited tool support available for CIA in the organization. The
CIA process is tightly connected with the issue management process, as all changes to
formal development artifacts require an issue report in the issue repository. All
completed CIA reports are stored in the issue repository as attachments to issue reports.
Developers typically access the issue repository using a simple web interface.

3 Research Methodology

We conducted a multiple unit industrial case study since the studied phenomenon could
not be separated from its context [15]. The case under study is the CIA activity in the
development organization described in Sect. 2. Two development teams constitute the
units of analysis, referred to as Unit Sweden and Unit India, respectively. Figure 1 shows
an overview of the study.

Four researchers iteratively (1) designed the case study and documented it in a case
study protocol. All the steps in the design were reviewed by senior researchers other
than the researchers. We constructed an interview guide (available online1) for semi-
structured interviews to be able to ask both close and open-ended questions. We asked
open questions in the beginning and end of the interviews, in line with the time glass

1 http://serg.cs.lth.se/fileadmin/serg/ImpRec_EvalStudy/ImpRec_InterviewGuides.pdf.
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interview model [15]. This paper reports only on an analysis of a subset of the questions
asked. Table 2 maps the RQs to specific parts of the interview guide.

Table 2. Breakdown from RQs to specific parts of the interview guide.

RQ ID Part of the interview guide1
RQ1. How extensive effort do engineers

spend on CIA?
Pre2-b Do you conduct CIAs daily/weekly/

monthly?
Pre2-c How much time do you spend on a CIA?
Pre2-d What are the greatest CIA challenges?

RQ2. What are the engineers’ attitudes
toward CIA?

Pre2-a What is your general opinion about the
CIA work task?

RQ3. How could CIA be supported? Pre4 What kind of support would you like to
have access to when conducting CIAs?

Pre3 We have collected data from your CIA
history. Could you please comment on
the metrics?

- Pre3-b: Do the numbers reflect how long
it takes to conduct a CIA? [TIME]

- Pre3-c: Some CIAs have been modified.
Does this mean they were harder?
[MODS]

The data collection consisted of (2) interviews in Swedish or English. For confiden‐
tiality reasons, a single researcher conducted all interviews. The same researcher (3)
transcribed all interviews word by word and sent them back to the interviewees for (4)
validation. We interviewed 14 engineers of whom 10 are developers that write source
code and its documentation. More specifically, we interviewed one R&D manager, one
safety engineer, three senior developers (incl. the team leader), and one junior developer
in Unit Sweden, and one product manager, one technical manager, four senior devel‐
opers (incl. the team leader), and two junior developers in Unit India.

Fig. 1. Overview of the research process. Smileys depict the number of researchers involved in
the various steps.
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As a preliminary (5) analysis step, the transcripts were copied into a spreadsheet
divided according to the interview guide. Longer answers were divided into smaller
chunks. The spreadsheet was then (5.1) cleaned to remove obsolete and unimportant
pieces of spoken language.

The iterative (5.2) coding process started by highlighting key statements, to establish
a quick overview of the data and support subsequent data navigation. We then applied
the following coding schemes: Pre2-a followed a two dimensional axial coding [16]
with “connotation to CIA” vs. “importance of CIA” coded into the interval [−2, 2] to
express positive/negative connotation and importance, respectively; Pre2-b used prede‐
fined closed codes: daily, weekly, bi-weekly, monthly, and rarely; Pre2-c was coded
onto a timeline, expressing either point estimates or (min.-avg.-max.) intervals; Pre2-d
employed open coding that evolved into 12 codes: test cases, documents, information
overload, prolonged time, motivation, confidence, requirements, time estimation, avoid‐
ance, root cause, system version, and conformance; Pre3 used the interval [−2, 2] to
signal whether the proposed metrics were indicative of time needed, and difficulty to
conduct, a CIA; Pre4 used open coding that developed into: tool, training, template,
search, traceability, and reviews. The coded interviews were then (5.3) analyzed to detect
patterns and draw conclusions based on the qualitative data.

Finally, we (6) report our results in this publication. To preserve the confidentiality
of the interviewees, we do not provide full traceability from the answers. We use the
labels engineer/developer and junior/senior when needing to be more specific.

4 Results and Discussion

4.1 RQ1: Extensiveness of the Change Impact Analysis Task

To understand how extensive the engineers consider the CIA work task to be, we inves‐
tigate: (1) how frequently engineers perform CIA, (2) how much time is needed to
complete a CIA, and (3) what engineers consider as the major CIA challenges.

Change Impact Analysis Frequency. All the interviewees experienced with CIA
stressed that the frequency of conducting CIA varies much, from daily to monthly CIAs,
depending on the development phases. Four developers reported that they sometimes
conduct CIA on a daily basis, and four other developers estimated that they do it weekly
during the most intensive periods. Four other interviewees explained that their CIA
intensity goes down to monthly during certain periods, while three interviewees
answered bi-weekly CIAs at slow times. Five interviewees shared only estimates of their
average CIA intensities: four reported weekly and one stated daily. A senior engineer
in Unit Sweden estimated that a typical developer conducts 20 CIAs related to bug
corrections per year. A senior engineer in Unit India stated a higher estimate: “in the
thick of a project, a developer will do [a CIA] almost every day”. We conclude that the
engineers estimate the average intensity to be one CIA per week, considering variations
due to cyclic development phases and parallel projects.

The main reason for the variation is the stage-gate development process employed
by the company; at the initial stages of a project, when the bulk of the new development
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is conducted, there is considerable source code churn, and changes are not managed on
the level of individual issues. A senior engineer explained “we package new develop‐
ment as generic items in our issue tracking system, and then we conduct one compre‐
hensive CIA”. Once a project reaches the “code complete” milestone and the formal
verification phase is initiated, the goal is to stabilize the quality of the system, and all
changes after this stage are considered bug corrections. The change management process
then increases its granularity to individual bug resolutions.

Change Impact Analysis Effort. We asked the interviewees how much time they
invested in a CIA, by providing the minimum, average, and maximum time needed. For
the four non-developer interviewees, we instead asked them to approximate the time
developers spend on CIAs. Four interviewees reported only an average CIA effort, i.e.,
a point estimate. Figure 2 presents an overview of the collected data. Similarly to the
frequency results, the time required to conduct an individual CIA varies substantially.
A senior developer stressed that the effort needed depends on the complexity of the
involved component, and another senior developer expressed that it also depends on the
structure of the corresponding documentation.

Fig. 2. Interviewees’ estimates of CIA effort. Bars depict minimum and maximum effort, circles
show the average. Interviewees 5–14 are developers.

Three interviewees estimated that the average CIA requires 1–2 h, four interviewees
answered 4–6 h, and three interviewees reported 1–2 days. On the contrary, two inter‐
viewees answered that they complete the average CIA in less than an hour, more specif‐
ically 30–40 min and 5 min, respectively. A senior engineer shared his rule of thumb
regarding issue management and CIA: “a normal issue, or slightly more challenging
than normal, takes in total roughly a man week to resolve. I estimate the CIA to require
10 % of that time, 4 h. /…/ Then there are much faster issues that are resolved in a man
day. 10 % of that means about 1 h for the CIA”.

Eight of the interviewees claimed that the minimum time required to complete a CIA
is 30 min or less, of which two answered 5 min or less. Two senior developers in India
reported that quick CIAs still require an hour or two, motivated by “there are 13 questions
to correctly answer” and “if you fill it in honestly, without copy-paste”. Regarding the
maximum time, four interviewees claimed 1–2 days, two answered a week, and a junior
developer instead expressed “several months of calendar time”. Two senior developers
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in India shared contrasting views, claiming that the most time-consuming CIAs still
could be finished in 15–20 min.

We noted three main explanations for the reported variation. First, it is hard to detach
the CIA from the general issue resolution, thus the interviewees interpreted the questions
differently. The exploratory work involved in reproducing and understanding an issue
is often intertwined with the CIA. To understand an issue well enough, developers must
sometimes set up a specific test environment, stepping through source code, etc. As a
senior developer put it: “there is considerable exploratory work, and it would require
almost as much time without the formal CIA”. Second, the complexity among the parts
of the system is not constant. The same interviewee considers issues related to the
embedded environment to be the most complex, and maintenance issues on isolated
components to be simple. Quick CIAs occur when an issue needs to be corrected in
several system versions, and parts of the CIAs can be reused. Third, experienced devel‐
opers conduct CIAs faster than novices. Three junior developers reported relatively high
estimates, and two senior engineers stressed the importance of experience and system
understanding for successful CIAs.

Major CIA Challenges. We received 25 challenges from 14 interviewees that cover
both general and specific aspects, presented in Table 1. Note that Table 1 comprises also
questions that deal with issue management in general, e.g. Q9–Q11, as reflected by some
interviewees’ answers.

The most frequently mentioned general challenge was related to motivation, i.e.,
understanding why comprehensive CIAs are part of the process and recognizing their
value. The difficulty to appreciate the CIA activity was primarily expressed in the
Swedish unit of analysis, by both seniors and juniors alike; seniors struggling more with
motivating others, whereas juniors talked about motivating themselves. A senior engi‐
neer explained: “my main challenge is to explain and motivate why we do CIA, because
if you know why you have to do it, you accept it. But we must continuously remind
ourselves why we do it.” and “if we get the developer to see that the CIA is very good,
it helps me in my work /…/ That’s what we´re aiming for”.

The second most commonly mentioned general CIA challenge is related to infor‐
mation overload. The three most senior engineers in the study, explained that obtaining
a system understanding is hard due to the complexity. Apart from the source code, there
are numerous documents describing the system. The sheer number of software artifacts
contests the system overview, and makes traceability information highly complex. A
senior engineer stated: “finding the right information has historically been the major
challenge /…/ In principle you had to hunt down key people and ask for documents and
dependencies, and you didn’t necessarily get the answer”.

Three additional general CIA challenges were mentioned. First, sometimes devel‐
opers need to update previous CIAs that were conducted a long time ago (half a year
before according to a junior developer). Returning to old issues is difficult and requires
considerable time and effort. Second, one interviewee said that his major challenge was
to trust his own CIAs, i.e., establishing confidence in the answers to the questions in
Table 1. As he explained it: “I’m not sure whether my answers are true or not, I cannot
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evaluate it. I am the judge.” Finally, one senior interviewee expressed that the major
challenge was that the developers do not follow the CIA guidelines.

Interviewees reported three CIA challenges specific to the questions in Table 1, all
of them reported by two or three interviewees: (1) selecting which test cases should be
executed to verify the changes (Q7), (2) understanding which requirements are affected
by a change (related to Q6 and Q12), and (3) reporting which documents need to be
updated to reflect the change (Q6). A senior developer explained that “the question about
test cases is supposed to cover both directly and indirectly affected test cases, and the
indirect ones are quite difficult.” Regarding the requirements, another senior developer
said: “Requirements traceability is difficult. We do not have requirements that cover all
aspects, and it is hard for developers to stay on top of all requirements. [As developers]
we don’t work continuously with the requirements.”

Concerning the challenges that deal with issue management in general, the inter‐
viewees in Unit India reported four major challenges. Three interviewees explained that
finding the root cause of an issue (Q10) is a major challenge. Two interviewees pointed
out suggesting how the issue could have been avoided (Q11) as particularly difficult,
and two others highlighted determining which system versions are affected by the issue
(Q2). Finally, a senior developer in Unit India considered estimating the resolution time
(Q9) as the major challenge. Our interviews suggest that developers answer the three
questions Q9–Q11 with different levels of ambition, and two interviewees from Unit
India indicated that they invest considerable effort answering these questions.
Concerning determining affected system versions, a senior developer clarified: “some‐
times you study the source code, sometimes you have to run tests in our lab [on multiple
versions] /…/ This is not hard, but time-consuming.”

Based on our interviews, it appears that determining how a change impacts the
product source code is less of a challenge than determining impact on non-code artifacts,
e.g., requirements, specifications, and test cases. Considerable research effort has been
directed at CIA on the source code level [11], but neither junior nor senior engineers
discussed source code in relation to the major challenges involved in CIA. Our results
instead support conclusions from Lehnert [9] and de la Vara et al. [7], i.e., there is a
need for CIA research that considers different artifact types.

4.2 RQ2: Connotations of Change Impact Analysis

We explored the engineers’ connotation to “change impact analysis”, i.e., the emotional
association carried by CIA, in addition to the explicit or literal meaning (the denotation).
Furthermore, we map the connotation to the impression of how important CIA is to the
individual interviewee, as presented in Fig. 3.

The interviewees’ attitudes toward CIA represent all quadrants in Fig. 3. No inter‐
viewees expressed very strong positive or negative connotations to “change impact
analysis”. Most answers are balanced and we note that a majority of the engineers
consider their CIAs important. Several interviewees shared positive associations, e.g.,
“a healthy sign” and “shows that we do complex software engineering”. Also, several
interviewees had a neutral connotation: “no values on a personal level” and “just part
of the job”. On the other hand, two interviewees expressed negative connotations: “a
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too heavy construct in our organization”, “unfortunately very rigid activity”, and “could
be done in a better way”.

Considering the interviewees’ perceived importance of the CIA activity to their
work, all levels are covered. Responses range from “for some issues it is just worthless
stuff, done for the process” to “professionally, it is very fundamental” and “side effects
are extremely important in our complex product”. We identified no indications of atti‐
tude differences between the two units of analyses. Regarding the level of seniority,
there is a slight tendency of senior engineers considering CIA to be more important than
juniors. This is no surprise, as the seniors have seen more cases of source code changes
causing side effects, especially from earlier development work when the CIA was less
formal, as explained by one senior engineer “we have seen many cases when fixes
introduced bugs”. On the other hand, lack of experience can also induce a positive atti‐
tude, as expressed by one junior developer in Unit India: “This is my first company.
Whatever I see, I feel is good”.

4.3 RQ3: Supporting Change Impact Analysis

Envisioned Change Impact Analysis Support. As one might expect when asking
software engineers for solutions to support CIA, the most frequent answer was tool
support. Three interviewees suggested increasing the level of automation in CIA by
introducing some kind of tool. Interestingly, all these interviewees are seniors, and all
discuss approaches to identify impact beyond the source code level. A possible explan‐
ation is that senior engineers are well-aware of the large efforts on establishing tracea‐
bility in the organization, and that they consider the investment to be underutilized. One
interviewee explained how a tool could iteratively follow traces through the system,
from an input source code file or module, to a design description and its corresponding
design tests, then continue up the abstraction layers to functional specifications and all
the way up to the requirements. This could allow test identification directly from
requirements, as a tool-oriented solution that would close the often challenging gap
between requirements and test cases [1]. Another suggestion given by a recently
employed senior developer was that “it is strange to attach a CIA report as a free-text
string in a third party tool. In my previous company, this would have been done in an
internally developed tool to better control the input […] It would have been much easier

Fig. 3. Interviewees’ attitudes toward CIA. The y-axis shows the general connotation of CIA,
whereas the x-axis depicts how important interviewees consider the CIA.
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to manage and interpret the data if the collection was more controlled.” Indeed other
companies use internal tools for CIA of safety-critical systems [7].

Two senior interviewees proposed changes to the CIA template in Table 1. A senior
engineer considered security to be of critical importance to the future of the organization,
and requested adding explicit security questions to the template. The other interviewee
would like to see the question about root cause analysis to be more elaborate (Q10).
The same interviewee also advocated using more than one version of the CIA template,
adapting the questions to the issue at hand, to address the impression of having a too
rigid CIA process. Another suggestion mentioned by two interviewees, a junior and a
senior engineer, is to increase the training of new employees on the specifics of CIA in
the case company, motivated by: “a new guy needs to be thoroughly trained on these
questions /…/ I see newcomers just filling in things for the sake of moving the issue
through the process”.

Individual interviewees proposed additional improvement suggestions. First, the
search functionality in the issue tracking system should be improved. Although no inter‐
viewee reported the current issue tracking system to be a major challenge to CIA, several
mentioned that the tool was old and not user friendly. Another considerable limitation
is a lack of full-test searchers in the issue tracker. Our previous work explored the
potential of introducing state-of-the-art search technology to index full-text descriptions
of issue reports [5]. Second, one senior engineer considered the source code and the
documents to be two discrete information spaces with few connections. Despite all
efforts to maintain traceability at the company, the interviewee wanted to improve bi-
directional connections between documents and source code. Third, one junior devel‐
oper thought that the CIAs “are not taken in a serious way”, and proposed introducing
CIA reviews before submitting them, as before committing code.

Measuring Change Impact Analysis Support. Prior to the interviews, we explored
the CIA history stored in the issue tracking system, and constructed two measurements:
TIME and MODS. We calculated these measurements for the relevant interviewees and
presented the results during the interviews.

The first proposed measure, TIME, is the time between a developer is assigned an
issue and the first CIA report is submitted. TIME thus targets CIA effort, but no inter‐
viewee considered the measure to be correlated with the time it takes to actually conduct
the CIA. Six interviewees directly rebutted the measure, and two did not know how to
interpret it. The most skeptical views explained: “it’s definitely a question of priorities”,
“I work on several parallel products, and that measure can be anything”, and “you have
to measure when I start making related changes”. We conclude that TIME is a too
confounded measure to be used for evaluating solutions that aim at decreasing the time
needed for CIAs.

The second proposed measure, MODS, is the number of modifications on a CIA
report after its first submission. We suggested using this measure as a proxy for the
difficulty of completing a particular CIA, thus related to CIA accuracy. The opinion
about the validity of MODS differed. Three interviewees were positive or slightly posi‐
tive to the measure, one of them claimed: “more modification clearly means it was a
hard CIA. It means you couldn’t immediately capture everything”. On the other hand,
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two interviewees invalidated the measure entirely by showing that numerous modifica‐
tions only deal with typos and copy-paste errors. One of them said: “I use Notepad
without any spelling correction. /…/ When I paste it in the issue tracking system and
submit, I get to see everything on a big screen and note the mistakes”. Another inter‐
viewee instead writes the CIA directly in the issue trackers input field, but explained:
“one of the problems with the tool is that it doesn’t even stay open in five minutes, and
it doesn’t even save your data [before closing]. This is such a worst tool.” When devel‐
opers rush submitting CIA reports before the tool closes due to inactivity, the chances
of introducing typos increases. We conclude that MODS is not a reliable measure for
evaluating whether a solution leads to more accurate CIAs.

In conclusion, TIME appears to not at all be correlated with the time needed to
conduct CIA. On the other hand, MODS received some supporters, but others show it
is confounded by trivial changes to such an extent that it cannot be trusted. While both
measures are easy to collect from most systems logging time stamps and revision history,
they both need improvements. TIME should originate from actual changes related to an
issue rather than when the issue is assigned, and MODS could possibly be filtered to
remove insignificant changes such as spelling corrections.

5 Conclusion and Future Work

We report on an industrial case study on engineers’ perspectives on Change Impact
Analysis (CIA). We interviewed 14 engineers in two units of analysis in a global safety-
critical software engineering context. Both the frequency of CIAs and the effort required
to complete a CIA vary considerably, depending on the current phase of the development
project as well as the complexity of the specific change. As a yearly average, our results
suggest that developers in the case company spend roughly 50–100 h on CIA, corre‐
sponding to one CIA per week with 1–2 h effort each. A senior engineer also shared his
rule of thumb: “CIA takes roughly 10 % of the time to resolve a normal issue”. We
reported several major CIA challenges including communicating to developers that
CIAs are necessary and beneficial, and to navigate the large document space accompa‐
nying the source code, especially the requirements. We present empirical evidence
confirming that CIA is an important but costly activity in safety-critical software devel‐
opment, worthwhile to address in future work.

We explored engineers’ attitudes by mapping their connotation of CIA versus the
perceived importance of their CIAs. All combinations were identified in our study, as
well as a trend that CIAs are considered increasingly important with increasing seniority.
Our interviewees shared eight CIA improvement suggestions, including additional tool
support, improved traceability, newcomer training, and CIA reviews. Quantitatively
measuring the value of CIA support appears difficult however, as CIA is rarely conducted
as an isolated activity, but rather is deeply intertwined with issue management and
development in general. We found that simple analysis of CIA revisions is too
confounded to evaluate improvement suggestions, thus future work is needed to develop
reliable quantitative measures.
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Our preliminary study is subject to a number of limitations. Due to a non-disclosure
agreement, both the interviews and the analysis were done by only the first author (cf.
Fig. 1). In the next step of this study, we will address the single-perspective bias by
adding another researcher in a validation step, e.g., to evaluate the coding schemes.
Moreover, we plan to further increase the validity of our conclusions by data triangu‐
lation, i.e., by studying real CIAs stored in the issue tracker.

When making architectural decisions on how to evolve a software system, under‐
standing the impact of competing alternatives is important, i.e., the CIAs are valuable
input to the decision maker. In prior work, we have stored trace links from previous
CIAs in semantic networks to help future developers by recommending potential impact
[3, 4]. Now we aim to raise the level of abstraction to study impact of architectural
decisions, i.e., to provide less granular recommendations for evolving software systems.
As part of our ongoing work, we have proposed storing experiences from previous
decisions in a knowledge repository [6]. As our current case study indicates that engi‐
neers put numerous hours into CIAs, and typically value their content, we argue that
CIAs should also be incorporated in the knowledge repository.

Acknowledgement. The work is partially supported by a research grant for the ORION project
(ref. number 20140218) from The Knowledge Foundation in Sweden.
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Abstract. In the automotive domain, safety plays an ever increasing
role in the development of future vehicles. Since the automotive market
is heading towards fully automated driving cars, the amount of new assis-
tance features for ensuring safe and reliable operations is rising. Today,
requirements, design and verification must follow the stringent specifi-
cations from standards such as ISO26262 for functional safety. Thus,
simulation in early design phases is key to develop safe and reliable sys-
tems and to reduce costs and time-to-market. UML as a model-based
approach, helps to overcome the complexity issues of safety-critical sys-
tems and improves the communication between different stakeholders
(e.g. hardware, software, safety, security). In this paper, we present a
novel methodology to automatically generate testbenches for simulation
based verification starting from a first safety analysis and derived safety
requirements. Through early simulation of UML/MARTE models with
constraint random stimuli and parameters we are able to derive further
requirements for safety-critical system development. Furthermore, our
approach is compliant with the requirements, design and verification flow
of ISO26262. We will show the benefits by applying our methodology to
an industrial use case of a battery management system.

Keywords: ISO26262 · Safety · Automotive · Process · UML ·
MARTE · Verification · Simulation · Model-based

1 Introduction

In the world of today, the increasing number of new assistance features for ensuring
safe and reliable operation in modern vehicles, also have the implication of increas-
ingly complex systems. The development and verification effort of these highly
complex systems in an ever increasing and more elaborate task, since the amount
of electric/electronic (e/e) components is steadily growing. In safety terms, these
systems must fulfill standards such as ISO26262 [4] (functional safety standard for
c© Springer International Publishing Switzerland 2016
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road vehicles). Therefore, OEMs and their suppliers are required to develop and
test their systems according to certain levels, alias ASIL levels.

In the effort to cope with the high complexity in the design of safety-critical
systems, a model-based approach helps to unite stakeholders from different
domains. Furthermore it supports non-safety specialists in understanding the
problems of the design of safety-critical systems. In addition to this, provides
great help in coping with the vast range of requirements that must currently be
met. MARTE was introduced as an extension of UML2 to overcome the high
complexity in the design of real-time and embedded systems. MARTE provides
capabilities to model hardware and software, as also timing, resource and per-
formance behavior. It is used by many semiconductor vendors and suppliers and
is the driving system-design language in the European Catrene project entitled
OpenES [3].

Simulation plays an ever increasing and important role in the verification of
the modern car because of its advantages in easily varying the virtual environ-
ment and also representing the car in different variations, and this not least from
an economic perspective. These tests can be monitored and reproduced every
time. Another advantage of simulation is not only can it be run day and night,
but also massively in parallel.

In this work, we present a novel methodology to simulate and verify MARTE
designs supported through our Eclipse framework called SHARC [1] (Simulation
and verification of HierARChical embedded microelectronic systems). With the
help of our library, we link fast executable digital, analog mixed signal and
mechanical simulation-models with MARTE design models. These simulation-
models are implemented in open-source languages such as SystemC (-TLM) and
SystemC-AMS. Through these reusable components we achieve an early behav-
ior simulation of the whole system. The advantage of our approach is that design
models are tightly and seamlessly integrated into the design flow of ISO26262.
From this early system level simulation we are able to obtain further require-
ments for the design of hardware and software for real-time applications (timing,
power, thermal). With our proposed solution there is no need to switch between
several design or verification tools. Both state-of-the-art analytical methods and
simulation-based verification can be handled by using MARTE, SysML and our
approach. Tests derived from safety requirements can be reused throughout the
entire development cycle until final system integration and validation. We use
constraint random verification, as defined in the UVM standard, to cover all
possible parameters and various variants of a vehicle. Any shortcomings in the
design can thus be detected much earlier in the development process to reduce
costs and time-to-market.

2 Related Work

Popular approaches [5,8,10] have shown that analysis and verification of UML
models with methods methods such as failure mode and effect analysis (FMEA),
fault tree analysis (FTA), design space exploration (DSE), design walk through,
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hardware architectural metrics evaluation or even code-generation are very effi-
cient for testing safety-critical systems. The drawback of UML, in terms of code-
generation and simulation to verify the system-behavior is that this is done at
a very late stage or even at the end of the design process when all details are
well known. Later changes in design are costly, they result in inconsistent mod-
els and furthermore reverse engineering is an error prone and cumbersome task.
The majority of components in new projects are reused and simply extended by
the addition of new features to reduce costs and time-to market. The reuse of
complete safety concepts, well-trusted designs and mechanisms is thus growing
more important as a means to reduce the effort in developing complex systems.
This situation prompts the urgent demand for new techniques to simulate the
behavior in early development phases by reusing verified system components.

In [9] the authors presented three different analysis techniques for architec-
tural models described in EAST-ADL, to guarantee the quality in the context of
ISO26262. One of the proposed techniques is the simulation of EAST-ADL func-
tions in Simulink. The behavior of each function was linked to FMU or Simulink
models to facilitate the simulation. The authors also described mapping rules for
the EAST-ADL to Simulink transformation (one-to-one mapping). The results
of the simulation have been traced back to the requirements. This approach was
applied to an industrial use case of a brake-by-wire system on design level. In
contrast to our approach, however, they use proprietary simulation engines with
high license costs and external tools which are not integrated into the design
and development flow.

The authors of [11] demonstrated how to use MARTE for hardware design
and simulation. They introduced a step-by-step methodology for hardware mod-
eling with Hardware Resource Models (HRM) stereotypes. The platform models
are refined until the final platform class is reached. In a later step, these mod-
els are used to generate code with the help of a Java plugin. A tool under the
name Simics was used to facilitate the simulation. Instead of using the whole
MARTE spectrum for simulation, this approach only uses HRM models for code
generation of very detailed platforms instead of system level design.

In [6] the authors presented a simulation-based methodology for require-
ments verification of SoC designs. This automatically generated a white-box
and black-box verification platform from requirements specified in textual spec-
ification format. During a simulation-based verification these very fication plat-
forms are simulated together with the SoC design to verify whether or not they
fulfill the given requirements. Lexical, syntax and semantic analysis were used
to parse textural requirements into a semi-formal format. This approach would
benefit from a standardized format such as SysML to define the requirements in
tight interaction with the system design. Furthermore, this approach cannot be
adapted to an industrial use case.

3 Methodology

Since the design and development of safety-critical systems is a cumbersome and
costly task, it needs novel methods to test evaluate the design both in the early
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phases and also during and throughout the entire development process. The
reusability of well-tested designs, mechanisms or even complete safety concepts
is an issue that is currently becoming ever more prominent. Against this back-
ground we thus propose simulation-based verification of UML/MARTE design
models on the preliminary architectural assumption (preAA) level, depicted in
Fig. 1. For this simulation we are using our reusable components from our Sys-
tem Component Library (SCL). This library includes all major components for a
high level simulation of systems from different domains e.g. automotive, mobile
computing, health care or multimedia. It also includes components in different
versions and on different abstraction levels. These models serve on the one hand
as the starting-point for future developments and furthermore as the verified
and golden reference for integration aspects. The properties of the models are
all taken from the standard definition for UML/MARTE system, hardware and
software models. In order to bring the components of the SCL to life, they are
linked to executable models in SystemC(-TLM) or SystemC-AMS. More infor-
mation on this methodology is given in [12,13]. Based on the functional SRs
from the functional safety concept, defined as SysML models, and the informa-
tion from the preAA we are able to obtain further requirements for the technical
safety concept, described in Sect. 3.1. By also taking non-functional properties
(timing, power, thermal) into account, we are able to refine the functional SR
and to define the technical SR. Furthermore we are able to obtain inputs for our
final system design before the step of costly implementation of faulty design is
taken.

Fig. 1. Seamless integration of simulation-based verification in the ISO26262 design
flow

Testbenches in the Universal Verification Methodology (UVM), to test the
design on preAA level through simulation are automatically generated from the
information and constraints of the functional SR defined in SysML. Furthermore
constraint random verification helps to cover all possible parameters and variants
of the system, but also to vary environmental conditions, to find corner cases.
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These testbenches can be used throughout the whole development cycle through
to the final system integration and validation.

3.1 UVM Testbench Generation from SysML Requirements

We use a simple semi-formal language to define our requirements as approaches
such as [6] have shown that informal languages can be too ambiguous for our
application. The ISO26262 also promotes the view that informal languages
should only be used for applications with low ASIL levels such as A and B
and highly recommends the use of semi-formal requirements specifications for
higher safety goals such as C and D. We thus we decided to use the benefits
of the UML profile SysML for the definition of the requirements. As SysML for
requirements lacks in proper definition for safety, we defined an extension as
depicted in Fig. 2. Besides standard attributes id and text, following attributes
such as type (functional SR, technical SR, hardware SR, software SR), status
(proposed, assumed, accepted, reviewed), ASIL level, and pass/fail have been
added to the definition. Attributes such as id, text, status and ASIL level are
also recommended by the ISO26262 standard. Each safety goal in our approach
is therefore clearly defined by our extension for safety requirements. As men-
tioned in the previous chapter, the top level safety requirements (Safety Goals)
are derived from the hazard and risk analysis. These safety goals lead to the def-
inition of the functional safety concept. Here the functional SR are derived from
the safety goals in conjunction with the preAA. At least one functional SR shall
be specified for each safety goal, but also one functional SR can also be valid for
several safety goals. Each functional SR is described by the defined attributes
in our extension for safety requirements. Furthermore each functional SR in
our approach has several defined constraints for functional and non-functional
properties. These constraints are defined in the MARTE value specification lan-
guage (VSL) and specify the boundaries for a fail-safe operation of the system.
These constraint precisely captures the original requirement and opening up,
through computer readable formalism, the possibility of subsequent computer-
aided analysis of the characteristics of this design. The MARTE nfpConstraint
are defined by arithmetic; logical or time expressions formed by combining oper-

Fig. 2. An extension to the SysML profile to cope with safety requirements and to
achieve traceability



364 R. Weissnegger et al.

ators such as (‘<’,‘≤’,‘=’,‘�=’,‘≥’,‘>’) but also ‘and’, ‘or’ and ‘xor’. The syntax
used for our constraints follows the following patterns:

Multiple constraints can be connected via simple Boolean statements such as:

The technical SR can be derived after the systematic specification of the
functional SR and design of the preAA with the help of our SCL. The ISO26262
specifies the technical safety requirements as following [4]:

“The technical SR shall be specified in accordance with the functional safety
concept, the preliminary architectural assumptions of the item and the fol-
lowing system properties: the external interfaces, such as communication
and user interface; the constraints, e.g. environmental conditions or func-
tional constraints; and the system configuration requirements. The ability
to reconfigure a system for alternative applications is a strategy to reuse
existing systems.”
“Safety Mechanisms: The technical safety requirements shall specify the
response of the system or elements to stimuli that affect the achievement
of safety goals. This includes failures and relevant combinations of stim-
uli in combination with each relevant operating mode and defined system
state.”
“The system design shall be verified for compliance and completeness with
regard to the technical safety concept using the verification methods e.g.
Simulation for ASIL level higher than B.”

In order to support the specification of the technical SR and furthermore
enable the verification in compliance with the technical safety concept, we defined
a novel methodology to derive further requirements and inputs from the func-
tional SR in coherence with the early system design (preAA). Using the syntax
for safety requirements we are able to generate UVM verification components
and whole testbenches from the definition of the functional SR and their con-
straints. For each constraint of the functional SR, a new UVM validator is added
on the ports or one end of the signal. A validator consists of a configurable com-
parator with the pin/port/signal attached to one input and a reference signal
or constant value attached to the second input. The outputs of the comparator
can be either 1 (true) or 0 (zero) and are connected via arithmetic or algebraic
function blocks to create the boolean operations. In addition we use non safety
requirements in the SysML specification to provide stimuli blocks for relevant
operating modes and driving maneuvers. Depending on the non safety require-
ments and constraints and if the pin/port/signal is an unused input of a block
the testbench generator creates a stimuli block and attaches it. This block gen-
erates either values that are within the specifications in order to validate proper
operation or to generate invalid stimuli to verify safety mechanisms within the
model. To vary the parameters and stimuli of our system and to cover up corner
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cases we use the benefits of Coverage-Driven Verification (CDV), with its aim to
detach from direct - user depended - testing [2]. This methodology provides the
definition of so called verification goals, which can be verified by smart test sce-
narios. The intelligence is mainly achieved by creating simulation configurations
(stimuli), with respect to some predefined constraints. This concept is widely
known as Constraint Random Verification (CRV) [7]. CRV mainly consists of
two core concepts, which is on one hand the usage of Markov-chain Monte Carlo
to guarantee coverage through probability and on the other hand the process-
ing of constraints with SAT solvers. As described above, it is important to vary
parameters such that many different input combinations can be covered. The
defined internal values of the DUT vary according to a predefined probability
distribution. In this case we use Gaussian distribution with the definition of a
value of 3 sigma.

4 Usecase: Battery Management System

We have applied our methodology to an industrial use case, an electric vehicle
(eVehicle) system provided by CISC Semiconductor, to more fully illustrate its
innovative capabilities and benefits. As more and more vehicles are now pow-
ered by Li-ion batteries, the challenge for engineers to ensure reliability and
fault tolerance is also greatly increasing. It is crucial for ensuring safe operat-
ing conditions that the battery management systems (BMS) measure voltage,
temperature and current of the battery very precisely. This information must be
forwarded to a vehicle wide controller network to ensure a reliable and fully uti-
lized system. Problems with overheating or even explosions have been frequent
in the past. The main cause of these problems was an excessively high energy
intake from regenerative braking or harsh environmental conditions. Manage-
ment systems and mechanisms are thus essential to assure that persons are not
put at risk and that no damage is caused. The overall system model of the eVehi-
cle is depicted in Fig. 3. This model gives an early view of the system on preAA
design level with little to no assumption about the actual hardware. It is com-
posed of the battery, controller, inverter, dc-motor and the battery management
unit (BMU). The BMU is included in the battery model. The driver provides
the desired speed for the eVehicle. This can be set according to standardized
maneuvers such as the New European Drive Cycle (NEDC). The controller is a
model for a PI state-space controller and maintains a constant speed based on the
information about the state variables, motor armature current and motor-speed.
The inverter model implements an inverter function for a PM-DC motor driving
stage. It compares the actual battery voltage and the requested controller voltage
to maintain the PM-DC motor terminal voltage. The battery model simulates
the behavior of a Li-ion battery pack composed of a defined set of single cell Li-
ion batteries. The appropriate number of single cells is connected in parallel and
series to obtain the necessary capacity, maximum current and terminal voltage.
The battery pack’s terminal voltage is calculated based on the defined parameter
and the battery current. A BMU is connected to the battery to measure voltage,
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Fig. 3. Design under test (DUT): ports on the outside of the eVehicle class enables the
connection to verification components

current and temperature of the cells/modules. The BMU computes the SOC,
State-Of-Health (SOH) and is responsible for cell balancing, cell protection and
demand management of the battery. These computed values can then processed
via a CAN controller as digital values to the power train controller. In addition,
the external load environmental conditions such as temperature can be changed
during the simulation.

In a next step the functional SR are derived from the definition of the safety
goals. An example for this would be to reuse the battery pack from a prior design
which has known operating conditions and test if it is powerful enough to power
the motor chosen for the new design (using a preliminary specifications provided
by the manufacturer).

– The maximum operation temperature allowed for the battery cells is 100◦ C,
therefore this temperature shall never be reached.

– Due to the choice of battery the maximum current drawn from the cells shall
not exceed 10A.

– The cell/module voltage shall remain between 2.5 V (empty) and 4.25 V (max-
imum charging voltage)

– The state of charge for the individual cells shall not be lower than 10 % nor
higher than 110 % of design capacity.

While textual or informal definition is easy to read, according to ISO26262 a
semi-formal notation for requirements specifications is best qualified for ASIL
levels higher than B, shown in our requirements diagram in Fig. 4.

These requirements and constraints can be used to test only the battery to
be included as DUT. As i bat is modeled as an input (e.g., a current sense ADC
in the BMU) and temp as output, it would merely sweep the current from 0–10A
(0 as no lower boundary was defined) and evaluate if the temperature, voltage
and SoC remain within their respective bounds.

We use non-safety requirements to define driving maneuvers with an assumed
load and different environmental conditions. By this means we can automati-
cally create a testbench for the entire design as shown in Fig. 5, including stim-
uli, validators and scoreboards. The validator verifies that an input signal does
not exceed a given threshold or remains bounded between two limits. This can
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Fig. 4. Definition of safety and non-safety requirements to derive automatically test-
benches for verification

basically be represented as a comparator with a user configurable operation
(‘<’,‘≤’,‘=’,‘�=’,‘≥’,‘>’) and one or two constants. Nevertheless, these descried
thresholds are not stringed constants. The constraints can also describe temporal
parameters as a certain peak current may be drawn from the battery but not for
a prolonged period of time. The validator components are provided by our SCL
and exists in many common configurations. Each validator has a boolean out-
put that indicates if the constraints have been violated by the monitored signal.
The scoreboard can be configured to terminate the simulation upon violation or
continue and flag the simulation accordingly. Using our tool these problematic
simulations can be filtered and re-run using more output or a smaller timestep
to gain more insight into the problem. Testbenches from each design step can
be reused for the further steps in order to improve test coverage. This means
that while the preAA will not contain exact timing information for every specific
subsystem, its testbenches can still be reused in later design phases to verify that

Fig. 5. Automatically generated testbench for the eVehicle model using UVM compo-
nents derived from specification
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the overall system is still behaving as initially intended. This design approach
incorporates elements from the test-driven, continuous integration design flows
commonly used in agile software development in the sense that for each step
the constraints from parent and current level serve as unit-tests. The scoreboard
is used to check every commit/change for errors. This is also useful in case of
refactoring e.g., if for reasons of supply problems a part/component has to be
replaced rather late in the design.

As mentioned previously stimuli are required in order to correctly evalu-
ate the overall design (integration testing) and not only individual components
(unit testing). While it would be possible to automatically generate the stim-
uli for the overall systems from the constraints (e.g., linear search of the entire
value space for an input in correlation with each other input trying to find
corner cases that best test the design) most of them would not represent any
realistic environment. For this reason we decided to use non-safety requirements
and derive stimuli from these. Using the eVehicle as an example this could be
a standardized driving maneuver using a number of predefined locations for
environment parameters (e.g., ambient temperature and humidity). It is also
important to test if the designed safety mechanisms and safe states operate as
designed. For this reason we could either define stimuli that provoke the trig-
gering of a mechanism (e.g., driving at full speed for a prolonged period of time
under high ambient temperature to test if the system can prevent overheating)
or due fault injection. To the terms of software development this would represent
a form of mutant testing where a deliberate fault is simulated in order to verify
that a safe state can be reached. This is especially useful if existing designs are
reused or a fault tree is given by the vendor to define the stimuli. The traces of
our simulation-based verification within UML/MARTE are depicted in Fig. 6.

Fig. 6. This figure presents traces from one run of our seamless simulation-based ver-
ification methodology, e.g. temperature, voltage, current and SOC of the battery
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This shows the analog signals such as module voltage, driver, module current,
load, celltemperature and work, which are monitored by our UVM components.
The DUT was stimulated by a driver with the street maneuver eu driving sce-
narios. Only one run, with a specific configuration, is shown in this figure. As
the number of the simulation tasks for different parameter configurations can be
relatively high and are independent of each other, we use a cloud-based solution
for UVM [14] in order to parallelize our simulations to a very significant extent
and gain a virtually linear acceleration. This provides a flexible way to allocate
several worker instances to speed-up the time needed to simulate thousands of
tasks.

5 Conclusions

In this paper we presented a simulation-based verification methodology tightly
and seamlessly integrated in the safety-lifecycle (v-model) of the functional safety
standard ISO26262. Our tool-aided methodology can be used from early sys-
tem design, throughout the entire safety-lifecycle through to system integra-
tion and validation. Since millions of testkilometers now need to be managed,
our simulation-based and constraint random approach helps to cover up a high
percentage of possibilities. From an early safety analysis in conjunction with
the early system design, testbenches have been automatically generated to test
the preliminary architectural design. From this early analysis further technical
but also hardware and software requirements have been derived. Furthermore,
our approach provided important inputs for the more detailed system design.
These testbenches have been generated from the requirements and constraints
defined in the semi-formal SysML/MARTE format with our extension for safety
requirements and can be used throughout the entire safety-lifecycle. We used
standardized UVM components and the benefits of constraint random verifica-
tion to provide different stimuli and configurations to find corner cases in our
system. To randomly stimulate our UML/MARTE design models, these models
have been linked to fast-executable analog, digital but also mechanical imple-
mentation models in SystemC (-AMS). This framework was tested by a complex
example from the automotive industry in order to demonstrate its efficiency. The
use cases showed how to define constraints in the MARTE constraint language
and to generate verification components to automatically test the current pre-
liminary design. In addition our approach was developed as a plugin in Eclipse,
with the result that every Papyrus UML editor is now capable of simulation
simply by installing our plugin. This tool will be published for download and is
also to be used for educational purposes. Further work will include the defini-
tion of safe-states and timing behavior and the generating of testbenches from
it. Furthermore, sequence diagrams will be used for the generation of the test
stimuli.
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1 Introduction

Welcome to the first edition of the workshop on Timing Performance in Safety
Engineering (TIPS’16), which has been held in conjunction with the International
Conference on Computer Safety, Reliability and Security (SafeComp 2016).

Safety and certification are key issues in various domains such as automotive,
medical, avionics and space. Today, designing safety critical real-time systems
becomes more and more complex not only because the safety standards are more strict
and rigorous, but also because the number of functions to realize is increasing while
timing performance must continue to be guaranteed within an acceptable overall cost.
For such systems, an increasing portion of design effort is therefore spent on timing
performance verification and the corresponding safety and certification argumentations.

Currently, in the industrial design practices, performance engineering and safety
engineering are rarely interconnected or integrated, thus requiring additional efforts
from the timing performance verification community to fill the gap between the design
model and its temporal semantics with techniques to produce proofs and argumenta-
tions required by the safety and certification standards. The challenge addressed by this
workshop is therefore to link both engineering activities to increase the design effi-
ciency of safety critical real-time systems.

2 Program

We are pleased to announce an excellent program that covers some of the latest
research and development activities on timing, safety and security analysis and their
integration challenges in various application domains. This year’s program consists of
eight presentations and a panel to have fruitful discussions and foster collaborations
between workshop attendees.
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Abstract. Securing critical systems such as cyber physical systems (CPS) is an
important feature especially when it comes to critical transmitted data. At the
same time, the implementation of security counter-measures in such systems may
impact other functional or non-functional concerns. In this context, we propose
a model-based approach for securing critical systems at early design stage. This
approach combines security analysis and mitigation solution proposals with
multi-concern architectural evaluation. It exploits two views of security counter-
measures patterns: abstract and concrete. The abstract view is used to select rele‐
vant solutions to security requirements on a logical point of view. Then, the
concrete view helps the architect evaluating different possible implementation
alternatives against other design constraints. The modeling is based on accepted
OMG standards such as UML and MARTE. In this paper, the approach is illus‐
trated on a SCADA (Supervisory Control and Data Acquisition) system case
study and a tool chain based on Papyrus UML supports the approach.

Keywords: Architecture evaluation · MBE for cyber-physical systems · Model-
based system analysis · Security patterns

1 Introduction

Cyber-physical systems (CPS) consist of computational units controlling physical enti‐
ties. The complexity of such systems during their design comes from the involvement
of transdisciplinary concerns. Indeed, such systems must satisfy a number of require‐
ments (real-time, physical, energy efficiency and others). In addition, critical cyber-
physical systems have to satisfy assurance requirements (IEC 61508 and ISO 27005 [1],
for dependability and security concerns). This brings the complexity of such systems to
a higher level. In particular, security concerns have an impact on other concerns such
as real-time performance. For example, encryption adds a delay to the transmission time
of data from one point to the other and affects real-time constraints. Therefore, architects
must apply trade-offs to satisfy functional requirements (real-time), and security require‐
ments as two categories of constraints.

© Springer International Publishing Switzerland 2016
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Model-Based System Engineering (MBSE) provides a useful contribution for the
design and evaluation of secure systems. It makes easier the enactment of the separation
of concern paradigm (security, real-time, performance, etc.). It helps the architect
specify in a separate view non-functional requirements such as security at a high level
of abstraction. Moreover, expertise and knowledge in system architecture and security
can be captured within patterns that provide generic solutions for recurring problems.
In particular for security, where protecting data and services is an important issue,
security pattern catalogues [2] provide guidelines to build secure architectures.

Previous work have focused on security and real-time requirements separately:
dependability and security modeling and analysis [3, 4]; and real time requirements [5].
A survey of dependability modeling and analysis frameworks with UML can be found
in [3]. It focuses on software systems Reliability, Availability, Maintenance and Safety
(RAMS). In [4], the authors have extended MARTE with a Dependability Analysis and
Modeling (DAM) UML profile and applied it to an intrusion-tolerant message service
case study. In [5], the authors presented a staged approach to optimize the deployment
in the context of real-time distributed systems.

Other works focused on large scale architecture optimization, decision and trade-off
analysis [6, 7]. In the automotive domain, a multi-objective automatic optimization
approach based on EAST-ADL modeling is proposed [6]. It supports the evaluation of
alternative architectures according to dependability, timing performance, cost etc. More
specifically in security and performance interplay, the study in [7] focused on the anal‐
ysis of the performance effects of security solutions modeled as UML non-functional
aspects. It used SPT UML profile for annotating a UML design with schedulability, time
and performance data. The resulting model and the security aspects were transformed
separately and composed into one model which was then analyzed.

In this paper we present an approach to select and evaluate possible candidate
improvements in order to find the best set of security patterns respecting timing
constraints. To this end, we propose a model-based approach for the development of
secure critical systems based on architectural evaluation driven by security concerns.
This work is part of a more general process devoted to incremental pattern-based
modeling and safety and security analysis for correct by construction systems design.
In previous works, we have proposed a model-based approach for guiding the selection
of security patterns based on risk analysis and pattern classification [8]. In a recent paper
in [9], we proposed an approach to support Security, Dependability and Resource
Tradeoffs using Pattern-based Development and Model-driven Engineering. In this
paper, we go one step further, we study the impact of implementation alternatives of
these security solutions onto the system architecture. A special emphasis is paid to timing
performance concerns using model-based real-time evaluations. In this context, the
system architect starts from a functional architecture and an abstract platform. The arti‐
facts are abstract at this stage of development but contain temporal information (e.g.,
computation cost, deadlines and period of event for each function). Once security
requirements are specified (resulting from a security risk analysis), several security
pattern solutions are proposed from a repository of patterns. The real-time evaluation
helps the architect to select the best candidates that respect timing concerns (e.g.,
maximum utilization capacity in the platform).
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The remaining sections are organized as follows: Sect. 2 describes the SCADA
system case study and its security issues. Section 3 illustrates the real-time evaluation
approach of security solutions on the case study and gives its steps and modeling prin‐
ciples. Section 4 discusses the obtained experimental results. Section 5 concludes the
paper and discusses future work.

2 Case Study: SCADA System

2.1 Description

SCADA systems are meant to control processes through local controllers, acquiring
field data and returning it to a SCADA master computer system. Figure 1 shows a typical
SCADA system architecture. It consists of a SCADA master, an operator workstation
and a number of field devices connected by a communication infrastructure. Field
devices can be Programmable Logic Controllers (PLC), Remote Terminal units (RTU),
sensors and actuators.

Fig. 1. A typical SCADA system architecture [10]

The SCADA master provides the operator with a Human-Machine Interface (HMI)
through a work station to issue commands to PLCs and gather field data from them.
PLCs are digital computers programmed to continuously monitor sensors and control
actuators (e.g., valves, pumps, etc.). RTUs are used for converting sensor data into digital
data. As SCADA systems cover large areas, they use Wide Area Networks (WAN).
SCADA systems provide the following functionalities: data acquisition and handling
(e.g., polling data from controllers, alarm handling, calculations, logging and archiving)
on a set of parameters, typically those they are connected to.

2.2 SCADA Security

It is very important for SCADA systems to be safe and reliable. They have a good
reputation in this field. However, the key issue nowadays is SCADA security.
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Governments all over the world are worried about the security of SCADA systems that
run over critical infrastructures. First generation of SCADA systems were introduced
in the 1970’s and second generation in 1980’s. Many of these are still in operation
especially second generations. They relied on two approaches for security: (1) Security
by isolation: based on the principle that if the system is not connected to the Ethernet
then it cannot be attacked by external attackers. However it is still vulnerable to insider
attacks. (2) Security through obscurity: based on the fact that SCADA systems used
unusual programming languages and communication protocols. However this is also
vulnerable to insider attackers who know about these technologies. In addition the
documentation can be found on internet or can be stolen.

Third generation SCADA systems use standard IT technologies and protocols (e.g.,
organizational wireless networking, Microsoft windows, TCP/IP and web browsers as
interfaces). The third generation systems which are web connected are integrated with
an interface to second generation systems. Opening SCADA systems rises a major issue
for guarantying security since the “security by isolation” principle is violated.

Proposing security solutions for critical systems, and in particular SCADA systems,
requires an early architecture evaluation analyzing the impact of these solutions on
quality attributes. In this paper, we treat one quality attribute which is real-time perform‐
ance. The aim is to help the architect, at a high level design, selecting the best set of
security solution implementations that respect timing requirements (if any). As
mentioned earlier, the selection of security patterns is driven by a risk analysis performed
in previous steps of the methodology [8]. This risk analysis follows a model-based
implementation of EBIOS1 methodology described in [11]. However this step is not
described in this paper. The foundations of the approach are described in the next section.

3 Model-Based Real-Time Evaluation of Security Pattern
Configurations

In this section we present the foundations of a model-based seamless approach for an
incremental architecture securing process involving both: solutions identification, inte‐
gration, evaluation and comparison. We present here the corresponding workflow, and
illustrate each step of this process over the SCADA system case study.

3.1 Approach Workflow Overview

The process workflow proposed for architectural solutions evaluation follows 3 main
steps (1 to 3) as illustrated in Fig. 2. Actually, the workflow itself is part of a more global
process not described here that encompasses security analysis of design architecture
proposal, and issues security requirements. Step0 here refers to a preliminary stage
aimed at selecting appropriate pattern solutions satisfying these requirements. The main

1 EBIOS: Expression of Needs and Identification of Security Objectives from ANSSI, the french
agency for security of information systems (Agence nationale de la sécurité des systèmes
d'information).
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objective of the workflow presented below is to support the real-time evaluation of
various possible security pattern configurations to assess their soundness regarding
temporal (and possibly resource) constraints.

Fig. 2. Process of real-time evaluation of security pattern configurations

This seamless process relies on three main kinds of artifacts: (1) functional archi‐
tectures to describe system and software functions, (2) security patterns to describe
system security solutions and (3) platform models to describe hardware resources. The
approach is centered on the concepts of security patterns. In this context, we consider
the following definitions.

3.2 Definitions

Definition 1 (Security Pattern): A security pattern provides a generic solution of recur‐
ring security problem. Security patterns follow templates such as the ones proposed by
GoF [12] and include several attributes e.g., “Name”, “Context”, “Problem”, “Solution”,
“Consequences” and “See Also”. “Structure” contains information about the functional
structure of the pattern and uses generally semi-formal languages e.g., UML.to describe
it. “Consequence” contains information about the impact of using this pattern on the
target architecture quality attributes e.g., availability and performance.

The level of abstraction of the pattern depends on the detail of its solution. We
distinguish: (1) abstract pattern providing an abstract solution without clear details of
the used techniques (2) concrete pattern refining the solution provided by an abstract
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pattern possibly using other patterns. There are thus two types of relationships:
refinement and usage relationships.

Definition 2 (System of Security Patterns): A System of security patterns is a collection
of security patterns with their relationships. In our context, patterns have different
refinement alternatives.

Definition 3 (System of Security Patterns Configuration): A configuration is a subset
of a System of security patterns. It will be used to specify the possible refinement alter‐
natives (concrete patterns). It will be also referred to as “security solution alternative”.

Definition 4 (Pattern Integration): Pattern integration means refining the functional
architecture by adding security pattern functions. Each security solution alternative is
integrated producing secured architecture alternatives. In the context of MDE, pattern
integration is a “model refinement”.

3.3 Process Description

As stated earlier, the evaluation process is composed of three main steps (see Fig. 2),
and a preliminary one for patterns selection. This process considers as inputs security
requirements resulting from prior risk analysis and the design model.

In the case of SCADA systems, such security requirements can be: (1) There should
be a mechanism for secure communication that guarantees data integrity, confidentiality
and authenticity, (2) There should be a mechanism that protects against denial of service
attacks at the level of the SCADA master.

Step 0 (Pattern Selection). Selecting appropriate security solutions, here presented as
security patterns, from security requirements is an important step during the develop‐
ment of secure software and systems. In this context, we use the selection method
described in [4] which is based on the use of risk analysis to derive security properties
and constraints; along with pattern selection principles using pattern classifications [13,
14] to select concrete security patterns. The method is based on a library of patterns
stored in the SEMCO repository [15]. The System and software Engineering Pattern
Metamodel (SEPM) [15] is used to model Security and Dependability (S&D) patterns
which are then stored in a repository. Patterns provide their functionalities through
interfaces. Their characteristics are described by properties.

After analyzing security requirements, the architect identifies a set of security
patterns along with their refinement alternatives, i.e. concrete patterns. It is important
to note that the selection of security patterns takes into account conflicts due to incon‐
sistencies between patterns. For example, Limited view and Full view pattern are
conflictual by nature so that implementing both of them in a system will surely bring
inconsistencies.

The search in the repository leads to the identification of two abstract patterns:

• SecureComm pattern [2]: ensures that data passing across a secure network is secure.
It can be refined by two patterns: SecureCommSSL (P1) and SecureCommIPsec (P2).
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SecureCommSSL uses X.509 certificates for authentication and secure channel for
creating a cryptographic tunnel.

• Firewall pattern [2]: restricts access to internal networks which can be refined by
PacketFilter (P3) and StatefulFiltering (P4).

The result of this step is the System of security patterns represented in Fig. 3.

Fig. 3. System of security patterns

Step 1 (System of Patterns Configuration Generation). The goal of this step is to
create the possible security solution alternatives from a system of patterns using system
of patterns configuration management based on variability models.

Security variability consists of documenting all alternative security solutions for a
given problem. Security variability is important in the context of architecture design
because it helps the architect understanding (1) which security solution varies and how
it varies, (2) if there are security solutions satisfying several security objectives, (3)
possible conflicts between security solutions, (4) security solutions that supports others.

Several works have treated this concern [9, 16]. In [16], the authors present a
modeling approach based on aspect engineering. In [9], the author have presented an
algorithm for pattern system configuration management. It takes as input a pattern
system with its relationships, a base configuration and a reference kind (i.e. relationship
type); and outputs a security solution alternative.

In the context of the paper [9] is used. For the case study, Fig. 3 can be considered
as a possible security variability model. Then, Fig. 4 shows the corresponding possible
security solution alternatives. Each system of security solution alternative consists of a
set of concrete patterns in dark grey.

Step 2 (Pattern Configuration Integration). The goal of this step is to integrate each
security solution alternative into the functional architecture thus obtaining refined design
architecture candidates.

The difficulty of this step is not only the verification of the correct integration of the
pattern but also the management of possible conflicts between the functional architecture
and a security pattern or between security patterns themselves.

The integration of concerns; and security in particular has been treated in [17–19].
Pattern integration consists of composing security patterns with a functional
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architecture. It requires techniques such as: role bindings merge techniques, checking
techniques prior and after the integration to detect possible conflicts.

In the context of this work, [19] is used. Each security solution alternative is applied
into the SCADA system functional architecture. Figure 5 depicts the initial SCADA

Fig. 4. Security solution alternatives generated from the pattern system

Fig. 5. SCADA functional architecture before (a) and after the integration of Alternative 4 (b)
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functional architecture (a) and the result of the integration (b) of security solution alter‐
native 4.

Step 3 (Real-Time Evaluation). Real-time evaluation principles are based on works
by [20] with the Optimum methodology2. This methodology was previously applied in
other modeling contexts such as EAST-ADL in the MAENAD project. In this approach
design models are evaluated at early stages to help make architectural decisions. Here
we use it on UML design models and patterns stored in SEMCO Library.

Modeling Principles. The Optimum methodology is used to build a task model from
the design in order to evaluate, compare architectural solutions and/or optimize deploy‐
ment. We describe here the modeling principles and main steps of the methodology.
Note that in our context, it is applied to high level functional design to get preliminary
decisions on the overall architecture security improvement solutions. The input is thus
a functional view of the application and patterns annotated using MARTE profile3.

A task model is obtained following four steps: (1) identification of event-chains in
the functional model, (2) specification of timing constraints (on event-chains and on
behaviors corresponding to functions), (3) computation of a MARTE task model (end-
to-end flows), and (4) tasks Allocation Specification (tasks on nodes).

To support the approach several diagrams are used: composite diagrams for (1) and
(2); activity diagrams for (3); and composite diagrams showing task model and platform
model together with allocation links for (4). This Optimum workflow and MARTE
notations used are summarized in Fig. 6.

Event Chains Identification. The functional organization of the application is
described in a Composite diagram showing functions and their connections. From this
global view several timing views corresponding to end-to-end flows are selected.

Timing Constraints Setup. Selected event chains are then tagged to setup timing
constraints. MARTE annotations are added to these diagrams to set: (1) event chains
timing constraints (between 2 ports), (2) execution time constraints on functions
(actually expected for the behavior implementing the function).

Task Model Setup. The task model structure is described using activity diagrams and
can be directly obtained from the event chains specifications above. Each of them is
translated into a MARTE end-to-end event flow. Each flow is activated by the reception
of an event and described by the consequent behaviors implementing the various func‐
tions traversal connected through connectors.

MARTE annotations are used to: (1) characterize a timing configuration, (2) specify
a data arrival pattern for the activating event (workflowEvent) and (3) specify constraints
on the different steps (behaviors involved in the event flow).

2 Optimum methodology is developed at LIST CEATech and is integrated within Papyrus open‐
source modeling tool.

3 MARTE profile is a standard from the OMG (UML Profile for MARTE™: Modeling and
Analysis of Real-time Embedded Systems™). http://www.omgmarte.org/.
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Allocation Model Setup. Finally an allocation model is described in a composite
diagram that shows the allocation between functions (actually the tasks corresponding
to their behaviors) onto a platform model.

MARTE annotations are used to: (1) set allocation relations and (2) set hardware
architecture characteristics on execution hosts and communication channels.

Real-Time Evaluation Steps. The modeling principles described earlier allow the spec‐
ification of task and allocation models exploitable by scheduling algorithms such as Rate
Monotonic scheduling (RMS) and offset-based scheduling [21, 22]. Let P be a platform
consisting of connected nodes  and F be a set of functions

. Each function has a computation cost . The execution nodes are
connected through buses. Both nodes and buses have a maximal capacity that must not
be exceeded. In the context of multiple processors, each node runs an independent real-
time operating system. Each platform node  executes a set of tasks

. Each task consists of a subset of functions from F. Each task 

Fig. 6. Using MARTE to set timing constraints
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has an activation period , an execution time (computed as the sum of computation
costs of all allocated function) and a deadline . Real-time evaluation consists of two
steps:

1. Preliminary evaluation. A preliminary real-time evaluation is used to compute
nodes utilizations. If one of the refined architectures exceeds the node maximum
capacity, it is rejected. The node utilization is computed as: .

In case of RMS, the utilization  for each node must at least be: 
with n being the number of tasks assigned to Ni. If not, the node is overloaded and
response time analysis is not performed.

2. Response time analysis. The response time analysis is performed for architectures
succeeding the preliminary evaluation. At this step, response time analysis is
performed following the principles proposed in [22] for distributed systems. It
concerns the computation of the worst case response time  of every task. All
response times must verify: . If not, the tasks are not schedulable and the
corresponding architecture is rejected.
In the context of this work, we use RMS for preliminary evaluation and offset-based
scheduling for response time analysis using QOMPASS tool that supports Optimum
methodology.

4 Preliminary Experimental Results

As a preliminary experiment, we apply the approach to a SCADA system case study.
Figure 7 shows the input functional architecture together with hardware platform. The
functional model contains ten functions in three transactions with their deadlines and
trigger periods. The hardware topology in the platform contains a SCADA master and
a PLC connected with Modbus. The partitioning of functions into tasks and assignment
of tasks onto hosts is also shown. In addition, the signal between “Set point processing”
and “Command computation” is mapped onto a message. The execution budgets of the

Fig. 7. Input functional architecture, hardware platform and deployment
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functions, the assigned tasks and hosts are showed in Table 1. The values of the SCADA
function timing parameters are based on IEEE 1646 standard [28] specifying commu‐
nication deadlines and IEC 61850 [29] specifying communication network delays in
different information categories.

Table 1. Timing parameters and deployment of SCADA functions

Functions Execution time Task Host
Setpoint processing 8.7 SCADA master
Poll data 9.6 SCADA master
Log data 8.5 SCADA master
Check status 9.6 SCADA master
Visualize data 10.5 SCADA master
Alarm handler 10.3 SCADA master
Archive data 9.5 SCADA master
Command computation 10 PLC
Data preprocessing 9.5 PLC
Diagnosis 8.9 PLC

Similarly, the timing and placement parameters of the used security patterns are
showed in Table 2. The concrete patterns have the same functions but have different
execution times (two execution time columns). The timing parameters are based on a
review of technical reports of SSL/IPsec [23], and stateful/packet firewall [24].

Table 2. Timing parameters and deployment of security pattern functions

Patterns Functions Execution times Task
(1) (2)

SecureCommSSL (1)
SecureCommIPsec (2)

Authentication 9.7 38.7
Key exchange 10.1 39.6
Encryption 9.9 9.9
HMAC 9.2 9.2
Decryption 10.3 10.3
Integrity checking 10.2 10.2

PacketFiltering (1)
StatefulFiltering (2)

Filtering 10 40

One important point is that the experiment has required some effort in quantifying
real-time parameters of security pattern functions. Some functions execution times were
estimations and averages. For example, in SecureComm pattern function “HMAC” does
not have the same execution time as it depends on the used algorithm (e.g., HMAC-
SHA-1-96, HMAC-MD5). However, we believe that estimations and averaging is
enough as the approach is meant for high level evaluation and architecture decision
making. For example, if none of the security solution alternatives respected the timing
requirements because of overload; the architecture of SCADA can be rethought leading
to adding an execution node.

386 A. Motii et al.



4.1 Results

The preliminary analysis consists in evaluating the placement of SCADA and pattern
functions on hosts described in Table 1 for each security solution alternative (1, 2, 3 and
4) in Fig. 4. The left side of Fig. 8 shows the node utilization results of each alternative.
The utilization bound of the SCADA master and PLC are up to 75.68 % (four tasks) and
77.97 % (three tasks) respectively. Security solution alternatives 2 and 4 are rejected
because the SCADA master utilization in the two cases (83.33 % and 103.33 %) exceeds
the threshold. Response time analysis given in [22] is performed for security solution
alternatives 1 and 3 since they pass the preliminary evaluation. Task  response time
is up to 280 ms in alternative 3 and violates its deadline of 248 ms. This is due to the
offset added by task  and the message transmission time. All tasks of configuration 1
respect their deadline:  (150 ms),  (240 ms),  (60 ms),  (120 ms),  (70 ms),

 (100 ms) and  (30 ms). From the evaluations, alternative 1 is the best security
solution alternative that fulfils security requirements and respects real-time constraints.

Fig. 8. Node utilization for security solution alternatives 1, 2, 3 and 4, and tasks response times
for alternatives 1 and 3

4.2 Discussion

From this first experimentation, we conclude that the approach fulfils the objective of
finding the best set of security patterns respecting timing constraints.

The work has two main contributions: (1) the proposal of abstract security pattern
solutions fulfilling security requirements and (2) the evaluation of the possible imple‐
mentations fulfilling real-time requirements by the integration of possible security solu‐
tion alternatives. In this context, this work can be beneficial to resource constrained
embedded systems e.g., automotive, avionics. For instance in EAST-ADL, trade-off
analysis is performed for one design model with different parameters whose values
determine whether the design satisfies the model or not. Our work adds a step forward
which is the evaluation of different design alternative models against non-functional
concerns (security in this paper). This work can benefit from EAST-ADL concepts for
configurations management using features diagrams.
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5 Conclusion and Future Work

The paper presents a model-based approach for evaluating security solutions based on
patterns applied to a SCADA system case study. It shows the applicability of the
approach. The main benefits are to provide a tooling support for early evaluation of
different implementation of security measures using: pattern composition and integra‐
tion, automatic configuration generation and evaluation. The evaluation focuses on
temporal performance concerns. This work is part of a process devoted to incremental
pattern-based modeling and safety and security analysis for correct by construction
systems design. The results obtained help the designer select appropriate design solution
to reinforce security. The methodology relies on UML/MARTE for modeling and makes
extensive use of MARTE to perform architectural evaluation for timing concerns. This
work will be extended to address other concerns (e.g., cost, reliability, memory
consumption, power supply).

Acknowledgements. This work is conducted in the context of a Ph.D. thesis funded by CEA
LIST and co-leaded by CEA (LISE) and IRIT (MACAO).
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The growing complexity of functionalities in automotive vehicles and their
safety-criticality, including timing requirements, demands sound and scalable approa-
ches to deal with the increasing design space. Most often, such complex automotive
systems are composed of a set of functions that are characterized by a set of contra-
dicting requirements when it comes to a valid system architecture and configuration.

These functionalities perform more and more safety-critical tasks, thus increasing
the challenge on assuring the safety of such systems. Furthermore, as safety-critical
systems must perform the desired behavior within guaranteed time bounds, a valid
system configuration is needed including a time-correct schedule that fulfills all timing
requirements. This contribution proposes a systematic and correct deployment and
scheduling synthesis of complex automotive software systems that ensures multi
objective design constraints (e.g. ASIL-conformant deployments) of software
components.
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Abstract. Modern automotive vehicles represent one category of cyber-
physical systems that are inherently safety&time-critical. Future automotive
technology will to an increasingly large extent be based on an integration of
general purpose components for shortening the innovation loops and enabling
efficient product evolution. Nevertheless, the adoption of general purpose
solutions in automotive vehicles will not be a trivial task. Currently, while
domain-specific frameworks like AUTOSAR and ISO26262 facilitate
component-based system development based on well-formulated assumptions
and interfaces, challenges remain in the areas of contract synthesis, conformity
assessment, and diagnostics when issues like mode behaviors, timing, and
failures are of concern. This talk presents the EAST-ADL modeling framework
and discusses an EAST-ADL based approach to system modularity and risk
analysis in order to integrate separately developed electronic components into
safety-critical automotive systems. Special attention is paid to the synthesis of
both component contracts and the associated runtime services for lifecycle and
quality management, anomaly treatment according to ISO26262.

Keywords: Cyber-Physical Systems (CPS) � Model-Based Development
(MBD) � Domain-Specific Modeling (DSM) � Component-Based Engineering
(CBE) � Real-Time System (RTS) � Functional safety � EAST-ADL � ISO2626

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016 Workshops, LNCS 9923, p. 394, 2016.
DOI: 10.1007/978-3-319-45480-1



Automotive Ethernet:
Towards TSN and Beyond

Zhonghai Lu(&)

Department of Electronics and Embedded Systems, School of ICT,
KTH Royal Institute of Technology, Stockholm, Sweden

zhonghai@kth.se

Abstract. As a new generation of E/E architecture, Ethernet is rapidly pene-
trating into the automotive domain. To accommodate the stringent quality-
of-service (QoS) requirements of automotive applications, Ethernet is evolving
towards mixed criticality aware time-sensitive networking (TSN). This talk will
first present a landscape brought by TSN for complex automotive distributed
real-time applications such as advanced driver assistance systems (ADAS). Then
we will exemplify how TSN can better cope with application requirements than
conventional Ethernet, in particular, in adaptively delivering QoS assurances
under vehicle internal conditions and external situations. Finally we shall discuss
challenges and opportunities on deploying TSN as a new E/E infrastructure for
advanced automotive applications under safety concerns.

Keywords: Automotive E/E architecture � Automotive ethernet � Time
sensitive networking (TSN) � Mixed criticality systems � Quality of service
(QoS) � Functional safety
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Over the last decade we have witnessed ever increasing use of virtualized multi-
processor platforms in the design of advanced digital systems. This is due to the
fact that virtual platforms, by means of virtual machines, facilitate the design
of complex systems involving large numbers of applications by providing both
spatial and temporal isolation between them. In particular, each application is
assigned with a fraction of the platform’s (spatial and temporal) capacity and
can be treated as if it were executing on a platform of its one. This means that
in cases where applications have stringent temporal constraints we can analyze
their temporal behavior in isolation because the behavior of one is not affected
by the other. In this talk we reflect on the model-based design flow developed
at Eindhoven University of Technology that by the use of aforementioned vir-
tualization principles guarantees composability and predictability. In particular,
we discuss how timed dataflow-based design flow implemented in the SDF3 tool
enables real-time dataflow applications to be automatically mapped, verified and
executed on the CompSOC temporally composable platform providing strongly
temporally isolated virtual multiprocessor platforms.
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WARUNA is a French research project aiming at developing a framework to model
and verify timing properties in real-time embedded systems. The framework covers all
design phases and allows evaluating the impact of the design decisions on the response
times. It also allows merging the timing results obtained at different design levels from
the different analysis tools. The WARUNA framework is integrated in the modeling
environment.

In the talk, the WARUNA framework will be presented, as well as the project
objectives and the partners’ role. More details about the WARUNA project can be
found on the project website: http://www.waruna-projet.fr/.
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