
Advancing Dynamic Fault Tree
Analysis - Get Succinct State Spaces Fast

and Synthesise Failure Rates

Matthias Volk(B), Sebastian Junges, and Joost-Pieter Katoen

Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
matthias.volk@cs.rwth-aachen.de

Abstract. This paper presents a new state space generation approach
for dynamic fault trees (DFTs) together with a technique to synthesise
allowed failures rates in DFTs. Our state space generation technique
aggressively exploits the DFT structure — detecting symmetries, spuri-
ous non-determinism, and don’t cares. Benchmarks show a gain of more
than two orders of magnitude in terms of state space generation and
analysis time. Our approach supports DFTs with symbolic failure rates
and is complemented by parameter synthesis. This enables determining
the maximal tolerable failure rate of a system component while ensuring
that the mean time of failure stays below a threshold.

1 Introduction

Fault tree analysis is a prominent technique in reliability engineering. Dynamic
fault trees (DFTs) [1,2] are an expressive model catering for common dependabil-
ity patterns, such as spare management, functional dependencies, and sequenc-
ing. The state space generation process is one of the main bottlenecks in DFT
analysis. DFT analysis mainly focuses on the mean time to failure — what is
the expected time of the failure? — and reliability — how likely is the system
operational up to time t? These analyses require DFTs where all component
failure rates are known. In practice, this rarely holds. Thus, a relevant question
is to synthesise the allowed component failure rates ensuring a given mean time.

This paper presents three main advances to state-of-the-art DFT analysis:
(1) fast generation of succinct state spaces, (2) the analysis of several measures-
of-interest that go beyond mean time and reliability, and (3) the synthesis of
(possibly partially) unknown failure rates in DFTs for mean time and more.

Fast Generation of Succinct State Spaces. Our approach is a modern
version of one of the first DFT semantics [3] as used in the Galileo tool [4]
that caters for possible non-determinism, as in [5]. In all these approaches, a
state space, i.e., a Markov model, is built. This leads to a precise representation
of the DFT and allows for off-the-shelf analysis tools. The major drawback is
the typically huge state space involved – which has lead to some state-space

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 253–265, 2016.
DOI: 10.1007/978-3-319-45477-1 20



254 M. Volk et al.

free approximation techniques, an overview is given in [6]. To obtain succinct
state spaces, we tailor two successful techniques from the field of model check-
ing — symmetry reduction [7] and partial-order reduction [8, Chap. 8] — to
DFTs, and combine this with don’t care detection. We aggressively exploit the
DFT structure: detect symmetries, i.e., isomorphic sub-DFTs and stochastic
independencies while pruning sub-DFTs that become obsolete (don’t care) after
the occurrence of some faults. This is combined with detecting superfluous non-
determinism such that certain failure orderings are irrelevant yielding a simpler
and cheaper analysis.

Beyond Reliability and Availability. By exploiting powerful state-of-the-art
quantitative model checking techniques [8, Chap. 10] we support a broad range of
measures-of-interest. This includes reliability and mean time to failure (MTTF),
the probability to reach a certain DFT configuration e.g., where certain subDFTs
have failed and others have not, conditional MTTF — what is the MTTF given
that certain DFT elements failed? — and the variance of the time to failure.

Failure Rate Synthesis. We support DFTs whose failure rates are (possi-
bly partially) unknown. These unknown (or: symbolic) rates are represented by
parameters, or functions thereof; e.g., components may fail with rate λ, 2λ, etc.,
where λ is unknown. Our slim state space generation techniques support sym-
bolic rates. We complement this by a sound and complete technique to synthesise
all values of symbolic rates that ensure the MTTF (and various other measures)
to be below a given threshold. To the best of our knowledge, this is the first fail-
ure rate synthesis technique for DFTs. In addition, the sensitivity of the MTTF
on the symbolic rates can be determined, as in alternative techniques [9].

Experimentation. We have realised a prototypical implementation of the
aforementioned techniques. In addition to the original DFT elements in Galileo,
we support probabilistic dependencies [10], nested spares [5] and priority or-
gates [11]. Experiments have been conducted on all benchmark DFTs from [12];
a rich collection of DFTs gathered from the literature and from industrial case
studies. The experiments reveal that our slim state space generation technique
significantly outperforms the best competitor for DFTs, the tool DFTCalc [13].
For a majority of the benchmarks, our approach yields a speed-up of two to
four orders of magnitude. Failure rate synthesis works for the moderately-sized
models in the literature (up to 20 basic events) with up to three unknown rates.

2 Dynamic Fault Trees

Fault trees (FTs) are directed acyclic graphs with typed nodes. The leaves, i.e.,
nodes without successors (or: children), are basic events (BEs). All other nodes
are gates. The top event (or: root) is a specifically identified node. An FT fails,
if its top event fails. For the sake of simplicity, we assume that BEs represent



Advancing Dynamic Fault Tree Analysis 255

Fig. 1. Node types in ((a)–(d)) static and (all) dynamic fault trees.

component failures. Initially, every BE is operational ; it fails if the event occurs.
A gate fails if its failure condition over its children is fulfilled. The key gate for
static fault trees (SFTs) is the voting gate (denoted VOTk) with threshold k.
The failure condition for a node x of type VOTk is given by ”x fails, if k of its
children have failed”. A VOT1 gate equals an OR-gate, while a VOTk with k
children equals an AND-gate. These gates are shown in Fig. 1(b)–(d).

2.1 Dynamic Nodes

To overcome the limitations [6] of SFTs, several extensions commonly referred
to as Dynamic Fault Trees (DFTs) have been introduced. A main feature of
these extensions is that they feature an internal state, e.g., the order in which
events fail influences the internal state, and thus whether the top event has
failed. The extensions introduce several new node types; we categorise them as
priority gates, dependencies, restrictions, and spare gates.

Priority Gates. Priority gates extend static gates by imposing a condition on
the ordering of failing children. A priority-and (PAND) node fails if all its children
have failed in the order from left to right. Figure 2(a) depicts a PAND with
children A and B. It fails if A fails first and then (or simultaneously) B fails. If
B fails first, the PAND becomes fail-safe. The priority-or (POR) node [11] only
fails if the left-most child fails before any of the other children does. Priority-
gates allow for order dependent failure propagation.

Dependencies. Dependencies do not propagate a fault to their parents but are
triggered by their first child. Upon triggering, they affect some BEs, the depen-
dent events. We consider probabilistic dependencies (PDEPs) [10]. Once the trig-
ger of a PDEP fails, its dependent events fail with probability p. Figure 2(b)
shows a PDEP where the failure of trigger A causes a failure of BE B with prob-
ability 0.8 (provided it has not failed before). Functional dependencies (FDEPs)
are PDEPs with probability one.

Restrictions. Restrictions do not propagate failures but rather limit possible
failure propagations. Sequence enforcers (SEQs) assure that their children only
fail from left to right. This differs from priority-gates that do not prevent certain
orderings, but only propagate if an ordering is met. The DFT in Fig. 2(c) fails
if A and B have failed (in any order) but the SEQ enforces that A fails prior to
B. This DFT is never fail-safe.



256 M. Volk et al.

Fig. 2. Simple examples of dynamic nodes.

Spare Gates. Spare-gates (SPAREs) are the most complex gates in DFTs.
Consider the DFT in Fig. 2(d) modelling (part of) a motor bike with a spare
wheel. If either wheel fails, the motor bike fails. Both wheels can be replaced by
the spare wheel but not both. The spare wheel is less likely to fail as long as
it isn’t used (warm). Assume the front wheel fails. The spare wheel is available
and used, and its failure rate is increased (hot). If any other wheel fails, then no
spare wheels are available anymore, and the SPARE and the DFT fails.

SPAREs have a child they use. If this child fails, the SPARE tries to use a spare
child (left to right) — a process we call claiming. Only operational children that
are not used by another SPARE can be claimed. If claiming fails, the SPARE fails.
This behaviour is extended by an activation mechanism. As in [5], SPAREs may
have (independent) subDFTs as children. This includes nested SPAREs. A spare
module is a set of nodes linked to a child of a SPARE via a path without an
intermediate SPARE. Every leaf of a spare module is either a BE or a SPARE.
Each child of a SPARE thus represents a spare module, cf. Fig. 2(e) where boxes
are spare modules and shaded nodes are the representatives. SPAREs which are
not nested are active. For each active SPARE, all nodes in the spare module of
the used child are also active. BEs which are active fail with their active failure
rate, BEs which are passive fail with their passive failure rate (warm events) or
cannot fail (cold events). More details can be found in [6].

2.2 Syntactic Restrictions

We are rather liberal w.r.t. dynamic gates, but have to impose syntactic restric-
tions as in [13] to exclude DFTs with undefined behaviour. These restrictions
are: (a) VOTk have at least k children; (b) the top level event is a gate or a BE;
PDEPs and restrictions have no parents; (d) all dependent events are BEs; (e)
spare modules, i.e., subDFTs under a SPARE, do not overlap; (f) primary spare
modules are not shared between SPAREs.

3 State Space Generation

The goal for our state space generation is to produce a Markov model which is
subject to further analysis. As operational model, we use Markov Automata.



Advancing Dynamic Fault Tree Analysis 257

3.1 Markov Automata

Markov Automata (MA) [14] extend continuous-time Markov chains (CTMCs)
with non-determinism. MA are state transition systems whose transitions
between states are either labeled with rates (i.e., non-negative real numbers),
or with actions. The former transitions specify a random delay and correspond
to the failures in DFTs; the latter are used to select the handling of a trig-
gered PDEP. Delay transitions relate a source state with a target state; action
transitions relate a state to a probability distribution over states. An action tran-
sition thus yields a new state with a given likelihood. MA are a slight variant
of the operational model for DFTs used in [5]; they differ in allowing discrete
probabilistic branching which are used to model PDEPs. We introduce MAs by
example.

Figure 3 shows an MA for a coffee machine, used by inhabitants of room A
(IoA) and B (IoB). IoA (IoB) arrive at the machine at a rate of 5 IoA/hour
(3 IoB/hour). They can either have coffee or espresso. All IoA want espresso

s0

s1 s2

s3 s4{se} {sc}

5 3

we we wc

1 0.9 0.1 1
ge gc

1 1

Fig. 3. Example MA.

(action we), while IoB non-deterministically want coffee
(action wc) or espresso. IoB wanting espresso are with
probability 0.1 too sleepy and select coffee. Users always
get their selected product (ge, gc). In state s0, either
an IoA or an IoB arrives at the machine (evolving into
s1, s2). In state s1 espresso is selected, whereas in s2 a
choice between actions we and wc is made. Selecting we
in s2 results in s3 with probability 0.9 and in s4 with
probability 0.1. The user then gets the product and the
automaton returns to initial s0. For simplicity, the prod-
ucts’ preparation time is not modelled.

3.2 State Space Generation

As in Galileo, we construct a fault tree automaton (FTAut) from a DFT. We
then translate the FTAut to an MA, which we further simplify and analyse. The
FTAut consists of states and labelled transitions.

States. We give each node in the DFT a unique id. A state in the FTAut is a
mapping from ids to its status: operational (OP), failed (F), fail-safe (FS), or
don’t care (X). Additionally, we store the currently used child (CUC) of opera-
tional SPAREs and for spare module representatives their activity, i.e. whether
the module is active (A) or passive (P). We initialise all nodes as operational,
the CUCs and activate modules as described in Sect. 2.

Transitions. State changes originate from the failure of BEs. As the probability
of two rate-governed BEs to fail simultaneously is zero, BEs never fail simultane-
ously. When considering dependencies, this assumption no longer has to hold. To
avoid problems with causalities as described in [6], and to directly resolve spare



258 M. Volk et al.

Fig. 4. Dedicated examples.

races [6], we assume that dependent events fail immediately after the triggering
BE. W.l.o.g. we assume that PDEPs have a single dependent event.

Given a source state and an operational BE x that fails, we copy the source
state and additionally mark x with F, and compute the target state. In a bottom-
up fashion, we iterate over the gates. For each gate, we check the failure con-
dition. If the failure condition holds, we mark the gate as failed. If a CUC of
a SPARE fails, we iterate over its remaining children and check whether they
are not listed as the CUC of any of their parents and whether they are still
operational. If so, we update the CUC, otherwise, we mark the SPARE as failed.
We iterate over all restrictions, and check whether any of their failure conditions
hold; if so, we skip the transition at hand. We then reiterate over all gates, and
check if the fail-safe condition holds (i.e. if it cannot fail in the future), we mark
the gate FS. We then iterate top-down over all nodes. If all parents of a node
are either failed or fail-safe, we mark the node as don’t care (DC-propagation).

Example 1. The FTAut of the DFT in Fig. 2(a) is given in Fig. 4(a). Initially, all
nodes are operational. If B initially fails, the PAND becomes fail-safe, and thus
A and B both become don’t care. The resulting state is (X, X, FS). If A however
initially fails, B and the PAND remain operational. An additional failure of B
then causes the top event to fail. DC-propagation yields the state (X, X, F).

Now consider Fig. 4(c). Initially, every node is operational. A’s failure causes
H to fail and makes B don’t care. This yields a transition from the initial state
to state (F, X, OP, OP, OP, OP, OP, F, OP, OP). In this state, the PDEP is
triggered, yielding a state (with probability 0.8) in which C failed, and the same
state (with probability 0.2) as C does not fail. A failure of D in the initial state
does not trigger a failure of the PAND I; in fact I becomes fail-safe, and this
is propagated to J , i.e., DC-propagation marks all children (and their children)
X. This together yields a transition from the initial state to a state in which all
nodes are marked X. Finally, from the initial state, propagating a failure of node
F is discarded as the restriction fails (by F failing before E.)

The initial state for nodes (W1,W2,WS ,FW,BW,SF) in Fig. 2(d) is (OP,
OP, OP, W1, W2, OP) where W1, W2 are the CUCs and as initially the CUCs
are active, the activity for W1,W2,WS is given as (A, A, P). A failure of W1 is
propagated to FW. As its CUC fails, it checks further children. WS is operational
and not a CUC, therefore, the resulting state is (F, OP, OP, WS , W2, OP) and



Advancing Dynamic Fault Tree Analysis 259

(A, A, A). From that state, W2’s failure yields (F, F, OP, WS , F, F) after
failure propagation, as the only remaining child of BW is already claimed. DC-
propagation yields the state (F, X, OP, WS , X, F) and (A, A, A).

As rate-governed transitions have probability 0 to fire at time 0, we either
have immediate transitions or rate transitions. Thus, for each state, we check if
any PDEPs are triggered. If so, we mark the state as immediate and add two
outgoing transitions for each triggered PDEP: One where the PDEP transmits
the failure and one where it doesn’t. Otherwise, we mark the state as Markovian,
and add transitions for each BE which has (in the given state) a failure rate �= 0.

Translation. The translation from the FTAut to the MA is straightforward, cf.
Fig. 4(b). The state spaces of the FTAut and the MA are equal. Each MA state is
labeled with the status of the DFT nodes. For Markovian states, each transition
labelled with a BE x is translated into a delay transition with the failure rate of
x as its rate. For BEs in passive spare modules, we take their passive failure rate.
Each immediate state has a non-deterministic choice over triggered PDEPs in
the DFT. Each PDEP leads to a probabilistic branching, where with probability
p the PDEP propagates the failure, whereas with 1−p it does not.

3.3 Optimisations

Technical Aspects. We use a selection of well-known techniques to reduce
the overhead of propagation: The states are encoded as bit-vectors, and during
exploration, we use an expanded state representation. By exploiting depth-first
search, we keep the set of states that we explore later on small. Work lists keep
only track of the nodes we need to consider. Overriding failed and fail-safe nodes
by don’t care, we merge states which differ only in their past behaviour, but not
in their future behaviour. Afterwards, the state space is reduced by bisimulation.

Partial-Order Reduction. In many DFTs, the actual order in which subsets
of BEs fail is not crucial. We exploit this for dependencies, where — instead of
exploring all interleavings over the triggered events — we aim to only explore
a single order. We adapt a technique called (static) partial order reduction [8]
to DFTs. Based on a static analysis, we identify which dependencies can be
executed in arbitrary order, and expand only a canonical order.

State Elimination. In MA, we can eliminate probabilistic branching by adopt-
ing a state elimination technique as used in [15]. In particular, this allows us
to reduce MA without non-deterministic branching to CTMCs, which can be
analysed much faster as non-determinism is absent.

Modularisation. The use of modularisation in FTs has been proposed in [16].
It identifies independent subtrees in the DFT, analyses them separately, and
combines the results to a final result. If applicable, it is extremely powerful.



260 M. Volk et al.

Symmetry Reduction. Many parts in DFTs are symmetric. This can be
exploited (cf. [7]) as follows. Given a successfully detected symmetry, we use
the fact that a fault has an analogous effect in symmetric parts. Moreover for
isolated symmetric parts, if the node identities are not used in the analysis
and the parts are only connected to the remaining DFT via the same node, we
exchange the states of the parts, and thus assume that a fault in a symmetric
part happened in an equivalent DFT. In the DFT in Fig. 4(d), we find two sym-
metric parts (the subtrees of A and A′), which are independent. If we are only
interested in the top level, we can use the exchange technique. That is, if both
symmetric parts are in equivalent states (e.g., the initial state) and A′ fails, we
assume that A failed instead. Now, the two parts are not in an equivalent state.
However, after the additional failure of A′, the two parts are in an equivalent
state again.

4 Measures of Interest

Several quantitative measures can be determined on the generated state space.

Measures and Importance Factors. Various measures are based on the relia-
bility function, the cdf for the probability of a failure after a given time t. Another
prominent measure is the mean time to failure (MTTF), the expected time until
a system failure. The variance of the time to failure (VTTF) is obtained by
Var(X) = E[X2] − E[X]2 for random variable X, the time to failure. The prob-
ability of failure considers the limit probability of the reliability function for t
to ∞. This is of interest as in DFTs not all events fail eventually, cf. Fig. 2(a).
These measures can be used for single events in the DFT, and also for Boolean
combinations of failed and operational gates, such as e.g., the expected time to
a DFT state where events A and C have failed. Another measure-of-interest is
the expected number of faults before the DFT fails; if this is high, it indicates
that are various possibilities to take countermeasures. The Fussell-Vesely impor-
tance factor is the probability that a BE has failed when the DFT fails [17]. An
exemplary criticality importance factor is the probability that a BE causes the
DFT to fail. The measures above are analysed using efficient algorithms to verify
temporal properties on CTMCs [18] or MA [19].

Conditional Measures. All measures except RF (t) can be conditioned on the
occurrence of events, cf. the first column of Table 1. For example, as PrF �= 1
for some fault trees, the MTTF is not always defined. For this case a reasonable
alternative is to condition the MTTF, assuming the DFT eventually fails.

Measure Preservation Under Optimisations. Techniques such as modu-
larisation, DC-propagation and symmetry reduction are not applicable to all
measures. Their robustness w.r.t. the measures is indicated in the last columns
of Table 1, where ∗ means support of a light version. Modularisation is powerful



Advancing Dynamic Fault Tree Analysis 261

Table 1. Supported measures and importance factors

Symbol Name Cond. Par.syn. Mod. dc. Sym.red

RF (t) Reliability at t ✗ ✗ ✓ ✓ ✓

PrF Probability of failure ✓ ✓ ✓ ✓ ✓

MTTFF Mean time to failure ✓ ✓ ✗ ✓ ✓

VTTFF Variance of time to failure ✓ ✓ ✗ ✓ ✓

Expected faults before failure ✓ ✓ ✗ ✗ ✓

FV importance factor ✓ ✓ ✗ ✗ ∗
Criticality importance factor ✓ ✓ ✗ ✓ ∗

if a partial state space suffices, e.g., if the measure is compositional –meaning
that the measure can be obtained from its subDFTs’ measures. This holds e.g.,
for reliability but not for MTTF. Symmetry reduction requires a lack of iden-
tity (of DFT nodes), which does not hold for some measures, including many
conditional statements. If the lack of identity is not given, only a light version
is applicable.

5 Parameter Synthesis

Problem. The analysis discussed so far has two drawbacks: It requires all fail-
ure rates in the DFT to be given and does not guarantee any robustness w.r.t.
perturbations. The latter has been addressed by sensitivity analysis [9]. These
deficiencies inspired us to treat symbolic failure rates, i.e. DFTs where failure
rates and propagation probabilities in PDEPs are given as polynomials over a set
of parameters (pDFTs). Our state space construction technique is largely unaf-
fected by this. Our focus is on the failure rate synthesis in DFTs for any measure
in Table 1, second column, i.e., determine all values (of the symbolic rates) such
that the DFT satisfies a given desired threshold on a measure. For simplicity,
we focus on DFTs that (after our reductions) obey no non-determinism, which
applies to the vast majority of the DFTs in the literature. Thus, the underlying
state space of pDFTs can be reduced to a parametric CTMC, i.e. a CTMC whose
rates are polynomials over the DFT parameters.

Approach. To enable the synthesis in pDFTs we exploit the parameter synthe-
sis tool PROPhESY [20]. Based on ideas in [15], it computes a closed form (pre-
cisely: a rational function) for a parametric CTMC and the measure of interest.
To enable sensitivity analysis, it provides the derivative w.r.t. the parameters.
On top of obtaining these functions, PROPhESY allows for parameter space par-
titioning — using satisfiability-modulo-theory (SMT) techniques for non-linear
arithmetic. That is, given a pDFT, we can synthesise for which parameter values
the measure (e.g., MTTF) is above a threshold. An example output is depicted



262 M. Volk et al.

Fig. 5. (a) Sample output, (b) a sample parametric DFT, and (c) its MTTF.
(Color figure online)

in Fig. 5(a). This plot was obtained for the DFT of Fig. 2(d) where W1, W2 and
WS have failure rates x, 1 and y respectively for unknown x, y.

The green boxes represent areas in which all failure rates of W1 and WS give
rise to an MTTF that exceeds 1.5, while the red boxes guarantee all rates yield
an MTTF below 1.5. For the white areas, none of the above statements can be
made. Note that this output is extremely valuable as it provides information
about many (in fact uncountably many) failure rate combinations for which the
MTTF is below or above the threshold. We like to point out that obtaining this
information is far from trivial, and intrinsically more involved than analysing a
DFT where all failure rates are given. Consider the small example DFT from
Fig. 5(b), where D has a symbolic failure rate. The MTTF of the DFT is given
by the plot in Fig. 5(c). As the MTTF is not monotonic, the parameter synthesis
is not straightforward.

6 Experiments

Set-Up. To evaluate our approach, we tested the performance of our tool on
reliability and the MTTF assessment. We compare with the state-of-the-art tool
DFTCalc [13] and assess the effect of our abstraction techniques. The experiments
were conducted on an HP BL685C G7 restricted to 8 GB RAM and used a single
2.0 GHz core and a time-out of 1 h. We use the benchmark suite from [12]. Besides
the smaller HCAS and SAP sets, it contains the following benchmarks:

HECS. The Hypothetical Example Computer System (HECS) stems from the
NASA handbook on FTs [2]. It features a computer system consisting of a proces-
sor, a memory unit (MU) and an interface consisting of hard- and software.

MCS. The Multiprocessor Computing System (MCS) contains computing mod-
ules consisting of a processor, a MU and two disks, the DFT was given in [10].

RC. The Railway Crossing (RC) is an industrial case modelling a level crossing
which fails whenever any of the sensor-sets, barriers or controller fail [21].

SF. The Sensor Filter (SF) benchmark is a DFT that is automatically generated
from an AADL (Architecture Analysis & Design Language) system model [22].

We used the simplified DFTs as produced in [12], as this is shown to be
beneficial for DFTCalc. For each instance, we tested reliability for t = 100 and
the MTTF. Further features were tested on a range of > 100 crafted instances.



Advancing Dynamic Fault Tree Analysis 263

Fig. 6. Overview of the experimental results on four different benchmark sets.

Results. Figures 6(a-c) compare the performance of our tool (referred to as
SToRMDFT) with DFTCalc on MTTF (where modularisation is not applicable).
All plots use a log-log-scale. Figure 6(a) presents the analysis time of a DFT.
This includes state space generation. The lower dashed line indicates an advan-
tage of our tool by a factor ten, the upper of a factor 100. The outer lines indicate
TOs and MOs, respectively. Figure 6(b) indicates the peak memory consump-
tion as given by the operating system. Figure 6(c) shows the peak intermediate
state size. Figure 6(d) summarises the performance on the benchmark sets — it
lists the number of benchmarks solved and the cumulative time needed for the
solved benchmarks. Figure 6(e) shows the effect of the individual optimisation
techniques (symmetry reduction, DC-propagation, modularisation) versus using
all of them.

Observations. For non-parametric DFTs the performance is dominated by
the state space construction. SToRMDFT creates intermediate state spaces that



264 M. Volk et al.

are often ten times smaller; especially for moderately-sized DFTs, this is done
with a much lower overhead. This results in generating state spaces up to 5
orders of magnitudes faster. The informed state space generation allows to stop
exploring states where the measure of interest is settled. This advantage is best
observed by comparing top events typed OR and AND. The former requires
significantly smaller state spaces, which is reflected by the smaller intermedi-
ate state spaces — and leads to a significant advantage over DFTCalc. These
effects are multiplied by aggressively applying symmetry reductions and DC-
propagation. For many benchmarks, our abstractions directly yield the small
bisimulation quotient. However, on some HECS and MCS instances, our sym-
metry reduction does not yet suffice and DFTCalc gains an advantage in terms
of memory. Modularisation remains a powerful approach for assessing reliabil-
ity. It profits additionally from the performance on small DFTs. Model-checking
for reliability is for both SToRMDFT and DFTCalc so fast that our slightly better
performance is hardly significant. For MTTF, SToRMDFT is significantly faster.

For parametric instances, the original DFTs from literature can be handled:
For, e.g., the standard HECS from literature it takes 5 s to compute the rational
function with more than 400 terms in the numerator. Parameter synthesis for
90% of the parameter space finishes within four minutes. However, scalability
beyond these moderately-sized DFTs remains an open issue, as the parameters
appear throughout the full state space.

7 Conclusions and Future Work

We have presented a state space generation technique for DFTs that is more
than two orders of magnitude faster than the state-of-the-art. The technique
is complemented with a new feature in DFT analysis — the synthesis of failure
rates for measures such as MTTF. Future work includes the failure rate synthesis
for reliability (e.g., using [23]) and improve scalability for parameterised MTTF.

Acknowledgement. We thank Christian Dehnert for fruitful discussions. This work
was supported by the Excellence Initiative of the German federal and state government,
the CDZ project CAP (GZ 1023), and the BMBF project HODRIAN.

References

1. Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In:
Proceedings of RAMS, pp. 286–293 (1990)

2. Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. NASA Headquarters, Wash-
ington, D.C. (2002)

3. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computa-
tional engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE,
pp. 270–282 (2000)

4. Sullivan, K., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:
Proceedings of FTCS, pp. 232–235 (1999)



Advancing Dynamic Fault Tree Analysis 265

5. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and exten-
sible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure
Comput. 7(2), 128–143 (2010)

6. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees.
In: Proceedings of DSN (2016, to appear)

7. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998)

8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

9. Ou, Y., Dugan, J.B.: Sensitivity analysis of modular dynamic fault trees. In: Pro-
ceedings of IPDS, pp. 35–43 (2000)

10. Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Automatically trans-
lating dynamic fault trees into dynamic Bayesian networks by means of a software
tool. In: Proceedings of ARES, pp. 804–809 (2006)

11. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full imple-
mentation of the Fault Tree Handbook. Control Eng. Pract. 17(10), 1115–1125
(2009)

12. Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a
diet - automated reduction by graph rewriting. In: Li, X., Liu, Z., Yi, W. (eds.)
SETTA 2015. LNCS, vol. 9409, pp. 3–18. Springer, Heidelberg (2015)

13. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc:
a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M.
(eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013)

14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proc. of LICS, pp. 342–351. IEEE Computer Society (2010)

15. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005)

16. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic
fault trees. In: Proceedings of RAMS, pp. 57–63 (1997)

17. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

18. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

19. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS 10(3), 17 (2014)

20. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Heidelberg (2015)

21. Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart railroad
maintenance engineering with stochastic model checking. In: Proceedings of RAIL-
WAYS, Civil-Comp Proceedings, Civil-Comp Press, vol. 104, pp. 299–314 (2014)

22. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J. 54,
754–775 (2011)

23. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)


	Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure Rates
	1 Introduction
	2 Dynamic Fault Trees
	2.1 Dynamic Nodes
	2.2 Syntactic Restrictions

	3 State Space Generation
	3.1 Markov Automata
	3.2 State Space Generation
	3.3 Optimisations

	4 Measures of Interest
	5 Parameter Synthesis
	6 Experiments
	7 Conclusions and Future Work
	References


