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Preface

It is our pleasure to present the proceedings of the 35th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2016), held in Trondheim,
Norway, in September 2016. Since 1979, when the conference was established by the
European Workshop on Industrial Computer Systems, Technical Committee 7 on
Reliability, Safety, and Security (EWICS TC7), it has contributed to the state of the art
through the knowledge dissemination and discussions of important aspects of computer
systems of our everyday life. With the proliferation of embedded systems, the
omnipresence of the Internet of Things, and the commodity of advanced real-time
control systems, our dependence on safe and correct behavior is ever increasing.
Currently, we are witnessing the beginning of the era of truly autonomous systems,
driverless cars being the most well-known phenomenon to the non-specialist, where the
safety and correctness of their computer systems are already being discussed in the
main-stream media. In this context, it is clear that the relevance of the SAFECOMP
conference series is increasing.

The international Program Committee, consisting of 57 members from 16 countries,
received 71 papers from 21 nations. Of these, 24 papers were selected to be presented
at the conference.

The review process was thorough with at least 3 reviewers with ensured indepen-
dency, and 20 of these reviewers met in person in Toulouse, France in April 2016 for
the final discussion and selection. Our warm thanks go to the reviewers, who offered
their time and competence in the Program Committee work. We are grateful for the
support we received from LAAS-CNRS, who in its generosity hosted the PC meeting.

As has been the tradition for many years, the day before the main-track of the
conference was dedicated to 6 workshops: DECSoS, ASSURE, SASSUR, CPSELabs,
SAFADAPT, and TIPS. Papers from these are published in a separate LNCS volume.

We would like to express our gratitude to the many who have helped with the
preparations and running of the conference, especially Friedemann Bitsch as publica-
tion chair, Elena Troubitsyna as publicity chair, Erwin Schoitsch as workshop chair,
and not to be forgotten the local organization and support staff, Knut Reklev, Sverre
Hendseth, and Adam L. Kleppe.

For its support, we would like to thank the Norwegian University of Science and
Technology, represented by both the Department of Engineering Cybernetics and the
Department for Production and Quality engineering.

Without the support from the EWICS TC7, headed by Francesca Saglietti, this event
could not have happened. We wish the EWICS TC7 organization continued success,
and we are looking forward to being part of this also in the future.



Finally, the most important persons to whom we would like to express our gratitude
are the authors and participants. Your dedication, effort, and knowledge are the foun-
dation of the scientific progress. We hope you had fruitful discussions, gained new
insights, and generally had a memorable time in Trondheim.

September 2016 Amund Skavhaug
Jérémie Guiochet
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FISSC: A Fault Injection and Simulation
Secure Collection

Louis Dureuil1,2,3(B), Guillaume Petiot1,3, Marie-Laure Potet1,3,
Thanh-Ha Le4, Aude Crohen4, and Philippe de Choudens1,2

1 University of Grenoble Alpes, 38000 Grenoble, France
2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France

{louis.dureuil,philippe.de.choudens}@cea.fr
3 CNRS, VERIMAG, 38000 Grenoble, France
{louis.dureuil,marie-laure.potet}@imag.fr

4 Safran Morpho, Paris, France
{thanh-ha.le,aude.crohen}@morpho.com

Abstract. Applications in secure components (such as smartcards,
mobile phones or secure dongles) must be hardened against fault injec-
tion to guarantee security even in the presence of a malicious fault. Craft-
ing applications robust against fault injection is an open problem for all
actors of the secure application development life cycle, which prompted
the development of many simulation tools. A major difficulty for these
tools is the absence of representative codes, criteria and metrics to eval-
uate or compare obtained results. We present FISSC, the first public
code collection dedicated to the analysis of code robustness against fault
injection attacks. FISSC provides a framework of various robust code
implementations and an approach for comparing tools based on prede-
fined attack scenarios.

1 Introduction

1.1 Security Assessment Against Fault Injection Attacks

In 1997, Differential Fault Analysis (DFA) [6] demonstrated that unprotected
cryptographic implementations are insecure against malicious fault injection,
which is performed using specialized equipment such as a glitch generator,
focused light (laser) or an electromagnetic injector [3]. Although fault attacks
initially focused on cryptography, recent attacks target non-cryptographic prop-
erties of codes, such as modifying the control flow to skip security tests [16] or
creating type confusion on Java cards in order to execute a malicious code [2].

Fault injections are modeled using various fault models, such as instruction
skip [1], instruction replacement [10] or bitwise and byte-wise memory and regis-
ter corruptions [6]. Fault models operate either at high-level (HL) on the source
code or at low-level (LL) on the assembly or even the binary code. Both kinds
of models are useful. HL models allow to perform faster and understandable
analyses supplying a direct feedback about potential vulnerabilities. LL models

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-45477-1 1



4 L. Dureuil et al.

allow more accurate evaluations, as the results of fault injection directly depend
on the compilation process and on the encoding of the binary.

Initially restricted to the domain of smartcards, fault attacks are nowadays
taken into account in larger classes of secure components. For example the Pro-
tection Profile dedicated to Trusted Execution Environment1 explicitly includes
hardware attack paths such as power glitch fault injection. In the near future,
developers of Internet of Things devices will use off-the-shelf components to build
their systems, and will need means to protect them against fault attacks [8].

1.2 The Need for a Code Collection

In order to assist both the development and certification processes, several tools
have been developed, either to analyze the robustness of applications against
fault injection [4,5,7,8,10,11,13,14], or to harden applications by adding soft-
ware countermeasures [9,12,15]. All these tools are dedicated to particular fault
models and code levels. The main difficulty for these tools is the absence of
representative and public codes allowing to evaluate and compare the relevance
of their results. Partners of this paper are in this situation and have developed
specific tools adapted to their needs: Lazart [14] an academic tool targeting
multiple fault injection, Efs [4] an embedded LL simulator dedicated to devel-
opers and Celtic [7] tailored for evaluators.

In this paper, we describe FISSC (Fault Injection and Simulation Secure
Collection), the first public collection dedicated to the analysis of secure codes
against fault injection. We intend to provide (1) a set of representative appli-
cations associated with predefined attack scenarios, (2) an inventory of classic
and published countermeasures and programming practices embedded into a set
of implementations, and (3) a methodology for the analysis and comparison of
results of various tools involving different fault models and code levels.

In Sect. 2, we explain how high-level attack scenarios are produced through
an example. We then present the organization and the content of this collection
in Sect. 3. Lastly in Sect. 4, we propose an approach for comparing attacks found
on several tools, illustrated with results obtained from Celtic.

2 The VerifyPIN Example

Figure 1 gives an implementation of a VerifyPIN command, allowing to com-
pare a user PIN to the card PIN under the control of a number of tries. The
byteArrayCompare function implements the comparison of PINs. Both functions
illustrate some classic countermeasures and programming features. For example
the constants BOOL TRUE and BOOL FALSE encode booleans with values more
robust than 0 and 1 that are very sensible to data fault injection. The loop of
byteArrayCompare is in fixed time, in order to prevent timing attacks. Finally,
to detect fault injection consisting in skipping comparison, a countermeasure
checks whether i is equal to size after the loop. The countermeasure function
raises the global flag g countermeasure and returns.
1 TEE Protection Profile. Tech. Rep. GPD SPE 021. GlobalPlatform, november 2014.
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1 BOOL VerifyPIN () {
2 g_authenticated = BOOL_FALSE;
3 if(g_ptc > 0) {
4 if(byteArrayCompare(g_userPin ,
5 g_cardPin , PIN_SIZE)
6 == BOOL_TRUE) {
7 g_ptc = 3;
8 g_authenticated = BOOL_TRUE;
9 return BOOL_TRUE;

10 } else {
11 g_ptc --;
12 return BOOL_FALSE;
13 }
14 } return BOOL_FALSE; }

15 BOOL byteArrayCompare(UBYTE* a1 ,
16 UBYTE* a2 , UBYTE size) {
17 int i;
18 BOOL status = BOOL_FALSE;
19 BOOL diff = BOOL_FALSE;
20 for(i = 0; i < size; i++) {
21 if(a1[i] != a2[i]) {
22 diff = BOOL_TRUE; } }
23 if(i != size) {
24 countermeasure (); }
25 if(diff == BOOL_FALSE) {
26 status = BOOL_TRUE;
27 } else { status = BOOL_FALSE;
28 } return status; }

Fig. 1. Implementation of functions VerifyPIN and byteArrayCompare

To obtain high-level attack scenarios, we use the Lazart tool [14] which
analyses the robustness of a source code (C-LLVM) against multiple control-
flow fault injections (other types of faults can also be taken into account). The
advantage of this approach is twofold: first, Lazart is based on a symbolic
execution engine ensuring the coverage of all possible paths resulting from the
chosen fault model; second, multiple injections encompass attacks that can be
implemented as a single one in other fault models or low-level codes. Thus,
according to the considered fault model, we obtain a set of significant high-level
coarse-grained attack scenarios that can be easily understood by developers.

We apply Lazart to the VerifyPIN example to detect attacks where an
attacker can authenticate itself with an invalid PIN without triggering a coun-
termeasure. Successful attacks are detected with an oracle, i.e., a boolean condi-
tion on the C variables. Here: g countermeasure != 1 && g authenticated ==
BOOL TRUE. We chose each byte of the user PIN distinct from its reference coun-
terpart. Table 1 summarizes, for each vulnerability, the number of required faults,
the targeted lines in the C code, and the effect of the faults on the application.

In FISSC, for each attack, we provide a file containing the chosen inputs
and fault injection locations (in terms of basic blocks of the control flow graph)
as well as a colored graph indicating how the control flow has been modified.
Detailed results for this example can be found on the website.2

Table 1. High-level attacks found by Lazart and their effects

Number of faults Fault injection locations Effects

1 l. 25 Invert the result of the condition

1 l. 4 Invert the result of the condition

2 l. 20 Do not execute the loop

l. 23 Do not trigger the countermeasure

4 l. 21 (four times) Invert each byte check

2 http://sertif-projet.forge.imag.fr/documents/VerifyPIN 2 results.pdf.

http://sertif-projet.forge.imag.fr/documents/VerifyPIN_2_results.pdf
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3 The FISSC Framework

As pointed out before, FISSC targets tools working at various code levels and
high-level attack scenarios can be used as reference to interpret low-level attacks.
Then, we supply codes at various levels and the preconized approach is described
in Fig. 2 and illustrated in Sect. 4.

C code

assembly

binary

HL attack scenarios

LL attacks

attack matching

HL analysis

LL analysis

Fig. 2. Matching LL attacks with HL attack scenarios

In this current configuration, FISSC supports the C language and the ARM-
v7 M (Cortex M4) assembly. We do not distribute binaries targeting a specific
device, but they can be generated by completing the gcc linker scripts.

3.1 Contents and File Organization

The first release of FISSC contains small basic functions of cryptographic imple-
mentations (key copy, generation of random number, RSA) and a suite of Ver-
ifyPIN implementations of various robustness, detailed in Sect. 3.2. For these
examples, Table 2 describes oracles determining attacks that are considered suc-
cessful. For instance attacks against the VerifyPIN command target either to
be authenticated with a wrong PIN or to get as many tries as wanted. Attacks
against AESAddRoundKeyCopy try to assign a known value to the key in order
to make the encryption algorithm deterministic. Attacks against GetChallenge
try to prevent the random buffer generation, so that the challenge buffer is left
unchanged. Attacks against CRT-RSA target the signature computation, so that
the attacker can retrieve a prime factor p or q of N .

Table 2. Oracles in FISSC

Example Oracle

VerifyPIN g authenticated == 1

VerifyPIN g ptc >= 3

AES KeyCopy g key[0] = g expect[0] || ... || g key[N-1] = g expect[N-1]

GetChallenge g challenge == g previousChallenge

CRT-RSA (g cp == pow(m,dp)% p && g cq != pow(m,dq)% q)

|| (g cp != pow(m,dp)% p && g cq == pow(m,dq)% q)
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Each example is split into several C files, with a file containing the actual
code, and other files providing the necessary environment (e.g., countermeasure,
oracle, initialization) as well as an interface to embed the code on a device (types,
NVM memory read/write functions). This modularity allows one to use the
implementation while replacing parts of the analysis or interface environments.

3.2 The VerifyPIN Suite

Applications are hardened against fault injections by means of countermeasures
(CM) and programming features (PF). Countermeasures denote specific code
designed to detect abnormal behaviors. Programming Features denote imple-
mentation choices impacting fault injection sensitivity. For instance, introducing
function calls or inlining them introduces instructions to pass parameters, which
changes the attack surface for fault injections. Table 4 lists a subset of classic
and published PF and CM we are taking into account. The objective of the suite
is not to provide a fully robust implementation, but to observe the effect of the
implemented CM and PF on the produced attack scenarios.

Table 3. PF/CM embedded in VerifyPIN suite

HB FTL INL BK SC DT # scenarios for i faults

1 2 3 4 Σ

v0 2 0 0 1 3

v1 � 2 0 0 1 3

v2 � � � 2 1 0 1 4

v3 � � � � 2 1 0 1 4

v4 � � � � � 2 0 1 1 4

v5 � � � � 0 4 4 1 9

v6 � � � � 0 3 0 1 4

v7 � � � � � 0 2 0 0 2

Table 4. List of CM/PF

PF

INL Inlined calls

FTL Fixed time loop

CM

HB Hardened booleans

BK Backup copy

DT Double test

SC Step counter

Table 3 gives the distribution of CM and PF in each implementation (v2
is the example of Fig. 1). Hardened booleans protect against faults mod-
ifying data-bytes. Fixed-time loops protect against temporal side-channel
attacks. Step counters check the number of loop iterations. Inlining the
byteArrayCompare function protects against faults changing the call to a NOP.
Backup copy prevents against 1-fault attacks targeting the data. Double call to
byteArrayCompare and double tests prevent single fault attacks, which become
double fault attacks. Calling a function twice (v5) doubles the attack surface
on this function. Step counters protect against all attacks disrupting the control
flow integrity [9].

4 Comparing Tools

The HL scenarios and oracles defined in Sects. 2–3 allow for the comparison of
tools in the FISCC framework. In particular, the successful attacks discovered
by tools should cover the HL scenarios. In order to associate HL scenarios and
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attacks we propose several Attack Matching criteria. Attack matching consists in
deciding whether some attacks found by a tool are related to attacks found by
another tool. An attack is unmatched if it is not related to any other attack.

In [5], HL faults are compared with LL faults with the following criterion:
attacks that lead to the same program output are considered as matching. This
“functional” criterion is not always discriminating enough. For instance, codes
like verifyPIN produce a very limited set of possible outputs (“authenticated”
or not). We propose two additional criteria:

Matching by address. Match attacks that target the same address. To match LL
and HL attacks, one must additionally locate the C address corresponding to
the assembly address of the LL attack.

Fault Model Matching. Interpret faults in one fault model as faults in the other
fault model. For instance, since conditional HL statements are usually compiled
to cmp and jmp instructions, it makes sense to interpret corruptions of cmp or
jmp instructions (in the instruction replacement fault model) as test inversions.

4.1 Case Study

We apply our criteria to compare the results of Celtic and Lazart on the
example of Fig. 1. In our experiments, Celtic uses the instruction replacement
fault model, where a single byte of the code is replaced by another value at
runtime. Testing the possible values exhaustively, Celtic finds 432 successful
attacks. We then apply our two matching criteria to these results. Fig. 3 indicates
the number of successful attacks per address of assembly code, and the (manually
determined) correspondence between assembly addresses and C lines. The C lines
4 , 20 , 21 , 23 and 25 correspond to the scenarios found by Lazart in Table 1.
They are matched by address with the attacks found by Celtic. Celtic attacks
that target a jump or a compare instruction are also matched by fault model.

4.2 Interpretation

Fault model matching can be used to quickly identify HL-attacks amongst
LL-attacks with only a hint of the correspondence between C and assembly,
while address matching allows to precisely find the HL-attacks matched by the
LL-attacks. Both matching criteria yield complementary results. For instance,
attacks at address 0x41eb are matched only by address, while attacks at 0x41fd
only by fault model.

Interestingly, some multiple fault scenarios of Lazart are implemented by
single fault attacks in Celtic. For instance, the 4-fault scenario of l.21 is imple-
mented with the attacks at address 0x41b6. In the HL scenario the conditional
test inside the loop is inverted 4 consecutive times. In the LL attacks, The cor-
responding jump instruction is actually not inverted, but its target is replaced
so that it jumps to l.26 instead of l.22. These attacks are matched with our cur-
rent criteria, although they are semantically very different. Lastly, 20 LL-attacks
remain unmatched. They are subtle attacks that depend on the encoding of the
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Fig. 3. Matching HL and LL attacks

binary or on a very specific byte being injected. For instance, at 0x41da, the
value for BOOL FALSE is replaced by the value for BOOL TRUE. This is likely to be
hard to achieve with actual attack equipment.

In this example, attack matching criteria allows to show that Celtic attacks
cover each HL-scenario. Other tools can use this approach to compare their
results with those of Celtic and the HL-scenario of Lazart. Their results
should cover the HL-scenario, or offer explanations (for instance, due to the
fault model) if the coverage is not complete.

5 Conclusion

FISSC is available on request.3 It can be used by tool developers to evaluate their
implementation against many fault models and it can be contributed to with new
countermeasures (the first external contribution is the countermeasure of [9]).
We plan to add more examples in the future releases of FISSC (e.g. hardened
DES implementations) and to extend Lazart to simulate faults on data.

Acknowledgments. This work has been partially supported by the SERTIF
project (ANR-14-ASTR-0003-01): http://sertif-projet.forge.imag.fr and by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025).

3 To request or contribute, send an e-mail to sertif-secure-collection@imag.fr.
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9. Lalande, J., Heydemann, K., Berthomé, P.: Software countermeasures for control
flow integrity of smart card C codes. In: Proceedings of the 19th European Sym-
posium on Research in Computer Security, ESORICS 2014, pp. 200–218 (2014)

10. Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM a smart card fault
injection simulator. In: IEEE International Workshop on Information Forensics
and Security. IEEE (2011)

11. Meola, M.L., Walker, D.: Faulty logic: reasoning about fault tolerant programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 468–487. Springer, Heidelberg
(2010)

12. Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. J. Cryptographic Eng.
4(3), 145–156 (2014)

13. Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: Discovering application-
level insider attacks using symbolic execution. In: Gritzalis, D., Lopez, J. (eds.)
SEC 2009. IFIP AICT, vol. 297, pp. 63–75. Springer, Heidelberg (2009)

14. Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: a symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
Seventh IEEE International Conference on Software Testing, Verification and Val-
idation, ICST 2014, pp. 213–222. IEEE (2014)

http://dx.doi.org/10.1007/978-3-319-31271-2_7


FISSC: A Fault Injection and Simulation Secure Collection 11
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Abstract. Software Fault Injection (SFI) techniques play a pivotal role
in evaluating the dependability properties of a software system. Evaluat-
ing the dependability of software system against multiple fault scenarios
is challenging, due to the combinatorial explosion and the advent of new
fault models. These necessitate SFI tools that are programmable and eas-
ily extensible. This paper proposes FIDL, which stands for fault injec-
tion description language, which allows compiler-based fault injection
tools to be extended with new fault models. FIDL is an Aspect-Oriented
Programming language that dynamically weaves the fault models into
the code of the fault injector. We implement FIDL using the LLFI fault
injection framework and measure its overheads. We find that FIDL sig-
nificantly reduces the complexity of fault models by 10x on average, while
incurring 4–18% implementation overhead, which in turn increases the
execution time of the injector by at most 7 % across five programs.

1 Introduction

Evaluating the dependability properties of a software system is a major concern
in practice. Software Fault Injection (SFI) techniques assess the effectiveness and
coverage of fault-tolerance mechanisms, and help in investigating the corner cases
[4,5,15]. Testers and dependability practitioners need to evaluate the software
system’s dependability against a wide variety of fault scenarios. Therefore, it is
important to make it easy to develop and deploy new fault scenarios [18].

In this paper, we propose FIDL (Fault Injection Description Language)1, a
new language for defining fault scenarios for SFI. The choice of introducing a spe-
cialized language for software fault injection is motivated by three reasons. First,
evaluating the dependability of software system against multiple fault scenarios
is challenging - the challenge is combinatorial explosion of multiple failure modes
[11] when dealing with different attributes of a fault model (e.g., fault types, fault
locations and time slots). Second, due to the increasing complexity of software
systems, the advent of new types of failure modes (due to residual software bugs)
is inevitable [5]. Previous studies have shown that anticipating and modeling all
types of failure modes a system may face is challenging [11]. Hence, SFI tools

1 Pronounced Fiddle as it involves fiddling with the program.

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 12–23, 2016.
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need to have extensibility facilities that enable dependability practitioners to
dynamically model new failure modes, with low effort. Third, decoupling the
languages used for describing fault scenarios from the fault injection process
enables SFI tool developers and application testers to assume distinct roles in
their respective domains of expertise.

The main idea in FIDL is to use Aspect Oriented Programming (AOP) to
weave the aspects of different fault models dynamically into the source program
through compiler-based SFI tools. This is challenging because the language needs
to capture the high-level abstractions for describing fault scenarios, while at the
same time being capable of extending the SFI tool to inject the scenarios. Prior
work has presented domain specific languages to drive the fault injection tool
[3,6,11,16,18]. However, these languages provide neither high level abstractions
for managing fault scenarios, nor dynamic extensibility of the associated SFI
tools. To the best of our knowledge, FIDL is the first language to provide high-
level abstractions for writing fault injectors spanning a wide variety of software
faults, for extending compiler-based SFI tools.

Paper contributions: The main contributions of this paper are as follows:

– Proposed a fault injection description language (FIDL) which enables pro-
grammable compiler-based SFI tools.

– Built FIDLFI, a programmable software fault injection framework by adding
FIDL to LLFI, an open-source, compiler-based framework for fault injec-
tions [1,14].

– Evaluated FIDL and FIDLFI on five programs. We find that FIDL reduces
the complexity of fault models by 10x on average, while incurring 4 to 18 %
implementation overhead, which in turn increases the time overhead by at
most 6.7 % across programs compared to a native C++ implementation.

2 Background

We developed FIDL as an Aspect-Oriented Programming (AOP) language on the
LLFI fault injection framework. In this section, we first provide a brief overview
of LLFI. We then explain why we are motivated to develop an AOP language
for extending and driving LLFI. Though we demonstrate FIDL in the context
of LLFI, it can be applied to any compiler-based SFI tool.

2.1 LLFI

LLVM is a production, open-source compiler that allows a wide variety of static
program analysis and transformations [13]. LLFI is an open source LLVM-based
fault injection tool that injects faults into the LLVM Intermediate Representa-
tion (IR) level of application source code [21]. LLFI was originally developed for
hardware fault injection. It injects a fault (e.g., bit flip) into a live register at
every run of program in specific locations that are instrumented during compile
time [14]. LLFI also allows user to track the fault propagation path, and map it
back to the application source code.
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Since its development, we have extended LLFI to inject different kinds of
software faults in a program in addition to hardware faults [1]. This is the version
of LLFI that we use in this paper for comparison with FIDL.

2.2 Aspect-Oriented Programming (AOP)

Object-Oriented Programming (OOP) is a well-known programming technique
to decompose a system into sets of objects. However, it provides a static model of
a system - thus any changes in the requirements of software system may have a
big impact on development time. Aspect-Oriented Programming (AOP) presents
a solution to the OOP challenge since it enables the developer to adopt the code
that is needed to add secondary requirements such as logging, exception handling
without needing to change the original static model [17]. In the following, we
introduce the standard terminology defined in AOP [17].

– Cross-cutting concerns: are the secondary requirements of a system that
cut across multiple abstracted entities of an OOP. AOP aims to encapsulate
the cross-cutting concerns of a system into aspects and provide a modular
system.

– Advice: is the additional code that is “joined” to specific points of program
or at specific time.

– Point-cut: specifies the points in the program at which advice needs to be
applied.

– Aspect: the combination of the point-cut and the advice is called an aspect.
AOP allows multiple aspects to be described and unified into the system auto-
matically.

3 Related Work

A wide variety of programmable fault injection tools based on SWIFI (Soft-
Ware Implemented Fault Injection) techniques have been presented in prior work
[3,6,11,11,12,16,18,23]. In this section, we aim to define where FIDL stands in
relation to them. More particularly, we argue why “Programmability” is a neces-
sity for fault injection tools.

Programmability, is defined as the ability of programming the fault injec-
tion mechanism for different test scenarios based on desired metrics of the tester
[6,18]. Programmability has two aspects. The first is a unified description lan-
guage that is independent of the language of the SFI tool [3]. This language is
needed to accelerate the process of fault scenario development, and dynamically
manage the injection space for a variety of fault types. The second aspect of pro-
grammability is providing high level abstractions in the language. The abstracted
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information keeps the fault description language as simple as possible. By remov-
ing the complexity of fault scenario’s developing phases, high level abstraction
enhances the usability of the tool [3,9,11,16].

There have been a number of languages for fault injection. FAIL* is a fault
injection framework supported by a domain specific language that drives the
fault load distributions for Grid middleware [18]. FIG is supported by a domain
specific language that manages the errors injected to application/shared library
boundary [3]. Orchestra and Genesis2 use scripts to describe how to inject fail-
ures into TCL layers and service level respectively [6,12]. LFI is supported by
a XML-based language for introducing faults into the libraries [16]. EDFI is a
LLVM-based tool supporting a hybrid (dynamic and static) fault model descrip-
tion in a user-controlled way through command line inputs [8]. However, the
aforementioned languages do not provide high level abstractions, and hence
developing a new fault model (or scenario) is non-trivial. PREFAIL proposes
a programmable tool to write policies (a set of multiple-failure combinations)
for testing cloud applications [11]. Although its supporting language provides
high level abstractions, the abstracted modules only manage the failure loca-
tions, and do not provide any means to describe new failure types.

4 System Overview

In this paper, we present FIDLFI: a programmable fault injection framework,
which improves upon the previous work in both extensibility and high level
abstraction. FIDLFI enables programmability of compiler-based SFI tools, and
consists of two components: a SFI engine to manage fault injection, and FIDL
as SFI driver to manage fault scenarios. It enables testers to generate aggregate
fault models in a systematic way, and examine the behavior of the Application
Under Test (AUT) after introducing the fault models.

We built the FIDL language to be independent from the language used in the
fault injector, which is C++. This enables decoupling the SFI engine and FIDL.
Figure 1 indicates the FIDLFI architecture, and the way both pieces interact
with each other. The tester describes a fault scenario (new failure mode or a set
of multiple failure modes’ combinations) in FIDL script, and feeds it into the
FIDL core, where it is compiled into a fault model in the C/C++ language. The
generated code is automatically integrated into the SFI engine’s source code. It
enables the SFI engine to test AUT using the generated fault model.

In the rest of this section, we first explain how we design aspects in FIDL
to specify the fault model, and then, present the algorithm to weave the models
into the fault injector.

Fig. 1. FIDLFI architecture
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4.1 FIDL Structure

FIDL represents the fault models in a granular fashion. We reflected the granu-
larity in the fault model by designing it in the form of distinguishable modules,
in which the associated attributes are described. The main attributes of a fault
model includes fault type (what to inject), and fault location (where/when to
inject) that forms the basis of the model.

A FIDL script is formed of four core entities; Trigger, Trigger*, Target and
Action, each of which represents a specific task toward fault model design. Once
a FIDL script is executed, the FIDL algorithm creates two separate modules
(fault trigger and fault injector). Trigger, Trigger* and Target are entities which
are representative for responding to the where to inject question in fault model
design. For simplicity, we call all three entities as Triggers. Triggers provide
the required information for FIDL algorithm to generate fault trigger module.
Triggers are like programmable monitors scattered all over the application in
desired places to which FIDL can bind a request to perform a set of Actions.
An Action entity represents what to be injected in targeted locations, and is
translated to fault injector module by the FIDL algorithm.

We use the terms instruction and register to describe the entities, as this
is what LLVM uses for its intermediate representation (IR) [13]. The FIDL
language can be adapted for other compiler infrastructures which use different
terms.

Trigger identifies the IR instructions of interest which have previously been
defined based on the tester’s primary metrics or static analysis results.

Trigger: <instruction name >

Trigger* selects a special subset of identified instructions based on the tester’s
secondary metrics. This entity enables the tester to filter the injection space to
more specific locations. Trigger* is an optional feature that is used when the
tester needs to narrow down the Trigger-defined instructions based on specific
test purposes, e.g., if she aims to trigger the instructions which are located in
tainted paths.

Trigger*: <specific instruction indexes>

Target identifies the desired register(s) in IR level (variable or function argu-
ment in the source code level).

Target: < function name :: register type >

Register type can be specified as one of the following options;

dst/RetVal/src (arg number)

in which dst and src stand for destination and source registers of selected instruc-
tion respectively, and RetVal refers to the return value of the corresponding
instruction. For example fread:: src 2 means entry into 3rd source register of
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fread instruction, and similarly src 0 means entry into 1st source register of
every Trigger-defined instruction.

Action defines what kind of mutation is to be done according to the expected
faulty behavior or test objectives.

Action: Corrupt/Freeze/Delay/SetValue/ Perturb

Corrupt is defined as bit flipping the Data/Address variables.Delay and Freeze
are defined as creating an artificial delay and creating an artificial loop respec-
tively, and Perturb describes an erroneous behavior. If Action is specified as
Perturb, it has to be followed by the name of a built-in injector of the SFI tool
or a custom injector written in the C++ language.

Action : Perturb :: built-in/custom injector

4.2 Aspect Design

We design aspects (advice and point-cut) using FIDL scripts. FIDL scripts are
very short, simple, and use abstract entities defined in the previous section.
This allows testers to avoid dealing with the internal details of the SFI tool or
the underlying compiler (LLVM in our case), and substitutes the complex fault
model design process with a simple scripting process. As indicated in Fig. 2, FIDL
core weaves the defined aspects into LLFI source code by compiling aspects into
fault triggers and fault injectors, and automatically integrating them into LLFI.

Fig. 2. (a) Aspect-oriented software development [7], (b) FIDL as an AOP-based
language.

Algorithm 1 describes how FIDL designs aspects, and how it weaves the
aspects into LLFI source code. For the instructions that belong to both Trigger
and Trigger* sets (line 1), Algorithm 1 looks for the register(s) that are defined
in Target (line 2). Every pair of instruction and corresponding register provides
the required information for building PointCut (line 3). FIDL takes the Action
description to build Advice (line 4), that is paired with PointCut to form a FIDL
aspect (line 5). Now, Algorithm 1 walks through the AUT’s code, and looks for
the pairs of instruction and register(s) that match to those of PointCut (line 8).
Then, it generates the fault trigger and fault injector’s code in C++ (line 9, 10).
Fault trigger is a LLVM pass that instruments the locations of code identified
by PointCut during compile time, and fault injector is a C++ class that binds
the Advice to the locations pointed to by PointCut during run time.
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Algorithm 1. FIDL weaver description
1: for all insti ∈ (Trigger ∩ Trigger∗) do
2: for all regj ∈ Target do
3: PointCut[i, j] ← [insti, regj ]
4: Advice ← Action
5: Aspect ← [Advice, PointCut[i, j]]
6: Iterate all basic blocks of AUT
7: for all [instm, regn] ∈ AUT do
8: for all [instm, regn] =PointCut[i, j] do
9: FaultTriggerk ← PointCut[i, j]

10: Generate FaultInjector from Advice

5 Evaluation Metrics

We propose three metrics for capturing the efficiency of our programmable fault
injection framework, (1) complexity, (2) time overhead, and (3) implementation
overhead. We apply these metrics to the SFI campaign that utilizes different fault
models across multiple AUTs. For each metric, we compare the corresponding
values in FIDL with the original fault injectors implemented in the LLFI frame-
work (in C++ code). Before we explain the above metrics, we describe the
possible outcomes of the fault injection experiment across AUTs as follows:

– Crash: Application is aborted due to an exception.
– Hang : Application fails to respond to a heartbeat.
– SDC (Silent Data Corruption): Outcome of application is different from the

fault-free execution result (we assume that the fault-free execution is deter-
ministic, and hence any differences are due to the fault).

– Benign: None of the above outcomes (observable results) with respect to either
fault masking or non-triggering faults.

Complexity is defined as the effort needed to set up the injection campaign
for a particular failure mode. Complexity is measured as time or man hours
of uninterrupted work in developing a fault model. Because this is difficult to
measure, we calculate instead, the number of source Lines Of Code (LOC) asso-
ciated with a developed fault model [22]. We have used the above definition for
measuring of both OFM’s and FFM’s complexities. OFM (Original Fault Model)
is the fault model which is primarily developed as part of the LLFI framework
in C++ language. FFM (FIDL-generated Fault Model) is the fault model which
is translated from FIDL script to C++ code by the FIDL compiler (our tool).

Time Overhead is the extra execution time needed to perform fault-free (pro-
filing) and faulty (fault injection) runs respectively compared to the execution
time of AUT within our framework. To precisely measure the average time over-
head of each SFI campaign, we only include those runs whose impact are SDCs,
as the times taken by Crashes and Hangs depend on the exception handling
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overheads and the timeout detection mechanisms respectively, both of which are
outside the purview of fault injections. We also exclude the benign results in
time overhead calculations, because we do not want to measure time when the
fault is masked as these do not add any overhead.

Implementation Overhead is the number of LOC introduced by the trans-
lation of the FIDL scripts into C++ code. The core of FIDL includes a FIDL
compiler written in Python, and three general template files to translate FIDL
scripts to respective fault trigger and fault injector modules. FIDL core’s is less
than 1000 (Lines of Code) LOC. However, FIDL uses general templates to gen-
erate fault models’ source code, which introduces additional space overhead. To
measure this overhead, for every given fault model, we compared the original
LOC of OFMs and those of FIDL-generated ones.

6 Evaluation

6.1 Experimental Setup

Fault Models: Using FIDL, we implemented over 40 different fault models
that had originally been implemented in LLFI as C++ code 2. However, due to
time constraints, we choose five fault models for our evaluation, namely Buffer
overflow, Memory leak, Data corruption, Wrong API and G-heartbleed (Details
in Table 1). We limited the number of applied fault models to 5, as for a given
fault model, we need to perform a total of 20,000 runs (two types of campaigns
(2*2000 runs) with and without FIDL, across 5 benchmarks) for obtaining sta-
tistically significant results, which takes a significant amount of time.

Table 1. Sample fault model description

Fault model Description

Buffer overflow The amount of data written in a local buffer exceeds the amount
of memory allocated for it, and overwrites adjacent memory

Data corruption The data is corrupted before or after processing

Memory leak The allocated memory on the heap is not released though its not
used further in the program

Wrong API Common mistakes in handling the program APIs responsibility for
performing certain tasks such as reading/writing files

G-heartbleed A generalized model of the Heartbleed vulnerability, that is a type
of buffer over-read bug happening in memcpy(), where the
buffer size is maliciously enlarged and leads to information
leakage [20]

2 Available at: https://github.com/DependableSystemsLab/LLFI.

https://github.com/DependableSystemsLab/LLFI
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Target Injection: We selected five benchmarks from three benchmark suites,
SPEC [10], Parboil [19], and Parsec [2]. We also selected the Nullhttpd web
server to represent server applications. Table 2 indicates the characteristics of
benchmark programs. The Src-LOC and IR-LOC columns refer to the number
of lines of benchmark code in C and LLVM IR format respectively. In each
benchmark, we inject 2000 faults for each fault model - we have verified that
this is sufficient to get tight error bars at the 95 % confidence intervals.

Table 2. Characteristics of benchmark programs

Benchmark Suite Description Src-LOC IR-LOC

mcf SPEC Solves vehicle scheduling problems
planning transportation

1960 5054

sad Parboil Sum of absolute differences kernel, used
in MPEG video encoder

1243 3700

cutcp Parboil Computes the short range components
of Coulombic potential at grid points

1645 4200

blackscholes Parsec Option pricing with Black-Scholes
Partial Differential Equations

1198 3560

null httpd Nulllogic A multi-threaded web server for Linux
and Windows

2067 6930

Research Questions: We address three questions in our evaluation.
RQ1 : How much does FIDL reduce the complexity of fault models?
RQ2 : How much time overhead is imposed by FIDL?
RQ3 : How much implementation overhead is imposed by FIDL?

6.2 Experimental Results

Figure 4 shows the aggregate percentage of SDCs, crashes and benign fault injec-
tions (FI) observed across benchmarks for each of the fault models. We find that
there is significant variation in the results depending on the fault model.

Complexity (RQ1): For each of the fault models, we quantitatively measure
how much FIDL reduces the complexity of fault model development in our frame-
work. Table 3 compares LOC of original fault models primarily developed in the
C++ language, and fault models described in FIDL scripts. As can be seen, the
LOC of FIDL scripts is much smaller than OFM ones, e.g., 10 LOC of FIDL
script against 112 LOC of C++ code for developing G-heartbleed fault model.
Thus, FIDL considerably reduces the fault model complexity by 10X, or one order
of magnitude, on average, across fault models.

Time Overhead (RQ2): Our first goal of time overhead evaluation is measur-
ing how much LLFI slows down AUTs’ execution by itself, even without FIDL.



FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 21

Table 3. Comparing the complexity of FIDL scripts with original and FIDL-generated
fault models

Fault model OFM (LOC) FFM (LOC) FIDL script (LOC)

Buffer overflow 68 96 9

Memory leak 68 71 11

Data corruption 61 64 8

Wrong API 109 111 11

G-Heartbleed 81 112 10

Given an OFM, we measured the average execution time for both profiling and
fault injection steps, and computed the respective time overheads (TP and TF ).
We analyzed the results to figure out how time overhead varies for each fault
model across benchmarks. We find that both TP and TF increase when the
number of candidate locations for injecting the related fault increases, especially
when the candidate location is inside a loop. For example, the number of mem-
ory de-allocation instances (free() calls) within cutcp and mcf benchmarks are
18 and 4 respectively, and as can be seen in Fig. 3(c), the associated TF and TP
varies between 161–196 % and 59–115 % for these benchmarks. In this figure, the
maximum and minimum time overhead are related to the sad and blackscholes
with respective maximum and minimum number of free() calls.

Secondly, we aim to analyze how FIDL influences the time overhead. To do so,
we repeated our experiments using FIDL-generated fault models, and measured
the associated time overhead across benchmarks. As shown in Fig. 3, the time
overhead either shows a small increase or does not change at all. We also find that
there is a positive correlation between the increased amount of time overhead

Fig. 3. Comparing Time overhead (%) of selected fault model across benchmarks; (a)
buffer overflow, (b) data corruption, (c) memory leak, (d) G-heartbleed, (e) Wrong API.
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Fig. 4. Distribution (%) of aggregate impact types of sample fault models over 5 pro-
grams; (a) data corruption, (b) buffer overflow, (c) memory leak, (d) Wrong API, (e)
G-heartbleed.

and the additional LOC that FFMs introduce. For example, the G-heartbleed
fault model imposes the maximum increase in time overhead (6.7 %), and its
implementation overhead has the highest value (21 LOC).

Implementation Overhead (RQ3): We measured FIDL-generated failure
modes (FFM ) to calculate the respective implementation overhead in terms of
the additional LOC (Table 3). We find that the implementation overhead for the
selected fault models varies between 3–18 percent. As mentioned earlier, we find
that the associated time overhead for the respective fault model with maximum
implementation overhead is 6.7 %, which is negligible.

7 Summary

In this paper, we proposed FIDL (fault injection description language) that
enables the programmability of compiler-based Software Fault Injection (SFI)
tools. FIDL uses Aspect-Oriented Programming (AOP) to dynamically weave
new fault models into the SFI tool’s source code, thus extending it. We compared
the FIDL fault models with hand-written ones (in C++) across five applications
and five fault models. Our results show that FIDL significantly reduces the
complexity of fault models by about 10x, while incurring 4–18% implementation
overhead, which in turn increases the execution time of the injector by atmost
7 % across five different programs, thus pointing to its practicality.
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Abstract. When creating an assurance justification for a critical sys-
tem, the focus is often on demonstrating technical properties of that
system. Complete, compelling justifications also require consideration of
the processes used to develop the system. Creating such justifications
can be an onerous task for systems using complex processes and highly
integrated tool chains. In this paper we describe how process models
can be used to automatically generate the process justifications required
in assurance cases for critical systems. We use an example case study to
illustrate an implementation of the approach. We describe the advantages
that this approach brings for system assurance and the development of
critical systems.

1 Introduction and Motivation

Systems used to perform critical functions require justification that they exhibit
the necessary properties (such as for safety or security). The assurance of a sys-
tem requires the generation of evidence (from the development and analysis of
the system) and also a reasoned and compelling justification that explains how
the evidence demonstrates the required properties are met. The evidence and
justifications are often presented in an assurance case. A compelling justification
will always require both a technical risk argument (reasoning about assurance
mitigations of the system) and confidence arguments (documenting the reasons
for having confidence in the technical argument). Although both technical argu-
ments and arguments of confidence are included in most assurance cases, we find
that often the focus is on the technical aspects of assurance and that confidence
is often dealt with in very general terms. In [8] we discuss the need for confidence
arguments to be specific and explicit within an assurance case. The confidence
argument should consider all the assertions made as part of the technical argu-
ment. In this paper we focus on one important aspect of this - demonstrating
the trustworthiness of the artefacts used as evidence in the technical argument.

As an example, Fig. 1 shows a small extract from an assurance argument
that uses evidence from formal verification to demonstrate than an assurance
property of the system is satisfied. Figure 1 is represented using Goal Structuring
Notation (GSN). In this paper we assume familiarity with GSN, for details on
GSN syntax and semantics we refer readers to [5] and [11].

Figure 1 can be seen to present a technical argument (the left-hand leg), and
also a claim that there is sufficient confidence in the verification results that are
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 27–38, 2016.
DOI: 10.1007/978-3-319-45477-1 3
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Fig. 1. Example assurance argument pattern

presented in that technical argument (Goal: formalConf). The level of confidence
required in the verification results is determined by both the assurance required
for the system as a whole, and the role of those verification results in the overall
system argument. This issue of establishing confidence in an evidence artefact
is a complex one. As discussed in [20], both the appropriateness of the artefact
in supporting the argument claim and the trustworthiness of that artefact must
be considered. In this paper we focus on the trustworthiness of the artefact.
The notion of evidence trustworthiness has been widely discussed, such as in the
Structured Assurance Case Metamodel standard (SACM) [16]. Trustworthiness
(sometimes also referred to as evidence integrity) relates to the likelihood that
the artefact contains errors. It has long been understood that the processes used
to generate an artefact are one of the most important factors in determining how
trustworthy an artefact is. This is discussed further in work such as [18], and is
also seen in standards such as [9] and tool qualification levels in [10]. The basis
for such an approach is that a trustworthy artefact is more likely to result form
the application of a rigorous, systematic process undertaken by suitable par-
ticipants using appropriate techniques and incorporating thorough evaluation.
This includes consideration of the assessment and qualification of tools used as
part of a tool chain. In Fig. 1 it is seen how the claim ‘Goal: formalConf’ can
be supported by reasoning over the trustworthiness of the verification results
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(Goal: verification), and then in turn by arguing over the formal verification
process that generated that result (Goal: activityTrust Process)1.

Modern critical systems often require the use of complex processes involv-
ing the integration of multiple development tools and techniques. Creating a
compelling justification for each process adopted can be a huge challenge, and
indeed this may be a reason why this is often overlooked in favour of more gen-
eral demonstrations of process compliance. We believe that it should be possible
to make the generation of confidence arguments from processes easier and more
systematic. This paper therefore provides the following solution:

“Using process models generated as part of system development, and a set of
confidence argument patterns, the required confidence arguments for assurance
artefacts can be automatically generated.”

Firstly, in Sect. 2 we discuss the process models, in Sect. 3 we describe the
confidence argument patterns, finally in Sect. 4 we describe how the process
models and argument patterns can be linked together to create the required
confidence arguments for the target system. We use an example throughout to
illustrate our approach.

2 Process Models

Our approach permits the use of any process model in order to generate the
process argument. This provides important flexibility for system developers to
use any existing process models and tooling. A defined meta-model must however
be provided for all models used (in order to create a weaving model for instanti-
ation - see Sect. 4) and the process models must be valid instances of the defined
meta-model. It should be noted that for most commonly used process modelling
approaches such as SPEM [13] meta-models already exist. For the purposes of
our example we have chosen to use the process meta-model that is summarised
in Fig. 2, which is based upon that created as part of the OPENCOSS project2.
We used the OPENCOSS process meta-model [2] as the basis for this since it
has been developed based upon a cross-domain consideration of safety standards
and processes and with input from industrial partners from many industries.

Here we provide a summary of the main elements of the meta-model in Fig. 2.
Processes entail Activities, which may themselves entail other Activities (sub-
activities). Any activity may have related Participants (which could be a Person,
Tool or Organisation (see Fig. 3)). Activities may require and produce Artefacts.
Any artefact may be defined as a ManageableAssuraceAsset (defined as part of
the evidence meta-model (see Fig. 3)) for which evaluations (AssuranceAssetE-
valuation) may be created (such as review or testing of the generated artefact).
Activities may also be associated with a particular Technique that is used to
carry out that activity.

In Fig. 4 we show an example process model created from the meta-model
described above. The example process used is the process of formally checking
1 As described later, we use the term ‘Activity’ to refer to the relevant process.
2 See http://www.opencoss-project.eu/.

http://www.opencoss-project.eu/
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Fig. 2. EMF [19] core meta-model of processes

contracts specified using OCRA [14]. The results of the contract checking can
be used to provide evidence as part of an assurance justification for the system
by demonstrating that important security properties hold. As seen in Fig. 4, the
contract checking activity can be broken down to two sub-activities. Firstly the
system model specified in AADL [15] must be translated to an OCRA specifica-
tion. The second sub-activity is to perform the refinement check on the OCRA
specification. The translation activity uses a tool called Compass [1], that has
been evaluated for its correctness through testing. This activity requires the
AADL specification, and produces a specification in the form of OCRA con-
tracts. The contract specification is evaluated using consistency checking. The
refinement activity requires the OCRA contract specification and uses another
tool, the OCRA tool, in order to do the refinement. This tool has also been
tested.

3 Confidence Argument Patterns

Patterns are widely used in software engineering as a way of abstracting the
fundamental design strategies from the details of particular designs [4]. The use
of patterns as a way of documenting and reusing successful assurance argument
structures was pioneered by Kelly [11]. Assurance argument patterns provide
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Fig. 3. Sub-types of Participant available in the process meta-model (left) and Extract
from the evidence meta-model used in creating process models (right)

a way of capturing the required form of an assurance argument in a manner
that is abstract from the details of a particular argument. It is then possible
to use the patterns to create specific arguments by instantiating the patterns
in a manner appropriate to the application. Assurance argument patterns are a
very useful technique as they can help to ensure a consistent approach is applied
when similar assurance claims are required in different systems. It also provides
a way of sharing experience across projects.

Figure 5 shows an assurance argument pattern we have developed that can
be used to argue the trustworthiness of a process activity. This could be used to
support the argument we presented in Fig. 1. This argument pattern could be
instantiated for an activity using information in a process model such as that
shown in Fig. 4.

This argument structure can be seen to make claims over the trustworthi-
ness of the participants of the activity, the required and produced artefacts, the
techniques used and the sub-activities. For each of these elements of the process,
the argument shows they are sufficiently trustworthy through consideration of
their demonstrable attributes. The notion of what is sufficiently trustworthy for
a process element is driven firstly by the confidence required in the artefact being
generated. As discussed in Sect. 1, this is determined by the assurance required
for the system as a whole, and the role of the artefact in the overall system argu-
ment. Errors in some evidence artefacts will have less impact on the assurance of
the system, and the level of confidence required in such cases is correspondingly
reduced.

The trustworthiness of the process must reflect the confidence required in the
artefact itself. For each element of the process, it is necessary to take account of
the role that the process element itself plays as part of the process to generate the
artefact. For example, errors in a tool that generates an input file for an activity
may be mitigated by other elements of the process, such as manual review of
that input file or the provision of multiple inputs. In such cases the level of trust
required for that element may be reduced. What this means is that the claim
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Fig. 4. Process model for OCRA contract checking

that the element is sufficiently trustworthy must be interpreted for each element
based upon a consideration of its role in the process. In some domains, and
some standards, the notion of sufficiently trustworthy evidence is codified, such
as requirements for testing and review to be performed by independent persons
in DO-178C [17] and accepted and established notions of competency and tool
qualification. Where such guidance exists this can also be used to help ensure
proportionality in the process argument.

We have created argument patterns for all the process elements considered
in the argument pattern in Fig. 5, full details of these patterns are provided
in [3]. Figure 6 shows one of these patterns, the argument pattern for creating
arguments regarding the artefacts required by a process. This argument uses
the evaluations performed on the artefact, plus attributes of the artefact, such
as its version number and defined evaluation criterion, to form the confidence
argument. The argument patterns for all of the elements of a process can similarly
be instantiated from a process model such as the one in Fig. 4.

4 Instantiating Argument Patterns

Instantiating an assurance argument pattern involves identifying the necessary
information relating to the target system, required to choose and instantiate
the assurance claims and to provide the required evidence. In this sense the
instantiable elements of the patterns define requirements for information. It is
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Fig. 5. Assurance argument pattern for confidence arguments

possible to manually obtain this information and instantiate the argument pat-
terns; this is current practice. A manual approach however is often not ideal. The
instantiation is often repetitive and mechanistic in nature and prone to human
error. Manual instantiation can also be time consuming and inconsistent. In
[7] we described a model-based approach to automated instantiation of assur-
ance argument patterns, based upon the specification of a weaving model that
describes the dependencies between abstract elements of the argument pattern
and elements of various system models for the target system. At instantiation,
information is extracted from the relevant model elements of the target system
to create the assurance argument. Our previous work on applying our approach
([6,7]) has focussed predominantly on the automated instantiation of the tech-
nical argument. To move to a more complete automation of the assurance case,
automation of the confidence argument is also required. Below we describe how
the process model and confidence argument patterns presented can be used to
create an assurance argument for a claim regarding a formal property of our
example system as part of an assurance case for that system. Firstly we iden-
tify a claim we wish to support as part of the assurance case for the example
system. In this case a claim is required for each formal property specified as
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Fig. 6. Assurance argument pattern for artefacts

part of the AADL specification of the system. One such claim is shown in Fig. 7,
which follows the form presented in Fig. 1. In this case the formal property to be
satisfied is “always (outL > high bound)”. This is one of a number of specified
properties of the AADL model required in order to guarantee the security of
the system. The result of an OCRA contract check is used to demonstrate this
property. Following the structure of Fig. 1, the trustworthiness of the OCRA con-
tract checking must be demonstrated for this argument to be compelling (Goal:
activityTrust Process). The OCRA checking process model in Fig. 4 can be used
in conjunction with the confidence argument patterns to create an argument
to support this claim. An extract showing just the top level of the resulting
argument is shown in Fig. 8. This argument structure instantiation is completed
using the patterns for each aspect of the model such as Fig. 6.
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Fig. 7. Part of the assurance argument for an example system

To make the process of instantiating the confidence argument patterns from
the process models for a system easier and less error prone it is possible to
make use of the model-based assurance case tool that we have developed to
automatically generate the confidence argument from the process model. Below
we briefly describe how the tool works.

– Argument patterns are created in machine-readable format using a graphical
editor that creates a model in an XML form from a graphical representation
of the argument pattern in GSN. We refer to these files (that are compliant
with a GSN meta-model) as GSNML files.

– A weaving model is created to define links between elements in other models.
In this case links are specified between GSN pattern models and the system
or process models. The weaving model is then used as the specification for
model transformations to generate the output model (instantiated assurance
argument). The current version of the tool uses an interim solution for creating
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Fig. 8. Part of the confidence argument for OCRA contract checking

weaving models that involves creating the weaving models graphically and
importing them to the tool as graphML files.

– The MBAC (Model Based Assurance Case) program is executed. This is an
Epsilon Object Language (eol) program [12] that runs on the Eclipse platform.
It takes the GSNML argument pattern files, the system and process models
and corresponding meta-models, and the weaving model as inputs. The output
is a GSN argument model for the target system that has been instantiated
using information extracted from the system models.

– The argument model is generated as a GSNML file. This GSNML file can then
be used to present information to the user in a number of ways. Firstly, the
argument model can be represented graphically as a GSN structure. Secondly,
the model can be queried in order to provide a particular view on the assurance
case. For example it is possible to just select those argument elements that
remain undeveloped, requiring additional support from the system developer.
Finally an instantiation table can also be generated that summarises how the
pattern has been instantiated in tabular form, rather than having to consult
the entire argument structure.
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Using the model-based assurance case tool described above it becomes pos-
sible to:

– Automatically select the appropriate process model relevant to the evidence
artefact cited in the assurance argument.

– Automatically populate the confidence argument pattern using information
extracted from the process model.

It is important to note that when adopting this approach, thorough review
of the assurance argument is still, as always, essential. However, rather than
focussing review on the correctness of each argument created, the review effort
can instead be focussed on the sufficiency of the pattern structure and the validity
of the weaving model. Both of these, once reviewed can then be re-used for each
instantiation. Another important focus for review becomes whether the role of
each element of the process has been correctly interpreted, and whether what has
been generated corresponds to this interpretation. We believe that in contrast to
needing to review for correctness each time, this shift in focus helps to achieve
more value from the review effort.

5 Conclusions

When creating an assurance justification for a system, the focus is often on
the technical aspects of the assurance argument. The important confidence
aspects are often addressed only in very general terms. Assurance cases are
improved through provision of more focussed confidence arguments that address
the integrity of specific artefacts through justification of the processes used. Cre-
ating such confidence arguments can be an onerous task for systems using com-
plex processes and highly integrated tool chains. In this paper we have described
how compelling confidence arguments can be developed directly from existing
process models with the help of confidence argument patterns. We have described
how existing tools can be used to automatically generate these arguments.
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Abstract. In this paper, we argue that standards, especially those intended to
support critical applications, should define explicitly both the properties
expected to accrue from use of the standard and an explicit rationale that justifies
the contents of the standard. Current standards do not include an explicit,
comprehensive rationale. Without a rationale, the use, maintenance, and revision
of standards is unnecessarily difficult. We introduce a new concept for stan-
dards, the rationalized standard. A rationalized standard combines: (a) an
explicit goal defining a property desired for conformant systems, (b) guidance
that, if followed correctly, should yield an entity with the property stated in the
goal, and (c) the rationale showing the reasoning why there is assurance with
reasonable confidence that a conformant entity will have the property defined by
the goal. We illustrate the utility of an explicit rationale using an existing safety
standard, ISO 26262.

Keywords: Standards � System safety � Rigorous argument

1 Introduction

Safety standards such as ARP 4754 [1], ARP 4761 [2], IEC 61508 [3], and Mil Std
882E [4] have served the community well. They provide a repository of expert
knowledge, foster consistency in the community, and document the expectations that
arise when regulating agencies use standards conformance as a basis for approval. The
role of a standard as a knowledge repository is especially important, because the
knowledge usually originates from many experts and is subject to analysis and syn-
thesis before becoming part of the standard. No single engineer or a small group is
likely to have the composite background and experience of those who developed an
officially accepted safety standard.

Despite their value, safety standards have been criticized in a variety of ways [5–7].
Standards have difficulty addressing the needs of individual systems or particular cir-
cumstances, and rarely define precisely what conformance will mean or how it will be
assessed.

The most serious weakness with existing standards, however, is that, in almost all
cases, conformance to a safety standard does not lead to assurance that the conforming
system has any specific property or properties other than those required to demonstrate
conformance. A conforming system is viewed as generally suitable for its intended use,
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but use of a conforming system is based on an assumption that the system has one or
more specific, implied but unstated properties.

At the heart of this problem is the fact that standards almost never include explicit
documentation of the rationale for their contents. Developers produce evidence arti-
facts defined by the standard, and conformance experts examine these artifacts. With no
explicit rationale for the evidence, both developers and conformance experts have to
rely on their own knowledge of why the standard calls for certain forms of evidence
and can do little more than check the form of the evidence produced. Frequently,
conformance reduces to an almost meaningless checklist activity that ignores the
technical intent of the standard.

In this paper, we introduce the rationalized standard. A rationalized standard com-
bines: (a) an explicit goal defining a property desired for conformant systems, (b) guid-
ance that, if followed correctly, should yield an entity with the property stated in the goal,
and (c) the rationale showing the reasoning why there is assurance with reasonable
confidence that a conformant entity will have the property defined by the goal.

The intent of a rationalized standard is not to simply improve the rigor of a stan-
dard; the intent is to change the relationship between a standard and the associated
prerequisite knowledge in a fundamental way. Changing this relationship leads to a
new and rigorous mechanism for using a standard.

The focus of this paper is safety standards although we note that the analysis is
applicable to standards in general. This paper is organized as follows. In the next
section we discuss the detailed circumstances of current standards, and in Sect. 3 we
present the details of rationalized standards. In Sect. 4 we illustrate the potential value
of an explicit rationale by examining an existing safety standard, and in Sect. 5 we
present our conclusions.

2 Current Standards

2.1 Development of Standards

An overview of the way in which existing standards are developed and applied is
shown in Fig. 1. Most standards are developed by committees. A group of experts, the
authors of the standard, convene based upon a perceived demand for a standard in the
associated technical area. Each expert brings his or her own knowledge, both tacit and
explicit, to the committee’s deliberations.

The content of the evolving standard is the result of group meetings, discussions,
drafts of the standard, white papers, etc. During these deliberations, individual elements
of the standard are proposed, examined, refined, and either accepted or rejected
resulting in a collective view of what the standard should contain. This view is then
refined into a documented entity consisting of rules and guidelines. These rules and
guidelines in turn define evidence that must be provided by developers using the
standard to demonstrate conformance. The intent is that conformance to the framework
will assure particular qualities of engineering entities such as development processes,
development artifacts, or complete systems. But the rationale for the content of the
standard, though it existed, at least in the minds of the authoring committee members,
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is not available to either developers or conformance experts. In fact, the rationale was
essentially discarded once development of the standard was complete and the com-
mittee disbanded.

2.2 Using Standards

Once developed, standards are put to use. No matter how careful the development
process was, questions arise about interpretation, applicability, conformance, etc. To
illustrate the difficulties that arise over time with current, static standards we examine a
standard that was widely used for software assurance in avionics systems until recently,
RTCA DO-178B [8]. Our use of this particular standard as an example is not intended
to be critical of DO-178B in any way.

DO-178B was published in 1992 and replaced by DO-178C [9] only in 2012.
During the twenty years that DO-178B was in effect, several documents were produced
to supplement the standard including:

DO-248B. This guidance document is entitled “Final Annual Report for Clarifi-
cation of DO-178B ‘Software Considerations In Airborne Systems And Equipment
Certification’” and was published in 2001 [10]. It was developed in response to
hundreds of questions about DO-178B.
FAA Order 8110.49. This FAA order is entitled “Software Approval Guidelines”. It
provides a great deal of guidance on the software approval process, i.e., how
compliance with DO-178B should be judged.
Certification Authorities Software Team (CAST) Position Papers. CAST papers are
neither official policy nor guidance and are provided for educational and informa-
tional purposes. Nevertheless, they do play a role in supplementing the DO-178B
standard. Twenty six CAST papers have been written to support DO-178B.
FAA Advisory Circular 20-148. This document is entitled “Reusable Software
Components” and provides guidance for software reuse in the context of DO-178B.

Fig. 1. Standards development and use as currently practiced.
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Clearly the need for clarification in many different areas arose when the DO-178B
standard was applied. We hypothesize that having an explicit rationale would have
reduced the need for supplementary material substantially.

2.3 Maintenance of Standards

As is clear from the example in the previous section of the supplementary material that
has been developed for DO-178B, those using a standard are likely to find defects,
omissions or limitations. In addition, advances in technology will occur that could
bring value to developers, but such advances are often prohibited because an existing
standard does not address the new technology. Both of these circumstances motivate
the need over time to modify the standard in some way.

Modification of a standard is closely related to developing the standard in the first
place. The key difference between the development and subsequent modification of a
standard is that the latter activity has one additional input, the standard itself.

Modifying a standard successfully requires a deep understanding of the standard
and all of the technology that the standard references. Thus, as with development,
modifications are: (a) often undertaken by a committee of experts, and (b) occur
infrequently because of the difficulties and resource levels required.

Clearly, those undertaking a modification to a standard require access to the “why”
of the content and the existing form of the standard in order to understand fully the
ramifications of a modification. In other words, those undertaking a modification
require access to the usually unavailable rationale for the original standard.

3 Rationalized Standards

3.1 The Concept

We conclude from the previous section that the explicit rationale for a standard as an
integral part of the standard could provide great value. How then could the rationale be
included in a standard? The rationale cannot merely be a new section added to an
existing standard structure with no other change. The overall structure used for stan-
dards needs to be revised to both accommodate and take advantage of the introduction
of the rationale.

In this section we introduce the rationalized standard. A rationalized standard
emerges from recognition that the rationale for a standard is the fundamental content of
the standard. The rationale is neither precursory nor supplementary; it argues, from first
principles backed by sound evidence, why a set of proscriptive and prescriptive
guidance will assure with reasonable confidence that an engineering entity holds a
certain property that is stated explicitly.

The explicit rationale moves the rationale from the realm of informality and oral
tradition into the realm of rigor and written tradition. Furthermore, it models the
guidance of the standard as part of the rationale. The introduction of the rationale
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would restructure the associated standard and integrate revised versions of much of the
existing material. Thus, the rationale need not lead to a major increase in the length of
the standard, although the practical effect on length would have to be determined by
experiment.

Figure 2 shows the three key components of a rationalized standard. At the top of
the figure is the Desired Property (or properties) to be assured for a conformant system.
At the bottom of the figure is the Guidance that defines conformance. In between is the
Reasoning for why conformance engenders belief in the Desired Property.

The guidance specifies a set of items of evidence that must be obtained about the
subject system by the system’s developers. If the evidence is supplied and is sufficient,
i.e., the subject system is determined to be conformant, then the reasoning leads to
belief in the desired property. Ensuring that the reasoning is adequate to justify this
belief is the responsibility of the authors of the standard.

The manner in which a rationalized standard would be used is shown in Fig. 3.
Developers reference the reasoning in the standard in order to determine the suitability
of the standard for their application and to map the evidence specifications in the
guidance to their application. Conformance assessment requires judgment as to whether
the evidence supplied meets the specification in the guidance.

3.2 Defining Reasoning

A convenient way to document reasoning is as a rigorous argument, and a hierarchical
structure known as a goal structure is an effective way to represent an argument. A goal
structure begins with a top-level goal that is decomposed into sub-goals such that belief
in the top-level goal is justified by belief in the sub-goals using a documented strategy
that links the sub-goals to the top-level goal. In the case of a standard, the top-level goal
is the desired property. Each sub-goal in the goal structure is then decomposed into
sub-goals that are further decomposed, and so on until leaf sub-goals are reached.
A leaf sub-goal is a goal for which belief can be justified directly by supplied evidence.

Fig. 2. The three key components of a rationalized standard.
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Various notations have been developed for documenting arguments, and one
notation that is in common use is the Goal Structuring Notation (GSN) [11]. We use
GSN to document arguments in the remainder of this paper. The syntactic elements of
GSN that we use in this paper are: (a) rectangle: a goal, (b) circle: an item of evidence
such as results of a software test activity, and (c) rounded rectangle: an item of context –
rigorous arguments are defined for a specific context such as the system’s planned
operating environment(s).

3.3 Defining Guidance

Recall that guidance is the specification of evidence that, if supplied and determined to
be sufficient, justifies belief in the associated leaf goal. There are two forms that
guidance can take in this case:

1. A statement of the leaf sub-goal and the required level of confidence that the
evidence will justify belief in the sub-goal.

2. A statement of the explicit evidence that is required for the sub-goal.

As an example, suppose that, as part of the rationale for a safety standard, a leaf
sub-goal is that the system software will ensure real-time task schedulability with an
ultra-high level of assurance. This sub-goal derives from the overall safety goal of the
system, and safety will be compromised without ultra-high assurance of schedulability.

Stating the sub-goal in order to define the evidence requirement (guidance form 1
above) is insufficient, because the level of confidence required is so high. The evidence
needed for this sub-goal will not be sufficient if, for example, developers chose testing
as an appropriate form of evidence. In this case, the rationale will specify specific forms
of evidence. For example, the use of a static form of scheduling such as a
time-triggered protocol together with a proof of the static schedule.

The structure shown in Fig. 2 is similar to an assurance case [12]. This similarity is
not a coincidence. In essence what is required of a standard is an assurance case that

Fig. 3. Practical application of a rationalized standard.
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will document the reason for belief that a conformant system has a desired property.
The difference between a rationalized standard and a traditional assurance case is that
the former has to be reusable whereas the latter is system specific.

4 Analysis of a Safety Standard

In order to illustrate the concept of a rationalized standard, we examine a small piece of
an existing safety standard, ISO 26262 [13]. Our use of this particular standard as an
example is not intended to be critical of ISO 26262 in any way.

ISO 26262 was published in 2011 and is organized into ten parts. Our examples come
from Part 6 entitled: “Product development at the software level”. For simplicity, we limit
our examples to Automotive Safety Integrity Level (ASIL) D, the highest integrity level.

4.1 Example Element

Section 5.4.7 of ISO 26262 Part 6 has no specific title but is part of Section 5.4 entitled
“Requirements and recommendations”. Section 5.4.7 addresses, in part, software
design and implementation correctness. The majority of the content of Section 5.4.7 is
a table listing eight techniques, the use of which the standard defines as “highly
recommend” for ASIL D applications. The bulk of that table is reproduced here as
Table 1 and the following footnotes.

Table 1. ISO 26262 Part 6 Section 5.4.7

Topics to be covered by modelling and coding
guidelines

ASIL D

1a Enforcement of low complexitya Highly recommended
1b Use of language subsetsb Highly recommended
1c Enforcement of strong typingc Highly recommended
1d Use of defensive implementation techniques Highly recommended
1e Use of established design principles Highly recommended
1f Use of unambiguous graphical representation Highly recommended
1g Use of style guides Highly recommended
1h Use of naming conventions Highly recommended

Footnotes:
aAn appropriate compromise of this topic with other methods in this part of
ISO 26262 may be required.
bExclusion of ambiguously defined language constructs which may be
interpreted differently by different modellers, programmers, code generators
or compilers.
Exclusion of language constructs which from experience easily lead to
mistakes, for example assignments in conditions or identical naming of local
and global variables.
Exclusion of language constructs which could result in unhandled run-time
errors.
cThe objective of method 1c is to impose principles of strong typing where
these are not inherent in the language.
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4.2 Analysis of Example Element

To begin the analysis, we attempted to reconstruct the rationale for the example ele-
ment. Although no rationale is included in ISO 26262, we examined the subject ele-
ment and tried to identify: (a) the properties that conformance to the element should
yield, (b) the evidence that should be produced, and (c) the reason for belief that the
properties follow from conformance.

The intent of ISO 26262 Part 6, Section 5.4.7 is stated as:

“To support the correctness of the design and implementation, the design and coding guide-
lines for the modelling, or programming languages, shall address the topics listed in Table 1.”

We infer that the property intended is “the correctness of the design and imple-
mentation”. The intended strategy is for the user to apply coding and design guidelines
from Table 1, with the user providing suitable evidence. How this guidance helps fulfill
correctness of design and implementation is not presented and is left to the reader’s
intuition. For example, line 1b in Table 1 (“Use of language subsets”) gives examples
of the type of issue that might be avoided by restricting the use of certain language
features but defines neither a sub-goal for this guidance nor a complete set of properties
that are desired from this guidance.

Presently, ISO 26262 is built around the philosophy of “organized containers of
best practice”. Table 1 is a container of techniques related to “correctness of design and
implementation” by a common theme of software tools and techniques. But it is neither
exhaustive nor definitive with respect to “correctness”, “design”, or “implementation”,
nor tools or techniques. Other related containers, organized by themes, are presented
elsewhere in ISO 26262. Collectively, the standard implies (but does not state) that the
thematic containers, when taken as a whole, will yield adequately safe software.

An example of the difficulties that arise with implicit arguments occurs with item
1b and footnote b – they should be reversed. The statement of “how” (use a language
subset) is placed before the statement of “what” (avoid specific classes of fault). In
practice there might be other techniques that could avoid the fault classes.

As a second example, consider that Line 1c in Table 1, “Enforcement of strong
typing”. This line merely indicates “how” one could reduce software faults, with no
indication of “why” strong typing impacts the subject system. An implied community
understanding of the utility of strong typing does not facilitate a comprehensive and
uniform understanding of the role that it plays.

The standard does not define the evidence that is expected in order to conform to
the guidelines. Evidence is crucial if rigorous (possibly independent) conformance
checking is to be undertaken. The standard needs to either define evidence that would
be considered sufficient or define precise specifications of sufficient evidence.
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The standard notes:

“Coding guidelines are usually different for different programming languages.”

This observation is correct but does not preclude requiring, for a specific use of the
standard, the development of one or more sub-goals for the associated guidance
together with an appropriate language subset definition. Some languages are in com-
mon use and could be addressed specifically by the standard as an example.

Finally, we note that terms such as “complexity”, “language subset” and “naming
convention” have intuitive meanings, but intuition is not sufficient in dealing with
challenging issues such as software correctness. ISO 26262 Part 1 is composed entirely
of the definitions of terms but does not include definitions of these terms.

In summary, the important observations about this example are:

The properties of the software that are expected to follow from conformance to the
guidance i.e., why the guidance should be observed, are not stated precisely.
The specific items of evidence that should be produced in order to justify confor-
mance are neither defined nor specified.
The rationale for the guidance, i.e., why following the guidance implies a desired
software property, is not stated. The standard is organized around collections of best
practice and does not convey how these practices lead to a useful property.

The purpose of a rationalized standard is to provide a structure within which all of
these issues are dealt with, so that a standard conveys why things add up, not just what
adds up.

4.3 Rationalized Standard Fragment

Developing the rationale for the properties in the set listed in Table 1 is a tempting
approach. But the existing ISO 26262 implied rationale is structurally weak for the
reasons stated in Sect. 4.2. For example, important techniques could be missed,
because they cut across themes.

A potential improvement would be to organize the rationale along a more com-
pelling axis as shown in Fig. 4. In this organization, the top-level goal of the rationale
is fitness for use in the target application, where fitness for use could reasonably be
defined as: (a) the software meets stated requirements, and (b) the software avoids
states that could lead to an identified system hazard. Combined, these indicate that the
software does what is expected and prevents known hazards, and could be judged to be
adequately safe. We note that avoiding identified hazards is an example of a
cross-cutting theme related to “why” the system is safe. With this framing of the
top-level goal, a decomposition into sub-goals is carried out based on best practices.
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The lowest level of the goal structure for the refined rationale shown in Fig. 4
consists of two modules (4.1 and 4.2). A module is merely a means of encapsulating an
argument fragment that is defined elsewhere. Rather than showing the content of these
modules in GSN, for purposes of illustration, we provide an informal, text description
of a possible goal structure for the “Requirements” module.

The goal “Software meets requirements” (the Requirements module) might be
refined to two sub-goals: “Software meets functional requirements” and “Software
meets non-functional requirements”. An effective way to argue that a software entity
meets functional requirements is to argue: (a) that the defined functionality is provided,
and (b) the absence of faults in the software. Thus, the sub-goal “Software meets
functional requirements” might be refined into a set of sub-goals; one for each element
of functionality and one for each element in a taxonomy of fault classes. Each fault
class would be addressed in the standard’s guidance by suitable techniques of fault
avoidance or fault elimination. This finally brings the goal structure down to a suitably
low level of abstraction that specific techniques such as those in Table 1 can be
introduced.

An example of this type of rationale is shown in Fig. 5. The black “dot” on the
inference linking nodes 4.1 and 5.1 indicates repetition; a means of abstraction in the
rationale. The associated guidance should be applied to each functional element of the
applicant system, as provided by the user.

Fig. 4. Top-level rationale arguing fitness for use defined using the Goal Structuring Notation
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5 Conclusion

Despite the value of existing safety standards, introducing an explicit rationale into a
standard has the potential to improve the clarity, utility, and adaptability of standards
considerably. These improvements emerge because the rationale for a standard
becomes explicit information, retaining analyzable knowledge about the standard. The
rationale enables incremental change as well as comparison and fitness with other
rationales. Communities of practice can interact analytically with both the justification
for the standard and with demonstration of conformance.

A rationale is intended to shed light on the “why” of a standard, material that is
routinely discarded once a standard is published. The net result of explicit rationale,
therefore, should be a significant increase in the efficacy of the application of standards,
their maintenance and enhancement, and the associated conformance assessment.

Introducing the rationale to a standard might seem likely to increase its length. This
could happen, but the impression we have formed from analyzing ISO 26262 is that the
rationale will replace large volumes of text rather than merely be an addition. Although

Fig. 5. Partial rationale for sub-goal “Software meets functional requirements”
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we have used GSN in this paper, textual representations of arguments have been
developed and might be well suited to rationalized standards.

The availability of the rationale facilitates community discussion about the tech-
nical content of the standard and possible desirable enhancements. Valid and desirable
enhancements are inevitable and would be integrated into periodic, controlled releases.

Finally, we note that the rationale is not meant to introduce prescriptive techniques
that would be required for conformance. The evidence documented in the rationale
would constrain developers only to the extent that would be necessary to ensure that the
associated goals were met. Standards such as ISO 26262 already include recommen-
dations for techniques and thus associated evidence. All that the rationale would do is
to structure and justify such recommendations. Using alternative techniques would
certainly be appropriate provided developers created a refined rationale that justified
their technological choices.
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Abstract. Argument structure patterns can be used to represent classes
of safety arguments. Such patterns can become quite complex, making
use of loops and choices, posing a potential challenge for comprehen-
sion and evaluation, offsetting the likely gains that might follow from
creating arguments using them. We show how complex patterns can be
constructed by composition of simpler patterns. We provide a formal
basis for pattern composition and show that this notion satisfies certain
desirable properties. Furthermore, we show that it is always possible to
construct complex patterns by omposition in this way. We motivate this
work with example patterns extracted from real aviation safety cases,
and illustrate the application of the theory on the same.

Keywords: Argumentation · Composition · Patterns · Safety cases ·
Unmanned aircraft systems

1 Introduction

Over the past few years, we have been involved in engineering a number of
real safety cases for unmanned aircraft system (UAS) operations: initially, those
concerning NASA Earth science missions [1] and, more recently, increasingly
complex aeronautics research missions1. Our previous safety cases have success-
fully undergone review and approval by the Federal Aviation Administration
(FAA), the US civil aviation regulator, while the more recent ones are either
undergoing FAA review, or are in development.

The current set of guidelines governing UAS operational approval [2] does not
explicitly require the use of argumentation in a safety case. However, the guide-
lines do require that an explanation be supplied for how the hazard mitigation
measures specified in the safety case are expected to reduce risk. Indeed, we have
found argumentation to be largely useful for that purpose and, using our method-
ology for developing assurance arguments [3], we have slowly begun including
structured arguments in the safety case (reports) to organize and document the
reasons why the intended operations can be expected to be acceptably safe.

Based on our previous, and ongoing effort, and the experience gained, a num-
ber of observations follow to motivate the work in this paper. Firstly, many of the
1 As part of NASA’s UAS traffic management (UTM) effort: http://utm.arc.nasa.

gov/.
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UAS operations have been the first of their kind conducted in civil airspace.2

Individually, they have unique mission-specific constraints and safety require-
ments; so, much of the associated safety reasoning is also tailored to the mission.
Taking the various operations together, we have been able to identify similari-
ties amongst the associated hazard control mechanisms and safety systems, e.g.,
ground-based surveillance, safe separation measures, a suite of avoidance maneu-
vers, emergency procedures for off-nominal situations, etc. That, in turn, has
allowed us to develop both domain-independent and domain-specific patterns of
safety reasoning – clarifying how the identified Safety measures contribute to
risk reduction – which we have specified as argument structure patterns in the
Goal Structuring Notation(GSN) using our tool, AdvoCATE [4].

Next, going forward we want to design the required safety systems for future
UAS missions by carefully leveraging as many reusable safety assets that have
a successful operational history, as possible. In conjunction, we want to apply
our argument development methodology, and construct the corresponding safety
case(s) from a combination of the relevant safety reasoning patterns, and tailored
arguments, as appropriate. Intuitively, there is a need for exploring how patterns
(and/or arguments) can be combined.

Third, as mission complexity grows, the associated safety cases can also be
expected to become larger and more complex. In fact, that has indeed been our
own experience. The way in which argument patterns are composed, and the
results of such composition, can be thought of as providing a view of the overall
architecture of the safety case and, thereby, an insight into the ‘big picture’
of how the safety measures contribute to managing risk. Moreover, by using
argument patterns and their composition to the extent possible, we expect to
be able to generate large parts of the arguments through automatic pattern
instantiation [5]. We further anticipate that this will allow us to better manage
the complexity of the safety cases we create while also amortizing the effort
expended in their development.

As such, the main goal (and contribution) of this paper is a (preliminary)
formulation of the formal foundations for composing GSN argument patterns.
First, we give a running example to illustrate the intuition underlying the theory
(Sect. 2). Specifically, we give some simple patterns which we extracted from the
UAS safety cases we authored. Then, on the basis of this example, we formalize
the notion of composition (Sect. 3), after which we illustrate how we have applied
composition in practice (Sect. 4). We conclude this paper contrasting our work
with related research, and identifying avenues for future research (Sect. 5).

2 Illustrative Example

For what follows, we assume familiarity with GSN for specifying argu-
ments/patterns, and refer interested readers to [5] and [6] for details on GSN
syntax and semantics. We have extracted a number of simple patterns of safety
reasoning from the initial UAS safety cases we created. Figure 1 shows a selection
2 To our knowledge, at least in the US, and within a non-military context.
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Fig. 1. A selection of simple, domain-independent GSN argument patterns extracted
from real UAS safety cases, representing part of the reasoning underlying (i) risk
reduction with the use of mitigation barriers and (ii) how mitigation barriers satisfy
their applicable safety objectives. We will subsequently compose these patterns (see
Fig. 2, which composes the latter three, and Fig. 4, which composes the former four).
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of those patterns, given using GSN pattern syntax3 and representing, respec-
tively: hazard enumeration (Fig. 1a); mitigating a specific hazard by enumerat-
ing its causes or by hierarchical decomposition over its constituent lower-level
hazards (Fig. 1b); managing a hazard cause by invoking multiple hazard miti-
gation barriers, each of which meets a particular safety objective that, in turn,
specifies the requirement to be fulfilled to manage that hazard cause (Fig. 1c);
managing a hazard cause by also showing that the applicable barriers are reli-
able in operation (Fig. 1d); hierarchical decomposition of a safety objective into
lower-level requirements, or its allocation to specific components of a mitigation
barrier (Fig. 1e); and supporting a safety objective by applying a verification
procedure, via direct evidential support, reapplying hierarchical decomposition,
or by reallocation to lower-level components (Figs. 1f and g, respectively). Note
that these patterns do not encode a comprehensive collection of risk reduction
measures, but reflect part of the approach that we have used successfully in the
safety cases we authored. Moreover, the individual structures are variations on
well-known safety argument patterns, such as hazard-directed breakdown, and
requirements breakdown [5].

By examining Fig. 1, we can see that there is an intuitive notion of sequential
composition where patterns are joined in a top-down way so that a leaf node of
one pattern is the root of another. Similarly, there is also a notion of parallel
composition, where patterns can be thought of as being placed alongside one
another, and joined to reconcile common nodes and links. Using these patterns
as the running example, we subsequently describe (Sect. 4) how we have com-
posed patterns to supply safety rationale in a recently authored UAS safety case.
The instance arguments of those patterns explain how the barriers of ground-
based surveillance, and avoidance meet their safety objectives for managing the
collision hazard posed by air proximity events.

3 Pattern Composition

We now formalize what it means to compose patterns. The goal is to develop a
principled approach to composing arbitrary patterns, generalizing the intuition
(as above) underlying the composition of the simple patterns of Fig. 1, to arbi-
trary (and larger) patterns. There are several subtleties that must be addressed,
e.g., reconciling overlapping fragments, and determining when a composition will
be well-formed. Moreover, we manually created the composition when we applied
it in practice; however, we want to automate the functionality in our tool, Advo-
CATE. We build on our previous work, using the following (slightly modified)
definition of argument patterns from [5], and omit the conditions described there
for brevity.

3 Due to space constraints, and for figure legibility, we omit the contextual nodes (i.e.,
assumptions, justifications, and context) that provide additional clarification of the
associated reasoning, from the patterns in Fig. 1. Also note that, in some cases, the
strategies in these patterns include the safety measures used to achieve a goal in
addition to the standard GSN strategies that provide inference explanations.
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Definition 1 (Argument Pattern). An argument pattern (or pattern, for
short), P , is a tuple 〈N, l, p,m, c,→〉, where 〈N,→〉 is a directed hypergraph4

in which each hyperedge has a single source and possibly multiple targets, and
comprising a set of nodes, N , a family of labeling functions, lX , where X ∈
{t, d,m, s}, giving the node fields type, description, metadata, and status; and →
is the connector relation between nodes.

Let {G,S, E ,A,J , C} be the node types goal, strategy, evidence, assumption,
justification, and context respectively. Then, lt : N → {G,S, E ,A,J , C} gives
node types, ld : N → string gives node descriptions, lm : N → A∗ gives node
instance attributes, and ls : N → P({tbd , tbi}) gives node development status.

There are additional (partial) labeling functions: p is a parameter label on
nodes, p : N ⇀ Id × T , giving the parameter identifier and type; m : N2 ⇀ N

2

gives the multiplicity range on a link between two nodes, with 〈L,H〉 representing
the range from L to H; c : N×P(N) ⇀ N

2, gives the range on the choice attached
to a given node, where c(x,y) is the choice between child legs y with parent node
x. Here, n is simply the number of legs in the choice, and so can be omitted.

The links of the hypergraph, a → b, where a is a single node and b is a set of
nodes, represent choices. We write a → b when a → b and b ∈ b, and a → {b, c}
when a is the parent of a choice between b and c. A pattern node n is a data
node, if it has a parameter, i.e., n ∈ dom(p). Otherwise, a node is boilerplate.

3.1 Composition

There are various alternative ways in which composition can be defined. The
simplest definition, however, which works for our driving examples, is to take
the union of all links in the respective patterns, using shared identifiers as the
points at which to join. This is a conjunctive interpretation of composition,
where we require fragments in both patterns to be satisfied. We will require that
data be equivalent on corresponding nodes, and call such patterns conflict-free.
For multiplicities on corresponding links and choices, however, it is not possible
to reconcile distinct ranges without either losing information5 or making ad hoc
combinations. We thus adopt the simple solution of also assuming that there are
no conflicts between corresponding multiplicities.

Definition 2 (Conflict-free Patterns). The two patterns P1 = 〈N1, l1, p1,
m1, c1,→1〉 and P2 = 〈N2, l2, p2,m2, c2,→2〉 are conflict-free whenever
l1|N1∩N2 = l2|N1∩N2 and p1|N1∩N2 = p2|N1∩N2 . If x, y ∈ N1 ∩ N2 and x →i y
(i = 1, 2) then m1(x, y) = m2(x, y), and if x ∈ N1 ∩ N2, y ⊆ N1 ∩ N2, and
x →i y (i = 1, 2) then c1(x,y) = c2(x,y).

Henceforth, we will use P1 and P2 as metavariables for patterns representing the
above tuples.
4 A graph where edges connect multiple vertices.
5 There is no single range that corresponds to the union of possibilities represented by

two distinct ranges. This could be addressed, however, by generalizing annotations
from ranges to logical constraints that can express dependencies between nodes.
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Definition 3 (Pattern Composition). Let P1 and P2 be conflict-free pat-
terns. Then, P1 || P2 = 〈N1 ∪ N2, l

′′, p′′,m′′, c′′,→′′〉 where i) l′′ = l1 ∪ l2; ii)
x →′′ y iff x →1 y or x →2 y; iii) m′′ = m1 ∪ m2; and iv) c′′ = c1 ∪ c2.

It can be seen that this is a well-formed pattern. The definition is simple
but subtle, since the merging of the links can introduce recursion. Note also
that when composing a choice A → {B,C} with A → B we retain both links,
rather than merging them. Also, choices can be interwoven in, for example,
A → {B,C} || A → {C,D}. However, duplicates are removed in A → B || (A →
B,A → C). Now, clearly || is commutative and associative modulo renaming
of the node identifiers, and so composition can be defined over sets of patterns.

Fig. 2. Parallel composition ( || ) of the elementary patterns of Figs. 1e–g (repeated
here, above left) giving a compound pattern (above right).

Figure 2 shows a compound pattern – a variation on the requirements break-
down pattern [5] – the result of the (parallel) composition of its reasoning ele-
ments, which are themselves the elementary patterns in Figs. 1e–g. The elemen-
tary pattern in Fig. 1e describes how the claim that a hazard mitigation barrier
fulfills a specific safety objective (goal node G5) is supported by decomposition
into lower-level requirements, or by allocation to an implementing component of
the technical system embodying the barrier (strategy nodes S1 and S2 respec-
tively). The patterns in Figs. 1f and g, respectively, show how the resulting leaf
claims (of Fig. 1e) – that a particular requirement is fulfilled (goal node G6),
or that the allocated component fulfills a corresponding requirement (goal node
G7) – are each either supported directly by relevant evidence items (solution
nodes E1 and E2, respectively), or developed using an appropriate verification
procedure (strategy node S3). Additionally, each of those claims can be further
supported, again, by hierarchical decomposition (strategy S1).
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Upon composing these elementary patterns, if there are repeated nodes (or
fragments) we retain one copy and discard other copies, after which we resolve
the relations between all the pattern nodes (as specified in Definition 3). Note,
in Fig. 2, that the abstraction for iteration (i.e., the loop link from the choice
following goal node G6, to strategy node S1) follows as a natural consequence
of composition.

3.2 Correctness

We now discuss in what sense the pattern composition is correct.6 Intuitively, a
pattern represents a set of traces, or paths, and the composition should, in some
sense, be a conservative combination of the paths in the component patterns.
Since we have defined the composition as the union of (single-step) links, this
is trivially true so, instead, we ask whether interesting properties are preserved.
In [5], we defined various properties of patterns. It can be shown that compo-
sition preserves some of those properties, while for others, we need additional
conditions. We will discuss two such properties now:

(i) We say that a pattern is unambiguous when for all paths s1, s2 : A → B∗

such that every internal node is boilerplate, we have s1 = s2, and that a
pattern is complete when every leaf node is a data node.

(ii) We say that a →must b, when every loop-free path from a that is sufficiently
long must eventually pass through some b ∈ b. Then, an argument pattern
is well-founded when, for all pattern nodes a, and sets of nodes b, such that
a /∈ b, if a →must b then it is not the case that for all b ∈ b, b →must a.

Theorem 1 (Property Preservation). Let P1 and P2 be patterns.

(i) If P1 and P2 are complete and unambiguous, then if there are not distinct
paths of boilerplate nodes such that A →∗ B in both patterns, the composition
is complete and unambiguous.

(ii) If P1 and P2 are well-founded and, in addition, if whenever A →∗ B in P1

and B →∗ A in P2, then ∃C .B → C in either P1 or P2, and C 
→∗ A in
either P1 or P2, then the composition is well-founded.

The preservation theorem thus tells us that (with some additional ‘compatibility’
conditions) composition of ‘good’ patterns gives us a good pattern. We would
now like to formulate a dual theorem, that any pattern can be constructed from
elementary patterns.

Definition 4 (Elementary Pattern). A pattern is elementary (or loop-free)
if for all nodes A,B, if A →∗ B then B 
→∗ A.

6 Proofs of the theorems in the rest of this paper have been omitted due to space
constraints.
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Prima facie, however, it is a trivial observation that it is always possible to
construct a pattern by composition of elementary patterns, since we can simply
compose fragments consisting of all the separate links (and hyperlinks). Instead,
we need to show that a pattern can be factorized into a collection of elementary
patterns which are maximal in some sense. We make two observations:

(i) ‘tight’ loops between a node and its child can only be composed from non-
pattern fragments. Thus we either allow such loops in the factors or, as we
do here, simply exclude them from the statement of the theorem;

(ii) the factors need not actually be unique. Even if we limit ourselves to max-
imal factors, it is still possible to move branches between factors, so any
characterization of uniqueness needs to be modulo an equivalence under such
rearrangements.

Hence we define an equivalence relation on pairs of patterns, p1, p2 ∼ p3, p4
when we can rearrange a branch in p1, p2 to get p3, p4 and then extend this in
the obvious way to arbitrary sets of patterns. In other words, pruning a branch
b from p1 gives p3, and grafting it on p2 gives p4.

Theorem 2 (Pattern Factorization). All patterns with no tight loops can be
expressed as a maximal composition of elementary patterns. That is, if p is a
pattern with no tight loops, then ∃p1 · · · pn . pi elementary and p = p1 || · · · || pn,
such that ∀q1 · · · qm . p = q1 || · · · || qm ⇒ there exists a partition Ii···n of
{1, . . . , m} with for each Ii = {x1, . . . , xni

}, ri = qxi
|| · · · qxni

, such that we
have r1, . . . rn ∼ p1, . . . , pn.

That is, any factorization {qi} of p can be partitioned so that each subset of
the partition corresponds to a single factor pi, modulo rearranging.

3.3 General Composition

Rather than use overlapping node identifiers to determine composition points,
we want to be able to compose arbitrary patterns, placing no assumptions on
identifiers. We thus generalize the above definition so that nodes of P1 and P2

may or may not overlap. Without loss of generality, however, we will typically
assume that they are disjoint.

Since the overlap between two patterns need not, itself, be a pattern, we need
to generalize to pre-patterns. A pre-pattern has the same type of data (i.e., nodes,
links, labels, etc.) as a pattern but need not respect the well-formedness rules.
We define embeddings as mapping between pre-patterns that preserve structure.
To express that embeddings do not introduce loops, we first define a ≤ b if for
all paths from the root s : r →∗ b, we have a ∈ s, and a < b when a ≤ b and
a 
= b.

Definition 5 (Pre-pattern Mappings & Embeddings). Let A and B be
(pre-)patterns. We say that e : A → B is a (pre-)pattern mapping if it maps
nodes to nodes and whenever A → B then e(A) < e(B), i.e., all paths to
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e(B) must pass through e(A), and e(A) 
= e(B). A pre-pattern embedding is
a pre-pattern mapping that preserves data, that is, 1) lBx (e(a)) = lAx (a) for
x ∈ {t, d,m, s}; 2) If mA(x, y) = m then for some link x′ → y′ in e(x) →∗ e(y)
we have mB(x′, y′) = m. Similarly for cA(x,y) = c. If e is an embedding from A
to B we write this as e : A ↪→ B.

To define compositions more generally we make use of some simple category
theory7 and, in particular, the notion of pushout. A pushout encodes the minimal
(and thus unique) object which combines two objects in a specific way. We define
this within the category of pre-patterns, PrePat , which has pre-patterns for
objects and pre-pattern embeddings for morphisms. We are now in a position to
define general compositions.

Definition 6 (General Composition). Let C be a pre-pattern, and e1 : C ↪→
P1, e2 : C ↪→ P2 (a so-called span) be pre-pattern embeddings. Then the pushout
of e1 and e2, which we write as P1 || e1,e2P2, gives us the general composition of
P1 and P2.

Note that the notion of context-freedom is now generalized by e1 and e2 being
embeddings. Next, since PrePat is not co-complete (as co-equalizers do not exist,
in general), we rely on an explicit construction to show that pushouts exist.

Theorem 3 (Well-definedness of General Composition). The general
composition of P1 and P2 is well-defined. That is, pushouts exist in PrePat
and, moreover, if P1 and P2 are patterns, then P1 || e1,e2P2 is also a pattern.

We define the pushout 〈N, l, p,m, c,→〉 as follows. Let P1 and P2 be pre-
patterns, and e1 : C ↪→ P1, e2 : C ↪→ P2 the common embeddings. We sketch
the construction of the pushout (omitting the definitions of l, m, and c to save
space): N = Nc ⊕ N1\ran(e1) ⊕ N2\ran(e2), i.e., disjoint union of the node sets
minus ranges of the embeddings. Also,

x → y ⇔

⎧
⎪⎨

⎪⎩

x = xi, y = yi ∈ Ni, �z ∈ C . ei(z) ∈ {x, y} and xi →i yi

x = xi ∈ Ni, y ∈ C, and xi →i ei(y)
y = yi ∈ Ni, x ∈ C, and ei(x) →i yi.

Finally, we observe that the general definition is equivalent to Definition 3 in
the following sense.

Corollary 1 (Equivalence of Composition). Let P1 and P2 be patterns.
There exists a span giving a general composition of P1 and P2 which is isomor-
phic to P1 || P2. Define the span e1 : C ↪→ P1, e2 : C ↪→ P2 as: i) Nc = N1 ∩N2;
ii) lc, pc,mc, cc,→c are the obvious restrictions to Nc; and iii) e1(n) = e2(n) = n.
Then, P1 || e1,e2P2

∼= P1 || P2.

7 For basic concepts of category theory, we refer the reader to an introductory text-
book, such as [7].
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4 Application

We have used the elementary patterns identified in Fig. 1 (and others) along
with their combinations to explain the required safety rationale – by creating
instance arguments of the combined patterns – in a more recent UAS safety
case to provide assurance of safe operations. We are also applying them to other
safety cases currently in development. In brief, our approach is as follows.

First, we select the patterns that we can meaningfully compose into larger
patterns to address specific concerns, e.g., how a hazard is managed by the
combination of different mitigation barriers, how a specific barrier meets its
safety objectives, etc. Then we examine the composed pattern to determine
the extent to which it is applicable, e.g., whether it is (internally) complete

Fig. 3. Fragment of the instance argument of the compound pattern in Fig. 2, when
instantiated for the surveillance barrier, and appended with tailored argument elements
(shown by the goal, context, and solution nodes highlighted with a thick border).
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or whether additional reasoning content is required in the pattern. Here, there
may be a need to define additional domain- or application-specific patterns.
Thereafter, we instantiate the patterns and examine the instance arguments to
determine the extent to which the instance provides the assurance required.
Again, there may be a need to define additional argument elements or bespoke
arguments to complete the overall reasoning. The result comprises argument
structures that supply the required safety rationale, e.g., how specific mitigation
barriers meet their safety objectives and contribute to reducing risk.

Figure 3 shows a fragment of one such argument structure resulting from
this approach. In particular, the nodes not highlighted by the thick border in
the figure are a fragment of the instance argument of the composed pattern in
Fig. 2, instantiated with respect to the ground-based surveillance barrier. The
argument is intended to show how the barrier meets its safety objective (root
goal node G2, in Fig. 3). The highlighted (goal, context, and solution) nodes
are additional argument elements/fragments that we subsequently introduced
to complete the argument, and to address the concerns/essential information
that the pattern did not include. Note that the instance argument also includes
contextual nodes of the pattern that we had previously omitted (e.g., the context
nodes C37 and C41). We similarly instantiated the pattern in Fig. 2) with respect
to the avoidance barrier (not given here).

Figure 4 shows the (structure of the) compound pattern which explains the
contribution of hazard mitigation barriers to managing hazard causes and, in
turn, to mitigating the identified hazards. This pattern is produced from the
general composition (see Sect. 3.3) of the patterns in Figs. 1a–d. Intuitively, it
can also be seen as the result of a sequence of simpler compositions, in particular
the (sequential) composition of the patterns in Figs. 1a and b which, in turn, is

Fig. 4. Result of the composition of the elementary patterns in Figs. 1a–d. Note that
this figure primarily illustrates the compound pattern structure, also indicating the
contextual nodes not shown earlier. For node/link content, see Figs. 1a–d.
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(sequentially) composed with the parallel composition of the patterns in Figs. 1c
and d. Similarly, the compound pattern of Fig. 2 can, in fact, be sequentially
composed with the compound pattern of Fig. 4. The result, another compound
pattern, is equivalent to the general composition of all the elementary patterns
in Fig. 1. The instance argument for that pattern8, which includes the argument
fragment shown in Fig. 3, explains the role of all applicable mitigation barriers
in reducing the likelihood of the different identified hazards during the UAS mis-
sion, e.g., a near midair collision (NMAC), or air proximity event (AIRPROX).

5 Related Work and Conclusions

Compositional approaches to safety case construction have been considered in [8],
however the focus there is on composing modular arguments. A catalogue of GSN
patterns for software safety assurance has been supplied in [9], along with the
assertion that the patterns link together to form a single software safety argu-
ment upon instantiation. Thus, that work (implicitly) alludes to the capability
and utility of pattern composition, although it stops short of describing what
composition means, and providing examples for the same. Similarly, [10] gives
generic patterns of reasoning empirically identified from real safety cases – -i.e.,
so called building blocks, given in the Claims-Argument-Evidence (CAE) nota-
tion – with the explicit intent to combine them into composite blocks – analogous
to hierarchical (argument) nodes [11] – and templates, which are closer to the
compound patterns presented here. This work also asserts the capability and
utility of composition, but only gives examples of building blocks as opposed to
the templates produced from their composition. Moreover, little has been said
about what composition means, and what modifications, if any, result to tem-
plate semantics, and their graphical structure, in relation to their constituent
building blocks.

In this paper we have continued our ongoing line of work on developing formal
foundations to support automation in safety case development, in which argu-
ment structures are a first class object of study. We are now using our preliminary
theory of pattern composition to provide a formal basis for implementing a suite
of features in our tool, AdvoCATE, including automated refactoring of patterns,
identifying reusable pattern components, and composing them in an automated
(or interactive) way.

Although we currently manually create patterns for instantiation, composi-
tion lets us incrementally construct larger patterns of safety reasoning by combin-
ing smaller patterns (extracted from, say, legacy safety cases). When combined
with automated pattern instantiation [5], we can increase the level of useful
automation that can be brought to bear when creating larger, more complex
safety cases. The value addition for creating arguments this way, we believe, is
that patterns give the type of an instance argument, providing a richer abstrac-
tion than argumentation schemes [12], for example, and allowing us to determine
8 Due to space constraints, neither this compound pattern nor its instance are given

here.
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whether larger arguments can be sensibly combined by examining abstract, and
relatively smaller, structures. Moreover, though there are differences, similar
techniques could be used for merging and refactoring of argument fragments
themselves. An interesting avenue of inquiry for future work is to determine what
a suitable representation of argument architecture should be. Modular structure
has been proposed for this [13], but here we have suggested that patterns and
their combination can serve as such an architecture. It might also be useful to
represent ‘glue’ argumentation that connects patterns, or refinements between
domain-independent and domain-specific patterns.

Acknowledgement. This work was funded by the SASO project under the Airspace
Operations and Safety Program of NASA ARMD.
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Abstract. Industrial systems are publicly the target of cyberattacks
since Stuxnet [1]. Nowadays they are increasingly communicating over
insecure media such as Internet. Due to their interaction with the real
world, it is crucial to prove the security of their protocols. In this paper,
we formally study the security of one of the most used industrial proto-
cols: OPC-UA. Using ProVerif, a well known cryptographic protocol ver-
ification tool, we are able to check secrecy and authentication properties.
We find several attacks on the protocols and provide countermeasures.

1 Introduction

Industrial systems also called SCADA (Supervisory Control And Data Acquisi-
tion) have been known to be targeted by cyberattacks since the famous Stuxnet
case [1] in 2010. Due to the criticality of their interaction with the real world,
these systems can potentially be really harmful for humans and environment.
The frequency of such attacks is increasing to become one of the priorities for
governmental agencies, e.g. [2] from the US National Institute of Standards and
Technology (NIST) or [3] from the French Agence Nationale de la Sécurité des
Systèmes d’Information (ANSSI).

Industrial systems differ from other systems because of the long lifetime of the
devices and their difficulty to be patched in case of vulnerabilities. Such speci-
ficities encourage to carefully check standards and applications before deploying
them. As it already appeared for business IT’s protocols for twenty years, auto-
mated verification is crucial in order to discover flaws in the specifications of
protocols before assessing implementations. However, the lack of formal verifica-
tion of industrial protocols has been emphasized in 2006 by Igure et al. [4] and
in 2009 by Patel et al. [5]. They particularly argued that automated protocol
verification help to understand most of the vulnerabilities of a protocol before
changing its standards in order to minimize the number of revisions which costs
time and money.

State-of-the-Art. Most of the works on the security of industrial protocols
only rely on specifications written in human language rather than using formal
methods. In 2004, Clarke et al. [6] discussed the security of DNP3 (Distributed
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 67–75, 2016.
DOI: 10.1007/978-3-319-45477-1 6
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Network Protocol) and ICCP (Inter-Control Center Communications Protocol).
In 2005, Dzung et al. [7] proposed a detailed survey on the security in SCADA
systems including informal analysis on the security properties offered by various
industrial protocols: OPC (Open Platform Communications), MMS (Manufac-
turing Message Specification), IEC 61850, ICCP and EtherNet/IP. In 2006, in
the technical documentation of OPC-UA (OPC Unified Architecture) the authors
detailed the security measures of the protocol (specially in part 2, 4 and 6). In
2015, Wanying et al. [8] summarized the security offered by MODBUS, DNP3
and OPC-UA.

On the other hand, some works propose new versions of existing protocols to
make them secure against malicious adversaries. In 2007, Patel et al. [9] studied
the security of DNP3 and proposed two ways of enhancing it through digital
signatures and challenge-response models. In 2009, Fovino et al. [10] proposed a
secure version of MODBUS relying on well-known cryptographic primitives such
as RSA and SHA2. In 2013, Hayes et al. [11] designed another secure MODBUS
protocol using hash-based message authentication codes and built on STCP
(Stream Transmission Control Protocol). To the best of our knowledge, Graham
et al. [12] is the only work directly using formal methods to prove the security
of industrial protocols or find attack against them. They proposed a formal ver-
ification of DNP3 using OFMC [13] (Open-Source Fixed-Point Model-Checker)
and SPEAR II [14] (Security Protocol Engineering and Analysis Resource).

Contributions. We propose a formal analysis of the security of the sub-
protocols involved in the OPC-UA handshake, namely OPC-UA OpenSe-
cureChannel and OPC-UA CreateSession. These sub-protocols are crucial for the
security since the first aims at authenticating a client and a server and deriving
secret keys while the second allows the client to send his credentials to the server.
To perform our security analysis, we use one of the most efficient tools in the
domain of cryptographic protocol verification according to [15], namely ProVerif
developed by Blanchet et al. [16]. It considers the classical Dolev-Yao intruder
model [17] who controls the network, listens, stops, forges, replays or modifies
some messages according to its knowledge. The perfect encryption hypothesis
is assumed, meaning that it is not possible to decrypt a ciphertext without its
encryption key or to forge a signature without knowing the secret key. ProVerif
can verify security properties of a protocol such as secrecy and authentication.
The first property ensures that a secret message cannot be discovered by an
unauthorized agent (including the intruder). The authentication property means
that one participant of the protocol is guaranteed to communicate with another
one. Modeling credential in ProVerif is not common and requires to understand
the assumptions made in the protocol in order to model it correctly. We fol-
low the official OPC-UA standards in our models and checked it against a free
implementation called FreeOpcUa1. Finally, using ProVerif, we automatically
find attacks against both sub-protocols and provide simple realistic countermea-
sures. All sources we developed are available2.
1 https://freeopcua.github.io/.
2 http://indusprotoverif.forge.imag.fr/PPL16.tar.gz.

https://freeopcua.github.io/
http://indusprotoverif.forge.imag.fr/PPL16.tar.gz
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Outline. In Sect. 2, we analyze the security of OPC-UA OpenSecureChannel
and OPC-UA CreateSession in Sect. 3. Finally, we conclude in Sect. 4.

2 OPC-UA OpenSecureChannel

The OpenSecureChannel sub-protocol aims to authenticate a client and a server
and allows them to exchange two secret nonces (random numbers) that will be
used to derive shared keys for the later communications. Moreover, OPC-UA can
be used with three security modes, namely None, Sign and SignAndEncrypt.

– SignAndEncrypt: messages are signed {h(m)}sk(X) and encrypted {m}pk(X),
where h is an hash function, sk(X) the secret key associated to X and pk(X)
the public key of X. This mode claims to provide secrecy of communication
using symmetric and asymmetric encryption, but also both authentication and
integrity through digital signatures.

– Sign: it is the same as SignAndEncrypt but messages are only signed
{h(m)}sk(x), and not encrypted.

– None: using this mode, the OpenSecureChannel sub-protocol does not serve
much purpose as it does not provide any security but is used for compatibility.

Fig. 1. OPC-UA OpenSecureChannel sub-protocol in mode SignAndEncrypt.

This protocol is described in Fig. 1. In message 1, C requests information on
S with GEReq meaning GetEndpointRequest. In message 2, DiscoveryEndpoint
answers with server’s public key and possible security levels and where GERes
stands for GetEndpointResponse, SP for SecurityPolicy and UP for UserPolicy.
Both SP and UP are used for cryptographic primitive negotiations. In message 3,
C sends a nonce NC to S with OSReq standing for OpenSecureChannelRequest.
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Finally in message 4, S answers a nonce NS to C with OSCRes for OpenSe-
cureChannelResponse, ST for SecurityToken (a unique identifier for the channel)
and TTL for TimeToLive (its life-time). The four terms GEReq, GERes, OSCReq
and OSCRes indicate the purpose of each message of the protocol. At the end of
this protocol, both C and S derive four keys (KCS , KSigCS , KSC and KSigSC)
by hashing the nonces with a function named P hash, similar as in TLS [18]:
(KCS ,KSigCS) = P hash(NC , NS) and (KSC ,KSigSC) = P hash(NS , NC).

2.1 Modeling

Normally, a GetEnpointRequest would be answered by a list of session endpoints
with possibly different security modes. We suppose that the client always accepts
the security mode proposed. Client’s and server’s certificates are modeled by
their public keys. Moreover, thanks to the perfect encryption hypothesis, we can
abstract the cryptographic primitives used. We consider an intruder whose public
key would be accepted by a legitimate client or server. Such an intruder could for
instance represent a legitimate device that has been corrupted through a virus
or that is controlled by a malicious operator. We consider the following security
objectives: (i) the secrecy of the keys obtained by C (denominated by KCS and
KSigCS), (ii) the secrecy of the keys obtained by S (denominated by KSC and
KSigSC), (iii) the authentication of C on NC and (iv) the authentication of S
on NS .

2.2 Results

We model in ProVerif this protocol for the three security modes of OPC-UA for
each objective proposed. Results provided by ProVerif are shown in Table 1.

Table 1. Results for OpenSecureChannel sub-protocol

OPC-UA security mode Objectives

Sec KCS Sec KSC Auth NS Auth NC

None UNSAFE UNSAFE UNSAFE UNSAFE

Sign UNSAFE UNSAFE UNSAFE UNSAFE

SignEnc SAFE SAFE UNSAFE UNSAFE

Obviously, as the security mode None does not provide any security, all objec-
tives can be attacked. Moreover, as nonces are exchanged in plaintext in security
mode Sign, the keys are leaked. Finally, in the case of Sign and SignAndEn-
crypt, the intruder reroutes messages to mount attacks on authentication in
order to bypass replay protections such as timestamps as the packet’s destina-
tion is changed rather than being replayed later. Figure 2 shows an attack on
the authentication of C using NC . This attack is possible because the standard
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Fig. 2. Attack on NC : I usurps C when speaking to S.

OPC-UA protocol does not require explicitly to give the identity of the receiver
of a message. Thus it allows the intruder to send to S the signed message C sent
to him similarly as the man-in-the-middle attack on the Needham-Schroeder
protocol [19].

2.3 Fixed Version

We propose a fixed version of the OpenSecureChannel sub-protocol using one
of the classical counter-measures for communication protocols proposed in [20].
It consists in explicitly adding the public key of the receiver to the messages
and thus avoiding an intruder to reroute signed messages to usurp hosts, as
presented in Sect. 2.2. This resolves the authentication problem but, as ProVerif
confirms, attacks on secrecy are still present. In order to solve the remaining
secrecy attacks, we use the key wrapping [21] mechanism present in the OPC-UA
standards [22–25]. All occurrences of NC are replaced by {NC}pk(S) in message
3 and all occurrences of NS in message 4 by {NS}pk(C). Thus in security mode
Sign, all the entire messages are signed but only the nonces are encrypted. More
formally, message 3 and 4 of Fig. 1 are replaced by:

3. C → S :
{
OSCReq, pk(C), {NC}pk(S), pk(S)

}
pk(S)

,
{
h(OSCReq, pk(C), {NC}pk(S), pk(S))

}
sk(C)

4. S → C :
{
OSCRes, {NS}pk(C), ST, TTL, pk(C)

}
pk(C)

,
{
h(OSCRes, {NS}pk(C), ST, TTL, pk(C))

}
sk(S)

We also use ProVerif to confirm the security of the protocol with all our
counter-measures. The results are presented in Table 2 and show that both
authentication and secrecy are now secure for security modes Sign and SignAn-
dEncrypt. As nonces are encrypted in security mode Sign, keys remain secret.

Table 2. Results for fixed OpenSecureChannel sub-protocol

OPC-UA security mode Objectives

Sec KCS Sec KSC Auth NS Auth NC

None UNSAFE UNSAFE UNSAFE UNSAFE

Sign SAFE SAFE SAFE SAFE

SignEnc SAFE SAFE SAFE SAFE
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3 OPC-UA CreateSession

The OPC-UA CreateSession sub-protocol allows a client to send credentials (e.g.
a login and a password) over an already created Secure Channel. This sub-
protocol is presented in Fig. 3. This protocol follows the security mode that
was chosen during the OpenSecureChannel sub-protocol and uses the symmet-
ric keys derived, thus encryption becomes symmetric and signature relies on a
Message Authentication Code (MAC). Then messages sent by C are encrypted
using KCS (resp. signed with KSigCS) and messages sent by S are encrypted
with KSC (resp. signed with KSigSC). More formally, in message 1, C sends a
nonce as a challenge to S with CSReq meaning CreateSessionRequest. In message
2, S answers with SigNC

= {pk(C), NC}sk(S) and CSRes for CreateSessionRe-
sponse. The message SigNC

is the response of C’s challenge and requires S to
sign with its private (asymmetric) key to prove that he is the same as in the
OpenSecureChannel sub-protocol. For this particular use, the OPC-UA stan-
dard explicitly asks to add C’s public key to the signature (which confirms the
counter-measure given in Sect. 2.3). In message 3, C answers S’s challenge with
SigNS

and sends his credentials to S with ASReq for ActivateSessionRequest.
Finally, in message 4, S confirms to C that the session is created with ASRes
for ActivateSessionResponse and NS2 a fresh nonce as a challenge that C should
use to refresh the session when it is timed-out. Again, CSReq, CSRes, ASReq
and ASRes indicate the purpose of each message of the protocol.

Fig. 3. OPC-UACreateSession sub-protocol

3.1 Modeling

As this protocol involves logins and passwords, we assume that C uses a dif-
ferent password for each server he speaks with. On the contrary, as mentioned
in Sect. 2.1, we consider an intruder that can play a legitimate device that has
been corrupted and would obtain the credentials of the client just by playing
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the protocol with him. Modeling of credentials is still not common in ProVerif.
We use two functions: Login and Passwd. The first one takes as parameter the
public key of a host in order to associate his login with him. This function is
public for everybody. The function Passwd takes as parameter the private key
of its owner to make it secret, but also the public key of the server to model
a different password for each server. Then we provide the following equation:
verifyCreds(pk(S),Login(pk(C)),Passwd(sk(C),pk(S))) = true. It allows
the server to verify if a password and a login are matching and if the pass-
word is the one he knows (using his public key). According to our results for
the OpenSecureChannel sub-protocol, the secrecy of the symmetric keys in secu-
rity mode Sign depends on if the protocol uses key wrapping. Again, as the
OPC-UA standard is not clear on how to use the mechanism in this mode, we
check with and without this security. This means that if keys are compromised,
then the intruder has access to it. We consider four security objectives: (i) the
secrecy of the password, (ii) the authentication of C on his password, (iii) the
authentication of C on SigNS

and (iv) the authentication of S on SigNC
.

3.2 Results

Results without key wrapping (thus with keys leaked in security mode Sign, cf.
Table 1) are presented in Table 3. Again, all objectives are attacked in security
mode None. Also the secrecy of the password cannot hold even in security mode
Sign since it will be sent by the client in plaintext during a legitimate exchange.
However, both challenge-response nonces ensure authentication since the private
keys are used instead of the symmetric keys. An attack on the authentication on
Passwd in security mode Sign is found by the tool. In this attacks the intruder
replaces the credentials of C by other valid credentials and recalculates the MAC
of the message using the leaked keys.

Table 3. Results for OPC-UA CreateSession sub-protocol

OPC-UA security mode Objectives

Sec Passwd Auth Passwd Auth SigNS Auth SigNC

None UNSAFE UNSAFE UNSAFE UNSAFE

Sign UNSAFE UNSAFE SAFE SAFE

SignEnc SAFE SAFE SAFE SAFE

If we consider that key wrapping is used in the OpenSecureChannel sub-
protocol (thus without keys leaked in security mode Sign) then according to
ProVerif results the authentication on C’s password becomes secure. This analy-
sis shows that the use of key wrapping is crucial in security mode Sign. Thus
it should be clearly said in the OPC-UA standard since missing this feature
completely breaks the security of Sign mode. Moreover, C’s credential should
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also be encrypted when exchanged in Sign mode to ensure their confidential-
ity. Finally, we check the source code of the free implementation of OPC-UA
(FreeOpcUa). This implementation is secure since it forces encryption of secrets
even in security mode Sign.

4 Conclusion

We provided a formal verification of the industry standard communication proto-
col OPC-UA, relying its official specifications [22–25]. We used ProVerif a tool for
automatic cryptographic protocol verification. Protocol modelings were tedious
tasks since specifications are often elusive to allow interoperability. Particularly
due to unclear statements on the use of cryptography with security mode Sign,
we studied the protocol with and without counter-measures and proved the need
of encryption for secrets to ensure messages security properties. We also found
attacks on authentication and provided realistic counter-measures. We chose to
focus on the two sub-protocols involved in the security handshake as they rep-
resent the core of the protocol’s security. In the future, we aim at testing the
attacks we found on official implementations which are proprietary in order to
check if they filled the gap as did FreeOpcUa.
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Abstract. A railway interlocking is the system ensuring a safe train
traffic inside a station by monitoring and controlling signalling compo-
nents. Modern interlockings are controlled by a generic software that
uses data, called application data, reflecting the layout of the station
under control and defining which actions the interlocking can perform.
The safety of the train traffic relies thereby on application data correct-
ness, errors inside them can lead to unexpected events, such as collisions
or derailments. Automatising and improving the verification process of
application data is an active field of research. Most of this research is
based on model checking, which performs an exhaustive verification of
the system but which suffers from scalability issues. In this paper, we
propose to use our knowledge of the system in order to design a polyno-
mial verification algorithm that can detect all the possible safety issues
provided that an assumption of monotonicity hold.

1 Introduction

In the railway domain, an interlocking is the subsystem that is responsible for
ensuring a safe and fluid train traffic by controlling active track components of
a station. Among these components, there are the signals, defining when trains
can move, and the points, that guide trains from track to track. Modern inter-
lockings, like Solid State Interlocking [1], are computerised systems composed of
a generic software taking data, called application data, as input. They describe
the actions that the interlocking must perform [2]. The main requirement to con-
sider when designing an interlocking is the safety. A correct interlocking must
never allow critical situations such as derailments or collisions. To this purpose,
an interlocking must satisfy the highest safety integrity level as stated by Stan-
dard EN 50128 of CENELEC [3]. Although the generic software is developed
in accordance with these requirements, the reliability of an interlocking is also
dependant of the correctness of its application data which are particular to each
station. However, preparation of application data is still nowadays done by tools
that do not guarantee the required level of safety. Furthermore, the verification
of their correctness, as well as their validation, is mainly done manually through
a physic simulator that reproduces the behaviour of the interlocking on real
infrastructures. In addition to the high cost of this process, it is also error prone

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 76–87, 2016.
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because there is no guarantee that all the situations that could end-up in a safety
issue have been tested by the simulator.

To overcome this lack, research has been carried out in order to improve
this verification process [4–7]. Most of it is based on model checking [8]. The
goal is to perform an exhaustive verification of the system. It is done in three
steps. First, the application data and the station layout are translated into a
model reflecting the interlocking behaviour. Secondly, the requirements that the
interlocking must ensure in order to prevent any safety issue are formalised.
Finally, the model checker verifies that no reachable state of the model violates
the safety requirements. The main advantage of this method is its exhaustiveness:
if a requirement is not satisfied, the model checker will always detect it. However,
this method suffers from the state space explosion problem. The number of
reachable states exponentially grows as the size of the model grows and the
model checker algorithm might not return a result within a reasonable time in
practice. Different methods to limit it have been proposed. Winter et al. [9]
suggest to keep the model as simple as possible by abstracting some parameters,
such as the trains speed or length. Besides, improvements can also be done
on the model checking algorithms. Different studies propose to use symbolic
model checking instead of classical approaches [6,7]. Variable ordering can also be
considered in order to speed up the verification [10]. Cappart et al. [11] propose
to limit the verification to a set of likely scenarios through a discrete event
simulation. Furthermore, Limbree et al. [12] propose a compositional approach
and use modern model checking algorithms, such as IC3 or k-liveness for the
verification. However, despite the good performances obtained, their method
still requires manual work for modelling each station individually and defining
their decomposition through contracts.

All of these improvements are generic and although they can be applied for
any model checking application, they do not take advantage of the intrinsic speci-
ficities of the considered system. In this paper, we propose to use our knowledge
of the railway field in order to design an efficient dedicated verification algorithm.
The contributions of this paper are as follows:

• An extension of the model presented by Cappart et al. [11]. Concretely, we add
the bidirectional locking functionality [2] that prevents head to head collisions
on platforms. We also add the differentiation between a route command and
a route activation.

• The introduction of a polynomial algorithm verifying that the interlocking
will never cause derailments or collisions provided that an assumption of
monotonicity hold. It also verifies that each train will reach its correct destina-
tion. Furthermore, its performances are also analysed through several experi-
mentations done on three instances.

This paper is structured around a typical medium sized Belgian station (the
same as [11]). The next section describes the interlocking components, explains
how it works, and illustrates its behaviour on the case study. Section 3 presents
the verification algorithm and states under which assumptions it can be used.
Performances are finally discussed in Sect. 4.
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2 Interlocking Principles

The role of an interlocking is to ensure a safe train traffic inside a station. This
section explains how it is done in practice for the Belgian interlockings and
illustrates the process on a case study, Braine l’Alleud Station.

Fig. 1. Layout of Braine l’Alleud Station.

A representation of its track layout with its related components is shown on
Fig. 1. This figure recaps all the component types that are used in our model.
Firstly, there are the physical components of the track layout:

• The tracks (e.g. Track 101) are the railway structures where trains can move.
A track can be a platform if trains can stop on it to pick up passengers.

• The track segments (e.g. T 01BC) are the portions of tracks where a train
can be detected. They are delimited by the joints.

• The points (e.g. P 01AC) are the movable devices that allow trains to move
from one track to another. According to Belgian convention, they can be in a
normal position (left) or in a reverse position (right).

• The signals (e.g. CXC) are the devices used to control the train traffic. They
are set on a proceed state (green) if a train can safely move into the station
or in a stop state (red) otherwise.

Braine l’Alleud Station is composed of 4 tracks, 17 track segments, 4 plat-
forms, 12 points and 12 signals. The physical components are controlled and
monitored by the interlocking. For instance, the system can detect that a train
is waiting on Track segment T 01AC in front of Signal CC and then puts this
signal to a proceed state if this action will not cause any safety issue. Generally
speaking, the interlocking must known which actions can be done and under
which conditions. Such information can be defined in different ways according
to the type of interlocking considered. Since 1992, Belgian railway stations have
used SSI format [1] for their interlockings. Such interlockings use a route based
paradigm. A route is the path that a train is supposed to follow inside a station.
It is named according to its origin and its destination place. Signals are often



A Dedicated Algorithm for Verification of Interlocking Systems 79

used as a reference for the origins whereas tracks or platforms are used for des-
tinations. For instance, Route R CXC 101 starts from Signal CXC and ends on
Platform 101. When a train is approaching to a station, a signalman performs a
route request to the interlocking in order to ask if the route can be commanded.
It is a route command. If this request is fulfilled, all the requested compo-
nents are locked but the train cannot use the route yet because the start signal
is still on a stop state. The start signal goes to a proceed state only after the
activation of the route. Route activations are periodically tried by the inter-
locking after that the route has been commanded. Once the route activation has
been accepted, the train can finally use its route. The interlocking handles such
requests and accepts or rejects it according to the station state. To manage the
requests, logical components are used:

• The subroutes are the contiguous segments that the trains must follow inside
a route. When a route is commanded for a train, a set of subroutes is locked.
When not requested, subroutes are in a free state. They are defined by this
syntax: U origin dest. For instance, U 19C 20C is the subroute from Joint
19 C to Joint 20C.

• The immobilisation zones are the variables materialising the immobilisation
of a set of points. When they are locked, their attached points cannot be
moved. They are represented in the application data by the name U IR.

• The bidirectional locking is the mechanism used to prevent head to head
collisions on platforms. Each bidirectional locking consists of two variables
(U BSIA and U BSIB) which can prevent the activation of a route coming
from the left or the right of the platform. For instance, when U BSIA(104) is
locked, no route going to the Platform 104 from the right can be activated.

There are 32 possible routes in Braine l’Alleud. To manage it, 48 subroutes,
10 immobilisation zones and 4 bidirectional locking mechanisms are used. With
both the physical and logical components, a route based interlocking controls the
train traffic by monitoring the station, setting routes, activating them, locking
components and releasing them. To illustrate how it works, let us consider the
scenario where a train is coming from Track 012 and has to go to Platform 103:

• Firstly, when the train is waiting at Signal KC, the interlocking verifies
whether the request for Route R KC 103 can be granted. Listing 1.1 presents
the request according to the application data of Braine l’Alleud.

1 *Q_R(KC_103)

2 if R_KC_103 xs , // xs: unset

3 P_08BC cfr , P_08AC cfr , P_09C cfr , P_10C cfn ,

4 U_IR (08BC) f, U_IR (09C) f, U_IR (10C) // f: free

5 then R_KC_103 s // s: set

6 P_08BC cr , P_08AC cr , P_09C cr , P_10C cn ,

7 U_IR (08BC) l, U_IR (09C) l, U_IR (10C) l,

8 U_KC_19C l, U_19C_20C l, U_20C_CGC l // l: locked

Listing 1.1. Request for commanding Route R KC 103.
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The request is accepted only if Route R KC 103 is not already set (line 2),
if some points are free to be commanded to the reverse (cfr) or normal (cfn)
position (line 3) and if some immobilisation zones are not locked (line 4). If all
the conditions are satisfied, R KC 103 is set (line 5), the points are controlled
to the reverse (cr) or normal (cn) position (line 6) and some components as
the immobilisation zones (line 7) or subroutes (line 8) are locked. At this step,
Route R KC 103 is set, or commanded, but not yet activated. Its start signal
is still on a stop state and the train can thereby not enter in the station yet.

• Before moving a point, the interlocking must verify that this action can safely
be executed. Listing 1.2 illustrates such conditions for Point P 08AC.

1 *P_08ACN U_IR (09C) f // condition for normal (N) position

2 *P_08ACR U_IR (09C) f // condition for reverse (R) position

Listing 1.2. Conditions allowing Point P 08AC to move.

• Directly after the acceptance of the request of Listing 1.1, the interlocking
checks if a bidirectional locking must be used in order to prevent routes going
to Platform 103 from the left to be activated. It is shown on Listing 1.3.

1 if U_BSIA (103) f then U_BSIB (103) l

Listing 1.3. Request for setting the bidirectional locking of Platform 103.

• Once R KC 103 has been commanded, the interlocking checks if it can safely
activate the route and so gives the train an authority to move.

1 *R_KC_103

2 if P_08BC cdr , P_08AC cdr , P_09C cdr , P_10C cdn ,

3 U_IR (08BC) l, U_IR (09C) l, U_IR (10C) l,

4 T_08BC c, T_09C c, T_10C c, T_103 c, // c: clear

5 U_BSIA (103) f

6 then U_BSIB (103) l, KC proceed

Listing 1.4. Request for activating Route R KC 103.

Listing 1.4 states that R KC 103 can be activated only if the points are com-
manded and detected in the requested position (cdn and cdr on line 2), if
the immobilisation zones are locked (line 3), if there is no train on some
track segments (line 4) and if the bidirectional locking for trains coming from
right to Platform 103 is free (line 5). The route activation results on locking
the paired bidirectional locking and on setting Signal KC on a proceed state
(line 6). At this step, the train can finally move into the station.

• When they are not used, locked components can be released. It is done accord-
ing to the progress of the train on its route. After each train movement, the
interlocking checks if a releasing event can be triggered. Listing 1.5 states the
conditions for releasing Subroute U 20C CGC. If all the conditions are ful-
filled, the requested components are thoroughly released.



A Dedicated Algorithm for Verification of Interlocking Systems 81

1 U_20C_CGC f if U_KXC_20C f, U_19C_20C f, T_10C c

Listing 1.5. Conditions for releasing Subroute U 20C CGC.

This process briefly describes the life cycle of a route and how it is man-
aged by the interlocking. To be more precise, application data also contain other
information but it is either not related to the safety or abstracted in our model.
Cappart et al. [11] designed a model aiming to reproduce the interlocking behav-
iour through a discrete event simulation. However they did not consider the
bidirectional locking conditions and the differentiation between a route com-
mand and a route activation. In this paper, we enrich their model by adding
these functionalities. Errors in application data can lead to disastrous situa-
tions. For instance, if the bidirectional locking is not properly checked before
activating route R KC 103 (line 5 missing from Listing 1.4), two routes going
to the same platform from a different side can be activated together which will
potentially cause a head to head collision. There is thereby a real need of efficient
and reliable methods to verify the application data correctness.

3 Verification Algorithm

This section describes the method that we have designed to verify that an inter-
locking will never cause any safety issue in a station. However, we need to define
first what is exactly a safety issue and how it can be detected. Different authors
[5,13,14] identified two types of safety issues: collisions and derailments. Accord-
ing to Busard et al. [13], there are three requirements that must hold in order
to avoid safety issues. Beyond the safety, a correct interlocking must also ensure
that trains will always reach their destination. We have then four requirements:

(1) A same track segment cannot have two trains or more on it at the same
time. Otherwise, a collision will occur.

(2) A point cannot move if there is a train on it in order to avoid derailments.
(3) A point must always be set on a position allowing trains to continue their

path in order to avoid derailments.
(4) Each train following a route must reach the destination stated by the route.

Much research has been carried out in order to verify automatically if an
interlocking always satisfies these properties. However, current methods present
some shortcomings. Model checking approaches suffer from the state space explo-
sion problem and the discrete event simulation [11] does not provide enough
guarantees that all the errors leading to safety issues will be detected. The app-
roach described in this paper tackles the problem with a different perspective.
Instead of limiting our knowledge of the system only for its modelling, we pro-
pose to use it for designing the verification algorithm. Specificities of the system
can be used to identify what are the scenarios that can lead to safety issues and
to distinguish them from others that are either redundant or that never happen
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in practice. The state space is then pruned and the verification is more efficient.
This approach is related to model checking. Indeed, an automatic and exhaustive
verification is still performed, but now this verification is restricted to a limited
state space that increases polynomially in function of the number of routes and
track segments. The rest of this section describes our algorithm and states the
assumption under which it can be used.

Initialisation. This paragraph presents the variables and the conventions used
in our dedicated algorithm. For a station S, we define ROUTES as the set of all
routes, TRACK SEGMENTS as the set of all track segments, POINTS as
the set of all points and COMPONENTS as the set of all physical components
in S. The algorithm returns True if S satisfies the requirements and False
otherwise. For all routes r, we define r.origin as the origin of r, r.destination as
its destination, r.isCommanded and r.isActivated as boolean values defining if
r is commanded and activated. We also define t.position as the current position
of a train t, p.state as the state (normal or reverse) of a point p and c.isLocked
as a boolean value defining whether a component c is locked.

No Conflictual Pair of Routes. The idea behind this algorithm is to verify
that no issue occurs in any situation, and for that, only pairs of routes are
considered. The correctness of this algorithm is then based on the assumption
that testing only pairs of routes is sufficient for detecting all the issues. It is
related to the monotonicity of the application data.

Proposition 1. The application data are monotonic. If a route cannot be com-
manded given a particular station state, it will not be able to be commanded for
a more constrained station state. The same rule must also apply for the compo-
nents releasing.

Proof. In other words, if a route r1 cannot be commanded when a route r2 is
commanded, it cannot be commanded if r2 and a third route r3 are commanded
together. Such a scenario can only occur if conditions for route commands (List-
ing 1.1) require components to be locked instead of being free. It is because the
station becomes more constrained each time a component is locked for a route.
In some cases, the application data are not monotonic. This situation happens
when the itinerary of a train is not only determined by a single route but by a
sequence of n routes [r1, . . . , rn]. In this case, a route ri with i ∈]1, n] can only
be set if ri−1 is also set. Route ri requires then a more constrained state for its
command. However, the property of monotonicity can be easily checked through
a static analysis. To do so, one can simply read sequentially the application
data and check separately each condition. Furthermore, applying the notion of
monotonicity to the set of itineraries instead of routes can also be done. ��
Proposition 2. Considering only pairs of routes is sufficient to verify the safety
of an interlocking based on the application data format described previously pro-
vided that they are monotonic.
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Proof. We have to prove that all the requirements can be verified by using at
most two routes. An issue can occur if the first route is not properly set, such
a case only requires routes taken separately and is then trivially proved, or if
the command or activation of another route interacts with components already
locked for the first route. We need to prove that considering two routes is suffi-
cient to detect all of these issues. Let us consider C, the set of all the components,
either physical or logical, of the station and Ci ⊆ C, the set of components used
or locked by Route ri. Let us take two arbitrary routes, r1 and r2. There are
two possible situations:

• C1 ∩ C2 = ∅: the two routes have no component in common and are then
completely disjoint. No issue can happen between them.

• C1 ∩ C2 �= ∅: the routes have at least a component in common. If the inter-
locking allows both routes to be set at the same time, an issue can happen.

Any issue can be represented as an intersection between such sets. An inter-
section is formed by at least two routes. Two routes are then sufficient to detect
any safety issue provided that commanding a third route will not relax C1 or
C2 by releasing some components thereafter. According to Proposition 1, the
application data must be monotonic to avoid that. In this case, testing only all
the pairs of routes is thus sufficient to cover all the conflictual scenarios. ��

This kind of assumption is also considered in [15] where the verification is
limited to two trains. Algorithm1 presents how we performed the verification
by considering all the pairs of routes. The command and activate instructions
(lines 5 and 7) correspond to the requests defined in the application data, like
Listings 1.1 and 1.4. The bidirectional locking request (Listing 1.3) is also done
through command instruction. They return True if the request is fulfilled and
False otherwise. Furthermore, if they are accepted, all the attached actions
modifying the station state are executed. move instruction (lines 20 and 23)
moves a train to the next track segment as defined by the points state. If a point
is misplaced, the train will either derail or pursue its movements until it leaves
the station.

First, each pair of routes are considered (lines 1–2). The goal is to move a train
t1 from the origin of a route to its destination (lines 10–28) and for each position
of t1, we will try to command and to activate another route (lines 12 and 17).
We also try to command r2 directly after that r1 has been commanded (line 6).
Such a case can happen in real situations. If r2 is successfully commanded and
activated (line 18), we move a train t2 until it reaches the destination of the
route (lines 19–22). When a particular position of t1 has been tested, t1 goes to
its next position (line 23) and the interlocking will try to release all the locked
components (lines 27–28). Releasing conditions are described in the application
data such as in Listing 1.5. Through the iterations on the positions of t1, we
memorize the fact that the other route, r2, has been commanded or activated
(lines 12 and 17). Indeed, because of the succession of release actions, the com-
mand and the activation can occur at different moments during the route life
cycle. When a pair of routes has been entirely tested, the station is reinitialised
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Algorithm 1. No conflictual pair of routes
1 for r1 ∈ ROUTES do
2 for r2 ∈ ROUTES such that r2 �= r1 do
3 place a train t1 at r1.origin
4 place a train t2 at r2.origin
5 r1.isCommanded ← command r1
6 r2.isCommanded ← command r2
7 r1.isActivated ← activate r1
8 if not r1.isActivated then
9 return False

10 while t1.position �= r1.destination do
11 if not r2.isCommanded then
12 r2.isCommanded ← command r2

13 if r2.isCommanded and not r2.isActivated then
14 for p ∈ POINTS such that t1.position = p do
15 if p.state �= previous(p.state) then
16 return False

17 r2.isActivated ← activate r2

18 if r2.isCommanded and r2.isActivated then
19 while t2.position �= r2.destination do
20 move t2
21 if t1.position = t2.position then
22 return False

23 move t1
24 if t1.position /∈ TRACK SEGMENTS then
25 return False

26 remove t2 from S
27 for c ∈ COMPONENTS such that c.isLocked do
28 release c

29 reinitialise S

30 return True

(line 29) in order to have an empty station before testing the next pair. It is
done through reinitialise instruction which releases all the locked components
and removes all the trains of the station.

Detection of Issues. Requirement (1) is tested after each movement of t2 by
testing that its position can never be the same as t1 (lines 21–22). Requirement
(2) is tested each time r2 has been commanded. If the current position of t1 is a
point, the point cannot move after the command of r2 (lines 14–16). It is done
by comparing its state with its previous one through the operator previous.
Requirements (3) and (4) are tested on lines 24 and 25. If r1 cannot be activated
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(lines 8–9), we consider that we have a fluidity issue because no other route is
already activated (not presented as a requirement).

Time Complexity. Each pair of routes must be tested, as well as all the
possible configurations of positions between two trains. We have thereby the
theoretical bound O(r2t2) with r the number of routes and t the number of track
segments. The verification of Braine l’Alleud Station took 148 s on a MacBook
Pro 2.6 GHz Intel Core i5 processor and with a RAM of 16 Go 1600 MHz DDR3
using a 64-Bit HotSpot(TM) JVM 1.8 on Yosemite 10.10.5.

4 Experiments

Several kinds of errors have been introduced in the application data in order
to test the adequacy of our algorithm and all of them have been successfully
detected in Braine l’Alleud:

• Incorrect or missing conditions on a route command (Listing 1.1).
• Conditions missing for releasing a component (Listing 1.5).
• Route activation not consistent with the related route command or condition

verifying the vacancy of a track segment is missing (Listing 1.4).
• Bidirectional locking not properly locked (Listings 1.3 and 1.4).

In order to analyse the scalability of our algorithm, we perform three exper-
imentations. Firstly, we compare the execution time required to verify different
numbers of routes in the station. A complete verification requires to consider
all the possible routes. Indeed, limiting the number of routes only produces
a partial verification. Secondly, in addition to Braine l’Alleud (17 tracks seg-
ments and 32 routes) we test our algorithm on a smaller instance, Nameche
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Fig. 2. Execution time (in seconds) in function of the number of routes in Nameche (•),
Braine l’Alleud (�) and Courtrai (�) by using our algorithm and the model checking
approach of Busard et al. [13] for Nameche (�).
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(13 tracks segments and 14 routes), and a larger one, a subpart of Courtrai
(19 track segments and 70 routes). Finally, we compare our method with the
approach of Busard et al. [13] that have performed a model checking verification
of Nameche. Figure 2 recaps the execution time of the different experimentations.
Let us notice that the y-scale is logarithmic. As we can see, our algorithm runs
faster (≈ 4 orders of magnitude for 14 routes) than the model checking approach,
even for larger instances and more routes. Furthermore, the algorithm scales well
for larger instances: a verification of all the routes is performed in less than 3 min
for Braine l’Alleud and in less than 16 min for Courtrai. The experimentations
have been performed on the same computer as in the previous section.

5 Conclusion

Much research has been carried out in order to automatically verify the correct-
ness of an interlocking system. Up to now, most of it tackles the problem with
a model checking approach or, more recently, using a discrete event simulation.
Both of them have some limitations. On the one hand, model checking suffers
from the state space explosion problem, and on the other hand, simulation does
not provide sufficient guarantees that the system is correct. In this paper, we
proposed another approach. The idea was to use our knowledge of the system
not only to model it, but also to design the verification algorithm. Concretely,
we implemented a dedicated polynomial algorithm that can verify the safety of
a medium size station in less than three minutes and that can scale on larger
stations provided that an assumption of monotonicity hold. We also shown their
validity by introducing several errors in the application that were successfully
detected. The method proposed in this paper only deals with the verification of
safety. Availability properties, stating that the trains will always progress in the
station, are not considered. However, whereas Standard EN50128 [3] strongly
recommends the use of exhaustive methods for the verification of safety, the ver-
ification of availability can be based on non exhaustive methods as statistical
model checking [16]. Both methods are complementary and a full verification
of an interlocking can then be based on a hybrid approach using the dedicated
algorithm for the safety and statistical model checking for the availability.
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Abstract. The use of formal methods has been recognized in differ-
ent domains as a potential means for early validation and verification.
However, correctly specifying formal properties is difficult due to the
ambiguity of the typical textual requirements and the complexity of the
formal languages. To address this, we define the Catalogue of System and
Software Properties. Starting from a taxonomy of requirements extracted
from space standards, we derive a list of design attributes divided per
requirement type. We map these design attributes to AADL system
architectures and properties, for which we define formal semantics and
properties. We exemplify the approach using AADL models taken from
the space domain.

1 Introduction

In many sectors such as transportation, space and health, the criticality of the soft-
ware systems requires a high level of confidence and operational integrity. Formal
methods allow early discovery of potential issues which otherwise may be discov-
ered only during the (software) system integration and validation phases. In for-
mal methods, the correctness and validity of design models is expressed in terms of
formal properties. Therefore, their proper definition becomes a cornerstone of the
early validation. The process of adequate properties specification poses multiple
challenges. Requirements, being the main source of the properties to be specified,
are often not trivial to be formalized due to the current practice of using natural
language specifications. Furthermore, the formal properties may be very complex,
which hinders the specification and the use of the formal methods.

We start from the observation that, as the design is being expanded and
refined, design attributes are being specified either to perform specific analysis
such as schedulability or to configure standard functions such as the monitoring
of critical values. However, these design attributes are typically not formalized
in the language used for system-level early verification and validation and no
consistency is therefore checked with the previous analysis. This is a missed
opportunity, as formalizing such design attributes can increase the consistency
of the models and decrease the cost of specifying formal properties.
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In this paper, we describe the Catalogue of System and Software Properties
(CSSP). This is a predefined set of design properties already formalized into a
mixture of temporal, real-time, and probabilistic logics. We extracted the design
properties by analyzing standards and requirements documents in the space
domain and creating a taxonomy of requirements with a list of design attributes
divided per requirement type. We defined a property set for AADL (Architecture
Analysis & Design Language [1]), which can be used to specify such design
attributes on a system architecture. By assigning values to the design attributes
in this way, a predefined formal property is specified. These formal properties can
then be analyzed for consistency among different levels of the architecture, be
used as assumptions or guarantees of components for contract-based design, and
be model checked on a behavioral model of the components. We extended the
COMPASS tool to support this property set, automatically associating design
attributes to formal properties. We exemplify the approach on the AADL model
of a space system.

Related Work. Similar approaches make use of predefined patterns, either
by defining a fixed set of patterns with placeholders, or by defining a grammar
to construct such patterns from well defined rules. Well-known approaches for
patterns are proposed in [2] (qualitative properties), [3,4] (real-time properties),
and [5] (probabilistic). Recently a combination of such patterns, derived by a
grammar was published in [6]. More domain specific patterns are known as well,
such as for security [7] and epistemic properties [8]. Patterns are used also in
contract based approach: in [9], a number of predefined patterns are defined to
specify contract assumptions and guarantees.

All these approaches have in common that patterns are defined with a number
of placeholders which accept (formal) propositions describing a certain state of
the system. This is in contrast with the CSSP, which rather assigns values to
predefined design attributes of the system, from which then formal properties are
derived. So, the CSSP distinguishes itself from pattern-based approaches in two
ways: first, it contains a predefined set of formal properties systematically derived
from requirement categories; second, the formal properties are not instantiated
by replacing the pattern placeholders with arbitrary expressions, but rather by
assigning values to various attributes of the system. Clearly, in this way, the
CSSP is very limited in expressiveness. The advantage is that the designer does
not need to choose a pattern and invent an instantiation.

2 Scope and Known Limitations

In the paper, we analyze the typical types of system requirements and we list
a set of design attributes that are often used to specify a related detailed char-
acteristic on the design. In order to have a systematic approach, we list these
design attributes using a classification of requirement types. The classification
is derived from ECSS (European Cooperation for Space Standardization) docu-
ments related to requirements engineering, in particular from [10–15]. The clas-
sification intends to cover all different levels of abstraction in space missions:
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Mission Level defining the mission objectives, products, and services; System-
of-System Level covering aggregates of ground segment, space segment, launch
segment and support segment; System Level covering single satellites, launchers,
and data processing centers; Sub-System Level covering, e.g., electrical power,
attitude control, structure, thermal control, and software; and finally Equipment
Level covering, e.g., valves, batteries and individual electronic boxes.

Some remarks follow. First, we do not consider this classification as complete
but just a means to derive the design attributes. The taxonomy is biased by the
very specific domain (space) of the documents. Moreover, despite the documents
coming from the same domain, we found conflicting descriptions of requirement
types. Therefore, the resulting taxonomy has been influenced by our knowledge
and experience.

Second, we focus the attention on technical requirements, which specify char-
acteristics of systems (products or services) to be developed. In [11], the term
Technical Requirement is defined as the “required technical capability of the
product in terms of performances, interfaces and operations”. So, we do not con-
sider requirements such as verification, usage, portability, and usability require-
ments. We also exclude from the present analysis security requirements, which
are left for future work.

Third, in the description of requirement classes below, the term system refers
to the subject for which requirements specify characteristics. In this sense, a
system covers products and services. Moreover, it should not be confused with
the system abstraction level. The term system (as the subject of requirements)
applies to all abstraction levels.

3 Requirements Taxonomy and Design Attributes

1 Context Requirements specify the context in which the system is supposed to
work. They specify assumptions about external entities such as physical phe-
nomena, external systems and resources. For instance, if the system is software,
its context is usually specified in terms of resources like processing power and
memory. Context Requirements include both Environmental Requirements
and Physical Requirements, defined in [10] respectively as “Requirements that
define the context in which the system operates” and “Requirements that
establish the boundary conditions to ensure physical compatibility and that
are not defined by the interface requirements, design and construction require-
ments, or referenced drawings”.
Typical design attributes associated to context requirements are the allocated
processor and memory units, the processing capacity, the clock frequency, endi-
anness, memory sizes, and addressable memory units.

2 Configuration Requirements specify the product’s internal composition in
terms of sub-systems and connections. For instance, for a satellite, the Con-
figuration Requirements define the power system, the thermal control system,
the attitude control system, the payload systems, and all connections between
them. In [10], Configuration Requirements are defined as Requirements related
to the composition of the product or its organization.
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In this case, typical design attributes are the list of sub-systems, the type of
sub-systems, the connections between sub-systems, and the redundancy scheme
for sub-systems (identification of nominal and redundant sub-systems).

3 Interface Requirements define the data or services that a system provides to
or requires from other systems. Depending on the system being specified, such
data/services can be physical, thermal, electrical, or software.
Typical physical design attributes are area, volume, alignment, stiffness, toler-
ance, geometry, flatness, fixation, mass and inertia; electrical design attributes
are voltage, current, and margins for electrically induced effects on nearby
components; thermal design attributes are temperature and thermal resis-
tance (conductibility) of materials; software design attributes are events or
functions.

4 Functional requirements specify what a system should do. In [10], the following
example of a functional requirement is given: “The product shall analyze the
surface of Mars and transmit the data so that it is at the disposal of the sci-
entific community”. Although, in [10], Mission Requirements are identified as
separate class, we identify Mission Requirements as Functional Requirements
at the Mission abstraction level, as they specify “what the mission should do”.
4.1 Input/Output Functional Requirements describe the relation between

input/output of the system. Typical design attributes associated to
input/output functional requirements are the output that is generated
in response to an input of the component, the maximum reaction time
that can elapse between the received input and the generated output, and
the input that is required to generate an output.

4.2 Mode Requirements specify modes and mode transitions of a system. The
mode (also known as phase) represents a configuration of a system deter-
mining how the system shall respond to inputs in that configuration.
In addition transitions allow systems to switch between modes. Mode
Requirements can also specify mode invariants, i.e., constraints on the
values of variables. For instance, a single star tracker unit has one or more
tracking modes. During a tracking mode, the star tracker constantly com-
putes its attitude based on locations of detected stars. A Mode Require-
ment specifies an invariant on the attitude so that when the difference
between successive attitudes is too large, the star tracker is said to have
lost its “tracking lock” and will have to switch to another mode.
Typical design attributes associated to mode requirements are the list of
modes, mode transitions, transition triggers, and mode invariants.

4.3 Data-Handling Requirements specify the operations the system has to
perform on data. This includes acquisition, processing, generation, and
storage of data as well as refreshing and deletion of old data. For instance,
for an Attitude and Orbit Control Subsystem (AOCS), data-handling
requirements specify that the system estimates the spacecrafts current
attitude and orbit from sensor inputs, determines the desired future atti-
tude and orbit, and generates control commands for the actuators.
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Typical design attributes associated to data-handling requirements are
input data rates, output data rates, volatile data, persistent data, process-
ing steps, output data generation.

4.4 Monitoring Requirements specify the system parameters to be checked,
the values against which to check, and the frequency at which to perform
the check. In addition, monitoring requirements specify all actions needed
depending on the outcome of a check.
Typical design attributes associated to monitoring requirements are moni-
tored parameters (the parameters that have to be checked), monitor range
(values against which to check, e.g., ranges or enumerated values), check
frequency, parameter check response actions (specify what the system
shall do after a check has been performed), parameter check response
result (success or failure), and monitoring state (enabled or disabled).

4.5 Operational Requirements specify rules according to which connected sys-
tems shall communicate. This includes requirements specifying what com-
mands an operator shall issue to a system and what feedback is given in
return. In [10], Operational Requirements are defined as: “Requirements
related to the system operability”.
Operational requirements include requirements on the observability of
the system, on the commanding of the system, and on the protocols for
system-to-system communications.
Typical design attributes related to observability are the report format
(i.e., the format of the data the system has to generate), the data fre-
quency (when data has to be generated at a certain frequency), event
data (when data has to be generated only when a certain event occurs),
and observation mode (enabled or disabled); associated to commandabil-
ity, there are the list of commands, the type of commands, command
conditions (i.e., the conditions under when commands can be invoked),
and command responses (i.e., the response a system shall send to the
operator upon reception of a command); related to protocol, there are
the type of messages (commands to the system, information from the
system, acknowledgment), the format of the messages (headers, payload,
source, target, ...), message rate (minimum, maximum, average), response
time of acknowledgment (maximum time between reception of the orig-
inal input message and the transmission of the acknowledgment), and
communication windows (i.e., the period during which communication
via a particular interface is possible).

5 Quality Requirements specify the manner in which a system must perform as
well as the characteristics it should have in order for developers, maintainers,
and users to be able to perform their tasks involving the system.
5.1 Performance Requirements specify how well the system is supposed to

perform with respect to certain indicators.
Typical design attributes are jitter, latency, response times, deadlines,
throughput, processing capacity, CPU load, communication capacity, and
memory capacity.
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5.2 Dependability Requirements specify the degree to which the system can
reasonably be relied upon. In [16], dependability is defined as “the extent
to which the fulfillment of a required function can be justifiably trusted.”
An important concept related to dependability, especially in the space
domain, is Fault Detection, Isolation, and Recovery (FDIR). The FDIR
requirements describe what failures must be detected and what to do
when a failure has been detected. For instance, if a failure occurs in
equipment which has redundancy, it might be possible to switch from
the nominal to redundant equipment configuration and continue with
nominal operations.
We identify therefore the following design attributes: the kind of failures
that might occur, the tolerance of failures (how often the failure may
occur), the failure detection delay, and the recovery actions.

5.3 Reliability Requirements. Reliability is defined as the probability that a
system (i.e., product or service) will perform a required function under
stated conditions for a stated period of time. In [16], reliability is defined
as “the ability of an item to perform a required function under given con-
ditions for a given time interval.” For instance, the description of a space
mission may state that after reaching a correct orbit, a 1 year nominal
mission starts during which scientific data is gathered. Consequently, at
the start of the nominal mission, the reliability shall be sufficiently high
to ensure a 1 year nominal operation.
A measure for reliability of a system is the Mean Time To Failure, MTTF,
which is the mean operational time (up time) of a system before any
failure occurs.

5.4 Availability Requirements. Availability is defined as the proportion of time
for which the system (product or service) is able to perform its function in
its intended environment. Availability takes into account both the oper-
ational time and the repair time.
Consequently, even if a system is not very reliable (i.e., it has a high
probability of failure), short repair times of the system might be sufficient
to achieve the desired availability. In [16], availability is defined as the
“ability of an item to be in a state to perform a required function under
given conditions at a given instant of time or over a given time interval,
assuming that the required external resources are provided”.
In general, availability can be seen as the fraction of time the system
spends on average in an operational (i.e. not failed) state along its life
cycle.

5.5 Maintainability Requirements specify the acceptable efforts needed to
restore a system after a failure has occurred. In [16], maintainability is
defined as the “ease of performing maintenance on a product.” It can be
expressed as the probability that a maintenance action on a product can
be carried out within a defined time interval, using stated procedures and
resources. A measure for maintainability is the Mean Time To Repair,
MTTR, that indicates the average time needed to restore the system
operation after a failure has occurred.
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5.6 Safety Requirements specify system hazards and the acceptable risk of
such hazard occurring. Hazards can be, e.g., loss of lives, injuries, loss
of the mission, loss systems, and loss of equipment. Safety Requirements
define all hazards relevant to the system. A typical design attribute is the
tolerance of failures of the system.

4 The CSSP

The CSSP is based on models specified in AADL [1]. In AADL, a system is
described in terms of components, which may contain other systems as subcom-
ponents. Each system may specify a number of event, data or event data ports on
its interface. Communication between systems and subsystems occurs via port
connections.

The configuration of the system is determined by modes and mode transi-
tions. At any given moment, each system is in a given mode, and based on events
may move to another mode as specified by mode transitions.

The CSSP is specified as an AADL property set, which provides the lan-
guage constructs to associate values to specific model’s elements. For example,
the CSSP contains the AADL property Period, which is applicable to event or
event data ports; thus, every port of this kind in the architectural model can have
a value associated with it that represents its period. The formal properties pro-
vided by the CSSP are determined by the value associated to the corresponding
AADL properties.

A design attribute is then specified in terms of these property values or can
be formalized by means of using certain structures in the AADL model (such as
subcomponents and port connections).

4.1 Formalization of the CSSP

The formal semantics of CSSP formal properties relies on the behavioral seman-
tics which have been defined for the SLIM language [17], a subset of AADL
extended with behavioral models. In these semantics, event ports allow instan-
taneous event synchronization and data ports allow the continuous synchroniza-
tion of data. Event data ports provide a mix where an event may be fired with an
associated data value. Finally, SLIM models are described either by a real-time
automaton, with clock values continuously increasing over time, or a probabilis-
tic Markov chain, based on exponential distributions associated with events.

The logic used to define most CSSP formal properties is variant of MTL [18],
where the atoms are predicates over the event and data ports, and modes of the
AADL model. In particular, we use the following notations: F≤uφ is true when
φ is true within the following u time units; O≤uφ is true when φ is true within
the preceding u time units; �[a,b] φ is true when the next time φ is true is within
[a, b] time units; �[a,b]φ is the strict version of �[a,b] φ that does not consider
the occurrence of φ at the current time; change(x) is true when the value of x
changes; rise(b) is true when the expression b becomes true; the variable mode
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refers to the active mode of the current state; for an event data port p, data(p)
holds the value of data passed with p after p occurs; for an event port p, �p is
the number of occurrences of p in the past history. A more formal definition of
the semantics can be found in [17].

Apart from MTL properties, we have ExpectedTime and Long-run average
(abbreviated to LRA), which are described in [19] and rely on the probabilistic
semantics of SLIM. The expected time is derived from the average sojourn time
of a state in the system, and generates the mean time until reaching any state
given as its parameter. The long-run average gives the fraction of time spent in
states given as its parameter.

The list of formal properties that form the CSSP is shown in the following
Table. The first column shows the CSSP formal properties. Each property is
parametrized with an element from the input AADL model, indicated by the
second column. In the third column the formalization is shown, which is para-
metrized by one or more AADL properties specified for the specified element.
The formal property is defined if and only if all AADL properties inside the for-
mal definition have a value in the model. For time intervals, if the upper bound
is not set, it is assumed to be ∞.

Some properties can be expressed as an arbitrary arithmetic expression over
data ports, data components and uninterpreted functions. This is a language
feature specific to COMPASS. In the CSSP property set, they are encoded as
strings, see [17] for details.
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4.2 Coverage of the Design Attributes

In the next Table we summarize how the design attributes are formalized using
AADL and the CSSP property set. For each design property, the associated CSSP
parameter(s) or AADL structure are listed that allows its formalization.



Catalogue of System and Software Properties 97



98 V. Bos et al.

4.3 COMPASS Tool Support

The CSSP has been implemented in the COMPASS toolset [20,21], where it
is possible for a user to specify the CSSP property values for a SLIM model
(the input language of COMPASS). Such properties are automatically translated
by COMPASS into their formal counterparts, which are then analyzed by the
toolset. Furthermore, it is possible to specify contracts based on these properties,
for which consistency and refinement checks can be made [22].

4.4 Example

To provide a better understanding of the use of the CSSP, we give an exam-
ple based on a standard watchdog. This example and a more complete case
study, modeling additionally an AOCS and a Startracker, using different kinds
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Fig. 1. Watchdog example

of CSSP properties is available at http://compass.informatik.rwth-aachen.de/
publications/safecomp2016/.

The AADL architecture is shown in Fig. 1. The AOCS process periodically
sends a signal to the watchdog when running in nominal mode “alive”. In addi-
tion it has a failure mode “dead” in which the signal is not sent. The watchdog
raises an alarm if it does not receive the signal. To formalize this, we can set the
following AADL properties:

Timeout(anomaly detected) => 1 Sec;
TimeoutReset(anomaly detected) => reference(watchdog event);
PeriodInterval(watchdog event) => 1 Sec;
PeriodEnabled(watchdog event) => (reference(alive));
ModeInhibited(dead) => (reference(watchdog event));
Reaction(fault) => reference(anomaly detected);
ReactionMaxDelay(anomaly detected) => 3 Sec;

These properties automatically specify the formal properties Complete-
TimeoutProperty(watchdog.anomaly detected), PeriodProperty(aocs.watchdog
event), ModeInhibitedProperty(aocs.watchdog event), and ReactionProperty
(fault), as defined in Sect. 4.1. Moreover, COMPASS can automatically verify
that ModeInhibitedProperty(aocs.watchdog event) and CompleteTimeoutPro-
perty(watchdog.anomaly detected) entail (logically) ReactionProperty(anomaly
detected).

5 Conclusions and Future Work

This paper provides an important contribution to close the gap between formal
methods and the standard practices in system and software design. It describes
an extension of AADL that defines a catalogue of AADL properties with a pre-
cise formal semantics and provides a mapping from standard design attributes
typically used in system and software design to the AADL properties. This allows
the designer to easily apply model checking techniques to verify the component
behaviors or to check the consistency among the properties specified at different
abstraction levels. To cover a wise range of properties we collaborated with space
engineers analyzing standards and requirement documents taken from the space

http://compass.informatik.rwth-aachen.de/publications/safecomp2016/
http://compass.informatik.rwth-aachen.de/publications/safecomp2016/
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domain. For future work, we will extend the catalogue with documents of differ-
ent domains. Moreover, this predefined set of properties opens up new research
directions to customize and improve verification and synthesis techniques.
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4000111828).
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E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 326–340.
Springer, Heidelberg (2014)

9. Gafni, V., Benveniste, A., Caillaud, B., Graph, S., Josko, B.: Contract specification
language (CSL). Speeds D2 (2008)

10. ECSS Std ECSS-E-ST-10-06-C Space Engineering - Technical requirements spec-
ification. Technical report third issue, ESA-ESTEC, Requirements & Standards
Division, March 2009

11. ECSS Std ECSS-E-ST-10C Space Engineering - System engineering general
requirements. Technical report third issue, ESA-ESTEC, Requirements & Stan-
dards Division, March 2009

12. ECSS Std ECSS-E-ST-40C Space Engineering - Software. Technical report third
issue, ESA-ESTEC, Requirements & Standards Division, March 2009

13. ECSS Std ECSS-E-HB-40A Space Engineering - Software Engineering Handbook.
Technical report first issue, ESA-ESTEC, Requirements & Standards Division,
December 2013

14. ECSS Std ECSS-E-ST-60-30C Space Engineering - Satellite attitude and orbit
control system (AOCS) requirements. Technical report first issue, ESA-ESTEC,
Requirements & Standards Division, August 2013

15. ECSS Std ECSS-E-HB-10-02A Space engineering - Verification guidelines. Techni-
cal report first issue, ESA-ESTEC, Requirements & Standards Division, December
2015



Catalogue of System and Software Properties 101

16. ECSS Std ECSS-S-ST-00-01C ECSS System–Glossary of terms. Technical report
third issue, ESA-ESTEC, Requirements & Standards Division, October 2012

17. Bozzano, M., Bruintjes, H., Nguyen, V.Y., Noll, T., Tonetta, S.: SLIM 3.0 - syn-
tax and semantics. Technical report, RWTH Aachen, Fondazione Bruno Kesseler
(2016)

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

19. Guck, D., Han, T., Katoen, J.P., Neuhäußer, M.R.: Quantitative timed analysis of
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Abstract. Guardol is a domain-specific language focused on the cre-
ation of high-assurance cross-domain systems (i.e., network guards). The
Guardol system generates executable code from Guardol programs while
also providing formal property specification and automated verification
support. Guardol programs and specifications are translated to higher
order logic, then deductively transformed to a form suitable for code
generation. Recently, we extended Guardol to support regular expres-
sions; this has enabled the creation of a class of fast and secure hardware
guards. We justify the regular expression extension via proof that the
extension compiles to the original language while preserving key correct-
ness properties. In this paper, we detail the verified compilation of regu-
lar expression guards written in Guardol, producing Ada, Java, ML, and
VHDL. We have compiled a regular expression guard written in Guardol
to VHDL, then synthesized and tested the guard on a low-SWAP (Size,
Weight, And Power) embedded FPGA-based hardware guard platform;
performance of the FPGA guard core exceeded the data payload rate for
UDP/IP packets on Gigabit Ethernet, while consuming less than 1 % of
FPGA resources.

1 Introduction

As critical systems become increasingly internetworked, they become ever more
vulnerable to cyber attacks. Experience with the public Internet has shown that
high-profile vulnerabilities, such as HeartBleed, MyDoom, Sobig.F, Confiker, and
ShellShock, continue to crop up, outpacing the ability of the off-the-shelf software
development community to “plug the leaks”. These vulnerabilities are pernicious
in that they are generally very low-level, and are “a needle in a haystack,”
existing within a software corpus of millions of lines of code. In the case of
the public Internet, patches can be developed rather quickly (on the order of
days to weeks), and distributed throughout the Internet in a matter of days.
Critical networked embedded systems typically utilize the same sorts of operating
systems and applications as in the public Internet, but do not embrace rapid
update cycles; a shipboard system, for example, may go years between upgrades,
leaving many known vulnerabilities unpatched for long stretches of time.
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 102–113, 2016.
DOI: 10.1007/978-3-319-45477-1 9
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Cross-domain systems, or guards, can provide a line of defense against
cyber attack for critical applications in areas such as military communications
and avionics. A cross-domain system mediates information sharing between
safety/security domains according to a specified policy. Figure 1 depicts a guard
controlling information flow between two networks. Guards are similar in princi-
ple to firewalls, but focus more on application-level filtering, and undergo more
rigorous accreditation.

High Security Network
Internet / 

Low Security Network
Guard

Application

Infiltration

Exfiltration

Fig. 1. Idealized two-way guard

In a typical guard, both the “low side” and “high side” networks terminate at
the guard, and only certain protocols are allowed to transit the guard from one
side to the other, and then only if the protocol headers are valid. Further, user-
programmable logic allows the guard to either accept, reject, or modify data
payloads carried by the allowed protocols, based on a user-defined policy. In
theory, cross-domain systems provide a very high “cyber-wall” to any would-be
attacker. However, most cross-domain systems are architected as applications
hosted on the same sorts of operating systems and hardware platforms that
have shown to be so vulnerable to cyber attack. Thus, an attacker can exploit
a known vulnerability in the cross-domain system operating system (NB: the
operating systems for most cross-domain systems tend to be older versions, and
are infrequently updated) in order to bypass the guard logic entirely.

It is possible, however, to architect a cross-domain system in such a way that
the core guard logic is not bypassable. This type of guard architecture is embod-
ied by the Rockwell Collins Turnstile guard [5]. In the Turnstile architecture,
the network interfaces for the “low side” and “high side” networks are allocated
to their own CPUs and operating systems, and the core guard logic is imple-
mented on a third, separate high-assurance processing platform. Data movement
amongst processing platforms is mediated by hardware, and a high degree of
assurance is provided that the guard logic is NEAT (Non-bypassable, Evalu-
atable, Always invoked, and Tamper-proof). In the Turnstile architecture, this
NEAT property is established through the use of the Rockwell Collins AAMP7G
microprocessor, which has earned a United States Department of Defense MILS
certification, stating that it is capable of simultaneously processing Unclassified
through Top Secret Codeword information [24]. Turnstile has been accredited to
DCID 6/3 PL 5 (the highest level), and is UCDSMO listed [20].

The advantages of this approach are apparent; since the AAMP7G is a highly
trustworthy platform with a hardware-based separation kernel, it is much less
vulnerable to the usual sorts of cyber attacks. A potential disadvantage comes
in terms of absolute performance. The AAMP7G is an embedded CPU with
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a typical 150 MHz internal clock, so an AAMP7G-based guard would not be
appropriate for high-throughput applications. However, one could implement
the basic Turnstile architecture, replacing the AAMP7G with a hardware-based
guard engine, and achieve both extremely high performance, as well as a very
low vulnerability to typical cyber attacks.

1.1 Guardol for Cross-Domain Systems

Most guards are programmed using proprietary rule languages. These languages
are limited in their capabilities; lack portability from one guard vendor to
another; exhibit unpredictable performance; and do not provide assurance that
the rulesets written by operators satisfy higher-level security properties. The
Guardol system [10] is designed to overcome these limitations. The Guardol
language is a domain-specific language for expressing portable, high-assurance
guard logic, as well as the specification and proof of guard properties. The
Guardol system generates source code from Guardol programs for several tar-
get languages, and also provides formal specification and automated verifica-
tion support. Guard programs and specifications are translated to higher order
logic, then deductively transformed to a form suitable for a SMT-style decision
procedure for recursive functions over algebraic datatypes. The result is that
difficult properties of Guardol programs can be proved fully automatically. In
recent work, we have added support for regular expressions, in the form of a
formally verified compiler from regular expressions to Deterministic Finite-state
Automata (DFAs), using the Derivatives approach due to Brzozowski [6]. We
have established the mathematical correctness of the compilation from Guardol
regular expressions to DFA arrays utilizing the HOL4 theorem prover.

Guardol is primarily a sequential imperative language, with non-side-effecting
expressions; assignment; arrays; traditional control flow operators such as if
statements, for and while loops; and procedures with in out parameters. To
this extent, Guardol is quite similar to traditional imperative languages such
as Ada [1]. To this base we add datatype declaration facilities similar to those
found in SML [16]. Recursive programs over such datatypes are supported by
ML-style pattern-matching. This hybrid language approach supports writing
elegant programs over complex data structures, while also providing standard
programming constructs familiar to most developers.

An example Guardol function that demonstrates the use of the ML-style
match operator appears below. The function inserts a tree into a priority queue.

function ins(t: in Tree, tlist: in TreeList) returns Output: TreeList = {

match tlist {

’Nil => Output := ’Cons [hd: t, tl: ’Nil];

’Cons c =>

if t.rank < c.hd.rank then

Output := ’Cons [hd: t, tl: tlist];

else

Output := ins(link(t, c.hd), c.tl);

}

}
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Guardol’s verification support centers around property specifications,
expressed in Guardol syntax. A specification that priority queue rank order is
preserved by the insertion function ins above is given by:

spec rank_ordered_ins = {

var t : Tree;

list : TreeList;

in

if rank_ordered(list) then

check rank_ordered(ins(t, list));

else skip;

}

This property specification is automatically verified by the Guardol toolchain.

1.2 Guardol and Hardware-Based Guards

When we contemplated generating hardware guard logic from Guardol source,
we realized that not all legal Guardol programs would be able to be trans-
lated to a hardware description language such as VHDL [11], at least not in
the short term. But, a great deal of practical Guardol functionality would be
directly translatable, including regular expressions. Indeed, due to the nature
of the compiled output for regular expressions (repeated array indexing), very
high assurance regular expression matching in VHDL targeting a modern FPGA
could be achieved, resulting in very high-performance programmable hardware-
based guards. We have validated these initial feasibility and performance claims
for Guardol-derived hardware guards utilizing regular expressions, as will be
discussed in Sect. 6.

In the hardware-based guard workflow, a guard logic developer expresses
the desired guard behavior in Guardol, which is much simpler than VHDL,
and does not require knowledge of hardware. The guard logic developer utilizes
the Eclipse-based Guardol Interactive Development Environment (IDE). The
Guardol toolchain then translates the user’s Guardol program into VHDL, while
also translating any property specifications that the user wishes to prove into
a form that can be handled by the SMT backend. The Guardol SMT backend
then attempts to prove these properties, and provide results to the user. The
VHDL is then be compiled to a “bit file” using standard VHDL compilation
tools provided by the FPGA vendor. Finally, this bit file is loaded onto the
guard platform using a standard JTAG interface, which typically connects to
the user’s computer via USB.

In this paper, we describe the development of a proof-of-concept system
that supports this workflow. In particular, we describe how we crafted a high-
assurance hardware-based cross-domain system prototype in which the Guardol
language was used to express the guard functionality, and the Guardol toolchain
was used to generate VHDL as well as produce proofs of guard correctness.
Finally, we report on measured performance and FPGA resource consumption
for a Guardol-based hardware guard prototype.
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2 The Guardol Toolchain

The Guardol toolchain architecture is illustrated in Fig. 2. A guard program
is created, edited, and typechecked in the Guardol IDE before being sent to
HOL4 theorem prover [22], operating in fully automated fashion, for formal
modeling. HOL4 defines the Guardol abstract syntax tree form, as well as the
operational semantics of the language. From this semantic model, the program
can be reasoned about formally; and Ada, Java, CakeML [13], or VHDL code
can be generated from it.

IDE HOL RADA

Ada Java CakeML VHDL

parse; edit

formalize

program

proof

automation

Fig. 2. Guardol toolchain

2.1 Guardol IDE

The Guardol IDE is used to create, edit, and typecheck Guardol programs, as
well as to initiate code generation and formal analysis. The Guardol IDE is
based on Xtext, an Eclipse-hosted IDE generator [7]. Xtext uses ANTLR [18] to
express the Guardol grammar and builds an IDE around the resulting parser.

2.2 Verification

The verification path provides automated proof for Guardol property specifica-
tions. We use HOL4 to give a semantics to Guardol evaluation. Decompilation
into logic formally transforms specifications about Guardol program evaluation
into properties of HOL functions (which have no evaluation semantics). HOL4
is also used as a semantical conduit to RADA, our automated SMT-based tool
for reasoning about catamorphisms (“fold” functions) [19].

Figure 3 illustrates the heart of the verification path. A package defining types
τ1, . . . , τj , and programs p1, . . . , pk, along with property specifications s1, . . . , s�

to be proved is mapped directly to HOL. The “decompilation into logic” phase
then formally reduces the programs and property specifications into their deno-
tations in logic. Thus programs p1, . . . , pk translate to logic functions f1, . . . , fk

and specifications s1, . . . , s� translate to logic goals (formulae) g1, . . . , g�. Any
inductive goals are processed using induction schemes derived from the defini-
tion of f1, . . . , fk before being shipped off to the RADA decision procedure, if
needed.
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Fig. 3. Guardol verification path

The Guardol verifier has been able to automatically prove complex properties
of recursive functions over unbounded algebraic datatypes, e.g., properties of
priority queues and red-black search trees [19].

3 Adding Regular Expressions to Guardol

We have extended the Guardol language with a new primitive expression

regex match(rlit , s)

which takes a regular expression literal1 rlit , and a string expression s, and
returns a boolean result. In the Guardol toolchain, our intent is to ensure that
the code generation path and the verification path agree on the semantics of the
programs and specifications being handled. In the case of regular expressions,
this manifests in a proof translation and a code translation, which are related by
a formally proved correctness theorem.

3.1 Proof Translation

In the proof translation, regex match(rlit , s) maps to s ∈ L(r), where r =
parse(rlit) is the regexp corresponding to rlit . Therefore, reasoning about the
regex match expression will be based on the set-theoretic formal language seman-
tics of r.

Definition 1 (Language of an Extended Regular Expression). The
semantics of regular expressions, L(−), maps from a regular expression to a
formal language (set of strings). Strings are represented as lists of characters.
The abstract syntax of regular expressions can be given by the following ML-style
datatype declaration.

regexp ::= Epsilon ; empty string

| Symbs of charset ; set of characters

| Or of regexp regexp ; disjunction

| Cat of regexp regexp ; concatenation

| Star of regexp ; Kleene star

| Not of regexp ; complement (non-standard)

| And of regexp regexp ; intersection (non-standard)

1 Regular expression literals in Guardol largely conform to the syntax found in the
Python programming language.
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Complement and intersection operators support succinct specifications; their
inclusion does not formally increase the class of regular languages.

L(Epsilon) = {ε}
L(Symbs P ) = {[x] | x ∈ P} ; strings of length 1
L(Or r1 r2) = L(r1) ∪ L(r2)
L(Cat r1 r2) = L(r1) · L(r2) ; concatenation
L(Star r) = (L(r))∗ ; Kleene star
L(Not r) = L(r) ; complement
L(And r1 r2) = L(r1) ∩ L(r2)

3.2 Code Translation

The code translation maps regex match(rlit , s) to the application of a DFA to s.
In particular, regex match(rlit , s) maps to a function call Exec DFA(D,s) where
Exec DFA is defined, in Guardol syntax, as

function Exec_DFA (d:DFA, s:string) returns verdict:bool = {

var q : int;

in

q := d.init;

for (i=0; i < length(s); i++) { q := d.trans(q,s[i]); }

verdict := d.final(q);

}

The DFA type is a record comprising the components of the automaton. An
abstract presentation is as follows:

type DFA =

[init : state ; start state

trans : state * char -> state ; transition table

final : state -> bool ; final states]

The transition function, which takes a pair (q, c) consisting of the current
state (q) and the current character in the string (c), and returns the next state,
is represented by a two-dimensional array. Thus matching a string is very quick,
since there is one array indexing operation per character position in the string.
Similarly, the final states are also represented in an array, with constant-time
lookup, so the final check to see if the string is accepted takes essentially one
computation step.

Regular Expression Compilation. A variety of means exist to translate a reg-
ular expression to a corresponding DFA. We chose one from Brzozowski [6], who
proposed an algorithm that compiles regular expressions directly to DFAs, avoid-
ing low-level automata constructions and treating non-standard—but useful—
boolean operations such as negation and intersection uniformly. The core of the
algorithm is an elegant quotient construction identifying regular expressions with
DFA states. Recent work [17] has shown that his method often generates minimal
DFAs and can be extended to large character sets and character classes.
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We have formalized and proved correct a version of Brzozowski’s algorithm
in HOL4. The complete HOL4 proof that the array-based DFA code generated
by the Brzozowski method implements the meaning of regular expressions is
provided in the HOL4 distribution, culminating in the following theorem :

Theorem 1 (Correctness of regexp compilation).

1. � (compile regexp r = (state numbering , delta, accepts)) ∧
2. (lookup regexp compare (normalize r)state numbering = SOME start state) ∧
3. dom Brz alt empty [normalize r]

⇒
4. ∀s. EVERY(λc. ORD c < alphabet size) s
5. ⇒ (exec dfa accepts delta start state s = regexp lang r s)

In words:

1. Suppose regexp r is compiled to state numbering (a map from regexps to
states), delta (a state transition table), and accepts (a list of the accepting
states)—together these comprise the DFA;

2. the original regexp r (normalized) corresponds to the start state of the DFA;
and

3. the regexp compilation terminates; then
4. for any string s made solely from characters in the alphabet,
5. the result of running the DFA on s delivers a verdict that agrees with the

semantics of r (regexp lang is the HOL4 name for L(−) and exec dfa is the
HOL4 name for Exec Dfa).

Termination. Notice that the theorem above is constrained to apply when the
input is “terminating”. This is formalized in the dom Brz alt predicate, which
returns true just when the regexp compiler terminates. This predicate, and the
compiler itself, have been defined using the approach of Greve and Slind [9],
which allows the definition of partial recursive functions while also supporting
deferred termination proofs and executability of the defined function. This allows
our compiler to be introduced into the logic and proved correct, while deferring
the proof of termination.
Assurance Levels. The formal regexp compiler can be applied in several ways.
First, it can be executed “inside the logic” in order to build the desired DFA
for a given regexp, delivering a corresponding formal theorem for that problem
instance. This can be thought of as an ultra high assurance DFA generator. Alter-
natively, we have generated CakeML [13] source code from the HOL4 definitions
of the regexp compiler and compiled them with CakeML. In this approach, The-
orem 1 pairs with the correctness of the CakeML compiler in a “once-and-forall”
fashion to produce a very high assurance formally verified DFA generator, where
the correctness extends to the execution of the DFA at the binary level. Another
choice would be to take the generated CakeML, which is in a subset of Standard
ML, and compile it with an off-the-shelf ML compiler. This would result in a
higher performance DFA generator, at the price of some loss in assurance at the
binary executable level.
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4 Guardol VHDL Code Generation

In order to perform VHDL code generation for regular expression-based Guardol
programs, the key task is to generate VHDL for the Exec DFA function. Syn-
tactically, VHDL is quite similar to Ada, the previous primary target language
for Guardol code generation. Semantically, however, the two languages are quite
different. While the Ada developer thinks in terms of traditional imperative
programming language idioms for the most part, with occasional forays into
concurrency if tasking is being used, the VHDL developer must think first and
foremost about parallel execution. Ada variables become VHDL signals; Boolean
types become std logic types; Integer types become std logic vector types; Strings
become RAM entities; and loops with control variables become parallel processes
with sensitivity lists.

This yields a hardware implementation that provides examination of one byte
of input packet data, and one DFA transition, per clock of the state machine.
Here our choice of compilation to a DFA (vs. NFA) form is doubly fortuitous,
as it yields simple (i.e., no backtracking) state machine hardware that provides
predictable performance, regardless of the complexity of the regular expression.

5 FPGA-Based Guard Architecture and Implementation

Figure 4 illustrates the FPGA architecture for our prototype hardware guard.

High Side CPU Guard RAM Low Side CPU

Guard Logic

Fig. 4. Hardware guard FPGA architecture.

Low Side and High Side networking are handled separately by CPU cores
that are resident in the FPGA (note that for higher-performance applications,
the cores could be external to the FPGA). A core may be either a hard core, or
a soft core. Upon receipt of a packet on the correct port, the Low Side writes
the packet into the Guard RAM. The Guardol-derived Guard Logic inspects the
packet, and renders a pass/fail verdict on it. If the packet passes the Guard
Logic inspection, it is transferred to the High Side CPU. To create a two-way
guard, one would merely replicate the Guard RAM and Guard Logic blocks, and
connect these new blocks to the High Side CPU and Low Side CPU, reversing
the dataflows.
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6 Results

To summarize our achievements on this project:

1. We have successfully generated VHDL code for a Guardol program employing
regular expression pattern matching, and have synthesized this VHDL for a
Xilinx Zynq FPGA. The regular expression guard logic (mainly the DFA
traverser) and DFA tables consume less than 1 % of the FPGA’s registers
and LUTs.

2. We have incorporated this VHDL code into a compact Rockwell Collins-
designed hardware-based prototype guard circuit board measuring 8 cm by
15 cm, and dissipating only 7.5 W, allowing power-over-Ethernet operation.

3. We have measured the performance of Guardol-derived regular expression
guard VHDL code on our prototype hardware. The FPGA guard core can
process 964,000,000 bits/sec at a system clock rate of 167 MHz, which exceeds
the payload data rate of UDP/IP over Gigabit Ethernet. This level of perfor-
mance was achieved using a modest clock rate on an FPGA that was designed
for embedded, not high-performance, applications. Successful synthesis of the
guard core is possible for this same FPGA up to a system clock of 250 MHz.

4. We have proven that the regular expression extension compiles to the original
Guardol language while preserving key correctness properties. We have for-
mally shown that the Brzozowski regular expression compiler is correct with
respect to the standard formal language semantics of regular expressions.

5. We have produced high-assurance guards for several representative security-
critical applications, such as a regular expression-based guard for complex
JSON-based application data packets. Recently, we have begun to explore
utilizing Guardol and the Guardol toolchain to produce high-assurance, high-
speed, low-SWAP bus monitors for CAN bus, MIL-STD-1553, etc.

7 Related Work

Guardol is one of several verification-enhanced programming languages; other
such languages include SPARK/Ada [3], Dafny [14], the Leon subset of the
Scala programming language [4], as well as certain C dialects [15,23].2 Guardol
is unique amongst these in that it is a domain-specific language. Elements of the
Leon environment motivated our work; in particular, its SMT-based solver for
catamorphisms was a starting point for our RADA algorithm. One significant
difference between the Guardol toolchain and the Leon environment is our use of
HOL4 as a formal Intermediate Verification Language (IVL), as described fur-
ther in [21]. An example of a verification-enhanced version of C that is similar
in spirit to our work is Appel’s Hoare Logic for Leroy’s CompCert C [2], which
is derived from the operational semantics of CompCert C [15]. Properties of C

2 Note that any logic capable of expressing computable functions, e.g., ACL2 [12] or
higher order logic, can be regarded as a verification-enhanced programming language;
our emphasis here is on more conventional programming languages.
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code can be extended down to low-level code by use of the correctness proof of
the CompCert compiler. Several domain-specific languages for hardware descrip-
tion are documented in the literature. One such language is Kansas Lava [8], a
Haskell-hosted Embedded DSL. Kansas Lava is much more expressive for hard-
ware design than is Guardol, but Kansas Lava lacks a formal IVL that enables
proofs of correctness of the sort described in this paper.

8 Conclusion

We have extended the Guardol domain-specific language for cross-domain sys-
tems to support regular expressions; this has enabled the creation of a class of
fast and secure hardware guards. We take advantage of the fact that the Guardol
toolchain translates Guardol source to higher order logic, then deductively trans-
forms it to a form suitable for code generation, to prove that the regular expres-
sion extension compiles to the original language while preserving key correct-
ness properties. We have accomplished verified compilation of regular expression
guards written in Guardol, producing Ada, Java, ML, and VHDL. We have com-
piled a regular expression guard written in Guardol to VHDL, then synthesized
and tested the guard on a low-SWAP (Size, Weight, And Power) embedded
FPGA-based hardware guard platform; performance of the FPGA guard core
exceeds the data payload rate for UDP/IP packets on Gigabit Ethernet, while
consuming less than 1 % of FPGA resources. We have thus demonstrated that
a verification-enhanced domain-specific language for cross-domain systems can
readily generate efficient and high-performance hardware-based guards, resulting
in a very high degree of assurance for critical applications.
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Abstract. ISO 26262 is the de facto standard for automotive functional
safety, and every automotive Original Equipment Manufacturer (OEM),
as well as their major suppliers, are striving to ensure that their devel-
opment processes are ISO 26262 compliant. ISO 26262 mandates both
hazard analysis and risk assessment. Systems Theoretic Process Analysis
(STPA) is a relatively new hazard analysis technique, that promises to
overcome some limitations of traditional hazard analysis techniques. In
this paper, we analyze how STPA can be used in an ISO 26262 compliant
process. We also provide an excerpt of our application of STPA on an
automotive subsystem as per the concept phase of ISO 26262.

Keywords: Hazard analysis · Risk assessment · STPA · ISO 26262 ·
ASILs · Automotive industry · Battery Management System

1 Introduction

Systems Theoretic Process Analysis (STPA) [6] is a relatively novel hazard analy-
sis technique, geared towards modern, software-intensive complex systems in
which analyzing the interacting subsystems as separate entities could give mis-
leading results. Recently, STPA has gained popularity in the automotive domain
(e.g., [2,4,8]). Also, ISO 26262 [5] has become the de facto standard for auto-
motive functional safety. Given the industry’s gradual shift to compliance with
ISO 26262, the topic of STPA’s application in an ISO 26262 compliant process
is highly relevant to enabling greater acceptance of STPA in the industry. The
key difference between STPA and the Hazard Analysis and Risk Assessment
(HARA) process of ISO 26262 is the risk assessment. While STPA has proven
itself as an effective hazard analysis technique across industries, it does not—nor
was it intended to—include risk analysis.

In this paper, we carefully explore how to use STPA to satisfy the hazard
analysis requirements of the concept phase of development as per ISO 26262,
and how to augment STPA with an appropriate risk analysis. First, we provide
a detailed comparison of the standard and the technique: we note the major
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 117–129, 2016.
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similarities and differences in the philosophical underpinnings of the two, and
provide a comparison of their key terms. Then, we build on the comparisons to
check if and how every relevant artefact as required/recommended by ISO 26262
can be generated/supported by applying STPA. Finally, we illustrate the appli-
cation of the approach on a real-world automotive subsystem provided by our
industrial partner, a large automotive OEM.

Although the topic of using STPA in an ISO 26262 compliant process has
been the subject of study [4], or at least its significance has been recognized [3,8],
to the best of the authors’ knowledge, this paper represents the first detailed
account of the topic. The closest to an investigation of the topic is presented
in [4], where the author suggests that HAZOP (Hazard and Operability), STPA
and FMEA (Failure Mode and Effects Analysis) could be used in the concept
phase of development as per ISO 26262. Although [4] provides a rough, high-
level view on the topic, our work presents a detailed analysis of the topic with
illustrative examples. Also, Hommes [3] suggests investigating the effectiveness of
STPA in the automotive domain as the ISO 26262 recommended hazard analysis
techniques are not sufficient to handle the growing complexity of modern software
intensive safety-critical systems.

This paper is organized as follows. Section 2 provides relevant background.
Section 3 provides a comparison of the terminologies of STPA and ISO 26262,
while Sect. 4 presents guidelines on how to use STPA in an ISO 26262 compliant
process, illustrated with an excerpt from an automotive subsystem. Section 5
concludes the paper and provides suggestions for future work.

This paper is based on the Master’s thesis of the first author [7], and we refer
the reader to it for further details.

2 Preliminaries

In this section, we provide a brief introduction to STPA and ISO 26262.

2.1 Systems Theoretic Process Analysis (STPA)

STPA is based on the accident causation model called STAMP (Systems-
Theoretic Accident Model and Processes), built on systems theory and systems
engineering [6]. The main ideas behind systems theory are: (1) Emergence and
Hierarchy and, (2) Communication and Control [6]. Safety is considered an emer-
gent system property: the safety of the whole system cannot be guaranteed just
by proving that the system’s individual components are safe. Further, systems
are modeled as a hierarchy of organizational levels, where each level is more
detailed than the one above. Also, accidents are treated as a dynamic control
problem (as opposed to the classical approach viewing accidents as caused by
component failures only): accidents occur when inadequate or inappropriate con-
trol actions (commands issued by system’s controllers) violate the safety con-
straints of the system.
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The STPA technique follows three steps: Preliminary step (Step 0), Step 1
and Step 2. Step 0 deals with the identification of accidents, associated hazards,
safety constraints as a negation of those hazards, and drawing of the control
structure (a functional abstraction of the system). Step 1 identifies the ways
in which unsafe control actions could lead to accidents, and the corresponding
safety constraints. Step 2, causal factor analysis, involves identifying the causes of
previously identified unsafe control actions along with the corresponding safety
constraints. The detailed steps to perform STPA are described in Sect. 4.

STPA promises to address some limitations of traditional hazard analy-
sis techniques as it accounts for the interactions between the subsystems and
the dynamics between the system and its environment, along with manage-
ment issues and human factors. There exists related work in various domains
that presents cases where STPA identified hazards previously not identified by
ISO 26262 recommended hazard analysis techniques (a detailed review of the
literature can be found in [7]). For example, Song [10] applied STPA on the
Nuclear Darlington Shutdown system and compared the results with the origi-
nal FMEA results. The author found that, when compared with FMEA, STPA
identified more hazards, failure modes and causal factors, including inadequate
control algorithms, missing feedback and an incorrect logic model [10].

There have been varied opinions on the ease of use of STPA and the learning
curve involved. There is no strong evidence to suggest that STPA is harder
to use than traditional hazard analysis techniques. According to the controlled
experiment presented in [1], there is no significant difference in the ease of use
and understandability between STPA, FMEA and FTA (Fault Tree Analysis).

2.2 ISO 26262 Standard

ISO 26262, published in late 2011, addresses functional safety of road vehicles,
and applies to electric, electronic and software components within the vehicle [5].
ISO 26262 consists of ten parts, and our work focuses on the Hazard Analysis
and Risk Assessment (HARA) clause of Part 3 of [5].

The Item Definition is a necessary prerequisite for the HARA. The item is
defined as “system”, “or array of systems to implement a function at the vehicle
level, to which ISO 26262 is applied”, [Part 1 of [5]]. It contains the require-
ments for the item under study, its dependencies and its interactions with the
environment and other items. The HARA comprises Situation Analysis, Hazard
Identification, Classification of Hazardous Events, and Determination of Auto-
motive Safety Integrity Levels (ASILs) and Safety Goals. The Situation Analysis
determines “the operational situations and operating modes in which an item’s
malfunctioning behaviour will result in a hazardous event”. The Operational
situation is defined as a “scenario that can occur during a vehicle’s life” (e.g.,
driving), while the operating mode is a “perceivable functional state of an item
or element” (e.g., system off, degraded operation, emergency operation), [Part 1
of [5]]. The Hazard Identification step involves identifying the vehicle level haz-
ards, the hazardous events and consequences of hazardous events. Hazardous
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events are determined by considering the hazards in different operational situa-
tions identified during the situation analysis. In the Classification of Hazardous
Events step, the hazardous events are classified using impact factors Severity (S),
Probability of Exposure (E) and Controllability (C). The severity is estimated
based on the extent of potential harm to each person potentially at risk. The
parameter ranges from S0 to S3. The probability of exposure is the duration or
the frequency of occurrence of the operational situations and is valued from E0
to E4. The controllability factor, ranged from C0 to C3, is an estimation of the
ability of the driver or other persons potentially at risk to control the hazardous
event. ASIL levels help determine the stringency of the requirements and the
safety measures needed to avoid what the standard considers to be unreason-
able risks. The Determination of ASILs for each hazardous event is based on
the estimated values of the severity, probability of exposure and controllability
parameters in accordance with Table 4 of Part 3 of [5], and range from ASIL A
to ASIL D (highest criticality). Another class called Quality Management (QM)
exists to denote there is no safety requirement to comply with. For each haz-
ardous event with an assigned ASIL, a safety goal shall be determined as a
top-level safety requirement for the item. The ASIL identified for a hazardous
event shall also be assigned to the corresponding safety goal.

Then, the Functional Safety Concept (FSC) clause helps derive the Func-
tional Safety Requirements (FSRs) from the item’s safety goals based on prelim-
inary architectural assumptions. The standard suggests using traditional safety
analyses like FMEA, FTA, and HAZOP to support the FSR specification.

3 STPA and ISO 26262

In this section, we first compare the foundations of STPA and ISO 26262, and
then compare their central terminologies. Table 1 presents definitions of central
terms used by STPA as defined in [6] and ISO 26262, as defined in Part 1 of [5].

3.1 STPA and ISO 26262: Comparing Foundations

Both ISO 26262 and STPA are based on a systems engineering framework in
which a system is considered to be more than merely the sum of its parts. Top-
down analysis and development are common to both. However, while ISO 26262
emphasizes the importance of considering the context of a system in achieving
safety (including the role of safety management and safety culture), there seems
to be no consensus whether ISO 26262 considers a driver to be a part of the
hazard analysis of an item. STPA on the other hand, includes all relevant aspects
of the system’s environment, including the driver.

The key difference between STPA and the HARA process of ISO 26262 is the
risk assessment process. Risk assessment as per ISO 26262 involves determining
the impact factors: Severity (S), Probability of Exposure (E) and Controllabil-
ity (C). While ISO 26262 justifiably avoids using probabilities of failure of system
components to estimate risk (estimating the probability of failures in modern
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Table 1. Definitions of terms in STPA and ISO 26262

Term STPA [6] ISO 26262 [Part 1 of [5]]

Hazard A system state or set of conditions that,

together with a particular set of

worst-case environmental conditions,

will lead to an accident (loss)

Potential source of harm caused by

malfunctioning behaviour of the item

Malfunctioning

behaviour

No explicit definition Failure or unintended behaviour of an

item with respect to its design intent

Failure No explicit definition

Note: A failure in engineering can be

defined as the non-performance or

inability of a component (or a

system) to perform its intended

function

Termination of the ability of an element,

to perform a function as required

Note: Incorrect specification is a

source of failure

Accident An undesired or unplanned event that

results in a loss, including loss of

human life or human injury, property

damage, environmental pollution,

mission loss, etc.

No explicit definition

Harm No explicit definition Physical injury or damage to the health

of persons

Hazardous event No explicit definition Combination of a hazard and an

operational situation

systems is very hard given the prevalence of non-random failures and the lack
of historical information), determining E and C factors is still rather subjective
and not yet standardized in the industry. Although SAE J2980 presents a recom-
mended practice to “provide guidance for identifying and classifying hazardous
events, which are as per [5]”, its current focus is limited to collision related
hazards and not the wider scope of ISO 26262 [9]. Although some authors sug-
gest using only severity for risk estimation [3], an ISO 26262 compliant process
requires that S, E and C factors are determined and used.

3.2 STPA and ISO 26262: Comparing Basic Terminologies

Important terms are italicized in this section and defined in Table 1.
Starting from the definition of term hazard, themost notable difference between

the definitions of the term is that STPA does not limit hazards to those caused by
malfunctioning behaviour, while ISO 26262 does. Due to ISO 26262’s ambiguity in
the definition of the term of malfunctioning behaviour (both “design intent” and
“unintended behaviour” are undefined in the standard), it is hard to determine
what exactly the term is intended to mean. However, it seems that ISO 26262,
by including “unintended behaviour of an item with respect to its design intent”
in the definition of malfunctioning behaviour, departs from the notion that only
component failures lead to accidents, but also includes unintended interactions of
the system components often reflected in flawed requirements.

ISO 26262 does not have an explicit definition of accident. However,
STPA’s accident defines unacceptable losses; hence, it is very closely related
to ISO 26262’s harm. We note that STPA’s concept of loss not only includes
human injury or loss of human life, but also property damage, pollution, mis-
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sion loss, etc., and hence is more general than ISO 26262’s which considers only
injury to people. We note, however, that STPA is meant for different stakehold-
ers to adapt it as it suits them. Further, the consequences of hazardous events of
ISO 26262, identified by considering the consequences of the hazard in various
operational situations, could be mapped to accidents of STPA. However, STPA’s
accidents are more general in nature—ISO 26262’s consequences tend to be more
fine-grained, since they are determined for different operational situations of the
hazard.

4 Using STPA in an ISO 26262 Compliant Process

The foundation and terminology comparison presented in Sect. 3 lays the ground-
work for our approach of using STPA in an ISO 26262 compliant process. In this
section, we explore how every relevant artefact as required/recommended by
ISO 26262 can be generated/supported by applying STPA. We illustrate the
approach on a simplified version of the Battery Management System (BMS) of a
Plug-in Hybrid Electric Vehicle (PHEV). Not all the details of the analysis and
the control structure are shown due to their proprietary nature.

A PHEV is a hybrid electric vehicle (a vehicle combining Internal Combus-
tion Engine (ICE) propulsion with electric propulsion) that has energy storage
devices like rechargeable batteries that can be charged by connecting to the
electrical grid using a plug. These rechargeable batteries are monitored and pro-
tected by the BMS. The primary functions of the example BMS are to: (1) enable
charging and discharging of the battery back by closing the contactors; or dis-
able charging and discharging of the battery back by opening the contactors, (2)
provide accurate information on charge and discharge to the HPC (Hybrid Pow-
ertrain Controller) system, (3) equalize cell charge using passive cell balancing,
(4) heat/cool the battery pack, (5) isolate the battery in case of emergency.

Figure 1 shows the STPA results (as shown on the right hand side of the
figure) that can help generate the outputs required by the concept phase of
ISO 26262 (as shown on the left hand side of the figure), illustrated with exam-
ples. The grey dashed box includes blocks numbered i2 to i10 corresponding to
all the subclauses of the HARA. Rectangles denote outputs (artefacts) obtained
as a result of either following the requirements of ISO 26262 or performing STPA
steps. An oval inside a rectangle represents the output of HARA that is itself
required to determine the output represented by the encompassing rectangle.
The solid arrows from STPA blocks to ISO 26262 blocks denote that the specific
STPA output can completely support the corresponding ISO 26262 block out-
put, while the dashed arrows denote that the specific STPA output can partially
support the corresponding ISO 26262 block output. The dotted arrows are used
to represent cases where a result of STPA can help provide additional support
in generating an output of ISO 26262. The numbers in the form of w-x-y-z point
to the specific subclause of the standard where the requirements are specified. w
corresponds to the specific part of the ISO 26262 standard, x corresponds to the
specific clause and y-z corresponds to the subclauses where the requirements of
the clauses and subclauses are mentioned.
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Fig. 1. STPA in compliance with ISO 26262, illustrated with excerpt of BMS example

As shown in Fig. 1, there exist outputs of the original STPA that have been
mapped to ISO 26262’s outputs represented by blocks i1, i2, i3, i5, i10 and i11.
However, ISO 26262’s outputs represented by blocks i4, i6, i7, i8 and i9 have
no corresponding outputs of the original STPA—instead, we augment STPA’s
outputs with a set of new outputs (shaded rectangles in the figure) and present
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guidelines on how they can be generated. The mappings from Fig. 1 are discussed
next in the sequence in which STPA is performed.

First, in the initial step of STPA (Step 0), accidents, related hazards, corre-
sponding safety constraints, and the control structure of the system under analy-
sis are defined. Accidents of STPA are mapped to the standard’s consequences
of hazardous events (s1 → i5 mapping). However, accidents are typically not as
fine-grained as consequences of hazardous events, since STPA does not consider
accidents in different operational situations. Thus, STPA can partially support
derivation of the consequences of hazardous events. However, consequences of
hazardous events are only to be determined later in the STPA process compli-
ant with ISO 26262 after hazardous events have been determined. An example
of a vehicle accident would be AC1: Vehicle collision causing harm/damage to
vehicles and persons within and outside vehicle.

Next in STPA, vehicle level hazards are determined. If the hazards cannot
be eliminated or controlled at the system level, the corresponding component
hazards are identified. An example of a system (vehicle) level hazard for AC1
is VH1: Vehicle experiences unintended deceleration, which maps to the vehicle
level hazard (block i3) of ISO 26262. A corresponding BMS-level hazard is H1:
BMS does not enable power to vehicle when required. H1 is a refinement of VH1
as H1 is hazardous in the case when ICE is non-functional so the vehicle is
completely dependent on the power from the battery pack.

In an ISO 26262-compliant process, operational situations should be docu-
mented. This is why, in our approach, we explicitly document operational sit-
uations during the process of linking hazards to accidents (block s11). When
analyzing in what situations the hazards VH1 and H1 could lead to AC1, we
can come up with situations like driving on a highway, snow, ice on road, etc. To
help analysts in determining operational situations, the standard presents exam-
ples of operational situations (the examples have been summarized in [7]). As
mentioned in ISO 26262, an overly detailed list of operational situations might
result in “a very granular classification of hazardous events” and could eventually
lead to “an inappropriate lowering” of an ASIL [Part 3 of [5]].

Once we have the list of operational situations and hazards, we can derive
the hazardous event (block s12), as it is the combination of a hazard and an
operational situation. Thus, we augment STPA to include this step (block s12).
For VH1, a hazardous event identified is HE1: Unintended deceleration while
driving on highway. It is at this point when the consequence of hazardous event is
determined (block s13). For example, the consequence of HE1 would be CoHE1:
Rear-end collision with the following vehicle travelling at high speed.

Classification of hazardous events and determination of ASILs are the main
subclauses of the concept phase of ISO 26262 that do not have a correspond-
ing step in STPA. As per ISO 26262, the severity of potential harm is estimated
using injury scales like the Abbreviated Injury Scale (AIS) and Maximum AIS in
accordance with the Table 1 of Part 3 of [5]. According to ISO 26262, the severity
is determined for a hazardous event, based on the consequence of the hazardous
event. Using the results obtained from blocks i2, i3 and i5, i.e., operational sit-
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uations, hazards and consequences of hazardous events, we can estimate the S
impact factor (block i6) as per ISO 26262. For HE1, the class of severity of harm
is S3 (Life-threatening injuries). Further, the class of probability of exposure for
driving on a highway is E4 (greater than 10 % of average operating time). Then,
the class of controllability for unintended deceleration while driving on a high-
way is C2, i.e. 90 % or more of all drivers or other traffic participants are usually
able to avoid harm. The impact factors S3, E4, and C2 were estimated based
on Tables 1, 2, and 3 of Part 3 of [5], respectively. ASILs are then determined
using the values of S, E and C from previous blocks and using Table 4 of Part 3
of [5]. The ASIL for the above chosen impact factors is ASIL C.

For each of the hazardous events with an assigned ASIL, a safety goal is
determined. Safety constraints (block s5) derived as the negation of hazards in
STPA’s Step 0 can be used to support the safety goal determination subclause of
ISO 26262 (as shown by the mapping s5 → i10), as the safety goals are high-level
requirements. An example of a safety constraint for H1 is H1 SC1: Ensure BMS
enables power to the vehicle when required, corresponding to ISO 26262’s safety
goal, denoted SG1. SG1 is then assigned ASIL C, as determined for HE1.

The next task in STPA is the development of control structure (block s6) as
a graphical representation of the functional model of the system [6]. Building
from the vehicle view, a control structure for the entire vehicle (including driver
and environment) is first built so that hazards due to interactions between the
components can be identified (Fig. 2). Thus, an STPA control structure gives a
holistic view of the entire system under study. We then zoom in on the BMS
itself, with the control structure as given in Fig. 3. The HPC (Hybrid Power-
train Controller), the contactors, the battery pack and the 12 V battery are the
external systems that interact with the BMS. Other systems in the BMS envi-
ronment are the fan/pump components for the thermal management system,
the on-board charger, and the external charger. The components of the BMS
are shown inside the shaded dashed box in Fig. 3, namely, the BCM (Battery
Control Module), BMM (Battery Monitoring Module), and the history log and
cells specification module. The components and arrows as shown in Fig. 3 were
identified based on the general functionalities of a BMS elicited through liter-
ature review and with the help of domain experts. The control structure, as a
control-oriented diagram depicting the functionalities of an item, is additional
information to help an analyst in accomplishing part of the item definition out-
put. Thus it represents a valuable diagram that complements the existing item
definition (block i1)—hence the dotted s6 → i1 mapping in Fig. 1.

In STPA Step 1, the control actions from the control structure are categorized
into four categories, i.e., four ways in which a control action can be unsafe (see
Table 2). The control action selected for Step 1 of this example application is
CA1: Close contactors. This control action is sent by the BMS after it receives
the authorization or a request to close the contactors from the HPC. When
the contactors are closed in the driving mode, the battery pack can receive
power from HPC from regenerative braking and the HPC can receive power
from the battery pack. Let us consider the control action CA1: Close contactors
under the category ‘Safe control action is provided too late, too early, wrong
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Fig. 2. High level
control structure

Fig. 3. Detailed BMS control structure [7]

order’. An example of unsafe control action would be UCA1: BCM sends the
close contactors command too late. When analyzing the ways in which a control
action can be unsafe and linking them to the hazards, the analyst has to identify
the context which makes the control action hazardous. In this case, the UCA1
can lead to VH1: Vehicle experiences unintended deceleration, when the ICE is
non-functional. The assumption is that the HPC has already requested the BMS
to close the contactors and that the HPC gives the command only when safe to
do so. When linking UCAs to the hazards of Step 0, one can sometimes identify
hazards that were not previously identified. Hence, Step 1 can be linked to the
hazard identification step of ISO 26262 as well (see mapping s7 → i3). Step 1
also involves translating the UCAs into safety constraints and further refining the
safety constraints from Step 0 (block s8). An example of a safety constraint for
UCA1 is UCA1 SC1: BCM shall send the ‘Close contactors’ command within
X ms of receiving the HPC request to close the contactors. Since this safety
constraint of Step 1 describes what needs to be done to achieve the safety goal,
it represents ISO 26262’s functional safety requirement (denoted by s8 → i11).

Causal factor analysis (Step 2) of STPA involves examining the control loop
of control actions and identifying the causes of unsafe controls (block s9 from
Fig. 1). The control loop includes the controller that initiates the control action,
the actuator, the sensor, and the controlled process [6]. A unique control loop
is identified and used for all identified Unsafe Control Actions (UCAs) of the
selected control action. Then, a causal factors analysis diagram is defined for the
UCAs based on the guide words provided by STPA [6]. Part of our causal factor
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Table 2. Excerpt of results of STPA Step 1 for CA1: close contactors

Control action Required control

action not

provided

Unsafe control

action

provided

Safe control action

provided too late, too

early, wrong order

Continuous safe control

action provided too

long or stopped too

soon

CA1:Close

contactors

... ... UCA1:BCM sends the

close contactors

command too late

[VH1]

...

analysis for UCA1 is shown in Fig. 4. Specific causes of UCAs that may lead to
hazards are shown in italics.

For the loop in Fig. 4, the BCM, as a controller, should issue the control
action Close Contactors to the actuators that will realize the command. The
controlled process in the loop is the battery pack. During the causal factors
analysis we assume that the HPC has already sent the request to close the con-
tactors. For the sake of simplicity, in Fig. 4, we have only shown a few of the
causal factors of the contactors, the battery pack, the BMM, the BCM including
its process model and the ones between the BCM and the contactors. Other
causal factors (e.g., 12 V power disconnected) are not shown here. The causal
factors identified in STPA Step 2 can help fulfill one of the objectives of the
safety analyses as per ISO 26262 (Clause 8 of Part 9 of ISO 26262), i.e., to
identify the “causes that could lead to the violation of a safety goal or safety
requirement”. Once the causes are identified, the analyst needs to identify the

Fig. 4. Causal factor analysis for control action, CA1: Close contactors
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safety constraints to mitigate or eliminate those causes. One of the causes which
could result in UCA1 is BCM does not have adequate resources to process signals
at the required speed. An example of a Step 2 safety constraint identified for CF1
is CF1 SC1: BCM shall have adequate resources to process signals at the required
speed. This Step 2 safety constraint represents a functional safety requirement of
ISO 26262—hence the mapping s10 → i11. While the level of details needed when
defining the safety constraints during STPA is not pre-determined, ISO 26262
specifies the characteristics and parameters that a safety requirement should
include, e.g., the fault tolerant time interval if available, the safe state, the oper-
ating mode, etc.

5 Conclusion and Future Work

While STPA represents a promising hazard analysis technique that addresses
some limitations of traditional techniques, it does not attempt to provide the
risk analysis component sometimes included in traditional hazard analysis tech-
niques. By careful investigation of the requirements of the HARA clause of Part 3
of ISO 26262, we conclude that STPA does not interfere with the ISO 26262’s risk
analysis in any way—instead, STPA was shown to only require modest augmen-
tation in order to be used in a HARA process compliant with ISO 26262. Thus,
the augmented STPA presented here can support all the outputs of ISO 26262
generated as a result of satisfying the standard’s HARA requirements. Conse-
quently, we can utilize STPA’s advantages in an ISO 26262-compliant process.

There are now a number of examples in the literature on how to use STPA
in an automotive context. However, what seems to be lacking is principles for
performing STPA. For example, finding an appropriate abstraction level for the
control loop seems to be extremely important. Future work on documenting such
principles and their rationale would be extremely useful.
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Abstract. Consumer demands for advanced automotive assistant sys-
tems and connectivity of cars to the internet make cyber-security an
important requirement for vehicle providers. As vehicle providers gear
up for the cyber security challenges, they can leverage experiences from
many other domains, but nevertheless, must face several unique chal-
lenges. Thus, several security standards are well established and do not
need to be created from scratch. The recently released SAE J3061 guide-
book for cyber-physical vehicle systems provides information and high-
level principles for automotive organizations to identify and assess cyber-
security threats and design cyber-security aware systems.

In the course of this document, a review of available threat analysis
methods and the recommendations of the SAE J3061 guidebook regard-
ing threat analysis and risk assessment method (TARA) is given. The
aim of this work is to provide a position statement for the discussion of
available analysis methods and their applicability for early development
phases in context of ISO 26262 and SAE J3061.

Keywords: TARA · ISO 26262 · SAE J3061 · Automotive · Security
analysis

1 Introduction

Numerous industrial sectors are currently confronted with massive difficulties
originating from managing the increasing complexity of systems. The automo-
tive industry, for instance, has an annual increase rate of software-implemented
functions of about 30 % [1]. This rate is only higher for avionics systems and the
Internet of Things [9]. New challenges regarding the manageability of systems are
emerging caused by the increasing gap between cross-domain expertise required
and the pervasiveness of novel technologies and software functions. In the auto-
motive domain this evolution became challenging with the advent of multi-core
processors, advanced driving assistance systems and automated driving func-
tionalities, and the thus broadening societal sensitivity for security and safety
properties (remote hacking and control of cars). Management of extra-functional
properties (e.g. timing, safety, security, memory consumption, etc.) is still one of
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 130–141, 2016.
DOI: 10.1007/978-3-319-45477-1 11
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the core challenges faced by developers of embedded systems [14]. Appropriate
systematic approaches to support the development of these properties are thus
required. Standards and guidelines, such as ISO 26262 [6] in the automotive
safety and more recently SAE J3061 [15] in automotive security domain, have
been established to provide guidance during the development of dependable sys-
tems and are currently reviewed for similarities and alignment.

In the course of this document, a review of available threat analysis methods
and the recommendations of the SAE J3061 guidebook regarding threat analysis
and risk assessment method (TARA) is given. The aim of this work is to pro-
vide a position statement for the discussion of available analysis methods and
their applicability for early development phases in context of ISO 26262 and
SAE J3061.

We provide an overview of the recommendations of the SAE J3061 guidebook
regarding threat analysis and risk assessment method (TARA) for this paper
together with a review of available threat analysis methods. The aim of this
work is to provide an evaluation of available analysis methods for the discussion
of their applicability for early development phases in the context of ISO 26262
and SAE J3061.

This paper is organized as follows: Sect. 2 reviews the recommendations of
the SAE J3061 guidebook regarding threat analysis and risk assessment method
(TARA). Based on this review, Sect. 3 analyzes the TARA approaches available
in the automotive domain. In Sect. 4 an evaluation of the applicability of the
analysis methods for early development phases in context of ISO 26262 and
SAE J3061 is provided. Finally, Sect. 5 concludes the work.

2 SAE J3061 Guidebook TARA Recommendations

Safety and security engineering are very closely related disciplines. They both
focus on system-wide features and could greatly benefit from one another if ade-
quate interactions are defined. Safety engineering is already an integral part of
automotive engineering and safety standards, such as the road vehicles func-
tional safety norm ISO 26262 [6] and its basic norm IEC 61508 [2], are well
established in the automotive industry. Safety assessment techniques, such as
failure mode and effects analysis (FMEA) [3] and fault tree analysis(FTA) [4],
are also specified, standardized, and integrated in the automotive development
process landscape.

IEC 61508 Ed 2.0 provides a first approach of integrating safety and security;
security threats are to be considered during hazard analysis in the form of a
security threat analysis. However, this threat analysis is not specified in more
details in the standard and Ed 3.0 is about to be more elaborated on security-
aware safety topics. Also ISO 26262 Ed 2.0, which is still in progress, is likely to
include recommendations for fitting security standards and appropriate security
measure implementations.

The recently published SAE J3061 [15] guideline establishes a set of high-level
guiding principles for cyber-security by:
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– defining a complete lifecycle process framework
– providing information on some common existing tools and methods
– supporting basic guiding principles on cyber-security
– summarizing further standard development activities

SAE J3061 states that cyber-security engineering requires an appropriate
lifecycle process, which is defined analogous to the process framework described
in ISO 26262. Further, no restrictions are given on whether to maintain separate
processes for safety and security engineering with appropriate levels of interac-
tion or to attempt direct integration of the two processes. Apart from that, the
guidebook recommends an initial assessment of potential threats and an esti-
mation of risks for systems that may be considered cyber-security relevant or
are safety-related systems, to determine whether there are cyber-security threats
that can potentially lead to safety violations.

In paragraph 3.88 of SAE J3061 TARA is defined as: ‘an analysis technique
that is applied in the concept phase to help identify potential threats to a feature
and to assess the risk associated with the identified threats...’ [15]

In paragraph 8.3.3 of SAE J3061 this threat analysis and risk assessment
(TARA) method is further specified as a method identifying threats and assessing
the risk and residual risk of the identified threats by following three steps:

1. Threat Identification
2. Risk Assessment (includes classification of the risk associated with a partic-

ular threat)
3. Risk Analysis, which ranks threats according to their risk level

Beyond this the guidebook does not give any restrictions on how to excerpt the
TARA analysis. ‘It is left to an organization to determine which TARA method
is appropriate for their purposes, and to determine what an acceptable level of
risk means ...’ [15]

Appendices A–C of the SAE J3061 provide an overview of the techniques
for threat analysis and risk assessments and threat modeling and vulnerability
analysis. These TARA methods proposals will also be analyzed in the following
section of this document, and are:

– EVITA method
– TVRA
– OCTAVE
– HEAVENS security model
– Attack trees
– SW vulnerability analysis

3 TARA Approaches Available for the Automotive
Domain

This section of the document analyzes the TARA approaches available in the
automotive domain. Some TARA approach suggestions are already given by
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Fig. 1. The EVITA method using THROP spreadsheet example (from [15])

Appendix A of the SAE J3061 guidebook [15]. This section thus mentions those
TARA approaches already introduced by SAE J3061 (recommended or not-
recommended) and those not mentioned in the guidebook separately. Addition-
ally, SAE J3061 already mentions a limited applicability of some of the methods
introduced for the automotive domain. These methods are only mentioned briefly
in this document for the sake of completeness and are not further detailed.

3.1 TARA Approaches Recommended in SAE J3061

The EVITA Method is part of a European Commission funded research
project (EVITA - E-Safety Vehicle Intrusion Protected Applications) and is an
adaptation of ISO 26262 HAZOP analysis for security engineering. The method is
named threat and operability analysis (THROP) and considers potential threats
for a particular feature from a functional perspective. Threats are defined at the
functional level based on the primary functions of the analyzed feature using
attack trees. Thus, THROP first identifies the primary functions of the feature,
second applies guide-words to identify potential threats and third determines
potential worst-case scenario outcomes from the potential malicious behavior.
Figure 1 shows a THROP spreadsheet example.

The risk level determination is also adopted from ISO 26262 (ASIL deter-
mination) based on a combination of severity, attack probability, and control-
lability measures. The severity classification separates different aspects of the
consequences of security threats (operational, safety, privacy, and financial); as
shown in Fig. 2. Similar to the determination of the ASIL, controllability, sever-
ity, and attack probability are mapped to a qualitative risk levels (R0 to R7
and R7+) for classification of the security threats. This risk level determination
reveals some issues of the approach: (a) the classification of severity as stan-
dardized in ISO 26262 is adopted and thus no longer conforms to the ISO 26262
standard, (b) the classification of safety-related threats and non-safety-related
(operational, privacy, and financial) threats differs and could thus lead to im-
balance of efforts and (c) the sufficient accuracy of attack potential measures
and expression as probabilities is still an open issue, as also the combination of
these probabilities by summing, minimum, and maximum operations.

Nevertheless, the classification of attack potentials and the analysis based
on threat trees is suitable at feature or system level and thus applicable for
embedded automotive systems. Although not explicitly mentioned this method
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Fig. 2. The EVITA severity classification scheme (from [11])

seems to be the method that is most recommended in the SAE J3061 guidebook
for an initial assessment of potential threats and estimation of risks for cyber-
security relevant or safety-related systems.

HEAVENS Security Model analyzes threats based on Microsoft’s STRIDE
[8] approach and ranks the threats based on a risk assessment. This risk assess-
ment consists of three steps: (a) determination of threat level (TL), (b) determi-
nation of impact level (IL), and (c) determination of security level (SL), which
corresponds to the final risk ranking.

The determination of the threat level (TL), which corresponds to a ‘likelihood
estimation’, is based on four parameters (expertise of the attacker, knowledge
about the system, window of opportunity, and equipment), which are individ-
ually estimated using values between 0 and 3 (referring to the different levels:
none, low, medium, and high).

The threat impact level (IL) estimates the impact on four categories (safety,
financial, operational, and privacy and legislation). For the IL quantification
the impact level of the attack on these four categories is parametrized with no
impact (value 0), low (value 1), medium (value 10), or high impact (value 100).
The summation of the values of the impact parameters is then quantified via
5 IL values (no impact for 0, low for 1–19, medium 20–99, high 100–999 and
critical ≥ 1000)

The threat level factors (TL) and threat impact level (IL) further derive the
security level (SL) and thus the ranking of risks. This approach clearly benefits
from the structured and systematic STRIDE approach to exploit threats, but
requires a huge amount of work to analyze and determine the SL of individual
threats; which implies lots of discussion potential for each individual IL and TL
factor of each single threat.
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3.2 TARA Approaches Also Proposed in SAE J3061

The methods mentioned in this section are also proposed by the SAE J3061 guide
book, but are not recommended for application in the automotive context. Thus,
these methods are only mentioned in this document for the sake of completeness.

TVRA Threat, vulnerabilities, and implementation risks analysis (TVRA)
identifies assets in the system and their associated threats by modeling the
likelihood and impact of attacks. The analysis was developed for data - and
telecommunication networks and is scarcely applicable for cyber physical sys-
tems in vehicles.

OCTAVE Stands for Operationally Critical Threat, Asset, and Vulnerability
Evaluation and is a process-driven threat assessment methodology. OCTAVE
focuses on bringing together stake holders of security through a progressive series
of workshops; thus this approach is best suited for enterprise information security
risk assessments but not readily applicable for embedded automotive systems.

Attack Tree Analysis (ATA) is analogous to the safety fault tree analysis
(FTA) and thus adequate for exploiting combinations of threats (attack pat-
terns), but requires more details of the system design (thus not appropriate for
an initial TARA at early development phases).

SW Vulnerability Analysis, as the name implies, examines software code
for known software constructs that should be avoided to prevent from poten-
tial vulnerabilities. This method aims at SW development level and is thus in-
appropriate for early development phases.

3.3 TARA Approaches Not Mentioned by SAE J3061

FMVEA Method is based on an FMEA as described in IEC 60812 [3].
Schmittner et. al [13] present this failure mode and failure effect model for safety
and security cause-effect analysis. This work categorizes threats via quantifica-
tion of threat agents (respectively attacker), threat modes (via STRIDE model),
threat effects and attack probabilities. A general limitation of this analysis is
the restriction to analyze only single causes of an effect and multi-stage attacks
could be overlooked, thus the combination of FTA and ATA for supporting
the FMVEA is considered. Nevertheless, the FMVEA method is based on the
FMEA (safety pendant) and is thus in-appropriate for early development phases
(TARA).

SAHARA Method [7] quantifies the security impact on dependable safety-
related system development on system level. The SAHARA method combines
the automotive HARA [6] with the security domain STRIDE approach [8] to
trace impacts of security issues on safety concepts on the system level.
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Table 1. Classification examples of knowledge ‘K’, resources ‘R’, and threat ‘T’ value
of security threats

Level Knowledge example Resources example Threat criticality example

0 Average driver,
unknown internals

No tools required No impact

1 Basic understanding of
internals

Standard tools,
screwdriver

Annoying, partially reduced
service

2 Internals disclose,
focused interests

Non-standard tools,
sniffer, oscilloscope

Damage of goods, invoice
manipulation, privacy

3 Advanced tools,
simulator, flasher

Life-threatening possible

For the safety analysis an ISO 26262 conform HARA analysis can be per-
formed in a conventional manner. Also a security focused analysis of possible
attack vectors of the system can be done using the STRIDE approach indepen-
dently from the safety team. For a combined approach, the SAHARA method
combines the outcome of this security analysis with the outcomes of the safety
analysis. Thus, the ASIL quantification concept is applied to the STRIDE analy-
sis outcomes. Threats are quantified aligned with ASIL analysis, according to
the resources (R), know-how (K) required to exert the threat, and the threats
criticality (T). Table 1 shows the determination schemes for the different ele-
ments.

These three factors determine the resulting security level (SecL). The SecL
determination is based on the ASIL determination approach and is calculated
according to (1).

SecL =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if 5 − K − R + T ≥ 7
3 if 5 − K − R + T = 6
2 if 5 − K − R + T = 5
1 if 5 − K − R + T = 4
1 if T = 3,K = 2, R = 3
0 if 5 − K − R + T < 4 or T = 0

(1)

The SAHARA quantification scheme is less complex and requires less analysis
effort and fewer details of the analyzed system than other proposed approaches.
This quantification enables the possibility for determining limits on resources
allocated to prevent the system from a specific threat (risk management for
security threats) and the quantification of the threats impact on safety goals
(threat level 3) or not (all others).

SHIELD is a methodology for assessing security, privacy, and dependability
(SPD) of embedded systems and part of a European collaboration of the same
name. SHIELD is a multi-metric approach to evaluate the system’s SPD level and
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compares it with use case goals for SPD. The main objective of the methodol-
ogy is to evaluate multiple system configurations and select those which address
or achieve the established requirements. To achieve this aim a triplet is com-
posed of the system’s security, privacy and dependability levels (each element
is described by a value in a range between 0 and 100). This approach implies a
high discussion potential for each of the triplets, due to the lack of a guidance on
how to estimate the security, privacy, and dependability values. Additionally, the
method becomes increasingly suitable the more details and variants of a system
exist and is therefore not optimally applicable for the early design phase TARA
analysis.

CHASSIS also combines safety and security methods for a combined safety and
security assessments approach. The approach relies on modeling misuse cases
and misuse sequence diagrams within a UML behavior diagram, which implies
additional modeling expenses for the early development phase. CHASSIS aims at
unifying safety and security in the trade-off analysis, to define whether there are
features that are mutually dependent or independent of each other. The activity
specifies the safety/security requirements by structuring the harm information
in the form of HAZOP tables and in combination with the BDMP technique
(see next paragraph). Thus, the CHASSIS approach also requires a higher level
of detail that is given at the TARA analysis stage.

Boolean Logic Driven Markov Processes (BDMP) represent an app-
roach where fault tree and attack tree analysis are combined and extended with
temporal connections. In addition to its logical structuring, this method also
enables activation of top events based on triggers or the state of basic events.
Furthermore, leave nodes have failure in operation or failure in demand fault
behaviors, which extends the abilities of the FTA and ATA depiction of threats.
Nevertheless, BDMP is in-appropriate for an early development phase TARA.

Threat Matrix approach proposed by US Department of Transportation [10] is
used to consolidate threat data. The threat matrix is spreadsheet based, allowing
the matrix to be sorted by various categories as needed. Categories of severity,
sophistication level, and likelihood are indicated as high, medium, or low based
on expert opinion. Other categories of the matrix are, among others, attack zone
safety relation, system involved, vulnerability exploited, attack vector, access
method, attack type, and resources required. Thus the threat matrix is another
variation of the FMEA approach, which is geared towards the establishment of
a threat database but is not the best approach for the early development phase
TARA.

Binary Risk Analysis (BRA) [12] is a lightweight qualitative open license
risk assessment and included, among others, by OCTAVE and NIST SP800-30.
The BRA determines the asset and the threat a system must be protected from
and quantizes their impacts by following these steps:



138 G. Macher et al.

1. Answering the ten (yes/no) questions
2. Mapping the answers to each of the five 2×2 matrices which give a metric for

individual attack and system features
3. Using the results from the five 2×2 matrices to select results from three 3×3

matrices (representing attack effectiveness, threat likelihood and impact).
4. Using these factors to final get the risk metric from a final 3x3 matrix.

The Binary Risk Analysis can be used for: (a) a quick risk conversations to
enable discussion of a specific risk in just a few minutes, (b) helping to iden-
tify where perceptions about risk elements differ. Nevertheless, the Binary Risk
Analysis is neither a full risk management methodology nor a quantitative analy-
sis based on statistics and monetary values, nor does it eliminate subjectivity
completely from the analysis. BRA is also not a threat discovery or threat risk
assessment techniques on its own, which is a requirement for TARA in the early
development phases.

4 Evaluation of Methods in ISO 26262 and SAE J3061
Context

This section briefly evaluates the applicability of the analysis methods presented
in the previous section for early development phases in context of ISO 26262
and SAE J3061. Table 2 summarizes all the presented methods and the earliest
suitable development phase, assets and drawbacks of the methods. As can be
seen in the table, in addition to the SAE J3061 recommended EVITA method,
two other methods (SAHARA and BRA) are well suited for an early concept
analysis (TARA). These methods were already available at the release date of
SAE J3061, but are not mentioned in the guide book. Besides this, SAE J3061
recommends two methods (TVRA and OCTAVE), which are scarcely applicable
for TARA of embedded automotive systems and no hints are given for application
in the automotive context.

Thus, in the context of the EMC2 project1 and in cooperation with the
experts of the SOQRATES working group2 an analysis of the 13 methods referred
to has been performed and evaluated based on an electric steering column lock
use-case for a connected vehicle. This safety-critical and security-related use-case
application revealed the four most applicable TARA methods (EVITA method,
HEAVENS, SAHARA and BRA) for early development phase analysis of the
system. Additionally, if a combined approach for safety and security engineering
is utilized the methods SAHARA (for combined analysis of security and safety of
the development concept), BDMP (combination of FTA and ATA) and FMVEA
(combination of security and safety FMEA) are recommended for use. The fol-
lowing paragraphs provide a brief extract of the use-case application outcomes:

TVRA not applicable for automotive application.

1 http://www.artemis-emc2.eu/.
2 http://www.soqrates.de/.

http://www.artemis-emc2.eu/
http://www.soqrates.de/
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OCTAVE not applicable for automotive application.
Attack tree security pendant to FTA and thus for identification of nested
attacks. Detailed system design required, thus not applicable for concept eval-
uation, but recommended for system design analysis.
SW vulnerability only applicable for SW codes, thus not applicable for
concept evaluation.
FMVEA security pendant to FMEA. More details of the system design
required, thus recommended for system design analysis. Best suitable for a
combined safety and security engineering process landscape.
SHIELD guidance for estimation of security, privacy and dependability value
triplet missing. The purpose of the analysis is the evaluation of different
system configurations, but due to the lack of quantitative determination for
the evaluation of the triplets mostly leading to long discussions.
CHASSIS relies on modeling of use-cases and misuse sequences, and is thus
appropriate for identification of nested attacks but not applicable for early
concept evaluation. Method might only be applied when detailed modeling of
use-cases and sequences are available.
BDMP Combination of ATA and FTA, is thus not applicable for concept
development evaluation. It is best suited for a combined safety and security
engineering process landscape.
Threat Matrix Variant for providing input for establishing a database. Not
recommended for concept analysis due to confusing size of table and thus not
easy to focus on identification of new threats or threat vectors.
EVITA is a suitable approach for concept evaluation, but requires too many
details for classification. These details are estimated based on concept design
and thus involves the disadvantage of a huge potential for discussion. The
separation of functional, safety, privacy and operational severity adds further
potential for discussion but does not result in a significant difference in the
resulting risk level. There is too much classification effort based on estimations
for the concept evaluation phase.
HEAVENS involves less classification efforts requirements than the EVITA
method. The STRIDE threat modeling approach brings additional support
structuring for the estimation of threat scenarios.
SAHARA achieves easy classification of threats in combination with
STRIDE threat modeling. It was evolved from HARA and STRIDE, thus
originally focusing on safety, but redesigned for security evaluation. The basic
classification aligned with ASIL classification and is thus optimal for use in
combined security and safety engineering processes.
BRA brings easy classification by means of 10 binary decisions in the form of
questions. Nevertheless, the resulting risks are only classified as high, medium
or low and a conservative analysis trend leads to threat classification solely
of high risks. Additionally, no structured estimation of threat scenarios is
given and the resulting threat classification is too rudimentary for concept
development phases.
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Table 2. Evaluation of TARA methods and applicability for concept phase analysis

5 Conclusion

In conclusion, this work highlights how security standards, such as IEC 62443
[5], or security guidelines, such as SAE J3061 [15], are currently still incomplete
or not directly applicable in practice. Their current state is often fragmented,
and each typically assumes that their open issues are covered by other guide-
lines or standards. For this reason a review of novel work by researchers and
research projects is highly recommended. This work is thus solely focused on
the evaluation of the analysis methods available (presented in SAE J3061 and
other research projects) for threat analysis and risk assessment (TARA) method
at concept phase. The work briefly summarizes a review of 13 TARA methods
done in the context of the EMC2 project and in cooperation with the experts
of the SOQRATES working group. This review, based on a safety critical and
security related automotive use-case (electric steering column lock) revealed the
four most applicable TARA methods (EVITA method, HEAVENS, SAHARA
and BRA) for early development phase analysis of the system. Additionally, it
discovers a set of recommended techniques for a combined approach of safety
and security engineering processes.

Acknowledgments. This work is supported by the EMC2 project. The research
leading to these results has received funding from the ARTEMIS Joint Undertaking
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Abstract. Revealing anomalies to support error detection in software-intensive
systems is a promising approach when traditional detection mechanisms are
considered inadequate or not applicable. The core of anomaly detection lies in
the definition of the expected behavior of the observed system. Unfortunately,
the behavior of complex and dynamic systems is particularly difficult to
understand. To improve the accuracy of anomaly detection in such systems, in
this paper we present a context-aware anomaly detection framework which
acquires information on the running services to calibrate the anomaly detection.
To cope with system dynamicity, our framework avoids instrumenting probes
into the application layer of the observed system monitoring multiple underlying
layers instead. Experimental evaluation shows that the detection accuracy is
increased considerably through context-awareness and multiple layers moni-
toring. Results are compared to state-of-the-art anomaly detectors exercised in
demanding more static contexts.

Keywords: Anomaly detection � Monitoring � Service Oriented Architecture �
SOA � Context aware � Multi-layer

1 Introduction

Complex software-intensive systems include several different components, software
layers and services. Often, these systems are characterized by a dynamic behavior
related to changes in their services, connections or components themselves. In par-
ticular, Service-Oriented Architectures (SOAs) may aggregate proprietary as well as
Off-The-Shelf (OTS) services, hiding their implementation details. It is a matter of fact
that SOA dynamicity and information hiding obstacle monitoring solutions that directly
observe the SOA services [19]. This collides with the increasing interest in using these
systems for (safety) critical applications, and raises a call for adequate solutions to
monitoring and error detection [1, 21].

Anomaly detection aims to find patterns in monitored data that do not conform to
the expected behavior [1]. Such patterns are changes in the trends of indicators such as
memory usage or network data exchange characterizing the behavior of the system
caused by specific and non-random factors. As an example, anomalies can be due to a
system overload, adversarial intrusion attempts, malware activity or manifestation of
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errors. Anomaly detection was proved [7] to be effective, highlighting anomalies and
timely triggering reaction strategies to finally improve system safety or security.

Investigating dynamic contexts makes the definition of normal (and consequently
anomalous) behavior a complex challenge: currently, there are no clear state-of-the-art
answers on applying anomaly detection in highly dynamic contexts. Focusing on
SOAs, anomaly detection usually requires a reconfiguration step to define the nominal
behavior when services are updated, added or removed from the SOA [1]. It follows
that anomaly detectors may be reconfigured frequently, reducing their effectiveness and
with a negative impact on the SOA execution.

In this paper we present an anomaly detection framework that aims to tackle the
challenges above. We tune the monitoring system to observe the underlying layers
(e.g., operating system, middleware and network) instead of directly instrumenting the
services with monitoring probes. This allows detecting anomalies due to errors or
failures that manifest in the services without directly observing them [22]. Therefore,
this multi-layer approach turned out very suitable to cope with dynamicity of complex
systems, at the cost of a calibration time to reconfigure the parameters of the anomaly
detector when changes of the components of the complex system are detected. This
approach was previously proved effective on systems with reduced dynamicity respect
to complex systems [14], while experimental results showed that a more accurate
definition of the context was needed in highly dynamic systems [6] to improve
detection accuracy. In this study we consider knowledge of basic information on the
context - referred as context-awareness - that can be easily retrieved from integration
modules of SOAs. This knowledge helps defining more precisely the expected behavior
of the dynamic target system, resulting in more accurate definition of anomalies and,
consequently, a more effective anomaly detection process. In fact, our multi-layer
monitoring structure makes available a wide set of indicators, and the most relevant
ones for anomaly detection purposes are identified depending on the current context.
Consequently they are observed, with corresponding monitoring probes, building time
series that are analyzed for anomaly detection purposes.

Summarizing, our main findings are: (i) describing how context-awareness on the
SOA services can be used to improve detection; (ii) defining a methodology and the
associated framework for anomaly detection in dynamic contexts using
context-awareness; (iii) structuring a multi-layer anomaly detection module observing
operating system, middleware (Java Virtual Machine, JVM) and network layers,
(iv) assessing the whole solution on a case study, showing the obtained detection
accuracy, which is presented using well-known metrics and (v) compare our detection
system with state-of-the-art [2, 3, 14] solutions exercised in less dynamic contexts.

The paper is structured as follows. Section 2 motivates the use of
context-awareness, which is at the basis of our work. Section 3 describes the resulting
anomaly detection framework and the devised methodology. Section 4 presents the
experimental evaluation. State of the art on related approaches and comparison are
explored in Sect. 5. Section 6 concludes the paper.
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2 Learning from the Past

This work stems from studies by the same authors [6, 14] who devised multi-layer
anomaly detection [22] strategies to perform error detection using the Statistical Pre-
dictor and Safety Margin (SPS, [9]) algorithm. SPS is able to detect anomalies without
requiring offline training; this was proved to be very performing in less dynamic
contexts [14], where the authors applied SPS to detect the activation of software faults
in an Air Traffic Management (ATM) system. Observing only OS indicators, SPS
allowed implementing an anomaly detector which performed error detection with high
precision. Therefore we adapted this promising approach to work in a more dynamic
context [6], where we instantiated the multi-layer anomaly detection strategy on the
prototype of the Secure! [8] SOA. The results achieved showed that analysing such a
dynamic system without adequate knowledge on its behavior reduces the efficiency of
the whole solution. Despite the observed data stream was rapidly processed, we
obtained a detection time - the time interval between the manifestation of the error and
its detection - of 40 s with a high number of false positives and negatives.

We explain these outcomes as follows. SPS detects changes in a stream of
observations identifying variations with respect to a predicted trend: when an obser-
vation does not comply with the predicted trend, an alert is raised. If the system has
high dynamicity due to frequent changes or updates of the system components, or due
to variations of user behavior or workload, such trend may be difficult to identify and
thus predict. Consequently, our ability in identifying anomalies is affected because
boundaries between normal and anomalous behavior cannot be defined properly.

2.1 Considering Context-Awareness

We previously highlighted the need of acquiring more information on the target sys-
tem, still maintaining the main benefits of the abovementioned approach. Conse-
quently, we investigate which information on SOA services we can obtain in absence
of details on the services internals and without requiring user context (i.e., user profile,
user location). In SOAs, the different services share common information through an
Enterprise Service Bus (ESB, [15]) that is in charge of (i) integrating and standardizing
common functionalities, and (ii) collecting data about the services. This means that
static (e.g., services description available in Service Level Agreements - SLAs) or
runtime (e.g., the time instant a service is requested or replies, or the expected resources
usage) information can be retrieved using knowledge given by ESB. Consequently,
having access to the ESB provides knowledge on the set of generic services running at
any time t. We refer to this information as context-awareness of the considered SOA;
note that we do not require information on the user context, contrary to what is
typically done in the state-of-the-art on context-awareness [16, 17].

We can exploit this information to define more precisely the boundaries between
normal and anomalous behavior of the SOA. For example, consider a user that invokes
a store file service at time t. We can combine context-awareness with information on
the usual behavior of the service, which here regards data transfer. Therefore, if the
store file service is invoked at time t, we expect the exchange of data during almost the
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entire execution of the service. If we observe no data exchange, we can reveal that
something anomalous is happening.

2.2 Enhancing Detection Capabilities

Collect Services Information. Let us start from the example of the store file service.
Our objective is to characterize the normal behavior the service, building a fingerprint
of its usage. More in details, we need a description of the expected behavior of the
service, meaning that we need to describe the usual trend of the observed indicators
(examples of indicators are in Tables 2 and 3) while the service is invoked. In such a
way, we can understand if the current observation complies or not with the expecta-
tions. This information can be retrieved in a SOA by observing the ESB and producing
a new service fingerprint when the addition, update or removal of a service is detected.
In several cases it is also possible to obtain a static characterization of the services
looking at their SLA, where each service is defined from its owner or developer for the
final user. We remark that we do not consider any assumption about the services except
their connection with the ESB: consequently, we can obtain services information from
any kind of service running in the SOA platform.

Integrate Information in the Anomaly Detector. Summarizing, information about
the services can be obtained (i) statically, looking at SLAs, (ii) at runtime, invoking
services for testing purposes or (iii) combining both approaches. In this paper we
explore the second approach, discussing this choice in Sect. 3.2. This information
needs to be aggregated and maintained (e.g., in a database) together with the calculated
statistical indexes (e.g., mean, median), whenever applicable, to support the anomaly
detection solutions.

3 Description of the Anomaly Detection Framework

3.1 Architectural Overview

In Fig. 1 we depict a high level view of the framework. Starting from the upper left part
of the figure, the framework can be described as follows. The user executes a workload,
which is a sequence of invocations of SOA services hosted on the Target Machine. In
this machine probes are running, observing the indicators coming from 3 different
system layers: (i) OS, (ii) middleware and (iii) network. These probes collect data,
providing a snapshot of the target system composed by the observation of indicators
retrieved at a defined time instant. The probes forward the snapshot to the communi-
cation handler, which encapsulates and sends the snapshot to the communication
handler of the Detector Machine. Data is analyzed on a separate machine, the Detector
Machine (which includes a Complex Event Processor - CEP [18]). This allows (i) not
being intrusive on the Target Machine, and (ii) connecting more Target Machines to the
same Detector Machine (obviously the number of Target Machines is limited by the
computational resources of the Detector Machine). The communication handler of the
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Detector Machine collects and sends these data to the monitor aggregator, which
merges them with runtime information (e.g., list of service calls) obtained from the
ESB. This allows storing context-awareness information in the database. Looking at
runtime information, the monitor aggregator can detect changes in the SOA and notify
the administrator that up-to-date services information is needed to appropriately tune
the anomaly detector. The administrator is in charge of running tests (test invocation) to
gather novel information on such services.

The snapshots collected when SOA is opened to users are sent to the anomaly
detection module, which can query the database for services information and analyzes
each observed snapshot to detect anomalies. If an anomaly is detected, the system
administrator, which takes countermeasures and applies reaction strategies (which are
outside from the scope of this work and will not be elaborated further), is notified.

3.2 Methodology to Exercise the Framework

The framework is instantiated specifying (i) the workload we expect will be exercised
on the target system, (ii) the way (static/runtime) the administrator prefers to obtain
services information described in Sect. 2.2, (iii) the monitored layers on the Target
Machine and the number of probes per layer, and (iv) the number of preliminary runs
necessary to devise the detection strategy elaborated in Sect. 3.3. The methodology is
composed of two phases: Training the Anomaly Detector and Runtime Execution.

Training the Anomaly Detector. This phase is organized in 3 steps. In the first step,
services information characterizing the fingerprint of the investigated services can be
obtained statically (e.g., from SLA) or at runtime (through the test invocation in
Fig. 1). In our implementation, we chose this second option because it allows retrieving
accurate information on the trend of the individual indicators; static information as SLA
usually defines only general service characteristics and requirements.

Fig. 1. High-level view of the resulting multi-layer monitoring and anomaly detection
framework
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In the second step, once services information is collected, preliminary runs using
the expected workload are executed, and the retrieved data – a time series for each
monitored indicator - are stored in the database. These data are complemented with data
collected conducting error injection campaigns, where errors are injected in one of the
SOA services, to witness the behavior of the Target Machine in such situations. The
service in which errors are injected may be a custom service devoted exclusively to
testing, allowing to modify its source code. This strategy can result particularly useful
when performing injections into the services that compose the target system is not
feasible (e.g., when services source code is not available as in OTS services).

In the third step, services information and preliminary runs data are used by the
anomaly detection module to tune its parameters, automatically choosing the config-
uration that maximizes detection efficiency for the current SOA (see Sect. 3.3).

We remark that we figured out two ways of obtaining the data in the first two steps:
(i) execute online tests before the user start working, or (ii) copy the platform on
another virtual machine and execute the tests on the spare machine in a controlled
experimental environment. The first solution will force the user to wait until tests
complete (see Fig. 2), and consequently may reduce the availability of the SOA to the
users. The second option requires additional resources to maintain and execute a copy
of the Target Machine. In the rest of the paper we considered the first option: we collect
context information through online tests before the SOA is opened to users. The
induced delays on service delivery are measured in Sect. 4.1.

In some cases, to avoid downtime, it may be considered to postpone the execution
of tests to low peak load periods such as at night. Obviously, delaying the execution of
the tests (instead of running them immediately after services changes) implies that the
anomaly detection module works with previous services information until the next
training phase. This services information is now out of date: it is easy to note that this
will negatively impact the accuracy of the anomaly detection module.

Fig. 2. Methodology: SOA hosted on target machine is available to users until a service update
is detected from the runtime information. In that case, the training phase starts collecting services
information and executing preliminary runs; the user needs to wait until it completes. Then the
SOA is again available to users.
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Runtime Execution. Once the anomaly detector is trained, the system is opened to
users. Monitor aggregator merges each snapshot observed by the probing system with
runtime information, and it sends them to the anomaly detection module. This module
provides a numeric anomaly score (see Sect. 3.3). If the score reaches a specified
threshold alpha, an anomaly alert is risen and the administrator is notified. If during
this phase a service update is detected, a new training phase is scheduled and it will be
executed depending on the policies defined by the administrator (see Fig. 2).

3.3 Insights on the Anomaly Detection Module

Periodically (e.g., once per second), the monitor aggregator provides a snapshot of the
observed system, composed of the quantities retrieved from the indicators. For each
indicator, two quantities are sent: (i) value: the current observation read by the probes,
and (ii) diff: the difference among the current and previous value.

This allows building a set of anomaly checkers as follows. An anomaly checker is
assigned to the value or to the diff quantity of an indicator, i.e., two anomaly checkers
can be created for each indicators. More precisely, each anomaly checker observes a
specific time series made with the observations of the value or the diff quantity of a
given indicator. Each anomaly checker decides if the quantity of the indicator is
anomalous or normal following rules as described in the section below. The anomaly
score for an observed snapshot is built combining the individual outcomes of the
selected anomaly checkers; an anomaly is raised only if the alpha threshold is met.

Anomaly Checkers. For each indicator, we build three types of anomaly checkers:

• Historical: for a given indicator, this module compares the value or diff quantity
with the expectations defined in services information. If this quantity is outside of
the interval defined by average ± standard deviation in service information for that
indicator, an anomaly is raised.

• SPS: for a given data series (value, diff) of an indicator, this module applies an
instance of the SPS algorithm described in [9, 14].

• Remote call: this checker observes the response time and the HTTP response code
for each service invocation. If the response code is not correct (e.g., HTTP Success
2xx) or if the response time is not in the range of the acceptability interval defined
by services information, an alert is raised.

For example, let us consider a set of 50 indicators. We obtain 201 possible anomaly
checkers: 1 remote call checker and 200 anomaly checkers from the 50 indicators,
organized in 4 anomaly checkers for each indicator (historical on value/diff data series,
SPS on value/diff data series). The checkers to be used are selected during the training
phase, analysing their scores for specified metrics (see below). As a result, the most
performing checkers are selected (i) choosing the n checkers with the highest score, or
(ii) considering checkers with a score greater than a threshold d.

Specified Metrics. The anomaly checkers are evaluated during the training phase
using measures based on indexes representing the correct detections - true positives
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(TP), true negatives (TN) - and the wrong ones i.e., missed detections (false negatives,
FN) or false detections (false positives, FP). More complex measures based on the
abovementioned ones are precision, recall and F-Score(b) [12]. Especially in the
F-Score(b), varying the parameter b it becomes possible to weight the precision w.r.t
the recall (note that F-Score(1) is referred as F-Measure). Considering that we are
targeting safety-critical systems, we prefer to reduce the amount of missed detections
(FN), even at the cost of a higher rate of FP. For this reason, we selected as reference
metric the F-Score(2), which considers the recall more relevant than the precision: the
F-Score(2) for each anomaly checker is computed, and checkers are selected accord-
ingly (choosing the n best, or those whose F-Score(2) > d).

4 Experimental Evaluation.

We describe the experimental
evaluation of the framework. To
the purposes of the evaluation, we
run an automatic controller that
checks input data and manages the
communications among the differ-
ent modules of the Target Machine
and Detector Machine. This facili-
tates the automatic execution of the
experimental campaigns without
requiring user intervention. All
data are available at [20].

4.1 Set-Up of the Target and the Detector Machine

We conducted an experimental campaign using as target system one of the four virtual
machines that host the Secure! crisis management system [8], which is built on the
Liferay [13] portal, and uses Liferay services such as authentication mechanisms, file
storage, calendar management. We identified 11 different services that can be invoked
by the Secure! users. To simulate a set of possible user actions, we created the All
Services workload calling a sequence of services, with a time interval of 1 s and overall
lasting approximately 85 s (see Table 1).

Target and Detector Machines are virtual machines that run on a rack server with 3
Intel Xeon E5-2620@ 2.00 GHz processors. The Target Machine runs the Secure!
prototype and it is instrumented with the probing system which reads 1 snapshot per
second. Following our methodology in Sect. 3.2, after defining the expected workload
we execute tests to collect services information. In Table 1 we compute the time
required to obtain services information: we report the time needed to test a single
service and all the 11 services (All Tests). The execution of these tests forces the users
to wait until the SOA is available again. When the SOA has to be deployed for its first
time, this only implies that deploy is delayed to wait for the tests completion. Once the

Table 1. Execution time of tests and workload.

Workload Single test (s)
Name Type avg std

getCredentials Serv. test 8.88 0.60
createFolder Serv. test 10.71 0.69
addFiles Serv. test 10.04 2.01
addEventCalendar Serv. test 11.38 1.87
All tests Test all 92.98 7.37
All services Workload 86.04 4.87
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SOA is deployed and available to users, it is expected that only few services will be
updated each time, requiring only specific tests and consequently only short periods of
unavailability. Consequently, except for the time needed for the initial test of all the
services, the framework scales well also with a wider pool of services running on
the SOA.

Regarding the most relevant anomaly checkers, we set n = 20, meaning that the 20
best anomaly checkers are selected following the F-Score(2) metric. Finally, we set
alpha = 50 %, meaning that an alert is raised if at least half of the anomaly checkers
detect an anomaly for the considered snapshot. We want to point out that we con-
sidered a basic setup for the monitored indicators, the best checkers and the alpha
parameter. A more detailed sensitivity analysis exploring all the possible settings will
be performed as future work targeting the identification of the most performing setup of
these parameters for the scenario under investigation.

4.2 Experiments Description

We inject the following errors: (i) a memory consumption error (filling a Java
LinkedList), and (ii) a wrong network usage (fetching HTML text data from an external
web page). We executed 60 preliminary runs in which we inject the memory con-
sumption error and other 60 in which we inject the network error in our services. The
validation experiments are organized as follows: in 40 runs we inject the memory error,
while in the other 40 runs the network error is injected, considering different Liferay
services involved by the workload as injection points. Regarding the probing system,
we observe 55 indicators [6, 22] from three different layers: 23 from the CentOS
operating system, 25 from the middleware (the JVM [24]) and 7 from the Network. As
explained in Sect. 3.3, we select the 20 most performing anomaly checkers (and
consequently, the most relevant indicators) out of a set of 221 options.

4.3 Discussion of the Results

We show the results of the anomaly detection framework. We first comment on the
indicators and the anomaly checkers: in Tables 2 and 3 we can observe the most
performing anomaly checkers for each of the two error injections. Intuitively, the
memory error injection can be detected observing indicators related to Cpu and Java
memory; indeed, this can be verified considering the first three checkers selected in the
training phase (Table 2). Similarly, concerning the network error, we expect to observe
anomalies in the network layer (see Tcp_Listen in Table 3) or in the OS structures that
process the incoming data flow (e.g., Buffers in Table 3).

In line (iv) of Table 4 we show the results for the anomaly detection module: it
behaves far better than the single anomaly checkers, because it uses a set of them.
Moreover, despite the scores of the checkers are on average better for the experiments
with network error, the detection capabilities of the framework are worse compared to
the experiments with memory consumption injection. It follows that combining “bet-
ter” anomaly checkers does not always lead to better scores for our anomaly detector.
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This efficiency strongly depends on the synergy between checkers: if a checker is not
able to detect an error while another one is (e.g., they are related to indicators coming
from different areas of the monitored system), this can fix the missed detection giving
the framework the ability to answer correctly. In this study we considered each checker
as a separate detector, and consequently the best checkers are chosen depending only
on their score, without taking care of their characteristics. A possible improvement
could be achieved considering the best n checkers for each monitored layer: in such a
way, we are sure to consider checkers that observe different parts of the system, raising
the likelihood of detecting anomalies.

In the experiments considered as validation set we obtained anomaly alerts in
95.8 % of the runs when the memory error is injected: the missed detections are the
remaining 4.2 %. Regarding the 40 validation experiments with the network error
injection, instead, we obtained a correct error detection in the 86.7 % of the runs.

Table 2. 10 most performing anomaly
checkers for the experiments with memory
error injected

Indicator Data type
(check)

FScore
(2)Name Layer

SysCpuLoad OS Diff (Hist) 0.37
SysCpuLoad OS Value

(Hist)
0.35

ActVirtMPag JVM Value
(SPS)

0.33

I/O Wait Proc OS Value
(SPS)

0.31

Active Files OS Value
(SPS)

0.30

Tcp_Syn NET Value
(SPS)

0.28

Tcp_Listen NET Diff (SPS) 0.27
ProcCpuLoad OS Value

(Hist)
0.26

ProcCpuLoad OS Diff (Hist) 0.25
Cached Mem JVM Value

(SPS)
0.25

Table 3. 10 most performing anomaly check-
ers for the experiments with network error
injected

Indicator Data type
(check)

FScore
(2)Name Layer

Buffers OS Value (SPS) 0.45
PageIn OS Value (SPS) 0.42
Tcp_Listen NET Value (SPS) 0.40
PageIn OS Diff (SPS) 0.34
Cached
Mem

JVM Value (Hist) 0.33

Active
files

OS Value (SPS) 0.31

User
Procs.

OS Value (SPS) 0.30

Tcp_Syn NET Value (Hist) 0.29
ActVirt
pages

JVM Diff (Hist) 0.29

PageOut OS Value (SPS) 0.28

Table 4. Anomaly detection module performance

Detector setup Anom.
checks

Memory experiment Network experiment

# Layers Data C-Aw Precision Recall FScore (2) Precision Recall FScore (2)

i OS, JVM value NO 48 16.1 % 59.5 % 37.6 % 35.1 % 44.3 % 42.1 %

ii OS, JVM, Net value NO 55 19.1 % 65.6 % 44.1 % 43.8 % 55.0 % 52.3 %

iii OS, JVM, Net value, diff NO 110 22.7 % 78.3 % 52.5 % 29.2 % 72.2 % 55.7 %

iv OS, JVM, Net value, diff YES 221 33.5 % 95.8 % 69.8 % 50.0 % 86.7 % 75.6 %
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It should be noted that with this configuration the framework provides an anomaly
evaluation of the observed snapshot in 32.10 ± 5.99 ms. This is the time needed by
our framework to process each snapshot coming from the Target Machine.

Precision and Recall Varying Modules We comment on the performances of the
anomaly detector varying the modules and the anomaly checkers. From the top of
Table 4 we summarize precision, recall and F-Scores obtained (i) using the framework
in [6], (ii) introducing the network layer, (iii) including the diff data series in addition to
the default (value) for each indicator and (iv) considering services information in
combination with context awareness. Table 4 shows how using context awareness
significantly raises the F-Score. Furthermore, as expected, introducing network probes
significantly improves the F-Score in experiments with network errors.

Other framework configurations can be selected bringing to a higher balance
between precision and recall. For example, considering F-Measure instead of F-Score
(2) as reference metric we obtain a different set of anomaly checkers, ultimately
resulting in precision of 41.0 % and 80.2 %, with recall of 58.3 % and 73.3 %
respectively for the experiments with memory and network error injection.

5 State of the Art and Comparison with Other Solutions

Anomaly detectors have been proposed as error detectors [10] or failure predictors [2],
based on the hypothesis that the activation of a fault (for error detection) or an error (for
failure prediction) manifests as increasingly unstable performance-related behavior
before escalating into a failure. The anomaly detector is in charge to observe these
fluctuations providing a response to the administrator as soon as it can, triggering
proactive recovery or dumping critical data. Reviewing state of the art it is possible to
notice that the most used layers are the network [2, 3] and the operating system [6, 11].
This is not surprising since most of the systems include these layers: building solutions
which fetch data from these layers allow building frameworks that fit in a very wide
range of contexts. Regarding context-awareness, as highlighted in [16], in
service-oriented architectures it usually refers to knowledge of the user environment to
improve the performances of web services. For example, the Akogrimo project [17]
aims at supporting mobile users to access data, knowledge, and computational services
on the Grid focusing on user-context (such as user location and environmental infor-
mation). In our work we refer to a server-side context-awareness, meaning that we do
not require user information taking into account only runtime information about the
services that are running in the SOA.

A detailed overview of anomaly detection frameworks can be found in [1]. Here we
focus on three anomaly detection frameworks [2, 3, 14] addressing error detection/
failure prediction where the authors reported the measurements for detection accuracy
metrics (i.e., precision and recall). They observe indicators from multiple layers as the
framework presented here does. We remark that these studies are exercised on systems
with low dynamicity. Tiresias [3] predicts crash failures trough the observation of
network, OS and application metrics by applying an anomaly detection strategy that is
instantiated on each different monitored parameter. In CASPER [2], instead, the authors
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use different detection modules based on symptoms aggregated trough Complex Event
Processing techniques based on the non-intrusive observation of network traffic
parameters. Lastly, in [14] the authors aimed to detect anomalies due to the manifes-
tation of hang, crash and content failure errors in an ATM system looking at OS
indicators, exercising the framework on Windows and Linux kernels.

In Table 5 we reported the anomaly detection performance extracted from the
surveyed studies. Detection performances (we show precision, recall and F-Score(2))
are strongly influenced by the characteristics of the target system: with low dynamicity
it is easier to define a normal behavior, resulting in a significantly lower number of false
detections (see [2, 3, 14] in Table 5). Finally, looking at the performances of our
framework we achieved a recall index that is competitive considering highly dynamic
systems. Precision is low, meaning many false positives are generated, but in our
setting we favoured recall since our aim is to minimize missed detections.

6 Conclusions and Future Works

In this paper we presented an anomaly detection framework for dynamic systems and
especially SOAs. Assuming knowledge of the services that are running at time t on the
observed machine gave us the opportunity to consider additional information that
resulted fundamental to improve our anomaly detection capabilities.

As future works a sensitivity analysis directed to find the best alpha setup, a larger
error model comprising Liferay software bugs, and an estimation of detection time
varying number and type of observed layers will be investigated, along with strategies
to reduce false positives. To further explore our context, we will focus on how changes
in the user workload – and not in the services – can influence our detection capabilities
and which strategies can be applied to maintain our solution working effectively. The
basic failure model we considered for the experiments will be expanded including other
items, to test the capabilities of the framework in different contexts.

Lastly, analysis aimed to understand the applicability of this solution when multiple
SOA services are called simultaneously by different users will be investigated.

Table 5. Comparing performance indexes with similar studies.

System under test Precision Recall FScore
(2)Characteristics Dynamicity Layers

[14] (best UNIX) ATM system Very low OS 97.0 % 100.0 % 99.3 %
CASPER [2] ATM system Very low Net 88.5 % 76.5 % 78.6 %
TIRESIAS [3] Emulab distrib.

env.
Low OS, Net 97.5 % n.p. n.p.

Our Work -
Memory

Secure! SOA High Net, OS,
JVM

33.5 % 95.8 % 69.8 %

Our Work -
Network

50.0 % 86.7 % 75.6 %
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Abstract. Fast evolution of computing systems is a hot topic today that is
becoming a real challenge for safety critical embedded systems. For both
maintenance and functionalities reasons, over-the-air updates are very attractive
for embedded systems manufacturers in many application domains. The chal-
lenge here is to maintain dependability properties when facing changes. This is
exactly the definition of resilient computing we consider in this work. The
implementation of resilient computing relies on fault tolerance design patterns
(FTDP) that comply with various types of non-functional assumptions (be-
havioural assumptions, fault model assumptions, temporal assumptions,
resources assumptions, etc.). Despite changes in operation, the efficiency of the
fault tolerance mechanisms (instance of a FTDP) depends on the strict com-
pliance with such assumptions. The objective of the paper is to provide a model
to simplify the analysis of resilient systems, in particular focusing on adaptive
fault tolerant computing. Simple measures are illustrated on evolution scenarii.

1 Introduction and Problem Statement

Evolution during operational life is inevitable in many systems today. A system that
remains dependable when facing changes (new threats, change in the fault model,
updates of applications) is called resilient. The persistence of dependability when facing
changes defines the concept of resilience [1]. Resilient computing encompasses several
aspects, among which evolvability, i.e., the capacity of a system to evolve during its
operational life. In practice, dependability relies on fault-tolerant computing at runtime,
based on Fault Tolerance Design Patterns (FTDPs) instances attached to the applica-
tion. As such, one key challenge of resilient computing is the capacity to maintain a
consistent relation between assumptions and FTDP implementation in operation. The
considered assumptions focus on fault model and application characteristics.

The fault model is obviously a key parameter for the selection of an adequate Fault
Tolerance Design Pattern. It often includes both hardware and software faults, but also
undesirable events that may affect the correct behaviour of the application. The role of
the safety analysis (e.g. using FMECA – Failure Mode, Effects and Criticality Anal-
ysis) is to identify the failure modes and ultimately to define the safety mechanisms
preventing the violation of safety properties. Such safety mechanisms rely on basic
error detection and recovery mechanisms, namely fault tolerance techniques following
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IFIP WG10.4 terminology. A safety mechanism can be based on a single FTDP or
several combined together.

During the operational life of a system, several situations may occur. For instance,
new threats may have an impact on the fault model (electromagnetic perturbations,
obsolescence of HW components, software aging, etc.). A modification of the fault
model has consequences on the assumptions of FTDPs, and thus on the validity of the
initial selection of a fault tolerance mechanism. The coverage of the assumptions is
definitely a key parameter to guarantee the validity of a FTDP as discussed in [2].

Other assumptions may also affect the validity of a FTDP when facing system
evolution. Application updates may change the assumptions used for the initial
selection of a FTDP. For instance, determinism, activation profile, state handing issues
have a strong impact on the selection of a FTDP, e.g. a duplex strategy variant (cold,
warm, hot and by the way the underlying inter-replica protocols). This means that a
change in the assumptions (fault model, applications characteristics, available resour-
ces) may imply a change of FTDP to maintain system dependability.

The first question we address in this work is the following: To what extent a FTDP
remains valid when the fault model or the application characteristics change in
operation? The second question of interest is: What type of indicators can be used to
adjust and make FTDP instances consistent with actual assumptions in operation?

So, why modelling Adaptive Fault Tolerant Computing? To answer both questions
given above, we need a simple formalism to describe the configuration of the
dependable system in operation and its evolution. Events and variables in this for-
malism will help us to formally define the changes, analyse their side effects on
dependability mechanisms, and compute some measures regarding the resilience of the
system.

In Sect. 2, we clarify the link between resilient and adaptive fault tolerant com-
puting and also our terminology. Section 3 focuses on the assumptions of Fault Tol-
erance Design Patterns as the corner stone of the analysis proposed in this paper.
A classification of conventional FTDP is proposed to illustrate the starting point of the
work. In Sect. 4, we use several scenarii to illustrate some resilient computing situa-
tions. These examples will be used in the paper as a guiding thread to illustrate our
modelling approach. Section 5 describes the model, the events and the measures that
can be obtained. Section 6 illustrates our simple modelling approach, the triggers and
the measures on the scenarii. Section 7 concludes the paper.

2 Resilience and Adaptive Fault Tolerant Computing

Various changes in operation may have an impact on dependability, the root of the
definition of Resilience in computer system engineering. Such changes may trigger
modifications of the system configuration, including Fault Tolerance Mechanisms
(FTM), in the large (complete reload) or in the small (subtle over-the-air updates).
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2.1 Basic Principles for AFT

The need for Adaptive Fault Tolerance (AFT) arises from the dynamically changing
fault tolerance requirements and from the inefficiency of allocating a fixed amount of
resources to fault tolerance mechanisms throughout the service life of a system, as
stated in [3]. AFT is gaining more importance with the increasing concern for lowering
the amount of energy consumed by cyber-physical systems and the amount of heat they
generate [4]. On-line adaptation of fault tolerance mechanisms has attracted research
efforts for some time now. Most of the solutions [5–7] tackle adaptation in a pre-
programmed manner: all mechanisms necessary during the service life of the system
are deployed from the beginning. An alternative to pre-programmed adaptation consists
in viewing a system as a collection of fine-grain components that can be manipulated at
runtime [8], a sort of Lego System implementing both application and safety/
dependability mechanisms, enabling over-the-air updates.

A system configuration includes application components linked together with their
fault tolerance mechanisms. An essential concept for adaptive fault tolerant computing
is the notion of Separation of Concerns (SoC). This well-known concept implies a clear
separation between the application code and the non-functional code, i.e. the FTDP
instance in our case. The connection between the application code and its FTDP must
be clearly defined, so that FTDPs can easily be disconnected, replaced, updated, pro-
vided the connectors remains the same. However, SoC has some limits regarding fault
tolerant computing, as FTDP implementation cannot always be application-agnostic.
Some mechanisms are generic, e.g. replication mechanisms. Some are application
dependent and FTDP must be parameterized by the applications.

2.2 Change Model

The choice of an appropriate FTDP for a given application depends on various
assumptions and parameters:

• FT: the fault model and the effect of faults on the system behaviour, namely the
failure modes, when the corresponding error has not been detected and recovered;

• AC: the application characteristics that determine the validity of a FTDP regarding
determinism, state accessibility, some temporal aspects, etc.;

• RS: the resources needed to run an implementation of a FTDP, in terms of memory,
bandwidth, energy, CPU nodes/cores, etc.

We denote (FT, AC, RS) as change model. At any point in time, the execution of a
given application and its attached FTDP must match the assumptions. Some key
parameters must be evaluated off-line (application characteristics, AC), some other
must be monitored on-line (available resources, RS), some both off-line and on-line
(fault assumptions, FT, e.g. new threats, exceptions raised, etc.). Such key parameters
are used to check the validity of an FTDP during the operational life of the system.
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3 Assumptions and FT Design Patterns

Assumptions enable to discriminate between several FTDPs but also several imple-
mentations of a given FTDP. A careful analysis of such assumptions enables FTDPs to
be classified quite easily. Figure 1 shows an excerpt of the classification of some
generic FTDP with respect to hardware faults.

The selection of a FTDP relies first on FT, then on AC:

• Regarding the fault model FT, and by extension the failure modes to be avoided, we
rely on a classification based on well-known fault types, e.g., crash faults, value
faults, development faults, undesirable events, etc.

• The application characteristics AC that we identified as having an impact on the
selection of a FTDP are: application statefulness, state accessibility and code exe-
cution determinism, fail silence, etc. Control over non-deterministic decisions is
almost impossible for black box applications with no access to its internal state.

Resources RS also plays a role in the selection of the adequate FTDP. They are not
considered as first class assumptions like FT and AC, but as implementation con-
straints. The implementation of a given FTDP requires a set of resources and for each
of them we can set a threshold, below which the implementation is impossible.

To illustrate our approach, we consider some conventional FTDP and briefly dis-
cuss their underlying assumptions together with some few resource needs, as shown in
Fig. 2. Their definition is very much simplified, just to illustrate our approach.

Fig. 1. Fault tolerance design patterns classification (an incomplete view)

Fig. 2. Assumptions and fault tolerance design patterns examples
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We consider duplex strategies to tolerate crash faults using, passive (e.g. Primary-
Backup Replication denoted PBR—warm redundancy variant) or active replication
protocols (e.g. Leader-Follower Replication denoted LFR—hot redundancy variant).
Each replica is considered as a perfect fail-silent component. At least 2 independent
processing units are necessary to run these two variants.

We also consider a simple design pattern tolerating transient value faults: Time
Redundancy (TR) tolerates transient hardware faults using repetition of the computation
and comparison/voting. TR helps improving the self-checking coverage of a replica.

In summary, PBR and LFR tolerate the same fault model FT, but comply with
different AC. PBR allows non-determinism of applications because only one replica
computes service requests while LFR only works for deterministic applications as both
replicas compute all requests. PBR requires state access for checkpointing the com-
putation and higher network bandwidth (in general), while LFR does not require state
access but generally incurs higher CPU costs (and, consequently, higher energy con-
sumption) as both replicas perform all computations. TR requires state access to restore
the initial state of the computation during the repetition of the execution. A similar
analysis can be done for any other FTDP, other fault models or undesirable events. All
needed FTDP during the system lifetime do not exist at initial time.

4 Adaptive Fault Tolerance and Evolution Scenarii

In this section we consider different system evolution scenarii that imply adaptation of
FTDP. Any change that invalidates an assumption may call for an update of the FTDPs.
Application versioning, hardware aging, physical devices loss, environmental condition
and threats, evolution of both functional and non-functional specifications, have an
impact on assumptions. The triggering of FTDP change can be done on-line (fault
model change) or by the off-line system manager (application versioning), as explained
in Sect. 5.3. Any FTDP is validated off-line before being used in the system. When a
new FTDP need to be developed to comply with the assumptions, the system is in a
degraded mode of operation during a maybe quite long time window, the current FTDP
being inconsistent with some assumptions.

Lets define a system simply like this: a system S runs a number of applications
satisfying the specs; each application is attached to a FTDP compliant with its
dependability need; a number of resources have been allocated to run the implemen-
tation of FTDPs.

Let’s consider a 1st evolution scenario (AC change impact):

– At t0, a given application A, a command & control application, is attached to a
FTDP tolerating crash faults, say PBR to save CPU usage;

– At t1, the application A is updated, the new version A1 being non-deterministic
whereas A execution was deterministic. PBR is still valid; NO IMPACT 

– At t2, A1 is updated again. The new version A2 is deterministic but does not offers
access to its internal state anymore, invalidating the PBR; IMPACT

– At t2 + dt2, a new FTDP is assigned to A2, namely a semi active replication
strategy, LFR, A2 being deterministic and no state access is required.
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Let’s consider now this simple 2nd evolution scenario (FT change impact):

– At t3, monitoring facilities reveal an increasing rate of transient faults detected by
low-level exceptions or hardware Error Detection Mechanisms. IMPACT

– At t3 + dt3, the current FTDP implementation, LFR, is now combined with Time
Redundancy becoming thus LFR + TR;

– At t4, A2 becomes stateless through a new update A3 at the application level,
eliminating the persistent state of the computation: all input values are read from
sensors at each beginning of the control loop; NO IMPACT 

The aforementioned dt parameter in the scenarii represents the time window during
which the system does not match the non-functional specifications. Obviously, this
time window needs to be minimized.

5 Formal Definition of AFT

The evolution of a system S is represented by an history of timed events denoted H, H
being a set of couples (e,t). The event e corresponds to a change in the application
characteristics of the fault model, t being the date of the event.

5.1 Notation and Definitions

An application Ai is mapped to a component Ci linked with an appropriate Fault
Tolerance Design Pattern (FTj), following the separation of concerns principle. More
formally, let S = {Ai}, i 2 [1..n] be a system where n is the total number of application
components. For each i 2 [1..n], Ai = (Ci, FTj) is an application with j 2 [1..q], q
being the number of FTDP that can be used by the system. By convention, FTj = Null,
means that no FTDP is attached to Ci.

In this section we illustrate the notation using simple application characteristics and
the generic fault tolerance design patterns targeting physical faults given in Fig. 2.

Simple Notation for Application Components. An application component Ci has a
set of non-functional characteristics, denoted (ai,k), k 2 [1..m], m being the total number
of application characteristics considered in the model. Examples of such boolean
application characteristics are the following: determinism, statefulness,
state access, fail silence. This list can obviously be extended according to
the needs.

Application characteristics are defined as follows:

• ai,1 = 1 means that Ci is non-deterministic, ai,1 = 0 when it is deterministic;
• ai,2 = 1 means that Ci is stateful, ai,2 = 0 when it is memory less;
• ai,3 = 1 means that Ci state is not accessible, ai,3 = 0 when it is accessible.
• ai,4 = 1 means that Ci is not fail silent, ai,4 = 0 when it is fail silent.
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The model is designed to offer the following property:
If a FTDP is applicable for a given application characteristic set to true (ai,k = 1),

then it is also applicable when this characteristic is false (ai,k = 0).
For instance, a PBR strategy works for non-deterministic components, so it also

works for deterministic components.
The definition of Ci also includes the types of faults it must tolerate. We use a

Boolean vector to represent this set of faults, (fj,k), k 2 [1..p], p being the total number
of possible fault types affecting an application component in the system. Examples of
such fault types are the following: value fault, omission fault, crash
fault. Obviously, this list can also be extended according to the needs.

Fault tolerance requirements of an application can simply be defined as follows:

• fj,1 = 1 means that FTj must tolerate value faults, fj,1 = 0 when not considered;
• fj,2 = 1 means that FTj must tolerate omission faults, fj,2 = 0 when not considered;
• fj,3 = 1 means that FTj must tolerate crash faults, fj,3 = 0 when not considered;

The selection of the values (0,1) is here very simple
rule, just true/false. For instance, the component Ci

calls for a FTDP tolerating both crash faults and value
faults.

As a result, any component Ci in the system can be
modelled like this:

In summary, the vector ðai;kÞ represents the struc-
tural and behavioral characteristics of the application.
The vector ðfj;kÞ represents the requested fault toler-
ance requirements.

Simple Notation for FTDP. An FTDP provides a solution to tolerate some types of
faults, but its validity depends on some application characteristics. Given a fault model,
the application characteristics represent an assumption for the selection of an FTDP.

In the modelling of FTDP characteristics, bj,k are
the properties accepted by the FTDP. For example,
bj,1 = 1 means that the FTDP accept
non-deterministic component whereas bj,1 = 0 means
it only accepts deterministic components.

In summary, the vector ðbj;kÞ represents applica-
tion characteristics accepted by FTj. The vector ðftj;kÞ
represents the type of faults tolerated by FTj.

In the definition of Ci and FTj, the two Boolean vectors report application charac-
teristics and fault tolerance requirements. The design of a critical application is consistent
if and only if FTj assumptions match Ci characteristics and fault tolerance requirements.

Ci ¼
ai;1
ai;2
. . .
ai;m

0
BB@

1
CCA;

fi;1
fi;2
. . .
fi;p

0
BB@

1
CCA

0
BB@

1
CCA

FTj ¼
bj;1
bj;2
. . .
bj;m

0
BB@

1
CCA;

ftj;1
ftj;2
. . .
ftj;p

0
BB@

1
CCA

0
BB@

1
CCA
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5.2 Properties

Now, we can define properties enabling the consistency of a system configuration to be
analysed, i.e. the validity of all application (Ci, FTj) at any time t.

Definition of compatibility: FTj is compatible with Ci if and only if FTj accepts
the application characteristics of Ci

Definition of adequacy: FTj is adequate with Ci if and only if FTj tolerates the
faults requested by Ci

Definition of consistency: An application (Ci, FTj) is consistent if and only if it
complies with the compatibility and adequacy properties.

The notion of compatibility introduces an order relation between characteristics.
For instance, handling application non-determinism is more complex that handling
determinism in a fault tolerance strategy. In other words, a FTDP that accepts a
non-deterministic application component also works with deterministic applications.

FTj is compatible with Ci ⟺ 8k 2 [1..m], ai,k � bj,k

Adequacy is the capability of FTj to tolerate the faults requested by Ci, namely (fj,k).
This notion introduces a simple order relation between fault models and fault tolerance
design patterns, in the sense that a FTj is adequate when (fi,k) � (ftj,k).

FTj is adequate with Ci ⟺ 8k 2 [1..p], fi,k � ftj,k

Suppose the following example:

Ci ¼
ai;1
ai;2
ai;3
ai;4

0
BB@

1
CCA;

fi;1
fi;2
fi;3

0
@

1
A

0
BB@

1
CCA ¼

0
1
1
0

0
BB@

1
CCA;

1
0
1

0
@

1
A

0
BB@

1
CCA

The component is deterministic ðai;1 ¼ 0Þ, stateful ðai;2 ¼ 1Þ, its state is accessible
ðai;3 ¼ 1Þ and it is fail silent ðai;4 ¼ 0Þ. Faults to be tolerated are random hardware faults
leading to a wrong value ðfi;1 ¼ 1Þ or a crash ðfi;3 ¼ 1Þ. Let FTj be a FTDP such as:

FTj ¼
bj;1
bj;2
bj;3
bj;4

0
BB@

1
CCA;

ftj;1
ftj;2
ftj;3

0
@

1
A

0
BB@

1
CCA ¼

1
1
0
0

0
BB@

1
CCA;

1
0
1

0
@

1
A

0
BB@

1
CCA

FTj tolerates both value faults and crash faults, for non-deterministic stateful
applications and it requires state access and fail silent assumption on the component.
This FTDP can be a combination of PBR and TR strategies.

In this example, we comply with both properties, compatibility and adequacy.

ðaÞ Compatibility : 8k 2 ½1::4�; ai;k� bj;k
ðbÞ Adequacy : 8k 2 ½1::3�; fi;k� ftj;k

Thus, Ai = (Ci, FTj) is consistent while no change invalidates the above
inequations.
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5.3 Triggers for Adaptation

In our system architecture, we assume that we have a monitoring engine responsible
for collecting information on the system behaviour (e.g. rate of transient faults detected
by low-level exceptions or hardware EDM obtained on-line) and changes of compo-
nent version (i.e. information delivered by the off-line manager of the system). We also
assume that we have an adaptation engine responsible for changing the fault tolerance
strategy of applications FTj (switch to a new mechanism, composition of several design
patterns). Both engines are supervised by the off-line system manager.

The triggers for adaptation depend on some inputs, in fact the events related to
changes in the application characteristics and/or in the fault model. The sense-compute-
control paradigm is used here to define the triggers. When an event related to a change
is observed (sense), a computation is carried out to decide whether all applications
Ai, = (Ci, FTj), in the system need to be adapted or not, at a given instant t, to comply
with their dependability requirements. The computation is simple: it simply consists in
the evaluation (compute) of the inequations used in the definition of the compatibility
and adequacy properties. The final decision (control) is two-fold:

• The change does not invalidate the consistency of (Ci, FTj), and so the system is
resilient (i.e. no effect, 0)

• The change invalidates compatibility or adequacy of (Ci, FTj), and so a modification
is mandatory to comply with Ci dependability requirements (i.e. update, 1)

In the later case an adaptation must be performed to maintain system dependability.
A trigger signal is sent to the adaptation engine for performing a change of FTj. It is
worth noting that during the time window dt required to perform the change, the system
(or at least one of its applications) does not comply with its dependability specifica-
tions. More precisely, FTj is no more able to tolerate the faults attached to the definition
of Ci, (cf. vector (fj,k)). A new FTj must be installed.

5.4 Simple Measures

We report in this section a first attempt to measure the resilience of a system. The
proposed measures rely on two simple ideas: (i) a system is resilient when changes do
not impact its current configuration while complying with its dependability specifica-
tions; (ii) a system is resilient when it is able to change its configuration quickly to
comply with its dependability specifications.

A statistical estimator of the first measure of resilience at time t denoted RE(t) can
be obtained in this way:

REðtÞ ¼ N  icðtÞ
N

where ic(t) is the number of inconsistency periods observed since the initial time t0 up
to t, N being the total number of change events.
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During the time window [t0, t] and according to a given sequence of change events,
the system S is resilient when the number of inconsistency periods observed icðtÞ is
low. The greater RE(t), the better the resilience of the system.

The second measure is related to the time duration during which the system remains
consistent. We define the Mean Time Between Inconsistency (denoted MTBI) for a
given period of time t as follows:

MTBI ¼ t  PicðtÞ
i¼0 dtðiÞ

icðtÞ
where dt(i) is the time duration of the ith inconsistency period

The MTBI measure is pessimistic since large inconsistency periods have a bad
impact on the measure of resilience. The distribution of inconsistency period durations
is more interesting for deeper analysis. MTBI is also interesting to compare different
evolution scenarii and adaptation strategies. For a given change event, several updates
may be possible to comply with the dependability specifications. Thus, a sequence of
change events leads to a tree of possible updates. An evaluation of the system resilience
can thus be performed for each branch, using both RE(t) and MTBI(t), in order to
compare evolution strategies for a given history H.

6 Proof of Concepts

6.1 Formalization of the Previously Defined Scenarii

In this section we formalize the scenarii given in Sect. 4. In order to keep this example
clear we reduced the application to one component named C1. This component is
deterministic, stateful, we have access to its state and it is fail silent (AC). The initial
objective is to tolerate crash faults (FT). According to FT and AC, a PBR mechanism is
attached to C1 at time t0 (see. Figs. 3 and 4).

According to the definitions given in Sect. 5.2, C1ðt0Þ and FT1ðt0Þ are compatible
and in adequacy. Therefore, the system S is consistent.

At time t1 the system is updated and C1 becomes non-deterministic. As a result, the
component is now modelled as shown in Fig. 5. This modification has no impact in the
system because the properties a1,k � b1,k still hold, for any k.

Fig. 3. Initial model for C1. AC notation
reminder: (1) Non deterministic, (1) Stateful-
ness, (1) State not accessible, (1) Not fail
silent, FT notation reminder: (1) Value,
(1) Omission, (1) Crash

Fig. 4. Initial FT model attached to C1. AC
notation reminder: (1) Non deterministic,
(1) Statefulness, (1) State not accessible,
(1) Not fail silent, FT notation reminder:
(1) Value, (1) Omission, (1) Crash
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At t2, a new update is done, state access is not guaranteed anymore but the
component becomes deterministic again. C1 is now defined as show in Fig. 6. The
compatibility between the component and the PBR is not verified anymore because
a1,3 > b1,3. The FTDP has to be modified and a LFR strategy replaces the PBR one (cf.
Fig. 7)

Because the component
C1 is now deterministic
again, after the time window
denoted dt2, the configura-
tion (C1, FT2) becomes con-
sistent at time t2 + dt2.

At t3, the monitoring facility indicates that the fault model of the component has to
be changed, due to an increasing rate of transient faults detected. We modify the
requirements of C1 to express the eventuality of value faults (cf. Fig. 8).

The fact that f1,1 > ft1,1 indicates that the component and the FTDP are not in
adequacy anymore, thus a strategy combining LFR and TR is set. The new mechanism
requires the component to be deterministic and protects against both value and crash
faults. At t3 + dt3, the new system is consistent again.

At t4, a new update is done elim-
inating the persistent state of compu-
tation leading C1 to become as
depicted in Fig. 9.

Fig. 5. C1 update with no impact Fig. 6. C1 update with impact on FT

FT2ðt2þ dt2Þ ¼ LFR ¼
0
1
1
0

0
BB@

1
CCA;

0
0
1

0
@

1
A

0
BB@

1
CCA

Fig. 7. Change in fault model Fig. 8. Composition of FTDPs: LFT + TR

Fig. 9. Update with no impact on consistency
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This change does not introduce any incompatibility between C1 and the LFR + TR
strategy. There is no impact so the system configuration remains consistent.

6.2 Comparison, Measures and Analysis of Scenarii

The MTBI enables comparing several FTDP update strategies during the system life-
time. The timing values are extracted from former experimental work [13]. In our
scenario, the four change events lead to two impacts (case 1):

MTBI1 ¼ t  Pic tð Þ
i¼0 dt ið Þ

ic tð Þ ¼ t4 dt2 dt3
2

; with dt2 ¼ 1003ms; and dt3 ¼ 838ms:

Therefore MTBI1 � 732 h for a system lifetime of t = 2 month.
Let us consider another scenario by assuming that LFR was selected instead of PBR

at t0. At t1 we have now an additional impact, as the system become non deterministic.
To keep consistency, PBR is selected and its installation takes dt1. The MTBI is now
(case 2):

MTBI2 ¼ t4 dt1 dt2 dt3
3

; with dt1 ¼ 1011ms; dt2 ¼ 1003ms; and dt3 ¼ 838ms

Therefore MTBI2 � 488 h for a system lifetime of t = 2 month.
It is clear that an FTDP update at a given point in time has a side effect on the

resilient behaviour of the system in the future. With this simple example, we show the
side effect of such selection since the MTBI has decreased in case 2. The system
remains consistent for a longer period of time in case 1 for the same sequence of
change events.

7 Conclusion

The resilience of a system encompasses architectural issues, development process
issues, software technology issues, and also measures. The simple modelling approach
proposed in this paper enables triggers for Adaptive Fault Tolerance to be easily
computed. AFT follows the well-known Sense-Compute-Control paradigm. Sense
involves monitoring facilities and interactions with the off-line system manager.
Compute is based on the simple model we propose to trigger some actions when
consistency is impaired. Control implies full or partial update of the FTDP instance
attached to a given application component. Such modelling of AFT is currently used to
provide triggers at runtime to the adaptation engine of a resilient system prototype on
ROS [9].

The proposed measure of resilienceMTBI is similar toMTBF, except that we do not
speak about Failure but Inconsistency. During the inconsistency period the system is
not failed but degraded with respect to its non-functional specification. It is vulnerable
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during a time window, a fault occurrence leading the system to fail. Another analogy
can be made with the notion of MTTR: the Mean Time To Update (MTTU), mean time
required to make FTDP consistent with the dependability specifications. This time
window can be short when the FTDP is available, but much longer when a solution has
to be design and validated off-line. Such measures help making comparisons between
systems and update strategies, but also selecting a strategy for a given application
context according to trade-offs between resilience and fault tolerance cost.
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Abstract. Invariants are stable relationships among system metrics
expected to hold during normal operating conditions. The violation of
such relationships can be used to detect anomalies at runtime. However,
this approach does not scale to large systems, as the number of invari-
ants quickly grows with the number of considered metrics. The resulting
“background noise” for the invariant-based detection system hinders its
effectiveness. In this paper we propose a general and automatic app-
roach for identifying a subset of mined invariants that properly model
system runtime behavior with a reduced amount of background noise.
This translates into better overall performance (i.e., less false positives).

1 Introduction

Anomaly detection techniques based on the usage of invariants have long been
introduced to discover anomalous behaviors in processing systems [1,2]. An
invariant is a property of a system that is expected to hold while the system runs
correctly. The idea of invariant-based anomaly detection is that it is possible to
automatically analyze the evolution of the system at runtime to identify stable
correlations among some monitored metrics. Such a detection process involves an
initial training phase to learn invariants representing the correct behavior of the
system. Then, whenever an invariant is broken or violated during operation—i.e.
the underlying correlation between metrics is lost—it is considered a sign of a
probable malfunction in the system.

The use of invariants is gaining interest in the field of systems where faults
may have severe impacts. These systems are characterized by a great complexity
that, on one side, increases the possibility of malfunctioning and, on the other
side, hampers the adoption of classic fault detection techniques based on design-
time modeling of normal operation conditions [3]. The practical adoption of
invariants for anomaly detection is limited by their sensitivity to the number and
quality of monitored system variables, however. A moderately complex system
may expose hundreds of invariants, and only a subset of them stably captures
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 172–183, 2016.
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its correct behavior, while a large fraction are either useless (because not linked
to malfunctions) or excessively unstable (e.g., they are easily broken even if the
system behaves correctly). Blindly monitoring all mined invariants introduces
noise and fluctuations in the detection output, which create false positives;1 this
hampers the practical usability of this technique. Currently, there is no clear
approach to “filter” the invariants space to get rid of such unwanted effects.

In this paper we present a practical and repeatable approach to analyze
a (possibly very large) set of mined invariants to automatically select a core
subset of them that properly captures the correct runtime system behavior,
while showing a good degree of insensitivity to exogenous factors not linked to
malfunctions. The approach exploits information provided by both the correct
and the anomalous behavior of the system.

The approach is evaluated in a testbed equipped with a real web-based appli-
cation (e.g., a web-banking portal) where we inject faults (from a defined fault
model), to force the anomalous behavior. Results show the effectiveness of the
proposed invariant selection approach, especially in reducing false positives.

The rest of this paper is organized as follows. Section 2 discusses related
works. Section 3 introduces our invariant selection approach; Sects. 4 and 5
present a case study based on a real application scenario and discuss the results
of applying our approach to it. Finally, Sect. 6 concludes our work.

2 Related Work

Sharma et al. [4] proposed to use invariants to detect faults in distributed sys-
tems: a mining tool is described, and mined invariants are used for the detection.
Their application can then be extended to support log analysis [2,5]. In [6] auto-
matically mined invariants are used for online anomaly detection in a cloud-based
processing system.

Invariants can be classified [7] in control-flow, execution-flow, and value-
based. In this paper, we focus on an extension of value-based invariants, known
as flow intensity invariants. They have been introduced to measure the intensity
with which internal monitoring data, treated as time series, react to the volume
of user requests. In general, time series may be mined from system/application
logs and resources utilization data through common monitoring tools. Hence,
the approach does not depend on the particular system under monitoring.

A flow-intensity invariant is commonly selected among all the combinations
of the collected metrics by estimating its ability in describing a phenomenon. As
an example, in [1] an invariant is built when two measurements are available;
then, it is incrementally validated when new observations are available. If, after
a certain number of measurements, a confidence score of the model is less than a
threshold, the invariant is discarded. However, this approach does not scale with

1 A false positive is an error in the detection, in which an anomaly is reported when
no anomalies occurred. A false negative is an omission of the detector, which does
not report an occurred anomaly.
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the size of the system, and generates a “background noise” of broken invariants
that undermines its efficiency for anomaly detection.

For these reasons, [8] introduced a filtering stage where it is estimated the
probability that an invariant would have been mined when considering a ran-
dom input: if this probability is larger than a certain threshold, the invariant
is selected, otherwise it is filtered out. Another approach consists in considering
the number of times an invariant is violated [2]. However, as discussed in the
remainder, also invariants broken too often should be treated with care: if an
invariant is easily violated, it may be useful for detection completeness, but it
may also generate many false positives, thus negatively affecting the accuracy.

Differently from such approaches, we introduce an automatic filtering stage,
identified as filtering 2 hereafter. It is based on both correct and anomalous
runs of the system, instead of only considering correct executions, as for the
commonly adopted selection procedure, which we identify as filtering 1.

3 Approach

The invariant-based approach we propose (Fig. 1) is based on three steps: (1)
Mining, (2) Automatic Filtering, and (3) Detection. The invariants mining step
consists in the analysis of data characterizing the correct system behavior to
identify invariant relationships between pairs of observed variables. Step 2 con-
sists in the automatic filtering of found invariants in order to extract a subset
of them that can be usefully exploited in step 3 for the detection of anomalies.

Existing invariant-based detection approaches, such as the ones proposed in
[5,6], only consider a training dataset representing the correct behavior of a
system to be used for the mining and the filtering is based on goodness of fit
(filtering 1 ). This way, many invariants are mined. In this paper, we introduce a
further filtering step (filtering 2 ), which also considers known faulty behaviors.
To identify the invariants that are potentially good symptoms of anomalies, we
consider a further dataset representative of the system when faults are activated.
Thus, given the fault model for the considered system, the idea is to inject

Fig. 1. Approach for invariant mining and filtering for anomaly detection.
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instances of such faults in the system (for details, see Sect. 4) in order to collect
the data that characterize the faulty behavior and that are then used to check
when invariants are actually violated. The following sections describe the details
of the three steps.

3.1 Invariant Mining

The first step consists in sampling the available data in order to have time series
for mining invariants. As characterizing data, we consider data collected from the
monitoring of the processing system, i.e., related to resources’ utilization, such
as CPU use, memory use, network packets, etc. This makes the approach generic
and not dependent on the specific system workload. A time series is a sequence
of values corresponding to measurements of parameters, uniformly spaced, with
a certain sampling time, over a time interval. Thus, a time series is a function f
over a domain of real numbers R and of a discrete time argument t ∈ T , f :T → R.
Collected data may require some manipulation in order to have all the time series
with the same sampling time. The selection of the sampling time is important
for the results of the detection [5]. In our case, examples of considered time
series are f1(t) = cpu system metric and f2(t) = proc run metric representing
the use of the CPU in non user mode and the number of running processes,
respectively. Observations of the time series at different times results in a relation
as f2(t)+a1f2(t−1)+ · · ·+anf2(t−n) = b0f1(t−k)+ · · ·+ bmf1(t−k −m); by
considering the vectors of coefficients and samples θ = [a1, . . . , an, b0, . . . , bm]T

and ϕ(t) = [−f2(t − 1), . . . ,−f2(t − n), f1(t − k), . . . , f1(t − k − m)]T , we have
f2(t) = ϕ(t)T θ. For the parameters estimation, and thus for the mining process,
we use the least squares method, as described in [5].

3.2 Automatic Filtering

Filtering operations aim to improve the detection by removing redundant and/or
inaccurate invariants, e.g., the ones that break either too often, leading to a large
number of false positives, or too seldom, generating false negatives. They consist
of three phases: checking, filtering 1, and filtering 2, described in the following.

Checking phase is used to verify when invariants are broken if faults are
injected. Thus, apart from monitored data related to the correct behavior, also
collected data of anomalous behaviors are used. In this case, as during the oper-
ational phase of the system, a set of time series is used as input. The assessment
of broken invariants is discussed in Sect. 3.3.

The second part of the filtering step is made up of two phases. The goal is
to filter those invariants that are not actually able to detect anomalies. Such
filtering operations are performed on vectors associated to each invariant and
reporting their behavior in an observation period. Considering the time lapse t0
. . . tn−1, for each invariant ij , we consider a vector vj of size n, where n are the
instants of observation, and

vj [k] =

{
0, if ij is not broken at tk

1, otherwise
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Filtering 1 phase is based on the Goodness of Fit test. It considers only the
correct behavior of the system and is also used in [5,6]. The basic idea is to
remove invariants with a goodness of fit (GoF) outside a specific range. Clearly,
invariants with a low GoF are invariants that do not provide a good modeling,
i.e., are not able to properly describe system behavior. Conversely, invariants
with a too large GoF are likely mined from too similar time series and are
thus meaningless. Consider, as an instance, an invariant relating CPU use time
CPU util and CPU idle time CPU idle (CPU util = 1 −CPU idle). The two
time series are linearly dependent, thus, the resulting invariant has a very large
GoF and is always verified, but it is useless. To discard invariants by testing
the quality of their fitting, we use the Coefficient of Determination R2, which
represents the percentage of the variation that can be explained by the model.
The closer the value of R2 to 1, the better the regression.

Filtering 2 phase uses a dataset representative of the system when anomalies
occur, unlike the existing approaches based only on the system correct behavior.
This dataset is obtained by means of fault injection (see Sect. 4). This is the
main novelty of the invariant selection strategy we propose, aiming at removing
invariants that may provoke erroneous evaluations, i.e., false positives and false
negatives. This phase includes the following five filtering operations.

(1) Never-broken invariants filtering. We remove invariants that are never
broken. As a matter of fact, there could be a relation between two time series
that is also able to well describe the variance of the system, but the relation
always holds. Thus, it is not useful to detect anomalous events.

(2) Correlated invariants filtering (Corrth). When applying the GoF fil-
tering, invariants relating to similar time series are removed. There could
still be invariants representing similar relations and that are broken at the
same time. Previously, we considered the example of CPU util and CPU idle
measurements; the invariant relating them is filtered; but, let now also con-
sider memory utilization Mem util ; if there is an invariant Mem util =
αCPU util, there will also be an invariant Mem util = α′CPU idle. Nev-
ertheless, those invariants provide the same information, and considering
both of them would be redundant. By considering the vectors vj associated
to all the invariants, we consider all the possible pairs of invariants 〈ii, ij〉
and compute the correlation by means of the Pearson’s correlation index.
If the correlation is larger than a threshold Corrth, invariant ij is removed
and only invariant ii is considered.

(3) Too-often broken invariants filtering (Oftall). Some invariants may
be too weak, i.e., they are broken too often and, similarly to never-broken
invariants, are not useful to detect different-than-common behaviors that are
likely related to anomalies’ occurrence. We filter invariants that are broken
more than Oftall times the average number of times all the invariants are
broken, in the examined lapse of time.

(4) Invariants broken before injection filtering. Some invariants may be
broken before a fault is injected, when the system behavior is expected to
be correct. Consider an invariant that is not broken too often (thus, it is not
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filtered at step 3 ) but it is always broken before an injected fault is activated,
i.e., before the anomaly occurs. This invariant would report not occurred
anomalies, thus generating false positives, so we filter all the invariants that
are broken when no anomaly is occurring in the system.

(5) Seldom broken invariants fault-specific filtering (Sldspec). Invariants
that are seldom broken for a specific fault are filtered. Even though at step
3 invariants broken too often are filtered, the remaining ones should break
often enough to detect the forced anomaly and avoid false negatives. We
remove invariants that are broken less than Sldspec times the average number
of times the invariants are broken, in the examined lapse of time, for a specific
injected fault.

3.3 Detection

A detector implements a distance function δ, which evaluates at runtime the
distance of the actual system behavior from the expected one, and consider a
threshold τ that, when exceeded by the value of δ, triggers an alarm.

At a time t, with respect to a specific system parameter θ̂ and an input
f1(t), the detector has to compute the distance of the actual response of the
system f2(t) from the estimated response f̂2(t|θ̂). As in [6], we adopt the residual
function as a distance function: Rf1,f2(t) = |f2(t) − f̂2(t|θ̂)|. Thus, an invariant
is broken at time t, if Rf1,f2(t) > τ , where τ represents the tolerance of the
detection system.

On the selection of the value of τ heavily depends the results of the detection,
as discussed in [5]. As a matter of fact, if considering a detector with τ = 0,
invariants would be broken too often, generating many false positives; on the
contrary, a too large τ would reduce too much the number of breaks, and too false
negatives would take place. In [5], it is shown that when adopting a threshold τ
which adapts to the specific prediction, the detection appears both complete and
accurate. Specifically, we consider the prediction interval (p.i.) of the output with
respect to the provided input [9]: the invariant is considered broken if the actual
output of the system is outside the p.i. of the model’s output. This happens
if, for a certain value f1(t), the difference between the actual value f2(t) of the
system and the estimated value f̂2(t|θ̂) is larger than the standard deviation of
f̂2(t|θ̂). The standard deviation is computed as:

σ = Serr[1 +
1
n

+
(f1p − f̄1)2

∑
f2
1 − nf̄1

2 ]1/2 (1)

where Serr is the standard deviation of the model error (square root of the mean
squared error), f̄1 is the sample mean of the predictor variable (the input of the
model), and f1p a specific value of f1.

4 Case Study

In order to evaluate the feasibility and performance of the proposed approach
for invariant selection we set-up a testbed and deploy on top of it a web-based
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application with the aim of mimiking a typical online service offered, for example,
by a bank to its customers. We monitor the system to collect time series related to
several metrics. Different workloads are submitted to the system, to collect data
from different load conditions. The testbed is used to produce both a training
set, to be used for invariant mining, and a training-test set, for the assessment.
Time series are collected for both correct executions, i.e., executions where no
anomalies occur, and faulty ones, where one or more anomalies take place as a
consequence of injected faults.

Testbed — The testbed is composed of 4 servers, each equipped with an Intel
Xeon X5560 Quad-Core CPU clocked at 2.28 GHz and with 24 GB of RAM. The
system presents a standard 3-tier architecture with one of the servers (master)
hosting a centralized load balancer based on the Apache 2 Web Server and
mod cluster 2.6.0 module. The business tier hosts a JBoss AS 7.1.1. Final cluster
running an instance on each machine, one master co-located with the Web Server
and three slaves in execution on each of the other servers. The storage layer is
based on a single instance of MySQL 5.5.38 running on the master node. On
top of the JBoss cluster, we deployed a web application [10] working on both
the business tier, with a front-end web application, and on the storage tier,
interacting with the database. The testbed is monitored by means of the Ganglia
monitoring system.

Workload — We generate workloads from a fifth machine running Tsung 1.5.0
[11]. The load consists in the number of requests per second sent to the web
application. Each request involves the generation of ∼400 packets in the testbed.
We consider three load levels, in order to cover several operational conditions:
low, medium, and high. By means of a preliminary analysis, we identify the
high level, which uses almost all the resources of the system. medium and low
levels are selected by considering a load that is 2/3 and 1/3 of the high level,
respectively. The three workload levels are generated from a normal distribution
by varying the mean (μ) and the standard deviation (σ) of the connections per
second. Specifically, we consider low with μ = 5, σ = 1, medium with μ = 10,
σ = 2 and high with μ = 15, σ = 2.

Faultload — Candidate faults for injection are selected to include those that
(i) are often the cause of problems in real settings, especially after changes to
the deployment setup (e.g. where the deployment of a new application version or
the reconfiguration of an existing one may trigger some of such faults), and (ii)
that can not be easily detected through basic monitoring tools (e.g., a crashing
process that leaves a debug trace in some log). We consider faults related to
actual anomalies that can occur in processing systems and identify them on
the basis of both our direct experience on real operational datacenters, and
information drawn from scientific literature and online resources. The defined
fault model is also compliant to the well known and widely adopted taxonomy
defined by Avizienis et al. in [12]. In particular we considered the following faults:
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Table 1. Invariant filtering parameters considered as factors.

Factor Level 1 2 3 4 5 6 . . . 11 12

Oftall 0.1 0.2 0.4 0.6 0.8 1.0 . . . 2.0 4.0

Sldspec 0.1 0.2 0.4 0.6 0.8 1.0 . . . 2.0 4.0

Corrth 0.70 0.75 0.80 0.85 0.90 0.95

– Misconfiguration faults that derive from human errors caused by the wrong
configuration of a system. Configuration errors are both common and highly
detrimental, and detecting them is desirable [13]:
• SQL misconfiguration: we reduce significantly the connection pool used by

the application server to connect with the DB.
• AJP-long misconfiguration: we reduce the thread pool for the AJP protocol

(which allows the communication between the Apache web server and the
JBoss slaves) to a very small size.

• AJP-short misconfiguration: same as AJP-long misconfiguration, but we
also reduced the length of the queue associated with the thread pool.

– Reconfiguration faults, representing changes of configuration during mainte-
nance that cause unexpected failures [14,15]:
• Write permissions: we revoke write permissions to one of the JBoss

instances on its working directory.
– Denials of service faults, either malicious or not, that cause the system unavail-

ability due to the saturation of some hardware resources:
• CPU stress: we impose an abnormal CPU load on the target machine by

running a strongly CPU-intensive task.
• Memory stress: we impose an abnormal level of memory activity that

causes high memory contention on the target machine.
• Disk stress: we cause an abnormal disk access activity on the server hosting

the SQL server.
• Full partition: we cause the disk partition on the machine hosting Apache

and the SQL server to become full.
– Development faults that typically produce erratic output or software aging

phenomena [16]:
• Memory Leak : we run a process affected by memory leak that causes

the memory of the target machine to progressively saturate. The mem-
ory exhaustion in turns triggers the thrashing phenomenon.

Plan of experiments — The implemented testbed and the planned injections
allow us to obtain both correct executions, i.e., executions where no anomaly
occur, and faulty executions, where, from a certain time ta, one or more of the
considered faults are injected. These executions are used to produce both a
training set, to be used for mining and filtering the invariants, and a test set
to be used for assessing performance. Each execution for the training set lasted
on average ∼9 min (time needed to reach a steady state, where metrics can be
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collected while excluding impact from any transient effect). For the test phase,
we produced a single 90 min long test set were the system transitions among all
the possible combinations of workloads and faults.

Filtering operations are performed on the training set by considering several
values for the filtering parameters introduced in Sect. 3, considered as factors:
Corrth, for filtering correlated invariants, Oftall, for removing too-often bro-
ken invariants, and Sldspec, for seldom broken invariants fault-specific filtering.
Table 1 shows the values used in our tests. We consider a design of experiments
(DoE) [9], where the factors are the filtering parameters. The levels (i.e., the
values assigned to the factors) are in a wide range to cover several cases. As
response variables, we consider common metrics for detection assessment. Cov-
erage (Cov) is the portion of kinds of anomalies that are found by a detector.
If n kinds of anomalies occur, and the detector finds r of them, Cov = r/n.
Completeness (Cpl) is the portion of anomalies that are found by the detector
over the occurred anomalies. If o anomalies occur, the detector may find p of
such anomalies, with p ≤ o; Cpl = p/o. Accuracy (Acc) is the portion of anom-
alies correctly reported by a detector. A concrete detector finds s anomalies over
s′ ≤ s actual anomalies. Acc = s′/s. Detection latency (Lat) is the time required
by the detector to report the occurrence of an anomaly.

5 Results

In this section, we present results related to the application of the approach to
the training set and to the test set, and compare them to the common approach
of invariant mining that only filters by considering the GoF (Filtering - Goodness
of Fit filtering, discussed in Sect. 3.2). Also, we discuss how the configuration of
the filtering influences detection performance.

5.1 Training

The mining and filtering steps have been applied on the training set in order
to identify the invariants and find the best configuration of filtering parame-
ters for the system at hands. As a result of the plan discussed in Sect. 4, the
experimentation produces 1,176 outputs for each response variable; to evalu-
ate the anomaly detection performance, we also consider the F-measure (F ),
defined as the harmonic mean of completeness and accuracy: F -measure =
(2 · Cpl · Acc)/(Cpl + Acc). The larger the completeness and accuracy (ideally,
Cpl = 1 and Acc = 1), the better the detection quality of the detector, since it
avoids false positives and false negatives.

To identify the values to be used for the filtering parameters Corrth, Oftall,
and Sldspec, we use the Pareto multi-objective optimization algorithm [17]. The
algorithm returns a Pareto front with 16 combinations of the configuration para-
meters. Among such configurations, we consider the one allowing the detector
to identify all the anomalies occurring in the system. Invariant-based detection
approaches, in fact, are expected to have a large completeness given the large
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Table 2. Results of the training related to the best combination of the filtering para-
meters. Corrth = 0.85, Oftall = 1.8, Sldspec = 3.

Cpl Acc Lat F -m # inv

1.00 0.80 33.33 0.89 25

Table 3. Results of the tuned detector applied to the test set. First row: results of the
proposed approach. Second row: results without the proposed filtering.

Cpl Acc Lat F -m # inv

0.99 0.76 65.55 0.86 25

1.00 0.57 47.78 0.73 265

number of invariants that can be violated when anomalies occur [5]. Results with
this combination are reported in Table 2. They are achieved for Corrth = 0.85,
Oftall = 1.8, and Sldspec = 3.

On the training set, the invariant based approach detects all the kinds of
anomalies that occur in the system, and over all the anomalies, of all the kinds, all
are detected. The accuracy is 80%; thus, there are few false positives. Anomalies
are detected within 33 seconds.

We also observe a large reduction of the number of used invariants (around
90% of reduction) after filtering. 78 metrics are monitored, thus, the possible
invariants (considering all the combinations) are 3, 003. The GoF filtering selects
265 of these invariants, which involve all the 78 metrics. The proposed filtering
reduces the number of used invariants by about 90%, which involves only 19
metrics out of the 78 monitored. In practical terms, this implies a significant
reduction of the monitoring overhead.

Due to space limitation, we report as examples of the mined invariants the
ones that are often violated when an anomaly occurs: one relates the use of
the CPU in non user mode (cpu system metric) to the number of running
processes (proc run metric), another one relates the average size of incoming
packets (avg packet size metric) and CPU usage (cpu idle metric).

5.2 Test

The configuration of the filtering defines the invariants to be used by the detec-
tion module that we run on the test set. This allows us to assess the behavior of
the detector in the operational stage, when ground truth is available. Achieved
results are compared to the ones of the detector using not filtered invariants,
and reported in Table 3. The first row of the table reports results related to the
detector based on the proposed filtering approach. Results in the second row are
related to the detector without filtering.

The comparison of the two detectors, with and without the fault aware filter-
ing, shows that the proposed approach outperforms the detector not using the
introduced filtering. When no filtering is done, coverage and completeness are
maximum. In fact, having a large number of invariants implies there is a large
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chance that there is a violated invariant, and the anomaly is detected, whatever
its kind is. Latency is small due to similar observations: the larger the number of
invariants, the sooner one is violated and the anomaly detected. The chance that
an anomaly is erroneously signaled is large, however. Among all the invariants,
one may be broken even if there is no anomaly, generating false positives and,
then, reducing the accuracy. A result of 0.57 for the accuracy implies that out
of 100 anomalies reported by the detector, only 57 have been caused by faults,
while the remaining 43 represent false positives.

The adoption of the proposed approach significantly improves the perfor-
mance of the detector, making the approach practicable in our experimental
settings. While the completeness remains high, as expected for invariant-based
approaches (as also shown in [6]), the filtering approach proposed in this paper,
by selecting the right subset of invariants, improves the accuracy pushing it to
0.76, i.e. reducing false positive to 24% of the reported anomalies. Thus, the per-
formance improves even if less than 10% of the original invariants are adopted
(from 265 to 25), hence reducing the overall monitoring overhead. On the other
hand, the use of a reduced set of invariants slightly increases the latency to 65 s,
i.e., the anomaly is detected within one minute from the activation of the fault
causing it. Note that, since the effects of the fault may affect the system several
seconds after its injection, this is an upper bound of the latency.

Analysis of variance is then used to figure out which filtering parameters
mostly impact the results of the detection. Results show that detection mainly
depends on Oftall and Sldspec parameters, while the impact of Corrth is not
statistically significant. Specifically, the variance of coverage and completeness
is explained by Oftall for 55% and by Sldspec for 45%. variance on accuracy is
explained by Oftall for 89%.

6 Discussion and Conclusion

Invariant-based detectors discussed in the scientific literature present a num-
ber of false positives, given the high chance of invariants being violated, when
also negligible conditions change in the system. Presented results demonstrated
that the proposed invariants’ filtering approach improves the performance of
common invariant-based detectors, which remove invariants by only considering
their capacity of properly modeling the correct system behavior. The proposed
approach exploits knowledge on the faulty behavior of the system to select those
invariants that are sensible enough to be violated in the case of anomaly, thus
not causing false negatives, but not weak enough to break also when the system
is correctly behaving, producing false positives.

The achieved detector outperforms the detector not using the introduced fil-
tering. It covers all the anomalies of the injected kinds, and, over all the occur-
ring anomalies, reveals 99% of them, with an accuracy of 76%. Clearly, reported
figures are specific to the case study system, but the proposed approach is gen-
eral enough to be applied to a wide range of systems. Moreover, while many
invariant mining approaches consider application-specific monitored data, this
one uses resources’ usage information common to every processing system and
collectable with any of the existing, free and open source, monitoring tools.
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Abstract. Industrial Control Systems (ICS) play a critical role in con-
trolling industrial processes. Wide use of modern IT technologies enables
cyber attacks to disrupt the operation of ICS. Advanced Persistent
Threats (APT) are the most threatening attacks to ICS due to their
long persistence and destructive cyber-physical effects to ICS. This paper
considers a simulation of attackers and defenders of an ICS, where the
defender must consider the cost-effectiveness of implementing defensive
measures within the system in order to create an optimal defense. The
aim is to identify the appropriate deployment of a specific defensive
strategy, such as defense-in-depth or critical component defense. The
problem is represented as a strategic competitive optimisation problem,
which is solved using a co-evolutionary particle swarm optimisation algo-
rithm. Through the development of optimal defense strategy, it is possible
to identify when each specific defensive strategies is most appropriate;
where the optimal defensive strategy depends on the resources available
and the relative effectiveness of those resources.

1 Introduction

Industrial Control Systems (ICS) are typically comprised of a set of supervisory
control and data acquisition (SCADA) systems to control field actuators by
monitoring the data of industrial processes. ICS can be found in various sectors
of critical infrastructure. Disruption to such systems would lead to disastrous
damage to the plants, environment and human health [26]. To promote efficient
communication and high throughput, modern ICT technologies have been widely
adopted into ICS, which makes them vulnerable targets for cyber criminals.
ICS-CERT received 245 reports in 2014 by trusted asset owners, whilst there
are still numerous incidents in critical infrastructure unreported1.

Amongst the various cyber attacks against ICS, multi-stage Advanced Per-
sistent Threats (APT) account for roughly 55 %1, and these are also the most
threatening ones due to their long undetected persistence, sophisticated capabil-
ities and destructive cyber-physical effects to ICS. We show a typical ICS archi-
tecture adapted from [26] in Fig. 1(a). In an APT attack, the attackers initially
1 ICS-CERT: Sept. 2014 – Feb. 2015. www.ics-cert.us-cert.gov/monitors/ICS-MM20

1502.

c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 187–200, 2016.
DOI: 10.1007/978-3-319-45477-1 15

http://www.ics-cert.us-cert.gov/monitors/ICS-MM201502
http://www.ics-cert.us-cert.gov/monitors/ICS-MM201502


188 A. Fielder et al.

Fig. 1. (a) Typical ICS architecture threatened by APT attacks; (b) Simulation

gain access to the target network, then propagate through the network by contin-
uously exploiting chains of vulnerabilities of hosts, and eventually compromise
operational field devices. A canonical example of such an attack is Stuxnet [6]
acknowledged in 2010, which enabled cyber attacks to sabotage industrial plants.
Stuxnet was introduced to the network by a removable flash drive, and propa-
gated malware through the corporate and control network by exploiting zero-day
vulnerabilities of hosts. Stuxnet eventually tampered the program controlling
the field PLCs and disrupted the operation of ICS. According to the report [6]
by Symantec, there were approximately 100,000 infected hosts across over 155
countries by September 2010. Another more recent example was reported by the
German government2 in December 2014. A cyber attack breached a steel mill
through penetrating spear-phishing emails and resulted in massive damage to
the whole plant.

In the wake of the increasing cyber attacks against ICS, the notion of Defense-
in-Depth has been highly recommended as the best practice to protect critical
infrastructures by numerous reports [15,26]. Defense-in-depth provides a multi-
layer protection involving different security mechanisms such as a vulnerability
management system, advanced firewalls with DMZ, intrusion detection, secu-
rity awareness training and incident response. However, the high financial and
managerial cost make defense-in-depth impractical and hard to fully implement
[24]. Massive unnecessary efforts have been wasted on irrelevant attack vectors.
Particularly smaller companies still struggle with finding the most cost-efficient
way to deploy available controls. For this reason we look for alternative defensive
strategies, and the most optimal implementation of them.

Most of the techniques involved at each stage of an APT can generally be
defended by conventional security controls. A key question is how to allocate
defensive resources and budget across the system to establish an effective protec-
tion against APT. In particular with limited low budget, our work here produces
decision support tools to find optimal defense strategies, such as system-wide

2 SANS ICS Defense Use Case, 2014. https://ics.sans.org/media/ICS-CPPE-case-
Study-2-German-Steelworks Facility.pdf.

https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf
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evenly spreading defense (i.e. Defense-in-depth) and focused defense on criti-
cal components. Unlike conventional analysis, we novelly consider the impact
of varied cost-effectiveness models of investments on deciding the most optimal
defensive strategies, making the work more realistic and practical.

We use the notion of attacker to represent potential cyber attackers, and
defender for the security manager who needs to deploy controls to protect an
ICS. An attack graph is automatically generated by our logic-based reasoning
engine, which chains various weaknesses of a given network that can be exploited
by attackers. We model the attacker and defender as a pair of competing agents
and investigate their behaviours in a co-evolutionary process. Particle Swarm
Optimisation (PSO) [12] is adopted to aid agents in finding the most optimal
strategy to attack and defend under different circumstances. From this work, we
discover that with limited low budget, the defensive effort should be generally
focused on the critical targets rather than spreading over the system. However,
when defending the critical assets becomes very inefficient, the most optimal
strategies then favour defending other less valuable assets to form a defense-in-
depth style strategy. The paper starts with a related work section where the work
on attack modelling and agent-based co-evolutionary approaches are presented.
The approach proposed in this paper is discussed in Sect. 3, which describes the
modelling of the key elements and the development of the agent-based simu-
lation. Three case studies extracted from the CSSP Recommended Defense-In-
Depth Architecture [15] are described in Sect. 4 to demonstrate the effectiveness
of our proposed tools. Relevant results are presented in Sect. 5 and discussed in
Sect. 6. The paper concludes with a summary and discussion of further directions
of research in Sect. 7.

2 Related Work

A comprehensive introduction to the security issues of ICS is given in [26]. The
generation of attack graphs has been studied extensively in the security com-
munity, and two of the most influential generators are MulVal [20] and NetSPA
[17], both of which provide automatic generation of complete attack paths from
scanned CVE vulnerabilities. [17] further provides a way of abstracting attack
paths by classifying vulnerabilities in terms of CVE factors. Attack graphs have
been widely applied to risk analysis. Noel et al. [19] measure the overall security
of a network by simulating the propagation of multi-stage attacks and likeli-
hoods of each single attack. Ma and Smith [18] provide a risk analysis for critical
infrastructures to understand the impact of inter-dependency of CVE vulnera-
bilities on forming multi-step attack chains. This work particularly focuses on
CVE vulnerabilities with effects of code execution and elevation of privileges as
these vulnerabilities can serve as stepping-stone nodes to induce further attacks.
In this paper, we generate attack graphs by common weaknesses of ICS, rather
than specific vulnerabilities on each host. In this way, we lift our focus of defense
to a more generic class of attacks, producing a more global view of deploying
defense controls.
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Antoine Lemay’s 2013 thesis [16] presents an approach to defending SCADA
components in electrical grids from APT style attacks. The author presents
an Intrusion Detection System to protect ICS, with the aim of preventing the
attacker from developing appropriate tools for exploiting the system. A more
detailed view of the threats from APT models has been performed by Chopitea
[2], and in a game theoretic manner by Pham and Cid [21]. One area of study that
is of importance to this work is the concept of network hardening, which has been
approached by studying vulnerabilities through attack graphs [28]. By studying
the structure of networks and the vulnerabilities required to effectively exploit
system, it is possible to identify the key areas where defensive measures are most
effective, an approach that is taken in the representation of the problem in this
work. Work undertaken by Fielder et. al. [7] uses a game theoretic approach
to the optimal allocation of system administrator time to defensive tasks. The
results show that a greater emphasis of the limited administrator time should be
placed on the most valuable assets, consistent with a critical component defense
strategy. Extensive game theoretic work has been performed by Tambe and
Kiekintveld looking at optimal security decisions for real-world scenarios using
Stackelberg games. The work has covered scheduling of airport security [14],
allocation of air marshals to flight paths [27] and border control [13]. The work
has moved into cyber security, with a study of the use of honeypots [4]. While
the origins of PSO was proposed by Kennedy and Eberhart in [5], a more up to
date view of the field of PSO algorithms was presented by Poli et al. in [23],
which brought together many of the concepts developed over the previous 12
years. This overview was followed in a 2008 study by Poli [22], which identifies
the application areas for PSO. This study identifies that very little work has
gone into applying PSO algorithms to network security tasks, with only 1.3 %
of the literature covering the whole security field with some work in security
predictions [9], intrusion detection [25] and authentication [11].

3 Modelling and Simulation

The key components of the system are depicted in Fig. 1(b). We define Attacker
Profile and Defender profile to characterise attackers and defenders’ behaviours
and generate attack and defense strategies respectively. Attack strategies are
decided by the attacking goals, available resources of the attacker and possible
attack paths to launch and deploy the attack. Given an established network and
weaknesses in the network, attack paths are generated by an automatic reasoning
engine using Answer Set Programming (ASP) [10], which works similarly as
most existing attack path generators [17,20]. For defenders, defensive preference
of assets and available resource are the key to the decision making, as well as
a set of control pairs defining the behaviours to form defense strategies. The
most important part of the system is the agent-based simulation, as shown in
Fig. 1(b). Attackers and defenders are modelled as a pair of competing agents,
by which their behaviours are able to co-evolve to develop an optimal solution.
PSO is adopted to encode each candidate strategy as a particle of a swarm and
all such particles gradually move towards the best solution during each iteration
of evolution.
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3.1 Modelling and Representation

In this section, we introduce the representation of the pair of competing agents –
Attackers and Defenders, and other key components to establish the agent-
based simulation. We first represent a typical ICS architecture as a network
graph, where each host or asset is identified as a target node ti ∈ T , a valid
connection between a pair of targets is an edge e ∈ E and E := T × T . A
compromised target produces certain gains for attackers Ia : T → Z

+, while
causing certain damages for defenders Id : T → Z

−. A sequence of single-step
attacks constitutes an effective APT attack, and each single attack exploits a
weakness of a targeted host. We define all such weaknesses as a set of attack
methods M = {m1, . . . ,mn}. An attack path p is derived by attaching an
applicable attack method m to an edge, indicating a possible way to progress
the attack from one target to another. O(ti) has all outbound paths from ti. Our
reasoning engine can generate all such possible attack paths for a given network,
which altogether render an attack graph. An example of such attack graph is
given in Fig. 2(a). At each step of an APT, attackers probabilistically select an
outbound attack path to exploit next.

Definition 1. An attacker strategy a := {(O(t1), Ψ1), . . . , (O(tn), Ψn)},
where

– O(ti) = [p1i , . . . , p
k
i ], all outbound paths from the target ti.

– Ψi = {ψ1, . . . ψk}, the probability distribution over O(ti),
∑k

j=1 ψj = 1,
ψj � 0.

The key task of defenders is to find a way of deploying defense controls with
certain effectiveness to specifically combat APT-style attacks. Implementing a
control with higher effectiveness generally requires more investment. Here we
define “budget” as a general term of available resources to implement a defense
control, such as system administrators’ time [7], financial cost and other indi-
rect cost [8]. We also define a cost-effectiveness function in the general form of
efft(x) = ax

bx+c to compute the resulting effectiveness of a control at the target t
with certain investment x, where a, b, c ∈ N, ax < bx + c. The function will be
instantiated to represent various cost-efficiencies in the examples later. Given a
limited budget B, defenders need to decide the most cost-efficient way to deploy
controls. Unlike attackers who have specific targets to stage attacks, defend-
ers have to protect various targets across the network from numerous possible
attacks and also stop the formation of APT.

Definition 2. A defender strategy d := {(c1, x1), . . . , (cm, xm)} is a set of
control pairs amongst the available controls C = {c1, . . . , cm}, and xi denotes the
number of allocated budget units to implement ci, and

∑m
i=1 xi � B, where B

is the budget limit. The effectiveness of ci implemented at the target t is then
decided by a provided cost-effectiveness function efft(xi).
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3.2 Simulation

We represent the problem of the calculation of optimal strategies as a compet-
itive co-evolutionary process between an attacker and a defender. In this way
we represent the problem as a system with two competing agents that aim to
optimise their expected payoffs from either attacking or defending the system.
In order to solve the co-evolutionary optimisation problem, we have developed a
PSO algorithm. The PSO operates a number of rounds, where the attacker and
defender attempt to create best response strategies to each other’s actions. The
PSO method creates an initial set of randomised strategies, called particles, for
the attacker and the defender. The PSO algorithm explores the space of possible
solutions by moving the particles to new positions in the search space aiming
to find better solutions; this is done by applying a movement parameter to the
particle, called a velocity. The velocity of a particle is a special form of the mixed
strategy of the defender and the attacker, where the sum of all components must
equal zero. Each of the particles must be evaluated to assess its performance;
this is done by simulating the interactions between the two players. Considering
the nature of the kinds of attacks expected, the simulation represents the inter-
actions of the players over a given fixed number of time steps. During each time
step, the players have to make a series of decisions with regards to the actions
that they perform, where the outcome of those actions are scored according to
the amount of damage that successful attacks cause.

For each evaluation of the defense strategy, the defender sets a defense based
on the mixed strategy, to prevent damage from an attacker who attempts to
breach that defense over a period of time. At the start of each evaluation, the
defender assigns the whole of the available budget to the system, where each
target is assigned a portion of the budget based on the distribution defined
by the strategy. The amount of units assigned to each control is an amount
of budget used to protect the resource, with the effectiveness of the defensive
measures based on the amount invested in defending them.

An attacker attacks through the system, starting from the node labelled EXT
and attempts to advance through the network exploiting subsequent nodes until
they have exploited a vulnerability on a device with no further connections in the
network or the attack is halted by the defender. Specifically, the attacker selects
an outward path from the current node based on their strategy and attempts to
exploit a vulnerability on the connected node. If there is no defense assigned, then
the attack is successful, however, if the defender has assigned defense to the node,
then the attacker will exploit the vulnerability with probability pa > efft(v),
where pa is distributed uniformly to represent the probability a generic attacker
is able to successfully launch an attack. More advanced attacker models will be
explored in the future. efft(v) is the effectiveness of the defensive controls on
node n, with an investment of v units from the budget.

If the attacker is successful in exploiting a vulnerability, then they continue
to attack selecting a further connecting node deeper in the system. In the event
that there are no further outward connections, or the attack is halted by the
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defensive controls, then the attacker receives the maximum reward of the nodes
exploited in the attack and the defender suffers damage in line with the value of
that node.

4 Case Study and Experimental Settings

The case study is adapted from the common ICS architecture in [15,26] and
shown in Fig. 2(a). It is a typical three-zone architecture of ICS, with a Corporate
Network, a Control Network and Field Devices. The node EXT represents the
external environment. Four target nodes represent common hosts in a corporate
network and a control network respectively. The node PLC symbolises the key
control device. We collect a set of attack methods (Fig. 2(b)) from the ICS Top
10 Threats and Countermeasures [1] and Common Cybersecurity Vulnerabilities
in ICS [3]. A set of controls is given in Fig. 2(c), derived from [1,15]. The attack
methods countered by the controls are enumerated in the rightmost column of
Fig. 2(c). An attack graph for the case study is then automatically generated by
our ASP engine in Fig. 2(a). Each edge denotes a possible exploit of the system.
The control stations (ctRWs and ctWs) have direct access to PLCs, and thus all
attacks aiming to PLCs have to pass through them. These control workstations
are not connected to any untrusted network, but can be infected by other hosts
in the same network such as ctHmi and ctHist. Remote workstations (ctRWs)
used for remote maintenance are threatened by the viruses infected by other
external assets.

The cost-effectiveness functions are designed to represent a diminishing
return on investment in the security of a device. Given the nature of security,
the effectiveness of any control is restricted to eff(v) < 100%. The implemen-
tation of the cost functions represents that as more effort is put into a control,
the effectiveness of the defense that control gives is increased. At the same time
the rate at which the defense is improved is reduced. This is represented by the
notion, that the first unit of cost introduces a control and has the largest impact

Fig. 2. Case study on ICS security management: (a) An attack graph; (b) Common
ICS attack methods; (c) Common defense controls.
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Fig. 3. (a) Case study settings; (b) Cost-effectiveness functions of investments

on defense, but spending the same amount on the control again to either main-
tain or upgrade will not have the same impact. This is then logically extended
to all future iterations of an increase in budget, where these diminishing incre-
ments are best represented by a form of sigmoid function. Brief introductions to
the three cases are given in Fig. 3(a). The main differences amongst the three
cases are the application of cost-effectiveness functions for different zones, where
effcp denotes the function adopted for all targets in the Corporate Zone, effct

for the Control Zone and effd for the Field Zone. Case 1 presents a standard
ICS [26] with unique characteristics in each zone, and thus variable functions
are applied. An example of such ICS is Distributed Control Systems (DCS) that
has high requirements on timeliness, availability and limited resource, making
the defensive efforts in control and field layer less efficient. Unlike Case 1, Case 2
provides a comparative scenario where most assets are located in commercial
facilities with particular emphasis on gathering data by SCADA and hence a
uniform function is adopted for all zones. The last case captures a special sce-
nario of Case 1, where most control devices can be hardly protected (e.g. isolated
or remote distributed ICS) and massive effort is required to deploy controls in
Field Zone.

Fig. 4. Average expected system damage against the available defense budget
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To run the simulations, we fixed a number of parameters that relate to the
operation of the PSO Algorithm. The size of the swarm used was set at 100,
which was large enough to reasonably represent the search space. This is given
that the simulation happens over 50 moves per particle and for 50 generations
of competition between the two agents. The weighting values for all factors
contributing to the velocity were set at 0.05, this was set so as to allow for better
exploration of the strategy space, by not favouring a single component. The
simulation operated over 20 time steps for the attacker and defender strategies
and a particle would be evaluated 30 times to reduce variance from the non-
deterministic nature of the simulated environment. In the next section, we show
the simulation results on the optimal defense for all three cases. We analyse the
variance of the average expected damage per attack in Fig. 4 and discuss the
resource assignment on the critical component PLC in Fig. 5.

5 Results

Figure 4 shows the average expected damage per attack from an indifferent
attacker with the three cost-effectiveness models for defense. The most noticeable
result is the difference in expected damage between the uniform cost-effectiveness
and both forms of the scaled cost-effectiveness. At low budget levels the difference
in expected damage between the uniform and scaled methods is approximately
300. With more than 6 units of defense, this difference is reduced to an approxi-
mate range of 150–200. This reduction in difference is representative in a change
in policy, where the defender switches from a heavier focus on protecting the
PLC to performing a defense-in-depth strategy. By operating a similar strat-
egy to those with the scaled cost-effectiveness model, the difference in expected
damage becomes equivalent to the difference in the efficiency. With the uni-
form cost-effectiveness, we see that the first 5 units provide the most benefit of
defense. The first unit reduces the damage by approximately 450 units, with the
next 4 units reducing the damage by an average of 84 each. After 5 units, the
average net gain in defense is reduced to 10 damage per unit. In contrast, for
the scaled methods, the first unit for defense has a lower benefit, providing only
a reduction in average expected damage by approximately 110. For the scaled
model the next 4 units have a similar impact on the defense as the uniform
model, reducing the expected damage by an average of 86 each, however this
reduction is only 65 for the low cost-effectiveness model. However each unit of
defense after the fifth, reduces the expected damage by 24 for the normal scaled
and 28 for the scaled with low cost-effectiveness.

We see this change in the reduction of damage, because the effectiveness of
the defense per unit placed on a single target is lower for every unit after the
first. This means that after an initial investment to protect an asset, each further
investment has a lower impact. For the uniform model, the initial investment of
a single unit to protect the PLC is the most significant investment, with the
next 4 units able to help protect the rest of the system. Beyond this point each
additional unit is used to protect a less risky component or add defense to an
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already defended component. For the scaled methods, this is not as consistent,
since the first unit has a lower initial impact outside the assets at the corporate
level. To identify the issue surrounding the type of defense that accounts for
the optimal solutions, we need to identify the strategy of defense for the critical
component, in this case the PLC. The graph presented in Fig. 5, shows the
representation of the probability of defending PLC in the optimal solution across
each of the runs.

The uniform cost-effectiveness method shows that the first unit of defense is
almost always placed on the PLC, since there is no strategy that better defends
the system. As the number of units increases, the probability of placing defense
on the PLC decreases, but maintains the probability that at least 1 unit should
be dedicated to the PLC. From 7 units, the defense tends towards a preference of
defense-in-depth, with only 30 % of the budget being allocated for the PLC. The
remaining 70 % budget is then split amongst all other controls, with an emphasis
on the control layer. It is because with a larger budget available, it is no longer
efficient to focus all the defense on the PLC, but instead spread the defense to
limit not only the damage to the PLC, but protect more of the network.

Table 1. Comparison of strategies with a scaled cost-effectiveness and a budget of 2

ctWs ctRWs ctHist cpDB cpEmail PLC ctHmi cpWs cpServer

0.320 0.008 0.634 0.010 0.002 0.008 0.005 0.006 0.007

0.009 0.104 0.011 0.007 0.009 0.306 0.007 0.541 0.007

Unlike the uniform model, the scaled models initially reject placing the very
limited resource in a place where it has the lower potential impact, which is
at the PLC, favouring a more aggressive defense that has a higher variance.
However, we see that as the budget increases, the ability to cover the PLC with
some effectiveness is greatly increased, and so the scaled models adapt to this
and assign resources accordingly. The low cost-effectiveness scaled model assigns
on average 13 % less resources to the PLC than the standard scaled model,
this is due to the lower impact that each unit has when applied to the node,
with the initial uptake of non-incidental protection for the PLC occurring later.
While the results may show that in general the optimal strategy for each of the
cost-effectiveness strategic tested converges to 0.175 < xPLC < 0.25 with a larger
budget, the variance in those results indicates that there are a number of optimal
strategies. It is accounted for in the high variance of the results associated with
the implementation of defense on the PLC. We compare two different solutions
in Table 1, which shows two competing strategies for the defender getting the
same approximate outcome of 765. In one case minimal emphasis is placed on
the PLC, whereas the other strategy implements defense at the PLC with a
probability of 0.306 per unit of defense.
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Fig. 5. Probability per unit assigned to PLC against the available budget

6 Discussion

One of the issues is what happens if the decision maker gets the cost-effectiveness
model wrong. When defining the optimal defense, the cost-effectiveness model
dictates how much effort should be placed onto any individual asset and so over-
estimating the cost-effectiveness could prove disastrous. An overestimation could
create a scenario where the defender believes they have one cost-effectiveness
model, but in reality they are operating under a different model. From the per-
spective of the results presented in Fig. 4, that for a budget of 4, the average
expected damage for a uniform model is approximately 305, with the scaled cost-
effectiveness only able to offer the same defense with a budget of 12. This means
that in order to get the same coverage that was believed at a budget of 4, the
defender would have to invest 3 times the amount. Additionally if the defender
were to implement an optimal strategy from the uniform cost-effectiveness with
a scaled cost-effectiveness model, the average expected damage would increase
to 639, which is in the same range as the optimal strategy for the same budget
under the correct cost-effectiveness model. However, we see that there is a 109 %
increase in damage from the expected damage using the uniform model.

While we have considered the impact of not as strongly defending the PLCs
through a reduction in cost-effectiveness, the results show that the defender
should still place some emphasis on the PLC. However we know that there are
some systems that have very restricted operational capacity, mainly concerning
field controllers. To represent this within the model, we ran a special case of the
variable cost-effectiveness, where the cost-effectiveness was set at x

x+14 . With
this low cost-effectiveness, we see that the emphasis on protecting the PLC at
high levels has an average probability of 0.08, where the emphasis of the defense
is split across the rest of the devices with a higher emphasis placed on those in
the more valuable control layer.
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7 Conclusions

In this work, we have developed a model studying the cost-effectiveness of invest-
ments for defending components on a network. The model simulates an attacker
attempting to breach a system against a probabilistic defense assignment of the
defender. Using a particle swarm optimisation algorithm to simulate the behav-
iour of two agents, we have been able to identify the optimal strategy of a system
defender in an ICS environment. The results show that as the cost-effectiveness
of protecting the most vulnerable node in a network decreases, the uptake of
defense-in-depth style defenses increases.

To extend this work, we want to better represent the resources and decision
making of the attacker. In this current model, we focus on the defender and
the defense decisions, but in an APT style attack, the attacker is a more active
player than currently considered. The attacker needs to better consider the paths
and methods of defense utilised, where exploring the system is an action that is
constrained by time. To represent this a proposed extension would be to view
the transitions between nodes as an event that occurs over time, creating a
scenario, where the attacker must balance attacking the quickest paths against
the defender’s optimal strategy.

The biggest issue for further study is the real world applicability of the model.
At this stage the model has been focussed on the possibilities within a generic
architecture. This limits the usefulness of the outputs, since it is difficult to define
if the strategies are true to an actual system, as they are dependent on the cost
functions and the rewards. By extending the study to consider a real case, we
are able to better implement the payoffs and cost-effectiveness functions, raising
the reliability of the results and the advice.
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Abstract. In the last decade, the amount of cyber-attacks targeting industrial
facilities with specialized knowledge, tools and malware increased dramatically.
The wide variety of industrial IT-systems and various required expertise for
cyber-physical attack modeling is currently a challenge for interdisciplinary
research. To address the variety of systems and get a point of reference, we
merged architecture descriptions from available resources. Based on this refer-
ence architecture, we introduce attack scopes and provide exemplary attack
scenarios per scope. As modeling strategy for the introduced scopes and to
realize abstracted representations of particular industrial facility architectures, a
component-based modeling approach is proposed. The main contribution of the
presented work is a first generic attack modeling technique facilitating the
required interdisciplinary collaboration in this important field of research.

Keywords: Cybersecurity � Interdisciplinary security modeling � Attack
modeling � Industrial control systems � Supervisory control and data acquisition

1 Introduction

Stuxnet brought cyber-attacks against Industrial Control Systems (ICS) into focus of
security research and public debate. Recently a power outage was achieved by attacks
against various Ukrainian power companies impacting approximately 225,000 cus-
tomers [1]. Due to extensive reconnaissance, the attackers were well prepared and
executed the attack within 30 min. Even after restoration procedure, the workflow of
affected companies remained constrained.

Referring to a survey report from the SANS institute regarding the state of security
in control systems [2], 32 % of interviewed participants indicated that their control
system assets or network had been infiltrated. At least 44 % of them were unable to
identify the source of the infiltration. Breaches were not detected for more than a week,
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as stated by 20 % of the participants. This leads to the implication that better security
controls are strongly required for ICS. Regardless whether industrial facility or tradi-
tional enterprise, common security goals should be taken into account. Security goals
like confidentiality, integrity, availability, authenticity, non-repudiation and privacy [3]
have to be considered on a facility or company-wide level.

ICS security is an interdisciplinary research field, because cyber-physical attacks
are based on traditional cyber-attacks, but influence the real world. Due to this fact,
harm to production, process flow, industrial hardware and even human beings are
possible impacts. Interdisciplinary knowledge of involved processes is needed for
protection and prevention. Beside computer scientists, different parties like automation
engineers, electrical engineers or chemists need to work together. Generic modeling of
attacks, which is understood from all parties, might be a help for collaboration.

This paper is oriented on [4], which makes Car-to-Car communication a subject of
discussion for security considerations. We adapt the concept of assuming various attack
scenarios, subsequently analyzing them and presenting an application of selected
examples. In this context, the main contributions of this paper are: (1) a first fusion of
identified architectures in Sect. 3, (2) a 3-fold scope for attacks in Sect. 4, (3) a generic
modeling approach to describe industrial infrastructures in Sect. 5 and (4) the exem-
plary application of the suggested generic modeling approach in Sect. 6. The overall
objective of this paper is a generic attack modeling approach for industrial facilities.

2 Related Work

We identified guidelines as resource for industrial architectures from U.S. Department
of Homeland Security [5] and National Institute of Standards and Technology (NIST)
[6]. Additionally scientific papers like [7, 8] give a rudimentary overview.

The “Computer and Network Incident Taxonomy” [9] serves as a basis for a
high-level perspective to model architectures and attacks. This includes definitions for
incident, attack and event. On the contrary, attack trees are a common approach to
model attack actions [10]. Attack trees usually do not consider architectures respec-
tively specific targets and therefore may lack of completeness or become complex.

Approaches that closely related to this modeling challenge are: AutomationML [11]
and the Cyber SecurityModeling Language (CySeMoL) [12]. AutomationML is a format
for data exchange to represent communication systems. Logical and physical represen-
tations of a communication system are provided. Communications system models are
intended to exchange relevant engineering information, but are not focused on security.
However, CySeMoL is used to determine the probability that attacks on systems will
succeed. It is based on a metamodel mainly consisting of logical components to describe
computer systems. Linked attack steps and corresponding Bayesian networks are con-
sidered for probability calculations. Since the backend of the corresponding tool is not
intuitive, modifications are difficult to apply for interdisciplinary researchers. While
addressing the well-structured exchange of engineering information and the determina-
tion of attack successes, both techniques do not focus on an exchange of attack infor-
mation across specialist fields. Furthermore, CySeMoL might be too complex in its
application for the direct modeling of industrial attacks and testing purposes.

202 R. Clausing et al.



3 Industrial Facility Architecture

Facilities are built with different purposes, environmental requirements, financial
investment, equipment vendors and possibly other design influences. Hence the
architecture of one facility might differ from another facility. A reference architecture
that includes a common design is needed as a starting point for generic modeling of
attacks. We analyzed different information sources [5–8] to obtain a merged archi-
tecture that addresses the variety. Based on these documents, we created a reference
architecture for networked industrial facilities (see Fig. 1).

The facility is accessed through the internet or other external, dedicated commu-
nication paths. The external zone has the highest variety of risk [5].

Layer 6 and 5 represent a common enterprise network. These layers are used for
corporate communication and services. Common systems are e.g. E-mail servers, DNS
servers and IT business system infrastructure. External accessible servers are placed in
the Demilitarized Zone (DMZ) to protect inner layers. The network segmentation is
often achieved by firewalls. Typically two firewalls from different vendors are
deployed for higher security requirements.

The segmentation of Layers 6 and 5 is similar for Supervisory Control Network and
its DMZ. Layer 3 is important for continuous monitoring and managing of the Control

Fig. 1. Reference architecture for networked industrial facility; fusion of architectures in [5–8]
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Network. Operational support devices, engineering management devices, data acqui-
sition servers and historians are located here.

Layer 2 consists of Programmable Logic Controllers (PLCs), Remote Terminal
Units (RTUs) and Human Machine Interfaces (HMIs) which are connected to sensors
and actuators of Layer 1. Sensors and actuators are basic input/output devices that are
reading data from physical processes and affecting these physical processes based on
control decisions of controllers (e.g. PLCs). Modern control network devices support
TCP/IP and other common protocols [5].

Layer X is only described in [5]. Devices such as Safety Instrument Systems are
placed here. These devices are able to automatically control the safety level of
sensors/actuators. This layer is conceptually air-gapped, but due to TCP/IP support of
new devices, a connection to Layer 2 is possible for purposes like remote monitoring
and redundancy support.

It should be noted that the layer model (also zone model) of a facility might be
violated through various design issues. Some of them are illustrated in Fig. 1 like direct
external connectivity to Layer 4, an optional connection of Safety Instrument Systems
with the Control Network or the connection of HMIs to Layer 2 and 3.

In Sects. 5 and 6, we want to introduce modeling approaches to model attacks on
complex architectures as proposed and summarized in Fig. 1.

4 Attack Scopes

As a starting point for a classification of attacks, we divide the scope of attacks into
facility-centered, communication-centered and entity-centered. Exemplary attack sce-
narios (AS) per Attack Scope are presented in the following subsections. Thereby, we
demonstrate that attacks of similar type may occur on each scope with different
characteristics.

Related to the proposed scopes, the terms intra-structural and inter-structural impact
are defined as follows: If an attack affects only the target itself, it has an intra-structural
impact. Therefore no other scope is part of the impact. For an inter-structural impact the
attack target needs a relation with other parts of a scope or another scope. The relation
leads to at least one additional target (passively attacked).

4.1 Facility-Centered Scope

The first scope represents the “big picture” and covers the overall functionality of a
facility. A systematical description of the facility structure in its design, implementation
and configuration including possible entry points, network connections, installed
devices and control flows is considered. Expertise about the facility and its processes is
needed to spot possible vulnerabilities. Exploitation leads to either intra-structural or
inter-structural impact.

Intra-structural impact depends on attacks on communication and entities (see
Sects. 4.2 and 4.3) respectively their related relevance for processes. The impact is
limited to the facility itself. However, inter-structural impact depends on the role of the
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specific facility. Due to the assigned role, inter-structural impact arises for external
processes and infrastructures (outside world).

The role of a facility is assigned by its economic and societal importance. If the
correct function of a facility is essential, the term critical infrastructure is used. In [13]
multi-order dependencies between multiple critical infrastructures are examined.
Examples for attacks scenarios in scope of a facility are described below.

• AS1: By synchronizing attacks on multiple power plants the attackers achieve a
cascading power outage (inter-structural impact). For this result, the attackers make
use of the remote access of plants. In the next step they infect selected systems and
execute malicious operations on Layers 2–4. The attacks lead to malfunction of the
plants (intra-structural impact) [1].

• AS2: By using public information, like the website of a facility owner, the attackers
create a spear-fishing campaign which looks almost like the corporate design. They
are running the campaign against public available Email addresses (Layer 5) to get
credentials for remote access.

• AS3: Attackers are limited to on-site information like visible doors/gates, public
areas and their usage through observed behavior. An attacker recons the used public
transports to the facility or commissioned service companies. This information is
used for Social Engineering.

4.2 Communication-Centered Scope

A facility contains various communication relations as shown in Fig. 1. Communica-
tion is either bidirectional or unidirectional. Unidirectional communication is realized
by software (e.g. firewall) or hardware (e.g. data diodes [14]). The communication
needs a medium as physical base. Protocols define how communication takes place,
typically divided into the protocol specification and a particular implementation.

Impact arises due to malicious interactions on communication and control channels.
Typically, the terms Alice and Bob are used to represent sender/recipient and Malory is
used for the attacker. Exemplary attack scenarios are accordingly described as follows.

• AS4: After getting access to the Supervisory Control Network (Layer 3), Malory
causes a denial of service by sending a STOP command to PLCs (Layer 2) [15].

• AS5: After getting access to Layer 3, Malory uses the IP address of Alice to send
TCP/IP packets to Bob (spoofing). The reset-flag of TCP is set for these packets.
Thereby every TCP connection between Alice and Bob is interrupted [16].

• AS6: After getting access to Control Network (Layer 2), Malory sends out bits with
value 0. Without knowing what he/she is doing asynchronous transmissions
between PLCs are disturbed. This may happen because synchronization time of 33
bits with the idle-bit value 1 shall be needed at minimum before new telegrams are
accepted [17].
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4.3 Entity-Centered Scope

The third scope is focused on single entities and the control flow/processing inside of
an individual entity. Processing entities are for instance servers, workstations, network
devices, PLCs and actuators. Rooms and areas are considered as housing entities,
which host processing entities. Processing entities are composed of multiple hardware
components, an operating environment and running applications. Processing entities
are communicating with each other (see Sect. 4.2). Exemplary attack scenarios that are
targeting entities are described below.

• AS7: The attacker knows that the engineering software at control workstations
determines user privileges based on project-file fields that lack integrity protection.
After gaining access to a project-file, the attacker modifies the permissions for
device users. A user is tricked to upload the project file to the device to activate new
permissions [18].

• AS8: The engineering and control software utilize pre-defined credentials that allow
administrative access to the database server at Supervisory Control Network. An
attacker uses this knowledge to gain illegitimate access [19].

• AS9: Due to missing integrity control, the attacker is able to write arbitrary bits to
random storage positions. This leads to a malfunction of the entity.

5 Component-Based Modeling

The modeling of an entire infrastructure like the one proposed in Sect. 3, which allows
the mapping of complex attacks (see Sect. 4) is a challenge for the cyber-physical
security community. A uniform modeling approach for all parties is needed. We
propose an approach that is derived from Components that are used as part of the
Unified Modeling Language (UML) [20]. The concept was extended by influences of
Computer and Network Incident Taxonomy (CNIT) which was proposed in [9] and
also used in [4]. CNIT differentiates between physical and logical attacks. We are
adapting this for Component-based Modeling. Formal notion is also utilizable for
modeling by using UML as a base. The basic elements for Component-based Modeling
are introduced in this section.

An Entity is an organizational unity for the Entity-centered Scope. Therefore an
Entity is either physical (e.g. room, hardware) or logical (e.g. operating system, ser-
vices). The initial Entity constitutes the root Entity. It cannot be part of any other
Entity. A facility itself might be the root Entity. A Physical Entity may contain other
Logical Entities, but not vice versa. Logical Entities can contain other Logical Entities.
The same goes for Physical Entities. An example is given in Fig. 2.

An Interface is needed for communication with other Entities. Each Entity may
have none, one or multiple Interfaces. Each Physical Interface is assigned to a Physical
Entity. The same goes for Logical Interfaces. Interfaces are limited to either transmit
(OUT) or receive (IN) data for a unidirectional communication. Atomic operations
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independently from context are used for uniform naming: read and write. For bidi-
rectional communication INOUT interfaces are used. Signal transformation ability
might be implemented for analog to digital or digital to analog. Interfaces are connected

by Carrier (transmission medium) to other interfaces. Figure 2 visualizes the con-
nections between two interfaces.

A Protocol is a processing specification on how to use Interfaces and Carriers. It
consists of two parts: a specification and its concrete implementation. Protocol
implementations are encapsulating the access to interfaces. The simplified interaction
of a user program with a protocol implementation is shown in Fig. 3.

Furthermore, we take into account that Humans are interacting with Entities.
Humans read/write on Physical Interfaces or interact remotely via other Humans with
Physical Interfaces (e.g. Social Engineering). Physical Interfaces are linked to Logical
Interfaces to access Logical Entities.

Considering all introduced components Data is stored on Physical Entities, pro-
cessed by Logical Entities, transmitted via Carriers in an encapsulated format or
directly exchanged on interfaces. Accounts are special types of Data due to their
meaning for authenticity. By processing account Data a logical representation of a
Human is temporary created (see Fig. 3).

Fig. 2. Physical Entity with capsuled Logical/Physical Entities (left) and interfaces of Entities Ei

connected via Carriers (right)

Fig. 3. Utilization of Protocol (left) and Human with its logical representation (right)
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6 Application of Component-Based Modeling

In order to demonstrate the modeling capabilities of the introduced approach, this
section is subdivided into the modeling of single computer systems, connections
between systems and connections between facilities. Finally, a simplified application
on an exemplary attack scenario is provided.

6.1 Modeling of Computerized Systems

First, we want to give a modeling example for a generic Entity to demonstrate the
applicability of the introduced Component-based Modeling. For this purpose the
nesting of multiple Physical and Logical Entities (PE, LE) is shown in Fig. 4. For the
sake of simplicity the internal communication is not visualized. Implicit communica-
tion takes place vertically – from Application-Environment to Hardware-Assembly and
vice versa.

In Fig. 4 common components of a computer system are consolidated. The
structure is oriented on the design of Linux [21] and the model for computer systems by
Tanenbaum [22]. The figure is outlined bottom-up as follows: Starting with basic
hardware assembly like CPU, memory and network interface card.
Hardware-dependent implementations are used to initialize and access the hardware
(e.g. BIOS). Hardware-independent programs (e.g. TCP/IP) are installed to use hard-
ware on an abstracted level. User programs and services access system libraries for
processing at application layer respectively for accessing of hardware through the
layers. A root Entity comprises all Physical and Logical Entities.

Fig. 4. Example for generic Entity (e.g. workstation, server, PLC or related systems)
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While the given example might be correct for office desktops and regular servers
(Layers 4–6), specialized industrial systems might look different in practice. For
instance, Siemens SIMATIC PLCs are composed of modular hardware. The setup
consists of a CPU module and an optional CP module as an external network interface.
The CPU module itself consists of an internal network interface as well [23, p. 33].

6.2 Modeling of Systems Interconnection

The communication between two systems, represented by Physical Entities, requires an
Interface per Physical Entity and a Carrier connected to these Interfaces. Humans might
control these Entities directly via equipment like displays (OUT), keyboards (IN) or
touchscreens (INOUT). Accounts are the logical representation within Physical Entities
and might be used for communication as well. This context is illustrated in Fig. 5.

According to the Open Systems Interconnection model (ISO OSI model) [24], a
Protocol for the communication consists of 7 layers. For instance, web browsing is
subdivided into HTTP (OSI layers 5–7), TCP (OSI layer 4), IP (OSI layer 3) and
Ethernet (OSI layer 1–2). Values that are specified for these layers are encapsulated in
Data, which is transferred over the Carrier.

6.3 Modeling of Facilities Interrelationship

In case of an attack, attackers might execute malicious operations through existing
Carriers. These operations influence Entities within industrial facilities. For physical
impact, a change of actuators behavior, and thereby the controlled processes, are the
objective of an attack. Figure 6 depicts this relation.

A change of actuators behavior might lead to intra-structural impact within par-
ticular facilities, if actuators influence other actuators, e.g. they explode. However,
malfunctions might lead to inter-structural impact between multiple facilities as well.

Fig. 5. Example for a communication between two Humans/Physical Entities

Fig. 6. Example for relationships between industrial facilities and external world
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6.4 Modeling of Selected Attack Scenario

For the demonstration of applicability of the modeling approach, the attack scenario
AS1 was selected (see Sect. 4.1). The attack scenario is based on an alert notification
from Industrial Control System Cyber Emergency Response Team (ICS-CERT) [1].
Public vulnerability or alert notifications usually are not detailed, among other things,
to avoid copy-cats. Due to that, some intermediate attack steps are missing in the
modeled attack scenario. We used the published information in context with the pro-
posed reference architecture in Fig. 7. Due to the complexity of individual Entities (see
Fig. 4), we limited the modeling to relevant Entities, that were part of the attack.

Initially the attackers executed a phishing attack with available Email addresses.
A Trojan horse was embedded in an attachment. Hence desktop computers at Layer 5
were infected to spy out credentials for VPN access to Layer 4. Subsequently, the
credentials were used to connect to Layer 3 (Supervisory Control Network) as
authorized user. Next, unspecified critical Entities were infected by malware. The
malware was used to delete selected files and corrupt the master boot record (MBR).
Thus these critical Entities went inoperable. As a consequence essential supervisory
control needed for Layer 2 was interfered (intra-structural impact). The incident hap-
pened at multiple power plants in parallel. This caused a power outage impacting
customers (inter-structural impact). The given model characterizes the selected attack
scenario. An abstraction is realized to support interdisciplinary collaboration.

Fig. 7. Example of component-based modeling using attack scenario AS1 (see Sect. 4.1)
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7 Conclusion

The overall objective of this paper is to enable the generic modeling of attacks against
industrial facilities. We introduced 3 scopes of attacks (facility, communication, entity)
and presented exemplary attacks scenarios within these scopes. In consideration of the
scopes and common industrial architectures, we also presented a first generic modeling
approach. An incident, which recently took place, was used to demonstrate the
application of the suggested approaches.

The modeled attack scenario highlights the importance of inter-structural and
intra-structural impact. While Component-based Modeling might help to trace back
vulnerabilities and facilitates collaboration between specialist fields, more evaluation
needs to be done to ensure sufficient modeling capabilities. At this stage, it was found
that interactions with Entities are not specific enough, e.g. missing chronology of
individual attack operations. A notation to describe individual read and write operations
is needed. Furthermore, physical impact of Entities like PLCs is unspecified, e.g. status
of actuators. Linked states of Entities could lead to statements about the overall facility
status, which is especially important for the analysis of inter-structural impacts.

Models are also further improvable by considering attack contexts and the
knowledge of attackers per attack scope, since this is directly related to the required
skill, capabilities and the outcome of an attack. A partitioning of the attackers
knowledge and the context of attacks are proposed in [25].

Due to the overall achieved capability for a generic architectural modeling,
Component-based modeling is a starting point for potential improvement. This
approach outlines the possibility to make use of engineering information, e.g.
AutomationML, and a supportive role for more complex approaches, e.g. CySeMoL.
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Abstract. Modern industrial control systems become increasingly inter-
connected and rely on external networks to provide their services. Hence
they become vulnerable to security attacks that might directly jeopar-
dise their safety. The growing understanding that if the system is not
secure then it is not safe calls for novel development and verification
techniques weaving security consideration into the safety-driven design.
In this paper, we demonstrate how to make explicit the relationships
between safety and security in the formal system development by refine-
ment. The proposed approach allows the designers to identify at early
design states mutual interdependencies between the mechanisms ensur-
ing safety and security and build robust system architecture.

1 Introduction

Modern industrial systems rely on novel information and communication tech-
nologies to supervise complex control systems and infrastructures. Increasing
reliance on networking not only offers a wide range of business and technolog-
ical benefits but also brings in imminent security threats. Exploiting security
vulnerabilities might result in loss of control and situation awareness directly
threatening safety of human lives. Therefore, we need to create the techniques
that facilitate systematic analysis of safety and security interdependencies.

In this paper, we propose a formal approach to integrating security consider-
ation into formal development of safety-critical systems in Event-B [1]. Event-B
is a rigorous approach to correct-by-construction system development by refine-
ment. Development typically starts from an abstract model of most essential
system functionality and properties, e.g., safety. In the refinement process, the
abstract model is transformed into a detailed specification explicitly representing
the behaviour of system components, occurrence of faults, and fault tolerance
mechanisms introduced to cope with components failures and ensure safety.

The refinement process allows us also explicitly represent the impact of secu-
rity failures and identify their impact on safety. Proofs – the main verification
mechanism of Event-B – may be used to guide the process of identifying the
security requirements derived from the system safety goals.
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 213–225, 2016.
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In this paper, we generalise the experience gained in two modelling exper-
iments. Both developments aim at supporting an integrated reasoning about
safety and security in the Event-B refinement process. While arriving at the
same result, the approaches adopt different refinement strategies. In the first
case, refinement and constraints derivation is driven by the safety case construc-
tion. In the second case, the refinement process focusses on explicitly representing
the data flow ad deriving the required constraints from verification of a closed-
loop system model. In the industrial practice, the strategy that better fits the
adopted development process can be chosen.

The approach helps us to perform an integrated analysis of system safety
and security at a rather detailed architectural level and hence allows to capture
the dynamic nature of safety and security interplay, i.e., analyse the impact of
deploying the fault tolerance and security mechanisms on safety assurance.

The paper is structured as follows. In Sect. 2 we briefly describe our formal
framework – Event-B. Section 3 introduces the general idea behind our formal
reasoning about safety – formal derivation of the safety and security constraints
from the safety goals. In Sects. 4 and 5 we present two different approaches
allowing us to derive these constraints by refinement in Event-B. In Sect. 6 we
discuss our achieved results and overview the related work.

2 Background: Event-B

Event-B [1] is a state-based framework that promotes the correct-by-construction
approach to system development and formal verification by theorem proving.
In Event-B, a system model is specified as an abstract state machine [1]. An
abstract state machine encapsulates the model state, represented as a collection
of variables, and defines operations on the state, i.e., it describes the dynamic
system behaviour. A machine also has an accompanying component, called con-
text, defining user sets, constants and their properties given as model axioms.

A general form for Event-B models is given in Fig. 1. The machine is
uniquely identified by its name M . The state variables, v, are declared in the
Variables clause and initialised in the Initialisation event. The variables are
strongly typed by the constraining predicates I given in the Invariants clause.

Machine M
Variables v
Invariants I
Events

Initialisation
evt1
· · ·
evtN

−→
Context C
Carrier Sets d
Constants c
Axioms A

Fig. 1. Event-B machine and context
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The invariant clause might also contain other predicates defining essential prop-
erties (e.g., safety invariants) that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is a list of the local event variables, and the guard
Ge is a state predicate. The body of an event is defined by a multiple assignment
over the system variables, semantically represented by the next-state relation Re.
Later on, we will rely on two kinds of concrete assignment statements: deter-
ministic ones, in the standard form x := E(x, y), and non-deterministic ones,
represented as x :|Pred(x, y, x′). In the latter case, the variable x gets updated
by some value x′ related to the initial values of x and y by the condition Pred.

The guard defines the conditions under which the event is enabled, i.e., its
body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

If an event does not have local variables, it can be described simply as:

e =̂ when Ge then Re end.

Event-B employs a top-down refinement-based approach to system develop-
ment. Development typically starts from an abstract specification that nondeter-
ministically models essential functional requirements. In a sequence of refinement
steps, we gradually reduce nondeterminism and introduce detailed design deci-
sions. In particular, we can add new events, split events as well as replace abstract
variables by their concrete counterparts, i.e., perform data refinement.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demon-
strated by discharging a number of verification conditions – proof obligations.
For instance, to verify invariant preservation, we should prove the following
formula:

A(d, c), I(d, c, v), Ge(d, c, x, v), Re(d, c, x, v, v′) � I(d, c, v′), (INV)

where A are the model axioms, I are the model invariants, d and c are the
model constants and sets, x are the event’s local variables and v, v′ are the
variable values before and after event execution. For more information, see [1].

The Rodin platform [8] provides an automated support for formal modelling
and verification in Event-B. In particular, it generates the required proof oblig-
ations and attempts to (automatically or interactively) discharge them.

3 Formal Reasoning About Safety

The top-level safety goal of many safety-critical systems is to keep some safety
parameter within the predefined boundaries. Let p real correspond to the phys-
ical value of such a parameter. Then the safety invariant can be formulated as

p crit low ≤ p real ≤ p crit high.
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Fig. 2. Generic control system

The safety goal is usually achieved by changing the state of the actuator that
influences the value of p real. A typical architecture of a control system is shown
in Fig. 2. The controlled parameter can be directly measured by the sensor Sensor
or computed on the basis of the alternative (probably indirect) measurements
obtained from Sensor alt. The parameter is controlled by changing the state of
the actuator Actuator or its spare Actuator alt.

We are considering a networked control system. It means that both sensors
and actuators are linked with the controller by the corresponding communication
channels that could be possibly vulnerable to security attacks.

Let act be a variable modelling the state of the actuator. It can be assigned
the values decreasing and increasing reflecting the status of the controlled
parameter. For instance, if the parameter p is a temperature and the actuator is
a heater, the values decreasing and increasing correspond to the heater being
switched off and on correspondingly. Such a behaviour is abstractly modelled by
the specification Controller given in Fig. 3.

Fig. 3. Specification of Controller

The variable phase defines the interleaving between the events env, modelling
the changes in the environment, est, modelling the controller estimation of the
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Fig. 4. Decomposition of the top level safety goal

parameter p using the abstract relation estim, and the events modelling the
control actions – act dec, act inc, or act skip. When the variable phase obtains
the value cont, one of the events act dec, act inc, or act skip becomes enabled.
They represent the commands issued by the controller to the actuator.

Note that the estimated value p is not necessarily equal to the measurements
produced by the sensor that monitors p real. In our model, p is an abstraction
representing the controller’s “perception” of the environment that depends on
the presence of accidental and malicious failures. The model invariant postu-
lates that the actuator is set to the decreasing state when the parameter p is
approaching the critically high value and vice versa for the lower limit.

Our specification relies on three groups of constraints:

Group 1: Validity of the critical parameter estimate
A1. The value p used by the controller at each cycle as an estimate of the value

of the critical parameter is sufficiently close to the real physical value
p real of the parameter, i.e., |p − p real| ≤ Δ for some fixed constant Δ;

Group 2: Correctness of the controller logic
A2. p high is calculated so that p high + Δ + max increase per cycle ≤

p crit high;
A3. p low is calculated so that p low−Δ−max decrease per cycle ≤ p crit low;
A4. When p is greater than p high then the controller always sets the actuator

to the state decreasing;
A5. When p is less than p low then the controller always sets the actuator to

the state increasing;

Group 3: Correctness of controller command implementation
A6. The actuator receives the command from the controller once per cycle

(period);
A7. When the controller sets the actuator to the state decreasing then the

value of p real decreases (or stops increasing) with the passage of time,
i.e., act = decreasing ⇒ p realc ≥ p realc+1, for any system cycles c
and c + 1;
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A8. When the controller sets the actuator is in the state increasing then the
value of p real increases (or stops decreasing) with the passage of time,
i.e., act = increasing ⇒ p realc ≤ p realc+1, for any system cycles c and
c + 1.

These constraints allow us to demonstrate that the controller invariant
implies the safety invariant, i.e., the system maintains p real within the given
safety boundaries. Therefore, argument about system safety – a safety case –
can be constructed by supplying evidences that these constraints are satisfied.

A safety case is often described in the Goal Structuring Notation [6] – a
graphical notation explicitly representing how goals (the claims about system
safety) are decomposed into subgoals until the claims can be supported by the
direct evidences. A fragment of the safety case depicting the decomposition of the
top goal according to the proposed groups of constraints is shown in Fig. 4. Here
rectangles depict goals, while parallelograms contain decomposition strategies.

In this paper, we aim at demonstrating how formal refinement-based
development allows us to systematically construct the evidences justifying safety
subgoals G2–G4, shown in Fig. 4. Indeed, Event-B allows us to introduce the con-
straints on the constants as the axioms, while proofs of the invariant preservation
guarantees the correctness of the controller actions.

The specification Controller and the associated proofs allow us to justify
achieving the goal G3, as shown in Fig. 5. To justify G2, we need to explicitly
define a procedure for computing p estimates in the presence of non-malicious
and malicious faults. To address G4, we should investigate how faults might
cause deviations in implementing of the controller actions. In both cases, we
need to explicitly represent the system architecture and investigate the impact
of security failures on system safety.

In this paper, we describe two experiments with formal development. Both
approaches can be used to arrive at a detailed model of the system by refinement,
with all the necessary system and environment constraints and assumptions

Fig. 5. Decomposition of the goal G3
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explicitly defined. The first approach relies on incremental derivation of the
networked architecture by refinement. The development of the model proceeds
simultaneously with that of the safety case. Verification of refinement allows us
to derive safety and security constraints required to justify the safety goals.

The second approach starts by introducing the entire networked system archi-
tecture. Due to non-deterministic modelling of the component behaviour, the
initial model is severely under-constrained. The subsequent chain of the refine-
ment steps introduces the explicit restrictions on the component behaviour as
well as new assumptions (axioms) about the environment for specific system
operating modes. The final refinement step produces the model sufficiently con-
strained to prove the system safety invariant. In the next sections we outline
both approaches and then discuss the lessons learnt from our experiments.

4 Incremental Derivation of Safety and Security
Constraints by Refinement

In our first approach, we start from the abstract specification given in Fig. 3 and
unfold the system architecture together with the associated communication links
by refinement. To explicitly represent communication between the system com-
ponents, we have to explicitly define the states of the communicating components
at different stages of data transmission. Such a modelling approach allows us to
represent the impact of the security failures by their effect on the components.

Let us present a generic pattern for modelling two communicating compo-
nents called data producer and data consumer. If the components are connected
by a reliable non-compromised communication channel then data transmission
results in copying the data from the output buffer of the producer to the input
buffer of the consumer. If a security failure occurs during transmission, the pro-
duced data would typically differ from the consumed data. In the context of the
control systems, it is relevant to consider the effect of a spoofing producer, data
tampering and DOS (or, in general, channel unavailability). The specification of
the producer-consumer arrangement under different conditions is given in Fig. 6.

Fig. 6. Specification of the ProducerConsumer model
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The variables p out and c in model the output buffer of the producer and the
input buffer of the data consumer respectively. The constant NIL represents an
empty buffer. The variable state indicates whether the system is under attack.

Since we prevent overwriting the data by the producer before they are con-
sumed, the invariant states that, if the system is not under attack, the data
received by the consumer is not altered by the channel, i.e., our invariant
abstractly defines the properties of the authenticated link.1

In the cases of spoofing and tampering, upon completion of the data trans-
mission, the value stored in the input buffer of the consumer differs from the
one in the output buffer of the producer. Finally, in the case of the channel
unavailability, the input buffer of the consumer does not receive any data.

In our specification, the variable state represents the outcome of secu-
rity monitoring. If the system resources permit, encryption or message-
authentication codes are used to ensure security of critical communication. In
general, security monitoring relies on anomaly detection including checks of well-
formedness of data packets, deviations in response time or periodicity, etc.

Our ProducerConsumer model defines a generic specification pattern that can
be instantiated to model communication in networked control systems. We will
rely on it to derive the constraints allowing us to justify the goals G2 and G4.

Let us first focus on the goal G2 and consider a simple case – the sensor
monitoring p is fault free and the controller uses the measurements produced by
the sensor as the estimate of p. The sensor plays the role of the data producer
and the controller is the data consumer.

By refinement, we introduce a model of the sensor and sensor-actuator com-
munication link. To prove the required safety properties, we need the constraint
explicitly stating that the sensor imprecision is acceptable, i.e., sen δ ≤ Δ. Also,
we should guarantee that the introduced channel security monitor detects secu-
rity failures and the controller does not use corrupted data as a p estimate.
Finally, we have to ensure that the controller does not ignore a corrupted value
but triggers error recovery and switches to an alternative mode of estimating p.

The formal modelling allows us to formulate a strengthened version (refine-
ment) of the general condition for ensuring data validity: for data used in calcu-
lating the critical parameter p, the source of data should be authenticated, the
channel should guarantee data integrity (no data alternation) and high availabil-
ity. Moreover, error detection is triggered if a security failure is suspected. The
generic pattern of the corresponding safety case fragment is shown in Fig. 7.

Similarly to a security failure, a (non-malicious) sensor failure should be
detected and error recovery triggered. The detection of a sensor failure relies
on finding a discrepancy between the expected and received measurements of
p. In case the link between the sensor and the controller is authenticated, the
controller can assume that the deviation is caused by a sensor failure. In another
case, both accidental and malicious faults could be assumed. For instance, if the
sensor readings are accompanied by the time stamp, the outdated time stamp

1 Due to a lack of space we present a simple model of communication. A more elabo-
rated model similar to [5] can also be used.
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Fig. 7. Decomposition of the safety goal

would signal about a sensor or communication failure; if the value is outside of
the feasible range, either the sensor failed or data were tampered.

Upon detection of a failure, the controller ignores the obtained measurement
and relies on the (retained) last good sensor value to compute p. The failure is
initially considered transient. If within a certain interval of time the controller
starts to receive correct readings, the normal system operation is resumed.

In the next refinement step we introduce the additional abstract function
last good estim to model this procedure. The constraints imposed on this func-
tion require that the imprecision associated with the function after k cycles does
not exceed Δ. Essentially, this restricts the number of cycles for which it is safe
to treat the failure as a transient one.

If the system fails to recovery within the predefined number of cycles then the
failure is considered permanent. In this case, the system should reconfigure, e.g.,
the controller should start to rely on the measurements produced by Sensor alt.

To ensure validity of the estimate in this mode, we recursively apply the safety
case pattern shown in Fig. 7. Essentially, we should verify that the imprecision
of measurements obtained by reliance on Sensor alt is less than Δ and the data
link between the controller and Sensor alt is reliable and non-compromised.

Finally, let us discuss the fault tolerance and security constraints that should
be introduced to justify achieving the goal G4. A similar type of reasoning
demonstrates that spoofing identity of the controller or tampering the controller
commands can directly lead to a violation of safety. The absence of controller
commands due to a communication failure or an actuator failure would also
breach safety invariant. Therefore, we should guarantee that the communication
link between the controller and the actuator is secure and reliable and, in case
of an actuator or a communication failure, the system switches to Actuator alt.

For each of the considered modes, we build the corresponding fragment of the
safety case and derive constraints justifying G2 and G4. Our modelling allows to
explicitly demonstrate the interplay between safety and security requirements:
whenever the mode is changing and system switches to the use of different com-
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ponents in the assessment and control of the critical parameter p, higher security
requirements should be imposed on the corresponding communication links.

5 A Data Flow Driven Refinement Approach

In the second experiment, we introduce an abstract representation of the system
architecture already in the initial specification. To achieve this, we define the data
flow in the control cycle and specify how the value of the controlled parameter is
“perceived” by different components. Thus we consider its four distinct values:

– p env – the current value of the parameter p in the environment;
– p sensed – the value of p as read by Sensor. It can be affected by the sensor

imprecision and sensor or security failures;
– p sensed alt – the value of p as read by Sensor alt ;
– p cont – the value of p as received by Controller. It can be additionally affected

by the communication channel corruption, message loss or other failures as well
as security attacks such as tampering.

The abstract system model enforces the control and information flow between
the system components. While the control flow is quite strict, the data trans-
formations within the system components are very loose, i.e., non-deterministic.
Such a style of modelling allows us to specify the effect of accidental and mali-
cious failures on the data flow quite easily. In the refinement process, we will
focus on specific system components and consider different cases of their behav-
iour – the nominal fault-free behaviour as well as the behaviour in the presence
of failures or attacks. As a result, more and more assumptions and constraints
on the environment will be explicitly formulated.

Once sufficient knowledge is added into the refined models, we can introduce
the notion of operational modes to model particular combinations of compo-
nent states and system reactions. This also allows us to formulate and prove
safety invariants that hold in particular modes and with specific, explicitly stated
system constraints and assumptions. Below we briefly outline the refinement
process.

In the initial model we create an abstract architecture of the modelled sys-
tem according to Fig. 2. The model structure is given on Fig. 8. The variable
phase is used to enforce the pre-defined cyclic execution order Env → Sensor or
Sensor alt → Transfer to cont → Controller → Transfer to act → Actuator or Actu-
ator alt → Env. Here Transfer to cont and Transfer to act model the respective
communication channels to the controller and actuators.

In the first refinement step, we model the nominal and abnormal behaviour of
sensors and actuators. As a result, each of the abstract events Sensor, Sensor alt
and Actuator, Actuator alt gets refined by several different versions, reflecting
the cases when, e.g., a sensor works as nominally intended or fails thus produc-
ing possibly arbitrary values. Then we refine the model of the communication
channels by considering the cases when the sent value is successfully transferred,
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Fig. 8. The machine M0

tampered or lost. As a result, the abstract Transfer to cont and Transfer to act
events are refined by the respective three concrete versions.

Our further refinement steps introduce the controller logic and model how
the environment is subsequently affected by the actuator value(s), i.e., define
dependencies between the actuator state and the expected range of p env value.

Our next goal is to show that, under the defined constraints and conditions,
the system functions properly (by reacting to the environment changes accord-
ing to the controller logic), consequently satisfying the essential system property
of maintaining the environment parameter(s) within the given safe boundaries
p low crit..p high crit. Since we are modelling all possible combinations of nom-
inal and abnormal system conditions to achieve this, we structure the system
behaviour using the operational modes an derive the conditions and constraints
that are sufficient to guarantee the aforementioned properties in each mode.

For instance, in the nominal mode, we can rely on the communication chan-
nels and the absence of failures in sensors and actuators. This allows us to
actually prove a number of system properties as system invariants, e.g., we can
show that in this mode the difference between p env and p cont never exceeds
sen delta within the same cycle. We prove the following system invariant:

phase ∈ {CONT, TO ACT,ACT,ENV } ∧ mode = NOMINAL ⇒
p cont ∈ p env − sen delta..p env + sen delta

Also, we can prove correctness of the controller logic by the following invariants:

mode = NOMINAL ∧ p cont > p high ∧ phase = ENV ⇒ act status = decreasing

mode = NOMINAL ∧ p cont < p low ∧ phase = ENV ⇒ act status = increasing

With several additional constraints on the environment model and system
behaviour for the nominal mode, we can finally prove the system safety invariant

mode = NOMINAL ⇒ p env ∈ p low crit..p high crit.

In a similar way, in the next refinement steps we derive the constraints for
the other modes, e.g., formulate the constraints for the cases when the controller
relies on the last good reading or uses the alternative sensor.
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6 Overview of Related Work and Conclusions

Discussion. Our experiments have aimed at studying how to cope with com-
plexity of integrated safety-security requirements modelling in Event-B. The first
presented approach starts with a very concise system model, focusing primar-
ily on the controller component. It immediately introduces the system safety
invariant and formulates the model assumptions and constraints under which
this invariant holds. In a sense, these constraints are very “wide”, since they
should account for many factors that are still hidden. In the refinement process,
the system details are gradually unfolded, which also requires to strengthen
the formulated earlier constraints. Simultaneously, the associated safety case is
gradually built, reflecting the discovered system constraints. The proving effort
is evenly distributed, however, additional care should be taken about valida-
tion of system assumptions and constraints belonging to quite different levels of
abstraction.

The second approach starts with modelling a full system architecture with
the intended control and data flow between system components. However, data
transformations in the initial model are under-constrained, thus making it impos-
sible to prove the system safety invariant. In a number of refinement steps, differ-
ent safety/security-related details are revealed. Once sufficient knowledge of the
system behaviour is introduced, the system functionality is further structured
using the notion of operational modes. For specific modes, safety invariants are
formulated and proved, by explicitly defining the necessary constraints about
the involved data. The verification effort is much higher in the later refinement
steps, however, it is partially alleviated by the fact that the system constraints
in the specific operational modes are more concrete.

Related Work. The issue of safety and security interaction has recently received
a significant research attention by recognising that there is a clear need for the
approaches facilitating an integrated analysis of safety and security [9,10].

This issue has been addressed by several techniques demonstrating how to
adapt traditional safety techniques like FMECA and fault trees to perform a
security-informed safety analysis [4,9]. The techniques aim at providing the engi-
neers with a structured way to discover and analyse security vulnerabilities with
safety implications. Since the use of such techniques facilitate a systematic analy-
sis of failure modes and results in discovering safety and security requirements,
the proposed approaches provide a valuable input for our modelling.

There are several works that address formal analysis of safety and security
requirements interactions, in particular, conflicts between them [2,7]. A typical
scenario used to demonstrate this is a contradiction between the access control
rules and safety measures. In our approach, we look at safety-security interplay
at a more detailed level, i.e., we analyse the system architecture, investigate the
impact of security failures on system functions, and demonstrate how fault tol-
erance required for safety leads to discovery of additional security requirements.

The distributed MILS approach [3] employs a number of advanced mod-
elling techniques to create a platform for formal architectural analysis of safety
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and security. The approach supports a powerful analysis of the system data flow
using model checking and facilitates derivation of security contracts. Since our
approach enables incremental construction of complex distributed architectures,
it would be interesting to combine these techniques to support an integrated
safety-security analysis throughout the entire model-based system development.

Conclusions. In this paper, we have experimented with the security-aware
development of safety-critical systems in Event-B. We have demonstrated how
the formal construction of evidences for a system safety case results in derivation
of both safety and security requirements. In our work, we considered safety and
security as the interdependent constraints required for building a robust system.

This paper generalises the results of two experiments with refinement-based
development in Event-B. The experiments have demonstrated that formal devel-
opment significantly facilitates derivation of safety and security requirements.
The integrated safety-security modelling in Event-B could be further facilitated
by the use of tools for constraint solving and continuous behaviour simulation.
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Abstract. This paper presents a new strategy for fraud detection in
Advanced Metering Infrastructure (AMI) based on the analysis of dis-
turbances in the pattern consumption of end-customers. The proposed
strategy is based on the use of SVM (Supported Vector Machine). SVM
requires labeled training data in order to define a classification function.
The need of labeled data is a serious limitation for practical implemen-
tation of fraud detection systems in AMI. To work around this problem,
we propose a new strategy for training SVM classifiers that requires only
normal consumption patterns in the training phase. The anomalous con-
sumption is generated by simulating attacks on the normal consumption
patterns.

Keywords: AMI · Fraud detection · Energy theft · Smart grid · SVM

1 Introduction

In power systems, losses refer to the amounts of electricity injected into the
transmission and distribution grids that are not paid by the end users. There
are two types of losses: technical and non-technical [13]. Technical losses are
inherent to the transmission of energy and consist mainly of power dissipation.
Non-technical losses (NTL) consist primarily of electricity theft, non-payment
by customers, and errors in accounting and record-keeping. Non-technical losses
(NTL) are small in developed countries [13]. In contrast, the situation tends to
be significantly different in developing countries, and can commonly exceed 10 %.
NTL may be very difficult and costly to identify in grids based on monthly man-
ual measures of consumption [14]. However, with the introduction of Advanced
Metering Infrastructure (AMI) in Smart Grids new automated approaches are
possible. A promising approach consists to generate consumption patterns for the
end users and monitor significantly divergences from these patterns. According
to [7], with the large amount of data obtained with AMI, to determine user pro-
files using statistical techniques may be very difficult. However, machine learning
techniques are a very promising and suitable approach.

In this paper, we presented a new method for detecting energy theft in grids
monitored by AMI. The method uses a SVM (Supported Vector Machine) learn-
ing approach to generate a fraud detection model (FDM) capable of detecting
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 226–237, 2016.
DOI: 10.1007/978-3-319-45477-1 18
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disturbances in the pattern of consumption of end-users. SVM is a supervised
learning model that requires labeled training data in order to define a classi-
fication function. The need of labeled data is a serious limitation for practical
implementation of fraud detection systems in AMI. To work around this prob-
lem, we propose a new strategy for training SVM classifiers that requires only
normal consumption patterns in the training phase. The anomalous consumption
is generated by simulating attacks on the normal consumption patterns.

The main contribution of this paper is not the use of a specific machine
learning technique. Instead, the innovation of our approach is to build individual
consumer profiles, while most proposals in the literature builds profiles to classes
or groups of users (see Sect. 2). Also, we have defined and formalized a strategy
to simulate several types of false data injection into consumer patterns (defined
in Sect. 3), which permits a robust training of the proposed machine learning
detection model (presented in Sect. 4) and also works as an accurate test-bed to
evaluate the performance of any other fraud detection model for AMI (presented
in Sect. 5). Our evaluation (Sect. 6) shows that this approach is very promising,
as it permits to detect the most common types of frauds.

2 Related Works

In this section we review some works that also address the problem of detect-
ing energy theft by customers. The authors in [2] uses a fuzzy-based clustering
algorithm to identify subgroups of users with similar profiles. Suspect profiles
are identified by measuring the distance between the client consumption and
the regular (normal) profile. The fraud detection model proposed by the authors
is unsupervised and independent of rules. A SVM based approach that uses
customer load profile information and additional attributes to expose abnormal
behavior that is known to be highly correlated with NTL activities is proposed
by [8]. The authors dispose of profile information of two types of users: normal
and anomalous. That permits to generate a labeled training dataset, and use
SVM to generate a decision function that can classify new users into the classes
normal or anomalous.

An intrusion detection system (IDS) that combines meter audit logs of physi-
cal and cyber events with consumption data to more accurately model and detect
theft-related behavior is proposed by [7]. The authors evaluate that smart meters
are more vulnerable than mechanical meters. The IDS uses an attack graph based
information fusion technique to combine evidences of three types: network and
host-based IDS, on-meter anti-tampering sensors and anomalous consumption
detectors.

A non-repudiation technique to detect frauds that employs two meters for
each individual wire connecting the subscriber and the provider is proposed by
[15]. The readings of the two meters are continuously compared and if a certain
threshold is exceeded a fraud alarm is generated. The same approach is used in
[14], but in this case, instead of using a redundant meter for each subscriber, a
single meter is used for a group of subscribers. The authors proposes a set of
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techniques to detect frauds by comparing the reading from the collective meter
with the summation for the reading from the subscriber meters. A framework for
training and testing customer energy consumption datasets in order to separate
and group illegal consumers is proposed by [5]. The authors use a SVM algorithm
to classify consumption patterns with respect to geographical location, type of
customer (residential, commercial, etc.) and season of the year. A set of rules is
used to classify customers into different classes that represents how suspect the
user profile is. The authors in [11] also conclude that the introduction of AMI
may increase the risk of frauds because smart meters are subject to more types
of attacks than mechanical meters. The authors are concerned about proposing
a fraud detection model that preserve the privacy of consumption information
from the end users. To address this problem the authors proposed a distributed
technique that identifies the honesty of users by solving a linear system of equa-
tions that takes into account the consumption of users in a neighborhood and
the total energy consumption of this neighborhood measured at a local data
collector.

The method proposed in this paper have some similarities with [2,5,8]. How-
ever, these works generate profiles based on group of users. On the other hand,
our approach consists to generate a different profile for each user. In the eval-
uation section we show the superiority of our approach by comparing with the
method proposed by [8]. Another important difference is that our approach uses
a dataset with measures obtained from a real AMI deployment. Therefore, the
method developed in this paper uses unique information about the consumption
patterns that have been ignored by most of the other studies.

3 Non-Technical Losses

Non-technical losses (NTL) in power systems refers mainly to energy theft, but
also may include losses due to poor equipment maintenance, calculation errors
and accounting mistakes. Usually, NTL related to energy theft are located in
the “last mile” of the power distribution system. Traditionally, consumers are
the primary source of NTL [6]. Some common methods used by consumers to
generate NTL in non-AMI grids are discussed in [1,4]. With the use of smart
meters and deployment of AMI, some NTL threads may be avoided. However,
the introduction of networking elements and digital communication offers new
possibilities for malicious users. Figure 1 illustrates a typical AMI topology [9]. In
AMI, malicious users may generate false measures of consumption by modifying
the meter, the communication from the meter to the utility billing system or by
tapping energy illegally from the grid in order to bypass meters. According to
[12], three levels of vulnerability can be considered in Smart Grids: from smart
meters to concentrator nodes (HAN), from concentrator nodes to data centers
(NAN) and on application level and community networks that use gathered
meter data (WAN). In this paper we consider the frauds generated by modifying
the meter or its communication in the HAN, which are usually referred as false
data injection (FDI). The authors in [7] enumerate the following types of FDI
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Fig. 1. Advanced Meter Infrastructure (AMI)

generated by malicious users: (i) Zero consumption: report zero consumption; (ii)
Act as generator: report negative consumption; (iii) Percentage: cut the report
by a given percentage; (iv) Cut-off point: alter the load profile to hide large loads.
In this paper we consider two additional types of FDI: (v) Offset: cut report by
a constant value and (vi) Low profile: report a low profile to simulate vacancy;

4 SVM-Based Fraud Detection System

Supported Vector Machine is a supervised learning method that generates clas-
sification functions [3]. A classification function defines a mapping V �→ Y where
v ∈ V is some object and y ∈ Y is a class label. Let’s assume a binary SVM, and
objects corresponding to a vector of real numbers. So: v ∈ Rn, y ∈ {−1, 1}. If
the elements in V are linearly separable, SVM produces a decision function g(v)
as a hyperplane in Rn that permits to classify each element v into −1 or +1.

In this paper, we employ a linear (binary) SVM algorithm to construct a
fraud detection model (FDM) for individual consumption profiles. To generate
a decision function, SVM requires a training dataset with labeled data that
includes both normal and anomalous measures. In this section, we explain how
to generate the training dataset using only normal measures.

Figure 2 shows the main steps used to generate the SVM-based FDM. Usually,
data is acquired regularly by the AMI system in intervals of an hour or less. We
assume that a dataset without frauds is available for SVM training (a). Normal
profiles can be obtained by assuring that the sum of the consumption reported by
a group of users match collective meters placed in the low power distribution grid.
This approach is not trivial, as it requires taking into account technical losses,
but it is feasible [11,16]. In order to generate a successful classification model,
the training dataset must include enough number of normal and anomalous
samples. In our method, anomalous samples are generated by injecting false
measures in the normal profile dataset (b). Assuming that x ∈ X are the normal
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Fig. 2. Fraud Detection Model (FDM) generation

measures, the anomalous dataset X ′ is generated by replacing x by x′ according
to Table 1. In this paper we have not considered frauds in energy production
because there is still not enough public data with this type of profile available.
In the table, P represents a parameter that controls the amount of energy stolen
and x̄ is the average value of x ∈ X. The cut-off point FDI replaces all measures
above the threshold A by a random value ∈ (Amin, A). For the purpose of the
tests presented in this paper, A and Amin are adjusted to match the amount
of energy stolen defined by P . The zero consumption and the low profile FDIs
are not controlled by P . In the low profile FDI, Xlow represents a subset of the
lower measures in X. In our tests, Xlow is lower third part of the measures in X.

Table 1. FDI definitions

FDI Measure modification

Offset x′ ← x − P · x̄

Percentage x′ ← (1 − P ) · x

Cut-off point x′ ←
{

x if x ≤ A

rand (Amin, A) if x > A

Zero consumption x′ ← 0

Low profile x′ ← rand (a ∈ Xlow)

During the training, the offset, cut-off point and percentage FDIs are applied
to the normal dataset in order to generate an anomalous dataset as illustrated
in Fig. 3 (c). The other types of FDI are not used because they are easier to
detect. They can be considered extreme cases of the other FDIs. The sensitivity
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Fig. 3. Training dataset example

of the training procedure is controlled by the parameter P . An excessive small
P can cause the system to generate many false alarms. Conversely, a large P
may cause the system to neglect small frauds.

When the measurement interval is small, the incremental consumption may
variate significantly. The incremental variations of consumption are not very
useful to typify the behavior of a consumer. Indeed, our tests indicate that SVM
generate poor classifiers when raw data is used for training. We have observed
that it is more useful to smooth the consumption data by using a simple or
exponential moving average, which is performed in step (d). In our tests we
have employed a simple moving average where each measure is the mean of the
measures within the last two-hours.

The samples used to train the SVM classifier must correspond to vectors
v = (x1 · · ·xw) of same dimension. In step (e), the training dataset is divided
in windows with w measures. We have also observed that using all measures in
a window as training samples results in bad classifiers. Therefore, we propose
to use only a fraction of the data in a window, extracted in accordance to a
heuristic that depends on the type of fraud we want to detect. The measures
from a windows of size w are ordered and divide into three subsets of equal size
(vmin, vavc, vmax). The subset vmax is used to generate FDM for detecting frauds
of type “cut-off point” and “low profile”. The subset vmin is used for all other
types of frauds. The same feature extraction strategy is used during the training
and evaluation phases.

In step (f), each window v is labeled as normal (1) or anomalous (−1) by
tracking the measures to determine if they came from a normal or anomalous
dataset. The labeled features extracted from the windows correspond to the
samples used by the SVM (g). Finally, the SVM algorithm (h) is used to generate
the fraud detection model (i).

5 Dataset Preparation and Metric Definition

The dataset used in this paper was obtained from the Project Smart City from
the City of Newcastle, Australia [10]. The dataset contains the consumption
information of 31 houses, monitored for about one year. The energy consumption
(kwh) is measured in intervals of 30 min, generating 48 daily records per house.
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In our experiments, only 28 houses were considered. Three houses were excluded
because they are energy producers. To evaluate our system, we have divided the
dataset into two parts: training data and evaluation data. Because the original
dataset contains only normal data, we have injected frauds in the dataset using
the algorithm 1. The variables used by the algorithm are explained in Table 2.
Basically, the algorithm uses two exponentially distributed variables to control
the fraction of measures from the original dataset that are replaced by frauds. In
average, the fraction of measures replaced is given by: A

A+N , where A and N are
the means of the random variables a and n, respectively. Figure 4 shows how the
measures of a consumer are affected by the fraud injections. We can also observe
that periods with very low consumption are common in the dataset, as residents
may be in vacancy (narrowest rectangle in Fig. 4). Except when the size of the
evaluation window is very large, these periods tend to generate false alarms.

Table 2. Symbols in the algorithm used to contaminate the dataset

Symbol Meaning

T Number of measures used for training

D Number of measures in the dataset

n Random variable that controls a normal period (mean N)

a Random variable that controls a FDI (mean A)

f FDI function

Algorithm 1. Contaminate the dataset with FDI
1: i ← T � i measure index
2: repeat
3: n ← Floor (Random (N))
4: i ← i + n � jumps normal period
5: a ← Floor (Random (A))
6: f ← Randomly selected FDI function
7: while i < Min (i + a, D) do � applies FDI
8: xi ← f (xi)
9: i ← i + 1

10: end while
11: until i < D

In the evaluation section we have used the following metrics to measure the
performance of the fraud detection system: tpr (true positive rate), fpr (false
positive rate) and F-measure (F). The F-measure definition requires the defin-
ition of an intermediate metric called precision (p). These metrics are defined
as follows: tpr = tp

tp+fn ; fpr = fp
fp+tn ; p = tp

tp+fp e F = 2 · p.tpr
p+ptr , where: tp

(true positive): a corrupted window was detected; fp (false positive): a normal
window was pointed as fraud; fn (false negative): a corrupted window was not
detected and tn (true negative): a normal window was pointed as legitimate.
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Fig. 4. Dataset preparation

6 Fraud Detection System (FDS) Evaluation

The evaluation presented in this section has the following purposes: (i) Determine
the best configuration of the parameters: T (training period), w (window size)
and the training distribution approach used to account for the effect of seasons;
(ii) Determine the performance under different attack conditions expressed in
terms of the amount of energy stolen: P and (iii) Compare our strategy with the
group-based profile generation approach defined in [8].

According to our method, a window is the minimum set of measures that can
be reported as a fraud. Figure 5 shows the influence of the windows size (w) on the
FDS performance. This evaluation was performed considering only FDIs of type
cut-off point, percentage and offset, randomly applied to 30 % of the dataset. The
average FDI duration was A = 1008 measures (21 days). The other types of FDI
were not used in this test because they are easier to detect and may masquerade
the results. The test was repeated with three different amounts of energy theft:
P = 10 %, 20 % and 30 %. The SVM classifier was trained with a dataset injected
with the same frauds, but only P = 10 % of energy theft. All tests in this section
have used P = 10 % for training. It is important to note that neither the type of
FDI nor the amount of energy theft need to be known beforehand.

The figure shows the average result obtained considering all houses and all
amounts of energy theft. The best metric to evaluate the performance of the FDS
is the F-Measure, because it can balance the ability of the system to detect frauds
without generating excessive false positives. Using this metric as reference, the
best overall result was obtained with w= 144 measures per window (or 3 days).

The effect of the training period on the performance of the FDS is shows in
Fig. 6. This test was executed with w= 144 (3 days). The performance increases
up to T = 3024 (63 days). After this point increasing the training period does
not increase the performance of the system.

In the previous tests the training period was placed in the beginning of the
database. However, the consumption profile of a customer is heavily influence
by the season. Therefore, we have evaluated if distributing the training period
among different seasons can improve the FDS performance. We have considered
four different techniques with respect to how the training period was distrib-
uted: Technique 1: one training period T = 3024 (63 days) in the beginning of
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Fig. 5. Effect of the window size on the FDS performance

Fig. 6. Effect of the training period on the FDS performance.

the dataset; Technique 2: one training period in the beginning of each season
(T = 756 for each period); Technique 3: one training period in the beginning of
each month (T = 252 for each period) and Technique 4: one different model for
each season (T = 756). Techniques 1 to 3 generate a single model that is applied
to the remaining of the dataset. Technique 4 generates a distinct model for each
season, and the model is shifted accordingly when the season changes. Figure 7
shows the performance of these techniques with respect to the FDIs of type off-
set, cut-off point, percentage and the average result considering all three types
of FDI.

In Fig. 7, techniques 1 and 4 presented similar results. Figures 8 and 9 present
a more detailed comparison between these techniques. Both techniques were
evaluated with the same dataset, where 30 % of the measures were randomly
contaminated with all types of FDI. One can observe that both techniques have
similar detection rates, but technique 4 generates far less false positives. Normal
seasonal variations of consumption are misinterpreted as attacks by technique
1, but not by technique 4 that employs a shifting model.

We have used the same dataset [10] to evaluate the SVM-based FDS pre-
sented by [8]. The FDS proposed in [8] follows a different approach, as a fraud
detection model is generated by using data gathered from group of users. Because
the number of houses is small, we have selected 10 houses to generate the anom-
alous profile and the remaining 18 houses to generate the normal profile. We
have modified 30 % of the measures available for the anomalous houses with the
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Fig. 7. Effect of the training distribution on the FDS performance.

five types of FDI defined in Table 1. To approximate the conditions suggested by
the authors, we have used a window size of 1440 measures (1 month) and used
50 % of the dataset for training and 50 % for evaluation of the resulting SVM
classifier. Figure 10 shows the average result obtained for all houses with respect
to different amounts of energy stolen. Given the diversity of profiles used for
training, the resulting classifier is very conservative, and generates a very low
rate of false positives. However, it is also inaccurate to detect true attacks. For
P = 30 %, our approach achieves F = 0.66 with TPR= 0.95 (technique 1) and
F = 0.76 with TPR= 0.95 (technique 4), while [8] achieves only F = 0.5 with
TPR= 0.45. As pointed by the authors, their method is expected to perform
well only for large amounts of energy stolen.

Fig. 8. Evaluation of technique 1 with respect to the amount of energy stolen

Fig. 9. Evaluation of technique 4 with respect to the amount of energy stolen
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Fig. 10. Performance of the group based profile proposed in [8].

7 Conclusion

We have presented a fraud detected system (FDS) for detecting energy theft in
grids monitored by AMI. In the literature, the most common approach consists
to generate a fraud detection model (FDM) using information gathered from
a group of users. Our evaluation with a dataset based on measures obtained
from an actual AMI deployment indicates that a neighborhood with similar
economical conditions presents significant differences on their consumption pro-
files. Therefore, a FDM based on information of a group of users tends to be very
inaccurate to hold significant consumption discrepancies. We have addressed this
issue by generating a different FDM for each consumer, greatly improving the
accuracy of the FDS. As a future research, we intend to integrate the information
from meters that measure the total consumption of a neighborhood. That app-
roach will permit to update the consumption profile of the users whenever the
comparison between the neighborhood meter and the individual meters indicate
no fraud.
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Abstract. Deterministic builds, where the compile and build processes
are reproducible, can be used to achieve increased trust in distributed
binaries. As the trust can be distributed across a set of builders, where
all provide their own signature of a byte-to-byte identical binary, all
have to cooperate in order to introduce unwanted code in the binary. On
the other hand, if an attacker manages to incorporate malicious code in
the source, and make this remain undetected during code reviews, the
deterministic build provides additional opportunities to introduce e.g., a
backdoor. The impact of such a successful attack would be serious since
the actual trust model is exploited. In this paper, the problem of crafting
such hidden code that is difficult to detect, both during code reviews of
the source code as well as static analysis of the binary executable is
addressed. It is shown that the displacement and immediate fields of
an instruction can be used the embed hidden code directly from the
C programming language.

Keywords: Backdoor · Overlapping code · Deterministic builds ·
Malware

1 Introduction

Throughout the years there have been numerous attempts by adversaries to
plant backdoors in software projects [1–5]. The main goal of backdoors is to
gain unauthorized access by circumventing the authentication step or simply by
gaining access to a system remotely. These are often very subtle modifications of
the source code that can easily go unnoticed by code reviewers or static analysis
tools. Developers often rely on static tools that inspect the source code for any
programming flaws [6–8]. These tools have a difficulty of identifying logical flaws
and manual review must be conducted to identify potential backdoors. Reviewers
rely on manual reading of code, supported by checklists and coding standards.
This consists of identifying certain unsafe functions that can be the cause of
security vulnerabilities or if input is being sanitized [9]. This type of scan for
security vulnerabilities may not be sufficient for identifying potential backdoors,
instead the reviewer may have to read and understand each line of code in
a project which is time-consuming and costly. The more mature open source
c© Springer International Publishing Switzerland 2016
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projects have adopted peer reviewing as an important quality assurance [10,
11]. In some cases a code commit must first be reviewed before it is accepted.
Depending on how trusted the developer is, i.e., the better reputation he has,
it is more likely that the developer will get code changes accepted [12]. There
is also a lack of extensive results and research on how peer reviewing reduces
security vulnerabilities and backdoors in open source community. Still, there is
research addressing these questions that have been initiated [13].

A backdoor can be seen as trigger-based code which is executed when spe-
cific inputs are received, denoted as trigger conditions. Discovering the trigger
conditions can be difficult [14,15] to automated analysis. The actual problem of
identifying trigger-based code has made recent advances, introducing tools for
automatic detection of backdoors [16] for detecting rarely exercised code paths.
As a response to this, Andriesse and Bos [17] show how one can hide the backdoor
via instruction-level steganography by modifying the final binary.

In order to thwart tampering of binaries, the code can be signed by the
compiler or the person in hand of publishing the binary. Lately some initiatives
have been taken to introduce secure software distribution that would enable
trusted binaries to be downloaded and verified by multiple users. This is denoted
as deterministic, reproducible or verifiable builds [18–20] in which the build
process will generate identical binaries.

In this paper we investigate the problem of adding hidden machine code via
the source code instead of directly modifying the binary. Such hidden code, if
undetected, would result in hashes and code signatures that are correctly verified
as genuine. We address the problem of keeping the semantics of such instructions
hidden in the source code as well as in the binary so that both a code review of
the source code and static analysis of the binary will not easily reveal the hidden
code. This is accomplished by carefully constructing data structures where the
offset to a base address can be used to interpret machine instructions. In the
binary, these instructions will be hidden from the main execution path and not
visible in a disassembly listing.

2 Background

In this section we provide the necessary background required for the remain of
this paper. We will be presenting details related to the x86 architecture instruc-
tion set along with an introduction to determinstic builds.

2.1 x86 ISA

The x86 architecture pioneered by Intel remains one of the most widely used
ISAs today. It is a Complex Instruction Set Computing (CISC) architecture
meaning that it provides instructions that themselves may execute several low-
level operations as one. Instructions may be between 1 and 15 bytes [21]. CISC
instructions can be executed from any byte alignment, with the possibility of
executing an instruction from a byte never meant to be the starting byte of an
instruction, also denoted as unintended instructions.
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2.2 Anatomy of an x86 Instruction

An x86 instruction, as illustrated in Fig. 1 is divided into six fields where the
opcode is the only mandatory field.

Fig. 1. Illustration of a x86 instruction

An instruction can have up to four prefixes. A prefix changes the behavior
of the instruction it is applied to by e.g., changing or overriding the operand or
address size.

The Opcode is the instruction code that defines the main behaviour of the
instruction. Most opcodes are one byte long, but can be extended.

The mod-r/m byte defines the addressing mode and operands of the instruc-
tion. It is divided into the 2-bit mod field and two 3-bit fields called Reg and r/m.
The mod field specifies direct or indirect addressing, i.e., directly register to reg-
ister or if one of the registers are to be dereferenced. The mod field also specifies
if there is a displacement field or SIB-byte for this instruction.

The Scale-Index-Base byte (SIB-byte) is used for indexed addressing, e.g.,
in arrays. It is illustrated as [Base + Index*Scale] where Base and Index are
registers and Scale can assume the value 1, 2, 4 or 8.

The Displacement field specifies an offset for a memory dereferencing
instruction. The address displacement can be of 0, 1, 2 or 4 bytes.

The Immediate field contains any constants used in instructions and can
be 0, 1, 2 or 4 bytes.

2.3 Overlapping Instructions

Overlapping instructions exist in all compiled x86 code. The variable-length
instructions accommodates different interpretations of the code depending on
which byte decoding starts from. An example of this phenomenon is shown
below where the jmp instruction will jump to the latter half (0xff) of its own
instruction and execute from that point.

eb ff jmp -1
c0 c3 00 rol bl, 0x0
;The jump will execute
ff c0 inc eax
c3 retn
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This can be used in application exploitation attacks based on return-oriented
programming (ROP). In order to find more useful instructions for the gadgets
used in this attack, unintended instructions can be discovered using this over-
lapping technique by decoding instructions at different offsets.

2.4 Deterministic Builds

Distributing compiled binaries of open source software does not guarantee that
the binaries are in fact compiled from the referenced source code. There is noth-
ing stopping an attacker from adding malicious code, producing the binaries
from the modified source code and claim that it was the result of compilation
of the unmodified source code. This poses security issues for people who do not
have the knowledge or do not want to compile the source code themselves. They
must trust the single entity who compiled the binary.

Deterministically built binaries allows multiple builders to produce the same
byte-by-byte binary such that a hash value of the binary is the same for all
builders. This removes the single point of failure whereby trust needs to be put
into a single builder. Instead trust is now distributed between multiple builders,
whereby each builder individually publishes a signature of the hash digest of
the binary. This allows anyone who wishes to install the binary directly to verify
that multiple builders have compiled the binaries from the referenced source code
and that there are no discrepancies between the hashes of the different builders.
Unless all builders are conspiring or are all controlled by another attacker, the
binary can be deemed safe from manipulation before compilation.

Examples of security critical applications that use deterministic building for
their binaries are the Tor projects Tor Browser Bundle [20] and the reference
implementation of the cryptocurrency Bitcoin, called Bitcoin Core [22].

It is important to note that just because some application has been determin-
istically built, it does not guarantee that there is no malicious code. It merely
solves the need of trusting a single builder.

3 Hiding Instructions in Binary Code

In this section we show how to inject instructions in a program and have its
semantics hidden from an analyst in both the source code and the compiled
binaries. It can be implemented entirely within the source code.

The requirements to make this work is for the attacker to have complete
control over the part of the source code where the injected instructions are
implemented. The project should also be compiled in a reproducible way to
ensure that produced binaries are byte-for-byte identical between builders.

The examples in this section are based on a 32-bit Linux system with the
compiler GCC 4.9.1 with no optimizations enabled. Some of the examples may
not be applicable to other compilers or other versions of GCC. It should be
straightforward to adapt the techniques explained here for other compilers and
configurations.
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For the remain of this paper we also assume that the trigger condition used
to execute the hidden instructions is chosen and designed in such way that it is
sufficiently hard for an automated analysis to identify it [14,15]. Therefore, we
regard this topic as out of scope and focus on hiding the trigger-based code.

3.1 Main and Hidden Execution Paths

We begin by defining the Hidden Execution Path (HEP) and the Main Execu-
tion Path (MEP) in the binary. The HEP is defined as a sequence of assembly
instructions hidden implicitly in the source code, i.e., the semantics of those hid-
den instructions can not be seen in the source code. It is also explicitly hidden
in the compiled source code’s disassembly listing. This is true for both static
and dynamic analysis scenarios, as long as the HEP is not executed. The MEP
is defined as a sequence of assembly instructions that is implicitly visible in the
source code, i.e., the source code seen generates the expected assembly instruc-
tions. The generated assembly instructions are clearly visible in the disassembly
listing of the compiled source code. The MEP shows the functionality that we
want to show the user and the HEP is the malicious code. Outside the MEP
and the HEP are the normal instructions that are as visible as the assembly
instructions in the MEP, but ones that do not contain any intended malicious
hidden instructions.

The HEP can include any instruction that is valid. The MEP is limited to
what instructions the utilized compiler and associated configurations can gener-
ate from the source code.

3.2 Basic Design

Our approach of inserting hidden instructions in the source code relies on having
the compiler generate instructions in the MEP in such a way that overlapping
instructions are formed to a semantically correct, predetermined HEP. One lim-
itation is the self-synchronizing nature of x86 instructions due to the Kruskal
Count [23], i.e., beginning decoding instructions from different byte offsets will
soon result in a merge of the different execution paths. Designing the HEP in one
continuous set of bytes would result in limited functionality. In [24] this was cir-
cumvented with unusually formatted nop instructions which are not prevalent in
compiled code and thus cannot be used here. Instead, we scatter fragments of the
HEP throughout the application, ending each fragment with a branch instruc-
tion pointing to the next fragment. A HEP fragment includes one or more HEP
instructions and a branch instruction, see Fig. 2.

In Sect. 3.3 we will show how mappings between MEP instruction fields and
HEP instructions fields are made with ease of implementation in mind.

3.3 MEP-to-HEP Mappings

MEP instruction fields must be mapped to HEP instruction fields in a way that
keep MEP instructions relevant for the program in general and its surrounding
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Fig. 2. Control flow of the HEPs

instructions. It must also be formed so the relevant HEP instructions are decoded
correctly.

To achieve this, we analyze the different MEP instruction fields.

– Prefixes are very limited in the number of values they can take and will depend
heavily on the rest of the fields. One prefix value can take 11 out of 256 values.

– Opcodes can assume a larger number of bytes, more precisely one-byte opcodes
can take 244 out of 256 values (excluding prefixes and the 0x0f two-byte
opcode extension code). The compiler may not be able to generate all of them.
Many of the opcodes are redundant, which is why it is likely that compilers
are just using a subset of all opcodes.

– The mod-r/m byte is only one byte and also limited by the compiler in what
values it can take.

– The same applies for the SIB byte as for the mod-r/m byte, in that it is difficult
to make the compiler use the specific source and destination operands we want.

– The displacement field can be 0,1,2 or 4 bytes long and is relatively easy to
use to make the compiler generate desired values. Accessing a stack variable
will make the compiler generate an instruction that dereferences memory from
an offset to the base pointer ebp. This offset is the displacement field, and
depending on how we design the stack layout and which variables we use, these
values can be controlled. When using a 32-bit displacement field, there is a
trade-off between the size of a data structure allocated in memory and how
much of the displacement field we can control. Using only the three least
significant bytes of the 32-bit displacement field, the maximum amount of
allocated memory is 16777216 bytes.

– The immediate field is ideal to work with, because we can set it to whatever
we want without any practical consequences. It can be 0, 1, 2 or 4 bytes in
size by using the types char, short and int respectively.

Based on this analysis the displacement and immediate fields of a MEP
instruction will be used to create the HEP, see Fig. 3. Since the fields are adjacent
they can be combined to create HEP instructions.

4 Constructing the HEP from Source Code

In this section we describe how to write code that generates the desired hidden
code fragments. This is illustrated in Fig. 4 where the hidden code fragment is
introduced at the source code level to be compiled and later invoked as unin-
tended instructions.
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Fig. 3. Illustration of MEP and HEP layout in an x86 instruction

Fig. 4. Introducing a HEP in the source code. Compilation of the source code will
generate unintended instructions which are executed by decoding at certain offsets in
the compiled code

We start by defining two different structs.

struct imm8_t {
char imm8[256][256][256];

};
struct imm32_t {

int imm32[256][256][64];
};

We assume the structs are allocated on the heap, and when dereferencing
any elements in a struct, this is done with an offset from the base address of
that struct located in register eax.

4.1 Hiding Code in Immediate Fields

The imm8 t struct provides a simple way to assign MEP instruction
displacement fields with the desired values coupled with an 8-bit immediate
field. As we use struct member ‘imm8’ which is of type char, the compiler
will generate assembly instructions with an 8-bit immediate field. Likewise, the
imm32 t will generate instructions with 32-bit immediate fields when assigning
struct member ‘imm32’ a value. As an example, assigning a value to the first
position in the ‘imm8’ member in the imm8 t struct and the first position in
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the ‘imm32’ member of the imm32 t struct will generate the following assembly
instructions respectively.

c6 00 0a mov BYTE PTR [eax],0xa
c7 00 0a 00 00 00 mov DWORD PTR [eax],0xa

The first instruction only includes an 8-bit immediate field (0x0a) since the
variable assigned is of type char and the second instruction includes a 32-bit
immediate field (0x0000000a) because the type is int.

4.2 Hiding Code in Displacement Fields

In order to generate 8-bit displacement fields with these structs the last two
indices of either struct member would have to be set to zero. Since the struct
is allocated on the heap, the first index of the struct member is restricted to
values between 0x00 and 0x7f. The reason is that when referencing an element
in the struct on the heap, we will do so by using a positive offset from eax. If
the displacement value exceeds 0x7f the compiler will put the value in a 32-bit
displacement field in order to not get the incorrect sign.

The design of the 3-dimensional matrix corresponding to the struct allows
the HEP designer to set the exact bytes of the displacement field directly in
the source code. For example, the following assignment of the ‘imm8’ member
in the imm8 t struct illustrates the process.

imm8_t *a = malloc(...);
a->imm8[0x10][0x20][0x30] = 0xa;

This will generate the following machine code.

c6 80 30 20 10 00 0a mov BYTE PTR [eax+0x102030],0xa

The indices chosen are seen directly in the decoding of the instruction.
When referencing an element on struct member ‘imm8’, the displacement

value is derived in the following way.

imm8[x][y][z] -> displacement = x<<16 + y<<8 + z

Thus, index positions will result in bytes in the displacement field.
Note that the most significant byte will always be 0x00 since we use a 3-

dimensional matrix.
The first index of the imm32 t member ‘imm32’ is set to 64 because it stores

integer type values which take up four bytes of memory per element. This means
that for each index increment, there will be an increment of four for the least sig-
nificant byte of the displacement value. Thus, any value put into the first index
position must be divided by four in order to get the correct value representation
in the displacement field. One drawback of using imm32 t for encoding HEP
instructions is that the first index position cannot assume values not divisible
by four, thus limiting its use to only 25 % of all byte values. Should this one
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byte not be useful in the HEP fragment, it could simply be skipped and the
HEP fragment’s first byte be what is specified in the second index. Below is an
example of how the assignment of imm8[0][0][4] with 0x0a is represented in
the displacement field.

c7 40 10 0a 00 00 00 mov DWORD PTR [eax+0x10],0xa

The displacement is a single byte with value 0x10 and in order to get
the desired value, which is 4, we have to code the assignment statement as
[0][0][4>>2]. This will generate the following assembly instruction.

c7 40 04 0a 00 00 00 mov DWORD PTR [eax+0x4],0xa

Here we can see that the value of the displacement field is now 4.

4.3 Tying It All Together

To simplify the procedure, a set of macros can be used to define all one-byte
opcodes and prefixes needed to program the HEP. If we want to create the
following HEP fragment

58 pop eax
57 push edi
c3 retn

we would define the following.

#define POP_EAX 0x58
#define PUSH_EDI 0x57
#define RETN 0xC3

struct imm8_t *a = malloc(...);
a->imm8[RETN][PUSH_EDI][POP_EAX] = 0;

This fragment generates the following machine code for the assignment state-
ment.

mov eax, DWORD PTR [ebp+0x08] 8b 45 08
mov BYTE PTR [eax+0xc35758],0x0 c6 80 58 57 c3 00 00

If execution starts from the third byte in the second instruction, our desired
HEP instructions will be executed. Assuming that register edi holds an address
to the next HEP fragment, the retn instruction will pop that value and continue
execution from there. In this example the immediate value can be set to anything
as it will not be a part of the HEP, allowing for some flexibility in designing the
MEP.



Exploiting Trust in Deterministic Builds 247

4.4 Proof-of-Concept Backdoor

We have implemented and released a proof-of-concept backdoor [25] which uti-
lizes the technique described. The backdoor opens up a listening tcp port and
gives shell access to whoever connects to that port. The HEP fragments are scat-
tered throughout multiple functions of the application. No other functionality is
implemented, and the program consists only of dummy statements to make the
backdoor work.

The backdoor is a modified variant of the one found in [26]. It was modified
to make the number of bytes for each instruction as small as possible in order to
simplify encoding them in the displacement and immediate fields of the MEP
instructions. We also reduced the total number of instructions used by placing
some sequences of instructions inside functions that could be called multiple
times.

5 Related Work

Jamthagen et al. [24] shows how to hide instructions inside multi-byte NOPs
and provide with an algorithm to detect hidden code. The paper shows how
to construct HEPs and MEPs in assembly code and which instructions are best
suited for connecting two hidden instructions, so called wrapping instructions. In
addition to having one segment with multiple-byte NOPs, the authors describe
how to split it into multiple segments across a binary. Main difference with this
paper is that we introduce the HEPs and MEPs in the source code of a high-level
language such as C/C++.

Andriesse and Bos [17] describe instruction-level steganography in order hide
the backdoor code and to evade binary analysis. When disassembling a binary,
the trigger-based code is hidden inside other instructions by utilizing instruc-
tion overlapping. The backdoor code is triggered by introducing a bug in the
source code of the target application and modifying the resulting binary in order
to embed the hidden code. As our described approach addresses deterministic
builds, it is not possible to modify the binary, therefore we have to rely on
implementing the hidden functionality at the source code level.

In [27], the inside threat of an evil developer is described. Wang et al. present
an attack where iOS applications are released with a deliberately injected vul-
nerability by the developer that can be remotely exploited. The vulnerability is
placed in such way that it should pass the review and vetting process of Apple.
The application is introduced with a bug and when triggered, a ROP attack is
performed. In the attack they still have to send the attack payload, i.e., the gad-
get addresses/offsets to the vulnerable application while our technique triggers
the backdoor directly in the code without any information required on how to
locate the attack payload. In our case only the trigger condition must be fulfilled
which can be done via a specially crafted network packet for example. This is the
main strength of our method compared to an ordinary ROP attack. The size of
the payload necessary to trigger the exploit can be much smaller for our attack
than with a ROP attack, which requires gadget addresses and additional data
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to be sent on the network. With the hidden code technique we could more easily
bypass IDSes and other security technologies [28] that tries to detect exploita-
tion traffic. Additionally, even though the set of ROP gadgets in a binary often
are Turing-complete [29], our method introduces a flexibility in what the trigger
code actually executes.

6 Conclusion and Future Work

In this paper we have presented a technique that allows an attacker to craft
malicious code in an application’s source code and have its semantics hidden in
both the source code and compiled binaries. One requirement to achieve this
is that the software is compiled on a CISC architecture and in a reproducible
manner. Our proof-of-concept backdoor shows that the technique is feasible and
that a determined attacker could utilize it to compromise a software project.

Future work should study the feasability of utilizing this technique on existing
projects. The stealth of the source code hiding instructions may also have room
for optimizations. How maintainable code like this is would also be an interesting
research topic considering compilers and build processes gets updated.
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Abstract. This paper presents a new state space generation approach
for dynamic fault trees (DFTs) together with a technique to synthesise
allowed failures rates in DFTs. Our state space generation technique
aggressively exploits the DFT structure — detecting symmetries, spuri-
ous non-determinism, and don’t cares. Benchmarks show a gain of more
than two orders of magnitude in terms of state space generation and
analysis time. Our approach supports DFTs with symbolic failure rates
and is complemented by parameter synthesis. This enables determining
the maximal tolerable failure rate of a system component while ensuring
that the mean time of failure stays below a threshold.

1 Introduction

Fault tree analysis is a prominent technique in reliability engineering. Dynamic
fault trees (DFTs) [1,2] are an expressive model catering for common dependabil-
ity patterns, such as spare management, functional dependencies, and sequenc-
ing. The state space generation process is one of the main bottlenecks in DFT
analysis. DFT analysis mainly focuses on the mean time to failure — what is
the expected time of the failure? — and reliability — how likely is the system
operational up to time t? These analyses require DFTs where all component
failure rates are known. In practice, this rarely holds. Thus, a relevant question
is to synthesise the allowed component failure rates ensuring a given mean time.

This paper presents three main advances to state-of-the-art DFT analysis:
(1) fast generation of succinct state spaces, (2) the analysis of several measures-
of-interest that go beyond mean time and reliability, and (3) the synthesis of
(possibly partially) unknown failure rates in DFTs for mean time and more.

Fast Generation of Succinct State Spaces. Our approach is a modern
version of one of the first DFT semantics [3] as used in the Galileo tool [4]
that caters for possible non-determinism, as in [5]. In all these approaches, a
state space, i.e., a Markov model, is built. This leads to a precise representation
of the DFT and allows for off-the-shelf analysis tools. The major drawback is
the typically huge state space involved – which has lead to some state-space
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free approximation techniques, an overview is given in [6]. To obtain succinct
state spaces, we tailor two successful techniques from the field of model check-
ing — symmetry reduction [7] and partial-order reduction [8, Chap. 8] — to
DFTs, and combine this with don’t care detection. We aggressively exploit the
DFT structure: detect symmetries, i.e., isomorphic sub-DFTs and stochastic
independencies while pruning sub-DFTs that become obsolete (don’t care) after
the occurrence of some faults. This is combined with detecting superfluous non-
determinism such that certain failure orderings are irrelevant yielding a simpler
and cheaper analysis.

Beyond Reliability and Availability. By exploiting powerful state-of-the-art
quantitative model checking techniques [8, Chap. 10] we support a broad range of
measures-of-interest. This includes reliability and mean time to failure (MTTF),
the probability to reach a certain DFT configuration e.g., where certain subDFTs
have failed and others have not, conditional MTTF — what is the MTTF given
that certain DFT elements failed? — and the variance of the time to failure.

Failure Rate Synthesis. We support DFTs whose failure rates are (possi-
bly partially) unknown. These unknown (or: symbolic) rates are represented by
parameters, or functions thereof; e.g., components may fail with rate λ, 2λ, etc.,
where λ is unknown. Our slim state space generation techniques support sym-
bolic rates. We complement this by a sound and complete technique to synthesise
all values of symbolic rates that ensure the MTTF (and various other measures)
to be below a given threshold. To the best of our knowledge, this is the first fail-
ure rate synthesis technique for DFTs. In addition, the sensitivity of the MTTF
on the symbolic rates can be determined, as in alternative techniques [9].

Experimentation. We have realised a prototypical implementation of the
aforementioned techniques. In addition to the original DFT elements in Galileo,
we support probabilistic dependencies [10], nested spares [5] and priority or-
gates [11]. Experiments have been conducted on all benchmark DFTs from [12];
a rich collection of DFTs gathered from the literature and from industrial case
studies. The experiments reveal that our slim state space generation technique
significantly outperforms the best competitor for DFTs, the tool DFTCalc [13].
For a majority of the benchmarks, our approach yields a speed-up of two to
four orders of magnitude. Failure rate synthesis works for the moderately-sized
models in the literature (up to 20 basic events) with up to three unknown rates.

2 Dynamic Fault Trees

Fault trees (FTs) are directed acyclic graphs with typed nodes. The leaves, i.e.,
nodes without successors (or: children), are basic events (BEs). All other nodes
are gates. The top event (or: root) is a specifically identified node. An FT fails,
if its top event fails. For the sake of simplicity, we assume that BEs represent
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Fig. 1. Node types in ((a)–(d)) static and (all) dynamic fault trees.

component failures. Initially, every BE is operational ; it fails if the event occurs.
A gate fails if its failure condition over its children is fulfilled. The key gate for
static fault trees (SFTs) is the voting gate (denoted VOTk) with threshold k.
The failure condition for a node x of type VOTk is given by ”x fails, if k of its
children have failed”. A VOT1 gate equals an OR-gate, while a VOTk with k
children equals an AND-gate. These gates are shown in Fig. 1(b)–(d).

2.1 Dynamic Nodes

To overcome the limitations [6] of SFTs, several extensions commonly referred
to as Dynamic Fault Trees (DFTs) have been introduced. A main feature of
these extensions is that they feature an internal state, e.g., the order in which
events fail influences the internal state, and thus whether the top event has
failed. The extensions introduce several new node types; we categorise them as
priority gates, dependencies, restrictions, and spare gates.

Priority Gates. Priority gates extend static gates by imposing a condition on
the ordering of failing children. A priority-and (PAND) node fails if all its children
have failed in the order from left to right. Figure 2(a) depicts a PAND with
children A and B. It fails if A fails first and then (or simultaneously) B fails. If
B fails first, the PAND becomes fail-safe. The priority-or (POR) node [11] only
fails if the left-most child fails before any of the other children does. Priority-
gates allow for order dependent failure propagation.

Dependencies. Dependencies do not propagate a fault to their parents but are
triggered by their first child. Upon triggering, they affect some BEs, the depen-
dent events. We consider probabilistic dependencies (PDEPs) [10]. Once the trig-
ger of a PDEP fails, its dependent events fail with probability p. Figure 2(b)
shows a PDEP where the failure of trigger A causes a failure of BE B with prob-
ability 0.8 (provided it has not failed before). Functional dependencies (FDEPs)
are PDEPs with probability one.

Restrictions. Restrictions do not propagate failures but rather limit possible
failure propagations. Sequence enforcers (SEQs) assure that their children only
fail from left to right. This differs from priority-gates that do not prevent certain
orderings, but only propagate if an ordering is met. The DFT in Fig. 2(c) fails
if A and B have failed (in any order) but the SEQ enforces that A fails prior to
B. This DFT is never fail-safe.
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Fig. 2. Simple examples of dynamic nodes.

Spare Gates. Spare-gates (SPAREs) are the most complex gates in DFTs.
Consider the DFT in Fig. 2(d) modelling (part of) a motor bike with a spare
wheel. If either wheel fails, the motor bike fails. Both wheels can be replaced by
the spare wheel but not both. The spare wheel is less likely to fail as long as
it isn’t used (warm). Assume the front wheel fails. The spare wheel is available
and used, and its failure rate is increased (hot). If any other wheel fails, then no
spare wheels are available anymore, and the SPARE and the DFT fails.

SPAREs have a child they use. If this child fails, the SPARE tries to use a spare
child (left to right) — a process we call claiming. Only operational children that
are not used by another SPARE can be claimed. If claiming fails, the SPARE fails.
This behaviour is extended by an activation mechanism. As in [5], SPAREs may
have (independent) subDFTs as children. This includes nested SPAREs. A spare
module is a set of nodes linked to a child of a SPARE via a path without an
intermediate SPARE. Every leaf of a spare module is either a BE or a SPARE.
Each child of a SPARE thus represents a spare module, cf. Fig. 2(e) where boxes
are spare modules and shaded nodes are the representatives. SPAREs which are
not nested are active. For each active SPARE, all nodes in the spare module of
the used child are also active. BEs which are active fail with their active failure
rate, BEs which are passive fail with their passive failure rate (warm events) or
cannot fail (cold events). More details can be found in [6].

2.2 Syntactic Restrictions

We are rather liberal w.r.t. dynamic gates, but have to impose syntactic restric-
tions as in [13] to exclude DFTs with undefined behaviour. These restrictions
are: (a) VOTk have at least k children; (b) the top level event is a gate or a BE;
PDEPs and restrictions have no parents; (d) all dependent events are BEs; (e)
spare modules, i.e., subDFTs under a SPARE, do not overlap; (f) primary spare
modules are not shared between SPAREs.

3 State Space Generation

The goal for our state space generation is to produce a Markov model which is
subject to further analysis. As operational model, we use Markov Automata.
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3.1 Markov Automata

Markov Automata (MA) [14] extend continuous-time Markov chains (CTMCs)
with non-determinism. MA are state transition systems whose transitions
between states are either labeled with rates (i.e., non-negative real numbers),
or with actions. The former transitions specify a random delay and correspond
to the failures in DFTs; the latter are used to select the handling of a trig-
gered PDEP. Delay transitions relate a source state with a target state; action
transitions relate a state to a probability distribution over states. An action tran-
sition thus yields a new state with a given likelihood. MA are a slight variant
of the operational model for DFTs used in [5]; they differ in allowing discrete
probabilistic branching which are used to model PDEPs. We introduce MAs by
example.

Figure 3 shows an MA for a coffee machine, used by inhabitants of room A
(IoA) and B (IoB). IoA (IoB) arrive at the machine at a rate of 5 IoA/hour
(3 IoB/hour). They can either have coffee or espresso. All IoA want espresso

s0

s1 s2

s3 s4{se} {sc}

5 3

we we wc

1 0.9 0.1 1
ge gc

1 1

Fig. 3. Example MA.

(action we), while IoB non-deterministically want coffee
(action wc) or espresso. IoB wanting espresso are with
probability 0.1 too sleepy and select coffee. Users always
get their selected product (ge, gc). In state s0, either
an IoA or an IoB arrives at the machine (evolving into
s1, s2). In state s1 espresso is selected, whereas in s2 a
choice between actions we and wc is made. Selecting we
in s2 results in s3 with probability 0.9 and in s4 with
probability 0.1. The user then gets the product and the
automaton returns to initial s0. For simplicity, the prod-
ucts’ preparation time is not modelled.

3.2 State Space Generation

As in Galileo, we construct a fault tree automaton (FTAut) from a DFT. We
then translate the FTAut to an MA, which we further simplify and analyse. The
FTAut consists of states and labelled transitions.

States. We give each node in the DFT a unique id. A state in the FTAut is a
mapping from ids to its status: operational (OP), failed (F), fail-safe (FS), or
don’t care (X). Additionally, we store the currently used child (CUC) of opera-
tional SPAREs and for spare module representatives their activity, i.e. whether
the module is active (A) or passive (P). We initialise all nodes as operational,
the CUCs and activate modules as described in Sect. 2.

Transitions. State changes originate from the failure of BEs. As the probability
of two rate-governed BEs to fail simultaneously is zero, BEs never fail simultane-
ously. When considering dependencies, this assumption no longer has to hold. To
avoid problems with causalities as described in [6], and to directly resolve spare
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Fig. 4. Dedicated examples.

races [6], we assume that dependent events fail immediately after the triggering
BE. W.l.o.g. we assume that PDEPs have a single dependent event.

Given a source state and an operational BE x that fails, we copy the source
state and additionally mark x with F, and compute the target state. In a bottom-
up fashion, we iterate over the gates. For each gate, we check the failure con-
dition. If the failure condition holds, we mark the gate as failed. If a CUC of
a SPARE fails, we iterate over its remaining children and check whether they
are not listed as the CUC of any of their parents and whether they are still
operational. If so, we update the CUC, otherwise, we mark the SPARE as failed.
We iterate over all restrictions, and check whether any of their failure conditions
hold; if so, we skip the transition at hand. We then reiterate over all gates, and
check if the fail-safe condition holds (i.e. if it cannot fail in the future), we mark
the gate FS. We then iterate top-down over all nodes. If all parents of a node
are either failed or fail-safe, we mark the node as don’t care (DC-propagation).

Example 1. The FTAut of the DFT in Fig. 2(a) is given in Fig. 4(a). Initially, all
nodes are operational. If B initially fails, the PAND becomes fail-safe, and thus
A and B both become don’t care. The resulting state is (X, X, FS). If A however
initially fails, B and the PAND remain operational. An additional failure of B
then causes the top event to fail. DC-propagation yields the state (X, X, F).

Now consider Fig. 4(c). Initially, every node is operational. A’s failure causes
H to fail and makes B don’t care. This yields a transition from the initial state
to state (F, X, OP, OP, OP, OP, OP, F, OP, OP). In this state, the PDEP is
triggered, yielding a state (with probability 0.8) in which C failed, and the same
state (with probability 0.2) as C does not fail. A failure of D in the initial state
does not trigger a failure of the PAND I; in fact I becomes fail-safe, and this
is propagated to J , i.e., DC-propagation marks all children (and their children)
X. This together yields a transition from the initial state to a state in which all
nodes are marked X. Finally, from the initial state, propagating a failure of node
F is discarded as the restriction fails (by F failing before E.)

The initial state for nodes (W1,W2,WS ,FW,BW,SF) in Fig. 2(d) is (OP,
OP, OP, W1, W2, OP) where W1, W2 are the CUCs and as initially the CUCs
are active, the activity for W1,W2,WS is given as (A, A, P). A failure of W1 is
propagated to FW. As its CUC fails, it checks further children. WS is operational
and not a CUC, therefore, the resulting state is (F, OP, OP, WS , W2, OP) and
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(A, A, A). From that state, W2’s failure yields (F, F, OP, WS , F, F) after
failure propagation, as the only remaining child of BW is already claimed. DC-
propagation yields the state (F, X, OP, WS , X, F) and (A, A, A).

As rate-governed transitions have probability 0 to fire at time 0, we either
have immediate transitions or rate transitions. Thus, for each state, we check if
any PDEPs are triggered. If so, we mark the state as immediate and add two
outgoing transitions for each triggered PDEP: One where the PDEP transmits
the failure and one where it doesn’t. Otherwise, we mark the state as Markovian,
and add transitions for each BE which has (in the given state) a failure rate �= 0.

Translation. The translation from the FTAut to the MA is straightforward, cf.
Fig. 4(b). The state spaces of the FTAut and the MA are equal. Each MA state is
labeled with the status of the DFT nodes. For Markovian states, each transition
labelled with a BE x is translated into a delay transition with the failure rate of
x as its rate. For BEs in passive spare modules, we take their passive failure rate.
Each immediate state has a non-deterministic choice over triggered PDEPs in
the DFT. Each PDEP leads to a probabilistic branching, where with probability
p the PDEP propagates the failure, whereas with 1−p it does not.

3.3 Optimisations

Technical Aspects. We use a selection of well-known techniques to reduce
the overhead of propagation: The states are encoded as bit-vectors, and during
exploration, we use an expanded state representation. By exploiting depth-first
search, we keep the set of states that we explore later on small. Work lists keep
only track of the nodes we need to consider. Overriding failed and fail-safe nodes
by don’t care, we merge states which differ only in their past behaviour, but not
in their future behaviour. Afterwards, the state space is reduced by bisimulation.

Partial-Order Reduction. In many DFTs, the actual order in which subsets
of BEs fail is not crucial. We exploit this for dependencies, where — instead of
exploring all interleavings over the triggered events — we aim to only explore
a single order. We adapt a technique called (static) partial order reduction [8]
to DFTs. Based on a static analysis, we identify which dependencies can be
executed in arbitrary order, and expand only a canonical order.

State Elimination. In MA, we can eliminate probabilistic branching by adopt-
ing a state elimination technique as used in [15]. In particular, this allows us
to reduce MA without non-deterministic branching to CTMCs, which can be
analysed much faster as non-determinism is absent.

Modularisation. The use of modularisation in FTs has been proposed in [16].
It identifies independent subtrees in the DFT, analyses them separately, and
combines the results to a final result. If applicable, it is extremely powerful.
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Symmetry Reduction. Many parts in DFTs are symmetric. This can be
exploited (cf. [7]) as follows. Given a successfully detected symmetry, we use
the fact that a fault has an analogous effect in symmetric parts. Moreover for
isolated symmetric parts, if the node identities are not used in the analysis
and the parts are only connected to the remaining DFT via the same node, we
exchange the states of the parts, and thus assume that a fault in a symmetric
part happened in an equivalent DFT. In the DFT in Fig. 4(d), we find two sym-
metric parts (the subtrees of A and A′), which are independent. If we are only
interested in the top level, we can use the exchange technique. That is, if both
symmetric parts are in equivalent states (e.g., the initial state) and A′ fails, we
assume that A failed instead. Now, the two parts are not in an equivalent state.
However, after the additional failure of A′, the two parts are in an equivalent
state again.

4 Measures of Interest

Several quantitative measures can be determined on the generated state space.

Measures and Importance Factors. Various measures are based on the relia-
bility function, the cdf for the probability of a failure after a given time t. Another
prominent measure is the mean time to failure (MTTF), the expected time until
a system failure. The variance of the time to failure (VTTF) is obtained by
Var(X) = E[X2] − E[X]2 for random variable X, the time to failure. The prob-
ability of failure considers the limit probability of the reliability function for t
to ∞. This is of interest as in DFTs not all events fail eventually, cf. Fig. 2(a).
These measures can be used for single events in the DFT, and also for Boolean
combinations of failed and operational gates, such as e.g., the expected time to
a DFT state where events A and C have failed. Another measure-of-interest is
the expected number of faults before the DFT fails; if this is high, it indicates
that are various possibilities to take countermeasures. The Fussell-Vesely impor-
tance factor is the probability that a BE has failed when the DFT fails [17]. An
exemplary criticality importance factor is the probability that a BE causes the
DFT to fail. The measures above are analysed using efficient algorithms to verify
temporal properties on CTMCs [18] or MA [19].

Conditional Measures. All measures except RF (t) can be conditioned on the
occurrence of events, cf. the first column of Table 1. For example, as PrF �= 1
for some fault trees, the MTTF is not always defined. For this case a reasonable
alternative is to condition the MTTF, assuming the DFT eventually fails.

Measure Preservation Under Optimisations. Techniques such as modu-
larisation, DC-propagation and symmetry reduction are not applicable to all
measures. Their robustness w.r.t. the measures is indicated in the last columns
of Table 1, where ∗ means support of a light version. Modularisation is powerful
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Table 1. Supported measures and importance factors

Symbol Name Cond. Par.syn. Mod. dc. Sym.red

RF (t) Reliability at t ✗ ✗ ✓ ✓ ✓

PrF Probability of failure ✓ ✓ ✓ ✓ ✓

MTTFF Mean time to failure ✓ ✓ ✗ ✓ ✓

VTTFF Variance of time to failure ✓ ✓ ✗ ✓ ✓

Expected faults before failure ✓ ✓ ✗ ✗ ✓

FV importance factor ✓ ✓ ✗ ✗ ∗
Criticality importance factor ✓ ✓ ✗ ✓ ∗

if a partial state space suffices, e.g., if the measure is compositional –meaning
that the measure can be obtained from its subDFTs’ measures. This holds e.g.,
for reliability but not for MTTF. Symmetry reduction requires a lack of iden-
tity (of DFT nodes), which does not hold for some measures, including many
conditional statements. If the lack of identity is not given, only a light version
is applicable.

5 Parameter Synthesis

Problem. The analysis discussed so far has two drawbacks: It requires all fail-
ure rates in the DFT to be given and does not guarantee any robustness w.r.t.
perturbations. The latter has been addressed by sensitivity analysis [9]. These
deficiencies inspired us to treat symbolic failure rates, i.e. DFTs where failure
rates and propagation probabilities in PDEPs are given as polynomials over a set
of parameters (pDFTs). Our state space construction technique is largely unaf-
fected by this. Our focus is on the failure rate synthesis in DFTs for any measure
in Table 1, second column, i.e., determine all values (of the symbolic rates) such
that the DFT satisfies a given desired threshold on a measure. For simplicity,
we focus on DFTs that (after our reductions) obey no non-determinism, which
applies to the vast majority of the DFTs in the literature. Thus, the underlying
state space of pDFTs can be reduced to a parametric CTMC, i.e. a CTMC whose
rates are polynomials over the DFT parameters.

Approach. To enable the synthesis in pDFTs we exploit the parameter synthe-
sis tool PROPhESY [20]. Based on ideas in [15], it computes a closed form (pre-
cisely: a rational function) for a parametric CTMC and the measure of interest.
To enable sensitivity analysis, it provides the derivative w.r.t. the parameters.
On top of obtaining these functions, PROPhESY allows for parameter space par-
titioning — using satisfiability-modulo-theory (SMT) techniques for non-linear
arithmetic. That is, given a pDFT, we can synthesise for which parameter values
the measure (e.g., MTTF) is above a threshold. An example output is depicted
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Fig. 5. (a) Sample output, (b) a sample parametric DFT, and (c) its MTTF.
(Color figure online)

in Fig. 5(a). This plot was obtained for the DFT of Fig. 2(d) where W1, W2 and
WS have failure rates x, 1 and y respectively for unknown x, y.

The green boxes represent areas in which all failure rates of W1 and WS give
rise to an MTTF that exceeds 1.5, while the red boxes guarantee all rates yield
an MTTF below 1.5. For the white areas, none of the above statements can be
made. Note that this output is extremely valuable as it provides information
about many (in fact uncountably many) failure rate combinations for which the
MTTF is below or above the threshold. We like to point out that obtaining this
information is far from trivial, and intrinsically more involved than analysing a
DFT where all failure rates are given. Consider the small example DFT from
Fig. 5(b), where D has a symbolic failure rate. The MTTF of the DFT is given
by the plot in Fig. 5(c). As the MTTF is not monotonic, the parameter synthesis
is not straightforward.

6 Experiments

Set-Up. To evaluate our approach, we tested the performance of our tool on
reliability and the MTTF assessment. We compare with the state-of-the-art tool
DFTCalc [13] and assess the effect of our abstraction techniques. The experiments
were conducted on an HP BL685C G7 restricted to 8 GB RAM and used a single
2.0 GHz core and a time-out of 1 h. We use the benchmark suite from [12]. Besides
the smaller HCAS and SAP sets, it contains the following benchmarks:

HECS. The Hypothetical Example Computer System (HECS) stems from the
NASA handbook on FTs [2]. It features a computer system consisting of a proces-
sor, a memory unit (MU) and an interface consisting of hard- and software.

MCS. The Multiprocessor Computing System (MCS) contains computing mod-
ules consisting of a processor, a MU and two disks, the DFT was given in [10].

RC. The Railway Crossing (RC) is an industrial case modelling a level crossing
which fails whenever any of the sensor-sets, barriers or controller fail [21].

SF. The Sensor Filter (SF) benchmark is a DFT that is automatically generated
from an AADL (Architecture Analysis & Design Language) system model [22].

We used the simplified DFTs as produced in [12], as this is shown to be
beneficial for DFTCalc. For each instance, we tested reliability for t = 100 and
the MTTF. Further features were tested on a range of > 100 crafted instances.
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Fig. 6. Overview of the experimental results on four different benchmark sets.

Results. Figures 6(a-c) compare the performance of our tool (referred to as
SToRMDFT) with DFTCalc on MTTF (where modularisation is not applicable).
All plots use a log-log-scale. Figure 6(a) presents the analysis time of a DFT.
This includes state space generation. The lower dashed line indicates an advan-
tage of our tool by a factor ten, the upper of a factor 100. The outer lines indicate
TOs and MOs, respectively. Figure 6(b) indicates the peak memory consump-
tion as given by the operating system. Figure 6(c) shows the peak intermediate
state size. Figure 6(d) summarises the performance on the benchmark sets — it
lists the number of benchmarks solved and the cumulative time needed for the
solved benchmarks. Figure 6(e) shows the effect of the individual optimisation
techniques (symmetry reduction, DC-propagation, modularisation) versus using
all of them.

Observations. For non-parametric DFTs the performance is dominated by
the state space construction. SToRMDFT creates intermediate state spaces that
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are often ten times smaller; especially for moderately-sized DFTs, this is done
with a much lower overhead. This results in generating state spaces up to 5
orders of magnitudes faster. The informed state space generation allows to stop
exploring states where the measure of interest is settled. This advantage is best
observed by comparing top events typed OR and AND. The former requires
significantly smaller state spaces, which is reflected by the smaller intermedi-
ate state spaces — and leads to a significant advantage over DFTCalc. These
effects are multiplied by aggressively applying symmetry reductions and DC-
propagation. For many benchmarks, our abstractions directly yield the small
bisimulation quotient. However, on some HECS and MCS instances, our sym-
metry reduction does not yet suffice and DFTCalc gains an advantage in terms
of memory. Modularisation remains a powerful approach for assessing reliabil-
ity. It profits additionally from the performance on small DFTs. Model-checking
for reliability is for both SToRMDFT and DFTCalc so fast that our slightly better
performance is hardly significant. For MTTF, SToRMDFT is significantly faster.

For parametric instances, the original DFTs from literature can be handled:
For, e.g., the standard HECS from literature it takes 5 s to compute the rational
function with more than 400 terms in the numerator. Parameter synthesis for
90% of the parameter space finishes within four minutes. However, scalability
beyond these moderately-sized DFTs remains an open issue, as the parameters
appear throughout the full state space.

7 Conclusions and Future Work

We have presented a state space generation technique for DFTs that is more
than two orders of magnitude faster than the state-of-the-art. The technique
is complemented with a new feature in DFT analysis — the synthesis of failure
rates for measures such as MTTF. Future work includes the failure rate synthesis
for reliability (e.g., using [23]) and improve scalability for parameterised MTTF.
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Abstract. Fault trees constitute one of the essential formalisms for sta-
tic safety analysis of various industrial systems. Dynamic fault trees
(DFT) enrich the formalism by support for time-dependent behaviour,
e.g., repairs or dynamic dependencies. This enables more realistic and
more precise modelling, and can thereby avoid overly pessimistic analy-
sis results. But analysis of DFT is so far limited to substantially smaller
models than those required for instance in the domain of nuclear power
safety. This paper considers so called SD fault trees, where the user is
free to express each equipment failure either statically, without modelling
temporal information, or dynamically, allowing repairs and other timed
interdependencies. We introduce an analysis algorithm for an important
subclass of SD fault trees. The algorithm employs automatic abstraction
techniques effectively, and thereby scales similarly to static analysis algo-
rithms, albeit allowing for a more realistic modelling and analysis. We
demonstrate the applicability of the method by an experimental evalua-
tion on fault trees of nuclear power plants.

1 Introduction

Fault trees are a very prominent formalism for inductive failure modelling. They
underly safety assessments in a wide spectrum of technical systems, ranging
from nuclear power production [9,17], over chemical and process industry [7] to
automotive and aerospace [14] systems.

A fault tree decomposes the failure potential of a complete system into fail-
ures of its subcomponents, sub-sub-components, and sub-sub-subcomponents,
up to the level of so-called basic events. The latter represent individual equip-
ments, atomic external events, operator errors, etc. These are assumed to be
quantifiable wrt. estimates of failure frequencies or probabilities, achieved by
statistical methods from operation history or simulations or even by engineering
computations. Originally, fault trees describe a static view on a system, we thus
call them static fault trees (SFTs). Static fault trees pair simplicity in modelling
with efficiency in analysis techniques.

A particularly effective analysis technique characterises all fault combina-
tions leading to the complete failure of an SFT, and returns their minimal-sized

c© Springer International Publishing Switzerland 2016
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representation, in the form of so called minimal cutsets. Even though the num-
ber of minimal cutsets can be exponential in the number of basic events, it is
possible to appropriately employ the cutoff on low probability cutsets to reduce
the size of the problem. This minimal cutset analysis is in daily use for instance
in the safety analyses of nuclear power plants [9,17], where SFTs with several
thousands of basic events are routinely processed, supported by tools such as
Saphire [18] or RiskSpectrum [13].

It has been argued [2–4,11,14] that the static system view supported by
SFTs is often very rough (though conservative), in the sense that a more precise
analysis is possible if the fault tree formalism provides support for represen-
tation and analysis of the changes in state of the system in operation. In the
nuclear safety domain, this means that the dynamics of an accident and possible
countermeasures can be detailed. The promised gain in precision is of industrial
relevance, for instance for analyses with longer mission time, such as probabilis-
tic Level 2 [10] (and consequently Level 3) studies in nuclear power plants. After
the Fukushima accident, the interest in analyses studying ‘safe state’ rather than
a fixed mission time has increased. This will increase the need to properly treat
long mission times also within Level 1 [9] probabilistic safety assessment.

Over the years, several kinds of dynamic fault trees have been proposed,
starting with the work of Dugan [2]. However, dynamic analysis techniques need
to implicitly or explicitly explore the state space spanned by the system dynam-
ics. This space tends to be prohibitively large; often it is of exponential size,
relative to the number of basic events. With previous techniques, models with
more than a few hundred basic events are impossible to process. This means
that these approaches cannot be directly applied to large scale industrial fault
tree models such as those of nuclear power plants.

SD fault trees [11] (SD-FTs) have lately been proposed to provide a potential
way forward. They extend SFTs with features to model some parts of the sys-
tem dynamically, without the need to construct the induced state space of the
entire fault tree. This means that it remains possible to utilize efficient solver
technology for SFTs, and combine this with less efficient, but focused analysis
for the dynamic parts. The new features can capture (1) sequential application
of elementary safety functions and (2) repairs of failed components. Basic events
can be considered either static or dynamic. Dynamic dependencies are expressed
via a triggering mechanism, whereby a safety function failure may activate other
safety functions and failed components can be repaired (and thus continue to
perform their function).

In this paper, we build on the SD-FT concept. We attack the problem that
the focused analysis needed for the dynamic parts may still suffer from state
space explosion, exponential in the amount of dynamic basic events. Indeed, the
algorithm originally developed for the SD-FT formalism [11] is efficient only if
restricting the triggering logic severely in expressiveness. This is rooted in the
fact that the algorithm calculates the dynamic failure probability exactly, which
in turn requires considering all possible accident progression scenarios, including
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consecutive failures and repairs of components. This becomes quickly infeasible
for increasingly intricate triggering patterns induced by a richer triggering logic.

However, our analysis of real-life safety analysis models has made apparent
that most of these scenarios turn out to be rather unrealistic. This is reflected by
their relatively low probability compared to a few dominating simple scenarios.
The present paper exploits this observation to leap to a generally applicable
method. The crux of this leap lies in abstracting away from unrealistic event
sequences in a controlled manner. This allows us to obtain an over- and under-
approximation, safely bounding the exact value. As a result, the present work
lifts the triggering restrictions in their entirety, enabling efficient analysis of
SD-FTs with arbitrary triggering logic. We present this approach on a mildly
restricted subclass of SD-FTs that limits the shape of dynamic basic events, in
contrast to restrictions on the triggering logic.

As we will demonstrate by means of several examples, the resulting method
scales very well to industrial-size systems, even from the nuclear power domain,
and with high precision guarantees. The restrictions we need to impose on SD-
FTs do not affect their adequacy for the application context as they cover all
standardly used reliability models of basic events.

2 Static and Dynamic Fault Trees

We focus our work on a class of static and dynamic (SD) fault trees, intro-
duced in [11]. It allows the modelling of components of the system either stat-
ically or dynamically. The behaviour of dynamic components are modelled via
continuous-time Markov chains.

Definition 1. A failure continuous-time Markov chain (failure CTMC, or
fCTMC) is a tuple C = (S,R, ν, F ) where S is a finite state space, ν is the
initial distribution over S, R : S × S → R≥0 is the rate matrix, and F ⊆ S is
the set of failed states.

At initialisation time, the system chooses a state according to initial distribu-
tion ν. The amount of time the system spends in some state s is distributed
exponentially (with the rate parameter of the distribution λ =

∑
s′∈S R(s, s′)).

After this delay the system moves from the current state to successor s′ with
probability R(s, s′)/

∑
s′′∈S R(s, s′′).

The set F of states of a fCTMC C corresponds to failed states of a component.
The complement set represents properly functioning ones. Failure of the com-
ponent is modelled by transitions from functioning to failed states, and repair -
from failed to functioning. An example fCTMC is depicted in Fig. 1.

The SD-FT formalism allows one to model redundant back-up components
as well. Whenever a component is failed, its back-up substitute can be used by
the system until the main component gets fixed. This feature is modelled with
the help of triggered CTMCs:
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Definition 2. A triggered CTMC (tCTMC) is a fCTMC with states partitioned
into Soff � Son and with total functions on : Soff → Son and off : Son → Soff .
We require F ⊆ Son and {s ∈ S | ν(s) > 0} ⊆ Soff , i.e. only an on state can be
considered failed, and only at off states the system can be initialized.

ok

fail
10−30.05

off1 ok

failoff2

on

off
10−30.05

on

off

0.05

Fig. 1. An example fCTMC (left) and
tCTMC (right). Double circles indicate F
states. States ok (left) and off 1 (right) are
initial.

A component represented by a
tCTMC can be either switched on or
off. Figure 1 displays an example of
a tCTMC. Dashed transitions, repre-
senting the effect of functions on and
off , are called triggering transitions.
Being currently in an on or off state,
a tCTMC behaves in the same way
as an fCTMC. Triggering transitions
are ignored unless an external event
arrives (e.g. failure of another component). In this case the tCTMC takes instan-
taneously the corresponding triggering off or on transition.

Definition 3 (SD fault trees [11]). A static and dynamic fault tree (SD-FT)
is a finite directed acyclic graph where its leaves are partitioned into sets Bs,
called static basic events, and Bd, called dynamic basic events. Its inner nodes
G are called gates where a distinguished root node is denoted gtop. Additionally,

– each gate is either of type And or of type Or,
– each gate g has a set of dynamic basic events trig(g) that are triggered by g,
– each static basic event a is specified by its probability of failing p(a),
– each dynamic basic event a is specified by T (a) which is a tCTMC iff a is

triggered by some gate, and an ordinary fCTMC, otherwise.

Pump system fails

Pump 1 fails

fails
to start

fails in
operation

Pump 2 fails

fails
to start

fails in
operation

A
N

D

O
R

O
R

a b c d

Fig. 2. An example of a SD fault tree.

SD-FT can be considered as a spe-
cific subclass of BDMPs [4], albeit at
the price of dropping the distinction
between static and dynamic events.
In fact it is this distinction that we
exploit to conquer and intertwine sta-
tic and dynamic analysis steps effec-
tively.

Without loss of generality, we
assume that each dynamic basic event
is triggered by at most one gate.
The case of multiple triggering gates
g1, g2, . . . gk can be reduced to only
one by adding an Or gate over
g1, g2, . . . , gk, and making only this Or gate triggering. We also require that
there are no cyclic dependencies in the triggering structure. Scenarios excluded
by this requirement are exactly “deadlocks” situations where none from a group
of several dynamic events can fail before all others have failed.
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Example 1. Figure 2 depicts an example SD-FT. Dynamic basic events b and d
are denoted by double circles, and their CTMCs are given in Fig. 1 (non-triggered
for b and triggered for d). Failure of pump 1 triggers the event d from the pump
2, depicted by the dashed edge.

Behaviour of a SD-FT. At time zero each static event a either fails with
probability p(a) or succeeds with probability 1−p(a). Dynamic events randomly
choose their initial states according to their initial distributions and proceed as
described above. Failures and repairs of basic events instantaneously propagate
up through the SD fault tree according to the rules of Boolean logic. We call a
gate failed or functioning, if the logic beneath the gate is failed or functioning.
Whenever a triggering gate becomes failed, or gets repaired, it instantaneously
triggers the corresponding triggered basic events, which each instantaneously
take a transition labelled by on or off , respectively.

Semantics. For the formal definition of the SD-FT semantics we refer to [11].
Informally, it is given in terms of a product Markov chain CFT = (S,R, ν,F). To
this end, first, each static basic event a is represented as an equivalent Markov
chain. It consists of only two states ok and fail, has no transitions between them,
and ν(fail) = p(a). Then, the product Markov chain is built over the product
state space of all its basic events. Transitions between states occur according to
parallel interleaving, i.e. only one basic event can transit at a time. The failure
state set F of the CFT is formed by those states in which failures of the respective
components jointly induce a failure of the top gate.

Probability of Failure. We are interested in the probability of the top gate
of the fault tree FT to fail within some fixed time horizon t. We will denote
this value as p(FT ). This value corresponds to the reachability property [1] of
the product Markov chain CFT , which is the probability of the Markov chain to
reach the set of goal states F within time t. Thus

p(FT ) = PrCFT

[
Reach�tF

]

3 SD-FT Analysis

Existing Techniques. An effective computational method for SD-FT analysis
has been proposed in [11], albeit with restrictions: The price of the computation
speed is paid by severe constraints on the triggering logic. These constraints
exclude, for instance, multiple dynamic basic events in different subtrees below
Or gates or any occurrence of dynamic basic events in subtrees of And gates.
Furthermore, for nested triggering, they enforce that all dynamic events under
a (nested) triggering gate are triggered by the same trigger. Relinquishing any
of these constraints makes the algorithm not scale well. For regular industrial
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systems the application of this algorithm is therefore limited. However, the algo-
rithm will be our natural reference for comparison in the experimental evaluation
in Sect. 4.

A More General and More Efficient Approach. In order to successfully apply SD-
FTs to real world applications we thus need a more general and more efficient
approach. In this section we present a new simple and efficient algorithm for
solving SD-FTs. The approach overcomes constraints on the triggering logic in
their entirety. It uses abstractions so as to cope with the state space explosion
problem. In doing so, it introduces a reasonable and controllable error margin,
and comes at the price of mildly restricting tCTMCs appearing as triggered
basic event behaviours. These restrictions are not prohibitive at all with respect
to models currently used in practice. This is rooted in the lack of available
statistical data. Models of basic events that are used in real world application
need the data of failure and/or repair rates for a specific component. These
values are gathered statistically and so far are mostly available for very simple
basic events, like those depicted in Fig. 1. Due to this, designing a finer model
of a basic event is in most cases not possible.

Our algorithm is built upon the ideas of static fault tree analysis and is
centred around the notion of minimal cutsets. A set of basic events C is a cutset
if whenever all of the basic events in C are simultaneously in a failed state then
the top gate is failed as well. A cutset C is minimal if there is no smaller cutset
contained in C. For instance, in Example 1 the set C = {a, b, c} is a cutset, while
C = {a, c} is a minimal cutset (MCS). A failure probability of a cutset p(C) :=
PrCFT

[
Reach�tF(C)

]
, where F(C) are those states of the product CTMC CFT

in which all events from C are failed. The set of minimal cutsets L(FT ) of a
tree FT represents exactly the failure scenarios of a system, i.e. Reach�tF =
⋃

C∈L(FT ) Reach�tF(C). Thus, p(FT ) = PrCFT

[⋃
C∈L(FT ) Reach�tF(C)

]
and

can be computed via minimal cutsets and the inclusion-exclusion principle.
Due to the scale of systems, computation of the failure probability of a

fault tree becomes rarely feasible. Instead, a value called rare event approx-
imation [14] with a cutoff is usually targeted. This quantity is defined by
prea(FT ) :=

∑
p(C)>c∗ p(C). Here c∗ is called a cutoff constant. In static fault

tree analysis it is usually set to values in the order of 10−10. We call a MCS C
relevant if p(C) > c∗. Following the best practices, we as well approximate the
value prea(FT ) rather than p(FT ) in our analysis.

We will introduce now a subclass of triggered CTMCs that allows efficient
analysis. It mildly restricts the structure of tCTMCs without sacrificing expres-
siveness.

Definition 4 (Simple SD-FT). A SD fault tree is simple if the tCTMC of
each triggered dynamic basic events satisfies the following:

– R(s, s′) > 0 ⇔ s, s′ ∈ Son or s, s′ ∈ Soff ;
– both on ◦ off and off ◦ on are identities;
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– the projection of the tCTMC on Son (or equivalently Soff ) has one of the
shapes depicted in Fig. 3 with k � 0 and l � 1;

– for any two states soff and son , such that soff = off (son) (or equivalently
son = on(soff )):

soff , son ∈ S\F → R(soff , succ(soff )) � R(son , succ(son))
soff , son ∈ F → R(soff , succ(soff )) � R(son , succ(son)),

i.e. the rate of failing is higher when the component is turned on, than when
it is off, and, analogously, the rate of repair is lower.

This definition in particular naturally allows for models that return to a stable
configuration (on repair or similar). An example of a simple SD-FT is the tCTMC
depicted in Fig. 1.
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Fig. 3. Two possible shapes of CTMCs of
triggered BE of a simple SD-FT. States
filled with black denote failed states and
the non-filled ones are functioning.

Remark. The correctness of our
algorithm is rooted in properties
of open Interactive Markov Chains
(oIMCs) [5]. Nowadays, oIMC analysis
has scalability issues, but it might ben-
efit from recent advances in the field
of Continuous Time Markov Decision
Processes [6]. In this way, our app-
roach can be lifted to the general
class of tCTMCs, possibly retaining its
effectiveness.

3.1 Quantification of a SD-FT

Let FT be a simple SD-FT and c∗

be our cutoff constant. As mentioned
before, we target the approximation of
the value prea(FT ) :=

∑
p(C)>c∗ p(C). To quantify this value we need a list of

relevant cutsets and a procedure to quantify the value p(C) for each relevant
cutset C. To efficiently obtain the list of relevant cutsets we can proceed in the
same way as presented in [11]. To this end we use the MOCUS algorithm [8],
which returns the set of relevant cutsets Lc∗ as well as the bound ε on the error
introduced by the cutoff c∗. We will thus skip this step and in the following
concentrate on the algorithm to quantify each relevant cutset.

Quantification of Failure Probability of a MCS. As observed in [11], the
failure probability p(C) of a MCS C can be exactly expressed by the failure
probability of a smaller SD-FT FTC , which we will call representative tree for
C. It is constructed as follows:

BuildRepTree(C)
1. Add to FTC a new top And gate with all basic events from C as inputs.
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2. To track which gates we model in FTC , label all gates of FT as missing.
3. While FTC has a basic event that is in FT triggered by a missing gate g:

(a) Calculate minimal cutsets C1, . . . , Ck of the subtree of g.
(b) Model in FTC the gate g by a new Or gate that has as inputs new gates

g1, . . . , gk where each gi is an And gate over basic events from Ci.
(In this process, copy to FTC all the newly referred basic events.)

(c) Label g as not missing.
4. Finally, having modelled all triggering gates, add to FTC all the trigger edges,

i.e. between a basic event b and gate g if g triggers b in FT .

Lemma 1. p(C) = p(FTC)

In order to quantify p(C) one can construct the semantical CTMC of the fault
tree FTC and apply a numerical algorithm for the reachability analysis on it [1].
However, the size of the fault tree FTC depends on the triggering structure of
FT and in the worst-case can be as large as FT , rendering the direct analysis
of the semantical CTMC infeasible. For comparison, 100 dynamic basic events
translates into 2100 states of the product CTMC, when modern tools for CTMC
analysis (e.g. Prism) can handle up to 240 states at most. We will later show
in the experimental evaluation section that this growth problem is not an exotic
corner case, but is a real problem even for simple real world models. Our app-
roach instead avoids the explosion by building conservative over- and under-
approximations of the value p(C). In this way we sacrifice precision but retain
expressiveness and efficiency.

Over- and Under-Approximations of the MCS Failure Probability.
We aim at decreasing the size of the state space by reducing the amount of
basic events of FTC and simplifying its triggering structure. Intuitively, we shall
replace some of the dynamic basic events with trivial static ones, which are
failed either always or never (for over- and under-approximations respectively).
This will allow us to cancel out not only a number of dynamic basic events,
but also some of the triggering gates completely, thereby significantly simplify-
ing the analysis. We do so in a way that controls the error introduced by this
replacement.

We need to differentiate between immediate and nested triggering gates, with
respect to a cutset C. Immediate gates are those that trigger some BE from C
directly, while nested gates trigger basic events indirectly through a sequence of
failures and triggering of other gates. We will also introduce two new static basic
events: eslow with probability 0 and efast with probability 1. Intuitively, eslow
never fails, while efast is failed from the beginning.

We will now define the procedure that allows us to obtain an abstraction of the
representative tree of a cutset. Let C be a cutset, the variable dir ∈ {over ,under}
denotes the direction of abstraction (over- or under-approximation). The list of
basic events to be cancelled out is called an abstraction sequence. The procedure
we present is applicable for an arbitrary abstraction sequence. Later in this
section we will present heuristics for obtaining abstraction sequences for over
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and under-approximations, that we used in our experiments. In the following,
whenever we perform an operation on a cutset (or a list of cutsets) we assume an
equivalent operation to be performed on its representative tree and vice versa.

AbstractTree(C, c∗)

1. Using the BuildRepTree procedure, build the representative tree of C. In step
3(a) of BuildRepTree instead of using the set of cutsets of a gate g, use the
set of relevant cutsets Lc∗(g). The value Lc∗(g) and the cutoff error bound
εg can be obtained in the same way as described above using the MOCUS
algorithm;

2. If dir = over add to Lc∗(g) the set {bεg
, efast} where bεg

is a new static basic
event with probability εg

1;
3. Choose an abstraction sequence A = (b1, G1)(b2, G2) . . . (bn, Gn), where bi is

a non-triggered basic event of FTC and Gi is a set of gates;
4. Repeatedly for i = 1..n:

(a) for each gate g ∈ Gi, for each cutset Cg ∈ Lc∗(g) replace all occurrences
of bi by eslow if dir = under , and by efast if dir = over2;

(b) remove from Lc∗(g) cutsets that have become non-minimal (propagate
these changes into the tree by removing respective gates);

Remark. Notably, after step 4(b) one can still perform a number of further reduc-
tions of the state-space of FTC . For instance whenever an event b is replaced
with eslow , all the cutsets containing b can be immediately removed, since they
will never fail. As a result of this procedure we obtain new trees FTC and FTC

for over- and under-approximations.

Lemma 2. p(FTC) � p(C) � p(FTC)

Depending on the chosen abstraction sequence, FTC and FTC can be of a much
smaller size than the original FTC , making it possible to apply the efficient
CTMC analysis we discussed above directly to product CTMCs constructed
separately for FTC and FTC . Let F and F be failed states of FTC and FTC ,
and let ε′ be the error bound used by the CTMC algorithm. We thus define the
over- and under-approximations as follows:

p
c∗(C) := p(FTC) = PrCFTC

[
Reach�t(F)

]

pc∗(C) := p(FTC) + ε′ = PrCFTC

[
Reach�t(F)

]
+ ε′

1 This is to compensate for the cutoff error bound εg.
2 Whenever the event bi belongs to a cutset of a gate g �∈ Gi, we create a copy of bi and

direct all the transitions from gates g to bi to the new basic event. Thus whenever
bi is abstracted in gates g ∈ Gi, it is not abstracted away in gates g �∈ Gi.
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The Abstraction Sequence Heuristic. The abstraction sequence that one
decides to use in the above procedure affects directly the error introduced by the
approximation. We will now describe the heuristics for selecting an abstraction
sequence that we find reasonable in practice and that we used for the experi-
ments.

For nested gates, we abstract all basic events in an arbitrary order yielding
Lc∗(g) = {{efast}} and Lc∗(g) = {{eslow}}3. As regards immediate gates, we
use different heuristics for over- and under-approximations. We first introduce
two new measures εU (bi) � 1 and εO(bi) � 1 of the impact of abstracting event
bi away. These measures are based on the notions of risk increase(decrease)
factor [16]. The closer these values are to 1 the smaller is the loss of precision
due to reduction of the respective event. We therefore aim at abstracting such
events.

Let err � 0 be an allowed error parameter, x ∈ {O,U}. We assign each Gi

to be the set of all immediate triggering gates. The following procedure applies
to both over- and under-approximation (by using respective x):

1. Enumerate all the basic events b from FTC except for those in C by their
ascending εx(b). The εx(b) needs to be re-evaluated for every element in the
sequence as abstracting all previous events changes the FTC ;

2. Stop once reducing the next basic event according to the given order would
make the error

∏

reduced b

εx(b) exceed err + 1;

Remark. As a result of applying these abstraction sequences one may obtain a
lot of cutsets of a specific shape. Those are either singleton cutsets, or pairs of
the form {b, bi}, {b, bj}. In order to further reduce the state space one can add
another abstraction step that lumps such cutsets together, while preserving the
property of being an over- or under-approximation. We indeed defined such a
lumping procedure for the class of dynamic basic events whose CTMC has one
of the shapes depicted in Fig. 3, and used it in our experiments

4 Experimental Evaluation

This section presents the empirical evaluation of our approach. Since our focus
is on an efficient approach that integrates well with the industrial practice, we
do not consider small or medium-size synthetic examples whose homogeneous
structure would enable to study model size vs. solution time tradeoffs. Instead
we prefer to present results for realistic models from industrial practice, therefore
serving as a proof of concept.

As an implementation of the MOCUS algorithm we use RiskSpectrum [13],
and resort to the Prism tool [12] for the reachability analysis of the CTMCs.
All the intermediate processing, mainly reductions and conversions, were imple-
mented as Python scripts. All experiments are carried out on a single Intel Core
3 Reduction of a triggered basic event is possible due to reduction of its triggering

gate.
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i7-4790 with 32 GB of RAM. The following abbreviations will appear through-
out the section: BE , DynE and TrigE denote the overall number of basic events,
dynamic basic events, respectively triggered events in a given SD-FT. The num-
ber of relevant minimal cutsets is denoted as RelMCS .

Models. We evaluate our approach on four simple and two larger reactor mod-
els. These are derived from models representing analyses built by safety engi-
neering experts with all the modelling power that static fault trees offer. For
each of these original models, a static top value pstat can be computed (by
RiskSpectrum) characterizing the state-of-the-art failure frequency estimate
of the analysed scenario. We obtained SD-FT models from these static ones by
adding dynamic features offered by SD-FT formalism in a realistic manner. For
all the dynamic basic events we use repair rate 0.1, which is approximately in
the order of magnitude of real component repair rates. We use the static values
pstat as reference values for comparison in our experiments.

Table 1. Model characteristics.

BE DynE TrigE RelMCS

Simple reactor 40 13 7 Various
Ind-1 3000 220 168 3164
Ind-2 2215 599 12 96042

Simple Reactor Models. These
models are variations of a toy
example of a probabilistic safety
assessment model of a boiling water
reactor. We always calculate a core
damage consequence, which is a
typical Level 1 analysis with a 24 h
time horizon. The size of these models is tiny relative to real-life models. Their
common characteristics are presented in Table 1 (first row), the variants differ
in the triggering logic:

TwoTrains models a system with two redundant trains of separate equipment,
such as pumps, diesel engines, SWS (Service Water System), and CCW
(Component Cooling Water System). The second train is triggered when-
ever the first pump fails;

Diesel is a system where the two diesel engines are redundant per train. One
diesel engine is enough to make the respective train function properly;

SWS+Diesel adds redundancy for SWS systems in addition and similar to the
diesel engine redundancy;

CCW+SWS+Diesel supports redundancy for CCW, SWS, and diesel engines.

Industrial-size Reactor Models. These are two slightly adapted core damage con-
sequence analysis cases from two different real-life probabilistic safety assessment
models. We will further refer to them as Ind-1 and Ind-2. Table 1 shows some of
the core characteristics of the models. The most significant adaptations concern
(1) switching off the common cause failure treatment and (2) updating failure
data for some static basic events. We have added dynamic dependencies between
components which in reality represent redundant systems (such as pumps) where
only a subset of components has to run in order to guarantee the safety func-
tion. Triggering gates were chosen in a way that can be considered induced by



Effective Static and Dynamic Fault Tree Analysis 277

Table 2. Runtime experiments for simple reactor models performed with err = 1.

T TPrism RelMCS AvDynE AvTrigE AvAdd MaxSet #Set>8 [11]

TwoTrains 07:01 06:49 15061 4.8 0.1 0.2 15 818 >4 h

Diesel 30:04 29:53 10389 4.8 0.09 0.21 27 586 >4 h

SWS+Diesel 23:16 23:07 8007 4.8 0.09 0.20 27 501 >4 h

CCW+SWS+Diesel 15:42 15:34 5145 4.9 0.1 0.23 27 456 >4 h

a convenient modelling methodology. We chose gates corresponding to failures
of complete systems and we did not simplify the logic under triggering gates
by remodelling. All basic events with the mission time reliability model under
the gates corresponding to the triggered systems were considered dynamic and
triggered. Such a modelling requires only a high level understanding of dynamic
relations between systems and components and knowledge about which gates
model failures of these systems.

Experiments. In all the experiments we analyse a mission time of 24 h. The
precision of time bounded reachability (computed by the Prism tool) is set to
10−7. In the tables presented, AvDynE (respectively AvTrigE) denotes the average
amount of dynamic (respectively immediately triggered) events per cutset. When
we report runtime, we use, unless otherwise stated, min:sec as format, and use T

for overall runtime, and TPrism for the fragment thereof needed by Prism. Value
AvAdd denotes the average amount (over all cutsets C) of basic events, both
static and dynamic, that have not been abstracted from FTC (excluding the
events from C itself). MaxSet refers to the maximum (over all cutsets) amount
of basic events in a cutset tree that have been left after all abstractions, and
#Set>8 shows the amount of cutsets, whose representative trees contain more
than 8 basic events.

In order to evaluate our approach we use three measures: runtime, achieved
accuracy and accuracy gain compared to a static analysis. To estimate the latter,
we use the ratio of over-approximation prea to the value pstat described above.
This ratio can be expected to be lower than 1, since modelling the dynamics
brings more accuracy and thus less pessimism. The runtime of the static analysis
step is not reported. It was in the order of seconds for all experiments performed,
given that the cutsets were precomputed by RiskSpectrum.

Influence of Model Parameters. We first want to estimate the effect of different
parameters of the model itself on the running time of our algorithm. To do
this we performed experiments on all the simple reactor models. These models
share the same value of parameters BE , DynE and TrigE and differ mainly in
their triggering logic. Each of the relevant cutsets contains at least one dynamic
event. Table 2 summarizes the results of this experiment. As we can see, the
existing algorithm from [11] is not competitive. The runtime of our algorithm
is influenced by the maximum size of cutsets as well as the amount of large
cutsets. More concretely, even though the amount of relevant cutsets for the
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Table 3. Experiments with varying parameter err on TwoTrains, where pstat =
5.836344 · 10−5.

err T p
rea

× 105 prea × 105 AvAdd MaxSet #Set>8 prea/pstat

3 06:46 4.5747 4.6017 0.19 15 755 0.78

2 06:52 4.5769 4.6017 0.20 15 764 0.78

1 07:01 4.5848 4.6017 0.20 15 818 0.78

0.1 12:05 4.5927 4.6016 0.21 15 818 0.78

0.01 24:30 4.5961 4.6012 0.27 15 818 0.78

10−3 38:10 4.5966 4.6012 0.34 15 818 0.78

10−4 38:47 4.5966 4.6012 0.34 15 818 0.78

10−5 38:46 4.5966 4.6012 0.34 15 818 0.78

Table 4. Experiments with varying parameter err for Ind-1, where pstat = 3.037881 ·
10−8.

err T p
rea

× 108 prea × 108 AvAdd MaxSet #Set>8 prea/pstat

20 05:50 2.4790 2.5760 0.26 16 306 0.84

10 06:58 2.4790 2.4915 0.34 16 531 0.82

5 07:01 2.4790 2.4915 0.35 16 589 0.82

2 27:54 2.4798 2.4847 0.43 23 846 0.81

1 >6 h 2.4802 N/A 0.58 63 870 N/A

Table 5. Experiments with varying parameter err for Ind-2, where pstat = 7.342436 ·
10−7.

err T (hrs:min:sec) p
rea

× 107 prea × 107 AvAdd MaxSet #Set>8 prea/pstat

20 02:16:10 4.8934 6.0541 0.05 14 103561 0.82

10 02:16:06 4.8934 6.0541 0.05 14 103561 0.82

5 03:01:27 4.8934 4.9301 0.1 14 107249 0.67

2 03:01:25 4.8934 4.9301 0.1 14 107249 0.67

1 03:01:27 4.8934 4.9301 0.1 14 107249 0.67

model TwoTrains is higher than for Diesel, the runtime on the latter model is
notably higher due to the values MaxSet and #Set>8. As apparent from Table 2,
the dominant portion of runtime is taken by the Prism processing. In further
experiments we therefore do not report this value separately, and instead show
only the overall running time of the algorithm.

Influence of Parameter err . Parameter err is the only parameter of the heuristic
that we use for reductions. We performed various experiments to evaluate the
effect of it on the running time and accuracy of our algorithm. Tables 3, 4 and 5
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show results of the experiments on one of the simple models and on both the
industrial-size models. One can see that, as expected, with the increase of accu-
racy (decrease of err) the amount of added basic events increases as well. This in
turn enlarges the state space of the product CTMC, what explains the increase
of the running time. On the other hand, the abstractions become more and more
precise. We achieved a gain of 22 % on the simple model, 19 % on Ind-1 and 33 %
on Ind-2 compared to the static value pstat . In some cases higher precision seems
to come with slightly lower running time, e.g. in Table 5. This however is an arte-
fact of runtime measurement inaccuracy, the actual computations performed are
identical.

5 Concluding Comparison with Related Work

We have presented a generic analysis and approximation scheme for fault trees
combining static and dynamic features. The key innovation is the use of bounding
approximations for the underlying dynamic behaviour. The method enables to
trade precision against runtime in an effective manner, so as to make it an
industrial-scale dynamic safety analysis method.

Other available methods for solving fault trees with dynamic features suffer
from either scalability or expressiveness issues [11,15]. Approaches with compa-
rable expressiveness include Dynamic Fault Trees [2,3], Boolean Driven Markov
Processes [4] and others. Analysis support for these models is limited to fault
trees with at most 300 dynamic basic events, which is far from the sizes that
one usually encounters in the nuclear safety domain. We have reported here on
successful experiments for models with up to 600 dynamic basic events contained
inside SD-FTs with several thousands of basic events in total.
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Abstract. Whereas in classic robotic applications there is a clear seg-
regation between robots and operators, novel robotic and cyber-physical
systems have evolved in size and functionality to include the collabora-
tion with human operators within common workspaces. This new appli-
cation field, often referred to as Human-Robot Collaboration (HRC),
raises new challenges to guarantee system safety, due to the presence of
operators. We present an innovative methodology, called SAFER-HRC,
centered around our logic language TRIO and the companion bounded
satisfiability checker Zot, to assess the safety risks in an HRC application.
The methodology starts from a generic modular model and customizes
it for the target system; it then analyses hazards according to known
standards, to study the safety of the collaborative environment.

Keywords: Safety analysis · Formal verification · Safety rules ·
Human-robot collaboration

1 Introduction

In Human-Robot Collaboration (HRC) applications, close proximity and direct
interaction between robot and operator are unavoidable, so providing safety
for the operator requires more effort and a more rigorous approach. Thus, the
safety of machinery community has published several standards [11,15], which
include a list of significant hazards in HRC applications, potential sources of
harms for the operator, their likely origins, and safety regulations for guiding the
design and deployment of robotic solutions. In particular, ISO standard 10218-2
[11] identifies four possible collaborative modes between humans and industrial
robots. Of these, Power and Force Limitation (PFL) is the one involving actual
physical contact, and it is associated with strict safety requirements in terms of
pressure and force thresholds, in order to limit the effects on the human body.
Our focus in this work is on collaborative robots that are considered in the PFL
category.
c© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 283–295, 2016.
DOI: 10.1007/978-3-319-45477-1 22
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HRC applications must be evaluated through the analysis laid out in ISO
standard 12100 [12], to identify existing hazards and unwanted situations due to
intentional misuses or unconscious errors of the operator; and to prevent their
consequences, which are measured in terms of quantified risk values.

Figure 1(a) shows the stages of a standard iterative risk analysis (resulting
in the marking in the case of European directives).

(i) Limits of Machinery: The desired tasks of the robot and its machinery
regulations and constraints are determined.

(ii) Hazards Identification: The existence of hazards (and combinations
thereof) listed in product-specific standards such as ISO 10218-2 is identi-
fied.

(iii) Risk Estimation: The risk values associated with hazards identified in the
previous step are measured. Many risk-scoring methods are introduced in
[14], all of which combine the severity of a harm with its likelihood.

(iv) Risk Evaluation: The significance of each hazard is evaluated. The meth-
ods reported in [14] help determine the range of acceptability for the risk
scores.

(v) Risk Reduction: If the risk value is not negligible, appropriate measures
are (iteratively) introduced to reduce each risk, either by redesigning the
system to eliminate the hazard, or through the introduction of a safety
function (e.g. “full stop in case of a signal from a protection sensor”), which
needs to be verified against suitable requirements of reliability and availabil-
ity. We refer the reader to [13] for a complete discussion about functional
safety.

The process continues iteratively until no new risk is identified and the resid-
ual risk value is acceptable. New risks may appear due to hazards related to
risk reduction measures, or to operator behaviors in reaction to such measures.
Devices and protection measures can alter the course of actions (use and misuse).

In this paper we introduce the SAFER-HRC (Safety Analysis through For-
mal vERification in HRC applications) methodology, which provides a technique
to comprehensively identify hazards through the exhaustive exploration, rooted
in formal methods, of the behavior of the target system. Among the different
types of hazards (e.g., electrical, ergonomic, ...), this work addresses operational
hazards with a specific focus on those that are caused by human-robot inter-
actions. Although we do not claim that SAFER-HRC guarantees that all pos-
sible hazards in a system are found, we argue that the exhaustive exploration
on which the methodology is based helps increase the confidence that no sig-
nificant hazardous situations are left unconsidered. To achieve an exhaustive
analysis of the system model, we rely on the state-space exploration capabili-
ties of formal verification techniques. Due to the impossibility of foreseeing all
possible behaviors of the operator, it cannot be claimed that all possible inter-
actions of operator and system are taken into account; nevertheless, an iterative
methodology based on formal verification techniques can eventually provide a
thorough analysis of all significant ones. At each iteration, if the design fails
to satisfy the desired safety requirements, it is improved by adding new risk
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Fig. 1. Overview of the safety analysis methodology: (a) standard procedure; (b) prin-
cipal model of SAFER-HRC; (c) scenario refinement.

reduction measures. This methodology relies on a “human-in-the-loop” approach
[6] and it does not automatically select risk reduction measures. As shown in
Fig. 1(b), the safety strategy is designed and acknowledged by a pool of experts
and users of the application under assessment (the safety assessment team).
The essential aspect of the proposed methodology is the systematic validation
of the constraints and their possible violations at all steps of the application.
The thoroughness of the validation ensures that the selected safety strategy is
failsafe. SAFER-HRC starts from informal, goal-oriented descriptions of collab-
orative tasks, and converts them into formal models built upon logical formulae,
on which formal verification techniques are applied to check whether the safety
requirements are satisfied or not. The model includes separate formalizations for
operator and robot; hence, the verification phase also checks their interactions,
taking into account how they are affected by the physical environment. After the
principal model has been thoroughly analyzed, it can be modified and re-used to
study different scenarios for the HRC application (e.g., combinations of different
safety functions, uncommon actions by the operator).

The main contributions of the methodology presented in this paper are:

1. Applying formal methods to the safety assessment of HRC applications, where
the presence of the operator negatively impacts on the predictability of the
system behavior, but also imposes demanding safety standards that must be
rigorously studied.
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2. Providing a flexible approach that supports the safety assessment team in
throughly exploring different design assumptions, thus complementing the
human insight with the power of formal verification.

The paper is structured as follows: Sect. 2 discusses related works, and Sect. 3
gives a brief formal background. Section 4 introduces the essential aspects of
the SAFER-HRC methodology. Section 5 illustrates our approach through an
example of a collaborative assembling task. Section 6 concludes.

2 Related Works

Classic hazard identification approaches such as FTA and FMECA [4] are not
well-suited for HRC applications, as they cannot deal with unpredictable human
interactions with robots. We use formal verification methods as a means to
improve hazard identification in robotic applications. These methods can be
applied to complement informal techniques such as Hazop [10], which consists of
a set of meetings and brainstorming sessions to identify and evaluate potential
hazards concerning operators, equipment or efficiency. Its aim is to exploit as
much information as possible from expert users and experienced safety engineers.
Another informal hazard analysis technique is STPA [16], which builds a model
of the control structure of the system to identify control-related flaws.

There are recent works tackling safety issues in robotic applications with
human intervention using semi-formal solutions, or a combination of semi-formal
and formal solutions. For example, in [9,19] State-charts are first used to describe
the behavior of the robot, and then HAZOP is employed using UML models to
identify potential hazards, their causes and their severity. In [17] hazards are
identified by a combination of UML and HAZOP, then they are formalized in
CTL (Computation Tree Logic). The same authors in a later work [18] compute
a set of if-then-else safety constraints, and then add them to the logical model
of the system to avoid predicted hazards. However, their application domain
consists of assistive, rather than collaborative robots, and so the operator is
a passive element whose on-the-fly decisions or errors are not considered as a
determinative fact. A recent work [8] systematizes the pairing of HAZOP and
UML, and presents results also for collaborative scenarios, excluding the formal
point of view and focusing on an informal solution. As we aim at combining the
two aspects, this approach could be used to define the first informal description
of the system from which to derive the principal model discussed in Sect. 4.

In building our logical model, we use a contract-based approach similar to the
one in [2]. Such an approach allows us to break down the overall task description
into small components, to specify the requirements of each component separately,
and to have a modular, clean formal description of collaborative tasks.

3 Preliminaries

Our approach is rooted in TRIO, a logical language which assumes an underlying
linear temporal structure and features a quantitative notion of time [7].
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Table 1. List of derived TRIO operators.

Operator Definition Meaning

Futr(φ, d) d > 0 ∧ Dist(φ, d) φ occurs exactly at d time units in
the future

Past(φ, d) d > 0 ∧ Dist(φ, −d) φ occurred exactly at d time units in
the past

AlwF(φ) ∀t(t > 0 ⇒ Dist(φ, t)) φ holds always in the future

Until(φ, ψ) ∃t(Futr({)ψ, t} ∧
∀t′(0 < t′ < t ⇒ Dist(φ, t′)))

ψ Will occur in the future and φ will
hold until then

SomF(φ) ∃t(t > 0 ∧ Dist(φ, t)) φ occurs sometimes in the future

SomP(φ) ∃t(t > 0 ∧ Dist(φ, −t)) φ occurred sometimes in the past

TRIO formulae are built out of the usual first-order connectives, operators,
and quantifiers, as well as a single basic modal operator, called Dist, that relates
the current time, which is left implicit in the formula, to another time instant:
given a time-dependent formula φ (i.e., a term representing a mapping from the
time domain to truth values) and a (arithmetic) term t indicating a time distance
(either positive or negative), formula Dist(φ, t) specifies that φ holds at a time
instant at a distance of exactly t time units from the current one.

While TRIO can exploit both discrete and dense sets as time domains, in this
work we assume the standard model of the nonnegative integers N as discrete
time domain. For convenience in the writing of specification formulae, TRIO
defines a number of derived temporal operators from the basic Dist, through
propositional composition and first-order logic quantification. Table 1 defines
some of the most significant ones, including those used in this work.

The satisfiability of TRIO formulae is in general undecidable. However, in
this paper we consider a decidable subset of the language, that can be handled
by automated tools, to build the system model and to express its properties.
In particular, Zot [1] is a bounded satisfiability checker for TRIO formulae [20].
We use Zot in this work to check the model of the system against desired safety
properties. In case the property is not satisfied, Zot provides a counterexample
witnessing a system execution that violates the property.

4 Overview of the SAFER-HRC Methodology

This section introduces SAFER-HRC, a semi-automated verification methodol-
ogy which benefits from formal verification techniques to extract the violation
of safety requirements mentioned in ISO10218 [11] during the design of collab-
orative robotic systems. As depicted in Fig. 1(b), at the core of SAFER-HRC
lies a safety assessment team (SATeam). SATeam, which includes robotic and
formal methods experts, studies the limitations of the machinery and the tasks
of the target robot, and predicts possible human-robot interactions. They also
determine which of the hazards listed in ISO 12100 can occur, and evaluate the



288 M. Askarpour et al.

risk level based techniques defined in ISO standard 14121 [14]. In SAFER-HRC,
SATeam relies on a formal model of the HRC application to support and system-
atize these activities. More precisely, SATeam starts from the informal, textual
definitions of the tasks, and then builds UML diagrams as a bridge towards the
formal representation.

General O-R-L Model. The formal model captures the dynamics of the inter-
actions occurring in the system in terms of the relationships among three main
elements, O, R and L, which formally describe, respectively, operator, robot and
layout through logic formulae. O is a formal model of the operator’s body parts,
each with critical safety requirements as described in standard ISO/TC 184/SC.
R models the robot by describing the edges that have some degree of freedom
in their movements; the nature of this model depends heavily on robot type
and shape. O and R contain constraints to avoid considering unrealistic body
shapes or robot structures (e.g., the head of the operator is in one corner of the
workspace, while her hand is in the opposite one). L provides a representation
of the layout of the system that allows us to describe the position of the phys-
ical features of O and R at any time instant. The O-R-L model contains some
elements and constraints that are common to all HRC applications (e.g., the
description of body parts); other parts of it (e.g., the features of the robot) are
instead instantiated depending on the specific HRC application.

The O-R-L Model includes also a part related to the pool of tasks that the
robot modeled in R is supposed to perform. Each task and its requirements and
regulations are modeled in an element called T. The definition of each task T
determines the type and frequency of interactions among O-R-L elements. The
execution of a task involves a functional relationship between each pair of O-R-
L elements. These relationships can be physical ones (e.g., contact between the
robot arm and the operator, presence of the operator and robot in a common
area in the layout) or informational (e.g., inputs given to the robot by the oper-
ator). For example, consider the following safety requirement: “operator’s head
should not be close to the robot end-effector while it is drilling”. The model
defines a value (Ldrill) corresponding to the area in the layout where drilling is
done, a variable (EF ) capturing the position of the end-effector, and another
one (OpHead) for the operator’s head position; then, T contains the follow-
ing constraint associated with the drilling task, stating that OPHead cannot
be in Ldrill while drilling is executing: Drillingstate = exe ⇒ ¬(OPHead =
Ldrill) ∧ (EF = Ldrill).

Usually the definition of a task has a goal-oriented view and contains multi-
ple smaller units of execution. Breaking down a task into the smallest possible
functional units, i.e., into elementary actions [5], enables SATeam to extract
the previously mentioned relationships among O-R-L elements and also helps
to identify the hazards that might otherwise be overlooked if one only stayed
at a higher level of analysis. Another benefit of distinguishing single actions is
that, in case it is possible to achieve the same goal with different sequences of
actions, and the operator has the ability to decide on-the-fly what sequence to
use, different sets of hazards caused by each sequence are identified. Further, the
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human body parts that are in contact with or close to the robot end-effector can
differ for separate actions within a task, and this in turn can affect the possibil-
ity and criticality of hazards. SAFER-HRC characterizes each of the elementary
actions within model T of the corresponding task by three main features: its
pre-conditions, post-conditions, and safety properties (Fig. 1(b)). These features
are formalized as TRIO formulae that have to hold respectively before, after
and during execution of each action. In addition, each action has a property
called priority, which defines its execution preference over other actions. More
precisely, if at a time instant the pre-conditions of both actioni and actionj are
satisfied, the one with higher priority starts to execute. The current model con-
siders that systems operate at their maximum level of parallelism; that is, all
actions that have the highest priority among those that are enabled start exe-
cuting in parallel. Each action can also have additional constraints and timing
requirements that are included in its formalization. At each instant, an action is
in one of the following states:

1. ns (not started): pre-conditions are not yet satisfied.
2. wait : pre-conditions are satisfied, but there is another action with higher

priority in execution or waiting mode.
3. exe (executing): under execution (solo, or concurrently with other actions).
4. pause (ps): at some point in the execution, safety properties are violated and

execution is paused.
5. dn(done): the execution is terminated.

Model Tailoring. When applying SAFER-HRC to perform the safety analysis
for a system, SATeam first needs to tailor the O-R-L model to the target HRC
application, by selecting the appropriate robot model and application parame-
ters, which corresponds to carrying out the following activities (see Fig. 1):

– Choose the tasks that the robot will be executing.
– Set the number of operators and robots. In case the application requires more

than one element for each category, SAFER-HRC creates multiple, separate
instances of elements R and O.

– Define the configuration of the layout, in terms of the number of regions,
reachability of each region for robot(s) and operator(s), and specification of
obstacles or other physical features.

At this point, SAFER-HRC checks through the Zot formal verification tool
whether the model so tailored satisfies the desired safety requirements. If a safety
property is violated, Zot produces a counterexample, signaling the presence of
one or more hazards in the system. A violation can be due to: (i) the system
still includes hazardous situations, or allows for operator errors or on-purpose
misuses; or (ii) the system does not have proper reduction measures for identi-
fied hazards. Then, the designer should improve the system model: by adding
proper risk reduction measures, which correspond to TRIO formulae that should
avoid the violation; or by including new formulae to capture hazards that were
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undetected in the previous analysis. Next, a new validation is carried out on the
improved model. The model is refined iteratively until no more violations occur.

The next section shows an example of using SAFER-HRC to design an assem-
bly application for a KUKA Light Weight Robot (LWR).

5 Applying SAFER-HRC in Practice

In this section we illustrate how SAFER-HRC works in practice. We used a test-
case with a KUKA robot, performing an assembly task with one operator in the
layout depicted in Fig. 2. The scenario is the following:

The operator fetches a workpiece from a bin and moves to the assembly
position, where the robot screw-drives the workpiece to the pallet using N
fixtures. Before the robot starts screw-driving each fixture, the operator
must prepare it and put it in the right position. As soon as the screw-
driving of all of the fixtures for the workpiece is finished, the operator can
release the workpiece and leave the assembly position.

The execution of this task has a loop whose index spans the number of fixtures
N to be screw-driven. It means that for example, if N = 2, then SAFER-
HRC defines 2 instances of each action in the loop. For brevity, we provide
only a simplified formalization of the test-case. Figure 3 shows the complete
list of actions of the task. As explained in Sect. 4, each action is formalized
through its pre/post-conditions and safety properties according to a contract-
based approach. We present as an example a snippet of the formalization of
action9 “screwing the workpiece”.

Fig. 2. Layout of the test sys-
tem with nine areas. The assem-
bly pallet board is in L6 and the
area blocked by the workpiece
bin is L4.

Pre-condition: There should be at least a pre-
pared fixture. This property is captured by a
Boolean predicate preparedFixture, which is set
by data coming from visual sensors configured
in the layout.

Safety property 1 : Only the hands of the
operator are allowed on the pallet. Since the O-
R-L model includes in O an array to capture
the position of the various body parts, and its
seventh element refers to the hands, this corre-
sponds to condition Bodypart7 = pallet.

Safety property 2 : The robot end-effector
should be on the pallet. Model R captures the
position of the end-effector through predicate
EF , so this property simply corresponds to for-
mula EF = pallet.

Safety property 3 : The workpiece must be
held. This simply corresponds to predicate
wpHeld being true.
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Fig. 3. Activity Diagram of the example task. The names of the actions in the loop
are indexed by the current loop iteration i. There are 14 actions for N = 1.

Post-condition: End-effector and operator hands are still on the pallet:
Bodypart7 = pallet ∧ EF = pallet.

Other formulae in T are dedicated to formalizing different allowed sequences
of actions to execute in order to achieve the goal of the task. One way to achieve
this is by setting suitable values for the priority property of different actions.
For example, action5 “hold the workpiece” has higher priority than action7

“prepare fixtures” in the definition of the task, since the operator must choose
to give precedence to the former, even if he is ready to execute the latter. On the
other hand, the robot must execute action6 “move to the pallet” strictly before
action8 “move end-effector forward to the pallet”, independent of the operator’s
choices; then, action6 = dn is defined as a pre-condition of action8. Let us now
provide some examples of formulae that are defined in T for this task. They are
defined for each element actioni of the set AT of actions of the task.

(i) If an action has not started, it was never executing or done in the past:

actioni,state = ns ⇒ ¬SomP(actioni,state = exe ∨ actioni = dn)

(ii) If an action is waiting, it was never executing or done in the past, and it
was in the “not started” state previously:

actioni,state = wait ⇒ SomP(actioni,state = ns ∧
¬SomP(actioni,state = exe ∨ actioni = dn)

(iii) If an action is executing (solo or concurrently with other actions), it has
started in the past, it will never be starting or waiting again in the future,
and it has not been done previously:

actioni,state = exe ⇒ SomP(actioni,state = ns ∧ actioni = wait) ∧
¬SomF(actioni,state = ns ∨ actioni = wait) ∧ ¬SomP(actioni,state = dn)
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(iv) If an action is paused, it was executing before that, and at some point it
will restart its execution:

actioni,state = ps ⇒ SomP(actioni,state = exe) ∧ SomF(actioni,state = exe) ∧
¬SomF(actioni,state = ns ∧ actioni = wait)

(v) If an action is waiting, the next time unit it will start executing if there is
no other waiting or executing action with higher priority:

actioni,state = wait ∧
∧

j∈AT ,j �=i

(
actionj,state = wait ∨ actionj,state = exe
⇒ actioni,priority ≥ actionj,priority

)

⇒ Futr(actioni,state = exe, 1)

(vi) If multiple actions are waiting, those with higher priority will start to
execute at the next time unit, whereas the others will remain waiting or
go back to “not started” status (this can happen if their pre-condition
stops holding):

actioni,state = wait ∧
∨

j∈AT ,j �=i

(
actionj,state = wait ∧
actioni,priority < actionj,priority

)

⇒ Futr(actioni,state = ns ∨ actioni = wait, 1)

(vii) When execution of an action is done, it means that it was being executed
in the past, and its state will not change in the future:

actioni,state = dn ⇒ AlwF(actioni,state = dn) ∧ SomP(actioni,state = exe)

(viii) Each action must eventually terminate:
∧

i∈AT

Som(actioni,state = dn)

Model Tailoring. At this step, SATeam provides the details to instantiate the
O-R-L model with the information specific to the target application, such as
the actual layout of the common workspace. In the case study it is enough to
introduce one instance each of O and R. Also, L is customized as follows. As
Fig. 3(a) shows, the layout of the cell is divided in nine regions. The positions of
the pallet and of the workpiece bin are L6 and L4, respectively. Regions L1 to L6

are reachable by the operator, except for region L4, where the bin is located. The
adjacency of areas is defined through a matrix given by SATeam. After these
configurations are carried out for the model, safety properties 2 and 3 mentioned
above for action9 become Bodypart[7] = L6 and EF = L6, respectively.1

1 The complete O-R-L Model can be found at https://github.com/Askarpour/
ORL-Model.

https://github.com/Askarpour/ORL-Model
https://github.com/Askarpour/ORL-Model
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Safety Analysis of the Tailored O-R-L Model. In this step of the SAFER-
HRC methodology, the SATeam carries out an iterative analysis, to find the
operator errors that can cause serious problems (if they have not been taken
into account in the initial model), or possible incompatibilities between layout
and task execution. The analysis is done by formally verifying the O-R-L model
described above against the safety properties of each action. The execution time
for the verification activities is not a concern in this case study, since verification
is completed in a few seconds using a modified plug-in [3] of the Zot bounded sat-
isfiability checker. The verification bound (i.e., the maximum length of analyzed
traces) was 100, which is over the completeness bound.

The following are examples of problems that SAFER-HRC found in the O-
R-L model of the case study.

(a) While action9 is executing, the operator mistakenly gets close to the pal-
let with her face (for example, she might want to see the screw-driving
action better) and when action10 starts to execute the robot hits her face.
This can cause serious injuries in the face and eye area, so we modi-
fied the safety property package of action9. More precisely, we added the
following formula, which states that no other body part other than the
hand is allowed in the area close to the pallet, and in case the operator
makes such mistake the execution is paused (in fact, whenever a safety
property of an action is violated, the execution of that action is paused):∧

i∈BodyIndexes∧i�=7 ¬(Bodypart[i] = pallet).
(b) As mentioned above, the concurrency of actions depends on the values of

their priorities. In some cases, the inconsistencies that might happen during
the concurrent execution of actions have been avoided by design, through the
definition of suitable pre/post-conditions. However, this issue has not been
addressed in the initial model between action9 and action5. In fact, the safety
property of action5 is not satisfied, and according to the counterexample
returned by Zot, there are system configurations where action9 is executing,
but the workpiece is not held by the operator. This highlights two issues: (i)
the operator could make an error and release the workpiece before the screw-
driving action terminates; (ii) action9 should always execute concurrently
with action5. To circumvent this, the safety properties of action9 are updated
by adding formula action5 = exe to them. The modification is applied also
to action8, action10, and action11.

6 Conclusions

This paper introduced the SAFER-HRC methodology for the semi-automated
safety analysis of HRC applications. The methodology is based on formal verifica-
tion techniques to explore foreseeable wanted and unwanted interactions (errors
and misuses) between operators and robots. We have applied the methodology
to a realistic case study consisting of a KUKA robot performing an assembly
task. Our approach allows a team of system safety experts to: (i) create formal
models of HRC applications that can be flexibly modified to take into account
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different layout configurations and safety requirements; (ii) identify operational
hazards caused by the relations and interactions among operators, robots, lay-
outs and tasks; and (iii) introduce and validate suitable reduction measures to
counter them. Unlike other approaches, our methodology emphasizes the effects
of the presence of operators in the system and their choices in the execution
order of the actions within a task.

As future work, we will include risk estimation techniques into the method-
ology to evaluate the level of risk associated with different possible execution
orders of actions within a task. This will allow us to compare the criticality of
each ordering and to help the operator to choose the one with the lowest risk
value. We also aim to develop a framework based on the presented methodol-
ogy to support safety engineers from the early design phases—e.g., semi-formal
descriptions of tasks—to the introduction of risk reduction measures mitigating
identified hazards.
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Abstract. Space systems are developed using conservative technologies and
processes and respecting requirements and restrictions imposed by specific
standards, domain policies, and design and optimization constraints. However,
the artefacts produced at each lifecycle phase are not perfect. To overcome this,
Independent Software Verification and Validation (ISVV) represents a valuable
asset to detect issues, but, a proper and efficient issue classification system is
necessary to analyze the root causes, identify the development processes to
improve, and assess the efficiency of verification activities. The Orthogonal
Defect Classification (ODC) is the most commonly used and adopted classifi-
cation scheme, but was not originally targeted to engineering issues in critical
systems. In this paper we present an empirical study where ODC has been used
to classify space domain issues and propose an adaptation of the taxonomy for
space systems.

Keywords: Defect � Safety critical � Quality � Dependability � Root cause
analysis

1 Introduction

Following a standard is not enough to guarantee defect free software, thus comple-
mentary processes such as Independent Software Verification and Validation (ISVV)
are required. The objective of ISVV is to provide complementary and independent
assessments of the software artefacts to find remaining defects and allow their cor-
rection in a timely manner. Independence is the most important concept of ISVV and it
has been referred to and used in safety-critical domains such as civil aviation
(DO-178B [1]), railway signalling systems (CENELEC [2]), and space (ECSS working
groups (e.g. [3, 4])). However, these systems are still far from being perfect, and it is
common to hear about software bugs in aeronautics, car accidents caused by software
problems, a satellite system that needs to be patched (for corrections or updates) after
launch and so on. Defects can impact important properties of the system: functionality,
performance, maintainability, safety and cause system degradation.

Consolidated ISVVmetrics [18] works show that standards and engineering practices
are not enough to guarantee the required levels of safety and dependability of critical
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systems (CS), thus we have applied the Orthogonal Defect Classification (ODC) [6] to
issues identified by ISVV to study their classification (type, trigger and impact).

In practice, we classified ISVV issues from space systems using ODC (a total of
1070 ISVV issues). The conclusions are that most of the defect types are related to
documentation issues, functionality issues, and defective implementations of the
planned functions. The main defect triggers are related to document consistency,
traceability activities, and test activities. The principal defect impacts include capa-
bility, reliability, maintainability, and documentation quality. However, as mentioned
before, ODC was not specifically developed nor even intended to target critical sys-
tems, thus almost one third of the issues in our dataset could not be adequately
classified.

In order to enhance ODC for better applicability to critical systems and support to
root cause analysis, this paper proposes specific adaptations of the Type, Trigger and
Impact taxonomies. The adaptation has been defined after conducting the classification
of the 1070 issues with the original ODC and by carefully analysing the classification
gaps. To validate the modifications, the adapted ODC was used to reclassify the entire
dataset in a simple and unequivocal way. This work should help engineering in tackling
the main problems and the more common ones first, and not one by one (as is done now
and traditionally). This larger picture of results will help addressing the causes that lead
to more problems, in a way that future corrections and recommendations right away
affect most of the issues. Also, problems related to technologies, tools, methods,
standards and culture will be easily identifiable and corrected/improved. Currently in
industry there are no generic nor commonly accepted classification and root cause
techniques (these are done mostly ad hoc) and such processes are required to help
determining the procedures to change or improve, the training required by the different
teams, the changes on application of the standards, the tools to apply and so on. We
intend to take a step forward towards defining such a process.

This paper presents background and related work in Sect. 2. Section 3 describes the
analysis procedure. An overview of the case studies is presented in Sect. 4. The ODC
taxonomy adaptations are listed in Sect. 5. The results of applying the improved tax-
onomy are summarized in Sect. 6 with threats to the validity in Sect. 7. Finally,
conclusions and future work are presented in Sect. 8.

2 Background and Related Work

ODC is one of the more adopted defect classification approaches originally proposed
by IBM (Chillarege et al. [6]). ODC is quite generic but it is mostly oriented to design,
code and testing defects. The goal of ODC is to support the analysis and feedback of
defect data targeting quality issues mostly in software design, code and documentation.
Other classification taxonomies have been studied before selecting ODC1, namely
(a) Beizer’s [25], (b) Kaner, Falk and Nguyen’s [25], (c) Robert Binder’s [25],

1 ODC was selected since it was the only taxonomy claiming to be orthogonal, quite mature and
widely used (several academic and industrial publications refer to and use ODC).
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(d) Whittaker’s “How to Break Software” [25], (e) Vijayaraghavan’s eCommerce [25],
(f) Hewlett Packard [26], and (g) IEEE Standard Classification for Software Anomalies
[27]. The current ODC specification is at version 5.2 and defines eight attributes for
defect classification, divided into two main groups, depending on the defect phase in
which they are classified: (a) opener, and (b) closer. Three attributes (Activity, Trigger
and Impact) are used to classify when the defect is discovered and so they are part of
the opener group. The other five attributes (Target, Type, Qualifier, Age and Source)
are used when the defect is resolved, being part of the closer group. The values for each
attribute can be obtained from the ODC v5.2 specification. Section 5 presents the
tailoring performed to the ODC specification to better comply with the needs of space
critical systems.

ODC has been used as a starting point for developing new and focused defect
taxonomies for particular domains. A few examples of this were presented by Leszak
et al. [10] and Margarido et al. [12], which used ODC for studying, building and
validating defect categorization schemes.

ISVV is a set of structured engineering activities and tools that allow independent
analysts to evaluate the quality of the software engineering artefacts produced at each
phase. ISVV provides an additional layer of confidence and is not expected to find a
large number of severe issues. In practice, ISVV produces evidences that can support
measuring the quality of the software and is referenced in several international stan-
dards, the ISVV guide [5], ISO/IEC 12207 [8] and formalized in IEEE 1012 [7].

ISVV is usually composed of six main phases that can be executed sequentially or
selected/adapted as the result of a tailoring process [5]:

• ISVV Planning: planning of the activities and selection of the appropriate methods
and tools to be applied.

• Specification/Requirements Verification: verification for completeness, correct-
ness, consistency, testability. Maps to ODC activity ‘Requirements Verification’.

• Architectural/Design Verification: adequacy and conformance to requirements
and interfaces, the internal and external consistency checks and the verification of
feasibility and maintenance. Maps to the ODC activity ‘Design Verification’.

• Source Code Verification: verification of completeness, correctness, consistency
and traceability through inspections, metrics analysis, standards compliance veri-
fication and static analysis. Maps to the ODC activity ‘Code Verification’.

• Test Specification/Results Verification: verification of the test artefacts, including
test specs, procedures, results and reports, traceability verifications and completion
of test areas. This phase maps to the ODC activity ‘Test Verification’.

• Independent Validation: based on the identification of unstable components/
functionalities and missing testing areas to promote validation on Error-Handling.
Includes test execution, and maps to the ODC activity ‘Test execution’.

Typically, ISVV classifies issues according to three severity levels: (a) Major – a
significant impact in the system dependability, quality or safety; (b) Minor – a
minimum impact; and (c) Comment – an improvement suggestion (not really a defect).

Previous studies have been performed for critical systems analysis, but mostly from
the perspective of metrics, efficiency and efficacy of the techniques used to identify the
defects and issues [18–21], and not from point-of-view of the suitability of
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classification of issues to improve the development processes, techniques, tools, and
standards, nor for issues from mission- and safety-critical systems, nor an extensive and
complete classification and root cause analysis for embedded systems. Li et al. [13]
performed a study and ODC adaptation for black box testing results only. Although
they effectively made a detailed analysis for those types of tests, our study covers the
full spectrum of the development lifecycle defects and is thus intended to be more
general while applicable to critical systems.

The objective of our work is to provide a classification method to support corre-
lation of defects and the development properties (quality model), and to classify
orthogonally the defects. The ODC approach is mostly applicable from the design to
the coding and testing phases and for defects detected during those phases. ODC is
commonly used as a starting point for developing new and focused defect taxonomies
for particular domains but, as far as we know, not for critical embedded systems (as we
are doing).

Several researchers have looked at the analysis of failures in safety-critical systems
during different life-cycle phases (from requirements to operations) and performed
empirical studies and root-cause analysis [11, 14–16]. For example, Seaman et al. [17]
used historical datasets with inspection defect data and applied different categorization
schemes to the defects. M. Jones has also provided an interesting study about space
failures in the frame of the European Space Agency missions [9], but simply concluded
that the main cause for all the accidents was lack of testing.

Wagner [23] has presented work using ODC and questioning the taxonomies and
the applicability of the classification types. Other works also agree that it is not an easy
task to create a one size fits all solution for appropriate defect classification and
evaluation [22–24]. In summary, no classification is commonly agreed nor widely used
to organize in classes the defects properties and allow defects analysis. Our paper
considers a large set of Critical Systems (CS) issues, covering CS properties, and
applying ODC as a promising start point, now in the context of embedded critical
systems, and empirically determining the best classification taxonomy.

3 Analysis Procedure

The procedure followed for the analysis, classification and adaptation of the ODC
taxonomy for ISVV issues in critical systems is as follows:

(1) ISVV Issues Selection – selection of the ISVV issues. In order to have repre-
sentative data for the engineering processes, the selection was based on several
criteria, namely confirmed issues (1070 issues), different missions (4 missions),
diverse prime contractors (3) and software development entities (a dozen), several
types and sizes of systems or sub-systems (more than 10), issues from all the
software development lifecycle phases (specification: 199; architecture: 189;
implementation: 297; testing: 381) and issues identified after system deployment
(4 issues). In practice, a significant amount of issues is considered in order to
allow a statistical analysis of the observations.
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(2) Data Clean-Up/Anonymization – anonymization of the data to avoid passing
sensitive information such as mission, system and customer/software developer
information, which are obviously ruled by non-disclosure agreements. This is the
reason why we do not present a more detailed characterization of the datasets used
in the study.

(3) Data Classification (ODC) – application of ODC (v5.2 [6]) to the issues selected
and identification of the issues that could not be classified. ODC identifies a
limited number of defect types, impacts and the relevant triggers (assessment
techniques, testing, analysis methods, etc.) for each defect. In addition to sup-
porting our study, the results can be used for statistical quality control (e.g.
measuring improvements), as well as for in-process monitoring and reliability
assessment (required for critical systems). They are also frequently used to pro-
mote specific process and resources improvements by tackling the identified
issues directly. The main contributions of step (3) are: (i) application of the ODC
approach to critical issues datasets; (ii) identification of classification difficulties;
and (iii) the classified issues themselves. A summary of the overall results of this
work is presented in Sect. 5. The results indicate the need of adaptation for critical
systems, as stated in step (4).

(4) Results Analysis [ODC Adaptation] – analysis of the classification results and
definition of a new classification taxonomy. Once the classification work has been
performed (in step (3)), the obtained classifications have been analysed and the
results used for the adaptation of the ODC taxonomy (type, trigger and impact) in
order to align with the critical systems issues. In practice, we used data analysis to
identify classification patterns. Results of this step are presented in Sect. 5.

(5) Recommendations – validate the ODC adaptation by using it to re-classify the
issues. See Sect. 6 for the results of this step.

4 Case Studies

The case studies are in the space domain (satellite systems), and cover different types of
systems (start-up or boot software, on-board application software, payload software, full
system), the data comes from 2 control systems, several payload systems boot software
and one overall system. The data are from Earth Observation and Science satellites. The
engineering processes used for the selected missions followed the ECSS standards [3]
(E-40, the engineering standard) and [4] (Q-80, the quality standard) and thus had a quite
similar lifecycle and similar strict requirements imposed by the European Space Agency
(ESA). An independent team has identified the issues after the development teams have
performed their own required verification and validation activities. The issues (called
Review Item Discrepancies) are defects detected in the development artefacts with
major or minor impact, or comments to improve the engineering.

These subsystems needs/objectives/requirements, common to space systems, have
been collected from the ECCS standards [3, 4] and engineering interpretation of
mission specifications documents and characterize the case studies of the data,
including:
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• No crash or hang shall happen at any time;
• No dynamic memory allocation is allowed;
• Communications must always be possible between ground and the satellite;
• A Safe Mode (basic communications, patch and dump) must exist;
• A very simple and stable start-up software (also called boot software);
• There must be a watchdog (Hardware and/or Software) or an alive signal;
• Systems are built with redundancy (at least for Hardware);
• Most systems must include FDIR (Fault Detection Isolation and Recovery);
• These systems must have high autonomy and some self-correction procedures;
• Systems are categorized with a criticality level (consequences of system failures).

The projects analysed are also characterized by:

• Requirements written in natural language (structured), highly based on documen-
tation and non-formal processes and languages;

• Documentation in UML/SysML and PDF;
• Programming languages such as C, Ada and Assembly, that are quite mature and

low level languages;
• Unit tests performed in commercial tools (e.g. Cantata ++, VectorCast, LDRA),

commonly adapted for the specific projects embedded systems and environments;
• Integration and system testing performed in specific validation environment

(Software Validation Facility - SVF) developed for the purpose on a case by case
situation, with HW emulation and HW in-the-loop, simulated instruments, etc.

The types of issues are presented in Table 1. A large amount of Major issues is still
caught during ISVV. With this dataset we are covering all phases and severities, with
emphasis on the phases that traditionally identify more issues (code and test analysis).

The issues come from different ISVV activities (requirements, design, code and test
verification) and post-launch corrections (called Operation Monitoring). The dataset
includes issues from 16 different systems or subsystems, and 14 % have been classified
as Major issues, 66 % as Minor, and 20 % as Improvements. They originated from the
analysis of more than 10,000 Software requirements, more than 1 million lines of code,
and over 3,000 tests, and were not caught by the original V&V activities.

In all the case studies, the objective of the ISVV team was to find issues in the
project artefacts and report and classify them in a clear and consistent way for the
customer to act upon. The issues were originally classified using the classification
adopted by the ISVV team, which is composed of the following types:

Table 1. ISVV issues quantification

Severity Req. Verification Design verif. Code verif. Test verif. Operations Total

Major 27 14 43 62 2 148
Minor 98 84 185 294 18 679
Improv. 37 14 150 42 0 243
Total 162 112 378 398 20 1070
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• External consistency: inconsistencies among artefacts from one phase to the next
or with other applicable or reference artefacts (e.g. inconsistent documentation);

• Internal consistency: inconsistency within the same artefact (e.g. different code for
same purpose, differences within a document or architectural components);

• Correctness: item incorrectly implemented or with technical issues (e.g. erroneous
implementation, wrong documentation description, bad architectural definition);

• Technical feasibility: item not technically feasible with the actual constraints (e.g.
unattainable or impossible requirement, architecture nor viable);

• Readability and Maintainability: item hard to understand and/or maintain (e.g.
lack of comments or no description, requirements too complex or too generic);

• Completeness: item not completely defined or insufficient details provided (e.g.
missing details, insufficient requirements, not all requirements coded);

• Superfluous: item that is a repetition or brings no added value to the artefact (e.g.
repeated requirements, copy-pasted code doing the same actions);

• Improvement: suggestion to improve an artefact usually not related to one of the
other classification types (e.g. efficiency, simplicity, readability);

• Accuracy: the item does not describe with precision or follows the applicable
standard (e.g. measurement precision, calculation precision, exact implementation).

The main types of issues, as classified by the ISVV engineers, are external con-
sistency (differences between the implementation of artefacts between phases), com-
pleteness (missing information/implementations), and correctness (wrong
implementation/design). These three types account for 75 % of the total of issues.

In what concerns the issues that have been totally classified with ODC and the
issues that had at least one attribute (type, trigger or impact) that could not be mapped,
about 1/3 of the issues could not be completely classified (e.g. some traceability issues
were partially classified as Backward or Lateral Compatibility, the Internal Document
trigger that was replaced by Consistency/Completeness a more used terminology for
the engineers, or some configuration defects that could not be properly classified as
HW or SW only), which supports our argument about the need for adapting ODC for
CS (out of the non-classified issues, 27 % were comments, 59 % minor issues, and
14 % major issues, compared to 21 %, 66 % and 14 %, for the ones classified). An
important aspect is that the new classification of the issues shall support the identifi-
cation of the most common problem types, their triggers and their impacts in order to
act upon the causes and improve the software processes and find gaps in the applied
standards, techniques and processes. For example, in some cases where requirements
were repeated or redundant, we had difficulties in using ODC for specifying the defect
type and impact, as it could be documentation and maintenance, but also function and
documentation. On the opposite, the use of magic numbers in code was easily classified
in the documentation type and maintenance impact.

5 ODC Adaptation for Space Critical Systems

This section proposes modifications to ODC taking into account our findings while
classifying the issues presented in Sect. 4 using the original ODC (v5.2).

302 N. Silva and M. Vieira



Three main activities have been performed to contribute to the proposed taxonomy:
(a) data analysis to identify the missing classification types, triggers and impacts, in
order to properly cover the classifications; (b) expert judgement on the non-classified
issues, trying to understand why they could not be properly classified (e.g., why there
were difficulties and doubts when deciding between a rare situation trigger and a side
effects trigger, as they appeared similar); and (c) proposal of adaptations to ODC and
re-classification of the issues that could not be classified with the original taxonomy to
validate the proposed adaptations. The modifications to the ODC taxonomy were based
on: (a) an analysis of a significant number of defects that could not clearly be classified
during the first round (more than 300); (b) the grouping of the classification difficulties
by generic types/triggers/impacts; (c) a comparison and mapping of the groups to ODC
existing taxonomy; (d) the suggestions for additional taxonomy elements from experts;
and (e) the merging of classification elements to promote an easier classification.

5.1 ODC Attributes – Trigger

Triggers classify what actions or checks may uncover the defect. Some changes to the
triggers were made from the standard ODC specification in order to simplify and
streamline it as much as possible (for each trigger a small description provides the
rationale in order to better clarify when to use it):

• Design conformance, Logic/Flow, Concurrency, Test coverage, Test variation,
Test sequencing, Test interaction, Workload/Stress, Start-up/Restart,
Recovery/Exception, Blocked test – same meaning as ODC v5.2.

• Standards conformance – replaces the original ‘Language Dependency’ trigger,
broadening the scope to better suit issues in critical systems. It is applicable to
defects that arise when checking items for standards compliance (which typically do
not exist for the systems for which ODC was originally defined). This includes
requirements not written according to specific rules, deviation from best practices.

• Traceability/Compatibility – replaces both ‘Backward Compatibility’ and ‘Lateral
Compatibility’ in the ODC v5.2 specification. It is applicable in cases where
traceability is unclear or missing, or system blocks have compatibility issues. This
merge and adaption was deemed necessary to cover specific requirements related to
CS (where traceability is a strong quality assurance and safety assurance require-
ment) and requirements imposed by standards that extensively use traceability.

• Consistency/Completeness – replaces the ‘Internal Document’ trigger, providing a
more appropriate terminology, such as the one CS engineers are used to. Defects
related to incorrect information, inconsistency or incompleteness are mapped here.

• Rare situation – this trigger is the result of the merge of both ‘Side Effects’ and
‘Rare Situation’ from the ODC v5.2 specification. We did not find it relevant to
separate the two in our case studies due to their frequency and similarity. Also, it
was very difficult to specifically map to one or another in several cases.

• White box path coverage – merged ‘Simple path coverage’ and ‘Complex path
coverage’, applicable in unit testing when the tester is exercising specific paths, as
both are required and demand the same level of attention in CS testing strategies.
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• HW/SW configuration – merged ‘Hardware configuration’ and ‘Software con-
figuration’ to cover configuration issues at large, as no major difference was found
that require to keep them separate. Also, hardware and software in embedded
systems are strongly coupled, thus making such distinction while classifying issues
may lead to many doubts without relevant added value.

5.2 ODC Attributes – Impact

This attribute depicts the impact that the defect would have had upon the end user if it
was not detected during ISVV, or in the case of operation monitoring reported defects,
what was the impact of the failure. The proposed adaptations are:

• Capability, Documentation, Installibility, Integrity/Security, Migration, Per-
formance, Reliability, Requirements, Standards, Usability– same as ODC v5.2.

• Maintenance – merged with ‘Serviceability’, as for CS the definition of the two is
similar and refer to diagnosing issues and applying corrective/preventive actions.

• Safety – added for the cases where defects in CS can directly impact the safety of
humans or of the environment (these are specific requirements for many CS).

• Testability/Verifiability – added to fulfil the need to classify defects with an impact
in testability/verifiability of the systems. This is important to the applicable stan-
dards conformance in critical systems since testability and verifiability are com-
monly strict requirements that need to be part of the system.

5.3 ODC Attributes – Type

The type attribute represents where the defect was actually fixed. We adapted the ODC
v5.2 classification and extended it when appropriate for our needs, as follows:

• Algorithm/Method, Checking, Function/Class/Object, Timing/Serialization,
Documentation – same as ODC v5.2.

• Assignment/Initialization – similar to ODC v5.2, but extendable to cases where,
for instance, variable names are changed to be in compliance with coding standards
(frequently required for critical systems).

• Build/Package/Environment – applied in defects related to the build process,
packaging of data/functionality, and environment setup. Includes libraries that are
never used, or large dead code. Several issues couldn’t be classified exactly into one
of these types, and merging them simplifies the classifier job (and improves the
orthogonality of the taxonomy).

• Interface – merged ‘Interface’ and ‘Relationship’ into one single type, as both
relate to interfaces (internal or external) and the classification was not always
obvious due to the interface specificities of embedded CS.

An overview of the initial classification using ODC is shown Table 2, together with
the results of re-classification using the adapted ODC taxonomy.

304 N. Silva and M. Vieira



6 Reclassification with the Adapted ODC Taxonomy

The application of the adapted taxonomy to the dataset produced the results depicted in
Table 2. In addition to the important facts that no issue was left unclassified and that
most of the issues were classified in a much easier way (for example, about 30 h to
reclassify 100 issues, when compared to the 75 h per 100 issues in the initial classi-
fication), the results highlight the following:

• More ‘Documentation’ defect types were observed (12 % increase). This can be
justified by the fact that critical systems highly depend on documentation and
documented evidences to prove the accomplishment of requirements and standards.

• ‘Traceability/Compatibility’ is the more frequent trigger and even ‘Test Coverage’
became a trigger which lead to the identification of more defects than ‘Consistency
and Completeness’. This suggests that the best defect triggers are the simplest.

• The ‘Maintenance’ defect impact became more frequent than ‘Reliability’, and the
‘Documentation’ impact frequency has been reduced. In fact, maintainability is an
important property (more than reliability) for the systems in our dataset. Most of the
new Documentation type defects lead to Maintenance impact and not Documen-
tation impact (which was the default before re-classification).

The effort for re-classification included: (1) understanding (reading) of the defect
text; (2) classification of the defect type (according to corrective action type);
(3) classification of the defect trigger (how was the defect found); and (4) classification
of the defect impact. Furthermore, in order to clarify some issues about the classifi-
cation we consulted the original documentation (specifications, design, code, test
artefacts) to make a more precise and educated decision on the classification. Finally, a
confirmation was performed on the classification between the classification engineer
and the author of this paper. The end result was 18 min per defect for the
rec-classification. The reduction in the classification effort is partly due to the knowl-
edge acquired during the first classification attempt, where the non-classified defects
have been assessed. Most of the re-classification was however performed by an
experienced engineer together with the main author while the first classification round
was performed by the main author together with another engineer.

Table 2. Top 5 ODC classifications

Defect type AR
(%)

BR
(%)

Defect trigger AR
(%)

BR
(%)

Defect impact AR
(%)

BR
(%)

Documentation 48.1 36.1 Traceability/Compatibility 28.9 19.3 Capability 28.8 30.2
Function/Class/Object 19.0 21.3 Test coverage 21.2 19.8 Maintenance 24.7 18.7
Algorithm/Method 9.0 11.4 Consistency/Completeness 19.3 22.3 Reliability 23.6 24.8
Checking 6.4 6.6 Logic/Flow 11.1 13.0 Documentation 14.7 18.6
Interface 5.2 6.6 Design conformance 11.1 11.8 Performance 3.6 3.8
Total 87.7 82.0 Total 91.6 86.2 Total 95.4 96.1

AR: Values after the reclassification (100 % of the issues with the adapted taxonomy)
BR: Values before the reclassification (covering the classification of 68.3 % of the issues)
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A practical observation of the results in Table 2 shows that the 5 main types,
triggers and impacts cover about 90 % of the issues analysed showing that with 5
taxonomy elements we are covering the large majority of the issues. This observation
suggests that actions can be taken to quickly improve the quality of systems.

7 Threats to Validity

The fact that the issues data cannot be shared nor publicized, as no company wants
their issues exposed, makes this work harder and a great effort of anonymization had to
be performed. Also, the acceptance of the results may be challenged.

The space systems involved cover most of the development activities performed for
those systems, and involve different companies (at geographic, size and management
level), thus we consider these results to be quite general for this domain. A similar
study for other domains (e.g. railway) is undergoing, but existing data is not as
structured as for space systems. Again, data confidentiality will be a challenging issue.

The classification is done based on the opinion and knowledge of experts. How-
ever, it is important to note that the initial ODC (the one that could not classify all the
issues) was performed by two engineers, whose work was also checked by a third space
domain expert. This domain expert also performed the reclassification himself (verified
and discussed with another space domain expert engineer).

Finally, the adaptations were performed based on the 31.7 % of the issues that
could not be classified with the initial ODC. This required several rounds of discussion,
and the majority of changes are merges where terms were not well distinguishable for
these systems. Also, details about the systems requirements (namely non-functional,
safety and dependability, etc.) originated doubts about the initial ODC classification.
The justifications are briefly stated in Sect. 5.

8 Conclusions and Future Work

The classification issues identified by the ISVV teams using ODC allowed the classi-
fication of 739 issues (out of 1070). The remaining * 32 % could not be fully classified
and required an improved taxonomy, which is proposed and applied in this paper. In
addition to the analysis of a large dataset of real issues in space critical systems, this
work proposes an adaptation or extension of ODC that allows a more complete clas-
sification and thus a better analysis of the results. The initial classification effort for the
1070 issues consumed approximately 800 h. The new taxonomy is appropriate for our
dataset as all the issues are classified. The proposed new taxonomy is currently sup-
porting root cause and defects analysis and prioritization allowing actions to be taken on
the most important (major) issues, the most frequent ones, the ones with common root
causes or with the more severe impacts (such as safety). This taxonomy can suffer
adjustments in order to cope with technology or specific domain needs.

The results presented in this paper can help the space industrial community in
focusing on the weakest points of the engineering process to improve them (e.g. review
process application, test planning and strategy). Also, by using the adapted ODC, ISVV
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teams can work much more efficiently with the triggers that catch more problems and
even develop appropriate and more precise V&V tools (e.g. logic & dataflow analysis,
fault injection, traceability verification). This way, we propose several improvements
and topics that should be tackled as future work. Firstly, we need to test the com-
pleteness and effectiveness of this new adapted classification taxonomy with other
datasets (currently being applied to hundreds of railway systems defects with no hassle
demonstrating its applicability – suggesting that the adapted ODC is not only specific
to space but can be general to other critical systems). Secondly, we need to enlarge the
analysis to include more and larger datasets (covering all activities for each dataset, for
example). Thirdly, the analysis of the results should be also done per defect removal
activity (requirements, design, implementation, testing, operations). Then, we need to
perform root cause analysis on the ODC resulting classification. Finally, it is important
to measure the impact of the proposed changes in the engineering processes, especially
in terms of the reduction of the number of issues found during ISVV analysis.
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Abstract. Engineering safety-critical systems is a complex task which
involves multiple stakeholders. It requires shared and scalable com-
putation to systematically involve geographically distributed teams.
The paper proposes a model-driven cloud-based enactment architecture
automating safety-critical processes. This work adapts our previous work
on cloud-based software engineering by enriching the architecture with
an automatic support for generation of both, product-based safety argu-
ments from failure logic analysis results and process-based arguments
from the process model and the enactment data. The approach is demon-
strated using a fragment of a process adapted from the aerospace domain.

Keywords: Safety process enactment · Argumentation · Cloud
computing

1 Introduction

The malfunctioning of safety-critical systems may lead to catastrophic conse-
quences to the environment and people. Safety-critical systems are identified
as complex systems and their engineering has to follow best practices. More
specifically, (safety) standards provide guidance in terms of reference process
models for the development and assessment of such systems. The complexity
of such systems is reflected in their supply chain, which consists of a com-
plex, geographically-distributed and heterogeneous supply network. The sup-
pliers provide software/hardware components or automation of certain activities
during the production. This compositional nature is reflected in software-specific,
hardware-specific, tool qualification-specific, system-specific and method-specific
guidance and/or reference processes recommended by standards. To be released
on the market, the integrated systems must be certified. The certification process
in various domains is conducted by scrutinizing an argument supporting system
safety [16]. In the automotive and rail domains, such argument is known as safety
case. In the aerospace domain, an explicit safety case is not required however
as discussed by Holloway [13] an implicit safety case request is contained within
c© Springer International Publishing Switzerland 2016
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the standards. While the considerations listed in this paper hold for several com-
plex safety-critical systems, we focus on aircraft as an example of such systems.
In particular, we use the Preliminary System Safety Assessment (PSSA) from
ARP4761 [1] as an example which demonstrates safety process-related require-
ments. Aircrafts must be accompanied by a safety case that provides assurance
about their behaviour as well as about the set of processes that were adopted to
develop them. Safety cases can/should also reflect the compositional nature of
the systems under examination. The provision of a safety case may follow a ref-
erence process [3]. The planning and execution of all the recommended reference
processes is a time consuming and costly activity. Moreover, given the compo-
sitional and geographically distributed nature of the supply network, different
interpretations of the processes may coexist resulting in conflicts and ultimately
risk of low-quality products. To reduce time, cost as well as conflicting inter-
pretations we propose to adapt a model-driven, cloud-based process enactment
architecture for safety-critical systems. Using cloud computing not only reduces
cost (through the pay-as-you-go and on-demand acquisition models), but also
provides an accessible platform for the distributed teams involved in the system
engineering process. In addition, artefacts from across the different geographi-
cal locations can be maintained centrally. Along with the use of a standardized
process modelling language, this can reduce the conflicting interpretations. Our
vision is that a manufacturer enforces the execution of the planned safety life-
cycle as well as of the corresponding argumentation process. To achieve that
vision, the paper provides the following contributions: (a) an extension of our
cloud-based process enactment architecture from [4] for safety-critical systems
(Sect. 3.1), (b) automation of product-based safety argument generation from
failure logic analysis results and automation of evidence gathering, in partic-
ular, detecting sources of failures (if exist) or finding full and partial mitiga-
tors (Sect. 3.2), and (c) automation of the generation of process-based argu-
ments directly from the process model and enactment-related provenance data
(Sect. 3.2). We demonstrate the usability and effectiveness of this approach on a
portion of a safety process (from PSSA) which we enact on the cloud and gen-
erate product and process based safety arguments fragments. These fragments
are manually integrated within a single safety case.

The paper is structured as follows: Sect. 2 provides a background foundation.
Section 3 describes our approach to enacting safety processes followed by a case
study in Sect. 4. Section 5 discusses related work and finally, Sect. 6 draws our
conclusions and highlights our future work.

2 Background

In this section, we recall essential information on our previous work and on
safety-critical systems engineering and certification.
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2.1 General Architecture on the Cloud

To enact software processes on the cloud and ease global software engineering,
we proposed a model-driven cloud-based architectural solution [4]. Our solution
consists of three layers: (a) the modelling layer where processes along with their
enactment requirements are modelled, (b) the enactment service layer which
orchestrates the process enactment on the cloud and (c) the workflow engines
which are deployed on the cloud and host the enactment of individual activi-
ties. We implemented a prototype of this architecture consisting of two main
components: The Enactment Service which consists of subcomponents for:
scheduling activities execution, monitoring executions, managing artefacts and
monitoring and registering workflow engines. The enactment service maintains
a document-oriented database where all artefacts, activities and their meta-data
are stored. Interactions with the enactment service are done through a RESTful
API. The Workflow Engine is where the individual process activities are exe-
cuted. The execution on the workflow engine is black-boxed: a workflow engine
executing an activity of a process does not have information about the rest of
the process execution. These two components of the prototype are decoupled
(they communicate through asynchronous message queues) and are platform-
independent (i.e. they can be deployed on any physical/virtual machine).

2.2 EXE-SPEM

To model the software processes and their enactment requirements, we proposed
EXE-SPEM [5] which is an extension of the OMG standard Software and Sys-
tems Process Engineering Meta-model (SPEM2.0). EXE-SPEM permits process
engineers to model important information needed for enabling the enactment
such as: control flow of process enactment (i.e., order, conditions and loops),
the responsible person for enacting each activity (task), and the cloud-specific
enactment information such as: the choice of cloud deployment model (private
vs. public) and the amount of computational resources required.

Table 1. Subset of EXE-SPEM modelling elements

Process TaskUse Activity WorkProduct

Table 1 shows the icons of a subset of EXE-SPEM concrete syntax, obtained
by decorating the SPEM2.0 icons with the symbol of the cloud. Via model-to-text
transformational rules, EXE-SPEM models are mapped onto XML-based textual
representations, compliant with our enactment-oriented XML-meta-model.
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2.3 Aircraft Engineering and Certification

To engineer and certify safety-critical systems, various standards are at disposal.
Typically, these standards provide requirements that should be followed to define
the process to be used during the development and assessment of the aircraft
and the software and hardware to be integrated within the aircraft. A docu-
ment aimed at showing process compliance by providing a process-based argu-
ment is typically required. Besides the process requirements, safety standards
also include product requirements aimed at assessing the level of a product’s
safety. Additional requirements target the assessment process, which, as men-
tioned, in many application domains is conducted by scrutinising an explicit
or implicit safety case. A complete safety case as the final output of the assess-
ment process should contain both the process and the product-based arguments.
ARP4761 [1] defines Airworthiness Safety Assessment Process to handle haz-
ardous events (system and equipment failure or malfunction that may lead to
hazard). This process includes: Functional Hazard Assessment (FHA), Prelimi-
nary Aircraft Safety Assessment (PASA) and PSSA. PSSA consists of a system-
atic examination of a proposed system architecture(s). It takes in input the sys-
tem FHA and the aircraft Fault Tree Analysis. PSSA tasks include: identifying
the derived safety requirements, associating them with Development Assurance
Levels (DALs) and allocating them to architectural elements. For certification
purposes, both process- and product-related behavioural evidence constitute the
basis for supporting safety claims. Thus, additional tasks that should be consid-
ered are: creation of arguments fragments explaining why the safety claim can
be supported. PSSA is conducted according to guidelines contained in Appendix
B3 of ARP4761. In this paper, we use GSN [3] and SACM [15] for represent-
ing safety case arguments. We refer the readers to [3,15] for details about these
notations.

2.4 Process and Product-Based Arguments Fragments Generation

The product-based argument aims at showing that the product behaves as it
should. To automate the generation of such arguments, the analysis and ver-
ification results can be exploited. For example, information about the failure
behaviour of the system, extracted from the Fault Propagation and Transforma-
tion Calculus (FPTC) results, is used to generate an argument that the unac-
ceptable failures have been successfully mitigated [17]. FPTC is a failure logic
analysis allowing for the calculation of the system level failure behaviour based
on the failure behaviour of the individual components. The propagation of fail-
ures from the inputs to the outputs of a component is captured via FPTC rules.
The process-based argument aims at showing that the process mandated by the
corresponding standard has been followed. To automate the generation of such
arguments, MDSafeCer (Model-driven Safety Certification) [8] is at disposal. Via
MDSafeCer, process models compliant with e.g., SPEM 2.0 are transformed into
composable process-based argumentation models compliant with e.g., SACM and
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presented via e.g., GSN. The top level claim of the MDSafeCer generated argu-
ments states that “the process is in compliance with the required standard and
integrity level”. This claim is decomposed by showing that all the activities have
been executed and that in turn for each activity all the tasks have been executed
and so on until an atomic work-unit is reached.

3 Cloud-Based Engineering of Safety-Critical Systems

Through the introduction and background, we have learnt that safety-critical
systems engineering is a complex task which needs to comply with standards
and involves heterogeneous and geographically-distributed stakeholders. Under-
taking such a complex engineering task requires extensive support. In this paper,
we identify some requirements that a development environment/platform should
satisfy to fit for safety-critical systems engineering. These are: R1. Process
Enforcement and Reuse: Despite the dynamicity of safety-critical processes,
they still need to be enforced (including enforcing change as it happens) to main-
tain consistency and compliance. To avoid misinterpretations of the process (and
its changes) in a distributed setting, the process should be executable. Process
customization and reuse across similar projects should also be supported to save
time and cost. R2. Distribution Management: The distribution of stakehold-
ers not only bring communication and time difference challenges, but also brings
cultural and language hindrances which might lead to misinterpretations and
lack of trust between collaborating teams. This raises the need for synchroniza-
tion and mutual understanding of the development process in order to minimize
failure propagation between sub-systems built by different teams. R3. Safety
Artefacts Management: Safety artefacts range from safety requirements to
safety cases and safety arguments. In a dynamic and global environment, man-
ually managing safety artefacts and continuously ensuring their consistency and
compliance is an expensive task. Artefacts can be physically distributed and co-
authored by multiple distributed teams. Capturing artefacts and their meta-data
is also related to capturing safety evidence that is used to support safety cases.

This list is not comprehensive and other necessary requirements may exist.
Therefore, the development platform should be extensible. In this paper we focus
on supporting the ones mentioned above.

3.1 Extended Architecture for Safety-Critical Systems Engineering

In a previous work [4], we focused on supporting global software development
using a model-driven cloud-based architecture. In this work, we extend that
architecture to fully satisfy the requirements identified in Sect. 3. The exten-
sion affects the following: Artefacts: we introduce versioning of artefacts in
which each change introduced to an artefact is treated as a new version. The
versions (and meta-data) are kept in a central repository on the cloud. This sat-
isfies requirement R3 as artefacts are unified and versions capture their change.
Execution Scheduler: we enable parallel execution of activities which are
ready to execute (i.e. their input artefacts are ready). EXE-SPEM: we enable
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Fig. 1. The pseudo code for analysing the FPTC results.

Fig. 2. Rules for product-based argument generation.

capturing some safety-related elements in the process model. Those elements
are: certification information for roles, the qualification of activities and the
guidance and standard each activity adheres to. The executability of models
ensures that a process is enforced, which satisfies requirement R1. As models
can be edited/re-enacted, reuse of processes and activities becomes possible. In
addition, R2 is satisfied since a single process model with its enactment seman-
tics is centrally shared between stakeholders. This gives each stakeholder a global
awareness of the progress. Argument Generation Support: we extended the
enactment service to support generating safety arguments from process mod-
els. This is done by capturing artefacts and activities execution meta-data and
extract safety cases content from it.

3.2 Argument Generation

Product-Based Argument: We generate product-based arguments from
FPTC analysis results. By analysing if certain failures/hazardous events (HEs)
occur or not, we can argue about how the system handles HEs. The analysis
starts by parsing the FPTC results and following the pseudo code in Fig. 1. Then
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Fig. 3. PSSA augmented with the argument generation process.

the argument is formulated by constructing Claims and Strategies and support-
ing them by Evidences/Counter-Evidences following the rules in Fig. 2. These
rules are adapted from [17] where the generation of product-based argument-
fragments is made from contracts translated from FPTC analysis. In this work
we provide rules for generation of argument-fragments directly from the FPTC
analysis, thus skipping the translation of FPTC specification to contracts. More-
over, we provide more fine-grained analysis of how the system handles HE based
on the FPTC specification. If the HE is present in the system, we produce a
counter-evidence in the form of a trace to the source(s) of the HE. If it is not,
we find the component(s) that mitigated it. We distinguish between partial or
full mitigation. Full mitigation is when the failure does not propagate from a
component’s input to its output, while partial mitigation is when the failure is
present on the output, but at least one of the input causes of the output failure
has been mitigated by the component.

Process-Based Argument: We use the rules explained in MDSafeCer [8] to
structure a process-based safety argument fragment. As explained in Sect. 2.4,
the fragment argues about: the tools used, the roles involved, the guid-
ances/standards followed and the work products generated/consumed in the
process. Information about these aspects is extracted from both the process
model and provenance data about the process enactment.

Once the product and process-based argument fragments are generated, they
are joined with a top claim arguing about the overall system safety to compose
the overall safety case argument fragment.

4 Case Study

The purpose of this case study is to demonstrate the cloud-based execution of
the augmented PSSA process. Fig. 3 shows the EXE-SPEM model of the PSSA
augmented with the argument generation process. It consists of four activities
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Fig. 4. The brake system control unit (BSCU) [17].

and involves creation of multiple artefacts. The FPTC-based Analysis activity
analyses the failure behaviour of a system. It takes as an input the system archi-
tecture model and generates as an output the failure behaviour of the system.
As mentioned in Sect. 3.2 this failure behaviour can be used by the next activity
(Product-based Argument Generation) to verify if the undesired hazardous events
(identified after performing FHA) have been mitigated. The Process-based Argu-
ment Generation activity uses the process model and provenance data about
the process enactment to populate the process-based safety argument. Finally,
the Arguments Composition activity combines both the product and the process
based arguments into one safety argument fragment.

In this case study, we used the airplane Wheel Braking System (WBS)
adopted from ARP4761 [1]. The WBS consists of the Brake System Control
Unit (BSCU) and the hydraulics system which is connected to the wheels of the
airplane. We limit our attention to the portion of the architecture that comprises
the BSCU (shown in Fig. 4). Since the FHA process for the WBS system is out of
the scope of this case study, we have randomly selected the undesired hazardous
events that the system should mitigate and provided them as an input to the
Product-based Argument Generation activity.

4.1 Implementation

After modelling the PSSA augmented with the argument generation process
(Fig. 3), the model is mapped onto XML to be enacted on the cloud-based archi-
tecture. Below, we describe the implementation of each of the activities used in
the safety argument generation process. FPTC-Based Analysis: This activity
uses Concerto-FLA (the extended FPTC implementation from the CONCERTO
project1) to perform the FPTC analysis. The CONCERTO toolset allows: creat-
ing UML-based architectural models of the system; performing FPTC analysis
(using Concerto-FLA) including back-propagation of the results on the models.
The architectural model is transformed to the flamm format (an XML-like for-
mat) on which the analysis takes place. The flamm model consists of composite
components (systems) containing atomic components. The (atomic) components

1 www.concerto-project.org/.

www.concerto-project.org/
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Fig. 5. GSN representation of the generated product-based argument.

Fig. 6. The product-based argument represented in text.

have input and output ports where failures are attached. In addition, each com-
ponent has a set of rules defining its failure behaviour. For this case study, we
have extracted the FPTC analysis part from Concerto-FLA into this standalone
activity which embed the analysed failure behaviour of the system into the flamm
model. Product-Based Argument Generation: This activity uses the FPTC
analysis results to construct the argument concerning the BSCU. Each undesired
HE is accompanied by a definition of its criticality level. These levels are mapped
to a five-level numerical criticality scale ranging from 1 (lowest criticality) to 5
(highest criticality). For instance, in ARP4754A [2], the levels are 1: negligible,
2: minor, 3: major, 4: hazardous, 5: catastrophic. The tracing and mitigation
details are presented in an extended textual argument following the Argument
Outline format [12] and is referenced in the SACM/GSN arguments. Figure 5
shows the generated product-based GSN argument for the BSCU while Fig. 6
shows a snippet of the textual argument. It is worth noting that we use the GSN
solution notation to represent counter evidences (as in S1.2 in Fig. 5).

Process-Based Argument Generation: This activity generates the argument
arguing about compliance with PSSA. Figure 7 shows an argument for FPTC-
based Analysis activity from the safety argument generation process we used in
this case study. The tools and roles we used, are not qualified. Therefore, unde-
veloped goal is attached for them. The failures list artefact corresponds to the
result of the FTA analysis as required by Appendix B4.1 of ARP4761.
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Fig. 7. GSN representation of partial process-based argument.

Arguments Composition: This activity combines the process and product-
based arguments into one arguing about the overall system safety.

4.2 Execution
We enacted the safety argument generation process model (shown in Fig. 3) in
the prototype of our extended cloud-based enactment architecture. We deployed
the Enactment Service and one Workflow Engine on two different Amazon
EC2“t2.small” machines. Using a web browser, we were able to enact the process
and retrieve the generated artefacts containing the FPTC analysis results and
the safety arguments (separate and combined) in both SACM/ARM XMI and
text formats. The SACM/ARM XMI formats were then converted into GSN
diagrams (Figs. 5 and 7) using the Astah GSN editor2.

4.3 Discussion

By enacting the safety argument generation process on the cloud we demon-
strated the application of our cloud-based enactment architecture for safety-
critical processes. While we have used a process from an aerospace domain stan-
dard, processes from other standards can be modelled and enacted similarly.
The enactment architecture is our target platform for modelling/development of
safety processes. It is a service-oriented architecture and can be deployed into
any cloud deployment model (public, private or hybrid). It can also be interfaced
with existing platforms as a service call. This flexibility can address security
and privacy concerns when using the cloud, i.e. one can use a private cloud to
host the process enactment (partially or fully as each activity can be configured
differently) and the generated artefacts. Furthermore, the architecture can be
extended to support new rising requirements other than the three mentioned
in Sect. 3. In this paper we showed how we extended our initial architecture [4]
as detailed in Sect. 3.1. This involved extending the modelling language (EXE-
SPEM) to model new requirements and extending the architecture components
to incorporate the new required behaviours.
2 http://astah.net/editions/gsn.

http://astah.net/editions/gsn
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However, there are some limitations to the type of activities that can
be supported. Software processes are often long-running and typically would
involve human-intensive activities. The implemented prototype of the architec-
ture does not yet support intensive interactions with humans during process exe-
cution. Capturing those interactions provides more data that could be integrated
into safety arguments. Furthermore, a failure/exception during a long-running
process will break the execution and in the current prototype, the process will
need to be restarted. It is essential to have support to pause/resume processes
in such situations. Since we do not have support to resume process enactment in
case of failures, we recommend splitting processes into short-living sub-processes.
Sub-processing also means better separation of concerns between teams. Finally,
not all activities within a process can be automated and the borders between
what can/cannot be automated is not defined yet. The benefits from automation
remain, however. The automation of arguments generation saves time and cost
and utilizes the enactment architecture to capture and generate supporting evi-
dences for the arguments. The approach we propose does not address the issue
of completeness of requirements, hazards etc. As Leveson [14] points out, there
will be always hazards that are not considered and that depends on assumptions,
the uncertainties and limitations of the used methods.

5 Related Work

As already pointed out by Sljivo et al. [17], there has been extensive research of
safety case argumentation management and argument generation. For example,
Hawkins et al. [11] propose a model-based approach for automated generation
of assurance cases from automatically extracted information from the system
design, analysis and development models. The approach uses model weaving
to capture the dependencies between the reference information models and the
assurance argument patterns. The Model Based Assurance Case (MBAC) pro-
gram is in the heart of the prototype tool that implements the approach [10].
MBAC takes the argument pattern, reference information and weaving models as
its input together with the corresponding metamodels, and provides an instan-
tiated argument model as the output. While the weaving approach represents
a more generic solution idea, our approach complements that work by looking
at the specific information and argumentation pattern models and providing
the corresponding model transformation rules. Most of the related approaches
to argumentation management (e.g., [6,7]), however, lack support for distrib-
uted and remote safety case development for distributed teams. Moreover, these
approaches do not address the potential need for scalable computational power
needed for certain tasks in the overall safety certification enactment process.
Our work offers a cloud-based solution that allows integrated coproduction of
the safety case by geographically distributed teams. Furthermore, we do not
only support the product, but also the process-based side of the argument.
Gorski et al. [9] present an evidence-based argument management methodology
TRUST-IT and a cloud-based software-as-a-service platform called NOR-STA
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supporting the application of this methodology. Similarly to GSN-goal struc-
tures, the TRUST-IT argumentation model represents evidence-based arguments
in a tree-like structure. In contrast to NOR-STA, we aim at providing a complete
process enactment service on the cloud where argumentation management is not
treated as an activity separated from the activities mandated by the standards.
Producing the evidence and managing the argumentation on the same platform
allows us to automate the creation of the argument fragments that can be later
combined in the overall safety case. Furthermore, by generating the argument
fragments in a standardised format we support portability.

6 Conclusion and Future Work

This paper starts with listing a set of requirements for a development envi-
ronment that supports the enactment of safety-critical processes. To meet such
requirements we extend our previous model-driven cloud-based software process
enactment architecture [4] to support the safety critical processes. We present
a fragment of a process adapted from the aerospace domain and demonstrate
its executability on the cloud. While our proposal brings the economical ben-
efits of the cloud to safety-critical systems engineering, empirical studies and
industrial collaborations are still needed to study the impacts of our proposal at
both the organizational and individual levels and on the quality and safety of
the produced systems.

To take this work further, we plan to develop a support for continuous com-
pliance modelling and checking, for enabling extensive human interactions and
off-line activities, as well as for sub-processing to allow long-lived processes typ-
ical for the aerospace domain.
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