Amund Skavhaug
Jérémie Guiochet
Friedemann Bitsch (Eds.)

Computer Safety,
Reliability, and Security

35th International Conference, SAFECOMP 2016
Trondheim, Norway, September 21-23, 2016
Proceedings

LNCS 9922

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9922

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Amund Skavhaug - Jérémie Guiochet
Friedemann Bitsch (Eds.)

Computer Safety,
Reliability, and Security

35th International Conference, SAFECOMP 2016
Trondheim, Norway, September 21-23, 2016
Proceedings

@ Springer

Editors

Amund Skavhaug Friedemann Bitsch

Norwegian University of Science and Thales Transportation Systems GmbH
Technology Ditzingen

Trondheim Germany

Norway

Jérémie Guiochet
University of Toulouse

Toulouse

France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-45476-4 ISBN 978-3-319-45477-1 (eBook)

DOI 10.1007/978-3-319-45477-1

Library of Congress Control Number: 2015948709
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure to present the proceedings of the 35th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2016), held in Trondheim,
Norway, in September 2016. Since 1979, when the conference was established by the
European Workshop on Industrial Computer Systems, Technical Committee 7 on
Reliability, Safety, and Security (EWICS TC?7), it has contributed to the state of the art
through the knowledge dissemination and discussions of important aspects of computer
systems of our everyday life. With the proliferation of embedded systems, the
omnipresence of the Internet of Things, and the commodity of advanced real-time
control systems, our dependence on safe and correct behavior is ever increasing.
Currently, we are witnessing the beginning of the era of truly autonomous systems,
driverless cars being the most well-known phenomenon to the non-specialist, where the
safety and correctness of their computer systems are already being discussed in the
main-stream media. In this context, it is clear that the relevance of the SAFECOMP
conference series is increasing.

The international Program Committee, consisting of 57 members from 16 countries,
received 71 papers from 21 nations. Of these, 24 papers were selected to be presented
at the conference.

The review process was thorough with at least 3 reviewers with ensured indepen-
dency, and 20 of these reviewers met in person in Toulouse, France in April 2016 for
the final discussion and selection. Our warm thanks go to the reviewers, who offered
their time and competence in the Program Committee work. We are grateful for the
support we received from LAAS-CNRS, who in its generosity hosted the PC meeting.

As has been the tradition for many years, the day before the main-track of the
conference was dedicated to 6 workshops: DECSoS, ASSURE, SASSUR, CPSELabs,
SAFADAPT, and TIPS. Papers from these are published in a separate LNCS volume.

We would like to express our gratitude to the many who have helped with the
preparations and running of the conference, especially Friedemann Bitsch as publica-
tion chair, Elena Troubitsyna as publicity chair, Erwin Schoitsch as workshop chair,
and not to be forgotten the local organization and support staff, Knut Reklev, Sverre
Hendseth, and Adam L. Kleppe.

For its support, we would like to thank the Norwegian University of Science and
Technology, represented by both the Department of Engineering Cybernetics and the
Department for Production and Quality engineering.

Without the support from the EWICS TC7, headed by Francesca Saglietti, this event
could not have happened. We wish the EWICS TC7 organization continued success,
and we are looking forward to being part of this also in the future.

VI Preface

Finally, the most important persons to whom we would like to express our gratitude
are the authors and participants. Your dedication, effort, and knowledge are the foun-
dation of the scientific progress. We hope you had fruitful discussions, gained new
insights, and generally had a memorable time in Trondheim.

September 2016 Amund Skavhaug
Jérémie Guiochet

EWICS TC7 Chair

Francesca Saglietti

General Chair

Amund Skavhaug

Program Co-chairs

Jérémie Guiochet
Amund Skavhaug

Publication Chair

Friedemann Bitsch

Organization

University of Erlangen-Nuremberg, Germany

The Norwegian University of Science and Technology,
Norway

LAAS-CNRS, University of Toulouse, France
The Norwegian University of Science and Technology,
Norway

Thales Transportation Systems GmbH, Germany

Local Organizing Committee

Sverre Hendseth
Knut Reklev

Adam L. Kleppe

Workshop Chair

Erwin Schoitsch

Publicity Chair

Elena Troubitsyna

The Norwegian University of Science and Technology,
Norway

The Norwegian University of Science and Technology,
Norway

The Norwegian University of Science and Technology,
Norway

AIT Austrian Institute of Technology, Austria

Abo Akademi University, Finland

International Program Committee

Eric Alata
Friedemann Bitsch

LAAS-CNRS, France
Thales Transportation Systems GmbH, Germany

VI Organization

Sandro Bologna

Andrea Bondavalli

Jens Braband

Antonio Casimiro

Nick Chozos

Domenico Cotroneo

Peter Daniel

Ewen Denney

Felicita Di
Giandomenico

Wolfgang Ehrenberger

Francesco Flammini
Barbara Gallina

Ilir Gashi

Janusz Gorski

Lars Grunske
Jérémie Guiochet
Wolfgang Halang
Poul Heegaard

Maritta Heisel
Bjarne E. Helvik

Chris Johnson
Erland Jonsson
Mohamed Kaéaniche
Karama Kanoun
Tim Kelly

John Knight

Phil Koopman
Floor Koornneef
Youssef Laarouchi
Bev Littlewood
Regina Moraes
Takashi Nanya
Odd Nordland
Frank Ortmeier
Philippe Palanque
Karthik Pattabiraman
Michael Paulitsch
Holger Pfeifer
Alexander Romanovsky
John Rushby
Francesca Saglietti

Associazione Italiana esperti in Infrastrutture Critiche
(AIIC), Italy

University of Florence, Italy

Siemens AG, Germany

University of Lisbon, Portugal

ADELARD, London, UK

Federico II University of Naples, Italy

EWICS TC7, UK

SGT/NASA Ames Research Center, USA

ISTI-CNR, Italy

Hochschule Fulda — University of Applied Science,
Germany

Ansaldo STS Italy, Federico II University of Naples, Italy

Milardalen University, Sweden

CSR, City University London, UK

Gdansk University of Technology, Poland

University of Stuttgart, Germany

LAAS-CNRS, France

Fernuniversitdt Hagen, Germany

The Norwegian University of Science and Technology,
Norway

University of Duisburg-Essen, Germany

The Norwegian University of Science and Technology,
Norway

University of Glasgow, UK

Chalmers University, Stockholm, Sweden

LAAS-CNRS, France

LAAS-CNRS, France

University of York, UK

University of Virginia, USA

Carnegie-Mellon University, USA

Delft University of Technology, The Netherlands

Electricité de France (EDF), France

City University London, UK

Universidade Estadul de Campinas, Brazil

Canon Inc., Japan

SINTEF ICT, Trondheim, Norway

Otto-von-Guericke Universitdt Magdeburg, Germany

University of Toulouse, IRIT, France

The University of British Columbia, Canada

Thales Austria GmbH, Austria

fortiss GmbH, Germany

Newcastle University, UK

SRI International, USA

University of Erlangen-Nuremberg, Germany

Christoph Schmitz
Erwin Schoitsch
Walter Schon

Christel Seguin
Amund Skavhaug

Mark-Alexander Sujan
Stefano Tonetta
Martin Térngren
Mario Trapp

Elena Troubitsyna
Meine van der Meulen
Coen van Gulijk
Marcel Verhoef
Helene Waeselynck

Sub-reviewers

Karin Bernsmed
John Filleau

Denis Hatebur
Alexei Iliasov
Viacheslav Izosimov
Linas Laibinis

Paolo Lollini
Mathilde Machin
Naveen Mohan
André Luiz de Oliveira
Roberto Natella
Antonio Pecchia
José Rufino

Inna Pereverzeva
Thomas Santen
Christoph Schmittner
Thierry Sotiropoulos
Milda Zizyte
Tommaso Zoppi

Organization IX

Ziihlke Engineering AG, Switzerland

AIT Austrian Institute of Technology, Austria

Heudiasyc, Université de Technologie de Compiégne,
France

Office National d’Etudes et Recherches Aérospatiales,
France

The Norwegian University of Science and Technology,
Norway

University of Warwick, UK

Fondazione Bruno Kessler, Italy

KTH Royal Institute of Technology, Stockholm, Sweden

Fraunhofer Institute for Experimental Software
Engineering, Germany

Abo Akademi University, Finland

DNV GL, Norway

University of Huddersfield, UK

European Space Agency, The Netherlands

LAAS-CNRS, France

SINTEF ICT, Trondheim, Norway

Carnegie Mellon University, USA

University of Duisburg-Essen, Germany

Newcastle University, UK

KTH Royal Institute of Technology, Stockholm, Sweden
Abo Akademi University, Finland

University of Florence, Italy

APSYS - Airbus, France

KTH Royal Institute of Technology, Stockholm, Sweden
Universidade Estadual do Norte do Parana, Brazil
Federico II University of Naples, Italy

Federico II University of Naples, Italy

University of Lisbon, Portugal

Abo Akademi University, Finland

Technische Universitit Berlin, Germany

AIT Austrian Institute of Technology, Austria
LAAS-CNRS, France

Carnegie Mellon University, USA

University of Florence, Italy

X Organization
Sponsoring Institutions

European Workshop on Industrial Computer
Systems Reliability, Safety and Security

Norwegian University of Science and Technology

Laboratory for Analysis and Architecture
of Systems, Carnot Institute

Lecture Notes in Computer Science (LNCS),
Springer Science + Business Media

International Federation for Information Processing

Austrian Institute of Technology

Thales Transportation Systems GmbH

Austrian Association for Research in IT

Electronic Components and Systems
for European Leadership - Austria

NTNU - Trondheim
Norwegian University of

Science and Technology

LAAS-CNRS

@ Springer

Qifip

THALES

AARIT

ECSEL

Austria

ARTEMIS Industry Association

European Research Consortium for Informatics
and Mathematics

Informationstechnische Gesellschaft

German Computer Society

Austrian Computer Society

European Network of Clubs for Reliability
and Safety of Software-Intensive Systems

Verband 6sterreichischer Software Industrie

Organization

p
v

ERCIM

European Research Consortium
for Informatics and Mathematics

c]

OESTERREICHISCHE ®
COMPUTER GESELLSCHAFT
AUSTRIAN

COMPUTER SOCIETY

Eumpr.-an
Nerwork of

CIubs for
R E liability and
s'hly of

Stmwan

verband

XI

Osterreichischer

software
industrie

Contents

Fault Injection

FISSC: A Fault Injection and Simulation Secure Collection

Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le,
Aude Crohen, and Philippe de Choudens

FIDL: A Fault Injection Description Language for Compiler-Based

SELTOOIS. . . .o

Maryam Raiyat Aliabadi and Karthik Pattabiraman

Safety Assurance

Using Process Models in System Assurance.

Richard Hawkins, Thomas Richardson, and Tim Kelly

The Indispensable Role of Rationale in Safety Standards

John C. Knight and Jonathan Rowanhill

Composition of Safety Argument Patterns

Ewen Denney and Ganesh Pai

Formal Verification

Formal Analysis of Security Properties on the OPC-UA SCADA Protocol . . .

Maxime Puys, Marie-Laure Potet, and Pascal Lafourcade

A Dedicated Algorithm for Verification of Interlocking Systems.

Quentin Cappart and Pierre Schaus

Catalogue of System and Software Properties.

Victor Bos, Harold Bruintjes, and Stefano Tonetta

A High-Assurance, High-Performance Hardware-Based

Cross-Domain Systemot

David Hardin, Konrad Slind, Mark Bortz, James Potts, and Scott Owens

Automotive

Using STPA in an ISO 26262 Compliant Process

Archana Mallya, Vera Pantelic, Morayo Adedjouma, Mark Lawford,
and Alan Wassyng

12

27

39

51

67

76

http://dx.doi.org/10.1007/978-3-319-45477-1_1
http://dx.doi.org/10.1007/978-3-319-45477-1_2
http://dx.doi.org/10.1007/978-3-319-45477-1_2
http://dx.doi.org/10.1007/978-3-319-45477-1_3
http://dx.doi.org/10.1007/978-3-319-45477-1_4
http://dx.doi.org/10.1007/978-3-319-45477-1_5
http://dx.doi.org/10.1007/978-3-319-45477-1_6
http://dx.doi.org/10.1007/978-3-319-45477-1_7
http://dx.doi.org/10.1007/978-3-319-45477-1_8
http://dx.doi.org/10.1007/978-3-319-45477-1_9
http://dx.doi.org/10.1007/978-3-319-45477-1_9
http://dx.doi.org/10.1007/978-3-319-45477-1_10

X1V Contents

A Review of Threat Analysis and Risk Assessment Methods
in the Automotive ConteXt. oottt e e e 130
Georg Macher, Eric Armengaud, Eugen Brenner, and Christian Kreiner

Anomaly Detection and Resilience

Context-Awareness to Improve Anomaly Detection in Dynamic Service
Oriented ArchiteCturesttt e e e 145
Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli

Towards Modelling Adaptive Fault Tolerance for Resilient
Computing Analysist 159
William Excoffon, Jean-Charles Fabre, and Michael Lauer

Automatic Invariant Selection for Online Anomaly Detection 172
Leonardo Aniello, Claudio Ciccotelli, Marcello Cinque, Flavio Frattini,
Leonardo Querzoni, and Stefano Russo

Cyber Security

Modelling Cost-Effectiveness of Defenses in Industrial Control Systems 187
Andrew Fielder, Tingting Li, and Chris Hankin

Your Industrial Facility and Its IP Address: A First Approach
for Cyber-Physical Attack Modeling 201
Robert Clausing, Robert Fischer, Jana Dittmann, and Yongjian Ding

Towards Security-Explicit Formal Modelling of Safety-Critical Systems. 213
Elena Troubitsyna, Linas Laibinis, Inna Pereverzeva, Tuomas Kuismin,
Dubravka Ilic, and Timo Latvala

A New SVM-Based Fraud Detection Model for AMI 226
Marcelo Zanetti, Edgard Jamhour, Marcelo Pellenz, and Manoel Penna

Exploiting Trust in Deterministic Builds 238
Christopher Jamthagen, Patrik Lantz, and Martin Hell

Fault Trees

Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast
and Synthesise Failure Rates 253
Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen

Effective Static and Dynamic Fault Tree Analysis. 266
Ola Bdckstrom, Yuliya Butkova, Holger Hermanns, Jan Krcdl,
and Pavel Krcal

http://dx.doi.org/10.1007/978-3-319-45477-1_11
http://dx.doi.org/10.1007/978-3-319-45477-1_11
http://dx.doi.org/10.1007/978-3-319-45477-1_12
http://dx.doi.org/10.1007/978-3-319-45477-1_12
http://dx.doi.org/10.1007/978-3-319-45477-1_13
http://dx.doi.org/10.1007/978-3-319-45477-1_13
http://dx.doi.org/10.1007/978-3-319-45477-1_14
http://dx.doi.org/10.1007/978-3-319-45477-1_15
http://dx.doi.org/10.1007/978-3-319-45477-1_16
http://dx.doi.org/10.1007/978-3-319-45477-1_16
http://dx.doi.org/10.1007/978-3-319-45477-1_17
http://dx.doi.org/10.1007/978-3-319-45477-1_18
http://dx.doi.org/10.1007/978-3-319-45477-1_19
http://dx.doi.org/10.1007/978-3-319-45477-1_20
http://dx.doi.org/10.1007/978-3-319-45477-1_20
http://dx.doi.org/10.1007/978-3-319-45477-1_21

Contents

Safety Analysis

SAFER-HRC: Safety Analysis Through Formal vERification

in Human-Robot Collaboration
Mehrnoosh Askarpour, Dino Mandrioli, Matteo Rossi,
and Federico Vicentini

Adapting the Orthogonal Defect Classification Taxonomy
tothe Space Domain.
Nuno Silva and Marco Vieira

Towards Cloud-Based Enactment of Safety-Related Processes
Sami Alajrami, Barbara Gallina, Irfan Sljivo, Alexander Romanovsky,
and Petter Isberg

Author Index e

XV

http://dx.doi.org/10.1007/978-3-319-45477-1_22
http://dx.doi.org/10.1007/978-3-319-45477-1_22
http://dx.doi.org/10.1007/978-3-319-45477-1_23
http://dx.doi.org/10.1007/978-3-319-45477-1_23
http://dx.doi.org/10.1007/978-3-319-45477-1_24

Fault Injection

FISSC: A Fault Injection and Simulation
Secure Collection

Louis Dureuil>?3®) Guillaume Petiot*3, Marie-Laure Potet!3,
Thanh-Ha Le?*, Aude Crohen?, and Philippe de Choudens'+?

! University of Grenoble Alpes, 38000 Grenoble, France
2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France
{louis.dureuil,philippe.de.choudens}@cea.fr
3 CNRS, VERIMAG, 38000 Grenoble, France
{louis.dureuil,marie-laure.potet}@imag.fr
4 Safran Morpho, Paris, France
{thanh-ha.le,aude.crohen}@morpho. com

Abstract. Applications in secure components (such as smartcards,
mobile phones or secure dongles) must be hardened against fault injec-
tion to guarantee security even in the presence of a malicious fault. Craft-
ing applications robust against fault injection is an open problem for all
actors of the secure application development life cycle, which prompted
the development of many simulation tools. A major difficulty for these
tools is the absence of representative codes, criteria and metrics to eval-
uate or compare obtained results. We present FISSC, the first public
code collection dedicated to the analysis of code robustness against fault
injection attacks. FISSC provides a framework of various robust code
implementations and an approach for comparing tools based on prede-
fined attack scenarios.

1 Introduction

1.1 Security Assessment Against Fault Injection Attacks

In 1997, Differential Fault Analysis (DFA) [6] demonstrated that unprotected
cryptographic implementations are insecure against malicious fault injection,
which is performed using specialized equipment such as a glitch generator,
focused light (laser) or an electromagnetic injector [3]. Although fault attacks
initially focused on cryptography, recent attacks target non-cryptographic prop-
erties of codes, such as modifying the control flow to skip security tests [16] or
creating type confusion on Java cards in order to execute a malicious code [2].

Fault injections are modeled using various fault models, such as instruction
skip [1], instruction replacement [10] or bitwise and byte-wise memory and regis-
ter corruptions [6]. Fault models operate either at high-level (HL) on the source
code or at low-level (LL) on the assembly or even the binary code. Both kinds
of models are useful. HL. models allow to perform faster and understandable
analyses supplying a direct feedback about potential vulnerabilities. LL models
© Springer International Publishing Switzerland 2016

A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 3-11, 2016.
DOI: 10.1007/978-3-319-45477-1_1

4 L. Dureuil et al.

allow more accurate evaluations, as the results of fault injection directly depend
on the compilation process and on the encoding of the binary.

Initially restricted to the domain of smartcards, fault attacks are nowadays
taken into account in larger classes of secure components. For example the Pro-
tection Profile dedicated to Trusted Execution Environment' explicitly includes
hardware attack paths such as power glitch fault injection. In the near future,
developers of Internet of Things devices will use off-the-shelf components to build
their systems, and will need means to protect them against fault attacks [8].

1.2 The Need for a Code Collection

In order to assist both the development and certification processes, several tools
have been developed, either to analyze the robustness of applications against
fault injection [4,5,7,8,10,11,13,14], or to harden applications by adding soft-
ware countermeasures [9,12,15]. All these tools are dedicated to particular fault
models and code levels. The main difficulty for these tools is the absence of
representative and public codes allowing to evaluate and compare the relevance
of their results. Partners of this paper are in this situation and have developed
specific tools adapted to their needs: LAZART [14] an academic tool targeting
multiple fault injection, EFs [4] an embedded LL simulator dedicated to devel-
opers and CELTIC [7] tailored for evaluators.

In this paper, we describe FISSC (Fault Injection and Simulation Secure
Collection), the first public collection dedicated to the analysis of secure codes
against fault injection. We intend to provide (1) a set of representative appli-
cations associated with predefined attack scenarios, (2) an inventory of classic
and published countermeasures and programming practices embedded into a set
of implementations, and (3) a methodology for the analysis and comparison of
results of various tools involving different fault models and code levels.

In Sect. 2, we explain how high-level attack scenarios are produced through
an example. We then present the organization and the content of this collection
in Sect. 3. Lastly in Sect. 4, we propose an approach for comparing attacks found
on several tools, illustrated with results obtained from CELTIC.

2 The VerifyPIN Example

Figure 1 gives an implementation of a VerifyPIN command, allowing to com-
pare a user PIN to the card PIN under the control of a number of tries. The
byteArrayCompare function implements the comparison of PINs. Both functions
illustrate some classic countermeasures and programming features. For example
the constants BOOL_TRUE and BOOL_FALSE encode booleans with values more
robust than 0 and 1 that are very sensible to data fault injection. The loop of
byteArrayCompare is in fixed time, in order to prevent timing attacks. Finally,
to detect fault injection consisting in skipping comparison, a countermeasure
checks whether i is equal to size after the loop. The countermeasure function
raises the global flag g_countermeasure and returns.

! TEE Protection Profile. Tech. Rep. GPD_SPE_021. GlobalPlatform, november 2014.

FISSC: A Fault Injection and Simulation Secure Collection 5

1 BOOL VerifyPIN() { 15 BOOL byteArrayCompare (UBYTE* al,
2 g_authenticated = BOOL_FALSE; 16 UBYTE* a2, UBYTE size) {

3 if (g_ptc > 0) { 17 int i;

4 if (byteArrayCompare (g_userPin, 18 BOOL status = BOOL_FALSE;

5 g_cardPin, PIN_SIZE) 19 BOOL diff = BOOL_FALSE;

6 == BOOL_TRUE) { 20 for(i = 0; i < size; i++) {
7 g_ptc = 3; 21 if (al[i] !'= a2[i]) {

8 g_authenticated = BOOL_TRUE; 22 diff = BOOL_TRUE; } }

9 return BOOL_TRUE; 23 if (i !'= size) {

10 } else { 24 countermeasure (); }

11 g_ptc--; 25 if (diff == BOOL_FALSE) {

12 return BOOL_FALSE; 26 status = BOOL_TRUE;

13 ¥ 27 } else { status = BOOL_FALSE;
14 } return BOOL_FALSE; } 28 } return status; 1}

Fig. 1. Implementation of functions VerifyPIN and byteArrayCompare

To obtain high-level attack scenarios, we use the LAZART tool [14] which
analyses the robustness of a source code (C-LLVM) against multiple control-
flow fault injections (other types of faults can also be taken into account). The
advantage of this approach is twofold: first, LAZART is based on a symbolic
execution engine ensuring the coverage of all possible paths resulting from the
chosen fault model; second, multiple injections encompass attacks that can be
implemented as a single one in other fault models or low-level codes. Thus,
according to the considered fault model, we obtain a set of significant high-level
coarse-grained attack scenarios that can be easily understood by developers.

We apply LAZART to the VerifyPIN example to detect attacks where an
attacker can authenticate itself with an invalid PIN without triggering a coun-
termeasure. Successful attacks are detected with an oracle, i.e., a boolean condi-
tion on the C variables. Here: g_countermeasure != 1 && g_authenticated ==
BOOL_TRUE. We chose each byte of the user PIN distinct from its reference coun-
terpart. Table 1 summarizes, for each vulnerability, the number of required faults,
the targeted lines in the C code, and the effect of the faults on the application.

In FISSC, for each attack, we provide a file containing the chosen inputs
and fault injection locations (in terms of basic blocks of the control flow graph)
as well as a colored graph indicating how the control flow has been modified.
Detailed results for this example can be found on the website.?

Table 1. High-level attacks found by LAZART and their effects

Number of faults | Fault injection locations | Effects
1 1. 25 Invert the result of the condition
1 1.4 Invert the result of the condition
2 1. 20 Do not execute the loop

1. 23 Do not trigger the countermeasure
4 1. 21 (four times) Invert each byte check

2 http://sertif-projet.forge.imag.fr/documents/ Verify PIN_2_results.pdf.

http://sertif-projet.forge.imag.fr/documents/VerifyPIN_2_results.pdf

6 L. Dureuil et al.

3 The FISSC Framework

As pointed out before, FISSC targets tools working at various code levels and
high-level attack scenarios can be used as reference to interpret low-level attacks.
Then, we supply codes at various levels and the preconized approach is described
in Fig. 2 and illustrated in Sect. 4.

C code - HL attack scenarios
‘ HL analysis \
assembly attack matching
. ! LL analysis :
binary LL attacks

Fig. 2. Matching LL attacks with HL. attack scenarios

In this current configuration, FISSC supports the C language and the ARM-
v7 M (Cortex M4) assembly. We do not distribute binaries targeting a specific
device, but they can be generated by completing the gcc linker scripts.

3.1 Contents and File Organization

The first release of FISSC contains small basic functions of cryptographic imple-
mentations (key copy, generation of random number, RSA) and a suite of Ver-
ifyPIN implementations of various robustness, detailed in Sect.3.2. For these
examples, Table 2 describes oracles determining attacks that are considered suc-
cessful. For instance attacks against the VerifyPIN command target either to
be authenticated with a wrong PIN or to get as many tries as wanted. Attacks
against AESAddRoundKeyCopy try to assign a known value to the key in order
to make the encryption algorithm deterministic. Attacks against GetChallenge
try to prevent the random buffer generation, so that the challenge buffer is left
unchanged. Attacks against CRT-RSA target the signature computation, so that
the attacker can retrieve a prime factor p or g of N.

Table 2. Oracles in FISSC

Example Oracle

Verify PIN g-authenticated ==

Verify PIN g-ptc >= 3

AES KeyCopy | g-key[0] = g_expect[0] || ... || gkey[N-1] = g_expect[N-1]

GetChallenge |g_challenge == g_previousChallenge
CRT-RSA (g-cp == pow(m,dp)’% p&& g-cq != pow(m,dq)?% q)
Il (gcp !'= pow(m,dp)’% p&& g-cq == pow(m,dq)% q)

FISSC: A Fault Injection and Simulation Secure Collection 7

Each example is split into several C files, with a file containing the actual
code, and other files providing the necessary environment (e.g., countermeasure,
oracle, initialization) as well as an interface to embed the code on a device (types,
NVM memory read/write functions). This modularity allows one to use the
implementation while replacing parts of the analysis or interface environments.

3.2 The VerifyPIN Suite

Applications are hardened against fault injections by means of countermeasures
(CM) and programming features (PF). Countermeasures denote specific code
designed to detect abnormal behaviors. Programming Features denote imple-
mentation choices impacting fault injection sensitivity. For instance, introducing
function calls or inlining them introduces instructions to pass parameters, which
changes the attack surface for fault injections. Table4 lists a subset of classic
and published PF and CM we are taking into account. The objective of the suite
is not to provide a fully robust implementation, but to observe the effect of the
implemented CM and PF on the produced attack scenarios.

Table 3. PF/CM embedded in VerifyPIN suite Table 4. List of CM/PF
HB FTL |INL |BK|SC|DT|# scenarios for i faults PF
1 2 3 4 b INL |Inlined calls

v0 2 0 0 1 3 FTL | Fixed time loop
vl|v 2 0 0 1 3 CM
v2|v |V v 2 1 0 1 4 HB |Hardened booleans
v3|v |V v v 2 1 0 1 4 BK |Backup copy
vd|v |V v v v 2 0 1 1 4 DT |Double test
vh| v |V v |[v |0 4 4 1 9 SC | Step counter
v6 v |V v v |0 3 0 1 4
vV |V v v v |0 2 0 0 2

Table 3 gives the distribution of CM and PF in each implementation (v2
is the example of Fig.1). Hardened booleans protect against faults mod-
ifying data-bytes. Fixed-time loops protect against temporal side-channel
attacks. Step counters check the number of loop iterations. Inlining the
byteArrayCompare function protects against faults changing the call to a NOP.
Backup copy prevents against 1-fault attacks targeting the data. Double call to
byteArrayCompare and double tests prevent single fault attacks, which become
double fault attacks. Calling a function twice (v5) doubles the attack surface
on this function. Step counters protect against all attacks disrupting the control
flow integrity [9].

4 Comparing Tools

The HL scenarios and oracles defined in Sects. 2-3 allow for the comparison of
tools in the FISCC framework. In particular, the successful attacks discovered
by tools should cover the HL scenarios. In order to associate HL scenarios and

8 L. Dureuil et al.

attacks we propose several Attack Matching criteria. Attack matching consists in
deciding whether some attacks found by a tool are related to attacks found by
another tool. An attack is unmatched if it is not related to any other attack.

In [5], HL faults are compared with LL faults with the following criterion:
attacks that lead to the same program output are considered as matching. This
“functional” criterion is not always discriminating enough. For instance, codes
like verifyPIN produce a very limited set of possible outputs (“authenticated”
or not). We propose two additional criteria:

Matching by address. Match attacks that target the same address. To match LL
and HL attacks, one must additionally locate the C address corresponding to
the assembly address of the LL attack.

Fault Model Matching. Interpret faults in one fault model as faults in the other
fault model. For instance, since conditional HL statements are usually compiled
to cmp and jmp instructions, it makes sense to interpret corruptions of cmp or
jmp instructions (in the instruction replacement fault model) as test inversions.

4.1 Case Study

We apply our criteria to compare the results of CELTIC and LAZART on the
example of Fig. 1. In our experiments, CELTIC uses the instruction replacement
fault model, where a single byte of the code is replaced by another value at
runtime. Testing the possible values exhaustively, CELTIC finds 432 successful
attacks. We then apply our two matching criteria to these results. Fig. 3 indicates
the number of successful attacks per address of assembly code, and the (manually
determined) correspondence between assembly addresses and C lines. The C lines
4, 20, 21, 23 and 25 correspond to the scenarios found by LAZART in Table 1.
They are matched by address with the attacks found by CELTIC. CELTIC attacks
that target a jump or a compare instruction are also matched by fault model.

4.2 Interpretation

Fault model matching can be used to quickly identify HL-attacks amongst
LL-attacks with only a hint of the correspondence between C and assembly,
while address matching allows to precisely find the HL-attacks matched by the
LL-attacks. Both matching criteria yield complementary results. For instance,
attacks at address Ox41leb are matched only by address, while attacks at Ox41fd
only by fault model.

Interestingly, some multiple fault scenarios of LAZART are implemented by
single fault attacks in CELTIC. For instance, the 4-fault scenario of 1.21 is imple-
mented with the attacks at address 0x41b6. In the HL scenario the conditional
test inside the loop is inverted 4 consecutive times. In the LL attacks, The cor-
responding jump instruction is actually not inverted, but its target is replaced
so that it jumps to 1.26 instead of 1.22. These attacks are matched with our cur-
rent criteria, although they are semantically very different. Lastly, 20 LL-attacks
remain unmatched. They are subtle attacks that depend on the encoding of the

FISSC: A Fault Injection and Simulation Secure Collection 9

Cline
2122 20 2 2021, 2 3 34 1 12
T - 5 5 - — ; ——
D i i o o ‘ T 1 S Uimotched
' \ i] A by fault model
! 3 E 3 v by address
501 | !] ! @ by both
| Pl i
. ; o
Ewo :
»s
] LA
E i
£
2
50f
Lo Lo v S Lo
o | S IS SN L] ‘ e ® ! °
AT R so oo | Aryvive % e -

41b6 41ba 41be 41c2 41c8 41cf...41da 41df ...41e5 4leb 41f0 41f341f5 41fb41fd

ASM address

Fig. 3. Matching HL. and LL attacks

binary or on a very specific byte being injected. For instance, at 0x41da, the
value for BOOL_FALSE is replaced by the value for BOOL_TRUE. This is likely to be
hard to achieve with actual attack equipment.

In this example, attack matching criteria allows to show that CELTIC attacks
cover each HL-scenario. Other tools can use this approach to compare their
results with those of CELTIC and the HL-scenario of LAZART. Their results
should cover the HL-scenario, or offer explanations (for instance, due to the
fault model) if the coverage is not complete.

5 Conclusion

FISSC is available on request.? It can be used by tool developers to evaluate their
implementation against many fault models and it can be contributed to with new
countermeasures (the first external contribution is the countermeasure of [9]).
We plan to add more examples in the future releases of FISSC (e.g. hardened
DES implementations) and to extend LAZART to simulate faults on data.

Acknowledgments. This work has been partially supported by the SERTIF
project (ANR-~14-ASTR-0003-01): http://sertif-projet.forge.imag.fr and by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025).

3 To request or contribute, send an e-mail to sertif-secure-collection@imag.fr.

http://sertif-projet.forge.imag.fr

10

L. Dureuil et al.

References

10.

11.

12.

13.

14.

. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In:

Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125-136. Springer, Heidelberg (1998)

Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java card 3.0 combining fault
and logical attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148-163. Springer, Heidelberg (2010)
Barenghi, A., Breveglieri, L., Koren, 1., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056-3076 (2012)

Berthier, M., Bringer, J., Chabanne, H., Le, T.-H., Riviére, L., Servant, V.: Idea:
embedded fault injection simulator on smartcard. In: Jirjens, J., Piessens, F.,
Bielova, N. (eds.) ESSoS. LNCS, vol. 8364, pp. 222-229. Springer, Heidelberg
(2014)

Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.: High
level model of control flow attacks for smart card functional security. In: ARES
2012, pp. 224-229. IEEE (2012)

Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37-51. Springer, Heidelberg (1997)

Dureuil, L., Potet, M.-L., de Choudens, P., Dumas, C., Clédiere, J.: From code
review to fault injection attacks: filling the gap using fault model inference. In:
Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 107-124.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-31271-2_7

. Holler, A., Krieg, A., Rauter, T., Iber, J., Kreiner, C.: Qemu-based fault injection

for a system-level analysis of software countermeasures against fault attacks. In:
Digital System Design (DSD), Euromicro 15. pp. 530-533. IEEE (2015)

. Lalande, J., Heydemann, K., Berthomé, P.: Software countermeasures for control

flow integrity of smart card C codes. In: Proceedings of the 19th European Sym-
posium on Research in Computer Security, ESORICS 2014, pp. 200-218 (2014)
Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM a smart card fault
injection simulator. In: IEEE International Workshop on Information Forensics
and Security. IEEE (2011)

Meola, M.L., Walker, D.: Faulty logic: reasoning about fault tolerant programs. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 468-487. Springer, Heidelberg
(2010)

Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification of a
software countermeasure against instruction skip attacks. J. Cryptographic Eng.
4(3), 145-156 (2014)

Pattabiraman, K., Nakka, N., Kalbarczyk, Z., Iyer, R.: Discovering application-
level insider attacks using symbolic execution. In: Gritzalis, D., Lopez, J. (eds.)
SEC 2009. IFIP AICT, vol. 297, pp. 63-75. Springer, Heidelberg (2009)

Potet, M.L., Mounier, L., Puys, M., Dureuil, L.: Lazart: a symbolic approach
for evaluation the robustness of secured codes against control flow injections. In:
Seventh IEEE International Conference on Software Testing, Verification and Val-
idation, ICST 2014, pp. 213-222. IEEE (2014)

http://dx.doi.org/10.1007/978-3-319-31271-2_7

FISSC: A Fault Injection and Simulation Secure Collection 11

15. Séré, A., Lanet, J.L., Iguchi-Cartigny, J.: Evaluation of countermeasures against
fault attacks on smart cards. Int. J. Secur. Appl. 5(2), 49-60 (2011)

16. Van Woudenberg, J.G., Witteman, M.F., Menarini, F.: Practical optical fault injec-
tion on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and Toler-
ance in Cryptography (FDTC), pp. 91-99. IEEE (2011)

FIDL: A Fault Injection Description Language
for Compiler-Based SFI Tools

Maryam Raiyat Aliabadi®? and Karthik Pattabiraman

Electrical and Computer Engineering,
University of British Columbia, Vancouver BC, Canada
{raiyat,karthikp}@ece.ubc.ca

Abstract. Software Fault Injection (SFI) techniques play a pivotal role
in evaluating the dependability properties of a software system. Evaluat-
ing the dependability of software system against multiple fault scenarios
is challenging, due to the combinatorial explosion and the advent of new
fault models. These necessitate SF1 tools that are programmable and eas-
ily extensible. This paper proposes FIDL, which stands for fault injec-
tion description language, which allows compiler-based fault injection
tools to be extended with new fault models. FIDL is an Aspect-Oriented
Programming language that dynamically weaves the fault models into
the code of the fault injector. We implement FIDL using the LLFI fault
injection framework and measure its overheads. We find that FIDL sig-
nificantly reduces the complexity of fault models by 10x on average, while
incurring 4-18% implementation overhead, which in turn increases the
execution time of the injector by at most 7% across five programs.

1 Introduction

Evaluating the dependability properties of a software system is a major concern
in practice. Software Fault Injection (SFI) techniques assess the effectiveness and
coverage of fault-tolerance mechanisms, and help in investigating the corner cases
[4,5,15]. Testers and dependability practitioners need to evaluate the software
system’s dependability against a wide variety of fault scenarios. Therefore, it is
important to make it easy to develop and deploy new fault scenarios [18].

In this paper, we propose FIDL (Fault Injection Description Language)!, a
new language for defining fault scenarios for SF1. The choice of introducing a spe-
cialized language for software fault injection is motivated by three reasons. First,
evaluating the dependability of software system against multiple fault scenarios
is challenging - the challenge is combinatorial explosion of multiple failure modes
[11] when dealing with different attributes of a fault model (e.g., fault types, fault
locations and time slots). Second, due to the increasing complexity of software
systems, the advent of new types of failure modes (due to residual software bugs)
is inevitable [5]. Previous studies have shown that anticipating and modeling all
types of failure modes a system may face is challenging [11]. Hence, SFI tools

! Pronounced Fiddle as it involves fiddling with the program.

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 12-23, 2016.
DOI: 10.1007/978-3-319-45477-1_2

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 13

need to have extensibility facilities that enable dependability practitioners to
dynamically model new failure modes, with low effort. Third, decoupling the
languages used for describing fault scenarios from the fault injection process
enables SFT tool developers and application testers to assume distinct roles in
their respective domains of expertise.

The main idea in FIDL is to use Aspect Oriented Programming (AOP) to
weave the aspects of different fault models dynamically into the source program
through compiler-based SFI tools. This is challenging because the language needs
to capture the high-level abstractions for describing fault scenarios, while at the
same time being capable of extending the SFI tool to inject the scenarios. Prior
work has presented domain specific languages to drive the fault injection tool
[3,6,11,16,18]. However, these languages provide neither high level abstractions
for managing fault scenarios, nor dynamic extensibility of the associated SFI
tools. To the best of our knowledge, FIDL is the first language to provide high-
level abstractions for writing fault injectors spanning a wide variety of software
faults, for extending compiler-based SFI tools.

Paper contributions: The main contributions of this paper are as follows:

— Proposed a fault injection description language (FIDL) which enables pro-
grammable compiler-based SFI tools.

— Built FIDLFI, a programmable software fault injection framework by adding
FIDL to LLFI, an open-source, compiler-based framework for fault injec-
tions [1,14].

— Evaluated FIDL and FIDLFI on five programs. We find that FIDL reduces
the complexity of fault models by 10x on average, while incurring 4 to 18 %
implementation overhead, which in turn increases the time overhead by at
most 6.7 % across programs compared to a native C++ implementation.

2 Background

We developed FIDL as an Aspect-Oriented Programming (AOP) language on the
LLFT fault injection framework. In this section, we first provide a brief overview
of LLFI. We then explain why we are motivated to develop an AOP language
for extending and driving LLFI. Though we demonstrate FIDL in the context
of LLFI, it can be applied to any compiler-based SFT tool.

2.1 LLFI

LLVM is a production, open-source compiler that allows a wide variety of static
program analysis and transformations [13]. LLFI is an open source LLVM-based
fault injection tool that injects faults into the LLVM Intermediate Representa-
tion (IR) level of application source code [21]. LLFI was originally developed for
hardware fault injection. It injects a fault (e.g., bit flip) into a live register at
every run of program in specific locations that are instrumented during compile
time [14]. LLFT also allows user to track the fault propagation path, and map it
back to the application source code.

14 M. Raiyat Aliabadi and K. Pattabiraman

Since its development, we have extended LLFI to inject different kinds of
software faults in a program in addition to hardware faults [1]. This is the version
of LLFT that we use in this paper for comparison with FIDL.

2.2 Aspect-Oriented Programming (AOP)

Object-Oriented Programming (OOP) is a well-known programming technique
to decompose a system into sets of objects. However, it provides a static model of
a system - thus any changes in the requirements of software system may have a
big impact on development time. Aspect-Oriented Programming (AOP) presents
a solution to the OOP challenge since it enables the developer to adopt the code
that is needed to add secondary requirements such as logging, exception handling
without needing to change the original static model [17]. In the following, we
introduce the standard terminology defined in AOP [17].

— Cross-cutting concerns: are the secondary requirements of a system that
cut across multiple abstracted entities of an OOP. AOP aims to encapsulate
the cross-cutting concerns of a system into aspects and provide a modular
system.

— Adyvice: is the additional code that is “joined” to specific points of program
or at specific time.

— Point-cut: specifies the points in the program at which advice needs to be
applied.

— Aspect: the combination of the point-cut and the advice is called an aspect.
AOP allows multiple aspects to be described and unified into the system auto-
matically.

3 Related Work

A wide variety of programmable fault injection tools based on SWIFI (Soft-
Ware Implemented Fault Injection) techniques have been presented in prior work
[3,6,11,11,12,16,18,23]. In this section, we aim to define where FIDL stands in
relation to them. More particularly, we argue why “Programmability” is a neces-
sity for fault injection tools.

Programmability, is defined as the ability of programming the fault injec-
tion mechanism for different test scenarios based on desired metrics of the tester
[6,18]. Programmability has two aspects. The first is a unified description lan-
guage that is independent of the language of the SFI tool [3]. This language is
needed to accelerate the process of fault scenario development, and dynamically
manage the injection space for a variety of fault types. The second aspect of pro-
grammability is providing high level abstractions in the language. The abstracted

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 15

information keeps the fault description language as simple as possible. By remov-
ing the complexity of fault scenario’s developing phases, high level abstraction
enhances the usability of the tool [3,9,11,16].

There have been a number of languages for fault injection. FAIL* is a fault
injection framework supported by a domain specific language that drives the
fault load distributions for Grid middleware [18]. FIG is supported by a domain
specific language that manages the errors injected to application/shared library
boundary [3]. Orchestra and Genesis2 use scripts to describe how to inject fail-
ures into TCL layers and service level respectively [6,12]. LFI is supported by
a XML-based language for introducing faults into the libraries [16]. EDFI is a
LLVM-based tool supporting a hybrid (dynamic and static) fault model descrip-
tion in a user-controlled way through command line inputs [8]. However, the
aforementioned languages do not provide high level abstractions, and hence
developing a new fault model (or scenario) is non-trivial. PREFAIL proposes
a programmable tool to write policies (a set of multiple-failure combinations)
for testing cloud applications [11]. Although its supporting language provides
high level abstractions, the abstracted modules only manage the failure loca-
tions, and do not provide any means to describe new failure types.

4 System Overview

In this paper, we present FIDLFI: a programmable fault injection framework,
which improves upon the previous work in both extensibility and high level
abstraction. FIDLFI enables programmability of compiler-based SFI tools, and
consists of two components: a SFI engine to manage fault injection, and FIDL
as SFI driver to manage fault scenarios. It enables testers to generate aggregate
fault models in a systematic way, and examine the behavior of the Application
Under Test (AUT) after introducing the fault models.

We built the FIDL language to be independent from the language used in the
fault injector, which is C4++. This enables decoupling the SFI engine and FIDL.
Figure 1 indicates the FIDLFI architecture, and the way both pieces interact
with each other. The tester describes a fault scenario (new failure mode or a set
of multiple failure modes’ combinations) in FIDL script, and feeds it into the
FIDL core, where it is compiled into a fault model in the C/C++ language. The
generated code is automatically integrated into the SFI engine’s source code. It
enables the SFI engine to test AUT using the generated fault model.

In the rest of this section, we first explain how we design aspects in FIDL
to specify the fault model, and then, present the algorithm to weave the models
into the fault injector.

I FIDL scripts.
Fault scenarios)

FIDL

Compiler-based]
(SFidriver) AUk

SFIEngine

Fig. 1. FIDLFI architecture

16 M. Raiyat Aliabadi and K. Pattabiraman

4.1 FIDL Structure

FIDL represents the fault models in a granular fashion. We reflected the granu-
larity in the fault model by designing it in the form of distinguishable modules,
in which the associated attributes are described. The main attributes of a fault
model includes fault type (what to inject), and fault location (where/when to
inject) that forms the basis of the model.

A FIDL script is formed of four core entities; Trigger, Trigger*, Target and
Action, each of which represents a specific task toward fault model design. Once
a FIDL script is executed, the FIDL algorithm creates two separate modules
(fault trigger and fault injector). Trigger, Trigger® and Target are entities which
are representative for responding to the where to inject question in fault model
design. For simplicity, we call all three entities as Triggers. Triggers provide
the required information for FIDL algorithm to generate fault trigger module.
Triggers are like programmable monitors scattered all over the application in
desired places to which FIDL can bind a request to perform a set of Actions.
An Action entity represents what to be injected in targeted locations, and is
translated to fault injector module by the FIDL algorithm.

We use the terms instruction and register to describe the entities, as this
is what LLVM uses for its intermediate representation (IR) [13]. The FIDL
language can be adapted for other compiler infrastructures which use different
terms.

Trigger identifies the IR instructions of interest which have previously been
defined based on the tester’s primary metrics or static analysis results.

Trigger: <instruction name >

Trigger* selects a special subset of identified instructions based on the tester’s
secondary metrics. This entity enables the tester to filter the injection space to
more specific locations. Trigger® is an optional feature that is used when the
tester needs to narrow down the Trigger-defined instructions based on specific
test purposes, e.g., if she aims to trigger the instructions which are located in
tainted paths.

Trigger*: <specific instruction indexes>

Target identifies the desired register(s) in IR level (variable or function argu-
ment in the source code level).

Target: < function name :: register type >
Register type can be specified as one of the following options;
dst/RetVal/src (arg number)

in which dst and src stand for destination and source registers of selected instruc-
tion respectively, and RetVal refers to the return value of the corresponding
instruction. For example fread:: src 2 means entry into 3rd source register of

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 17

fread instruction, and similarly src 0 means entry into 1st source register of
every Trigger-defined instruction.

Action defines what kind of mutation is to be done according to the expected
faulty behavior or test objectives.

Action: Corrupt/Freeze/Delay/SetValue/ Perturb

Corrupt is defined as bit flipping the Data/Address variables. Delay and Freeze
are defined as creating an artificial delay and creating an artificial loop respec-
tively, and Perturb describes an erroneous behavior. If Action is specified as
Perturb, it has to be followed by the name of a built-in injector of the SFI tool
or a custom injector written in the C++ language.

Action : Perturb :: built-in/custom injector

4.2 Aspect Design

We design aspects (advice and point-cut) using FIDL scripts. FIDL scripts are
very short, simple, and use abstract entities defined in the previous section.
This allows testers to avoid dealing with the internal details of the SFI tool or
the underlying compiler (LLVM in our case), and substitutes the complex fault
model design process with a simple scripting process. As indicated in Fig. 2, FIDL
core weaves the defined aspects into LLFI source code by compiling aspects into
fault triggers and fault injectors, and automatically integrating them into LLFT.

Aspect | (Advice, Point.Cuy (Action, [Trigger, Target]}
specification I:> FIDL Script
FIDL :>
Weaver

Aspect ::>
Weaver Modified Extended
Code base ‘::> code |:>

LLFI
(@ (b)

Fig. 2. (a) Aspect-oriented software development [7], (b) FIDL as an AOP-based
language.

Algorithm 1 describes how FIDL designs aspects, and how it weaves the
aspects into LLFI source code. For the instructions that belong to both Trigger
and Trigger™ sets (line 1), Algorithm 1 looks for the register(s) that are defined
in Target (line 2). Every pair of instruction and corresponding register provides
the required information for building PointCut (line 3). FIDL takes the Action
description to build Advice (line 4), that is paired with PointCut to form a FIDL
aspect (line 5). Now, Algorithm 1 walks through the AUT’s code, and looks for
the pairs of instruction and register(s) that match to those of PointCut (line 8).
Then, it generates the fault trigger and fault injector’s code in C++ (line 9, 10).
Fault trigger is a LLVM pass that instruments the locations of code identified
by PointCut during compile time, and fault injector is a C++ class that binds
the Advice to the locations pointed to by PointCut during run time.

18 M. Raiyat Aliabadi and K. Pattabiraman

Algorithm 1. FIDL weaver description

1: for all inst; € (T'rigger N Triggerx) do

2 for all reg; € Target do

3 PointCutl[i, j| < [inst;, reg;]

4 Advice «— Action

5: Aspect — [Advice, PointCutli, j]]

6: Iterate all basic blocks of AUT

7: for all [insty,,regn] € AUT do

8 for all [instn,,regn] =PointCut[i, j] do
9 FaultTriggery «— PointCut|[i, j]

10: Generate FaultInjector from Advice

5 Evaluation Metrics

We propose three metrics for capturing the efficiency of our programmable fault
injection framework, (1) complexity, (2) time overhead, and (3) implementation
overhead. We apply these metrics to the SFI campaign that utilizes different fault
models across multiple AUTs. For each metric, we compare the corresponding
values in FIDL with the original fault injectors implemented in the LLFI frame-
work (in C++ code). Before we explain the above metrics, we describe the
possible outcomes of the fault injection experiment across AUTs as follows:

— Crash: Application is aborted due to an exception.

— Hang: Application fails to respond to a heartbeat.

— SDC (Silent Data Corruption): Outcome of application is different from the
fault-free execution result (we assume that the fault-free execution is deter-
ministic, and hence any differences are due to the fault).

— Benign: None of the above outcomes (observable results) with respect to either
fault masking or non-triggering faults.

Complexity is defined as the effort needed to set up the injection campaign
for a particular failure mode. Complexity is measured as time or man hours
of uninterrupted work in developing a fault model. Because this is difficult to
measure, we calculate instead, the number of source Lines Of Code (LOC) asso-
ciated with a developed fault model [22]. We have used the above definition for
measuring of both OFM’s and FFM’s complexities. OFM (Original Fault Model)
is the fault model which is primarily developed as part of the LLFI framework
in C++ language. FFM (FIDL-generated Fault Model) is the fault model which
is translated from FIDL script to C++ code by the FIDL compiler (our tool).

Time Overhead is the extra execution time needed to perform fault-free (pro-
filing) and faulty (fault injection) runs respectively compared to the execution
time of AUT within our framework. To precisely measure the average time over-
head of each SFI campaign, we only include those runs whose impact are SDCs,
as the times taken by Crashes and Hangs depend on the exception handling

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 19

overheads and the timeout detection mechanisms respectively, both of which are
outside the purview of fault injections. We also exclude the benign results in
time overhead calculations, because we do not want to measure time when the
fault is masked as these do not add any overhead.

Implementation Overhead is the number of LOC introduced by the trans-
lation of the FIDL scripts into C++ code. The core of FIDL includes a FIDL
compiler written in Python, and three general template files to translate FIDL
scripts to respective fault trigger and fault injector modules. FIDL core’s is less
than 1000 (Lines of Code) LOC. However, FIDL uses general templates to gen-
erate fault models’ source code, which introduces additional space overhead. To
measure this overhead, for every given fault model, we compared the original
LOC of OFMs and those of FIDL-generated ones.

6 Evaluation

6.1 Experimental Setup

Fault Models: Using FIDL, we implemented over 40 different fault models
that had originally been implemented in LLFI as C++ code 2. However, due to
time constraints, we choose five fault models for our evaluation, namely Buffer
overflow, Memory leak, Data corruption, Wrong API and G-heartbleed (Details
in Table 1). We limited the number of applied fault models to 5, as for a given
fault model, we need to perform a total of 20,000 runs (two types of campaigns
(2*2000 runs) with and without FIDL, across 5 benchmarks) for obtaining sta-
tistically significant results, which takes a significant amount of time.

Table 1. Sample fault model description

Fault model Description

Buffer overflow | The amount of data written in a local buffer exceeds the amount
of memory allocated for it, and overwrites adjacent memory

Data corruption | The data is corrupted before or after processing

Memory leak The allocated memory on the heap is not released though its not
used further in the program

Wrong API Common mistakes in handling the program APIs responsibility for
performing certain tasks such as reading/writing files

G-heartbleed A generalized model of the Heartbleed vulnerability, that is a type
of buffer over-read bug happening in memcpy(), where the
buffer size is maliciously enlarged and leads to information
leakage [20]

2 Available at: https://github.com/DependableSystemsLab/LLFI.

https://github.com/DependableSystemsLab/LLFI

20 M. Raiyat Aliabadi and K. Pattabiraman

Target Injection: We selected five benchmarks from three benchmark suites,
SPEC [10], Parboil [19], and Parsec [2]. We also selected the Nullhttpd web
server to represent server applications. Table2 indicates the characteristics of
benchmark programs. The Src-LOC and IR-LOC columns refer to the number
of lines of benchmark code in C and LLVM IR format respectively. In each
benchmark, we inject 2000 faults for each fault model - we have verified that
this is sufficient to get tight error bars at the 95 % confidence intervals.

Table 2. Characteristics of benchmark programs

Benchmark | Suite Description Src-LOC | IR-LOC

mcf SPEC Solves vehicle scheduling problems 1960 5054
planning transportation

sad Parboil | Sum of absolute differences kernel, used | 1243 3700
in MPEG video encoder

cutcp Parboil | Computes the short range components | 1645 4200
of Coulombic potential at grid points

blackscholes | Parsec Option pricing with Black-Scholes 1198 3560
Partial Differential Equations

null httpd | Nulllogic | A multi-threaded web server for Linux | 2067 6930
and Windows

Research Questions: We address three questions in our evaluation.
RQ1: How much does FIDL reduce the complexity of fault models?
RQ2: How much time overhead is imposed by FIDL?

RQ3: How much implementation overhead is imposed by FIDL?

6.2 Experimental Results

Figure 4 shows the aggregate percentage of SDCs, crashes and benign fault injec-
tions (FI) observed across benchmarks for each of the fault models. We find that
there is significant variation in the results depending on the fault model.

Complexity (RQ1): For each of the fault models, we quantitatively measure
how much FIDL reduces the complexity of fault model development in our frame-
work. Table 3 compares LOC of original fault models primarily developed in the
C++ language, and fault models described in FIDL scripts. As can be seen, the
LOC of FIDL scripts is much smaller than OFM ones, e.g., 10 LOC of FIDL
script against 112 LOC of C++ code for developing G-heartbleed fault model.
Thus, FIDL considerably reduces the fault model complexity by 10X, or one order
of magnitude, on average, across fault models.

Time Overhead (RQ2): Our first goal of time overhead evaluation is measur-
ing how much LLFI slows down AUTS’ execution by itself, even without FIDL.

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 21

Table 3. Comparing the complexity of FIDL scripts with original and FIDL-generated
fault models

Fault model OFM (LOC) | FFM (LOC) | FIDL script (LOC)
Buffer overflow | 68 96 9
Memory leak 68 71 11
Data corruption| 61 64 8
Wrong API 109 111 11
G-Heartbleed 81 112 10

Given an OFM, we measured the average execution time for both profiling and
fault injection steps, and computed the respective time overheads (TP and TF).
We analyzed the results to figure out how time overhead varies for each fault
model across benchmarks. We find that both TP and TF increase when the
number of candidate locations for injecting the related fault increases, especially
when the candidate location is inside a loop. For example, the number of mem-
ory de-allocation instances (free() calls) within cutcp and mef benchmarks are
18 and 4 respectively, and as can be seen in Fig. 3(c), the associated TF and TP
varies between 161-196 % and 59-115 % for these benchmarks. In this figure, the
maximum and minimum time overhead are related to the sad and blackscholes
with respective maximum and minimum number of free() calls.

Secondly, we aim to analyze how FIDL influences the time overhead. To do so,
we repeated our experiments using FIDL-generated fault models, and measured
the associated time overhead across benchmarks. As shown in Fig. 3, the time
overhead either shows a small increase or does not change at all. We also find that
there is a positive correlation between the increased amount of time overhead

mcf sad cutcp blackscholes null httpd

uTP(OFM): Average time overhead of profiling
per run for an original fault model

NTP(FFM) : Average time overhead of profiling
per run for a fidl-generatedl| fault model

- TF(OFM): Average time overhead of fault
injection per run for an original fault model

S5 JTF(FFM): Average time overhead of fault
5l N=2 injection per run for a fidl-generated fault

.] o i - .
oles null httpd dy ™ sad cutcp blackscholes nullhttpd model

Fig. 3. Comparing Time overhead (%) of selected fault model across benchmarks; (a)
buffer overflow, (b) data corruption, (c) memory leak, (d) G-heartbleed, (e¢) Wrong API.

22 M. Raiyat Aliabadi and K. Pattabiraman

=%SDC N%Crash m%Hang M %Benign

i

0% ——
(b)

Fig. 4. Distribution (%) of aggregate impact types of sample fault models over 5 pro-
grams; (a) data corruption, (b) buffer overflow, (¢) memory leak, (d) Wrong API, (e)
G-heartbleed.

and the additional LOC that FFMs introduce. For example, the G-heartbleed
fault model imposes the maximum increase in time overhead (6.7 %), and its
implementation overhead has the highest value (21 LOC).

Implementation Overhead (RQ3): We measured FIDL-generated failure
modes (FFM) to calculate the respective implementation overhead in terms of
the additional LOC (Table 3). We find that the implementation overhead for the
selected fault models varies between 3-18 percent. As mentioned earlier, we find
that the associated time overhead for the respective fault model with maximum
implementation overhead is 6.7 %, which is negligible.

7 Summary

In this paper, we proposed FIDL (fault injection description language) that
enables the programmability of compiler-based Software Fault Injection (SFI)
tools. FIDL uses Aspect-Oriented Programming (AOP) to dynamically weave
new fault models into the SFT tool’s source code, thus extending it. We compared
the FIDL fault models with hand-written ones (in C++) across five applications
and five fault models. Our results show that FIDL significantly reduces the
complexity of fault models by about 10x, while incurring 4-18% implementation
overhead, which in turn increases the execution time of the injector by atmost
7% across five different programs, thus pointing to its practicality.

Acknowledgements. This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and a gift from Cisco Systems. We
thank Nematollah Bidokhti for his valuable comments on this work.

References

1. Aliabadi, M.R., Pattabiraman, K., Bidokhti, N.: Soft-LLFI: a comprehensive
framework for software fault injection. In: ISSRE 2014, pp. 1-5 (2014)

2. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: char-
acterization and architecturalimplications. In: Parallel Architectures and Compi-
lation Techniques, pp. 72-81 (2008)

FIDL: A Fault Injection Description Language for Compiler-Based SFI Tools 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Broadwell, P., Sastry, N., Traupman, J.: FIG: a prototype tool for online verifi-
cation of recovery mechanisms. In: Workshop on Self-healing, Adaptive and Self-
managed Systems (2002)

Cotroneo, D., Lanzaro, A., Natella, R., Barbosa, R.: Experimental analysis of
binary-level software fault injection in complex software. In: EDCC 2012, pp. 162—
172 (2012)

Cotroneo, D., Natella, R.: Fault injection for software certification. IEEE Trans.
Secur. Priv. 11(4), 38-45 (2013)

Dawson, S., Jahanian, F., Mitton, T.: Experiments on six commercial TCP imple-
mentations using a software fault injection tool. Softw. Pract. Exper. 27(12), 1385—
1410 (1997)

Filman, R., Elrad, T., Clarke, S., et al.: Aspect-Oriented Software Development.
Addison-Wesley Professional, Boston (2004)

Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: EDFI: a dependable fault injec-
tion tool for dependability benchmarking experiments. In: PRDC 2013, pp. 31-40
(2013)

Gregg, B., Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional, Upper Saddle River (2011)

Henning, J.L.: SPEC CPU2000: measuring cpu performance in the new millennium.
IEEE Trans. Comput. 33(7), 28-35 (2000)

Joshi, P.;, Gunawi, H.S., Sen, K.: PREFAIL: a programmable tool for multiple-
failure injection. ACM SIGPLAN Not. 46, 171-188 (2011)

Juszczyk, L., Dustdar, S.: A programmble fault injection testbed generator for
SOA. In: Weske, M., Yang, J., Fantinato, M., Maglio, P.P. (eds.) ICSOC 2010.
LNCS, vol. 6470, pp. 411-425. Springer, Heidelberg (2010)

Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: CGO 2004, pp. 75-86 (2004)

Qining, L., Farahani, M., Wei, J., Thomas, A., Pattabiraman, K.: LLFI: an inter-
mediate code-level fault injection tool for hardware faults. QRS 2015, 11-16 (2015)
Madeira, H., Costa, D., Vieira, M.: On the emulation of software faults by software
fault injection. DSN 2000, 417-426 (2000)

Marinescu, P.D., George Candea, L.F.I.: A practical and general library-level fault
injector. In: DSN 2009, pp. 379-388 (2009)

Murphy, G.C., Walker, R.J., Banlassad, E.L.A.: Evaluating emerging software
development technologies: lessons learned from assessing aspect-oriented program-
ming. IEEE Trans. Softw. Eng. 25(4), 438-455 (1999)

Schirmeier, H., Hoffmann, M., Kapitza, R., Lohmann, D., Spinczyk, O.: FAIL:
towards a versatile fault-injection experiment framework. ARCS 2012, 1-5 (2012)
Stratton, J.A., Rodrigues, C., Sung, 1.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G.D., W Hwu, W.-M.: PARBOIL: a revised benchmark suite for scientific and
commercial throughput computing. In: RHPC 2012 (2012)

Wang, J., Zhao, M., Zeng, Q., Wu, D., Liu, P.: Risk assessment of buffer heartbleed
over-read vulnerabilities. In: DSN 2015 (2015)

Wei, J., Thomas, A., Li, G., Pattabiraman, K.: Quantifying the accuracy of high-
level fault injection techniques for hardware faults. In: DSN 2014, pp. 375-382
(2014)

Winter, S., Sarbu, C., Suri, N., Murphy, B.: The impact of fault models on software
robustness evaluations. In: ICSE 2011, pp. 51-60 (2011)

Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula,
G., Brewer, E.: SafeDrive: safe and recoverable extensions using language-based
techniques. In: OSDI, pp. 45-60 (2006)

Safety Assurance

Using Process Models in System Assurance

Richard Hawkins®™), Thomas Richardson, and Tim Kelly

Department of Computer Science, The University of York, York YO10 5GH, UK
richard.hawkins@york.ac.uk

Abstract. When creating an assurance justification for a critical sys-
tem, the focus is often on demonstrating technical properties of that
system. Complete, compelling justifications also require consideration of
the processes used to develop the system. Creating such justifications
can be an onerous task for systems using complex processes and highly
integrated tool chains. In this paper we describe how process models
can be used to automatically generate the process justifications required
in assurance cases for critical systems. We use an example case study to
illustrate an implementation of the approach. We describe the advantages
that this approach brings for system assurance and the development of
critical systems.

1 Introduction and Motivation

Systems used to perform critical functions require justification that they exhibit
the necessary properties (such as for safety or security). The assurance of a sys-
tem requires the generation of evidence (from the development and analysis of
the system) and also a reasoned and compelling justification that explains how
the evidence demonstrates the required properties are met. The evidence and
justifications are often presented in an assurance case. A compelling justification
will always require both a technical risk argument (reasoning about assurance
mitigations of the system) and confidence arguments (documenting the reasons
for having confidence in the technical argument). Although both technical argu-
ments and arguments of confidence are included in most assurance cases, we find
that often the focus is on the technical aspects of assurance and that confidence
is often dealt with in very general terms. In [8] we discuss the need for confidence
arguments to be specific and explicit within an assurance case. The confidence
argument should consider all the assertions made as part of the technical argu-
ment. In this paper we focus on one important aspect of this - demonstrating
the trustworthiness of the artefacts used as evidence in the technical argument.

As an example, Fig.1 shows a small extract from an assurance argument
that uses evidence from formal verification to demonstrate than an assurance
property of the system is satisfied. Figure 1 is represented using Goal Structuring
Notation (GSN). In this paper we assume familiarity with GSN, for details on
GSN syntax and semantics we refer readers to [5] and [11].

Figure 1 can be seen to present a technical argument (the left-hand leg), and
also a claim that there is sufficient confidence in the verification results that are

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 27-38, 2016.
DOI: 10.1007/978-3-319-45477-1_3

28 R. Hawkins et al.

Goal: propSat (=

{formal property} is
satisfied in the system
model

Goal: formalConf

Con: components
There is sufficient confidence
in the formal verification

results

Goal: verification

trusted software
components: {trusted
software components}

Goal: verifResults

Results of formal verification
demonstrate {formal
property} is satisfied

Con: enviroProps

assumed environmental
properties: {assumed
environmental
properties}

Verification using
{technique} gives
trustworthy results

4&

{technique}
process

Sol: verifResults

Con: platformProps —
{formal verification
results for {formal
property}}

properties of system
platform: {assumed
platform properties}

Goal: activityTrust _Process

{Activity} is sufficiently
trustworthy

B Process

Fig. 1. Example assurance argument pattern

presented in that technical argument (Goal: formalConf). The level of confidence
required in the verification results is determined by both the assurance required
for the system as a whole, and the role of those verification results in the overall
system argument. This issue of establishing confidence in an evidence artefact
is a complex one. As discussed in [20], both the appropriateness of the artefact
in supporting the argument claim and the trustworthiness of that artefact must
be considered. In this paper we focus on the trustworthiness of the artefact.
The notion of evidence trustworthiness has been widely discussed, such as in the
Structured Assurance Case Metamodel standard (SACM) [16]. Trustworthiness
(sometimes also referred to as evidence integrity) relates to the likelihood that
the artefact contains errors. It has long been understood that the processes used
to generate an artefact are one of the most important factors in determining how
trustworthy an artefact is. This is discussed further in work such as [18], and is
also seen in standards such as [9] and tool qualification levels in [10]. The basis
for such an approach is that a trustworthy artefact is more likely to result form
the application of a rigorous, systematic process undertaken by suitable par-
ticipants using appropriate techniques and incorporating thorough evaluation.
This includes consideration of the assessment and qualification of tools used as
part of a tool chain. In Fig.1 it is seen how the claim ‘Goal: formalConf’ can
be supported by reasoning over the trustworthiness of the verification results

Using Process Models in System Assurance 29

(Goal: verification), and then in turn by arguing over the formal verification
process that generated that result (Goal: activityTrust_Process)!.

Modern critical systems often require the use of complex processes involv-
ing the integration of multiple development tools and techniques. Creating a
compelling justification for each process adopted can be a huge challenge, and
indeed this may be a reason why this is often overlooked in favour of more gen-
eral demonstrations of process compliance. We believe that it should be possible
to make the generation of confidence arguments from processes easier and more
systematic. This paper therefore provides the following solution:

“Using process models generated as part of system development, and a set of
confidence argument patterns, the required confidence arguments for assurance
artefacts can be automatically generated.”

Firstly, in Sect.2 we discuss the process models, in Sect.3 we describe the
confidence argument patterns, finally in Sect.4 we describe how the process
models and argument patterns can be linked together to create the required
confidence arguments for the target system. We use an example throughout to
illustrate our approach.

2 Process Models

Our approach permits the use of any process model in order to generate the
process argument. This provides important flexibility for system developers to
use any existing process models and tooling. A defined meta-model must however
be provided for all models used (in order to create a weaving model for instanti-
ation - see Sect.4) and the process models must be valid instances of the defined
meta-model. It should be noted that for most commonly used process modelling
approaches such as SPEM [13] meta-models already exist. For the purposes of
our example we have chosen to use the process meta-model that is summarised
in Fig. 2, which is based upon that created as part of the OPENCOSS project?.
We used the OPENCOSS process meta-model [2] as the basis for this since it
has been developed based upon a cross-domain consideration of safety standards
and processes and with input from industrial partners from many industries.

Here we provide a summary of the main elements of the meta-model in Fig. 2.
Processes entail Activities, which may themselves entail other Activities (sub-
activities). Any activity may have related Participants (which could be a Person,
Tool or Organisation (see Fig. 3)). Activities may require and produce Artefacts.
Any artefact may be defined as a ManageableAssuraceAsset (defined as part of
the evidence meta-model (see Fig.3)) for which evaluations (AssuranceAssetE-
valuation) may be created (such as review or testing of the generated artefact).
Activities may also be associated with a particular Technique that is used to
carry out that activity.

In Fig.4 we show an example process model created from the meta-model
described above. The example process used is the process of formally checking

1 As described later, we use the term ‘Activity’ to refer to the relevant process.
2 See http://www.opencoss-project.eu/.

http://www.opencoss-project.eu/

30 R. Hawkins et al.

H ProcessModel

B AssuranceAsseteviZl
(from assuranceasset)
S type : EventKind

© time : EDate

lo..' 0.* | assetEvent
triggeredAssetEvent opnedActivity
0.
precedigActvity
0. o B 0.*
owngdpartiagant of | Activity ownedTechnique| o «
2] pamqpa": . “————= © startTime : EDate subActivity ecnicue TR
3 S endTime : EDate o
partiapant 0.0
3 1
sourge targdt < <enumeration>@)|
£ ActivityRelKind
0.* ohmedartefact resulredAnefact (from general)
— owrfedRel - Decomposition
y H Artefac < roducedaftef 0.* = Precedence
= (roge::;:sce) P T AcvityRel
versionlD : ng % = ;
o date : EDate 0. type : ActivityRelKind

& changes : EString

© isLastVersion : EBoolean
© isTemplate : EBoolean 0.*
= jsConfigurable : EBoolean

createdArtefact

Fig. 2. EMF [19] core meta-model of processes

contracts specified using OCRA [14]. The results of the contract checking can
be used to provide evidence as part of an assurance justification for the system
by demonstrating that important security properties hold. As seen in Fig. 4, the
contract checking activity can be broken down to two sub-activities. Firstly the
system model specified in AADL [15] must be translated to an OCRA specifica-
tion. The second sub-activity is to perform the refinement check on the OCRA
specification. The translation activity uses a tool called Compass [1], that has
been evaluated for its correctness through testing. This activity requires the
AADL specification, and produces a specification in the form of OCRA con-
tracts. The contract specification is evaluated using consistency checking. The
refinement activity requires the OCRA contract specification and uses another
tool, the OCRA tool, in order to do the refinement. This tool has also been
tested.

3 Confidence Argument Patterns

Patterns are widely used in software engineering as a way of abstracting the
fundamental design strategies from the details of particular designs [4]. The use
of patterns as a way of documenting and reusing successful assurance argument
structures was pioneered by Kelly [11]. Assurance argument patterns provide

Using Process Models in System Assurance 31

|
ManageableAssuranceAsse! A
[(B t L Iieq(leiven(ﬁc;:
B Tool L] L
© version : EString
= qualification : EString
© objective : EString B organization
< integrity : EString | "= address : Estring B Assuranceassetévaluation |
= qualified : EString © accreditation : EString < criterion : EString
o> i .
C] ption : EString [
organization 0.7 | & evaluationResult : EString
© rationale : EString -

subOrganization [Heprerson |
© email : EString

© capability : EString
© experience : EString

Fig. 3. Sub-types of Participant available in the process meta-model (left) and Extract
from the evidence meta-model used in creating process models (right)

a way of capturing the required form of an assurance argument in a manner
that is abstract from the details of a particular argument. It is then possible
to use the patterns to create specific arguments by instantiating the patterns
in a manner appropriate to the application. Assurance argument patterns are a
very useful technique as they can help to ensure a consistent approach is applied
when similar assurance claims are required in different systems. It also provides
a way of sharing experience across projects.

Figure 5 shows an assurance argument pattern we have developed that can
be used to argue the trustworthiness of a process activity. This could be used to
support the argument we presented in Fig. 1. This argument pattern could be
instantiated for an activity using information in a process model such as that
shown in Fig. 4.

This argument structure can be seen to make claims over the trustworthi-
ness of the participants of the activity, the required and produced artefacts, the
techniques used and the sub-activities. For each of these elements of the process,
the argument shows they are sufficiently trustworthy through consideration of
their demonstrable attributes. The notion of what is sufficiently trustworthy for
a process element is driven firstly by the confidence required in the artefact being
generated. As discussed in Sect. 1, this is determined by the assurance required
for the system as a whole, and the role of the artefact in the overall system argu-
ment. Errors in some evidence artefacts will have less impact on the assurance of
the system, and the level of confidence required in such cases is correspondingly
reduced.

The trustworthiness of the process must reflect the confidence required in the
artefact itself. For each element of the process, it is necessary to take account of
the role that the process element itself plays as part of the process to generate the
artefact. For example, errors in a tool that generates an input file for an activity
may be mitigated by other elements of the process, such as manual review of
that input file or the provision of multiple inputs. In such cases the level of trust
required for that element may be reduced. What this means is that the claim

32 R. Hawkins et al.

Technique: OCRA

2:2:;‘:“;“‘ Contract ique—> : OCRA technique is

justified as method for checking

4|7 properties in report ref ?

subActivity
AssuranceAssetEvaluation: OCRA
spec consistency check
criterion: OCRA specification is
consistent
evaluationResult: Consistency
check ref ?
rationale:
Participant: Compass Tool
A 4 Participant: OCRA tool
qualified: false — S
qualification: null ticipant—] ACtvity: Translation Y qualified: false
objective: Translate MILS- € particip: MILS-AADL to OCRA evaluation . qualification: null
AADL specification to OCRA Activity: OCRA P objective: Verify
version: ? EShsmegtcheck requirements formalized
integrity: null I N into OCRA contracts
produced artefac =
il artetact version: ?
Artefact: OCRA contract Integrity: null
aliation specification
versionl| evaluation
Date:?
AssuranceAssetEvaluation: " AssuranceAssetEvaluation:
required artefact :
Compass tool testing GCRA tool secting
criterion: Tool output is cme’;mn:olw‘";m """"""
semantically equivalent to .
E incorrectly report a positive
inpu
result
evaluationResult: Test report i -
oo required artefact Artefact: MILS-AADL model evaluationResult: Test report
: ref?
rationale:
rationale:

Fig. 4. Process model for OCRA contract checking

that the element is sufficiently trustworthy must be interpreted for each element
based upon a consideration of its role in the process. In some domains, and
some standards, the notion of sufficiently trustworthy evidence is codified, such
as requirements for testing and review to be performed by independent persons
in DO-178C [17] and accepted and established notions of competency and tool
qualification. Where such guidance exists this can also be used to help ensure
proportionality in the process argument.

We have created argument patterns for all the process elements considered
in the argument pattern in Fig.5, full details of these patterns are provided
in [3]. Figure 6 shows one of these patterns, the argument pattern for creating
arguments regarding the artefacts required by a process. This argument uses
the evaluations performed on the artefact, plus attributes of the artefact, such
as its version number and defined evaluation criterion, to form the confidence
argument. The argument patterns for all of the elements of a process can similarly
be instantiated from a process model such as the one in Fig. 4.

4 Instantiating Argument Patterns

Instantiating an assurance argument pattern involves identifying the necessary
information relating to the target system, required to choose and instantiate
the assurance claims and to provide the required evidence. In this sense the
instantiable elements of the patterns define requirements for information. It is

Using Process Models in System Assurance 33

v

Goal: activityTrust

=]

{Activity}is sufficiently
trustworthy

Strat: activityTrust
Argument over
performance of
{Activity}

{Activity}:={subActivity}

Goal: activityParts Goal: activityReqs Goal: activityProds Goal: activityTech Goal: subActivities
{Activity) particitpants {Activity} required prod Techniques used for
ed artefacts from acti
are sufficiently artefacts are sufficiently (/;cn:;.(w) o Sumue'mw {Activity) are sufficiently Sub aitilvmeflof‘(Ac(nwl\:L
are sufficiently trustworthy
trustworthy trustworthy trustworthy trustworthy
no. of {participant} no. of {requiredArtefact} no. of {producedArtefact} 0. of {technique} no. of {subActivity}
Goal: partTrust Goal: reqArtTrust _Artefact Goal: prodArtTrust_Artefact Goal: Goal: subActivit

techniqueTrust_Technique
{participant} is
sufficiently trustworthy

participant type:

—{tootpersons;
rganisation}

{subActivity}is
sufficiently trustworthy

T

{required artefact} is sufficiently
trustworthy

=

{produced artefact} s sufficiently
trustworthy

Fo Atefact

{technique} s sufficiently
trustworthy

B Techniue

Goal: tool_Tool Goal: person_Person Goal: organisation_Organisation
Con: role

{participant} tool is sufficiently {participant} person is sufficiently {participant} organisation is Role and impact of
trustworthy trustworthy sufficiently trustworthy {process element}
] B e B orgenisation within process

Fig. 5. Assurance argument pattern for confidence arguments

possible to manually obtain this information and instantiate the argument pat-
terns; this is current practice. A manual approach however is often not ideal. The
instantiation is often repetitive and mechanistic in nature and prone to human
error. Manual instantiation can also be time consuming and inconsistent. In
[7] we described a model-based approach to automated instantiation of assur-
ance argument patterns, based upon the specification of a weaving model that
describes the dependencies between abstract elements of the argument pattern
and elements of various system models for the target system. At instantiation,
information is extracted from the relevant model elements of the target system
to create the assurance argument. Our previous work on applying our approach
([6,7]) has focussed predominantly on the automated instantiation of the tech-
nical argument. To move to a more complete automation of the assurance case,
automation of the confidence argument is also required. Below we describe how
the process model and confidence argument patterns presented can be used to
create an assurance argument for a claim regarding a formal property of our
example system as part of an assurance case for that system. Firstly we iden-
tify a claim we wish to support as part of the assurance case for the example
system. In this case a claim is required for each formal property specified as

34 R. Hawkins et al.

Goal: reqArtTrust £

{required artefact} is
sufficiently trustworthy

Goal: evaluations

Evaluations of {produced
artefact} demonstrate
correctness

Goal: artefactConf

Set of evaluations performed
provide sufficient confidence
in {produced artefact}

Strat: prodArtTrust

Argument over each
evaluation

&

no. of {evaluations}

Goal: evaluation

{evaluation} demonstrates
correctness of {produced
artefact}

Con: criterion

defined criterion:
{crterion}

Con:
artefactVersion

Goal: evalRes

{evaluation} result
demonstrates defined
criterion is met

Artefact version:
{version ID}

Goal: evalAppropriate

Evaluation result is
appropriate for evaluating
{artefact}

Sol:
evalRes

{evaluation
result}

Con: ar

Artefact date:
{date}

Just: rationale

{rationale}

Fig. 6. Assurance argument pattern for artefacts

part of the AADL specification of the system. One such claim is shown in Fig. 7,
which follows the form presented in Fig. 1. In this case the formal property to be
satisfied is “always (outL > high bound)”. This is one of a number of specified
properties of the AADL model required in order to guarantee the security of
the system. The result of an OCRA contract check is used to demonstrate this
property. Following the structure of Fig. 1, the trustworthiness of the OCRA con-
tract checking must be demonstrated for this argument to be compelling (Goal:
activityTrust_Process). The OCRA checking process model in Fig. 4 can be used
in conjunction with the confidence argument patterns to create an argument
to support this claim. An extract showing just the top level of the resulting
argument is shown in Fig. 8. This argument structure instantiation is completed

using the patterns for each aspect of the model such as Fig. 6.

Using Process Models in System Assurance 35

Goal. propSat.3 BEo

always ({outL > high_bound})
is satisfied in the MILS-AADL
system model

Y

Goal: formalVerif.3

Formal verification proves that
the MILS-AADL model satisfies
always ({outL > high_bound})

Con: components.3 Goal: verifResults.3

trusted software
components: Lsubject,
Dsubject

Results of formal verification Goal: formalConf.3
demonstrate always ({outL >
high_bound}) There is sufficient confidence
in the formal verification
results

Y

Goal: verification.3

Sol:verifRes
ults.3

[OCRA check
result]

ocra gives trustworthy
results

Y

Goal: activityTrust _Process

OCRA Contract Checking is
sufficiently trustworthy

B Process

Fig. 7. Part of the assurance argument for an example system

To make the process of instantiating the confidence argument patterns from
the process models for a system easier and less error prone it is possible to
make use of the model-based assurance case tool that we have developed to
automatically generate the confidence argument from the process model. Below
we briefly describe how the tool works.

— Argument patterns are created in machine-readable format using a graphical
editor that creates a model in an XML form from a graphical representation
of the argument pattern in GSN. We refer to these files (that are compliant
with a GSN meta-model) as GSNML files.

— A weaving model is created to define links between elements in other models.
In this case links are specified between GSN pattern models and the system
or process models. The weaving model is then used as the specification for
model transformations to generate the output model (instantiated assurance
argument). The current version of the tool uses an interim solution for creating

36 R. Hawkins et al.

Goal: activityTrust

OCRA Contract checking is
sufficiently trustworthy

Strat: activityTrust

Argument over
performance of OCRA
Contract Checking

'/

Goal activityReqs

\'

Goal: subActivities

Goal: activityProds
OCRA Contract Checking

required artefacts are Produced artefacts from OCRA Sub-activities of OCRA
sufficiently trustworthy Contract Checking are Contract Checking are
trustworthy sufficiently trustworthy
Goal: activityTech Goal: subActiv.1 Goal: subActiv.1
Goal: reqArtTrust.1 Translation MILS-AADL to
Techniques used for OCRA OCRA s sufficiently OCRA refinement check is
Contract Check
onract Whecking are OCRA contract specification trustworthy sufficiently trustworthy
sufficiently trustworthy
is sufficiently trustworthy ‘
z Goal: activityParts
I: techniqueTrust.1
Goal: techniqueTrust. OCRA Contract Checking
- participants are sufficiently
OCRA is sufficiently trustworthy
trustworthy
Goal: partTrust.1 Goal: partTrust.2
Compass Tool is OCRA Tool is sufficiently
sufficiently trustworthy trustworthy

Fig. 8. Part of the confidence argument for OCRA contract checking

weaving models that involves creating the weaving models graphically and
importing them to the tool as graphML files.

— The MBAC (Model Based Assurance Case) program is executed. This is an
Epsilon Object Language (eol) program [12] that runs on the Eclipse platform.
It takes the GSNML argument pattern files, the system and process models
and corresponding meta-models, and the weaving model as inputs. The output
is a GSN argument model for the target system that has been instantiated
using information extracted from the system models.

— The argument model is generated as a GSNML file. This GSNML file can then
be used to present information to the user in a number of ways. Firstly, the
argument model can be represented graphically as a GSN structure. Secondly,
the model can be queried in order to provide a particular view on the assurance
case. For example it is possible to just select those argument elements that
remain undeveloped, requiring additional support from the system developer.
Finally an instantiation table can also be generated that summarises how the
pattern has been instantiated in tabular form, rather than having to consult
the entire argument structure.

Using Process Models in System Assurance 37

Using the model-based assurance case tool described above it becomes pos-
sible to:

— Automatically select the appropriate process model relevant to the evidence
artefact cited in the assurance argument.

— Automatically populate the confidence argument pattern using information
extracted from the process model.

It is important to note that when adopting this approach, thorough review
of the assurance argument is still, as always, essential. However, rather than
focussing review on the correctness of each argument created, the review effort
can instead be focussed on the sufficiency of the pattern structure and the validity
of the weaving model. Both of these, once reviewed can then be re-used for each
instantiation. Another important focus for review becomes whether the role of
each element of the process has been correctly interpreted, and whether what has
been generated corresponds to this interpretation. We believe that in contrast to
needing to review for correctness each time, this shift in focus helps to achieve
more value from the review effort.

5 Conclusions

When creating an assurance justification for a system, the focus is often on
the technical aspects of the assurance argument. The important confidence
aspects are often addressed only in very general terms. Assurance cases are
improved through provision of more focussed confidence arguments that address
the integrity of specific artefacts through justification of the processes used. Cre-
ating such confidence arguments can be an onerous task for systems using com-
plex processes and highly integrated tool chains. In this paper we have described
how compelling confidence arguments can be developed directly from existing
process models with the help of confidence argument patterns. We have described
how existing tools can be used to automatically generate these arguments.

Acknowledgements. This work was part funded by the European Union FP7 D-
MILS project (www.d-mils.org).

References

1. The COMPASS Project Web Site. http://compass.informatik.rwth-aachen.de/

2. Opencoss Consortium. Common Certification Language: Conceptual Model D4.4
version 1.4 (2015). http://www.opencoss-project.eu/

3. Integration of Formal Evidence and Expression in MILS Assurance Case. Technical
report D4.3, D-MILS Project, March 2015. http://www.d-mils.org/page/results

4. Gamma, E., Johnson, R., Helm, R., Vlissides, J., Patterns, D.: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

5. Goal Structuring Notation Working Group: GSN Community Standard Volume 1
(2011)

www.d-mils.org
http://compass.informatik.rwth-aachen.de/
http://www.opencoss-project.eu/
http://www.d-mils.org/page/results

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Hawkins et al.

Hawkins, R., Habli, 1., Kelly, T.: The need for a weaving model in assurance case
automation. Ada User J. 36(3), 187-191

Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case
from design: a model-based approach. In: Proceedings of the 16th IEEE Interna-
tional Symposium on High Assurance Systems Engineering (2015)

. Hawkins, R.D., Kelly, T.P., Knight, J., Graydon, P.: A new approach to creating

clear safety arguments. In: Dale, C., Anderson, T. (eds.) Advances in Systems
Safety, pp. 3-23. Springer, London (2011)

IEC: IEC 61508 - Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems. Technical report IEC 61508, The International Elec-
trotechnical Commission (1998)

ISO: ISO 26262 - Road Vehicles Functional Safety. Technical report ISO 26262,
ISO, Geneva, Switzerland (2011)

Kelly, T.: Arguing safety a systematic approach to safety case management. Ph.D.
thesis, The University of York

Kolovos, D., Rose, L., Garcia-Dominguez, A., Paige, R.: The Epsilon book (2013).
http://www.eclipse.org/epsilon/doc/book/

Object Management Group. Software and Systems Process Engineering Metamodel
Specification (SPEM) version 2.0 (2008)

The Othello Contract Refinement Analysis (OCRA) Tool. https://es.fbk.eu/tools/
ocra

International Society of Automotive Engineers. Architecture Analysis and Design
Language Annex (AADL), vol. 1. SAE Standard AS 5506/1, SAE, June 2006
Object Management Group (OMG). Structured Assurance Case Metamodel
(SACM), Version 1.0 (2013)

RTCA. DO-178C - Software Considerations in Airborne Systems and Equipment
Certification. Technical report DO-178C, RTCA (2011)

Nair, S., Walkinshaw, N., Kelly, T., de la Vara, J.L.: An evidential reasoning app-
roach for assessing confidence in safety evidence. In: Proceedings of the 26th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2015) (2015)
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

Sun, L.: Establishing confidence in safety assessment evidence. Ph.D. thesis, Uni-
versity of York (2012)

http://www.eclipse.org/epsilon/doc/book/
https://es.fbk.eu/tools/ocra
https://es.fbk.eu/tools/ocra

The Indispensable Role of Rationale
in Safety Standards

John C. Knight(g) and Jonathan Rowanbhill

Dependable Computing, Charlottesville, VA, USA
{john. knight, jonathan. rowanhill}
@dependablecomputing. com

Abstract. In this paper, we argue that standards, especially those intended to
support critical applications, should define explicitly both the properties
expected to accrue from use of the standard and an explicit rationale that justifies
the contents of the standard. Current standards do not include an explicit,
comprehensive rationale. Without a rationale, the use, maintenance, and revision
of standards is unnecessarily difficult. We introduce a new concept for stan-
dards, the rationalized standard. A rationalized standard combines: (a) an
explicit goal defining a property desired for conformant systems, (b) guidance
that, if followed correctly, should yield an entity with the property stated in the
goal, and (c) the rationale showing the reasoning why there is assurance with
reasonable confidence that a conformant entity will have the property defined by
the goal. We illustrate the utility of an explicit rationale using an existing safety
standard, ISO 26262.

Keywords: Standards - System safety + Rigorous argument

1 Introduction

Safety standards such as ARP 4754 [1], ARP 4761 [2], IEC 61508 [3], and Mil Std
882E [4] have served the community well. They provide a repository of expert
knowledge, foster consistency in the community, and document the expectations that
arise when regulating agencies use standards conformance as a basis for approval. The
role of a standard as a knowledge repository is especially important, because the
knowledge usually originates from many experts and is subject to analysis and syn-
thesis before becoming part of the standard. No single engineer or a small group is
likely to have the composite background and experience of those who developed an
officially accepted safety standard.

Despite their value, safety standards have been criticized in a variety of ways [5-7].
Standards have difficulty addressing the needs of individual systems or particular cir-
cumstances, and rarely define precisely what conformance will mean or how it will be
assessed.

The most serious weakness with existing standards, however, is that, in almost all
cases, conformance to a safety standard does not lead to assurance that the conforming
system has any specific property or properties other than those required to demonstrate
conformance. A conforming system is viewed as generally suitable for its intended use,

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 39-50, 2016.
DOI: 10.1007/978-3-319-45477-1_4

40 J.C. Knight and J. Rowanhill

but use of a conforming system is based on an assumption that the system has one or
more specific, implied but unstated properties.

At the heart of this problem is the fact that standards almost never include explicit
documentation of the rationale for their contents. Developers produce evidence arti-
facts defined by the standard, and conformance experts examine these artifacts. With no
explicit rationale for the evidence, both developers and conformance experts have to
rely on their own knowledge of why the standard calls for certain forms of evidence
and can do little more than check the form of the evidence produced. Frequently,
conformance reduces to an almost meaningless checklist activity that ignores the
technical infent of the standard.

In this paper, we introduce the rationalized standard. A rationalized standard com-
bines: (a) an explicit goal defining a property desired for conformant systems, (b) guid-
ance that, if followed correctly, should yield an entity with the property stated in the goal,
and (c) the rationale showing the reasoning why there is assurance with reasonable
confidence that a conformant entity will have the property defined by the goal.

The intent of a rationalized standard is not to simply improve the rigor of a stan-
dard; the intent is to change the relationship between a standard and the associated
prerequisite knowledge in a fundamental way. Changing this relationship leads to a
new and rigorous mechanism for using a standard.

The focus of this paper is safety standards although we note that the analysis is
applicable to standards in general. This paper is organized as follows. In the next
section we discuss the detailed circumstances of current standards, and in Sect. 3 we
present the details of rationalized standards. In Sect. 4 we illustrate the potential value
of an explicit rationale by examining an existing safety standard, and in Sect. 5 we
present our conclusions.

2 Current Standards

2.1 Development of Standards

An overview of the way in which existing standards are developed and applied is
shown in Fig. 1. Most standards are developed by committees. A group of experts, the
authors of the standard, convene based upon a perceived demand for a standard in the
associated technical area. Each expert brings his or her own knowledge, both tacit and
explicit, to the committee’s deliberations.

The content of the evolving standard is the result of group meetings, discussions,
drafts of the standard, white papers, etc. During these deliberations, individual elements
of the standard are proposed, examined, refined, and either accepted or rejected
resulting in a collective view of what the standard should contain. This view is then
refined into a documented entity consisting of rules and guidelines. These rules and
guidelines in turn define evidence that must be provided by developers using the
standard to demonstrate conformance. The intent is that conformance to the framework
will assure particular qualities of engineering entities such as development processes,
development artifacts, or complete systems. But the rationale for the content of the
standard, though it existed, at least in the minds of the authoring committee members,

The Indispensable Role of Rationale in Safety Standards 41

is not available to either developers or conformance experts. In fact, the rationale was
essentially discarded once development of the standard was complete and the com-
mittee disbanded.

Use Of The Standard

Developed
System

!

System
Developers
Developed Evidence

Conformance
Experts

!

Conformance
Assessment

Fig. 1. Standards development and use as currently practiced.

Approval Authority

Standard

Cumulative
K

@
K4

S
@

Required
Evidence

o
@
3

LS

[

x=3
S

©

[S——
Collective
Rationale

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

P

|

|

| Properties
: Of Interest
|

2.2 Using Standards

Once developed, standards are put to use. No matter how careful the development
process was, questions arise about interpretation, applicability, conformance, etc. To
illustrate the difficulties that arise over time with current, static standards we examine a
standard that was widely used for software assurance in avionics systems until recently,
RTCA DO-178B [8]. Our use of this particular standard as an example is not intended
to be critical of DO-178B in any way.

DO-178B was published in 1992 and replaced by DO-178C [9] only in 2012.
During the twenty years that DO-178B was in effect, several documents were produced
to supplement the standard including:

DO-248B. This guidance document is entitled “Final Annual Report for Clarifi-
cation of DO-178B ‘Software Considerations In Airborne Systems And Equipment
Certification’” and was published in 2001 [10]. It was developed in response to
hundreds of questions about DO-178B.

FAA Order 8110.49. This FAA order is entitled “Software Approval Guidelines”. It
provides a great deal of guidance on the software approval process, i.e., how
compliance with DO-178B should be judged.

Certification Authorities Software Team (CAST) Position Papers. CAST papers are
neither official policy nor guidance and are provided for educational and informa-
tional purposes. Nevertheless, they do play a role in supplementing the DO-178B
standard. Twenty six CAST papers have been written to support DO-178B.

FAA Advisory Circular 20-148. This document is entitled “Reusable Software
Components” and provides guidance for software reuse in the context of DO-178B.

42 J.C. Knight and J. Rowanhill

Clearly the need for clarification in many different areas arose when the DO-178B
standard was applied. We hypothesize that having an explicit rationale would have
reduced the need for supplementary material substantially.

2.3 Maintenance of Standards

As is clear from the example in the previous section of the supplementary material that
has been developed for DO-178B, those using a standard are likely to find defects,
omissions or limitations. In addition, advances in technology will occur that could
bring value to developers, but such advances are often prohibited because an existing
standard does not address the new technology. Both of these circumstances motivate
the need over time to modify the standard in some way.

Modification of a standard is closely related to developing the standard in the first
place. The key difference between the development and subsequent modification of a
standard is that the latter activity has one additional input, the standard itself.

Modifying a standard successfully requires a deep understanding of the standard
and all of the technology that the standard references. Thus, as with development,
modifications are: (a) often undertaken by a committee of experts, and (b) occur
infrequently because of the difficulties and resource levels required.

Clearly, those undertaking a modification to a standard require access to the “why”
of the content and the existing form of the standard in order to understand fully the
ramifications of a modification. In other words, those undertaking a modification
require access to the usually unavailable rationale for the original standard.

3 Rationalized Standards

3.1 The Concept

We conclude from the previous section that the explicit rationale for a standard as an
integral part of the standard could provide great value. How then could the rationale be
included in a standard? The rationale cannot merely be a new section added to an
existing standard structure with no other change. The overall structure used for stan-
dards needs to be revised to both accommodate and take advantage of the introduction
of the rationale.

In this section we introduce the rationalized standard. A rationalized standard
emerges from recognition that the rationale for a standard is the fundamental content of
the standard. The rationale is neither precursory nor supplementary; it argues, from first
principles backed by sound evidence, why a set of proscriptive and prescriptive
guidance will assure with reasonable confidence that an engineering entity holds a
certain property that is stated explicitly.

The explicit rationale moves the rationale from the realm of informality and oral
tradition into the realm of rigor and written tradition. Furthermore, it models the
guidance of the standard as part of the rationale. The introduction of the rationale

The Indispensable Role of Rationale in Safety Standards 43

would restructure the associated standard and integrate revised versions of much of the
existing material. Thus, the rationale need not lead to a major increase in the length of
the standard, although the practical effect on length would have to be determined by
experiment.

Figure 2 shows the three key components of a rationalized standard. At the top of
the figure is the Desired Property (or properties) to be assured for a conformant system.
At the bottom of the figure is the Guidance that defines conformance. In between is the
Reasoning for why conformance engenders belief in the Desired Property.

Rationalized Standard

Desired
Property

Reasoning

Fig. 2. The three key components of a rationalized standard.

The guidance specifies a set of items of evidence that must be obtained about the
subject system by the system’s developers. If the evidence is supplied and is sufficient,
i.e., the subject system is determined to be conformant, then the reasoning leads to
belief in the desired property. Ensuring that the reasoning is adequate to justify this
belief is the responsibility of the authors of the standard.

The manner in which a rationalized standard would be used is shown in Fig. 3.
Developers reference the reasoning in the standard in order to determine the suitability
of the standard for their application and to map the evidence specifications in the
guidance to their application. Conformance assessment requires judgment as to whether
the evidence supplied meets the specification in the guidance.

3.2 Defining Reasoning

A convenient way to document reasoning is as a rigorous argument, and a hierarchical
structure known as a goal structure is an effective way to represent an argument. A goal
structure begins with a top-level goal that is decomposed into sub-goals such that belief
in the top-level goal is justified by belief in the sub-goals using a documented strategy
that links the sub-goals to the top-level goal. In the case of a standard, the top-level goal
is the desired property. Each sub-goal in the goal structure is then decomposed into
sub-goals that are further decomposed, and so on until leaf sub-goals are reached.
A leaf sub-goal is a goal for which belief can be justified directly by supplied evidence.

44 J.C. Knight and J. Rowanhill

Rationalized Completed
Standard System
Desired
Prisp‘:'ly Property
Reasoning

(Belief Function)

v

-

i
i i
: Guidance | System
! (Format Development > System
I
: PN s : Process
I

7777~ Evidence
t ! (Actual Parameters)

Conformance
Analysis

Fig. 3. Practical application of a rationalized standard.

Various notations have been developed for documenting arguments, and one
notation that is in common use is the Goal Structuring Notation (GSN) [11]. We use
GSN to document arguments in the remainder of this paper. The syntactic elements of
GSN that we use in this paper are: (a) rectangle: a goal, (b) circle: an item of evidence
such as results of a software test activity, and (c) rounded rectangle: an item of context —
rigorous arguments are defined for a specific context such as the system’s planned
operating environment(s).

3.3 Defining Guidance

Recall that guidance is the specification of evidence that, if supplied and determined to
be sufficient, justifies belief in the associated leaf goal. There are two forms that
guidance can take in this case:

1. A statement of the leaf sub-goal and the required level of confidence that the
evidence will justify belief in the sub-goal.
2. A statement of the explicit evidence that is required for the sub-goal.

As an example, suppose that, as part of the rationale for a safety standard, a leaf
sub-goal is that the system software will ensure real-time task schedulability with an
ultra-high level of assurance. This sub-goal derives from the overall safety goal of the
system, and safety will be compromised without ultra-high assurance of schedulability.

Stating the sub-goal in order to define the evidence requirement (guidance form 1
above) is insufficient, because the level of confidence required is so high. The evidence
needed for this sub-goal will not be sufficient if, for example, developers chose testing
as an appropriate form of evidence. In this case, the rationale will specify specific forms
of evidence. For example, the use of a static form of scheduling such as a
time-triggered protocol together with a proof of the static schedule.

The structure shown in Fig. 2 is similar to an assurance case [12]. This similarity is
not a coincidence. In essence what is required of a standard is an assurance case that

The Indispensable Role of Rationale in Safety Standards 45

will document the reason for belief that a conformant system has a desired property.
The difference between a rationalized standard and a traditional assurance case is that
the former has to be reusable whereas the latter is system specific.

4 Analysis of a Safety Standard

In order to illustrate the concept of a rationalized standard, we examine a small piece of
an existing safety standard, ISO 26262 [13]. Our use of this particular standard as an
example is not intended to be critical of ISO 26262 in any way.

ISO 26262 was published in 2011 and is organized into ten parts. Our examples come
from Part 6 entitled: “Product development at the software level”. For simplicity, we limit
our examples to Automotive Safety Integrity Level (ASIL) D, the highest integrity level.

4.1 Example Element

Section 5.4.7 of ISO 26262 Part 6 has no specific title but is part of Section 5.4 entitled
“Requirements and recommendations”. Section 5.4.7 addresses, in part, software
design and implementation correctness. The majority of the content of Section 5.4.7 is
a table listing eight techniques, the use of which the standard defines as ‘“highly
recommend” for ASIL D applications. The bulk of that table is reproduced here as
Table 1 and the following footnotes.

Table 1. ISO 26262 Part 6 Section 5.4.7

Topics to be covered by modelling and coding | ASIL D

guidelines

1a | Enforcement of low complexity® Highly recommended
1b | Use of language subsets” Highly recommended
lc | Enforcement of strong typing® Highly recommended
1d | Use of defensive implementation techniques | Highly recommended
le | Use of established design principles Highly recommended
1f | Use of unambiguous graphical representation | Highly recommended
1g | Use of style guides Highly recommended
1h | Use of naming conventions Highly recommended
Footnotes:

“An appropriate compromise of this topic with other methods in this part of
ISO 26262 may be required.

PExclusion of ambiguously defined language constructs which may be
interpreted differently by different modellers, programmers, code generators
or compilers.

Exclusion of language constructs which from experience easily lead to
mistakes, for example assignments in conditions or identical naming of local
and global variables.

Exclusion of language constructs which could result in unhandled run-time
errors.

“The objective of method 1c is to impose principles of strong typing where
these are not inherent in the language.

46 J.C. Knight and J. Rowanhill

4.2 Analysis of Example Element

To begin the analysis, we attempted to reconstruct the rationale for the example ele-
ment. Although no rationale is included in ISO 26262, we examined the subject ele-
ment and tried to identify: (a) the properties that conformance to the element should
yield, (b) the evidence that should be produced, and (c) the reason for belief that the
properties follow from conformance.

The intent of ISO 26262 Part 6, Section 5.4.7 is stated as:

“To support the correctness of the design and implementation, the design and coding guide-
lines for the modelling, or programming languages, shall address the topics listed in Table 1.”

We infer that the property intended is “the correctness of the design and imple-
mentation”. The intended strategy is for the user to apply coding and design guidelines
from Table 1, with the user providing suitable evidence. How this guidance helps fulfill
correctness of design and implementation is not presented and is left to the reader’s
intuition. For example, line 1b in Table 1 (“Use of language subsets™) gives examples
of the type of issue that might be avoided by restricting the use of certain language
features but defines neither a sub-goal for this guidance nor a complete set of properties
that are desired from this guidance.

Presently, ISO 26262 is built around the philosophy of “organized containers of
best practice”. Table 1 is a container of techniques related to “correctness of design and
implementation” by a common theme of software tools and techniques. But it is neither
exhaustive nor definitive with respect to “correctness”, “design”, or “implementation”,
nor tools or techniques. Other related containers, organized by themes, are presented
elsewhere in ISO 26262. Collectively, the standard implies (but does not state) that the
thematic containers, when taken as a whole, will yield adequately safe software.

An example of the difficulties that arise with implicit arguments occurs with item
1b and footnote b — they should be reversed. The statement of “how” (use a language
subset) is placed before the statement of “what” (avoid specific classes of fault). In
practice there might be other techniques that could avoid the fault classes.

As a second example, consider that Line lc in Table 1, “Enforcement of strong
typing”. This line merely indicates “how” one could reduce software faults, with no
indication of “why” strong typing impacts the subject system. An implied community
understanding of the utility of strong typing does not facilitate a comprehensive and
uniform understanding of the role that it plays.

The standard does not define the evidence that is expected in order to conform to
the guidelines. Evidence is crucial if rigorous (possibly independent) conformance
checking is to be undertaken. The standard needs to either define evidence that would
be considered sufficient or define precise specifications of sufficient evidence.

The Indispensable Role of Rationale in Safety Standards 47

The standard notes:
“Coding guidelines are usually different for different programming languages.”

This observation is correct but does not preclude requiring, for a specific use of the
standard, the development of one or more sub-goals for the associated guidance
together with an appropriate language subset definition. Some languages are in com-
mon use and could be addressed specifically by the standard as an example.

Finally, we note that terms such as “complexity”, “language subset” and “naming
convention” have intuitive meanings, but intuition is not sufficient in dealing with
challenging issues such as software correctness. ISO 26262 Part 1 is composed entirely
of the definitions of terms but does not include definitions of these terms.

In summary, the important observations about this example are:

The properties of the software that are expected to follow from conformance to the
guidance i.e., why the guidance should be observed, are not stated precisely.

The specific items of evidence that should be produced in order to justify confor-
mance are neither defined nor specified.

The rationale for the guidance, i.e., why following the guidance implies a desired
software property, is not stated. The standard is organized around collections of best
practice and does not convey how these practices lead to a useful property.

The purpose of a rationalized standard is to provide a structure within which all of
these issues are dealt with, so that a standard conveys why things add up, not just what
adds up.

4.3 Rationalized Standard Fragment

Developing the rationale for the properties in the set listed in Table 1 is a tempting
approach. But the existing ISO 26262 implied rationale is structurally weak for the
reasons stated in Sect. 4.2. For example, important techniques could be missed,
because they cut across themes.

A potential improvement would be to organize the rationale along a more com-
pelling axis as shown in Fig. 4. In this organization, the top-level goal of the rationale
is fitness for use in the target application, where fitness for use could reasonably be
defined as: (a) the software meets stated requirements, and (b) the software avoids
states that could lead to an identified system hazard. Combined, these indicate that the
software does what is expected and prevents known hazards, and could be judged to be
adequately safe. We note that avoiding identified hazards is an example of a
cross-cutting theme related to “why” the system is safe. With this framing of the
top-level goal, a decomposition into sub-goals is carried out based on best practices.

48 J.C. Knight and J. Rowanhill

1.1: Fit For Use 1.3: Hazards
Software is fit for use in the | Definition of system hazards
target application

1.2: Requirements
t>| Definition of software requirements

1.4: System

Definition of system and system
operating context

A J

2.1: Fit For Use
Argue over components of fit for use

A A
3.1: Requirements 3.2: Hazards
Software meets requirements Software adequately mitigates states
that could lead to a system hazard

— ——1
4.1: Requirements 4.2: Hazards
Software meets requirements Software adequately mitigates states
that could lead to a system hazard

Fig. 4. Top-level rationale arguing fitness for use defined using the Goal Structuring Notation

The lowest level of the goal structure for the refined rationale shown in Fig. 4
consists of two modules (4.1 and 4.2). A module is merely a means of encapsulating an
argument fragment that is defined elsewhere. Rather than showing the content of these
modules in GSN, for purposes of illustration, we provide an informal, text description
of a possible goal structure for the “Requirements” module.

The goal “Software meets requirements” (the Requirements module) might be
refined to two sub-goals: “Software meets functional requirements” and “Software
meets non-functional requirements”. An effective way to argue that a software entity
meets functional requirements is to argue: (a) that the defined functionality is provided,
and (b) the absence of faults in the software. Thus, the sub-goal “Software meets
functional requirements” might be refined into a set of sub-goals; one for each element
of functionality and one for each element in a taxonomy of fault classes. Each fault
class would be addressed in the standard’s guidance by suitable techniques of fault
avoidance or fault elimination. This finally brings the goal structure down to a suitably
low level of abstraction that specific techniques such as those in Table 1 can be
introduced.

An example of this type of rationale is shown in Fig. 5. The black “dot” on the
inference linking nodes 4.1 and 5.1 indicates repetition; a means of abstraction in the
rationale. The associated guidance should be applied to each functional element of the
applicant system, as provided by the user.

The Indispensable Role of Rationale in Safety Standards 49

1.2: Requirements
t>(Definition of software requirements

1.1: Functional Requirements 1.3: Faults

Software meets functional requirements [Taxonomy of relevant fault classes

with adequate dependability

1.4: Dependability
t| Definition of adequate dependability

v

2.1: Functional Requirements

Argue over requirements and faults

-

v
3.1: Functionality 3.2: Faults

Software provides functionality Faults in relevant classes are
with adequate dependability avoided or eliminated adequately

v

v
4.1: Functionality 4.2: Faults
Argue over functional requirements. Argue over fault classes

o

v v v
5.1: Functionality M 5.2: Fault Class 1 5.3: Fault Class N
Functional requirement M is met Instances of fault class 1 are Instances of fault class N are

avoided or eliminated adequately avoided or eliminated adequately

O O O

6.1: Testing 6.2: Static Analysis 6.3: Inspection
Results of software test program Results of static analysis Results of rigorous inspection

Fig. 5. Partial rationale for sub-goal “Software meets functional requirements”

5 Conclusion

Despite the value of existing safety standards, introducing an explicit rationale into a
standard has the potential to improve the clarity, utility, and adaptability of standards
considerably. These improvements emerge because the rationale for a standard
becomes explicit information, retaining analyzable knowledge about the standard. The
rationale enables incremental change as well as comparison and fitness with other
rationales. Communities of practice can interact analytically with both the justification
for the standard and with demonstration of conformance.

A rationale is intended to shed light on the “why” of a standard, material that is
routinely discarded once a standard is published. The net result of explicit rationale,
therefore, should be a significant increase in the efficacy of the application of standards,
their maintenance and enhancement, and the associated conformance assessment.

Introducing the rationale to a standard might seem likely to increase its length. This
could happen, but the impression we have formed from analyzing ISO 26262 is that the
rationale will replace large volumes of text rather than merely be an addition. Although

50 J.C. Knight and J. Rowanhill

we have used GSN in this paper, textual representations of arguments have been
developed and might be well suited to rationalized standards.

The availability of the rationale facilitates community discussion about the tech-
nical content of the standard and possible desirable enhancements. Valid and desirable
enhancements are inevitable and would be integrated into periodic, controlled releases.

Finally, we note that the rationale is not meant to introduce prescriptive techniques
that would be required for conformance. The evidence documented in the rationale
would constrain developers only to the extent that would be necessary to ensure that the
associated goals were met. Standards such as ISO 26262 already include recommen-
dations for techniques and thus associated evidence. All that the rationale would do is
to structure and justify such recommendations. Using alternative techniques would
certainly be appropriate provided developers created a refined rationale that justified
their technological choices.

Acknowledgment. This work supported in part by NASA Contract NNL13AAOSC.

References

1. SAE International. ARP4754: Guidelines for Development of Civil Aircraft and Systems
(2010)

2. SAE International. ARP4761: Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment (1996)

3. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related
systems, International Electrotechnical Commission (1998)

4. Mil-Std-882E. Department of Defense Standard Practice System Safety (2012)

5. Fenton, N.E., Neil, M.: A strategy for improving safety related software engineering
standards. IEEE Trans. Softw. Eng. 24(11), 1002-1013 (1998)

6. Knight, J.: Safety standards — a new approach. In: 22nd Safety-Critical Systems Symposium,
Brighton, UK (2014)

7. Laporte, C.Y., O’Connor, R.V., Paucar, L.H.G., Gerancon, B.: An innovative approach in
developing standard professionals by involving software engineering students in
implementing and improving international standards. Stand. Eng.: J. Soc. Stand. Prof. 67
(2), 1-9 (2015)

8. RTCA Inc.: DO-178B, Software Considerations in Airborne Systems and Equipment
Certification (1992)

9. RTCA Inc.: DO-178C, Software Considerations in Airborne Systems and Equipment
Certification (2012)

10. RTCA Inc.: DO-248B, Final Annual Report for Clarification of DO-178B Software
Considerations in Airborne Systems and Equipment Certification (2001)

11. Kelly, T., Weaver, R.: The goal structuring notation—a safety argument notation. In:
Proceedings DSN 2004 Workshop on Assurance Cases, Florence, Italy (2004)

12. Software Engineering Institute, Assurance cases, Carnegie Mellon University. http:/www.
sei.cmu.edu/dependability/tools/assurancecase/

13. International Organization for Standardization, ISO 26262: Road vehicles—functional safety
(2011)

http://www.sei.cmu.edu/dependability/tools/assurancecase/
http://www.sei.cmu.edu/dependability/tools/assurancecase/

Composition of Safety Argument Patterns

Ewen Denney™ and Ganesh Pai®

SGT/NASA Ames Research Center, Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai}@nasa.gov

Abstract. Argument structure patterns can be used to represent classes
of safety arguments. Such patterns can become quite complex, making
use of loops and choices, posing a potential challenge for comprehen-
sion and evaluation, offsetting the likely gains that might follow from
creating arguments using them. We show how complex patterns can be
constructed by composition of simpler patterns. We provide a formal
basis for pattern composition and show that this notion satisfies certain
desirable properties. Furthermore, we show that it is always possible to
construct complex patterns by omposition in this way. We motivate this
work with example patterns extracted from real aviation safety cases,
and illustrate the application of the theory on the same.

Keywords: Argumentation - Composition - Patterns - Safety cases -
Unmanned aircraft systems

1 Introduction

Over the past few years, we have been involved in engineering a number of
real safety cases for unmanned aircraft system (UAS) operations: initially, those
concerning NASA Earth science missions [1] and, more recently, increasingly
complex aeronautics research missions'. Our previous safety cases have success-
fully undergone review and approval by the Federal Aviation Administration
(FAA), the US civil aviation regulator, while the more recent ones are either
undergoing FAA review, or are in development.

The current set of guidelines governing UAS operational approval [2] does not
explicitly require the use of argumentation in a safety case. However, the guide-
lines do require that an explanation be supplied for how the hazard mitigation
measures specified in the safety case are expected to reduce risk. Indeed, we have
found argumentation to be largely useful for that purpose and, using our method-
ology for developing assurance arguments [3], we have slowly begun including
structured arguments in the safety case (reports) to organize and document the
reasons why the intended operations can be expected to be acceptably safe.

Based on our previous, and ongoing effort, and the experience gained, a num-
ber of observations follow to motivate the work in this paper. Firstly, many of the

! As part of NASA’s UAS traffic management (UTM) effort: http://utm.arc.nasa.
gov/.
© Springer International Publishing Switzerland 2016

A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 51-63, 2016.
DOI: 10.1007/978-3-319-45477-1_5

http://utm.arc.nasa.gov/
http://utm.arc.nasa.gov/

52 E. Denney and G. Pai

UAS operations have been the first of their kind conducted in civil airspace.?

Individually, they have unique mission-specific constraints and safety require-
ments; so, much of the associated safety reasoning is also tailored to the mission.
Taking the various operations together, we have been able to identify similari-
ties amongst the associated hazard control mechanisms and safety systems, e.g.,
ground-based surveillance, safe separation measures, a suite of avoidance maneu-
vers, emergency procedures for off-nominal situations, etc. That, in turn, has
allowed us to develop both domain-independent and domain-specific patterns of
safety reasoning — clarifying how the identified Safety measures contribute to
risk reduction — which we have specified as argument structure patterns in the
Goal Structuring Notation(GSN) using our tool, AdvoCATE [4].

Next, going forward we want to design the required safety systems for future
UAS missions by carefully leveraging as many reusable safety assets that have
a successful operational history, as possible. In conjunction, we want to apply
our argument development methodology, and construct the corresponding safety
case(s) from a combination of the relevant safety reasoning patterns, and tailored
arguments, as appropriate. Intuitively, there is a need for exploring how patterns
(and/or arguments) can be combined.

Third, as mission complexity grows, the associated safety cases can also be
expected to become larger and more complex. In fact, that has indeed been our
own experience. The way in which argument patterns are composed, and the
results of such composition, can be thought of as providing a view of the overall
architecture of the safety case and, thereby, an insight into the ‘big picture’
of how the safety measures contribute to managing risk. Moreover, by using
argument patterns and their composition to the extent possible, we expect to
be able to generate large parts of the arguments through automatic pattern
instantiation [5]. We further anticipate that this will allow us to better manage
the complexity of the safety cases we create while also amortizing the effort
expended in their development.

As such, the main goal (and contribution) of this paper is a (preliminary)
formulation of the formal foundations for composing GSN argument patterns.
First, we give a running example to illustrate the intuition underlying the theory
(Sect. 2). Specifically, we give some simple patterns which we extracted from the
UAS safety cases we authored. Then, on the basis of this example, we formalize
the notion of composition (Sect. 3), after which we illustrate how we have applied
composition in practice (Sect.4). We conclude this paper contrasting our work
with related research, and identifying avenues for future research (Sect.5).

2 Illustrative Example

For what follows, we assume familiarity with GSN for specifying argu-
ments/patterns, and refer interested readers to [5] and [6] for details on GSN
syntax and semantics. We have extracted a number of simple patterns of safety
reasoning from the initial UAS safety cases we created. Figure 1 shows a selection

2 To our knowledge, at least in the US, and within a non-military context.

Composition of Safety Argument Patterns 53

G2

G1
. {h :: hazard} is
All hazards for {s :: acceptably mitigated ‘ \

system} are
acceptably mitigated

A

8$1

Mitigate each
identified

hazard

S1
Address the
causes of {h ::
hazard}

S2
Mitigate
lower-level
hazards

>=1 A
>=1
G2
{h :: hazard} is ol i‘é i
iti C =2 hazal ause; Is
acceptably mitigated S e R

© 22
(@ (b)

G5

G4

{c :: hazardCause} is

G4
acceptably managed

{c :: hazardCause} is
acceptably managed

b
hazardMitigationBarrier}
fulfills {o : safetyObjective)

s4

S3

Apply mitigation Show that
barriers to control {c mitigation barriers s1 S2
:: hazardCause} are reliable Decompose Allocate to
into lower-level implementing
requirements component
A
>=1 >=1
>=1
[]
G5 G6 G7
{b :: hazardMitigationBarrier} {b: G6 {c:
fulfills {o :: safetyObjective} hazardMitigationBarrier} is [2h i i
reliable in operation fulfilled fulfills {r2 :: requirement}

A4 & ® ®
(©) ()

G7

3 (o
{1 : requirement) is implementingComponent)
fulfiled fulfills {r2 :: requirement)

ST
Decompose
into lower-level
requirements

83

81

Decompose Show by {v ::
52 = 3 into lower- verificationPro
Allocate to (2 Show by {v = level cedure}
implementing solutionSt verificationPro requirements st
cedure} solutionSt

component “atement)

atement}

®)

Fig. 1. A selection of simple, domain-independent GSN argument patterns extracted
from real UAS safety cases, representing part of the reasoning underlying (i) risk
reduction with the use of mitigation barriers and (i1) how mitigation barriers satisfy
their applicable safety objectives. We will subsequently compose these patterns (see
Fig. 2, which composes the latter three, and Fig. 4, which composes the former four).

54 E. Denney and G. Pai

of those patterns, given using GSN pattern syntax® and representing, respec-
tively: hazard enumeration (Fig. la); mitigating a specific hazard by enumerat-
ing its causes or by hierarchical decomposition over its constituent lower-level
hazards (Fig.1b); managing a hazard cause by invoking multiple hazard miti-
gation barriers, each of which meets a particular safety objective that, in turn,
specifies the requirement to be fulfilled to manage that hazard cause (Fig. 1c);
managing a hazard cause by also showing that the applicable barriers are reli-
able in operation (Fig. 1d); hierarchical decomposition of a safety objective into
lower-level requirements, or its allocation to specific components of a mitigation
barrier (Fig.1e); and supporting a safety objective by applying a verification
procedure, via direct evidential support, reapplying hierarchical decomposition,
or by reallocation to lower-level components (Figs. 1f and g, respectively). Note
that these patterns do not encode a comprehensive collection of risk reduction
measures, but reflect part of the approach that we have used successfully in the
safety cases we authored. Moreover, the individual structures are variations on
well-known safety argument patterns, such as hazard-directed breakdown, and
requirements breakdown [5].

By examining Fig. 1, we can see that there is an intuitive notion of sequential
composition where patterns are joined in a top-down way so that a leaf node of
one pattern is the root of another. Similarly, there is also a notion of parallel
composition, where patterns can be thought of as being placed alongside one
another, and joined to reconcile common nodes and links. Using these patterns
as the running example, we subsequently describe (Sect.4) how we have com-
posed patterns to supply safety rationale in a recently authored UAS safety case.
The instance arguments of those patterns explain how the barriers of ground-
based surveillance, and avoidance meet their safety objectives for managing the
collision hazard posed by air proximity events.

3 Pattern Composition

We now formalize what it means to compose patterns. The goal is to develop a
principled approach to composing arbitrary patterns, generalizing the intuition
(as above) underlying the composition of the simple patterns of Fig. 1, to arbi-
trary (and larger) patterns. There are several subtleties that must be addressed,
e.g., reconciling overlapping fragments, and determining when a composition will
be well-formed. Moreover, we manually created the composition when we applied
it in practice; however, we want to automate the functionality in our tool, Advo-
CATE. We build on our previous work, using the following (slightly modified)
definition of argument patterns from [5], and omit the conditions described there
for brevity.

3 Due to space constraints, and for figure legibility, we omit the contextual nodes (ie.,
assumptions, justifications, and context) that provide additional clarification of the
associated reasoning, from the patterns in Fig. 1. Also note that, in some cases, the
strategies in these patterns include the safety measures used to achieve a goal in
addition to the standard GSN strategies that provide inference explanations.

Composition of Safety Argument Patterns 55

Definition 1 (Argument Pattern). An argument pattern (or pattern, for
short), P, is a tuple (N,l,p,m,c,—), where (N,—) is a directed hypergraph*
i which each hyperedge has a single source and possibly multiple targets, and
comprising a set of nodes, N, a family of labeling functions, lx, where X €
{t,d,m, s}, giving the node fields type, description, metadata, and status; and —
is the connector relation between nodes.

Let {G,S,E, A, J,C} be the node types goal, strategy, evidence, assumption,
justification, and context respectively. Then, I, : N — {G,S,E, A, J,C} gives
node types, lg : N — string gives node descriptions, l,, : N — A* gives node
instance attributes, and ls : N — P({tbd, thi}) gives node development status.

There are additional (partial) labeling functions: p is a parameter label on
nodes, p : N — Id x T, giving the parameter identifier and type; m : N2 — N2
gives the multiplicity range on a link between two nodes, with (L, H) representing
the range from L to H; ¢ : NxP(N) — N2, gives the range on the choice attached
to a given node, where ¢(x,y) is the choice between child legs y with parent node
x. Here, n is simply the number of legs in the choice, and so can be omitted.

The links of the hypergraph, a — b, where a is a single node and b is a set of
nodes, represent choices. We write a — b when ¢ — b and b € b, and a — {b, ¢}
when « is the parent of a choice between b and c. A pattern node n is a data
node, if it has a parameter, i.e., n € dom(p). Otherwise, a node is boilerplate.

3.1 Composition

There are various alternative ways in which composition can be defined. The
simplest definition, however, which works for our driving examples, is to take
the union of all links in the respective patterns, using shared identifiers as the
points at which to join. This is a conjunctive interpretation of composition,
where we require fragments in both patterns to be satisfied. We will require that
data be equivalent on corresponding nodes, and call such patterns conflict-free.
For multiplicities on corresponding links and choices, however, it is not possible
to reconcile distinct ranges without either losing information® or making ad hoc
combinations. We thus adopt the simple solution of also assuming that there are
no conflicts between corresponding multiplicities.

Definition 2 (Conflict-free Patterns). The two patterns Py = (Nq,l1,p1,
my,c;,—1) and Po» = (Na,la,pa,mg,co,—9) are conflict-free whenever
hlninn, = le|ninn, and pilnaN, = D2|ninN,- If 2,y € N1 N Ny and © —; y
(i = 1,2) then my(z,y) = mo(x,y), and if © € Ny N Ny, y € Ny N Ny, and
x—;y (1=1,2) then ¢1(z,y) = ca(z,y).

Henceforth, we will use P; and P, as metavariables for patterns representing the
above tuples.

4 A graph where edges connect multiple vertices.

5 There is no single range that corresponds to the union of possibilities represented by
two distinct ranges. This could be addressed, however, by generalizing annotations
from ranges to logical constraints that can express dependencies between nodes.

56 E. Denney and G. Pai

Definition 3 (Pattern Composition). Let P and P, be conflict-free pat-
terns. Then, Py || Po = (N1 U No, l” p" m" " =") where i) I" =13 Uly; i)
z="yiffx 51y orx —oy; i) M’ =my Umg; and w) ¢/ = ¢ Uco.

It can be seen that this is a well-formed pattern. The definition is simple
but subtle, since the merging of the links can introduce recursion. Note also
that when composing a choice A — {B,C} with A — B we retain both links,
rather than merging them. Also, choices can be interwoven in, for example,
A — {B,C} || A— {C, D}. However, duplicates are removed in A — B || (4 —
B,A — C). Now, clearly || is commutative and associative modulo renaming
of the node identifiers, and so composition can be defined over sets of patterns.

G5

® hazamMmgauonBamev) tulils
{0 : safetyObjective)

A
1

Decompose info AHoca(e to

- lower-level ing
7 requirements cump o

>=1

G7
{c :: implementingComponent)
ulfils {r2 vequlremem)

{71 = requirement) is
ulfled

Show by (v

verificationPr
ocedure}

Fig. 2. Parallel composition (||) of the elementary patterns of Figs. le—g (repeated
here, above left) giving a compound pattern (above right).

Figure 2 shows a compound pattern — a variation on the requirements break-
down pattern [5] — the result of the (parallel) composition of its reasoning ele-
ments, which are themselves the elementary patterns in Figs. le-g. The elemen-
tary pattern in Fig. le describes how the claim that a hazard mitigation barrier
fulfills a specific safety objective (goal node G5) is supported by decomposition
into lower-level requirements, or by allocation to an implementing component of
the technical system embodying the barrier (strategy nodes S1 and S2 respec-
tively). The patterns in Figs. 1f and g, respectively, show how the resulting leaf
claims (of Fig.le) — that a particular requirement is fulfilled (goal node G6),
or that the allocated component fulfills a corresponding requirement (goal node
G7) — are each either supported directly by relevant evidence items (solution
nodes E1 and E2, respectively), or developed using an appropriate verification
procedure (strategy node S3). Additionally, each of those claims can be further
supported, again, by hierarchical decomposition (strategy S1).

Composition of Safety Argument Patterns 57

Upon composing these elementary patterns, if there are repeated nodes (or
fragments) we retain one copy and discard other copies, after which we resolve
the relations between all the pattern nodes (as specified in Definition 3). Note,
in Fig. 2, that the abstraction for iteration (i.e., the loop link from the choice
following goal node G6, to strategy node S1) follows as a natural consequence
of composition.

3.2 Correctness

We now discuss in what sense the pattern composition is correct.% Intuitively, a
pattern represents a set of traces, or paths, and the composition should, in some
sense, be a conservative combination of the paths in the component patterns.
Since we have defined the composition as the union of (single-step) links, this
is trivially true so, instead, we ask whether interesting properties are preserved.
In [5], we defined various properties of patterns. It can be shown that compo-
sition preserves some of those properties, while for others, we need additional
conditions. We will discuss two such properties now:

(i) We say that a pattern is unambiguous when for all paths s;, s : A — B*
such that every internal node is boilerplate, we have s; = s3, and that a
pattern is complete when every leaf node is a data node.

(ii) We say that a —™s* b, when every loop-free path from a that is sufficiently
long must eventually pass through some b € b. Then, an argument pattern
is well-founded when, for all pattern nodes a, and sets of nodes b, such that
a ¢ b, if a =™ b then it is not the case that for all b € b, b —™45t ¢,

Theorem 1 (Property Preservation). Let P, and Py be patterns.

(i) If Py and Py are complete and unambiguous, then if there are not distinct
paths of boilerplate nodes such that A —* B in both patterns, the composition
is complete and unambiguous.

(i) If P1 and Py are well-founded and, in addition, if whenever A —* B in Py
and B —* A in Py, then 3C'. B — C in either Py or Py, and C /A* A in
either Py or Ps, then the composition is well-founded.

The preservation theorem thus tells us that (with some additional ‘compatibility’
conditions) composition of ‘good’ patterns gives us a good pattern. We would
now like to formulate a dual theorem, that any pattern can be constructed from
elementary patterns.

Definition 4 (Elementary Pattern). A pattern is elementary (or loop-free)
if for all nodes A, B, if A —* B then B /~* A.

5 Proofs of the theorems in the rest of this paper have been omitted due to space
constraints.

58 E. Denney and G. Pai

Prima facie, however, it is a trivial observation that it is always possible to
construct a pattern by composition of elementary patterns, since we can simply
compose fragments consisting of all the separate links (and hyperlinks). Instead,
we need to show that a pattern can be factorized into a collection of elementary
patterns which are maximal in some sense. We make two observations:

(i) ‘tight’ loops between a node and its child can only be composed from non-
pattern fragments. Thus we either allow such loops in the factors or, as we
do here, simply exclude them from the statement of the theorem:;

(ii) the factors need not actually be unique. Even if we limit ourselves to max-
imal factors, it is still possible to move branches between factors, so any
characterization of uniqueness needs to be modulo an equivalence under such
rearrangements.

Hence we define an equivalence relation on pairs of patterns, pi,ps ~ p3, p4
when we can rearrange a branch in p;,ps to get ps,ps and then extend this in
the obvious way to arbitrary sets of patterns. In other words, pruning a branch
b from p; gives p3, and grafting it on ps gives p4.

Theorem 2 (Pattern Factorization). All patterns with no tight loops can be
expressed as a mazximal composition of elementary patterns. That is, if p is a

pattern with no tight loops, then Ipy - - - py,, . p; elementary andp =p1 || -+ || pn,
such that ¥q1 - Gm.p = q1 || -+ || gm = there exists a partition I,.., of
{1,...,m} with for each I; = {x1,..., 20}, i = qu, || ***qu,,, such that we
have ri,... 7% ~D1,...,Dn-

That is, any factorization {g;} of p can be partitioned so that each subset of
the partition corresponds to a single factor p;, modulo rearranging.

3.3 General Composition

Rather than use overlapping node identifiers to determine composition points,
we want to be able to compose arbitrary patterns, placing no assumptions on
identifiers. We thus generalize the above definition so that nodes of P, and P
may or may not overlap. Without loss of generality, however, we will typically
assume that they are disjoint.

Since the overlap between two patterns need not, itself, be a pattern, we need
to generalize to pre-patterns. A pre-pattern has the same type of data (i.e., nodes,
links, labels, etc.) as a pattern but need not respect the well-formedness rules.
We define embeddings as mapping between pre-patterns that preserve structure.
To express that embeddings do not introduce loops, we first define a < b if for
all paths from the root s : r —* b, we have a € s, and a < b when a < b and

a # b.

Definition 5 (Pre-pattern Mappings & Embeddings). Let A and B be
(pre-)patterns. We say that e : A — B is a (pre-)pattern mapping if it maps
nodes to nodes and whenever A — B then e(A) < e(B), i.e., all paths to

Composition of Safety Argument Patterns 59

e(B) must pass through e(A), and e(A) # e(B). A pre-pattern embedding is
a pre-pattern mapping that preserves data, that is, 1) 1Z(e(a)) = 12(a) for
x € {t,d,m,s}; 2) If mA(x,y) = m then for some link 2’ — y' in e(x) —* e(y)
we have mB (', y') = m. Similarly for ¢ (x,y) = c. If e is an embedding from A
to B we write this as e : A — B.

To define compositions more generally we make use of some simple category
theory” and, in particular, the notion of pushout. A pushout encodes the minimal
(and thus unique) object which combines two objects in a specific way. We define
this within the category of pre-patterns, PrePat, which has pre-patterns for
objects and pre-pattern embeddings for morphisms. We are now in a position to
define general compositions.

Definition 6 (General Composition). Let C be a pre-pattern, and ey : C —
Py, e5: C — Py (a so-called span) be pre-pattern embeddings. Then the pushout
of e1 and ez, which we write as Py || ¢, e, P2, gives us the general composition of
Pl and PQ.

Note that the notion of context-freedom is now generalized by e; and e; being
embeddings. Next, since PreP at is not co-complete (as co-equalizers do not exist,
in general), we rely on an explicit construction to show that pushouts exist.

Theorem 3 (Well-definedness of General Composition). The general
composition of Py and P, is well-defined. That is, pushouts exist in PrePat
and, moreover, if P and Py are patterns, then Py || ¢, c, P2 is also a pattern.

We define the pushout (NV,l,p,m, ¢, —) as follows. Let P; and P, be pre-
patterns, and e; : C — Pj, es : C — P, the common embeddings. We sketch
the construction of the pushout (omitting the definitions of I, m, and ¢ to save
space): N = N. @ Np\ran(e1) ® Na\ran(ez), i.e., disjoint union of the node sets
minus ranges of the embeddings. Also,

r=ux;,y=y € N;,Pz € C.e;(2) € {z,y} and z; —; y;
r—oysSqr=x; € NyyeC, and z; —; €;(y)
y=1y; € Nj,xz € C, and e;(x) —; y;.

Finally, we observe that the general definition is equivalent to Definition 3 in
the following sense.

Corollary 1 (Equivalence of Composition). Let Py and P be patterns.
There exists a span giving a general composition of Py and Py which is isomor-
phic to Py || Py. Define the span ey : C — Py, eq : C — Py as: i) N, = N1 N Nay;
ii) ley Dey Me, Cey — ¢ are the obvious restrictions to N.; and iii) e;(n) = ea(n) = n.
Then, P1 H 617€2P2 = P1 H Pg.

" For basic concepts of category theory, we refer the reader to an introductory text-
book, such as [7].

60 E. Denney and G. Pai

4 Application

We have used the elementary patterns identified in Fig.1 (and others) along
with their combinations to explain the required safety rationale — by creating
instance arguments of the combined patterns — in a more recent UAS safety
case to provide assurance of safe operations. We are also applying them to other

safety cases currently in development. In brief, our approach is as follows.

First, we select the patterns that we can meaningfully compose into larger
patterns to address specific concerns, e.g., how a hazard is managed by the
combination of different mitigation barriers, how a specific barrier meets its
safety objectives, etc. Then we examine the composed pattern to determine
the extent to which it is applicable, e.g., whether it is (internally) complete

[Ground-based surveillance]
fulfils [the objective of
detection and tracking of
< airborne targets that are a
credible threat to UA
operations sufficiently early]

I Characterization of
Decompose into the ground-based
lower-fevel surveillance system
3

[The requirement that the
surveillance system adequately
detects and tracks
noncooperative/cooperative
intruder aircraft that can pose a
credible threat] is fulfilled

Definition of
the operating
range (OR)

Definition of
sufficiently early

Detection
requirement on
maximum target
range from radar

Detection
requirement on
target altitude

Allocate to Show by
[cirr:)pv;:r)\lg Characteriza implementing [Operational
detection ":i;‘s°'a::': component testing]
requirements B
requiring

against the radar

surveillance

>

Operational testing in the field
shows that the surveillance
system meets the requirement to
detect and track aircraft that could
pose a credible threat to UAS
operations

specifications] G35
[The radar system] fulfis [the
requirement that airbore can
be detected and adequately
classified based on the
encounter geometry]

Radar specifications
meet the detection
requirements

3

E35

14

E34 Decompose

Azimuth SpDc‘;‘(:g:‘ Alocate to into lower-level Show by
coverage is reports implementing requirements [Operational

360 degrees component testing]

— w0
Radar

Operator
(RO)

G30 oS G31
E4 [A suitably trained RO] [The requirement that the [The requirement that there ’ :
ES Instrumente fulfills [the requirement to dimensions of the threat exists a basis for classifying Operational testing in the
Elevation drange is interpret the airspace and surveillance volumes detected targets as a credible S D R
ENEEP D 21.5NM situation and determine are adequate to detect threat based upon the L2 | 2 i
from horizon whether detected targets theats sufficiently early for encounter geometry] is fulfilled specifications
to 30 degrees that pose a credible threat] the defined ORY] is fulfilled 3>

L3

E45

E40 E44

E43

i i E47 [Detected targets E.
E46 RO is familiar o 42
Tﬂéﬁﬁ?ﬁfﬁfd [RO is familiar s ConOps, ROhasabasio \ [poseacreable | [[Oefriionoffie [Definition of
e with radar i understanding | treatwhenthey | | nimal o f i
operating the surveillance contingency of ATM and are atorwithinthe /| Y
radar system] procedures] procedures] Gl

coordination]

‘\ boundary of the \ surveillance /A
\\ ™ volumes (SVs)] v

Fig. 3. Fragment of the instance argument of the compound pattern in Fig.2, when
instantiated for the surveillance barrier, and appended with tailored argument elements

(shown by the goal, context, and solution nodes highlighted with a thick border).

Composition of Safety Argument Patterns 61

or whether additional reasoning content is required in the pattern. Here, there
may be a need to define additional domain- or application-specific patterns.
Thereafter, we instantiate the patterns and examine the instance arguments to
determine the extent to which the instance provides the assurance required.
Again, there may be a need to define additional argument elements or bespoke
arguments to complete the overall reasoning. The result comprises argument
structures that supply the required safety rationale, e.g., how specific mitigation
barriers meet their safety objectives and contribute to reducing risk.

Figure3 shows a fragment of one such argument structure resulting from
this approach. In particular, the nodes not highlighted by the thick border in
the figure are a fragment of the instance argument of the composed pattern in
Fig. 2, instantiated with respect to the ground-based surveillance barrier. The
argument is intended to show how the barrier meets its safety objective (root
goal node G2, in Fig.3). The highlighted (goal, context, and solution) nodes
are additional argument elements/fragments that we subsequently introduced
to complete the argument, and to address the concerns/essential information
that the pattern did not include. Note that the instance argument also includes
contextual nodes of the pattern that we had previously omitted (e.g., the context
nodes C37 and C41). We similarly instantiated the pattern in Fig. 2) with respect
to the avoidance barrier (not given here).

Figure 4 shows the (structure of the) compound pattern which explains the
contribution of hazard mitigation barriers to managing hazard causes and, in
turn, to mitigating the identified hazards. This pattern is produced from the
general composition (see Sect.3.3) of the patterns in Figs. la—d. Intuitively, it
can also be seen as the result of a sequence of simpler compositions, in particular
the (sequential) composition of the patterns in Figs. la and b which, in turn, is

Sl
el © Y "
A al

Fig. 4. Result of the composition of the elementary patterns in Figs. 1a—d. Note that
this figure primarily illustrates the compound pattern structure, also indicating the
contextual nodes not shown earlier. For node/link content, see Figs. la—d.

62 E. Denney and G. Pai

(sequentially) composed with the parallel composition of the patterns in Figs. 1c
and d. Similarly, the compound pattern of Fig.2 can, in fact, be sequentially
composed with the compound pattern of Fig. 4. The result, another compound
pattern, is equivalent to the general composition of all the elementary patterns
in Fig. 1. The instance argument for that pattern®, which includes the argument
fragment shown in Fig. 3, explains the role of all applicable mitigation barriers
in reducing the likelihood of the different identified hazards during the UAS mis-
sion, e.g., a near midair collision (NMAC), or air proximity event (AIRPROX).

5 Related Work and Conclusions

Compositional approaches to safety case construction have been considered in [§],
however the focus there is on composing modular arguments. A catalogue of GSN
patterns for software safety assurance has been supplied in [9], along with the
assertion that the patterns link together to form a single software safety argu-
ment upon instantiation. Thus, that work (implicitly) alludes to the capability
and utility of pattern composition, although it stops short of describing what
composition means, and providing examples for the same. Similarly, [10] gives
generic patterns of reasoning empirically identified from real safety cases — -i.e.,
so called building blocks, given in the Claims-Argument-Evidence (CAE) nota-
tion — with the explicit intent to combine them into composite blocks — analogous
to hierarchical (argument) nodes [11] — and templates, which are closer to the
compound patterns presented here. This work also asserts the capability and
utility of composition, but only gives examples of building blocks as opposed to
the templates produced from their composition. Moreover, little has been said
about what composition means, and what modifications, if any, result to tem-
plate semantics, and their graphical structure, in relation to their constituent
building blocks.

In this paper we have continued our ongoing line of work on developing formal
foundations to support automation in safety case development, in which argu-
ment structures are a first class object of study. We are now using our preliminary
theory of pattern composition to provide a formal basis for implementing a suite
of features in our tool, AdvoCATE, including automated refactoring of patterns,
identifying reusable pattern components, and composing them in an automated
(or interactive) way.

Although we currently manually create patterns for instantiation, composi-
tion lets us incrementally construct larger patterns of safety reasoning by combin-
ing smaller patterns (extracted from, say, legacy safety cases). When combined
with automated pattern instantiation [5], we can increase the level of useful
automation that can be brought to bear when creating larger, more complex
safety cases. The value addition for creating arguments this way, we believe, is
that patterns give the type of an instance argument, providing a richer abstrac-
tion than argumentation schemes [12], for example, and allowing us to determine

8 Due to space constraints, neither this compound pattern nor its instance are given
here.

Composition of Safety Argument Patterns 63

whether larger arguments can be sensibly combined by examining abstract, and
relatively smaller, structures. Moreover, though there are differences, similar
techniques could be used for merging and refactoring of argument fragments
themselves. An interesting avenue of inquiry for future work is to determine what
a suitable representation of argument architecture should be. Modular structure
has been proposed for this [13], but here we have suggested that patterns and
their combination can serve as such an architecture. It might also be useful to
represent ‘glue’ argumentation that connects patterns, or refinements between
domain-independent and domain-specific patterns.

Acknowledgement. This work was funded by the SASO project under the Airspace
Operations and Safety Program of NASA ARMD.

References

1. Berthold, R., Denney, E., Fladeland, M., Pai, G., Storms, B., Sumich, M.: Assuring
ground-based detect and avoid for UAS operations. In: 33rd IEEE/ATAA Digital
Avionics Systems Conference (DASC 2015), pp. 6A1-1-6A1-16, October 2014

2. Federal Aviation Administration (FAA): Flight Standards Information Manage-
ment System, vol. 16, Unmanned Aircraft Systems. Order 8900.1, June 2014

3. Denney, E., Pai, G.: A methodology for the development of assurance arguments
for unmanned aircraft systems. In: 33rd International System Safety Conference
(ISSC 2015), August 2015

4. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset.
In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613,
pp. 8-21. Springer, Heidelberg (2012)

5. Denney, E., Pai, G.: A formal basis for safety case patterns. In: Bitsch, F.,
Guiochet, J., Kaaniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 21-32.
Springer, Heidelberg (2013)

6. Goal Structuring Notation Working Group: GSN Community Standard Version 1.
http://www.goalstructuringnotation.info/

7. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press,
Cambridge (1991)

8. Kelly, T.: Concepts and principles of compositional safety case construction. Tech-
nical report COMSA /2001/1/1, University of York (2001)

9. Hawkins, R., Kelly, T.: A systematic approach for developing software safety argu-
ments. In: 27th International System Safety Conference (ISSC 2009) (2009)

10. Bloomlfield, R., Netkachova, K.: Building blocks for assurance cases. In: 2014 IEEE
ISSRE Workshops, (ISSREW), pp. 186-191, November 2014

11. Denney, E., Pai, G., Whiteside, 1.: Formal foundations for hierarchical safety cases.
In: 16th IEEE International Symposium High Assurance Systems Engineering
(HASE 2015), pp. 52-59, January 2015

12. Walton, D., Reed, C.: Argumentation schemes and defeasible inferences. In: Work-
shop on Computational Models of Natural Argument, 15th European Conference
on Artificial Intelligence, pp. 11-20 (2002)

13. Industrial Avionics Working Group: Modular Software Safety Case Process GSN -
MSSC 203 Issue 1, November 2012

http://www.goalstructuringnotation.info/

Formal Verification

Formal Analysis of Security Properties
on the OPC-UA SCADA Protocol

Maxime Puys'®), Marie-Laure Potet!, and Pascal Lafourcade'-?

! Verimag, University of Grenoble Alpes, Saint-Martin-D’heéres, France
{maxime.puys,marie-laure.potet}@imag.fr
2 LIMOS, University of Clermont Auvergne, Campus des Cézeaux, Aubiere, France
pascal.lafourcade@udamail.fr

Abstract. Industrial systems are publicly the target of cyberattacks
since Stuxnet [1]. Nowadays they are increasingly communicating over
insecure media such as Internet. Due to their interaction with the real
world, it is crucial to prove the security of their protocols. In this paper,
we formally study the security of one of the most used industrial proto-
cols: OPC-UA. Using ProVerif, a well known cryptographic protocol ver-
ification tool, we are able to check secrecy and authentication properties.
We find several attacks on the protocols and provide countermeasures.

1 Introduction

Industrial systems also called SCADA (Supervisory Control And Data Acquisi-
tion) have been known to be targeted by cyberattacks since the famous Stuxnet
case [1] in 2010. Due to the criticality of their interaction with the real world,
these systems can potentially be really harmful for humans and environment.
The frequency of such attacks is increasing to become one of the priorities for
governmental agencies, e.g. [2] from the US National Institute of Standards and
Technology (NIST) or [3] from the French Agence Nationale de la Sécurité des
Systemes d’Information (ANSSI).

Industrial systems differ from other systems because of the long lifetime of the
devices and their difficulty to be patched in case of vulnerabilities. Such speci-
ficities encourage to carefully check standards and applications before deploying
them. As it already appeared for business I'T’s protocols for twenty years, auto-
mated verification is crucial in order to discover flaws in the specifications of
protocols before assessing implementations. However, the lack of formal verifica-
tion of industrial protocols has been emphasized in 2006 by Igure et al. [4] and
in 2009 by Patel et al. [5]. They particularly argued that automated protocol
verification help to understand most of the vulnerabilities of a protocol before
changing its standards in order to minimize the number of revisions which costs
time and money.

State-of-the-Art. Most of the works on the security of industrial protocols
only rely on specifications written in human language rather than using formal
methods. In 2004, Clarke et al. [6] discussed the security of DNP3 (Distributed

© Springer International Publishing Switzerland 2016
A. Skavhaug et al. (Eds.): SAFECOMP 2016, LNCS 9922, pp. 67-75, 2016.
DOI: 10.1007/978-3-319-45477-1_6

68 M. Puys et al.

Network Protocol) and ICCP (Inter-Control Center Communications Protocol).
In 2005, Dzung et al. [7] proposed a detailed survey on the security in SCADA
systems including informal analysis on the security properties offered by various
industrial protocols: OPC (Open Platform Communications), MMS (Manufac-
turing Message Specification), IEC 61850, ICCP and EtherNet/IP. In 2006, in
the technical documentation of OPC-UA (OPC Unified Architecture) the authors
detailed the security measures of the protocol (specially in part 2, 4 and 6). In
2015, Wanying et al. [8] summarized the security offered by MODBUS, DNP3
and OPC-UA.

On the other hand, some works propose new versions of existing protocols to
make them secure against malicious adversaries. In 2007, Patel et al. [9] studied
the security of DNP3 and proposed two ways of enhancing it through digital
signatures and challenge-response models. In 2009, Fovino et al. [10] proposed a
secure version of MODBUS relying on well-known cryptographic primitives such
as RSA and SHA2. In 2013, Hayes et al. [11] designed another secure MODBUS
protocol using hash-based message authentication codes and built on STCP
(Stream Transmission Control Protocol). To the best of our knowledge, Graham
et al. [12] is the only work directly using formal methods to prove the security
of industrial protocols or find attack against them. They proposed a formal ver-
ification of DNP3 using OFMC [13] (Open-Source Fixed-Point Model-Checker)
and SPEAR II [14] (Security Protocol Engineering and Analysis Resource).

Contributions. We propose a formal analysis of the security of the sub-
protocols involved in the OPC-UA handshake, namely OPC-UA OpenSe-
cureChannel and OPC-UA CreateSession. These sub-protocols are crucial for the
security since the first aims at authenticating a client and a server and deriving
secret keys while the second allows the client to send his credentials to the server.
To perform our security analysis, we use one of the most efficient tools in the
domain of cryptographic protocol verification according to [15], namely ProVerif
developed by Blanchet et al. [16]. It considers the classical Dolev-Yao intruder
model [17] who controls the network, listens, stops, forges, replays or modifies
some messages according to its knowledge. The perfect encryption hypothesis
is assumed, meaning that it is not possible to decrypt a ciphertext without its
encryption key or to forge a signature without knowing the secret key. ProVerif
can verify security properties of a protocol such as secrecy and authentication.
The first property ensures that a secret message cannot be discovered by an
unauthorized agent (including the intruder). The authentication property means
that one participant of the protocol is guaranteed to communicate with another
one. Modeling credential in ProVerif is not common and requires to understand
the assumptions made in the protocol in order to model it correctly. We fol-
low the official OPC-UA standards in our models and checked it against a free
implementation called FreeOpcUa'. Finally, using ProVerif, we automatically
find attacks against both sub-protocols and provide simple realistic countermea-
sures. All sources we developed are available?.

! https://frecopcua.github.io/.
2 http://indusprotoverif.forge.imag.fr /PPL16.tar.gz.

https://freeopcua.github.io/
http://indusprotoverif.forge.imag.fr/PPL16.tar.gz

Formal Analysis of Security Properties on the OPC-UA SCADA Protocol 69

Outline. In Sect.2, we analyze the security of OPC-UA OpenSecureChannel
and OPC-UA CreateSession in Sect. 3. Finally, we conclude in Sect. 4.

2 OPC-UA OpenSecureChannel

The OpenSecureChannel sub-protocol aims to authenticate a client and a server
and allows them to exchange two secret nonces (random numbers) that will be
used to derive shared keys for the later communications. Moreover, OPC-UA can
be used with three security modes, namely None, Sign and SignAndEncrypt.

— SignAndEncrypt: messages are signed {h(m)}s(x) and encrypted {m}i(x),
where h is an hash function, sk(X) the secret key associated to X and pk(X)
the public key of X. This mode claims to provide secrecy of communication
using symmetric and asymmetric encryption, but also both authentication and
integrity through digital signatures.

— Sign: it is the same as SignAndEncrypt but messages are only signed
{h(m)}sk(z), and not encrypted.

— None: using this mode, the OpenSecureChannel sub-protocol does not serve
much purpose as it does not provide any security but is used for compatibility.

C DiscoveryEndpoint S

L] L1 L1

GEReq
1.

GERes, pk(S), SignEnc, SP, UP
2.

Generates N¢

pk(C). {OSCRegq, pk(C), N}y (g). {H(OSCReq. pk(C), No) gk ()

3.
. {OSCRes, N, ST, TTL}), {R(OSCRes, N, ST, TTL)} g (s)
— — —

Fig. 1. OPC-UA OpenSecureChannel sub-protocol in mode SignAndEncrypt.

This protocol is described in Fig. 1. In message 1, C' requests information on
S with GEReq meaning GetEndpointRequest. In message 2, DiscoveryEndpoint
answers with server’s public key and possible security levels and where GERes
stands for GetEndpointResponse, SP for SecurityPolicy and UP for UserPolicy.
Both SP and UP are used for cryptographic primitive negotiations. In message 3,
C sends a nonce N¢ to S with OSReq standing for OpenSecureChannelRequest.

70 M. Puys et al.

Finally in message 4, S answers a nonce Ng to C' with OSCRes for OpenSe-
cureChannelResponse, ST for SecurityToken (a unique identifier for the channel)
and TTL for TimeToLive (its life-time). The four terms GEReq, GERes, OSCReq
and OSCRes indicate the purpose of each message of the protocol. At the end of
this protocol, both C and S derive four keys (K¢s, KSiges, Ksc and KSigsc)
by hashing the nonces with a function named P_hash, similar as in TLS [18]:
(Kcs, KSigcs) = P,hash(NC, N,s) and (Ksc, KSigsc) = P,hash(Ng, NC).

2.1 Modeling

Normally, a GetEnpointRequest would be answered by a list of session endpoints
with possibly different security modes. We suppose that the client always accepts
the security mode proposed. Client’s and server’s certificates are modeled by
their public keys. Moreover, thanks to the perfect encryption hypothesis, we can
abstract the cryptographic primitives used. We consider an intruder whose public
key would be accepted by a legitimate client or server. Such an intruder could for
instance represent a legitimate device that has been corrupted through a virus
or that is controlled by a malicious operator. We consider the following security
objectives: (i) the secrecy of the keys obtained by C' (denominated by K¢og and
KSiges), (i) the secrecy of the keys obtained by S (denominated by Kgc and
K Sigsc), (iii) the authentication of C' on N¢ and (iv) the authentication of S
on Ng.

2.2 Results

We model in ProVerif this protocol for the three security modes of OPC-UA for
each objective proposed. Results provided by ProVerif are shown in Table 1.

Table 1. Results for OpenSecureChannel sub-protocol

OPC-UA security mode | Objectives

Sec Kcs |Sec Ksc | Auth Ng | Auth Ne
None UNSAFE | UNSAFE | UNSAFE | UNSAFE
Sign UNSAFE | UNSAFE | UNSAFE | UNSAFE
SignEnc SAFE SAFE UNSAFE | UNSAFE

Obviously, as the security mode None does not provide any security, all objec-
tives can be attacked. Moreover, as nonces are exchanged in plaintext in security
mode Sign, the keys are leaked. Finally, in the case of Sign and SignAndEn-
crypt, the intruder reroutes messages to mount attacks on authentication in
order to bypass replay protections such as timestamps as the packet’s destina-
tion is changed rather than being replayed later. Figure2 shows an attack on
the authentication of C using N¢. This attack is possible because the standard

Formal Analysis of Security Properties on the OPC-UA SCADA Protocol 71

C I S

1 1 1

GEReq

GERes, pk(I), SignAndEncrypt, SP, UP

Generates N

pk(©), {OSCReq, pK(C), Ne}pk(1): {H(OSCReq, p(C), Ne}gic)

pk(©), {OSCReq, pK(C), Ne}pk(s): {HOSCReg, pk(©), Nod}sk(c)

Fig. 2. Attack on N¢: I usurps C' when speaking to S.

OPC-UA protocol does not require explicitly to give the identity of the receiver
of a message. Thus it allows the intruder to send to S the signed message C' sent
to him similarly as the man-in-the-middle attack on the Needham-Schroeder
protocol [19].

2.3 Fixed Version

We propose a fixed version of the OpenSecureChannel sub-protocol using one
of the classical counter-measures for communication protocols proposed in [20].
It consists in explicitly adding the public key of the receiver to the messages
and thus avoiding an intruder to reroute signed messages to usurp hosts, as
presented in Sect. 2.2. This resolves the authentication problem but, as ProVerif
confirms, attacks on secrecy are still present. In order to solve the remaining
secrecy attacks, we use the key wrapping [21] mechanism present in the OPC-UA
standards [22-25]. All occurrences of N¢ are replaced by {Nc} () in message
3 and all occurrences of Ng in message 4 by {Ns}pk(C)' Thus in security mode
Sign, all the entire messages are signed but only the nonces are encrypted. More
formally, message 3 and 4 of Fig. 1 are replaced by:

3. ¢ — 5 : {OSCReq, Pk(C), {Nc}pi(s): pk(S)}pk(S), {n(0sCReq, pk(C), {Nc}pi(s)> pk(S))}Sk(c)
4. 5 — C - {OSCRes, {Ns}pr(c)s ST, TTL, pk(C)}pk(C), {h(OSCRes, {Ns}pr(cys ST, TTL, pk(C))}sk(s)

We also use ProVerif to confirm the security of the protocol with all our
counter-measures. The results are presented in Table2 and show that both
authentication and secrecy are now secure for security modes Sign and SignAn-
dEncrypt. As nonces are encrypted in security mode Sign, keys remain secret.

Table 2. Results for fixed OpenSecureChannel sub-protocol

OPC-UA security mode | Objectives

Sec Kos | Sec Ksc | Auth Ng | Auth N¢
None UNSAFE | UNSAFE | UNSAFE | UNSAFE
Sign SAFE SAFE SAFE SAFE
SignEnc SAFE SAFE SAFE SAFE

72 M. Puys et al.

3 OPC-UA CreateSession

The OPC-UA CreateSession sub-protocol allows a client to send credentials (e.g.
a login and a password) over an already created Secure Channel. This sub-
protocol is presented in Fig.3. This protocol follows the security mode that
was chosen during the OpenSecureChannel sub-protocol and uses the symmet-
ric keys derived