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Abstract The concept of harmonic numbers has appeared permanently in the
mathematical science since the very early days of differential and integral calcu-
lus. Firsts significant identities concerning the harmonic numbers have been devel-
oped by Euler (see Basu, Ramanujan J, 16:7–24, 2008, [1], Borwein and Bradley,
Int J Number Theory, 2:65–103, 2006, [2], Sofo, Computational techniques for the
summation of series, 2003, [3], Sofo and Cvijovic, Appl Anal Discrete Math, 6:317–
328, 2012, [4]), Goldbach, and next by the whole gallery of the greatest XIX and
XX century mathematicians, like Gauss, Cauchy and Riemann. The research subject
matter dealing with the harmonic numbers is constantly up-to-date, mostly because
of the still unsolved Riemann hypothesis – let us recall that, thanks to J. Lagarias, the
Riemann hypothesis is equivalent to some “elementary” inequality for the harmonic
numbers (see Lagarias, Amer Math Monthly, 109(6):534–543, 2002, [5]). In paper
(Sofo and Cvijovic, Appl Anal Discrete Math, 6:317–328, 2012, [4]) the following
relation for the generalized harmonic numbers is introduced

H (r)
n :=

n∑

k=1

1

kr
= (−1)r−1

(r − 1)!
(
ψ(r−1)(n + 1) − ψ(r−1)(1)

)
, (1)

for positive integers n, r . The main goal of our paper is to derive the generalization of
this formula for every r ∈ R, r > 1. It was important to us to get this generalization
in possibly natural way. Thus, we have chosen the approach based on the discussion
of the Weyl integral. In the second part of the paper we present the survey of results
concerning theWolstenholme’s style congruence for the harmonic numbers.We have
to admit that we tried to define the equivalent of the universal divisor (the polynomial,
somekind of the special function) for the definedhere generalized harmonic numbers.
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Didwe succeed?We continue our efforts in thismatter, we believe that such universal
divisors can be found.

Keywords Harmonic numbers · Weyl integral · Wolstenholme relations

1 New Definition of the Generalized Harmonic Numbers

1.1 The Weyl Integral

One of the possible definition of the fractional derivative is based on theWeyl integral
(see [6]) given by formula

W−α f (x) = 1

Γ (α)

∫ ∞

x
(ξ − x)α−1 f (ξ)dξ, α > 0, x > 0. (2)

Moreover we take W 0 f (x) := f (x). If f (x) = O(x−β) as x → ∞, then the
integral is convergent for 0 < α < β.

Let us present now some properties of the Weyl integral. Assuming the existence
of the appropriate integrals, the following equalities hold

W−α
(
W−β f (x)

) = W−β
(
W−α f (x)

)
, α,β > 0,

dn

dxn
(
W−α f (x)

) = W−α

(
dn f (x)

dx

)
, α > 0, n ∈ N,

En
(
W−α f (x)

) = W−α(En f (x)), α > 0, n ∈ N,

where E f (x) := − d f (x)
dx .

Definition 1 Let f be a function being integrable in any compact interval I ⊂
[0,∞) and let f (x) = O(x−β) as x → ∞, for some β > 0. Then for each α > −β
there exists the Weyl fractional derivative of function f (x) of order α and

dWα f (x) =

⎧
⎪⎨

⎪⎩

Wα f (x), α < 0,

f (x), α = 0,

Wα−�α� (
E�α� f (x)

)
, α > 0.

(3)

Example 1 We determine the Weyl fractional derivative of function e−px , p > 0:

W−αe−px = 1

Γ (α)

∫ ∞

x
(ξ − x)α−1e−pξdξ =

[
ξ − x = u
dξ = du

]

= 1

Γ (α)
e−px

∫ ∞

0
uα−1e−pudu = p−αe−px
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for α > 0, p > 0. Hence we obtain

dWαe−px = Wα−�α� (
E�α�e−px

) = Wα−�α� (
p�α�e−px

) = pαe−px

for α > 0.

Example 2 Now, we derive the Weyl fractional derivative of function 1
x p , p > 0:

W−α

(
1

x p

)
= 1

Γ (α)

∫ ∞

x

(ξ − x)α−1

ξ p
dξ = 1

Γ (α)

∫ ∞

x

(1 − x
ξ
)α−1

ξ p−α+1
dξ

=
[ x

ξ
= u

x
ξ2
dξ = −du

]
= 1

Γ (α)
· 1

x p−α

∫ 1

0
(1 − u)α−1u p−α−1du (4)

= B(α, p − α)

Γ (α)
· 1

x p−α
= Γ (p − α)

Γ (p)
· 1

x p−α

for p > α > 0, where B(x, y) denotes the beta function. Thus we get

dWα

(
1

x p

)
= Wα−�α�

(
E�α�

(
1

x p

))

= Wα−�α�
(

Γ (p + �α�)
Γ (p)

· 1

x p+�α�

)
= Γ (p + α)

Γ (p)
· 1

x p+α

for α > 0, p > 0.

1.2 Poligamma Functions and Their Modifications

Definition 2 The poligamma function of order m is defined as follows

ψ(0)(x) := ψ(x) = d

dx
ln�(x), ψ(m)(x) := dm

dxm
ψ(x), m ∈ N.

This function satisfies the recurrence relation (the basic facts concerning the ψ
function, including formulas (5)–(7) are presented in monograph [7]):

ψ(m)(x + 1) = ψ(m)(x) + (−1)mm!
xm+1

(5)

and from this relation we can get the equality (1). The poligamma function possesses
also the integral representation

ψ(x) =
∞∫

0

(
e−t

t
− ext

1 − e−t

)
dt, ψ(m)(x) = (−1)m+1

∞∫

0

tme−xt

1 − e−t
dt, x > 0, (6)
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and can be presented in the form of series

ψ(x + 1) = −γ +
∞∑

n=1

x

n(n + x)
, ψ(m)(x) = (−1)m+1m!

∞∑

n=0

1

(x + n)m+1
. (7)

Let us define now the modified poligamma functions

ψ(0)
∗ (x) := ψ(x), ψ(α)

∗ (x) := dWα (ψ(x)) , α > 0. (8)

Remark 1 The Weyl integral of function ψ(x) is divergent, whereas for any α ∈
(0, 1), m ∈ N the integral W−α

(
ψ(m)(x)

)
is convergent, thereby the function

ψ(β)
∗ (x) = dW β (ψ(x)) = W β−�β� (

E�β�ψ(x)
) = (−1)�β�W β−�β� (

ψ(�β�)(x)
)

is correctly defined for every β > 0.

By using definitions (8), (3), (2) and formula (4) we can derive the following
recurrence relation (which is a generalization of formula (5)):

ψ(α)
∗ (x + 1) = dWα (ψ(x + 1)) = dWα

(
ψ(x) + 1

x

)

= dWα (ψ(x)) + dWα

(
1

x

)
= ψ(α)

∗ (x) + �(α + 1)

xα+1
.

(9)

Some Representations of the ψ(α)
∗ Function

First we present the integral representation of ψ(α)∗ function. Let m ∈ N, then

ψ(m)
∗ (x) = Emψ(x) = (−1)mψ(m)(x) = −

∞∫

0

tme−xt

1 − e−t
dt

hence we have

ψ(α)
∗ (x) = Wα−�α� (

E�α�ψ(x)
)

= 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

⎛

⎝−
∞∫

0

t�α�e−ξt

1 − e−t
dt

⎞

⎠ dξ

= −
∞∫

0

⎛

⎝ 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1e−ξtdξ

⎞

⎠ t�α�

1 − e−t
dt = −

∞∫

0

tαe−xt

1 − e−t

where α > 0.
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The series representation of ψ(α)∗ function is of the form

ψ(m)
∗ (x) = Emψ(x) = (−1)mψ(m)(x) = −

∞∑

n=0

m!
(x + n)m+1

, m ∈ N,

ψ(α)
∗ (x) = Wα−�α� (

E�α�)

= 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

(
−�(�α� + 1)

∞∑

n=0

1

(ξ + n)�α�+1

)
dξ

= −�(�α� + 1)
∞∑

n=0

1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

(ξ + n)�α�+1
dξ

= −
∞∑

n=0

�(α + 1)

(x + n)α+1
,

(10)

for every α > 0. From this relation we get also

ψ(α)
∗ (1) = −�(α + 1)ζ(α + 1) (11)

for α > 0, where ζ(·) denotes the zeta function.

1.3 Harmonic Numbers of Order r > 1

From formula (9) we obtain the following relations

ψ(α)
∗ (k + 1) − ψ(α)

∗ (k) = �(α + 1)

kα+1
, (12)

H (r)
n :=

n∑

k=1

1

kr
= 1

�(r)

(
ψ(r−1)

∗ (n + 1) − ψ(r−1)
∗ (1)

)
, r > 1. (13)

The last formula can be considered as the generalization of formula (1) for r > 1.
The numbers H (r)

n , n ∈ N, r ∈ R, r > 1 will be called the n-th harmonic numbers of
order r .

Moreover, we set

H (r)
n (x) :=

n∑

k=1

1

(k + x)r
= 1

Γ (r)

(
ψ(r−1)

∗ (n + 1 + x) − ψ(r−1)
∗ (x)

)
. (14)
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We define also the generalized odd harmonic numbers of order r > 1 in the
following way

O(r)
n :=

n∑

k=1

1

(2k − 1)r
= H (r)

2n −
n∑

k=1

1

(2k)r
= H (r)

2n − 1

2r
H (r)

n . (15)

Let us note that in paper [8] (see also [9]) the following interesting relation is proven

∞∑

k=1

(−1)k−1
(
O(1)

kn − O(1)
kn−n

)
= π

2n

(
1

4
(1 − (−1)n) +

∑

1≤2k−1<n

csc
(2k − 1)π

2n

)
.

Remark 2 Given here formulas (13)–(15) can be generalized for the complex vari-
able r ∈ C, Re r > 1. To do this we should analyze the performed above discussion
starting with formula (2).

1.4 Selected Identities for the Generalized
Harmonic Numbers

We have

n∑

k=1

H (a)
k

kb
=

n∑

k=1

ψ(a−1)∗ (k + 1) − ψ(a−1)∗ (1)

�(a)kb
(11)=

n∑

k=1

ψ(a−1)∗ (k + 1)

�(a)kb
+ ζ(a)H (b)

n

for any a, b > 1. Hence, if n → ∞, then we get

∞∑

k=1

H (a)
k

kb
=

∞∑

k=1

ψ(a−1)∗ (k + 1)

�(a)kb
+ ζ(a)ζ(b)

(10)= ζ(a)ζ(b) −
∞∑

k=1

∞∑

j=0

1

(k + j + 1)akb
.

(16)

Similarly we can determine the more general sums

n∑

k=1

Ha
k H

b
k

kc
=

n∑

k=1

(
ψ(a−1)∗ (k + 1) − ψ(a−1)∗ (1)

) (
ψ(b−1)∗ (k + 1) − ψ(b−1)∗ (1)

)

Γ (a)Γ (b)kc

(11)=
n∑

k=1

ψ(a−1)∗ (k + 1)ψ(b−1)∗ (k + 1)

Γ (a)Γ (b)kc
+

n∑

k=1

ψ(a−1)∗ (k + 1)ζ(a)

Γ (b)kc



Harmonic Numbers of Any Order … 39

+
n∑

k=1

ψ(b−1)∗ (k + 1)ζ(b)

Γ (a)kc
+ ζ(a)ζ(b)H (c)

n

for any a, b, c > 1. If n → ∞, then we obtain

∞∑

k=1

Ha
k H

b
k

kc
=

∞∑

k=1

ψ(a−1)∗ (k + 1)ψ(b−1)∗ (k + 1)

Γ (a)Γ (b)kc

+
∞∑

k=1

ψ(a−1)∗ (k + 1)ζ(a)

Γ (b)kc
+

∞∑

k=1

ψ(b−1)∗ (k + 1)ζ(b)

Γ (a)kc
+ ζ(a)ζ(b)ζ(c)

(10)= ζ(a)ζ(b)ζ(c) +
∞∑

k=1

1

kc
·
⎛

⎝
∞∑

j=0

1

(k + 1 + j)a
·

∞∑

j=0

1

(k + 1 + j)b

⎞

⎠

− Γ (a)ζ(a)

Γ (b)

∞∑

k=1

∞∑

j=0

1

kc(k + 1 + j)a
− Γ (b)ζ(b)

Γ (a)

∞∑

k=1

∞∑

j=0

1

kc(k + 1 + j)b
.

(17)

Only when a, b, c ∈ N, then we can give to the right hand sides of formulas (16),
(17) the form using the finite sum, for example (see [4, formula (9)]):

∞∑

n=1

Hn

(n + x)b
= (−1)b

(b − 1)!
[
(ψ(x) + γ)ψ(b−1)(x) − 1

2
ψ(b)(x)

+
b−2∑

m=1

(
b − 2

m

)
ψ(m)(x)ψ(b−m−1)(x)

]
,

where b ∈ N, b 
= 1, x ∈ R\{−1,−2,−3, . . .}.

2 Wolstenholme’s-Type Relations for the Harmonic
Numbers and the Generalized Harmonic Numbers

Definition 3 Let x, y ∈ Q and m ∈ N. The numbers x and y are congruent modulo
m if their difference can be expressed as a reduced fraction of the form mp

q , where
gcd(q,m) = gcd(q, p) = 1. This definition can be written as follows

x ≡ y (mod m) ⇔ ∃ p, q ∈ N : gcd(q,m) = gcd(q, p) = 1 and |x − y| = m
p

q
.

We will use also the notation x ≡m y, which is equivalent to x ≡ y (mod m).
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For example, note that 2 · 4 ≡ 1, 3 · 3 ≡ 2, 6 · 6 ≡ 1 (mod 7), so we get

1

2
≡ 4,

1

4
≡ 2,

2

3
≡ 3,

1

6
≡ 6 (mod 7).

Joseph Wolstenholme in [10] (see also [11, 12]) proved that for p ∈ P (where P
denotes the set of all prime numbers), p ≥ 5, the following congruences hold true

Hp−1 ≡ 0 (mod p2), (18)

H (2)
p−1 ≡ 0 (mod p). (19)

We will apply many times this result in the proofs of congruence relations given in
the following subsection.

2.1 Our Results – Congruence Relations for the Harmonic
Numbers and the Generalized Harmonic Numbers

The following relations hold true

1. For p ∈ P, p ≥ 5, we have
p−1∑

k=1

Hk

k
≡ 0 (mod p).

Proof Let us note that

p−1∑

k=1

(
Hk − 1

k

)2

−
p−1∑

k=1

H 2
k −

p−1∑

k=1

1

k2
= −2

p−1∑

k=1

Hk

k
,

since Hk − 1
k = Hk−1 and H (2)

p−1 =
p−1∑
k=1

1
k2 . Thus we have

p−2∑

k=1

H 2
k −

p−1∑

k=1

H 2
k − H (2)

p−1 = −2
p−1∑

k=1

Hk

k
.

Hence we get

H 2
p−1 + H (2)

p−1 = 2
p−1∑

k=1

Hk

k
.

From relations (18) and (19) we conclude the thesis.

2. For p ∈ P, p ≥ 3, it holds that
p−1∑

k=1

Hk ≡ 1 (mod p).
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Proof We compute

p−1∑

k=1

Hk =
p−1∑

k=1

k∑

n=1

1

n
=

p−1∑

n=1

p−1∑

k=n

1

n
=

p−1∑

n=1

p − n

n
=

p−1∑

n=1

( p

n
− 1

)

=
(

p−1∑

n=1

p

n

)
− (p − 1) ≡p 1.

3. For p ∈ P, p ≥ 3, we have
p−1∑

k=1

H 2
k ≡ p − 2 (mod p).

Proof We execute the following transformations

p−1∑

k=1

H 2
k =

p−1∑

k=1

(
k∑

n=1

1

n

)2

=
p−1∑

k=1

k∑

n=1

1

n2
+

p−1∑

k=1

∑

1≤n<m≤k

2

mn

=
p−1∑

n=1

p−1∑

k=n

1

n2
+

p−1∑

k=1

k∑

n=1

k∑

m=n+1

2

mn
=

p−1∑

n=1

p − n

n2
+

p−1∑

n=1

p−1∑

k=n

k∑

m=n+1

2

mn

≡p

p−1∑

n=1

−1

n
+

p−1∑

n=1

p−1∑

m=n+1

2(p − m)

mn

(18)≡p

p−1∑

n=1

p−1∑

m=n+1

−2

n

≡p

p−1∑

n=1

−2(p − 1 − n)

n
≡p

p−1∑

n=1

(
2

n
+ 2

)

≡p2Hp−1 + 2(p − 1)
(18)≡p −2 ≡p p − 2.

Corollary 1 Let {pn}n∈N be a sequence of the successive prime numbers and let

Sn ∈ {0, 1, . . . , pn − 1} be the remainder of dividing the number
pn−1∑
k=1

H 2
k by pn in

the sense of Definition 3. Then we have

Sn − Sn−1 = pn − pn−1

for n ∈ N, n ≥ 3.

4. For p ∈ P, p ≥ 5 we have
p−1∑

k=1

H 2
k ≡ 2(p − 1) (mod p2).
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Proof Proceeding in the same manner as in the proof of item 3 we obtain

p−1∑

k=1

H 2
k =

p−1∑

n=1

p − n

n2
+

p−1∑

n=1

p−1∑

m=n+1

2(p − m)

mn

= pH (2)
p−1 − Hp−1 + p

p−1∑

n=1

p−1∑

m=n+1

2

mn
−

p−1∑

n=1

p−1∑

m=n+1

2

n

(18),(19)≡p2 2p
p−1∑

n=1

1

n
(Hp−1 − Hn) −

p−1∑

n=1

2(p − 1 − n)

n

≡p2 2pH
2
p−1 − 2p

p−1∑

n=1

Hn

n
− 2pHp−1 + 2Hp−1 + 2(p − 1)

1,(18),(19)≡p2 2(p − 1).

5. For p ∈ P, p ≥ 3, it holds
p−1∑

k=1

H 3
k ≡

{
1 (mod p) for p ∈ {3, 5},
6 (mod p) for p ≥ 7.

In this case the proof runs analogically like in items 3 and 4 and it is omitted
here.
The following results are just the outcomes of the numerical experiment executed
within the range of the initial two hundred prime numbers:

6. For p ∈ P, p ≥ 7, it holds
p−1∑

k=1

H 2
k

k2
≡ 0 (mod p).

7. For p ∈ P, p ≥ 5, it holds
p−1∑

k=1

H 3
k

k
≡ 0 (mod p).

8. For p ∈ P, p ≥ 7, it holds
p−1∑

k=1

Hk

k3
≡ 0 (mod p).

9. For p ∈ P, p ≥ 3, it holds
p−1∑

k=1

Hk

k(k + 1)
≡ 0 (mod p).

10. For p ∈ P, p ≥ 5, it holds
p−1∑

k=1

H 3
k

k(k + 1)
≡ 0 (mod p).

11. For p ∈ P, p ≥ 7, it holds

p−1∑

k=1

Hk − H (2)
k

k2
≡ −

p−1∑

k=1

H (2)
k

k
≡

p−2∑

k=1

Hk

(k + 1)2
(mod p).

At the end let as also present the Maclaurin series expansion of the sum involving
the harmonic numbers, inwhichweare interested in this paper. This expansion reveals
the connection between the values of the zeta function for odd positive integers and
the harmonic numbers (each coefficient of this expansion possesses this property
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which we confirmed numerically for the first twenty coefficients – we present only
the first eight coefficients, see also [13]):

∞∑

n=1

Hn

(n + x)2
= 2ζ(3) +

∞∑

k=1

∞∑

n=1

(−1)k(k + 1)Hn

(n + x)k+2
xk =

= 2ζ(3) − π4x

36
+

(
−1

2
π2ζ(3) + 9ζ(5)

)
x2 +

(
− π6

135
+ 2ζ(3)2

)
x3+

+
(

− 1

18
π4ζ(3) − 5

6
π2ζ(5) + 20ζ(7)

)
x4 +

(
− π8

700
+ 6ζ(3)ζ(5)

)
x5+

+
(

− 1

270
π2

(
2π4ζ(3) + 21π2ζ(5) + 315ζ(7)

) + 35ζ(9)

)
x6+

+
(

− 2π10

8505
+ 4ζ(5)2 + 8ζ(3)ζ(7)

)
x7 + . . .

Let us recall that it remains an open problemwhether all the numbers ζ(2n − 1), n ∈
N are irrational.

Final remark 1 Some other generalizations of the harmonic numbers are also dis-
cussed in literature, for example in papers [14, 15] there are defined and investigated
the so called Hyperharmonic numbers. Moreover, see the papers: [16–20].
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