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Abstract This paper investigate the relative controllability of nonlinear fractional
delay dynamical system with time varying delay in control. The necessary and suf-
ficient conditions for the relative controllability criteria for linear fractional delay
system are obtained. The sufficient conditions for the relative controllability of non-
linear fractional delay system are obtained by using Schauder fixed point arguments.
Illustrative examples are given to examine the results obtained.
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1 Introduction

It is evident that many realistic model must include some of the past history of the
system.A formulation by a system of ordinary differential equations is not possible to
describe physical processes and they canbedescribedby a systemof delaydifferential
equations. A related study on analytic solutions of linear delay differential equations
has been studied by Bellman and Cooke [1], Smith [2], Halaney [3] Smith and Hale
[4]. They have applied the method of steps to find series solution of delay differential
equations. Using of Banach and Schauder fixed point theorem we can find in [5, 6].

Fractional differentials and integrals provide more accurate models of systems
under consideration. Many authors have demonstrated the dynamics of interfaces
between nanoparticles and substrates [7], bioengineering [8], continuum and statis-
tical mechanics [9], filter design, circuit theory and robotics [10]. Differential equa-
tionswith fractional order have recently proved to be valuable tools to themodeling of
many physical phenomena.Moreover,Machoda et al. [11, 12] analysed and designed
the fractional order digital control systems and also modeled the fractional dynamics
in DNA. Apart from stability, another important qualitative behavior of a dynamical
system is controllability. Controllability is used to influence an object behavior so
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as to accomplish a desire goal. Dauer and Gahl [13] obtained the controllability of
nonlinear delay systems. Balachandran and Dauer [14] studied the controllability
problems for both linear and nonlinear delay systems. The relative controllability of
nonlinear fractional dynamical system with multiple delays and distributive delays
in control have been discussed by Balachandran et al. [15–17]. Klamka [18, 19]
established the controllability of both linear and nonlinear system with time variable
delay in control. Manzanilla et al. [20] obtained the controllability of differential
equation with delay and advanced arguments. Recently, Mur et al. [21] studied the
relative controllability of linear systems of fractional order with delay. Detail study
on controllability of fractional delay dynamical systems is given in [22, 23].

2 Preliminaries

This section begins with definitions and properties of fractional operator, special
functions and its Laplace transformation. Finally the solution representation of frac-
tional delay differential is given by using Laplace transform [24, 25].

(a) The Caputo fractional derivative of order α > 0, n − 1 < α < n, is defined as

C Dα f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where the function f (t) has absolutely continuous derivative upto order n − 1.
The Laplace transform of Caputo derivative is given in [24].

(b) The Mittag-Leffler functions of various type are defined as

Eα(z) = Eα,1(z) =
∞∑
k=o

zk

Γ (αk + 1)
, z ∈ C, Re(α) > 0, (1)

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z,β ∈ C, Re(α) > 0, (2)

Eγ
α,β(−λtα) =

∞∑
k=0

(γ)k(−λ)k

k!Γ (αk + β)
tαk, (3)

where (γ)n is a Pochhammer symbol which is defined as γ(γ + 1) · · ·
(γ + n − 1) and (γ)n = Γ (γ + n)

Γ (γ)
. The Laplace transform of Mittag-Leffler

functions (1), (2) and (3) are given in [24].
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In order to prove our main results we need the following fixed point theorem:

Theorem 1 [26] (Schauder’s Fixed Point Theorem) Let M be a compact, convex set
in a Banach space X and T : M → M be continuous. Then T has a fixed point M.

3 Linear Delay Systems

Consider the fractional delay dynamical systems with multiple delays in control

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)), t ∈ J = [0, T ], (4)

x(t) = φ(t),−h < t ≤ 0,

where 0 < α < 1, x ∈ R
n , u ∈ R

m A, B are n × n matrices and Ci are n × m matri-
ces for i = 0, 1, 2, . . . , M. Assume the following conditions

(H1) The functions σi : J → R, i = 0, 1, 2, . . . , M are twice continuously differ-
entiable and strictly increasing in J . Moreover

σi (t) ≤ t, i = 0, 1, 2 · · · M, for t ∈ J (5)

(H2) Introduce the time lead functions ri (t) : [σi (0),σi (T )] → [0, T ], i = 0, 1,
2, . . . , M such that ri (σi (t)) = t for t ∈ J . Further σ0(t) = t and for t = T , the
following inequality holds

σM(T ) ≤ σM−1(T ) ≤ · · · σm+1(T ) ≤ 0 = σm(T ) < σm−1(T ) = · · · = σ1(T )

= σ0(T ) = T . (6)

The following definitions of complete state of the system (4) at time t and relative
controllability are assumed.

Definition 1 [27] The set y(t) = {x(t),β(t, s)}, where β(t, s) = u(s) for s ∈ [min
hi (t), t) is said to be the complete state of the system (4) at time t .

Definition 2 System (4) is said to be relatively controllable on [0, T ] if for every
complete state y(t) and every x1 ∈ R

n there exists a control u(t) defined on [0, T ],
such that the solution of system (4) satisfies x(T ) = x1.

The solution of the system (4) by using Laplace transform is expressed as

x(t) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s)

M∑
i=0

Ciui (σi (s))ds. (7)
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where

Xα(t) = L−1[sα−1(sα I − A − Be−hs)−1](t),

and

Xα,α(t) = t1−α

∫ t

0

(t − s)α−2

Γ (α − 1)
Xα(s)ds.

Using the time lead functions ri (t), the solution can be written as

x(t) = xL(t;φ) +
M∑
i=0

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds,

where

xL(t;φ) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds.

By using the inequality (6) we get

x(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds, (8)

where

H(t) =
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.
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Now let us define the controllability Grammian matrix

W =
m∑
i=0

∫ T

0
(Xα,α(T − ri (s))Ci ṙi (s))(Xα,α(T − ri (s))Ci ṙi (s))

∗ds,

where the ∗ denotes the matrix transpose.

Theorem 2 The linear system (4) is relatively controllable on [0, T ] if and only if
the controllability Grammian matrix is positive definite for some T > 0.

The proof this statement is similar to proof given by Balachandran et al. [15] by
defining the control function as

u(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))Ci ṙi (t))

∗W−1 [x1 − xL(T ;φ) − H(T )] ,

(9)

4 Nonlinear Delay Systems

Consider the nonlinear fractional delay dynamical systems with multiple delays in
control of the form

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)) + f (t, x(t), x(t − h), u(t)), t ∈ J,

x(t) = φ(t),−h < t ≤ 0. (10)

where 0 < α < 1, x ∈ R
n , u ∈ R

m and A, B are n × n matrices, Ci for
i = 0, 1, . . . , M are n × m matrices and f : J × R

n × R
n × R

m → R
n is a con-

tinuous function. Further we impose the following assumption

(H3) The continuous function f satisfies the condition that

lim
p→∞

| f (t, p)|
|p| = 0, (11)

uniformly in t ∈ J , where p = |x | + |y| + |u|. Similar to the linear system, the
solution of nonlinear system (10) using time lead function ri (t) is given as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − 1), u(s))ds. (12)

Theorem 3 Assume that the hypothesis (H1)–(H3) are satisfied and suppose that
the linear fractional delay dynamical system (4) is relatively controllable. Then the
nonlinear system (10) is relatively controllable on J .
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Proof Define Ψ : Q → Q by

Ψ (x, u) = (y, v)

where

v(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))C

∗
i ṙi (t))

∗

× W−1

[
x1 − xL(T ;φ) −

m∑
i=0

∫ 0

σi (0)

[
(T − ri (s))

α−1Xα,α(T − ri (s))

× Ci ṙi (s)β(s)ds

]

−
M∑

i=m+1

∫ T

0
(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)β(s)ds

−
∫ T

0
(T − s)α−1Xα,α(T − s) f (s, x(s), x(s − h), u(s))ds

]
, (13)

and

y(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)v(s)ds

+
M∑

i=m+1

∫ t

α0

(t − ri (s))
α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − 1), v(s))ds, (14)

Let

ai = sup ||Xα,α(T − ri (s))||, bi = sup ||ṙi (s)||, i = 0, 1, 2, . . . , M, ν = sup ||β(s)||

ϑ = sup ||Xα,α(T − s)||, μ =
m∑
i=0

ai bi ||Ci ||Ni +
M∑

i=m+1

ai bi ||Ci ||Mi ,

ci = 4ai bi ||C∗
i ||||W−1||να−1Tα, di = 4ai bi ||C∗

i ||||W−1||[|x1| + β + μ],

a = max{bα−1Tα||Ci ||, 1}, b =
m∑
i=0

ai bi Li , c2 = 4ϑα−1Tα, d2 = 4[β + νμ],

Ni =
∫ 0

σi (0)
(T − ri (s))

α−1ds, Mi =
∫ σi (T )

σi (0)
(T − ri (s))

α−1ds,
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Li =
∫ T

0
(T − ri (s))

α−1ds, c = max{ci , c2}, d = max{di , d2}
sup | f | = {sup | f (t, x(t), x(t − 1), u(t))|, t ∈ J }.

Then

|v(t)| ≤ ||C∗
i ||aibi ||W−1||[||x1|| + β + μ] + aibi ||C∗

i ||||W−1||ϑα−1T α,

≤ 1

4a
(d + c sup | f |)

and

|y(t)| ≤ β + νμ +
(

m∑
i=0

aibi ||Ci ||Liα
−1T α

)
v(s) + ϑα−1T α sup | f |,

≤ d

2
+ c

2
sup | f |.

By Proposition 1 in [28], the function f satisfies the following conditions. For each
pair of positive constants c and d, there exists a positive constant r such that for
|p| ≤ r , then

c| f (t, p)| + d ≤ r for all t ∈ J. (15)

Also, for given c and d, if r is a constant such that r < r1 will also satisfy (15). Now
take c and d as given above and choose r so that (15) is satisfied. Therefore ||x || ≤ r

2
and ||u|| ≤ r

2 , then |x(s)| + |y(s)| ≤ r, for all s ∈ J . It follows that d + c sup | f |
≤ r. Therefore |u(s)| ≤ r

4a for all s ∈ J and hence ||u|| ≤ r
4a , which gives ||x || ≤ r

2 .

Thus,

Q(r) = {(x, u) ∈ Q : ||x || ≤ r

2
and ||u|| ≤ r

2
},

then Ψ maps Q(r) into itself. Our objective is to show that Ψ has a fixed point, since
f is continuous, it follows that Ψ is continuous. Let Q0 be a bounded subset of Q.
Consider a sequence {(y j , v j )} contained in Ψ (Q0), where we let

(y j , v j ) = Ψ (x j , u j ),

for some (x j , u j ) ∈ Q0, for j = 1, 2, . . .. Since f is continuous | f (s, x j (s), x j

(s − h), u j (s))| is uniformly bounded for all s ∈ J , and j = 1, 2, 3, . . .. It follows
that {(y j , v j )} is a bounded sequence in Q. Hence {v j (t)} is equicontinuous and a
uniformly bounded sequence on [0, t1]. Since {y j (t)} is a uniformly bounded and
equicontinuous sequence on [−h, t1], an application of Ascoli’s theorem yield a fur-
ther subsequence of {(y j , v j )} which converges in Q to some (y0, v0). It follows
that Ψ (Q0) is sequentially compact, hence, the closure is sequentially compact.
Thus, Ψ is completely continuous. Since Q(r) is closed, bounded and convex, the
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Schauder fixed point theorem implies that Ψ has a fixed point (x, u) ∈ Q(r), such
that (y, v) = Ψ (x, u) = (x, u). It follows that

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − h), u(s))ds, (16)

for t ∈ J and x(t) = φ(t) for t ∈ [−h, 0]

X (T ) = x1.

Hence the system (10) is relatively controllable on J.

5 Examples

Example 1 Consider the linear fractional delay dynamical systems with delay in
control by the fractional differential equation

C D
3
4 x(t) =

(−1 0
0 −2

)
x(t) +

(
0 0

−1 0

)
x(t − 1) +

(
1
0

)
u(t)

+
(
0
1

)
u(t − 1), (17)

whereα = 3
4 , h = 1,σ = 1, A =

(−1 0
0 −2

)
, B =

(
0 0

−1 0

)
,C0 =

(
1
0

)
, andC1 =(

0
1

)
with initial state x(0) =

(
2
4

)
and final state x(1) =

(
6
8

)
. The solution of the

Eq. (17) by using Laplace transform is of the form

x(t) =
[t]∑
n=0

Bn(t − n)
3
4 n E 3

4 , 34 n+1(A(t − n)
3
4 )

+ B
[t]∑
n=0

Bn
∫ 0

−1
(t − s − n − 1)

3
4 n+ 3

4 −1E 3
4 , 34 (n+1)(A(t − s − n − 1)

3
4 )φ(s)ds

+
[t]∑
n=0

1∑
i=0

BnCi

∫ t−n

0
(t − ri (s) − n)

3
4 n− 1

4 (A(t − ri (s) − n))
3
4 ṙi (s)u(s)ds.
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Fig. 1 The trajectory of the
dynamical system without
control
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Now, consider the controllability on [0, 1], where [t]=0, the solution is of the form

x(t) = E 3
4 ,1(At

3
4 ) + Bt

3
4 E 3

4 , 34
(A(t

3
4 ))

+
1∑

i=0

Ci

∫ t

0
(t − ri (s))

− 1
4 E 3

4 , 34
(A(t − ri (s))

3
4 )ṙi (s)u(s)ds,

The Grammian matrix is defined as

W =
1∑

i=0

∫ 1

0
[Ci E 3

4 , 34
(A(1 − ri (s))

3
4 )ṙi (s)][Ci E 3

4 , 34
(A(1 − ri (s))

3
4 )ṙi (s)]∗ds,

where ri (s) is a time lead function and it is defined as r0(s) = s and r1(s) = s − 1.
Then the Grammian matrix is

W =
(
0.1897 0

0 86.8973

)

which is positive definite. Then by the Theorem 1 the system is controllable on
[0, 1].

Figure1 represent the trajectory of the systemwithout control and Fig. 2 represent
the trajectory of the system with control.

Example 2 Consider the nonlinear fractional delay dynamical system of the form

C D
3
4 x(t) = Ax(t) + Bx(t − 1) + C0u(t) + C1u(t − 1) + f (t, x(t), x(t − 1), u(t)),

x(t) = φ(t) (18)

The matrices A, B,C0 and C1 are defined as above and the function f is taken as
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Fig. 2 The trajectory of the
dynamical system with
control
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f (t, x(t), x(t − 1), u(t)) =
(

0
x1(t) sin t

x21 (t)+x22 (t)
+ 1

x21 (t−1)+u(t)
.

)
(19)

Here also we consider the controllability on the [0, 1]. Since the linear system (17) is
controllable and the nonlinear function (19) satisfies the hypothesis of the Theorem 2
we say that the nonlinear system (18) is controllable on [0, 1].

6 Conclusion

The relative controllability of nonlinear fractional delay dynamical system with time
varying delay in control is discussed. The necessary and sufficient conditions for
the relative controllability criteria for linear fractional delay system are obtained
by constructing Grammian matrix. The controllability of nonlinear fractional delay
dynamical systems is obtainedbyusing theSchauder’s fixedpoint theorem.Examples
with numerical simulation is given to examine the results developed.
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