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Abstract In the paper, we prove the necessary condition for the extremum existence
in terms of the generalized function-dependent fractional derivatives. By using these
results we extend the maximum and minimum principles, known from the theory
of differential equations and from diffusion problems with the Caputo derivative of
constant or distributed order. We study the fractional diffusion problem, where time
evolution is determined by the scale function-dependent Caputo derivative and show
that the maximum or respectively minimum principle is valid, provided the source
function is a non-positive or a non-negative one in the domain. As an application,
we demonstrate how the sign of the classical solution is controlled by the initial and
boundary conditions.
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1 Introduction

The paper is devoted to the discussion of properties of classical solutions to gen-
eralized multidimensional time-fractional diffusion problems. We shall derive the
corresponding maximum/minimum principles and apply them in control of the sign
of the solutions.
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We consider the time-fractional diffusion problem with the equation including
scale function-dependent fractional derivative:

cDα
0+;[z],t u(x, t) = L(u) + F(x, t) (x, t) ∈ ΩT := G × (0, T ], (1)

where operator L looks as follows

L(u) =
n∑

k=1

(
p(x)

∂2u

∂x2k
+ ∂ p

∂xk

∂u

∂xk

)
− q(x)u (2)

= p(x)Δu + (grad(p), grad(u)) − q(x)u,

functions p ∈ C1(Ḡ), q ∈ C(Ḡ) fulfill conditions p(x) > 0, q(x) ≥ 0, ∀x ∈ Ḡ,
G is an open and bounded region in Rn , Ḡ denotes its closure.

Diffusion equation (1) is subjected to the following initial condition

u|t=0 = u0(x), x ∈ Ḡ (3)

and boundary condition

u|S = v(x, t), (x, t) ∈ S × [0, T ], (4)

where S is the boundary of region G ∈ Rn .
The diffusion and advection-diffusion including the generalized fractional deriv-

ative were introduced in [1, 2]. Their solutions and properties were studied by means
of numerical methods [1–3]. Our aim is to derive the analytical results describing the
solutions via maximum/minimum principles. These theorems are developed in the
classical differential equations theory as well as in the time-fractional diffusion prob-
lems [4–7] and are an important tool in proving the uniqueness results and theorems
on continuous dependence of solutions on the problem data. We shall obtain anal-
ogous maximum/minimum theorems for models with a fractional time-derivative
dependent on the scale function.

The paper is organized as follows. Section2 contains definitions of the classical
solution and of the generalized fractional derivative of the Caputo type, its properties
and the preliminary results on the existence condition for maximum and minimum.
The version, known in calculus for the first-order derivative, is extended to the case
of a two function-dependent fractional derivative. The next part, Sect. 3, includes our
main results - maximum and minimum principles for the diffusion problem with the
generalized Caputo derivative with respect to the time variable and their application
in controlling the sign of the classical solution. The brief conclusion section closes
the paper.
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2 Preliminaries

In this section, we introduce the basic definitions and properties of the generalized
fractional derivative and prove the necessary conditions of the extremum existence
expressed in terms of this operator.

First, we recall the notion of the classical solution and define the generalized time-
fractional derivative appearing in Eq. (1). In the definition of the classical solution,
we restrict the source function and the functions determining the initial and boundary
conditions to the continuous ones.

Definition 1 Function u, determined in region Ω̄T := Ḡ × [0, T ] will be called
a classical solution to problem (1)–(4) with F ∈ C(ΩT ), u0 ∈ C(Ḡ), v ∈ C(S ×
[0, T ]) iff

u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) (5)

and u fulfills Eq. (1), initial condition (3) and boundary condition (4).
W 1

t ((0, T )) ⊂ C1 ((0, T ]) is a function space such that f ∈ W 1
t ((0, T )) ⇐⇒ f ′ ∈

L(0, T ) i.e. derivatives are determined on (0, T ) and absolutely integrable in the
Lebesgue sense.

Now, we introduce the scale and weight function-dependent fractional derivative
which was defined in [8]. We restrict this brief review to the case of order α ∈ (0, 1)
and the left-sided differential operator of the Caputo type. Let us point out that in
fractional calculus analogous derivatives are defined and studied for higher orders, in
Caputo andRiemann–Liouville versions and in both cases: as the left- and right-sided
operators [8, 9].

Definition 2 Let α ∈ (0, 1). The generalized (two function-dependent) left deriva-
tive of the Caputo type is defined as follows

cDα
0+;[z,w] f (t) = I 1−α

0+;[z,w](D[z,w,L] f )(t), (6)

where I 1−α
0+;[z,w] denotes the generalized function-dependent integral operator

I 1−α
0+;[z,w] f (t) = 1

w(t)Γ (1 − α)

∫ t

0

w(s)z′(s) f (s)
[z(t) − z(s)]α ds (7)

and the D[z,w,L]-operator is given below

D[z,w,L] f (t) = [w(t) f (t)]′
w(t)z′(t)

, (8)

with weight functionw ∈ C[0, b], scale function z ∈ C1[0, b] andw > 0, z′ > 0 in
interval [0, b].
The above definition extends the notion of the standard Caputo derivative which is
recovered in the case:
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z(t) = t w(t) = 1 t ∈ [0, b].

We refer the reader to the discussion on generalized two-function dependent frac-
tional derivatives (left and right) enclosed in monograph [9] and to further results in
[8], where Caputo type derivatives are constructed and studied as well. Let us recall
the differentiation formulas for analogs of power functions when β > 0:

cDα
0+;[z,w]

(z(t) − z(0))β−1

w(t)
= Γ (β)

Γ (β − α)

(z(t) − z(0))β−α−1

w(t)
. (9)

In particular, for w = 1 we have the following simpler definition and differentiation
formula:

cDα
0+;[z] f (t) = I 1−α

0+;[z](D[z,L] f )(t), (10)

where I 1−α
0+;[z] denotes the generalized scale function-dependent integral operator

I 1−α
0+;[z] f (t) = 1

Γ (1 − α)

∫ t

0

z′(s) f (s)
[z(t) − z(s)]α ds (11)

and the D[z,L]-operator is given below

D[z,L] f (t) = f ′(t)
z′(t)

, (12)

with scale function z ∈ C1[0, b] and z′ > 0 in interval [0, b]. The differentiation
formula (9) is of the form

cDα
0+;[z] (z(t) − z(0))β−1 = Γ (β)

Γ (β − α)
(z(t) − z(0))β−α−1 . (13)

Now, we shall extend the necessary condition for the maximum existence which
was proved in [4–6] in the case of the Caputo derivative and in [7] for the Caputo
derivative of distributed order. In the theorem below, we formulate the analogous
result for the two-function dependent fractional derivative defined by formula (6).
It is a known fact from calculus that if function f ∈ W 1

t ((0, T )) ∩ C[0, T ] attains
a maximum at point t0 ∈ (0, T ], then f ′(t0) = 0. It can be expressed as follows in
terms of generalized fractional derivatives.

Theorem 1 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its maximum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized two function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z,w]

f

w
(t0) ≥ 0. (14)

Proof We define an auxiliary function:
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g(s) := f (t0) − f (s)

w(s)
s ∈ [0, T ]. (15)

It is easy to check that function g has the following properties:

g(s) ≥ 0 s ∈ [0, T ] (16)

cDα
0+;[z,w]g(t) = −cDα

0+;[z,w]
f

w
(t) t ∈ [0, T ] (17)

|g(s)| ≤ Cε|z(t0) − z(s)| s ∈ [ε, T ], ε ∈ (0, T ), (18)

which follow from the fact that: f ∈ W 1
t ((0, t)) , z ∈ C1[0, T ], w ∈ C[0, T ], z′ >

0, w > 0. Now, we rewrite the derivative and obtain for any ε ∈ (0, t0)

cDα
0+;[z,w]g(t0) = I 1−α

0+;[z,w](D[z,w,L]g)(t0) (19)

= 1

w(t0)Γ (1 − α)

∫ t0

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= 1

w(t0)Γ (1 − α)

∫ ε

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds + 1

w(t0)Γ (1 − α)

∫ t0

ε

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= I1 + I2.

Let us note that f ∈ W 1
t ((0, t)) yields wg ∈ W 1

t ((0, t)), therefore (wg)′ ∈ L
((0, T )), which means that

∀δ > 0 ∃ε > 0 |I1| < δ. (20)

For the I2 - part we have

I2 = lim
s→t0

(z(t0) − z(s))−αw(s)g(s)

w(t0)Γ (1 − α)
− (z(t0) − z(ε))−αw(ε)g(ε)

w(t0)Γ (1 − α)

+ 1

w(t0)Γ (−α)

∫ t0

ε

w(s)g(s)z′(s)
[z(t0) − z(s)]α+1

ds.

The limit in the above equality vanishes:

lim
s→t0

|(z(t0) − z(s))−αw(s)g(s)|
w(t0)Γ (1 − α)

≤ ||w|| lim
s→t0

|(z(t0) − z(s))−α| · Cε|(z(t0) − z(s))|
w(t0)Γ (1 − α)

= 0,
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where we applied property (18) and || · || denotes the supremum norm in theC[0, T ]-
space. From Γ (−α) < 0 for α ∈ (0, 1) and property (16) we obtain I2 ≤ 0 for any
ε ∈ (0, T ). Next, from properties (17), (20) we obtain (14). �

The above theorem holds in the case of the scale function-dependent derivative
defined by formula (10) when w = 1.

Corollary 1 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its maximum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized scale function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z] f (t0) ≥ 0. (21)

The necessary condition for the minimum existence can also be expressed in terms
of a two function-dependent derivative.

Theorem 2 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its minimum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized two function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z,w]

f

w
(t0) ≤ 0. (22)

Proof In the proof, we apply the auxiliary function given in (15). Function g now
obeys the inequality:

g(s) ≤ 0 s ∈ [0, T ] (23)

and it also fulfills (17), (18). Similar to the previous proof, we split the derivative
and obtain for any ε ∈ (0, t0)

cDα
0+;[z,w]g(t0) = (24)

= 1

w(t0)Γ (1 − α)

∫ ε

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds + 1

w(t0)Γ (1 − α)

∫ t0

ε

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= I1 + I2.

Let us note that again for the first term implication (20) holds. For the I2 - term we
have the equality

I2 = lim
s→t0

(z(t0) − z(s))−αw(s)g(s)

w(t0)Γ (1 − α)
− (z(t0) − z(ε))−αw(ε)g(ε)

w(t0)Γ (1 − α)

+ 1

w(t0)Γ (−α)

∫ t0

ε

w(s)g(s)z′(s)
[z(t0) − z(s)]α+1

ds.



Maximum and Minimum Principles for the Generalized Fractional Diffusion … 209

The limit in the above equality vanishes as was shown in the previous proof. From
Γ (−α) < 0 for α ∈ (0, 1) and property (23) we obtain I2 ≥ 0 for any ε ∈ (0, T ).
Next, from properties (17), (20) we obtain (22). �

From the above necessary condition for the minimum, formulated for the two
function-dependent derivative, we obtain the following corollary for the casew = 1.

Corollary 2 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its minimum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized scale function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z] f (t0) ≤ 0. (25)

3 Main Results

We shall study the generalized fractional diffusion problem with the diffusion equa-
tion (1), the initial condition given in (3) and the boundary conditions determined
in (4). Our aim is to derive the maximum and minimum principles for the multidi-
mensional case and to apply these results in a preliminary study of the properties of
classical solutions to the problem.

First, applying Corollary 1, we prove the theorem which generalizes the classical
maximum principle as well as the result proved in [4–6] for fractional diffusion
problems. We extend the fractional maximum principle to the case, where in the
diffusion equation the Caputo derivative with respect to the time-variable is replaced
with the scale function-dependent derivative of the Caputo type given in (10).

Theorem 3 Let function u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) be the
classical solution of the generalized time-fractional diffusion equation (1) in region
ΩT := G × (0, T ],G ⊂ Rn and let F(x, t) ≤ 0, (x, t) ∈ ΩT . Then, either solu-
tion u is non-positive in Ω̄T or it attains the positive maximum on set STG which
means

u(x, t) ≤ max{0, max
(x,t)∈STG

u(x, t)} (x, t) ∈ Ω̄T , (26)

where STG := (Ḡ × {0}) ∪ (S × [0, T ]).
Proof Let us assume that thesis (26) is not valid. Then point (x0, t0), x0 ∈ G, 0 ≤
t0 ≤ T exists such that

u(x0, t0) > max
(x,t)∈STG

{0, u(x, t)} = M > 0. (27)

We define number ε := u(x0, t0) − M > 0 and the following auxiliary function:
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f (x, t) := u(x, t) + ε

2

z(T ) − z(t)

z(T )
(x, t) ∈ Ω̄T . (28)

From this definition and assumptions of the theorem we have:

f (x, t) ≤ u(x, t) + ε

2
(x, t) ∈ Ω̄T

f (x0, t0) ≥ u(x0, t0) = ε + M ≥ ε + u(x, t) ≥ ε + f (x, t) − ε

2
(x, t) ∈ STG .

From the above inequality we infer that function f cannot attain its maximum on
the STG -part of the boundary of region ΩT . Therefore point (x1, t1) ∈ Ω̄T exists such
that x1 ∈ G and 0 < t1 ≤ T and function f attains its maximum at (x1, t1). At this
point the following inequality is fulfilled

f (x1, t1) ≥ f (x0, t0) ≥ ε + M > ε.

From Corollary 1 and the necessary and sufficient conditions of the existence of the
maximum in region ΩT we obtain the following set of conditions

cDα
0+;[z],t f (x1, t1) ≥ 0 α ∈ (0, 1)

grad( f )|(x1,t1) = 0 Δ f |(x1,t1) ≤ 0

and the relations for derivatives

cDα
0+;[z],t u(x, t) = cDα

0+;[z],t f (x, t) + ε
2z(T )

(z(t)−z(0))1−α

Γ (2−α)
, (29)

grad( f ) = grad(u), Δu(x, t) = Δ f (x, t). (30)

Now, we are ready to test the behavior of the generalized diffusion operator at point
(x1, t1) (

cDα
0+;[z],t u(x, t) − L(u)

) |(x1,t1)

= cDα
0+;[z],t f (x1, t1) + ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)

−p(x1)Δ f (x1, t1) − (
grad(p)|x1 , grad( f )|(x1,t1)

)

+q(x1)

(
f (x1, t1) − ε

2

z(T ) − z(t1)

z(T )

)
− F(x1, t1)

≥ ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)
> 0.
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We note that at point (x1, t1) the following inequality holds

(
cDα

0+;[z],t u(x, t) − L(u)
) |(x1,t1) > 0,

which means that function u is not a solution to Eq. (1). Therefore the assumption
(27) is incorrect and the thesis (26) is valid. �

The above theorem is called the maximum principle. We note that in the case
F(x, t) ≥ 0 an analogous result can be formulated. We prove the minimum prin-
ciple below. The proof is analogous to the proof of the maximum principle, but we
now use the condition from Corollary 2.

Theorem 4 Let function u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) be the
classical solution of the generalized time-fractional diffusion equation (1) in the
region ΩT := G × (0, T ],G ⊂ Rn and let F(x, t) ≥ 0, (x, t) ∈ ΩT . Then, either
solution u is non-negative in Ω̄T or it attains the negative minimum on set STG which
means

u(x, t) ≥ min{0, min
(x,t)∈STG

u(x, t)} (x, t) ∈ Ω̄T , (31)

where STG := (Ḡ × {0}) ∪ (S × [0, T ]).
Proof Let us assume that thesis (31) is not valid. Then point (x0, t0), x0 ∈ G, 0 ≤
t0 ≤ T exists such that

u(x0, t0) < min
(x,t)∈STG

{0, u(x, t)} = M1 < 0. (32)

We define number ε := u(x0, t0) − M1 < 0 and the following auxiliary function:

f1(x, t) := u(x, t) + ε

2

z(T ) − z(t)

z(T )
(x, t) ∈ Ω̄T . (33)

From this definition and by assumptions we obtain:

f1(x, t) ≥ u(x, t) + ε

2
(x, t) ∈ Ω̄T

f1(x0, t0) ≤ u(x0, t0) = ε + M1 ≤ ε + u(x, t) ≤ ε + f1(x, t) − ε

2
(x, t) ∈ STG .

From the above inequality we infer that function f1 cannot attain its minimum on
the STG -part of the boundary of region ΩT . Therefore point (x1, t1) ∈ Ω̄T exists such
that x1 ∈ G and 0 < t1 ≤ T and function f1 attains its minimum at (x1, t1). At this
point the following inequality is fulfilled

f1(x1, t1) ≤ f1(x0, t0) ≤ ε + M1 < ε.
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From Corollary 2 and the necessary and sufficient conditions of the existence of the
minimum in region ΩT , we obtain the following set of conditions

cDα
0+;[z],t f1(x1, t1) ≤ 0 α ∈ (0, 1)

grad( f1)|(x1,t1) = 0 Δ f1|(x1,t1) ≥ 0

and the relations for derivatives (29), (30), where we have replaced function f by
f1, hold. Now, we analyze the behavior of the generalized diffusion operator at point
(x1, t1) (

cDα
0+;[z],t u(x, t) − L(u)

) |(x1,t1)

= cDα
0+;[z],t f1(x1, t1) + ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)

−p(x1)Δ f1(x1, t1) − (
grad(p)|x1 , grad( f1)|(x1,t1)

)

+q(x1)

(
f1(x1, t1) − ε

2

z(T ) − z(t1)

z(T )

)
− F(x1, t1)

≤ ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)
< 0.

We note that at point (x1, t1) the following inequality holds

(
cDα

0+;[z],t u(x, t) − L(u)
) |(x1,t1) < 0,

which means that function u is not a solution to Eq. (1). Therefore the assumption
(32) is incorrect and the thesis (31) is valid. �

The derived minimum and maximum principles can be applied in generalized frac-
tional diffusion problems to prove the uniqueness results and properties of classical
solutions. One of the applications are the following corollaries on controlling the
sign of the classical solution.

Corollary 3 Let assumptions of Theorem 4 be fulfilled and

min
(x,t)∈STG

u(x, t) ≥ 0.

Then, the classical solution u is non-negative.

Proof From Theorem 4 we immediately obtain the thesis

u(x, t) ≥ min{0, min
(x,t)∈STG

u(x, t)} ≥ 0 (x, t) ∈ Ω̄T
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whichmeans that in the case F(x, t) ≥ 0we control the value of the classical solution
u via the initial and boundary conditions on the STG -part of the boundary. �

Corollary 4 Let assumptions of Theorem 3 be fulfilled and

max
(x,t)∈STG

u(x, t) ≤ 0.

Then, the classical solution u is non-positive.

4 Conclusion

In the paper, we extended the necessary conditions for the extremum existence to the
version expressed in terms of the generalized scale and weight function-dependent
fractional derivative. From these conditions, the corollaries follow, where the exis-
tence ofminimumormaximumat the given point is connectedwith the corresponding
inequality for the left scale and weight function-dependent derivative of the Caputo
type.

The obtained necessary conditions were applied in the proof of maximum and
minimum principles for time-fractional diffusion problem (1)–(4). These theorems
generalize the known classical results as well as the maximum/minimum principle
for diffusion problems with a time-fractional Caputo derivative. In the partial dif-
ferential equations theory, both for the problems of integer and non-integer order,
the maximum/minimum principles are applied to prove uniqueness results for clas-
sical solutions and to control the sign of the solution. We demonstrated for the
generalized diffusion problem of type (1)–(4) that similar results are valid and fol-
low from the maximum/minimum principles. Further applications are still under
investigation.
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