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Preface

The non-integer order calculus is as old as the integer one although up to recently
its application was exclusively in mathematics. Many real systems are better
described with non-integer order differential equations. This characteristic has
attracted the engineers’ interest in the later years and now it is a tool used in almost
every area of science. The book presents high-quality research papers presented at
the 8th Conference on Non-integer Order Calculus and Its Applications that was
organized by the Institute of Automatic Control, Silesian University of Technology,
Gliwice, Poland. The book is broadly divided into four parts reflecting particular
aspects of the fractional-order calculus methods: mathematical foundations, mod-
eling and control, controllability and stability, and applications.

The first part contains papers focus on general concepts of non-integer order
calculus and differential equations such as existence of solutions of fractional
impulsive integro-differential equations, approximation of non-integer order inte-
grator with the use of diffusive realization of pseudo-differential operator,
approximation of non-integer order integrator with the use of diffusive realization of
pseudo-differential operator, Cayley–Hamilton theorem for fractional linear sys-
tems, composition properties of output-additive switching scheme with fractional
constant-order differ-integral, dynamic properties of the variable-, fractional-order
oscillation (inertial) element, properties of the discrete Mittag-Leffler two parameter
function, output-additive switching strategy for a new variable type and order
difference, large deviation principle for stochastic fractional differential equation
and mean square stability of discrete-time fractional-order systems.

The second part provides new elements to the systems modeling and control
using the theory of fractional-order systems. In particular the following topics are
discussed: conformable fractional wave-like equation, parallel algorithm for
reconstruction the boundary condition for the heat conduction equation with
derivative of fractional order, Voigt models, optimal control problem for fractional
discrete-time systems with quadratic performance index, maximum and minimum
principles for the generalized fractional diffusion problem, transfer function forms
for implementing a new class of fractional-order phase-lead compensators of analog
type, optimal control for the fractional continuous-time Cucker–Smale model,
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fractional-order integrators and differentiators using Tustin-based approximations,
fractional model of transient current in organic semiconductor layers, heat transfer
process in grid-holes structure, tuning non-integer order controllers, fractional-order
backstepping sliding-mode controller, fractional-order transfer function models
with delay and digital fractional-order PID controller.

In the third part of this volume, a bunch of new results in controllability, sta-
bility, detectability, and stabilizability of non-integer systems are given. Among
others controllability of nonlinear fractional delay dynamical systems with multiple
delays in control, controllability criteria for fractional systems with varying delays,
controllability of nonlinear stochastic fractional integro-differential systems, real-
izations for fractional one-dimensional systems with digraph-based algorithm, rel-
ative controllability of nonlinear fractional delay dynamical systems, computation
of the initial data of finite dimension and inputs for given outputs of linear sta-
tionary fractional differential-algebraic with delay system are presented.

The fourth part presents applications of non-integer models to: path control with
Al-Alaoui rule for fractional calculus discretization, bi-fractional filtering on the
Arduino Uno hardware platform, describe anomalous dielectric properties of
materials whose behavior obeys to the Havriliak–Negami model, determination of
state matrices of fractional-order dynamic system by use of digraphs, PI controller
based on an optimal loop shape approach, mode controller design for blood glucose
regulation, and methyl alcohol mass transfer in silica.

Gliwice, Poland Artur Babiarz
July 2016 Adam Czornik

Jerzy Klamka
Michał Niezabitowski
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Part I
Mathematical Foundations



Existence of Solutions of Abstract Fractional
Impulsive Integrodifferential Equations
of Sobolev Type

Natarajan Annapoorani

Abstract In this paper, we prove the existence of solutions of fractional
impulsive integrodifferential equations of Sobolev type. The results are obtained
by using fractional calculus and fixed point techniques.

Keywords Fractional calculus · Integrodifferential equations · Sobolev type ·
Impulsive conditions · Fixed point theorems

1 Introduction

In the past few decades, fractional calculus has proved its efficiency in modeling
the anomalous behaviors observed in various fields of science and engineering, so
the theory of fractional differential equations has been extensively studied by several
authors [1–10]. Fractional differential equations draw a great application in nonlinear
oscillations of earthquakes [11], many physical phenomena such as seepage flow in
porousmedia and in fluid dynamic trafficmodels. Fractional derivatives can eliminate
the deficiency of continuum traffic flow.

The Sobolev type semilinear integrodifferential equation serves as an abstract for-
mulation of partial integrodifferential equation which arises in various applications
such as in the flow of fluid through fissured rocks [12], thermodynamics and shear
in second order fluids and so on. Moreover, the fractional integrodifferential equa-
tions of Sobolev type appear in the theory of control of dynamical systems, when
the controlled system or/and the controller is described by a fractional integrodiffer-
ential equation of Sobolev type. Furthermore, the mathematical modeling and sim-
ulations of systems and processes are based on the description of their properties in
terms of fractional integrodifferential equation of Sobolev type. These new models
are more adequate than previously used integer order models, so fractional order

N. Annapoorani (B)
Bharathiar University, Coimbatore 641046, India
e-mail: pooranimaths@gmail.com
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4 N. Annapoorani

integrodifferential equations of Sobolev type have been investigated by many
researchers. We refer the reader to [13–18] and the references therein.

On the other hand, the study of impulsive differential equations has attracted a
great deal of attention in fractional dynamics and its theory has been treated in several
works [15, 19, 20]. The differential equations involving impulsive effects appear as
a natural description of observed evolution phenomena introduction of the basic the-
ory of impulsive differential equations, we refer the reader to [21] and the references
therein. The impulsive condition is a combination of traditional initial value prob-
lems and short-term perturbations whose duration is negligible in comparison with
the duration of the process. Impulsive fractional differential equations are used to
describe many practical dynamical systems including evolutionary processes char-
acterized by abrupt changes of the state at certain instants. Nowadays, the theory of
impulsive fractional differential equations has received great attention, devoted to
many applications in mechanical, engineering, medicine, biology, ecology and etc.
Motivated by the above, in this paper we study the existence of solutions of fractional
impulsive integrodifferential equations of Sobolev type in Banach spaces.

2 Preliminaries

We need some basic definitions and properties which are used in this paper. Let X
and Y be Banach spaces with norms | · | and ‖ · ‖ respectively and R+ = [0,∞).
Suppose f ∈ L1(R+). Let C(J, X) be the Banach space of continuous functions x(t)
with x(t) ∈ X for t ∈ J = [0, a] and ‖x‖C(J,X) = maxt∈J ‖x(t)‖. Also consider the
Banach Space

PC(J, X) = {u : J → X : u ∈ C((tk, tk+1], X), k = 0, . . . , m and there exist

u(t−
k ) and u(t+

k ), k = 1, . . . , m with u(t−
k ) = u(tk)},

with the norm ‖u‖PC = supt∈J ‖u(t)‖. Set J ′ := [0, a]\{t1, . . . , tm}.
Definition 1 The Riemann–Liouville fractional integral operator of order α > 0, of
function f ∈ L1(R+) is defined as

I α
0+ f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds,

where Γ (·) is the Euler gamma function.

Definition 2 The Riemann–Liouville fractional derivative of order α > 0, n − 1 <

α < n, n ∈ N , is defined as

(R−L) Dα
0+ f (t) = 1

Γ (n − α)

( d

dt

)n
∫ t

0
(t − s)n−α−1 f (s)ds,

where the function f (t) have absolutely continuous derivatives up to order (n − 1).
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The Riemann–Liouville fractional derivatives have singularity at zero and the frac-
tional differential equations in theRiemann–Liouville sense require initial conditions
of special form lacking physical interpretation [5], but the Caputo defined the frac-
tional derivative in the following way, over come such specific initial conditions.

Definition 3 The Caputo fractional derivative of order α > 0, n − 1 < α < n, is
defined as

C Dα
0+ f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f n(s)ds,

where the function f (t) have absolutely continuous derivatives up to order (n − 1).
If 0 < α < 1, then

C Dα
0+ f (t) = 1

Γ (1 − α)

∫ t

0

f ′(s)
(t − s)α

ds,

where f ′(s) = D f (s) = d f (s)
ds and f is an abstract function with values in X .

For basic facts about fractional integrals and fractional derivatives and in particular
the properties of the operators I α

0+ and C Dα
0+ one can refer to the books [6, 7, 9, 10].

Consider the following nonlinear fractional impulsive integrodifferential equation of
Sobolev type of the form

C Dq(Bu(t)) = Au(t) + f
(

t, u(t),
∫ t

0
h(t, s, u(s))ds

)
, t ∈ J = [0, a], t �= tk

Δu
∣∣
t=tk = Ik(u(t−

k )), (1)

u(0) = u0,

where 0 < q < 1, A and B are a linear operator with domains contained in a Banach
space X and ranges contained in a Banach Space Y and the operators A : D(A) ⊂
X → Y and B : D(B) ⊂ X → Y satisfy the following hypotheses:

(H1) A and B are closed linear operators,
(H2) D(B) ⊂ D(A) and B is bijective,
(H3) B−1 : Y → D(B) is compact,
(H4) B−1 A : X → D(B) is continuous.

The nonlinear operators f : J × X × Y → Y and h : � × X → Y are given abstract
functions, Ik : X → Y, k = 1, 2, · · · , m and u0 ∈ X , 0 = t0 < t1 < · · · < tm <

tm+1 = a,Δu|t=tk = u(t+
k ) − u(t−

k ), u(t+
k ) = lim

h→0+
u(tk + h) and u(t−

k ) = lim
h→0−

u(tk

+ h) represent the right and left limits of u(t) at t = tk . Here � = {(t, s) : 0 ≤ s ≤
t ≤ a}. For brevity, let us take Hu(t) = ∫ t

0 h(t, s, u(s))ds. It is easy to prove that
the Eq. (1) is equivalent to the integral equation
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u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 + 1

Γ (q)

∫ t

0
(t − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∫ t

0
(t − s)q−1B−1 f (s, u(s), Hu(s))ds, if t ∈ [0, t1],

u0 + 1

Γ (q)

k∑
i=1

∫ ti

ti−1

(ti − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1Au(s)ds

+ 1

Γ (q)

k∑
i=1

∫ ti

ti−1

(tk − s)q−1B−1 f (s, u(s), Hu(s))ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1 f (s, u(s), Hu(s))ds

+
k∑

i=1

B−1 Ii (u(t−
i )), if t ∈ (tk, tk+1].

. (2)

By a local solution of the abstract Cauchy problem (1), we mean an abstract function
u such that the following conditions are satisfied:

(i) u ∈ PC(J, X) and u ∈ D(A) on J ′;

(ii)
dqu

dtq
exists and continuous on J ′, where 0 < q < 1;

(iii) u satisfies Eq. (1) on J ′ and satisfies the conditions Δu
∣∣
t=tk = Ik(u(t−

k )),

u(0) = u0 ∈ X or that it is equivalent u satisfying the integral Eq. (2).

We assume the following conditions to prove the existence of solution of the
Eq. (1):

(H5) The functions Ik : X → Y are continuous and there exists a constant L > 0,
such that

‖Ik(u) − Ik(v)‖Y ≤ L‖u − v‖X ,∀ u, v ∈ X and k = 1, 2 . . . , m.

(H6) f : J × X × Y → Y is continuous and there exists a constant L1 > 0, such
that

‖ f (t, x1, y1) − f (t, x2, y2)‖Y ≤ L1(‖x1 − x2‖X + ‖y1 − y2‖Y ),

∀ (t, xi , yi ) ∈ J × X × Y.

(H7) h : � × X → Y is continuous and there exists a constant L2 > 0, such that

∥∥∥∥
∫ t

0
[h(t, s, u) − h(t, s, v)]ds

∥∥∥∥
Y

≤ L2‖u − v‖X ,∀ u, v ∈ X.
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For brevity let us take γ = aq

Γ (q + 1)
and R = ‖B−1 A‖, R∗ = ‖B−1‖, N = max

t∈J

‖ f (t, 0, 0)‖, N ∗ = max
(t,s)∈�

[∥∥ ∫ t

0
h(t, s, 0)ds

∥∥
]
.

3 Main Results

Theorem 1 If the hypotheses (H1)–(H7) are satisfied and if γ(m + 1)
(
R + R∗L1

(1 + L2)
) + m R∗L ≤ 1

2 , then the problem (1) has a unique solution continuous on J .

Proof Let Z = PC(J, X). Define the mapping Φ : Z → Z by

Φu(t) = u0 + 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1B−1 f (s, u(s), Hu(s))ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1 f (s, u(s), Hu(s))ds

+
∑

0<tk<t

B−1 Ik(u(t−
k )) (3)

and we have to show that Φ has a fixed point. This fixed point is then a solution
of the Eq. (1). Choose r ≥ 2(‖u0‖ + γ(m + 1)R∗(N + L1N ∗)). Then we can show
that ΦBr ⊂ Br , where Br := {u ∈ Z : ‖u‖ ≤ r}. From the assumptions we have

‖Φu(t)‖ ≤ ‖u0‖ + 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
∥∥B−1 A

∥∥ ‖u(s)‖ ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1
∥∥B−1A

∥∥ ‖u(s)‖ ds

+ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
∥∥B−1

∥∥ ‖ f (s, u(s), Hu(s))‖ ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1
∥∥B−1

∥∥ ‖ f (s, u(s), Hu(s))‖ ds +
∑

0<tk<t

∥∥B−1
∥∥ ∥∥Ik(u(t−

k ))
∥∥
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≤ ‖u0‖ + 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
∥∥B−1 A

∥∥ ‖u(s)‖ ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1
∥∥B−1A

∥∥ ‖u(s)‖ ds

+ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1‖B−1‖[‖ f (s, u(s), Hu(s)) − f (s, 0, 0)‖

+‖ f (s, 0, 0)‖]ds + 1

Γ (q)

∫ t

tk

(t − s)q−1‖B−1‖[‖ f (s, u(s), Hu(s)) − f (s, 0, 0)‖

+‖ f (s, 0, 0)‖]ds +
∑

0<tk<t

‖B−1‖‖Ik(u(t−
k ))‖ ≤ ‖u0‖

+ aq

Γ (q + 1)

[
(m + 1)Rr + (m + 1)R∗L1(r + L2r + N ∗) + (m + 1)R∗N )

]

+mr R∗L ≤ ‖u0‖ + r
[
γ(m + 1)

(
R + R∗L1(1 + L2)

)

+m R∗L
]

+ γ(m + 1)R∗(N + L1N ∗) ≤ r .

Thus, Φ maps Br into itself. Now, for u, v ∈ Z , we have

‖Φu(t) − Φv(t)‖ ≤ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1‖B−1 A‖‖u(s) − v(s)‖ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1‖B−1 A‖‖u(s) − v(s)‖ds

+ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1‖B−1‖‖ f (s, u(s), Hu(s))

− f (s, v(s), Hv(s))‖ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1‖B−1‖‖ f (s, u(s), Hu(s))

− f (s, v(s), Hv(s))‖ds

+
∑

0<tk<t

‖B−1‖‖Ik(u(t−
k )) − Ik(v(t−

k ))‖

≤ aq

Γ (q + 1)
[(m + 1)R‖u − v‖] + m R∗L‖u − v‖
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+ aq

Γ (q + 1)
(m + 1)R∗L1(‖u − v‖ + L2‖u − v‖)]

≤ [γ(m + 1)(R + R∗L1(1 + L2)) + m R∗L]‖u − v‖.

Hence Φ is a contraction mapping and therefore there exists a unique fixed point
u ∈ Br such that Φu(t) = u(t). Any fixed point of Φ is a solution of Eq. (1). �

Nowwe discuss the existence of solution of the fractional impulsive Sobolev type
Eq. (1) with nonlocal condition of the form

u(0) + g(u) = u0 (4)

where g : PC(J, X) → X is a given functionwhich satisfies the following condition.

(H8) g : PC(J, X) → X is continuous and there exists a constant G > 0, such that

‖g(u) − g(v)‖ ≤ G‖u − v‖PC for u, v ∈ PC(J, X)

Theorem 2 If the hypotheses (H1)–(H8) are satisfied and if γ(m + 1)
(
R + R∗L1

(1 + L2)
) + G + m R∗L ≤ 1

2 then the problem (1) with nonlocal condition (4) has
a unique solution continuous on J .

Proof We want to prove that the operator defined by Ψ : Z → Z by

Ψ u(t) = u0 − g(u) + 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1Au(s)ds

+ 1

Γ (q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1B−1 f (s, u(s), Hu(s))ds

+ 1

Γ (q)

∫ t

tk

(t − s)q−1B−1 f (s, u(s), Hu(s))ds

+
∑

0<tk<t

B−1 Ik(u(t−
k )) (5)

has a fixed point. This fixed point is then a solution of the Eqs. (1) and (4). Choose r ≥
2(‖u0‖ + ‖g0‖ + γ(m + 1)R∗(N + L1N ∗)). Then we can easily show that Ψ Br ⊂
Br .

‖Ψ u(t) − Ψ v(t)‖ ≤
(
γ(m + 1)

(
R + R∗L1(1 + L2)

) + G + m R∗L
)
‖u − v‖ ≤ 1

2
.

The result follows by the application of contraction mapping principle. �
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4 Conclusion

In this paper I have proved a set of sufficient conditions for the existence of solu-
tions of fractional impulsive integrodifferential equations of Sobolev type. Also I
have discussed the existence of solution of fractional impulsive integrodifferential
equations of Sobolev type equation with nonlocal condition.
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Quadrature Based Approximations
of Non-integer Order Integrator
on Finite Integration Interval

Jerzy Baranowski

Abstract Implementation of non-integer order systems is the subject of an ongoing
research. In this paper we consider the approximation of non-integer order integrator
with the use of diffusive realization of pseudo differential operator. We propose a
transformation of variables allowing easier approximation with use of quadratures.
We then analyze the convergence and discuss the consequences of reduction in the
integration interval.

Keywords Diffusive realization · Approximation · Non-integer order integrator ·
Quadratures

1 Introduction

Non-integer order systems take an increasing part in science and engineering. Their
applications include, among the others, modeling, control and signal processing. In
most of the problems the infinite memory of non-integer order systems introduces
problems with realization. Because of that realizations cannot come directly from
the definition but have to take form of integer order realizations.

In this paper, the problemof realization of non-integer order integrator, i.e., 1/sα is
considered. A method based on diffusive realization of pseudo differential operators
is investigated.

Currently realizations on non-integer order systems are focused in four areas. First
area is based on approximating the sα operator in the frequency domain. The most
popular approaches are the Oustaloup’s method [1, 2] and CFE (Continuous frac-
tion expansion) method [3–5]. Both these methods are based on different premises
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but both allow obtaining relatively easy approximations. CFE method is generally
considered as worse of the two in the aspect of frequency response representation
[6]. Ostaloup’s method gives a very good representation of frequency response at the
cost of high numerical sensitivity. This sensitivity can be lessened with use of time
domain realizations [7, 8].

Second method of approximation relies on discrete realizations based on trun-
cation of series representations. In particular, the methods include truncation of
Grünwald–Letnikov derivative definitions or power series expansions (PSE) in the z
variable (discrete frequency) domain. Thesemethods give good approximations only
at high frequencies. Examples of the method can be found in [9]. Improvements on
PSE methods with better band of correct approximation were investigated by Ferdi
[10, 11].

Third method of approximation is based on approximation of non-integer order
system impulse response with Laguerre functions. Early works in this area were
unsuccessful in approximation of α order integrators [12, 13]. In [14] it was shown
that under certain assumptions method is convergent in L1 and L2 norms when
approximating asymptotically stable non-integer transfer functions of relative degree
equal or greater than one. Most applications of the methods are in filtering and
parametric optimization [15–18].

Fourth type of approximation that recently rises in popularity is the method using
diffusive realization of pseudo differential operators [19] for approximation. First
works in the area used finite dimensional approximation with trapezoidal integration
[20]. Later works used simple diagonal matrix time domain realization withmodified
Oustaloup nodes from frequency domain method [21, 22]. This method is especially
useful in analysis of infinite dimensional systems using operator theory. It can be
used, for example, to prove such properties as stability of closed loop system [23].

In this paper, diffusive realization is used for construction of approximation using
quadrature methods. In particular, frequency domain representation of non-integer
order integral will be used, i.e., 1/sα. For such system the input-output mapping
will be approximated using two quadratures on finite integration intervals allowing
creation of finite dimensional approximation in the form of sum of first order lags.

The rest of the paper is organized as follows. Next section presents a theorem that
is a basis of investigation along with its proof. Next, the approximation method is
presented and a variable transformation allowing effective use of quadratures. Then
two types of quadratures are analyzed. Operation of both quadratures is investigated
with the use of H∞ norm as an indicator of approximation quality. Then results are
discussed and future works directions are presented.

2 Diffusive Realization of Non-integer Order Integrator

As the basis for diffusive realization we consider the following theorem (see e.g.
[21]) which determines equivalent form for integrator of order α.
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Theorem 1 For α ∈ (0, 1) and s ∈ C we have:

1

sα
=

∫ ∞

0

sinαπ

π

1

xα

1

s + x
x. . (1)

Proof Proof will be omitted, however it relies on computing inverse Laplace trans-
form of 1/sα using contour integration using Bromwich contour (see Fig. 1).

Remark 1 Grabowski in [23] proved the same result in a different way. The given
proof is based on direct calculation of right-hand side of (1) using integration contour
as in Fig. 2. This proof, however, is not constructive.

The main advantage of the method used in Theorem 1 is that we do not need to
integrate non-integer power of s. It allows to approximate the integral.

3 Approximation of Diffusive Realizations

The basic approach to approximation of integrals relies on using infinite sum of form

∞∫

0

sinαπ

π

1

xα

1

s + x
x. ≈

n∑
i=0

bi
s + xi

(2)

Fig. 1 Bromwich contour
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Fig. 2 Contour from [23]

where xi , are denote nodes of quadrature while bi are products of quadrature weights
and integrand values. The choice of quadrature for approximation is not straight-
forward. In [20] the authors used trapezoidal rule. In [21], rectangle rule with non-
uniform nodes was considered. Both approaches transform the integration interval
from [0, ∞] to (0, ωmax ] as xi are important only for high frequencies. It causes,
however, errors in integrating, especially near ωmax .

Despite the fact that integral (2) is defined on infinite interval, multiple authors had
considered limiting the interval only to the one including the interesting frequency
band. In this paper wewill focus on such bounded intervals, but usingmore advanced
quadratures.

It can be inferred, that because approximant (2) is a sum of first order low pass
filters the quality of frequency response representationwill depend on time constants.
Because we are interested in good representation of frequencies for different orders
of magnitude a following transformation is proposed. Let us set

x = 10θ

Integrating (1) for x ∈ [10a, 10b] reduces to
b∫

a

sinαπ

π
log(10)10θ(1−α) 1

s + 10θ
dθ. (3)

This formula, while at first glance complicated allows balancing high and low fre-
quencies. Following section contains analysis of quadratures for finite intervals.



Quadrature Based Approximations of Non-integer … 15

4 Quadratures on Infinite Intervals

In this sectionwewill consider two types of quadratures onfinite intervals, originating
from interval [−1, 1]. We will however present very elegant matlab code examples
given originally by Trefethen [24]. Provided programs are fully functional and self
explanatory.

The first quadrature we consider is the Gauss quadrature, also known as Gauss–
Legendre quadrature. It is a quadrature, nodes of which are roots of Legendre polyno-
mials, while formulas for weights one can find for example in [25]. Main advantage
of the Gauss–Legendre quadrature comes from the orthogonality of Legendre poly-
nomials. In particular, let us consider a polynomial p(x) of order 2N + 1. Such
polynomial can always be written as p(x) = q(x) · lN+1(x) + r(x), where q(x) is
a polynomial of degree N + 1, lN+1(x) is a Legendre polynomial of degree N + 1
and r(x) is a polynomial of degree N . When considering interpolation quadrature
of degree N + 1 on nodes, we can easily see that

∫ 1
−1 q(x) · lN (x)dx = 0 because

of orthogonality of Legendre polynomials and the integral of r(x) is exact because
of uniqueness of interpolation polynomials. These facts give that Gauss–Legendre
quadratures on N + 1 nodes are exact for polynomials of order 2N + 1. Following
code uses eigenvalue decomposition to obtain both weights and nodes.

function I = gauss(f,n) % (n+1)-pt Gauss quadrature of f
beta = .5./sqrt (1 -(2*(1:n)).^( -2)); % 3-term recurrence coeffs
T = diag(beta ,1) + diag(beta ,-1); % Jacobi matrix
[V,D] = eig(T); % eigenvalue decomposition
x = diag(D); [x,i] = sort(x); % nodes (= Legendre points)
w = 2*V(1,i).^2; % weights
I = w*feval(f,x); % the integral

The second quadrature is the Clenshaw–Curtis quadrature. It is an interpolation
quadrature on Chebyshev nodes. In certain aspects it is also equivalent to discrete
cosine transform, and can be computed using FFT. Again code given by Trefethen:

function I = clenshaw_curtis(f,n) % (n+1)-pt C-C quadrature of f
x = cos(pi*(0:n)'/n); % Chebyshev points
fx = feval(f,x)/(2*n); % f evaluated at these points
g = real(fft(fx([1:n+1 n: -1:2]))); % fast Fourier transform
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; % Chebyshev coeffs
w = 0*a'; w(1:2:end) = 2./(1 -(0:2:n).^2); % weight vector
I = w*a; % the integral

While theory gives us, that Gauss quadratures, thanks to orthogonality, are exact
for polynomials of twice higher order than interpolationquadratures it is observed that
in practiceClenshaw–Curtis quadrature gives very similar precision [24].Moreover it
hasmuch smaller computational complexity. It should be also noted, that while based
on interpolation both of these quadratures are immune to Runge’s phenomenon, as
both Legendre and Chebyshev nodes have asymptotic distribution of 1/(1 − x2) for
[−1, 1] interval.
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5 Approximation Analysis

In order to analyze the approximation performancewe conducted error analysis using
H∞ norm. We considered the difference

e(s) = 1

sα
−

n∑
i=0

bi
s + xi

for frequency [10−5, 105] rad/s. The order of quadrature was increased in order to
observe the change of norm of ‖e‖∞. For initial analysis we have considered the
integration interval of [−5, 5] for (3) corresponding to [10−5, 105] rad/s for original
integral. Both quadratures were tested simultaneously. In illustrated results α = 1/2
was considered.

In the Fig. 3 we depicted this analysis. As it can be observed after initial con-
vergence error stops decreasing and fixes on a certain value. This error is caused
by the limitation of infinite interval into a finite one. Indeed one can observe in the
Fig. 4 that increasing the interval to [−7, 7] results in dropping of error by an order
of magnitude.

The fixed error is connected to the phase errors at low frequencies. As one can
observe in the Fig. 5, 50th order approximate has a phase error, especially noticeable
at low frequencies, where the gain of the integrator is the largest. Because of that any

Fig. 3 Analysis of ‖e‖∞ norm with increasing order of quadrature for the integration interval of
[−5, 5]



Quadrature Based Approximations of Non-integer … 17

Fig. 4 Analysis of ‖e‖∞ norm with increasing order of quadrature for the integration interval of
[−7, 7]
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Fig. 5 Analysis of frequency response of 50th order approximation with the integration interval of
[−7, 7]. Clenshaw–Curtis and Gauss–Legendre quadratures are overlapping
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Fig. 6 Analysis of frequency response of 15th order approximation with the integration interval of
[−7, 7]

error in phase is multiplied by approximately 300. What is interesting the magnitude
is almost ideally represented.

As one can observe in the Fig. 4 there are values, where the error is smaller
than the observed bias. For example such value is N = 15. In that case Gauss–
Laguerre quadrature gives much better result. It is however caused by not obtaining
convergence yet. It can be seen in Fig. 6, that the phase fluctuates strongly, and for
such N and this type of quadrature is very close to the ideal value for low frequencies.
Such approximation, however, is obviously not acceptable for use.

6 Conclusion

In this paper, we considered diffusive realization of integrator of order α and its
approximation with use of quadratures on finite intervals. It can be observed, that
initial convergence is relatively quick but bias caused by reduction of integration
interval is fixed. This bias depends on integration interval, and as a-rule-of-a-thumb
integration interval has to be greater than the band pass where the approximation is
needed.

The performance indicator taken as the error of H∞ norm is dominated by low-
frequency terms, especially the phase errors. Nevertheless, the method should be
further considered, especially in order to accelerate the convergence as there are



Quadrature Based Approximations of Non-integer … 19

certain methods which show better performance for lower orders (see, e.g. Oustaloup
method). It is probably due to the slow decay of function in diffusive realization (1).
However, high order of approximation should not be feared, as system is directly
realized with independent linear differential equations of order one which are very
easily discretized.

It should be also noted, that Oustaloup approximation, which has only geometric
justification outperforms this approximation significantly for bounded intervals. This
suggests, that this type of approximation has only the theoretical significance.

Further works should be concentrated on using quadratures on finite intervals
along with asymptotic approximation on the ‘tail’ of the function.
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On the Fractional Continuous-Time
Hegselmann–Krause’s Type
Consensus Model

Ewa Girejko, Dorota Mozyrska and Małgorzata Wyrwas

Abstract The consensus problem of fractional-order multi-agent continuous-time
systems is considered. In the system, interactions between opinions are defined like in
Hegselmann–Krause models but with included memory by fractional-order operator
on the left side of nonlinear system. In the paper we investigate variousmodels for the
dynamics of fractional order opinions by analytical methods as well as by computer
simulations.

Keywords Consensus problem · Fractional order systems · Hegselmann–Krause
models

1 Introduction and Preliminaries

Opinion dynamics is a field that recently draws attention of diverse researchers:
mathematicians, physicians, biologists, sociologists and others. There are different
approaches to modeling and analyzing the situation in which a group of individu-
als (calling agents) interacting with each other achieves a consensus. One way is to
apply an appropriate model and examine the problem in a deterministic way. Very
well known model in opinion dynamics, which treats about such phenomena is the
Hegselmann–Krause model. Intensive investigation has been made in the classical
approach for this model, see [1–3] and references therein. However, to the best of
our knowledge, there are only few papers devoted to the subject in which fractional
calculus was applied. In this paper models with Caputo and Grünwald–Letnikov
operators in both, continuous and discrete cases, are studied. Grünwald–Letnikov
operator is a very convenient tool for numerical approaches, while Caputo one is
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the most useful for direct calculations thanks to simple initial condition if one con-
siders system involving Caputo operator. Fractional Comparison Principle gives us
possibility of applying these two operators together in our consideration.

Let c ∈ R. We introduce the notation Nc := {c, c + 1, c + 2, . . .} and (hN)c :=
{c, c + h, c + 2h, . . .}. Define the following sequence by its values:

a(α)
k :=

{
1 for k = 0

(−1)k α(α−1)...(α−k+1)
k! for k ∈ N1 .

(1)

Since α(α−1)...(α−k+1)
k! = (α

k

)
, the sequence

(
a(α)
k

)
k∈N0

can be rewritten using the

generalized binomial as follows a(α)
k = (−1)k

(
α
k

)
. The following properties of the

sequence
(
a(α)
k

)
k∈N0

have been proven in [4]:

Proposition 1 ([4]) Let α ∈ (0, 1). Then the sequence
(
a(α)
k

)
k∈N1

is increasing and

a(α)
k < 0 for k ∈ N1. Moreover, limk→∞ a(α)

k = 0 .

Using the sequence (1) one can define the following operators.

Definition 1 Let α ∈ R. The Grünwald–Letnikov-type difference operator Δα
h of

order α for a function y : (hN)0 → R is defined by

(
Δα

h y
)
(kh) := h−α

t
h∑

s=0

a(α)
s y(kh − sh) , (2)

where h > 0, t = kh, k ∈ N0 and a
(α)
k is the sequence given by (1).

Definition 2 Let α ∈ R. The Grünwald–Letnikov-type differential operator GL Dα

of order α for a function x : R → R is defined by

(
GL Dαx

)
(t) := lim

h→0
h−α

t
h∑

s=0

a(α)
s x(t − sh) , (3)

where h > 0, t = kh, k ∈ N0 and a
(α)
k is the sequence given by (1).

Definition 3 ([5, 6]) Let x be defined on the interval [0, t1]. The left-sided Caputo
derivative of order α ∈ (0, 1] and the lower limit 0 is defined as follows:

(
C Dα

0+x
)
(t) := 1

Γ (1 − α)

∫ t

0
x ′(s)(t − s)−αds . (4)

Let us define the following Mittag-Leffler function, i.e. a one-parameter function
defined by:
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Eα(z) :=
∞∑
k=0

zk

Γ (αk + 1)
, (5)

where the parameter α > 0. It is known (see [5, 6]) that for the following fractional
differential equation of order α with the left-sided Caputo derivative:

(
C Dα

0+x
)
(t) = ax(t) t ≥ 0 , (6)

the function t �→ Eα(atα) is its solution.
In [8, Lemma 6.1] the following comparison of solutions of fractional order sys-

tems has been proven.

Lemma 1 (Fractional Comparison Principle) If χ(0) = ψ(0) and

(
C Dα

0+χ
)
(t) ≤ (

C Dα
0+ψ

)
(t) ,

where α ∈ (0, 1), then χ(t) ≤ ψ(t).

Note that the following relation between the Caputo derivative and the Grünwald–
Letnikov-type differential operator holds (see for instance [9]).

(
C Dα

0+x
)
(t) = lim

h→0

1

hα

[ t
h ]∑

j=0

(−1) j
(

α

j

)
x(t − jh) − tα

Γ (1 − α)
x(0) (7)

= (
GL Dαx

)
(t) − tα

Γ (1 − α)
x(0) ,

Usually there are considered the following fractional order systems of order α ∈
(0, 1] with the Grünwald–Letnikov-type differential operators:

(
GL Dαx

)
(t) = f (x(t)) , t ∈ R , (8)

with initial condition x(0) = x0 ∈ R
n , where x = (x1, . . . , xn)T : R → R

n is a vec-
tor function and f : Rn → R

n and the Grünwald–Letnikov-type difference opera-
tors: (

Δα
h y

)
((k + 1)h) = f̄ (y(kh)) , h > 0, k ∈ N0 , (9)

with initial condition y(0) = x0 ∈ R
n , where y = (y1, . . . , yn)T : (hN)0 → R

n is a
vector function and f̄ : Rn → R

n .
The solutions to Eqs. (8) and (9) exist according to given initial conditions.
Moreover, the left hand side of system (9), could be recursively rewritten. Partic-

ularly, in (9) we can write the left hand side as:

(
Δα

h y
)
((k + 1)h) = h−αy((k + 1)h) + h−α

k+1∑
s=1

a(α)
s y((k + 1 − s)h) .
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Then Eq. (9) takes the form

y((k + 1)h) = −
k+1∑
s=1

a(α)
s y((k + 1 − s)h) + hα f (y(kh)) for k ∈ N0 (10)

or equivalently, y(kh) = hα f (y((k − 1)h)) − ∑k−1
s=0 a

(α)
k−s y(sh) for k ∈ N1 with

given initial condition y(0). From Proposition 1 for α ∈ (0, 1) we see that

y(kh) = hα f (y((k − 1)h)) +
k−1∑
s=0

∣∣∣a(α)
k−s

∣∣∣ y(sh) for k ∈ N1 (11)

and if f (·) is positive function and initial conditions are positive then solutions are
positive.

Proposition 2 Let α ∈ (0, 1]. The solution x of system (8) is approximated by the
solution of system (9) in values via the following limit: limh→0 y(kh) = x(t) , where
k = [

t
h

]
.

Proof The proof follows directly from the definition of the Grünwald–Letnikov-type
differential operator.

2 Consensus Formation

Similarly as in [3, 4], let us consider a group of experts who havemade an assessment
of a certainmagnitude. Let xi : R → [0,+∞) =: R≥0, i = 1, . . . , n. Denote by xi (t)
the assessment made by expert i ∈ N := {1, . . . , n} at time t ∈ R of the nonnegative
magnitude under consideration.

Suppose expert i takes at a profile x of opinions only those experts j into account
for which |xi − x j | < ε, where ε > 0 is a certain level of confidence level of agents
i and j . Let us define Ii (ε) := { j | 1 ≤ j ≤ n, |xi − x j | < ε}. Note the set Ii (ε) is
finite and the number of its elements will be denoted by |Ii (ε)|.

Let ε > 0 and α ∈ [0, 1]. Therein we consider the fractional order Hegselmann–
Krause’s type models of the following form

(
GL Dαxi

)
(t) =

∑
j∈Ii (ε)(x j (t) − αxi (t))

(1 − α)|Ii (ε)| + α
, i ∈ N (12)

with initial condition x(0) ∈ [0, 1]n ⊂ R
n that is the random vector.

Remark 1 Let us notice that system (12), whichwe propose, is coveredwith classical
ones dependently on order α: for α = 0 we get difference system considered by
Krause in [3], while for α = 1 we get the continuous version of the model examined
by Blondel et al. in [1].
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Note that discrete version of system (12) has the following form

(
GLΔα

h yi
)
((k + 1)h) =

∑
j∈Ii (ε)(y j (kh) − αyi (kh))

(1 − α)|Ii (ε)| + α
, i ∈ N (13)

From Eq. (11) we can directly write the recurrence for solutions for each separate
agent i ∈ N :

yi (kh) = hα

∑
j∈Ii (ε)(y j (kh) − αyi (kh))

(1 − α)|Ii (ε)| + α
+

k−1∑
s=0

∣∣∣a(α)
k−s

∣∣∣ yi (sh) for k ∈ N1 . (14)

Remark 2 It is easy to see that for α = 0 and h = 1 one gets the classical
Hegselmann–Krause’s model, i.e.

yi (k + 1) =
∑

j∈Ii (ε) y j (k)
|Ii (ε)| , i ∈ N ,

that is considered for instance in [7].

By (6), the functions t �→ Eα((1 − α)tα) and t �→ Eα((1 − α)ntα) are the solu-
tions of systems

(
C Dα

0+χ
)
(t) = (1 − α)χ(t) and

(
C Dα

0+ψ
)
(t) = (1 − α)nψ(t),

respectively with initial conditions χ(0) = ψ(0) = 1. Let x := 1
n (x1 + · · · + xn).

Then the following proposition holds true.

Proposition 3 Let x be the average opinion. Then the following relation holds:

Eα((1 − α)tα)x(0) ≤ x(t) ≤ Eα((1 − α)ntα)x(0) , (15)

for t ≥ 0.

Proof Since (1 − α)|Ii (ε)| + α ≤ |Ii (ε)| for α ∈ [0, 1] and ∑n
i=1

∑
j∈Ii (ε)(x j (t) −

xi (t)) = 0, we get

(
C Dα

0+x
)
(t) =1

n

(
C Dα

0+(

n∑
i=1

xi )

)
(t) = 1

n

n∑
i=1

(
C Dα

0+xi
)
(t)

=1

n

n∑
i=1

∑
j∈Ii (ε)(x j (t) − αxi (t))

(1 − α)|Ii (ε)| + α

≥1

n

n∑
i=1

∑
j∈Ii (ε)(x j (t) − xi (t)) + ∑

j∈Ii (ε)(1 − α)xi (t)

|Ii (ε)|

=1 − α

n

n∑
i=1

xi (t) = (1 − α)x(t) ,
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for α ∈ (0, 1]. Moreover, since (1 − α)|Ii (ε)| + α ≥ 1 for α ∈ [0, 1], we have

(
C Dα

0+x
)
(t) =1

n

(
C Dα

0+

(
n∑

i=1

xi

))
(t) = 1

n

n∑
i=1

(
Dα

0+xi
)
(t)

=1

n

n∑
i=1

∑
j∈Ii (ε)(x j (t) − αxi (t))

(1 − α)|Ii (ε)| + α

≤1

n

n∑
i=1

⎡
⎣ ∑

j∈Ii (ε)
(x j (t) − xi (t)) +

∑
j∈Ii (ε)

(1 − α)xi (t)

⎤
⎦

=1 − α

n
|Ii (ε)|

n∑
i=1

xi (t) = (1 − α)|Ii (ε)|x(t) ≤ (1 − α)nx(t) ,

for α ∈ (0, 1]. Hence, we get the following inequalities for the mean value x :

(1 − α)x(t) ≤ (
C Dα

0+x
)
(t) ≤ (1 − α)nx(t) . (16)

Finally, using Lemma 1 we get the thesis.

Remark 3 Observe that directly from Proposition 3 we get the explicit formulas
in some particular cases. And so, for n = 1 one gets x = x1 and

(
C Dα

0+x1
)
(t) =

(1 − α)x1(t). Next, for n = 2, since |I1(ε)| = |I2(ε)| = {1, 2} one can check that it
holds (

C Dα
0+x

)
(t) =

{ 2(1−α)

2−α
x(t), |I1(ε)| = |I2(ε)| = 2;

(1 − α)x(t), |I1(ε)| = |I2(ε)| = 1.

Moreover, for α = 1 we get x(t) = x(0).

The next definition of an ε-profile was firstly stated in [3] and mentioned in many
paper, as for example in [2].

Definition 4 Anopinion profile x = (x1, · · · , xn) is called an ε-profile if there exists
an ordering xi1 ≤ xi2 ≤ . . . ≤ xin of the components of x such that two adjacent
components have a distance less or equal to ε, i.e.

xik+1 − xik < ε for all 1 ≤ k ≤ n − 1 .

For an opinion profile x = (x1, . . . , xn)we say that there is a split (or crack) between
agents i and j if |xi − x j | ≥ ε.

In order to show the correctness of model (13) below we prove positivity of its
trajectories yi (·) = yi (kh), k ∈ N, i ∈ N and h > 0.

Proposition 4 Assume that hα ≤ 1 − α holds forα ∈ [0, 1] and h ≥ 0. If yi (0) ≥ 0
for each i ∈ N, then yi (kh) ≥ 0, for i ∈ N , k ∈ N1.
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Proof We will lead the proof by the induction principle. Firstly, observe that by (14)
for k = 1 we get

yi (h) =αyi (0) + hα
∑
j∈Ii (ε)

(y j (0) − αyi (0))

(1 − α)|Ii (ε)| + α
= (17)

= αyi (0)
(1 − α − hα)|Ii (ε)| + α

(1 − α)|Ii (ε)| + α
+ hα

∑
j∈Ii (ε)

y j (0)

(1 − α)|Ii (ε)| + α
.

By assumption hα ≤ 1 − α we get yi (h) ≥ 0.
Now let us assume that for m = 1, . . . , k − 1, yi (mh) ≥ 0. Then let us prove that

yi (kh) ≥ 0. From (11) we get for t = (k − 1)h

yi (t + h) = hα
∑
j∈Ii (ε)

(y j (t) − αyi (t))

(1 − α)|Ii (ε)| + α
+

k+1∑
s=1

∣∣a(α)
s

∣∣ yi (t + h − sh) .

Hence

yi (t + h) =hα
∑
j∈Ii (ε)

y j (t)

(1 − α)|Ii (ε)| + α
− hα Ii (ε)αyi (t)

(1 − α)|Ii (ε)| + α

+
k+1∑
s=2

∣∣a(α)
s

∣∣ yi (t + h − sh) + αyi (t) ,

and consequently,

yi (t + h) = hα
∑
j∈Ii (ε)

y j (t)

(1 − α)|Ii (ε)| + α
+

(
α − hα Ii (ε)α

(1 − α)|Ii (ε)| + α

)
yi (t)

+
k+1∑
s=2

∣∣a(α)
s

∣∣ yi (t + h − sh)

= hα
∑
j∈Ii (ε)

y j (t)

(1 − α)|Ii (ε)| + α
+ α

(1 − α − hα)Ii (ε) + α

(1 − α)|Ii (ε)| + α
yi (t)

+
k+1∑
s=2

∣∣a(α)
s

∣∣ yi (t + h − sh) .

Using the assumptions we get yi (t + h) ≥ 0. Therefore by induction principle we
get the thesis.

Our goal is to find such parameters that can establish “consensus” in the systems.
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Definition 5 LetA = {i1, . . . , is} ⊂ N and s < n. The consensus with leaders from
A of system (12) is said to be achieved if, for each agent i ∈ N there exists j ∈ A
such that

lim
t→∞

∣∣xi (t) − x j (t)
∣∣ = 0 (18)

for any initial condition x(0) = (x1(0), . . . , xn(0)). IfA = {i0} and i0 ∈ N , then we
say that system (12) achieves a consensus.

A consensus for system (13) can be defined similarly, and one has to change xi
to yi and t to kh in condition (18).

Let xM(t) := maxi∈N xi (t), xm(t) := mini∈N xi (t), yM(kh) = maxi∈N yi (kh) and
ym(kh) = mini∈N yi (kh). In what follows, we present results on achieving a consen-
sus in both, continuous and discrete cases.

Proposition 5 Let ε > 0. If
xM(t) − xm(t) < ε , (19)

for t ∈ R, then system (12) tends to a consensus.

Proof Directly from the formulation of system (12) we can write

(
C Dα

0+(xM − xm)
)
(t) = 1

(1 − α)n + α

n∑
j=1

(
x j (t) − αxM(t) − x j (t) + αxm(t)

)

= −αn

(1 − α)n + α
(xM(t) − xm(t)) .

Taking e(t) := xM(t) − xm(t), for t ≥ 0, we get the following fractional order equa-
tion:

(
C Dα

0+e
)
(t) = −αn

(1 − α)n + α
e(t) . (20)

Then t �→ Eα

(
−αn

(1−α)n+α
tα

)
is the solution to (20) and since −αn

(1−α)n+α
< 0, we get

limt→+∞ e(t) = limt→+∞ Eα

(
−αn

(1−α)n+α
tα

)
= 0 and consequently, the thesis holds.

Proposition 6 Let ε > 0. If

yM(0) − ym(0) < ε , (21)

then system (13) tends to a consensus.

Remark 4 Conditions (19) and (21) imply the opinion profiles x and y, respectively,
are ε-profile.
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Observe that for n = 1 the consensus of systems (12) and (13) is achieved by
Definition 5.

Now we will focus on the situation when n = 2. First we show that consensus is
always achieved for two agent, even though they are not in ε-profile at the beginning.

Proposition 7 If n = 2, then system (12) achieves a consensus.

Proof By Proposition 5, putting xM(·) ≡ x2(·), xm(·) ≡ x1(·) and n = 2 we get the
thesis.

Next we show the property concerning the order of opinions is preserved for two
agents.

Proposition 8 Let y1(0) ≥ 0 for each i = 1, 2 and hα ≤ 1 − α for α ∈ [0, 1] and
h ≥ 0. Then if for some i, j ∈ N we have the relations y1(0) ≤ y2(0), then y1(kh) ≤
y2(kh) for k ∈ N1 and h > 0.

Proof Firstly, observe that for two agents |I1(ε)| = |I2(ε)| always holds and |Ii | :=
|Ii (ε)| equals to 1 or 2 for i = 1, 2. Since hα ≤ 1 − α, y1(0) ≤ x2(0) and |I1| = |I2|,
we get

y1(h) = αy1(0)
(1 − α − hα)|I1| + α

(1 − α)|I1| + α
+ hα

∑
j∈I1 y j (0)

(1 − α)|I1| + α

≤ αy2(0)
(1 − α − hα)|I2| + α

(1 − α)|I2| + α
+ hα

∑
j∈I2 y j (0)

(1 − α)|I2| + α
= y2(h) .

Assume now that y1(rh) ≤ y2(rh) for r = 0, . . . , k0. Then since hα ≤ 1 − α,
y1(0) ≤ x2(0), we get

y1((k0 + 1)h) = αy1(k0h)
(1 − α − hα)|I1| + α

(1 − α)|I1| + α
+ hα

∑
j∈I1 y j (k0h)

(1 − α)|I1| + α
+ O1(k0)

≤ αy2(k0h)
(1 − α − hα)|I2| + α

(1 − α)|I2| + α
+ hα

∑
j∈I2 y j (k0h)

(1 − α)|I2| + α
+ O2(k0)

= y2((k0 + 1)h) ,

where O1(k0) := ∑k0−1
s=0

∣∣∣a(α)
k0+1−s

∣∣∣ y1(sh) and O2(k0) := ∑k0−1
s=0

∣∣∣a(α)
k0+1−s

∣∣∣ y2(sh) are

defined in the proof of Proposition 8. Therefore, yi ((k0 + 1)h) ≤ y j ((k0 + 1)h).
Hence using the induction principle we get that y1(sh) ≤ y2(sh) for all s ∈ N0.
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3 Numerical Examples

First we consider system with N = 2 agents for the following orders α ∈ {0.01,
0.5, 0.9}, where h = 0.01. The graphs are numerical simulations for approximations
for 100 steps. In Fig. 1a–c we see that the consensus is reached by the system with
orders from (0, 1] and it does not depend on the fact whether the opinions are in ε
profile or not. In Fig. 1 we have the situation where x2(0) − x1(0) = 0.25 > ε = 0.2.

We also observe the similar behaviour for systems with N = 50 agents for the
following orders α ∈ {0.01, 0.5, 0.9, 1}, where h = 0.01. The graphs are numerical
simulations for approximations for 100 steps. In Fig. 2b we see that for α = 0.5 a
consensus is reached while the system achieves the consensus with two leaders for
α ∈ {0.01, 0.9, 1}, see Fig. 2a, c and d.

Fig. 1 The graphs of approximations of solution for two agents with α ∈ {0.01, 0.5, 0.9} and
h = 0.01, n = 100 steps, ε = 0.2
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Fig. 2 The graphs of approximations of solution for 50 agents with α ∈ {0.01, 0.5, 0.9, 1} and
h = 0.01, n = 100 steps, ε = 0.2
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Harmonic Numbers of Any Order
and the Wolstenholme’s-Type Relations
for Harmonic Numbers

Edyta Hetmaniok, Piotr Lorenc, Mariusz Pleszczyński, Michał Różański,
Marcin Szweda and Roman Wituła

Abstract The concept of harmonic numbers has appeared permanently in the
mathematical science since the very early days of differential and integral calcu-
lus. Firsts significant identities concerning the harmonic numbers have been devel-
oped by Euler (see Basu, Ramanujan J, 16:7–24, 2008, [1], Borwein and Bradley,
Int J Number Theory, 2:65–103, 2006, [2], Sofo, Computational techniques for the
summation of series, 2003, [3], Sofo and Cvijovic, Appl Anal Discrete Math, 6:317–
328, 2012, [4]), Goldbach, and next by the whole gallery of the greatest XIX and
XX century mathematicians, like Gauss, Cauchy and Riemann. The research subject
matter dealing with the harmonic numbers is constantly up-to-date, mostly because
of the still unsolved Riemann hypothesis – let us recall that, thanks to J. Lagarias, the
Riemann hypothesis is equivalent to some “elementary” inequality for the harmonic
numbers (see Lagarias, Amer Math Monthly, 109(6):534–543, 2002, [5]). In paper
(Sofo and Cvijovic, Appl Anal Discrete Math, 6:317–328, 2012, [4]) the following
relation for the generalized harmonic numbers is introduced

H (r)
n :=

n∑
k=1

1

kr
= (−1)r−1

(r − 1)!
(
ψ(r−1)(n + 1) − ψ(r−1)(1)

)
, (1)

for positive integers n, r . The main goal of our paper is to derive the generalization of
this formula for every r ∈ R, r > 1. It was important to us to get this generalization
in possibly natural way. Thus, we have chosen the approach based on the discussion
of the Weyl integral. In the second part of the paper we present the survey of results
concerning theWolstenholme’s style congruence for the harmonic numbers.We have
to admit that we tried to define the equivalent of the universal divisor (the polynomial,
somekind of the special function) for the definedhere generalized harmonic numbers.
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e-mail: Mariusz.Pleszczynski@polsl.pl

© Springer International Publishing AG 2017
A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 407, DOI 10.1007/978-3-319-45474-0_4

33



34 E. Hetmaniok et al.

Didwe succeed?We continue our efforts in thismatter, we believe that such universal
divisors can be found.

Keywords Harmonic numbers · Weyl integral · Wolstenholme relations

1 New Definition of the Generalized Harmonic Numbers

1.1 The Weyl Integral

One of the possible definition of the fractional derivative is based on theWeyl integral
(see [6]) given by formula

W−α f (x) = 1

Γ (α)

∫ ∞

x
(ξ − x)α−1 f (ξ)dξ, α > 0, x > 0. (2)

Moreover we take W 0 f (x) := f (x). If f (x) = O(x−β) as x → ∞, then the
integral is convergent for 0 < α < β.

Let us present now some properties of the Weyl integral. Assuming the existence
of the appropriate integrals, the following equalities hold

W−α
(
W−β f (x)

) = W−β
(
W−α f (x)

)
, α,β > 0,

dn

dxn
(
W−α f (x)

) = W−α

(
dn f (x)

dx

)
, α > 0, n ∈ N,

En
(
W−α f (x)

) = W−α(En f (x)), α > 0, n ∈ N,

where E f (x) := − d f (x)
dx .

Definition 1 Let f be a function being integrable in any compact interval I ⊂
[0,∞) and let f (x) = O(x−β) as x → ∞, for some β > 0. Then for each α > −β
there exists the Weyl fractional derivative of function f (x) of order α and

dWα f (x) =

⎧⎪⎨
⎪⎩
Wα f (x), α < 0,

f (x), α = 0,

Wα−�α� (
E�α� f (x)

)
, α > 0.

(3)

Example 1 We determine the Weyl fractional derivative of function e−px , p > 0:

W−αe−px = 1

Γ (α)

∫ ∞

x
(ξ − x)α−1e−pξdξ =

[
ξ − x = u
dξ = du

]

= 1

Γ (α)
e−px

∫ ∞

0
uα−1e−pudu = p−αe−px
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for α > 0, p > 0. Hence we obtain

dWαe−px = Wα−�α� (
E�α�e−px

) = Wα−�α� (
p�α�e−px

) = pαe−px

for α > 0.

Example 2 Now, we derive the Weyl fractional derivative of function 1
x p , p > 0:

W−α

(
1

x p

)
= 1

Γ (α)

∫ ∞

x

(ξ − x)α−1

ξ p
dξ = 1

Γ (α)

∫ ∞

x

(1 − x
ξ
)α−1

ξ p−α+1
dξ

=
[ x

ξ
= u

x
ξ2
dξ = −du

]
= 1

Γ (α)
· 1

x p−α

∫ 1

0
(1 − u)α−1u p−α−1du (4)

= B(α, p − α)

Γ (α)
· 1

x p−α
= Γ (p − α)

Γ (p)
· 1

x p−α

for p > α > 0, where B(x, y) denotes the beta function. Thus we get

dWα

(
1

x p

)
= Wα−�α�

(
E�α�

(
1

x p

))

= Wα−�α�
(

Γ (p + �α�)
Γ (p)

· 1

x p+�α�

)
= Γ (p + α)

Γ (p)
· 1

x p+α

for α > 0, p > 0.

1.2 Poligamma Functions and Their Modifications

Definition 2 The poligamma function of order m is defined as follows

ψ(0)(x) := ψ(x) = d

dx
ln�(x), ψ(m)(x) := dm

dxm
ψ(x), m ∈ N.

This function satisfies the recurrence relation (the basic facts concerning the ψ
function, including formulas (5)–(7) are presented in monograph [7]):

ψ(m)(x + 1) = ψ(m)(x) + (−1)mm!
xm+1

(5)

and from this relation we can get the equality (1). The poligamma function possesses
also the integral representation

ψ(x) =
∞∫

0

(
e−t

t
− ext

1 − e−t

)
dt, ψ(m)(x) = (−1)m+1

∞∫

0

tme−xt

1 − e−t
dt, x > 0, (6)
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and can be presented in the form of series

ψ(x + 1) = −γ +
∞∑
n=1

x

n(n + x)
, ψ(m)(x) = (−1)m+1m!

∞∑
n=0

1

(x + n)m+1
. (7)

Let us define now the modified poligamma functions

ψ(0)
∗ (x) := ψ(x), ψ(α)

∗ (x) := dWα (ψ(x)) , α > 0. (8)

Remark 1 The Weyl integral of function ψ(x) is divergent, whereas for any α ∈
(0, 1), m ∈ N the integral W−α

(
ψ(m)(x)

)
is convergent, thereby the function

ψ(β)
∗ (x) = dW β (ψ(x)) = W β−�β� (

E�β�ψ(x)
) = (−1)�β�W β−�β� (

ψ(�β�)(x)
)

is correctly defined for every β > 0.

By using definitions (8), (3), (2) and formula (4) we can derive the following
recurrence relation (which is a generalization of formula (5)):

ψ(α)
∗ (x + 1) = dWα (ψ(x + 1)) = dWα

(
ψ(x) + 1

x

)

= dWα (ψ(x)) + dWα

(
1

x

)
= ψ(α)

∗ (x) + �(α + 1)

xα+1
.

(9)

Some Representations of the ψ(α)
∗ Function

First we present the integral representation of ψ(α)∗ function. Let m ∈ N, then

ψ(m)
∗ (x) = Emψ(x) = (−1)mψ(m)(x) = −

∞∫

0

tme−xt

1 − e−t
dt

hence we have

ψ(α)
∗ (x) = Wα−�α� (

E�α�ψ(x)
)

= 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

⎛
⎝−

∞∫

0

t�α�e−ξt

1 − e−t
dt

⎞
⎠ dξ

= −
∞∫

0

⎛
⎝ 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1e−ξtdξ

⎞
⎠ t�α�

1 − e−t
dt = −

∞∫

0

tαe−xt

1 − e−t

where α > 0.
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The series representation of ψ(α)∗ function is of the form

ψ(m)
∗ (x) = Emψ(x) = (−1)mψ(m)(x) = −

∞∑
n=0

m!
(x + n)m+1

, m ∈ N,

ψ(α)
∗ (x) = Wα−�α� (

E�α�)

= 1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

(
−�(�α� + 1)

∞∑
n=0

1

(ξ + n)�α�+1

)
dξ

= −�(�α� + 1)
∞∑
n=0

1

�(�α� − α)

∞∫

x

(ξ − x)�α�−α−1

(ξ + n)�α�+1
dξ

= −
∞∑
n=0

�(α + 1)

(x + n)α+1
,

(10)

for every α > 0. From this relation we get also

ψ(α)
∗ (1) = −�(α + 1)ζ(α + 1) (11)

for α > 0, where ζ(·) denotes the zeta function.

1.3 Harmonic Numbers of Order r > 1

From formula (9) we obtain the following relations

ψ(α)
∗ (k + 1) − ψ(α)

∗ (k) = �(α + 1)

kα+1
, (12)

H (r)
n :=

n∑
k=1

1

kr
= 1

�(r)

(
ψ(r−1)

∗ (n + 1) − ψ(r−1)
∗ (1)

)
, r > 1. (13)

The last formula can be considered as the generalization of formula (1) for r > 1.
The numbers H (r)

n , n ∈ N, r ∈ R, r > 1 will be called the n-th harmonic numbers of
order r .

Moreover, we set

H (r)
n (x) :=

n∑
k=1

1

(k + x)r
= 1

Γ (r)

(
ψ(r−1)

∗ (n + 1 + x) − ψ(r−1)
∗ (x)

)
. (14)
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We define also the generalized odd harmonic numbers of order r > 1 in the
following way

O(r)
n :=

n∑
k=1

1

(2k − 1)r
= H (r)

2n −
n∑

k=1

1

(2k)r
= H (r)

2n − 1

2r
H (r)

n . (15)

Let us note that in paper [8] (see also [9]) the following interesting relation is proven

∞∑
k=1

(−1)k−1
(
O(1)

kn − O(1)
kn−n

)
= π

2n

(
1

4
(1 − (−1)n) +

∑
1≤2k−1<n

csc
(2k − 1)π

2n

)
.

Remark 2 Given here formulas (13)–(15) can be generalized for the complex vari-
able r ∈ C, Re r > 1. To do this we should analyze the performed above discussion
starting with formula (2).

1.4 Selected Identities for the Generalized
Harmonic Numbers

We have

n∑
k=1

H (a)
k

kb
=

n∑
k=1

ψ(a−1)∗ (k + 1) − ψ(a−1)∗ (1)

�(a)kb
(11)=

n∑
k=1

ψ(a−1)∗ (k + 1)

�(a)kb
+ ζ(a)H (b)

n

for any a, b > 1. Hence, if n → ∞, then we get

∞∑
k=1

H (a)
k

kb
=

∞∑
k=1

ψ(a−1)∗ (k + 1)

�(a)kb
+ ζ(a)ζ(b)

(10)= ζ(a)ζ(b) −
∞∑
k=1

∞∑
j=0

1

(k + j + 1)akb
.

(16)

Similarly we can determine the more general sums

n∑
k=1

Ha
k H

b
k

kc
=

n∑
k=1

(
ψ(a−1)∗ (k + 1) − ψ(a−1)∗ (1)

) (
ψ(b−1)∗ (k + 1) − ψ(b−1)∗ (1)

)

Γ (a)Γ (b)kc

(11)=
n∑

k=1

ψ(a−1)∗ (k + 1)ψ(b−1)∗ (k + 1)

Γ (a)Γ (b)kc
+

n∑
k=1

ψ(a−1)∗ (k + 1)ζ(a)

Γ (b)kc
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+
n∑

k=1

ψ(b−1)∗ (k + 1)ζ(b)

Γ (a)kc
+ ζ(a)ζ(b)H (c)

n

for any a, b, c > 1. If n → ∞, then we obtain

∞∑
k=1

Ha
k H

b
k

kc
=

∞∑
k=1

ψ(a−1)∗ (k + 1)ψ(b−1)∗ (k + 1)

Γ (a)Γ (b)kc

+
∞∑
k=1

ψ(a−1)∗ (k + 1)ζ(a)

Γ (b)kc
+

∞∑
k=1

ψ(b−1)∗ (k + 1)ζ(b)

Γ (a)kc
+ ζ(a)ζ(b)ζ(c)

(10)= ζ(a)ζ(b)ζ(c) +
∞∑
k=1

1

kc
·
⎛
⎝ ∞∑

j=0

1

(k + 1 + j)a
·

∞∑
j=0

1

(k + 1 + j)b

⎞
⎠

− Γ (a)ζ(a)

Γ (b)

∞∑
k=1

∞∑
j=0

1

kc(k + 1 + j)a
− Γ (b)ζ(b)

Γ (a)

∞∑
k=1

∞∑
j=0

1

kc(k + 1 + j)b
.

(17)

Only when a, b, c ∈ N, then we can give to the right hand sides of formulas (16),
(17) the form using the finite sum, for example (see [4, formula (9)]):

∞∑
n=1

Hn

(n + x)b
= (−1)b

(b − 1)!
[
(ψ(x) + γ)ψ(b−1)(x) − 1

2
ψ(b)(x)

+
b−2∑
m=1

(
b − 2

m

)
ψ(m)(x)ψ(b−m−1)(x)

]
,

where b ∈ N, b 
= 1, x ∈ R\{−1,−2,−3, . . .}.

2 Wolstenholme’s-Type Relations for the Harmonic
Numbers and the Generalized Harmonic Numbers

Definition 3 Let x, y ∈ Q and m ∈ N. The numbers x and y are congruent modulo
m if their difference can be expressed as a reduced fraction of the form mp

q , where
gcd(q,m) = gcd(q, p) = 1. This definition can be written as follows

x ≡ y (mod m) ⇔ ∃ p, q ∈ N : gcd(q,m) = gcd(q, p) = 1 and |x − y| = m
p

q
.

We will use also the notation x ≡m y, which is equivalent to x ≡ y (mod m).
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For example, note that 2 · 4 ≡ 1, 3 · 3 ≡ 2, 6 · 6 ≡ 1 (mod 7), so we get

1

2
≡ 4,

1

4
≡ 2,

2

3
≡ 3,

1

6
≡ 6 (mod 7).

Joseph Wolstenholme in [10] (see also [11, 12]) proved that for p ∈ P (where P
denotes the set of all prime numbers), p ≥ 5, the following congruences hold true

Hp−1 ≡ 0 (mod p2), (18)

H (2)
p−1 ≡ 0 (mod p). (19)

We will apply many times this result in the proofs of congruence relations given in
the following subsection.

2.1 Our Results – Congruence Relations for the Harmonic
Numbers and the Generalized Harmonic Numbers

The following relations hold true

1. For p ∈ P, p ≥ 5, we have
p−1∑
k=1

Hk

k
≡ 0 (mod p).

Proof Let us note that

p−1∑
k=1

(
Hk − 1

k

)2

−
p−1∑
k=1

H 2
k −

p−1∑
k=1

1

k2
= −2

p−1∑
k=1

Hk

k
,

since Hk − 1
k = Hk−1 and H (2)

p−1 =
p−1∑
k=1

1
k2 . Thus we have

p−2∑
k=1

H 2
k −

p−1∑
k=1

H 2
k − H (2)

p−1 = −2
p−1∑
k=1

Hk

k
.

Hence we get

H 2
p−1 + H (2)

p−1 = 2
p−1∑
k=1

Hk

k
.

From relations (18) and (19) we conclude the thesis.

2. For p ∈ P, p ≥ 3, it holds that
p−1∑
k=1

Hk ≡ 1 (mod p).
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Proof We compute

p−1∑
k=1

Hk =
p−1∑
k=1

k∑
n=1

1

n
=

p−1∑
n=1

p−1∑
k=n

1

n
=

p−1∑
n=1

p − n

n
=

p−1∑
n=1

( p

n
− 1

)

=
(

p−1∑
n=1

p

n

)
− (p − 1) ≡p 1.

3. For p ∈ P, p ≥ 3, we have
p−1∑
k=1

H 2
k ≡ p − 2 (mod p).

Proof We execute the following transformations

p−1∑
k=1

H 2
k =

p−1∑
k=1

(
k∑

n=1

1

n

)2

=
p−1∑
k=1

k∑
n=1

1

n2
+

p−1∑
k=1

∑
1≤n<m≤k

2

mn

=
p−1∑
n=1

p−1∑
k=n

1

n2
+

p−1∑
k=1

k∑
n=1

k∑
m=n+1

2

mn
=

p−1∑
n=1

p − n

n2
+

p−1∑
n=1

p−1∑
k=n

k∑
m=n+1

2

mn

≡p

p−1∑
n=1

−1

n
+

p−1∑
n=1

p−1∑
m=n+1

2(p − m)

mn

(18)≡p

p−1∑
n=1

p−1∑
m=n+1

−2

n

≡p

p−1∑
n=1

−2(p − 1 − n)

n
≡p

p−1∑
n=1

(
2

n
+ 2

)

≡p2Hp−1 + 2(p − 1)
(18)≡p −2 ≡p p − 2.

Corollary 1 Let {pn}n∈N be a sequence of the successive prime numbers and let

Sn ∈ {0, 1, . . . , pn − 1} be the remainder of dividing the number
pn−1∑
k=1

H 2
k by pn in

the sense of Definition 3. Then we have

Sn − Sn−1 = pn − pn−1

for n ∈ N, n ≥ 3.

4. For p ∈ P, p ≥ 5 we have
p−1∑
k=1

H 2
k ≡ 2(p − 1) (mod p2).
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Proof Proceeding in the same manner as in the proof of item 3 we obtain

p−1∑
k=1

H 2
k =

p−1∑
n=1

p − n

n2
+

p−1∑
n=1

p−1∑
m=n+1

2(p − m)

mn

= pH (2)
p−1 − Hp−1 + p

p−1∑
n=1

p−1∑
m=n+1

2

mn
−

p−1∑
n=1

p−1∑
m=n+1

2

n

(18),(19)≡p2 2p
p−1∑
n=1

1

n
(Hp−1 − Hn) −

p−1∑
n=1

2(p − 1 − n)

n

≡p2 2pH
2
p−1 − 2p

p−1∑
n=1

Hn

n
− 2pHp−1 + 2Hp−1 + 2(p − 1)

1,(18),(19)≡p2 2(p − 1).

5. For p ∈ P, p ≥ 3, it holds
p−1∑
k=1

H 3
k ≡

{
1 (mod p) for p ∈ {3, 5},
6 (mod p) for p ≥ 7.

In this case the proof runs analogically like in items 3 and 4 and it is omitted
here.
The following results are just the outcomes of the numerical experiment executed
within the range of the initial two hundred prime numbers:

6. For p ∈ P, p ≥ 7, it holds
p−1∑
k=1

H 2
k

k2
≡ 0 (mod p).

7. For p ∈ P, p ≥ 5, it holds
p−1∑
k=1

H 3
k

k
≡ 0 (mod p).

8. For p ∈ P, p ≥ 7, it holds
p−1∑
k=1

Hk

k3
≡ 0 (mod p).

9. For p ∈ P, p ≥ 3, it holds
p−1∑
k=1

Hk

k(k + 1)
≡ 0 (mod p).

10. For p ∈ P, p ≥ 5, it holds
p−1∑
k=1

H 3
k

k(k + 1)
≡ 0 (mod p).

11. For p ∈ P, p ≥ 7, it holds

p−1∑
k=1

Hk − H (2)
k

k2
≡ −

p−1∑
k=1

H (2)
k

k
≡

p−2∑
k=1

Hk

(k + 1)2
(mod p).

At the end let as also present the Maclaurin series expansion of the sum involving
the harmonic numbers, inwhichweare interested in this paper. This expansion reveals
the connection between the values of the zeta function for odd positive integers and
the harmonic numbers (each coefficient of this expansion possesses this property
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which we confirmed numerically for the first twenty coefficients – we present only
the first eight coefficients, see also [13]):

∞∑
n=1

Hn

(n + x)2
= 2ζ(3) +

∞∑
k=1

∞∑
n=1

(−1)k(k + 1)Hn

(n + x)k+2
xk =

= 2ζ(3) − π4x

36
+

(
−1

2
π2ζ(3) + 9ζ(5)

)
x2 +

(
− π6

135
+ 2ζ(3)2

)
x3+

+
(

− 1

18
π4ζ(3) − 5

6
π2ζ(5) + 20ζ(7)

)
x4 +

(
− π8

700
+ 6ζ(3)ζ(5)

)
x5+

+
(

− 1

270
π2

(
2π4ζ(3) + 21π2ζ(5) + 315ζ(7)

) + 35ζ(9)

)
x6+

+
(

− 2π10

8505
+ 4ζ(5)2 + 8ζ(3)ζ(7)

)
x7 + . . .

Let us recall that it remains an open problemwhether all the numbers ζ(2n − 1), n ∈
N are irrational.

Final remark 1 Some other generalizations of the harmonic numbers are also dis-
cussed in literature, for example in papers [14, 15] there are defined and investigated
the so called Hyperharmonic numbers. Moreover, see the papers: [16–20].

References

1. Basu, A.: A new method in the study of Euler sums. Ramanujan J. 16, 7–24 (2008)
2. Borwein, J.M., Bradley, D.M.: Thirty-two Goldbach variations. Int. J. Number Theory 2, 65–

103 (2006)
3. Sofo, A.: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum

Publisher, New York (2003)
4. Sofo, A., Cvijovic, D.: Extensions of Euler harmonic sums. Appl. Anal. Discrete Math. 6,

317–328 (2012)
5. Lagarias, J.C.: An elementary problem equivalent to the Riemann hypothesis. Amer. Math.

Monthly 109(6), 534–543 (2002)
6. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential

Equations. Wiley-Interscience (1993)
7. Rabsztyn, S., Słota, D., Wituła, R.: Gamma and Beta Functions. Silesian University of Tech-

nology Press, Gliwice (2012). (in Polish)
8. Wituła, R., Hetmaniok, E., Słota, D.: Generalized Gregory’s series. Appl. Math. Comput. 237,

203–216 (2014)
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Cayley–Hamilton Theorem for Fractional
Linear Systems

Tadeusz Kaczorek

Abstract The classical Cayley–Hamilton theorem is extended to fractional
continuous-time and discrete-time linear systems. It is shown that the Mittag-Leffler
functions of the fractional continuous-time linear system and the Φi matrices of
the fractional discrete-time linear systems satisfy their characteristic equations. The
extensions are based on the application of the Lagrange–Sylvester formula of func-
tions of matrices.

Keywords Extension · Cayley–Hamilton theorem · Fractional linear system

1 Introduction

The classical Cayley–Hamilton theorem [1–3] says that every square matrix satisfies
its own characteristic equation. The Cayley–Hamilton theorem has been extended to
rectangularmatrices [4, 5], blockmatrices [4, 6], pairs of blockmatrices [6] and stan-
dard and singular two-dimensional linear (2-D) systems [7, 8]. TheCayley–Hamilton
theorem and its generalizations have been used in control systems, electrical circuits,
systems with delays, singular systems, 2-D linear systems, etc. [2, 9–22].

In [23] the Cayley–Hamilton theorem has been extended to n-dimensional
(n-D) real polynomial matrices. An extension of the Cayley–Hamilton theorem for
continuous-time linear systems with delays has been given in [24].

In this paper the Cayley–Hamilton theorem will be extended to the fractional
continuous-time and discrete-time linear systems.

The paper is organized as follows. In Sect. 2 some preliminaries concerning frac-
tional linear systems and the Lagrange–Sylvester formula are recalled. The Cayley–
Hamilton theorem for fractional continuous-time linear systems is extended in Sect. 3
and for fractional discrete-time linear systems in Sect. 4. Concluding remarks are
given in Sect. 5.
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2 Preliminaries

In this paper the following Caputo definition of the fractional derivative of α order
will be used [14]

0D
α
t f (t) = dαf (t)

dtα
= 1

Γ (1 − α)

∫ t

0

ḟ (τ )

(t − τ )α
dτ , 0 < α < 1, (1)

where ḟ (τ ) = df (τ )

dτ
and Γ (x) = ∫ ∞

0 tx−1e−tdt, Re(x) > 0 is the Euler gamma func-
tion.

Consider the fractional continuous-time linear system

dαx(t)

dtα
= Ax(t) + Bu(t), 0 < α < 1, (2)

where x(t) ∈ R
n, u(t) ∈ R

m are the state and input vectors and A ∈ R
n×n, B ∈ R

n×m.

Theorem 1 ([14]) The solution to the Eq. (2) has the form

x(t) = Φ0(t)x0 +
∫ t

0
Φ(t − τ )Bu(τ )dτ , x(0) = x0, (3)

where

Φ0(t) =
∞∑
k=0

Aktkα

Γ (kα + 1)
, (4)

Φ(t) =
∞∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α] (5)

are the Mittag-Leffler functions.

Consider the fractional discrete-time linear system

Δαxi+1 = Axi + Bui, i ∈ Z+ = {0, 1, . . .} 0 < α < 1, (6)

where

Δαxi =
i∑

k=0

(−1)k
(

α

k

)
xi−k,

(
α

k

)
=

{
1 for k = 0
α(α−1)...(α−k+1)

k! for k = 1, 2, . . .
(7)
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is the α order difference and xi ∈ R
n, ui ∈ R

m are the state and input vectors,
A ∈ R

n×n, B ∈ R
n×m. Substituting (7) into (6) we obtain

xi+1 +
i+1∑
k=1

(−1)k
(

α

k

)
xi−1+k = Axi + Bui, i ∈ Z+ (8a)

and

xi+1 = Aαxi +
i+1∑
k=2

(−1)k+1

(
α

k

)
xi−k+1 + Bui, i ∈ Z+, (8b)

where Aα = A + αIn.

Theorem 2 ([14]) The solution of the Eq. (8) has the form

xi = Φix0 +
i−1∑
k=0

Φi−k−1Buk, (9)

where the matrices Φi are determined by the equation

Φi+1 = AαΦi +
i+1∑
k=2

(−1)k+1

(
α

k

)
Φi−k+1, Φ0 = In. (10)

Consider a matrix A ∈ R
n×n with the minimal characteristic polynomial

Ψ (λ) = (λ − λ1)
m1(λ − λ2)

m2 . . . (λ − λr)
mr , (11)

where λ1,λ2, . . . ,λr are the eigenvalues of the matrix A and
∑r

i=1 mi = m ≤ n. It is
assumed that the function f (λ) is well-defined on the spectrumσA = {λ1,λ2, . . . ,λr}
of the matrix A, i.e.

f (λk), f (1)(λk) = df (λ)

dλ
|λ=λk . . . , f (mk−1)(λk) = dmk−1f (λ)

dλmk−1
|λ=λk , (12)

k = 1, . . . , r, are finite [1, 3].
In this case the matrix f (A) is well-defined and it is given by the Lagrange–

Sylvester formula [1, 3]

f (A) =
r∑

i=1

Zi1f (λi) + Zi2f
(1)(λi) + · · · + Zimi f

(mi−1)(λi), (13)

where

Zij =
mi−1∑
k=j−1

Ψi(A)(A − λiIn)k

(k − j + 1)!(j − 1)!
dk−j+1

dλk−j+1

[
1

Ψi(λ)

]
λ=λi

(14)
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and

Ψi(λ) = Ψ (λ)

(λ − λi)mi
, i = 1, . . . , r. (15)

In particular case where the eigenvalues λ1,λ2, . . . ,λn of the matrix A are distinct
(λi �= λj, i �= j) and

ϕ(λ) = Ψ (λ) = (λ − λ1)(λ − λ2) . . . (λ − λn), (16)

then the formula (13) has the form

f (A) =
n∑

k=1

Zkf (λk), (17)

where

Zk =
n∏

i = 1
i �= k

A − λiIn
λk − λi

. (18)

It is easy to show [3] that the matrices (18) satisfy the equalities

n∑
k=1

Zk = In, (19)

ZiZj = 0 for i �= j, i, j = 1, . . . , n, (20)

Zk
i = 0 for k = 1, 2, . . . , i = 1, . . . , n. (21)

3 Cayley–Hamilton Theorem for Fractional
Continuous-Time linear Systems

Consider a function f (λ) well-defined on the spectrum of the matrix A ∈ R
n×n. The

matrix f (A) is given by the formulae (13) and (14).

Theorem 3 Let

Ψ (λ) = det[Inλ − f (A)] = λn + an−1λ
n−1 + · · · + a1λ + a0 (22)

be the characteristic polynomial of the matrix f (A). Then the matrix f (A) satisfies
its characteristic equation, i.e.

[f (A)]n + an−1[f (A)]n−1 + · · · + a1[f (A)] + a0In = 0. (23)
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Proof From definition of the inverse matrix we have

[Inλ − f (A)]ad = [Inλ − f (A)]−1 det[Inλ − f (A)], (24)

where [Inλ − f (A)]ad is the adjoint matrix of [Inλ − f (A)]. Note that

[Inλ − f (A)]−1 = Inλ
−1 + f (A)λ−2 + [f (A)]2λ−3 + · · · (25)

since
[Inλ − f (A)][Inλ − f (A)]−1 =

[Inλ − f (A)]{Inλ−1 + f (A)λ−2 + [f (A)]2λ−3 + · · · } = In. (26)

Substitution of (26) and (22) into (24) yields

[Inλ − f (A)]ad =

{Inλ−1 + f (A)λ−2 + [f (A)]2λ−3 + · · · }(λn + an−1λ
n−1 + · · · + a1λ + a0). (27)

The entries of the matrix [Inλ − f (A)]ad are polynomial of λk for k = 0, 1, . . . ,
n − 1. Comparison of the coefficients at λ−1 of (27) yields (23).

Theorem 4 Let

det[Inλ − eAt] = λn + an−1λ
n−1 + · · · + a1λ + a0 (28)

be the characteristic polynomial of the matrix eAt . Then the matrix eAt satisfies its
characteristic equation

enAt + an−1e
(n−1)At + · · · + a1e

At + a0In = 0. (29)

Proof The proof follows immediately from Theorem3 for f (A) = eAt and the equal-
ity (eAt)k = ekAt for k = 1, 2, . . . , n.

Example 1 Using (17) and (18) it is easy to show that for the matrix

A =
[−2 −3

3 4

]
(30)

the exponential matrix eAt has the form

eAt =
[

(1 − 3t)et −3tet

3tet (1 + 3t)et

]
. (31)
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The characteristic polynomial of the matrix (31) is

Ψ (λ) det[I2λ − eAt] =
∣∣∣∣λ − (1 − 3t)et 3tet

−3tet λ − (1 + 3t)et

∣∣∣∣ = λ2 − 2etλ + e2t . (32)

Taking into account that

(eAt)2 = e2At =
[

(1 − 6t)e2t 6te2t

−6te2t (1 + 6t)e2t

]
(33)

and using (32) we obtain

Ψ (eAt) = e2At − 2et(eAt) + e2t I2 =
[

(1 − 6t)e2t 6te2t

−6te2t (1 + 6t)e2t

]

−2et
[

(1 − 3t)et −3tet

3tet (1 + 3t)et

]
+ e2t

[
1 0
0 1

]
=

[
0 0
0 0

]
.

(34)

Therefore, the matrix (31) satisfies its characteristic equation.

Theorem 5 Let

ϕ0(λ) = det[Inλ − Φ0(t)] = λn + an−1λ
n−1 + · · · + a1λ + a0 = 0 (35)

and
ϕ(λ) = det[Inλ − Φ(t)] = λn + ân−1λ

n−1 + · · · + â1λ + â0 = 0 (36)

be the characteristic equations of the matricesΦ0(t) andΦ(t) defined by (4) and (5),
respectively. Then the matrices Φ0(t) and Φ(t) satisfy their characteristic equations

ϕ0[Φ0(t)] = det[Inλ − Φ0(t)]
= Φn

0 (t) + an−1Φ
n−1
0 (t) + · · · + a1Φ0(t) + a0In = 0

(37)

and
ϕ[Φ(t)] = det[Inλ − Φ0(t)]

= Φn(t) + ân−1Φ
n−1(t) + · · · + â1Φ(t) + â0In = 0.

(38)

Proof Using Theorem3 for f (A) = Φ0(t) and f (A) = Φ(t) we obtain immediately
from (22) and (23) the Eqs. (37) and (38), respectively.

Remark 1 If α = 1 then Φ0(t) = Φ(t) = eAt and

ϕ0[Φ0(t)] = ϕ[Φ(t)] = enAt + an−1e
(n−1)At + · · · + a1e

At + a0In = 0, (39)

where ak = âk = ak for k = 0, 1, . . . , n − 1.
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Example 2 Consider the fractional system (2) with 0 < α < 1 and

A =
[
0 1
0 0

]
. (40)

Using (4) and (5) it is easy to show [14] that

Φ0(t) =
∞∑
k=0

Aktkα

Γ (kα + 1)
= I2 + Atα

Γ (α + 1)
=

[
1 atα

0 1

]
, a = 1

Γ (α + 1)
(41)

and

Φ(t) =
∞∑
k=0

Akt(k+1)α−1

Γ [(k + 1)α] = I2
tα−1

Γ (α)
+ At2α−1

Γ (2α)
=

[
a1tα−1 a2t2α−1

0 a1tα−1

]
,

a1 = 1

Γ (α)
, a2 = 1

Γ (2α)
.

(42)

The characteristic polynomials of the matrices (41) and (42) have the forms

ϕ0(λ) = det[I2λ − Φ0(t)] =
∣∣∣∣λ − 1 −atα

0 λ − 1

∣∣∣∣ = λ2 − 2λ + 1 (43)

and

ϕ(λ) = det[I2λ − Φ(t)] =
∣∣∣∣λ − atα−1 −a2t2α−1

0 λ − a1tα−1

∣∣∣∣ = λ2 − 2a1t
α−1λ + a21t

2(α−1).

(44)

Taking into account that

[Φ0(t)]2 =
[
1 atα

0 1

]2

=
[
1 2atα

0 1

]
(45)

and using (43) we obtain

[Φ0(t)]2 − 2Φ0(t) + I2 =
[
1 2atα

0 1

]
− 2

[
1 atα

0 1

]
+

[
1 0
0 1

]
=

[
0 0
0 0

]
. (46)

Similarly, taking into account that

[Φ(t)]2 =
[
a1tα−1 a2t2α−1

0 a1tα−1

]
=

[
a21t

2(α−1) 2a1a2t3(α−1)

0 a21t
2(α−1)

]
(47)
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and using (44) we obtain

[Φ(t)]2 − 2a1t
α−1Φ(t) + a21t

2(α−1)I2 =
[
a21t

2(α−1) 2a1a2t3(α−1)

0 a21t
2(α−1)

]
−

2a1t
α−1

[
a1tα−1 a2t2α−1

0 a1tα−1

]
+ a21t

2(α−1)

[
1 0
0 1

]
=

[
0 0
0 0

]
. (48)

Therefore, the matrices (41) and (42) satisfy their characteristic equations.

4 Cayley–Hamilton Theorem for Discrete-Time Linear
Systems

Consider the fractional discrete-time linear system (6) with the matrixΦi determined
by the Eq. (10) for the given matrix A.

Theorem 6 Let

det[Inλ − Φi] = λn + bn−1λ
n−1 + · · · + b1λ + b0 = 0 (49)

be the characteristic equation of the matrix Φi, i = 1, 2, . . .. Then the matrix Φi

satisfies its characteristic equation, i.e.

Φn
i + bn−1Φ

n−1
i + · · · + b1Φi + b0In = 0. (50)

Proof The proof follows immediately from Theorem3 for Ψ (λ) = det[Inλ − Φi].
Example 3 For

A =
[
1 0
0 0.5

]
(51)

and α = 0.5 we have

Aα = A + Inα =
[
1.5 0
0 1

]
. (52)

Using (52) and (10) we obtain
Φ1 = Aα (53a)

and

Φ2 = AαΦ1 + α(1 − α)

2
Φ0 = A2

α + α(1 − α)

2
I2 =

[
1.5 0
0 1

]2

+ 0.125

[
1 0
0 1

]
=

[
2.375 0
0 1.125

]
.

(53b)
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The characteristic polynomial of the matrix (53b) has the form

det[I2λ − Φ2] =
∣∣∣∣λ − 2.375 0

0 λ − 1.125

∣∣∣∣ = λ2 − 3.5λ + 2.6719. (54)

Using (54) and (53b) we obtain

Φ2
2 − 3.5Φ2 + 2.6719I2 =

[
2.375 0
0 1.125

]2

−

3.5

[
2.375 0
0 1.125

]
+

[
2.6719 0

0 2.6719

]
=

[
0 0
0 0

]
. (55)

Therefore, the matrix (53b) satisfies its characteristic equation.

Consider the fractional discrete-time linear system (6) for B = 0.

Theorem 7 Let

det

[
L+1∑
k=0

(−1)k
(

α

k

)
Inz

−k − Az−1

]
= a0z

−h + a1z
1−h + · · · + ah−1z

−1 + ah (56)

be the characteristic polynomial of the system for i = L and h = (L + 1)n. Then the
matrices Φi defined by (10) for i = 0, 1, · · · , h satisfy the equation

a0Φh + a1Φh−1 + · · · + ah−1Φ1 + ahIn = 0. (57)

Proof From definition of inverse matrix we have

[
L+1∑
k=0

(−1)k
(

α

k

)
Inz

−k − Az−1

]

ad

=
⎛
⎝ ∞∑

j=0

Φjz
−j

⎞
⎠ (a0Φh + a1Φh−1 + · · · + ah−1Φ1 + ahIn)

(58)

since [
L+1∑
k=0

(−1)k
(

α

k

)
Inz

−k − Az−1

]−1

=
∞∑
j=0

Φjz
−j. (59)

Note that the degree of the adjoint matrix is less than h. Comparing the coefficients
at the power z−h of (58) we obtain (57).

Example 4 Consider the fractional discrete-time linear system with the matrix (51)
and α = 0.5. Assuming L = 1 from (56) and (51) we obtain
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[
2∑

k=0

(−1)k
(

α

k

)
I2z

−k − Az−1

]−1

= det

[
I2 − (I2α + A)z−1 + α(α − 1)

2
I2z

−2

]

=
∣∣∣∣1 − 1.5z−1 − 0.125z−2 0

0 1 − z−1 − 0.125z−2

∣∣∣∣
= (0.125)2z−4 + 0.3125z−3 + 1.375z−2 − 2.5z−1 + 1. (60)

Using (52), (53) and (10) for i = 2, 3 we obtain

Φ3 = AαΦ2 +
3∑

k=2

(−1)k+1

(
α

k

)
Φ3−k =

[
3.8125 0

0 1.3125

]
. (61)

Φ4 = AαΦ3 +
4∑

k=2

(−1)k+1

(
α

k

)
Φ4−k =

[
6.1484 0

0 1.5547

]
. (62)

Taking into account that in this case h = 4 and

a4 = 1, a3 = −2.5, a2 = 1.25, a1 = 0.3125, a0 = 0.0156 (63)

and using (57) we obtain

a0Φ4 + a1Φ3 + a2Φ2 + a3Φ1 + a4I2 =
[
0 0
0 0

]
. (64)

Therefore, the matrices Φi, i = 0, 1, . . . , 4 satisfy the characteristic equation.

5 Concluding Remarks

The classical Cayley–Hamilton theorem has been extended to the fractional
continuous-time and discrete-time linear systems. The extension is based on the
application of the Lagrange–Sylvester formula of functions of matrices. It has been
shown for continuous-time systems that the matrices Φ0(t) and Φ(t) defined by (4)
and (5) satisfy also their characteristic equations (35) and (36), respectively (The-
orem4) and for discrete-time systems the matrices Φi defined by (10) satisfy their
characteristic equation (57) (Theorem7). The considerations have been illustrated
by numerical examples of the fractional linear systems. The considerations can be
extended to fractional descriptor linear systems.

Acknowledgments This work was supported by National Science Centre in Poland under work
No. 2014/13/B/ST7/03467.
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Order Composition Properties
for Output-Additive Variable-Order
Derivative

Michał Macias

Abstract The paper presents, composition properties of output-additive switch-
ing scheme with fractional constant-order differ-integral. It has been shown that
composition property is not commutative and depends on the sequence of compo-
sition. Considering switching scheme corresponding to particular type of fractional
variable-order definition (so-called E-type). Next, the numerical results of composi-
tion properties have been shown.

Keywords Fractional calculus · Variable order derivative

1 Introduction

The fractional calculus is a generalization of the traditional differential calculus for
a case when integrals and derivatives are not only integer but also fractional order.
This generalization can be used to introduce more accurate models or more efficient
control algorithms. The approach based on fractional calculus is especially effi-
cient for modeling systems related to diffusion processes. In [1–3], the heat transfer
process was successfully modeled with using fractional models based on normal and
anomalous diffusion equation. Papers [2, 4, 5] present, also results of very accurate
modeling of ultracapacitors, the electrical energy storage elements that base on the
Helmholtz effect and diffusion.

When the order is not constant but depends on time, then the various types of
fractional variable order derivatives can be distinguished. In literature plenty of such
definitions can be encountered, however, authors put only minor emphasis on their
interpretations. In [6], nine different variable order derivative definitions are given
and in [7, 8], three general types of variable order definitions can be found butwithout
clear interpretation of them. In papers [9–14] the explanation for two main types and
two recursive types of derivatives in the form of switching schemes are given. The
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equivalence between particular types of definitions and appropriate switching strate-
gies are proved by authors. Moreover, based on these strategies, analog models of
proper types derivatives were build and validated according to their numerical imple-
mentations. Another methods for numerical realization of fractional variable order
integrators or differentiators can be found in [15, 16]. Paper [17] shows comparison
of control system behavior with fractional variable order PID controller designed
according to few types of fractional variable order derivatives.

The main contribution of the paper is to prove the composition properties of
output-additive switching scheme with fractional constant order differ-integral from
both side of switching scheme. Considering switching scheme is equivalent to the
E-type fractional variable-order definition.

The rest of the paper is organized as follows: In Sects. 2 and 3 the fractional con-
stant and output-additive fractional variable-order definitions are presented. Section4
presents the output-additive switching schemewhich is equivalent to the E-type frac-
tional variable-order definition.Themain contributionof the paper is shown inSect. 5.
At the end, numerical results of order composition properties have been introduced
in Sect. 6.

2 Fractional-Order Grunwald–Letnikov Type Derivative

As a base of generalization onto variable-order derivative the following definition is
taken into consideration:

Definition 1 Fractional constant order derivative is defined as follows:

0D
α
t f (t) = lim

h→0

1

hα

n∑
j=0

(−1) j

(
α

j

)
f (t − jh),

where n = �t/h� and h is a step time.

It was shown in [18] that for constant α1 and α2 orders the composition property
of Grünwald–Letnikov definition holds

0D
α1
t 0D

α2
t f (t) = 0D

α2
t 0D

α1
t f (t) = 0D

α1+α2
t f (t). (1)

3 The Output-Additive Fractional Variable-Order
Derivative

The output-additive fractional variable-order definition (so-called E-type) its switch-
ing scheme and analog model has been widely introduces in [9, 19]. More types of
fractional variable-order definition can be found in [11, 14, 20].
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Definition 2 The E-type fractional variable-order difference is defined as follows:

EΔαk xk = xk

hαk
−

k∑
j=1

(−1) j

(−αk− j

j

)
hαk− j

hαk

EΔαk− j xk− j .

This typeof difference is obtained for all values of previous differences. In continuous-
time domain the E-type definition can be as:

Definition 3 The E-type fractional variable-order derivative is defined as follows:

E
0 D

α(t)
t f (t) = lim

h→0

⎛
⎝ f (t)

hα(t)
−

t
h∑

j=1

(−1) j

(−α(t − jh)

j

)
hα(t− jh)

hα(b)

E
0 D

α(t)
t− jh f (t)

⎞
⎠

Remark 1 For a fractional constant-order the E-type definition is numerically iden-
tical with constant-order fractional derivative given by Definition1.

4 The Output-Additive Switching Scheme

The output-additive switching scheme equivalent to the E-type fractional variable-
order derivative is depicted in Fig. 1. The blocks ᾱ j = α j − α j−1, j = 1, . . . , k
represent the constant-order Grünwald–Letnikov derivative of order α0 and ᾱ j for
j = 1, . . . , k. In this case we have the following behavior: after switching time the
fractional constant-order derivative is added and the end of actual chain.

Based on the output-additive switching scheme the E-type definition can be
expressed by

tkD
ᾱk
t · · · t1D

ᾱ1
t 0D

α0
t f (t) = E

0 D
α(t)
t f (t). (2)

tkD
ᾱk
ttk−1D

ᾱk−1
t

Sk

a

b

Sk−1

a

b

a

b

E
0D

α(t)
t f(t)

0Dα0
t

S1

a

b

f(t)

Fig. 1 The output-additive switching scheme corresponding do E-type fractional variable-order
derivative, where ᾱ j = α j − α j−1, j = 1, . . . , k, (configuration at time t = tk )
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5 Orders Composition Properties

For output-additive switching scheme the composition property with constant-order
differ-integral holds, but only in one direction, i.e., it is not commutative, and then
it depends on the sequence of composition. Two cases of composition orders are
depicted in Figs. 2 and 3.

Let consider the switching scheme presented in Fig. 2 with fractional constant-
order derivative from the left-hand side. Then, the following theorem can be written:

Theorem 1 The following composition property holds

E
0 D

α(t)
t 0D

β
t f (t) = E

0 D
α(t)+β
t f (t),

for α(t) �= const and β �= 0.

Proof Directly based on Fig. 2, the following equation can be formulated

tkD
ᾱk
t · · · t1D

ᾱ1
t 0D

α0
t 0D

β
t f (t) = E

0 D
α(t)
t 0D

β
t f (t). (3)

Due to the constant-order composition property, (3) can be rewritten to the form

tkD
ᾱk
t · · · t1D

ᾱ1
t 0D

α0+β
t f (t) = E

0 D
α(t)+β
t f (t),

which ends the proof.

To show that composition property is not commutative it is enough to prove that
such property does not holds on time interval for 0 < t ≤ t2. Then, we can constraint

tkD
ᾱk
ttk−1D

ᾱk−1
t

Sk

a

b

Sk−1

a

b

a

b

E
0D

α(t)+β
t f(t)

0Dα0
t0Dβ

t
S1

a

b

f(t)

Fig. 2 Composition of output-additive switching scheme with fractional constant-order differ-
integral from left-hand side, i.e., E0 D

α(t)
t 0D

β
t f (t) = E

0 D
α(t)+β
t f (t)

tkD
ᾱk
ttk−1D

ᾱk−1
t

Sk

a

b

Sk−1

a

b

a

b

0Dβ
tE

0D
α(t)
t f(t)

γ(t)

0Dα0
t

S1

a

b

f(t)

Fig. 3 Composition of output-additive switching scheme with fractional constant-order differ-
integral from right-hand side, i.e., 0D

β
t
(E
0 D

α(t)
t f (t)

) = γ(t) �= E
0 D

α(t)+β
t f (t)
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the output-additive switching scheme presented in Fig. 3 to time t2 and formulate a
Theorem 2.

Lemma 1 The fractional constant-order derivative in the Grünwald–Letnikov form
given by Definition1 can be expressed by

0D
α
t f (t) = lim

h→0

1

hα

t∑
j=0

(−1) j

(
α

j

)
f (t − jh)

= lim
h→0

1

hα

⎛
⎝

t1
h∑

j=0

(−1) j

(
α

j

)
f (t − jh) +

t
h∑

t1
h +1

(−1) j

(
α

j

)
f (t − jh)

⎞
⎠

=
(

t1D
α
t + 0D

α
t1−h

)
f (t) =⇒ t1D

α
t f (t) =

(
0D

α
t − 0D

α
t1−h

)
f (t),

where h is a step time and 0 < t1 < t .

Theorem 2 The composition of output-additive switching scheme with fractional
constant-order differ-integral from right-hand side is expressed by

0D
β
t2 t1D

α1
t2 0D

α0
t2 f (t) = γ(t) �= E

0 D
α(t)+β
t2 f (t), (4)

for α(t) �= const and β �= 0.

Proof Let us begin with (3), when the composition property holds and time t = t2

t1D
ᾱ1
t2 0D

α0
t2 0D

β
t2 f (t) = E

0 D
α(t)+β
t2 f (t). (5)

Applying the commutative property (1) and Lemma 1 to (5), we can extend this
equation to the following form

(
0D

ᾱ1
t2 − 0D

ᾱ1
t1−h

)
0D

β
t2 0D

α0
t2 f (t) = 0D

ᾱ1
t2 0D

β
t2 0D

α0
t2 f (t) − 0D

ᾱ1
t1−h 0D

β
t2 0D

α0
t2 f (t)

= 0D
β
t2

(
0D

ᾱ1
t1−h + t1D

ᾱ1
t2

)
0D

α0
t2 f (t) − 0D

ᾱ1
t1−h 0D

β
t2 0D

α0
t2 f (t)

= 0D
β
t2 t1D

ᾱ1
t2 0D

α0
t2 f (t) + 0D

β
t2 0D

ᾱ1
t1−h0D

α0
t2 f (t) − 0D

ᾱ1
t1−h 0D

β
t2 0D

α0
t2 f (t)

= γ(t) + 0D
β
t2 0D

ᾱ1
t1−h0D

α0
t2 f (t) − 0D

ᾱ1
t1−h 0D

β
t2 0D

α0
t2 f (t) ,

comparing above to Theorem 2 ends the proof.
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6 Numerical Results of Output-Additive Switching Scheme
Composition with Fractional Constant-Order
Differ-Integral

This section contains numerical experiment, implemented in Matlab/Simulink envi-
ronment, with dedicated numerical routines, available under [21]. An numerical
example of output-additive switching scheme composition with fractional constant-
order differ-integral from left- and right- hand side is depicted in Fig. 4. The sim-
ulation parameters take the following values: f (t) is a Heaviside step function,
β = −0.4 and

α(t) =
{

−0.3 for t ≤ 0.5,

−0.8 for t > 0.5.

Using the parameters from the numerical example the following equation for both
cases can be written:

• For a case with fractional constant-order differ-integral from the left-hand side:

y(t) = E
0 D

α(t)−0.4
t f (t)

• For a case with fractional constant-order differ-integral from the right-hand side:

y(t) = 0D
−0.4
t

E
0 D

α(t)
t f (t)

Fig. 4 Composition of
output-additive switching
scheme with fractional
constant-order differ-integral
from left-hand side
E
0 D

α(t)+β
t f (t) - red line, and

right-hand side

0D
β
t
(E
0 D

α(t)
t f (t)

)
- blue line

0 0.5 1 1.5
0
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7 Conclusions

In the paper, the composition properties of output-additive switching scheme with
fractional constant-order differ-integral from the left-hand side and right hand side
have been proved. It was shown, that for such switching scheme, which is equivalent
to the E-type fractional variable-order definition, the composition property holds,
but only in one direction, it is not commutative and depends on the sequence of
composition. At the end, the composition properties were validated on numerical
example.
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Variable-, Fractional-Order
Oscillation Element

Dorota Mozyrska and Piotr Ostalczyk

Abstract The dynamic properties of the variable-, fractional-order oscillation
element (VFOOE) are investigated in the paper. The equations and the block diagram
are derived. Stability and existence conditions of solutions of proposed systems are
considered. For the illustration numerical examples are presented.

Keywords Fractional calculus · Discrete linear system · Variable- · Fractional-
order backward sum

1 Introduction and Preliminaries

Fractional-order backward differences and sums have become an important
mathematical tools in many areas ranged from theoretical to applied sciences [1–3].
Fractional differences provide an excellent instrument for the description of processes
of transient behaviours, [4], characterized by a memory of the system states. In the
paper we investigate the more general version of fractional difference called the
variable-, fractional-order backward difference/sum (VFOBD/S). On the base of
defined VFOBS stated for four cases we define the linear time–invariant oscillation
element (VFOOE). The oscillation element, among the inertial and integrating ones
is one of the most important elements in the analysis and synthesis of dynamical
systems, [5]. This can be applied to continuous– and discrete–time systems, linear or
nonlinear. We propose the block diagram with two variable fractional-order (VFO)
discrete integrators and a negative feedback with a proportional block characterised
by a constant coefficients which build the VFOOE.
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Definition 1 For k, l ∈ N and a given order function ν(·) we define the coefficient
discrete function of two variables by its values a[ν(l)](k) by the following

a[ν(l)](k) =
{

1 for k = 0
(−1)k ν(l)(ν(l)−1)···(ν(l)−k+1)

k! for k > 0 .
(1)

For the case,when0 < ν(l) ≤ 1 for l ∈ N:a[ν(l)](0) = 1anda[ν(l)](k) < 0, for k > 0.
Consider a discrete–variable bounded real–valued function f (·) defined on a discrete
interval [k0, k]N = [k0, k] ∩ N. The Grünwald–Letnikov backward–difference (GL–
FOBD) is generalized in the next definition to the Grünwald–Letnikov variable-,
fractional-order backward difference (GL–VFOBD).

Definition 2 The GL–VFOBD with an order function ν(·) of a bounded function
f (·) is defined as a finite sum

GL
k0 Δ

[ν(k)]
k f (k) = [

1 a[ν(k)](1) a[ν(k)](2) · · · a[ν(k)](k − k0)
]
⎡
⎢⎢⎢⎢⎢⎣

f (k)
f (k − 1)

...

f (k0 + 1)
f (k0)

⎤
⎥⎥⎥⎥⎥⎦

.

Collecting all such equalities in one vector–matrix form we obtain

GL
k0 Δ

[ν(k)]
k f(k) = k0A

[ν(k)]
k f(k) , (2)

where

f(k) =

⎡
⎢⎢⎢⎢⎢⎣

f (k)
f (k − 1)

...

f (k0 + 1)
f (k0)

⎤
⎥⎥⎥⎥⎥⎦

, GL
k0 Δ

[ν(k)]
k f(k) =

⎡
⎢⎢⎢⎢⎣

GL
k0

Δ
[ν(k)]
k f (k)

...
GL
k0

Δ
[ν(k0+1)]
k0+1 f (k0 + 1)

GL
k0

Δ
[ν(k0)]
k0

f (k0)

⎤
⎥⎥⎥⎥⎦ (3)

and

k0A
[ν(k)]
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 a[ν(k)](1) a[ν(k)](2) · · · a[ν(k)](k − k0)
0 1 a[ν(k−1)](1) · · · a[ν(k−1)](k − k0 − 1)
0 0 1 · · · a[ν(k−2)](k − k0 − 2)
...

...
...

...
...

0 0 0 · · · a[ν(k0+1)](1)
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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1.1 Variable-, Fractional-Order Linear Integrator

Basing on the definition of the GL–VFOBD we define a variable-, fractional-order
linear integrator (VFOI) (acting as a VFO discrete summator). We introduce the
following notation

k0B
(ν)
k = k0A

[ν(k)]
k , k0B

(ν̄)
k =

[
k0A

[ν(k)]
k

]−1
. (5)

Let now ξ = (ν1, . . . , νl) and l ∈ N1. Then we define the following

k0B
(ξ)
k := k0B

(ν1)
k · . . . · k0B(νl )

k , (6)

where it is possible to have some νi = μ̄i . All order functions are assumed to
be positive νi (k) > 0. For order functions usually one imposes a condition 0 <∑l

i=1 ±νi (k) � 1.
The VFOI is defined by a vector–matrix equation

k0B
(ξ)
k y(k) = u(k) , (7)

where u(k) and y(k) are input and output signal vectors, respectively. The order
vector ξ is constructed in the same way as presented above. The form used in the
oscillation element is given by the vector ξ = [

2ν, ν̄
]
. The block diagram of the

VFOI is presented in Fig. 1.

Proposition 1 Let the order function ν(·) be nondecreasing and ν(k) ∈ (0, 1]. Let
k0B

(ν̄)
k =

[
k0A

[ν(k)]
k

]−1 = (
ci, j

)
i, j∈{1,...,k−k0+1}. Then we have the following proper-

ties:

(a) ci,i = 1, for i ∈ {1, . . . , k − k0 + 1};
(b) ci,i+1 = −a[ν(k−i+1)](1) = ν(k − i + 1), for i ∈ {1, . . . , k − k0};
(c) ci, j = 0 for j < i ;
(d) ci, j ≥ 0 for all indexes i, j ∈ {1, . . . , k − k0 + 1};
(e) ci, j = −∑ j−i

s=1 a
[ν(k−i)](s)ci+s, j , for j > i ;

(f) c1, j = [
a[ν(k)](1) . . . a[ν(k)](k − k0)

]
k0B

(ν̄)
k−1.

Fig. 1 Block diagram of the
VFOI
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Proof Points (a)–(d) are obvious. We stay a while with points (e) and (f). For the
simplicity we provide the proof with k0 = 0. For points (e) we only need to use the
method of backward substitution during solving the problem of inverse matrix as the
solution of k + 1 systems of linear equations. We can state it as follows:

k0A
[ν(k)]
k

⎡
⎢⎣

c1, j
...

ck+1, j

⎤
⎥⎦ = e j , (8)

where e j is column with 1 only in j-th row and we consider systems for j ∈
{1, . . . , k + 1}. Then we can formulate the solution of system (8) as it is presented
in points (a)–(e).

To prove point (f) we recall the fact that for upper-triangle matrix given in a
decomposition of upper-triangle matrices and suitable matrix there is the following

formula for the inverse:

[
U11 U12

0 U22

]−1

=
[
U−1

11 −U−1
11 U12U−1

22
0 U−1

22

]
. Taking U11 = 1,

U12 = [
a[ν(k)](1) . . . a[ν(k)](k − k0)

]
, U2,2 =k0 A

[ν(k−1)] we receive point (f).

Proposition 2 Let the order function ν(·) be nondecreasing and ν(k) ∈ (0, 1]. Let
us consider the following VFOIs:

k0A
[ν(k)]
k y1(k) = b0u(k) (9)

k0A
[0.5ν(k)]
k k0A

[0.5ν(k)]
k y2(k) = b0u(k) (10)

k0A
[2ν(k)]
k

[
k0A

[ν(k)]
k

]−1
y3(k) = b0u(k) (11)

k0A
[2ν(k)]
k k0A

[−ν(k)]
k y4(k) = b0u(k) . (12)

Then the unit step responses satisfy inequalities for k ∈ N0: y2(k) ≥ y1(k) ≥ y4(k) ≥
y3(k) for nondecreasing fractional-order function and y3(k) ≥ y4(k) ≥ y1(k) ≥
y2(k) for nonincreasing OFs.

Proof We state here only the proof that for k ∈ N0: y2(k) ≥ y1(k) for nondecreasing
OF. Let us take for the simplicity k0 = 0. It does not change the generale proof. In the
proof let us change notations: x(k) := y1(k) and y(k) := y2(k). Observe that without

any assumption we obviously have x(0) = y(0). Nextly, as 0A
[ν(1)]
1 =

(
0A

[0.5ν(1)]
1

)2
,

then also x(1) = y(1). Let us assume now that for each l ∈ {0, . . . , k − 1}: y(l) ≥
x(l). Let Rν(k) := [

a[ν(k)](1), . . . , a[ν(k)](k)
]
. Then

0A
[ν(k)]
k =

⎡
⎢⎢⎢⎣

1 Rν(k)

0
... 0A

[ν(k−1)]
k−1

0

⎤
⎥⎥⎥⎦ ,

(
0A

[0.5ν(k)]
k

)2 =

⎡
⎢⎢⎢⎢⎣

1 R0.5ν(k)

(
Ik + 0A

[0.5ν(k−1)]
k−1

)
0
...

(
0A

[0.5ν(k−1)]
k−1

)2

0

⎤
⎥⎥⎥⎥⎦ .
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Taking into account Eqs. (9) and (10) we write that

x(k) + Rν(k)

⎡
⎢⎣
x(k − 1)

...

x(0)

⎤
⎥⎦ = y(k) + R0.5ν(k)

(
Ik + 0A

[0.5ν(k−1)]
k−1

)
⎡
⎢⎣
y(k − 1)

...

y(0)

⎤
⎥⎦ .

As we assume that y(l) ≥ x(l) it follows

(x(k) − y(k)) ≤
(
R0.5ν(k) + R0.5ν(k)0A

[0.5ν(k−1)]
k−1 − Rν(k)

)
⎡
⎢⎣
y(k − 1)

...

y(0)

⎤
⎥⎦ . (13)

Let us recall that for constant ν: R0.5ν(k) + R0.5ν(k)0A
[0.5ν(k−1)]
k−1 = Rν(k). And for non-

decreasing ν(·) elements of the row R0.5ν(k)0A
[0.5ν(k−1)]
k−1 are less or equal to corre-

sponding elements of R0.5ν(k)0A
[0.5ν(k)]
k−1 . Additionally, they are positive as the product

of negative values. Hence, R0.5ν(k) + R0.5ν(k)0A
[0.5ν(k−1)]
k−1 − Rν(k) ≤ R0.5μ0A

[0.5μ]
k−1 −

Rμ ≤ 0, where ν(k) = μ = const . What finish the proof that for k ∈ N0: y2(k) ≥
y1(k) for for nondecreasing order function.

Example 1 For the following fractional-order functions

ν(k) = (
1 − e−0.1k

)
1(k) and ν(k) = 0.25

(
1 + e−0.1k

)
1(k) (14)

plotted in Figs. 2a and 3a one gets the unit step responses of the VFOIs presented in
Figs. 2b and 3b, respectively.

Fig. 2 Fractional-order and VFOIs unit step responses for ν(k) = (
1 − e−0.01k

)
1(k)
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Fig. 3 Fractional-order and VFO inertial elements responses for ν(k) = 0.25
(
1 + e−0.01k

)
1(k)

2 VFO Oscillation Element Description and Response

The block diagram of the VFO oscillation element (VFOOE) is given in Fig. 4. One
can see that the VFOIE is created from the VFOI (9)–(12) by adding two negative
feedbacks with proportional blocks characterised by constant coefficients a0 and a1.
Next one adds a proportional block b0. It is assumed that

1 + a1 + a0 �= 0 . (15)

From the block diagram given in Fig. 4 we derive the following equations:

k0B
(ξ2)
k x2(k) = x1(k) ,

k0B
(ξ1)
k x1(k) = e(k) ,

e(k) = −a0x2(k) − a1x1(k) + b0u(k) ,

y(k) = x2(k) . (16)

Fig. 4 Block diagram of the
VFOOE
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Combining thefirst three equations from (16)weobtain thematrix–vector description
of the VFOOE

k0B
(ξ1)
k k0B

(ξ2)
k y(k) + a1k0B

(ξ2)
k y(k) + a0y(k) = b0u(k) . (17)

For k0B
(ξ1)
k = k0A

[2ν(k)]
k

[
k0A

(ν(k))
k

]−1
and k0B

(ξ2)
k = k0A

[ν(k)]
k from (17) one obtains

k0A
[2ν(k)]
k y(k) + a1k0A

[ν(k)]
k y(k) + a0y(k) = b0u(k) . (18)

For k0B
(ξ1)
k = k0B

(ξ2)
k = k0A

[ν(k)]
k from (17) we get

k0A
[ν(k)]
k k0A

[ν(k)]
k y(k) + a1k0A

[ν(k)]
k y(k) + a0y(k) = b0u(k) (19)

and for constant order function ν = 1 one obtains a classical discrete oscillation
element. Now we assume zero initial conditions. Simple manipulations on (18) and
(19) lead to the solutions of the VFOOE:

y(k) = b0
{
k0A

[2ν(k)]
k + a1k0A

[ν(k)]
k + a0k01k

}−1
u(k) , (20)

y(k) = b0
{
k0A

[ν(k)]
k k0A

[ν(k)]
k + a1k0A

[ν(k)]
k + a0k01k

}−1
u(k) , (21)

where k01k denotes the identity matrix of degree k − k0 + 1. Note that the inverse
matrices exist, when the condition (15) is satisfied. Further analysis is concentrated
on the VFOOE form described by (20). Under assumption (15) the VFOOE can be
also represented by the variable-, fractional-order difference equation (VFODE)

GL
k0 Δ

[2ν(k)]
k y(k) + a1

GL
k0 Δ

[ν(k)]
k y(k) + a0y(k) = b0u(k) . (22)

The coefficients a1, a0 in Eq. (22) can be expressed by values w1, w2, where a1 =
−w1 − w2 and a0 = w1w2.

3 VFOOE Stability and Oscillations Criteria

Let us recall the concept of the stability of system (22). System (22) is said to be
asymptotically stable if limk→∞ y(k) = 0 .

Let us consider a system described by (22) for constant fractional-order function
ν(k) = ν = const. Then the stability conditions formulate the following lemma.

Proposition 3 ([3]) For a0, b0 > 0 and a1 = −w1 − w2, a0 = w1w2 the system
is asymptotically stable if and only if roots w1, w2 of an algebraic equation w2 +
a1w + a0 = 0 are outside the regions given in Fig.5.
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Fig. 5 Stability regions of
the fractional-order system
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Corollary 1 If the classical second order–system is stable then the fractional-order
system (0 < ν < 1) is also stable.

For 0 < νmin � ν(k) � νmax � 1 the system described by Eq. (22) is stable ifw1, w2

are in the stability region defined by νmax . This is caused by the fact that the stability
regions related to every time instant are included in the stability region defined
for νmax . Hence, the system is always stable. The system described by Eq. (22)
with fractional-order satisfying lim

k→+∞ ν(k) = νconst � 1 is stable, if the system with

constant order νconst is stable. This follows from the fact that transient response tends
(with respect to the limit of order function) to the stable solution.

Example 2 Let ν(k) = [
0.8 + 0.2 cos

(
k
6

)]
1(k) and w1 = −0.1 + j0.1, w2 =

−0.1 − j0.1. In this example νmax = 1 and the roots are inside the stability region
defined by νmax . The system is asymptotically stable. The fractional-order, the unit
step response and the discrete phase portrait and the classical second order system
unit step response are given in Figs. 6a–d, respectively.

The classical second order oscillation element transient properties are character-
ized by w1 and w2. Numerically evaluated area for values w1 and w2 for which the
unit step response is monotonically increasing is given in Fig. 7. From this figure and
the stability regions given in Fig. 5 one concludes the area of w1 and w2 for which
the unit step response are oscillating.

Proposition 4 Consider asymptotically stable system described by (22) for 0 <

ν(k) = νmin � 1. It is assumed that its unit step response is oscillating. Then the
system with ν(k) � νmin has also oscillating unit step response.

Proof Both systems have the same coefficients a0 and a1 and equivalently valuesw1

and w2. For 0 < ν(k) = νmax � 1 values w1 and w2 are closer to the stability limits.
This intensifies the oscillations.



Variable-, Fractional-Order Oscillation Element 73

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

k

ν
(k

)

(a) Fractional–order.
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(b) Unit step response.
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(c) Discrete phase portrait.
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(d) 2nd order system response.

Fig. 6 Fractional-order functions, VFOOE unit step response, related discrete phase portrait and
2nd-order discrete oscillation element response

Fig. 7 Monotonic unit step
response area for w1 and w2
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Fig. 8 Unit step response of the second-order oscillation element
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(a) Plot of the fractional–order.
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Fig. 9 Plots of the fractional-order and the unit step response of the VFOOE

Example 3 Consider the second-order discrete oscillation element which is on the
stability limit for a1 = −4, a0 = 4. The unit step response simulated for two discrete
time ranges T1 = [0, 50] and T2 = [0, 500] is presented in Fig. 8a, b, respectively.
Now one considers fractional-order function ν(k) = 0.5 − 0.5 cos( k

1.5 )e
−0.01k and

the same coefficients. Plots of the fractional-order and the unit step response of the
VFOOE are presented in Fig. 9a, b.

4 Final Conclusions

The analysis of the dynamic properties of the VFOOE exhibits almost unlimited
possibilities of damped vibration shaping. Such elements can be useful in different
kinds of vibrations modelling.
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Variable-, Fractional-Order Inertial Element

Piotr Ostalczyk and Dorota Mozyrska

Abstract The paper concerns the dynamic properties of the variable-, fractional-
order inertial element (VFOIE). The application of a negative feedback to the
variable-, fractional-order integrator (VFOI) leads to the VFOIE. The investigations
are supported by numerical examples.

Keywords Fractional calculus · Discrete linear systems · Transient characteristics

1 Introduction

In recent decades the application of fractional calculus has attracted interest of
researches. In many applications fractional calculus provides a more accurate model
of physical systems than ordinary calculus in both cases: continuous-time and
discrete-time. Non-integer-order derivatives and differences calculus has become an
important tool in many areas of physics, mechanics, chemistry, engineering, finances
and image processing [1–4]. Fractional derivatives and differences provide an excel-
lent instrument for the description of memory in various processes [4, 5].

In the paper we investigate elements connected to the more general version of
fractional differences admitting variability of the summation order. We work here
with variable-, fractional-order inertial elements. The integrator describedby thefirst-
order differential equation is themost important element in the analysis and synthesis
of dynamic systems [6, 7]. This implies to continuous- and discrete-time systems,
linear or nonlinear. We propose inside the creation of variable-, fractional-order
inertial elements from variable-, fractional-order integrators by adding a negative
feedback with a proportional block characterised by a constant coefficient.
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2 Preliminaries

Definition 1 For k, l ∈ N and a given order function ν(·) we define the coefficient
discrete function of two variables by its values a[ν(l)](k) by the following

a[ν(l)](k) =
{

1 for k = 0
(−1)k ν(l)(ν(l)−1)···(ν(l)−k+1)

k! for k ∈ N1 .
(1)

For the case when for each l ∈ N: 0 < ν(l) ≤ 1 we have that a[−ν(l)](k) > 0.
While a[ν(l)](0) = 1 and for k > 0: a[ν(l)](k) < 0, for each k, l. Consider a discrete-
variable bounded real-valued function f (·) defined on a discrete interval [k0, k]N =
[k0, k] ∩ N. The Grünwald–Letnikov backward-difference (GL-FOBD) is general-
ized in the next definition to theGrünwald–Letnikov variable-, fractional-order back-
ward difference (GL-VFOBD).

Definition 2 TheGL-VFOBDwith an order function ν(·), with values ν(k) ∈ (0, 1]
of a bounded function f (·) is defined as a finite sum

GL
k0 Δ

[ν(k)]
k f (k) = [

1 a[ν(k)](1) a[ν(k)](2) · · · a[ν(k)](k − k0)
]
⎡
⎢⎢⎢⎢⎢⎣

f (k)
f (k − 1)

...

f (k0 + 1)
f (k0)

⎤
⎥⎥⎥⎥⎥⎦

.

Collecting all such equalities in one vector matrix form we obtain

GL
k0 Δ

[ν(k)]
k f(k) = k0A

[ν(k)]
k f(k) , (2)

where

f(k) =

⎡
⎢⎢⎢⎢⎢⎣

f (k)
f (k − 1)

...

f (k0 + 1)
f (k0)

⎤
⎥⎥⎥⎥⎥⎦

, GL
k0 Δ

[ν(k)]
k f(k) =

⎡
⎢⎢⎢⎢⎣

GL
k0

Δ
[ν(k)]
k f (k)

...
GL
k0

Δ
[ν(k0+1)]
k0+1 f (k0 + 1)

GL
k0

Δ
[ν(k0)]
k0

f (k0)

⎤
⎥⎥⎥⎥⎦ (3)

and

k0A
[ν(k)]
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 a[ν(k)](1) a[ν(k)](2) · · · a[ν(k)](k − k0)
0 1 a[ν(k−1)](1) · · · a[ν(k−1)](k − k0 − 1)
0 0 1 · · · a[ν(k−2)](k − k0 − 2)
...

...
...

...
...

0 0 0 · · · a[ν(k0+1)](1)
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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Fig. 1 Block diagram of the
VFOI third form

By analogy to formulas (2)–(3)weobtain the vector-matrix description of theVFOBS

GL
k0 Δ

[−μ(k)]
k f(k) = k0A

[−μ(k)]
k f(k) , (5)

where the vector GL
k0

Δ
[−μ(k)]
k f(k) and the matrix k0A

[−μ(k)]
k f(k) are defined in a similar

way as for the VFOBD.
The matrix (6) defined for ν(k),μ(k) ∈ (0, 1] and k > 2 is characterized by

following relations: k0A
[ν(k)]
k k0A

[−μ(k)]
k �= k0A

[−μ(k)]
k k0A

[ν(k)]
k and in a special case

when ν(k) = μ(k) holds: k0A
[ν(k)]
k k0A

[−ν(k)]
k �= k0A

[−ν(k)]
k k0A

[ν(k)]
k �= k01k . However

for ν(k) = μ(k) = const all inequalities are replaced by equalities. Basing on the
definitions of the VFOD and VFODS we define a variable-, fractional-order linear
integrator (VFOI) (acting as a VFO summator). For 0 < ν(k) + μ(k) � 1 the VFOI
is defined by a vector-matrix equation

k0A
[ν(k)]
k y(k) = b0k0A

[−μ(k)]
k u(k) , (6)

where b0 is a constant coefficient. The form described above is called the third form
of the VFOI. Its block diagram is presented in Fig. 1.

In formula (6) one can put ν(k) = 0 then one gets a second form of the VFOI. It
is denoted in block diagrams as μ(k) I and its written by

y(k) = b0k0A
[−μ(k)]
k u(k) . (7)

For μ(k) = 0 and ν(k) �= 0 one obtains the first form of the VFOI which in block
diagrams is denoted as ν(k) I and it is written by

k0A
[ν(k)]
k y(k) = b0u(k) . (8)

3 VFO Inertial Element

The block diagram of the VFO inertial element (VFOIE) is given in Fig. 2. One can
see that the VFOIE is created from the VFOI (6) (where b0 = 1) by adding a negative
feedback with a proportional block characterised by a constant coefficient a0. Next
one adds a proportional block b0. It is assumed that a0 �= −1.

From block diagram given in Fig. 2 we derive two equations
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Fig. 2 Block diagram of the
VFO inertial element

k0A
[ν(k)]
k y(k) = b0k0A

[−μ(k)]
k e(k) , (9)

e(k) = b0u(k) − a0y(k) . (10)

To simplify a notation we put

k0G
[ν(k),−μ(k)]
o,k :=

(
k0A

[−μ(k)]
k

)−1

k0A
[ν(k)]
k . (11)

Combining Eqs. (9) and (10) we obtain the matrix–vector description of the third
form of the VFOIE

k0G
[ν(k)]
o,k y(k) + a0y(k) = b0u(k) . (12)

Similar investigations taken into account the first and the second form of the VFOI
lead to the vector–matrix description the second

[
k0A

[−μ(k)]
k

]−1
y(k) + a0y(k) = b0u(k) (13)

and the first form of the VFOIE

k0A
[ν(k)]
k y(k) + a0y(k) = b0u(k) . (14)

Equation (12) can be transformed to an equivalent form

[(
k0A

[−μ(k)]
k

)−1

k0A
[ν(k)]
k + a0k01k

]
y(k) = b0u(k) (15)

and further

y(k) = b0

[(
k0A

[−μ(k)]
k

)−1

k0A
[ν(k)]
k + a0k01k

]−1

u(k) . (16)

Simple matrices manipulations lead to the equivalent form of the VFOIE

y(k) = b0

[
k01k + a0

(
k0A

[−μ(k)]
k

)−1

k0A
[ν(k)]
k

]−1 (
k0A

[−μ(k)]
k

)−1

k0A
[ν(k)]
k u(k) .

(17)
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Fig. 3 Parallel connection
of the VFOIEs

Introducing a notation one can easily realise a connection to the discrete transfer
function description of the closed-loop system

y(k) = b0
[
k01k + a0k0G

[ν(k),−μ(k)]
0,k

]−1

k0G
[ν(k),−μ(k)]
0,k u(k) . (18)

Denoting

k0G
[ν(k),−μ(k)]
c,k := b0

[
k01k + a0k0G

[ν(k),−μ(k)]
0,k

]−1

k0G
[ν(k),−μ(k)]
0,k (19)

one can establish an input–output relation similar to the discrete transfer function.
Figure3 shows a parallel connection of N VFOIEs.

Each block is described by one of the following equations

yi (k) = k0G
[ν(k),−μ(k)]
i,k u(k), for i = 1, 2, . . . , N (20)

and the summator element is given by

y(k) =
N∑
i=1

yi (k) . (21)

Substitution of (20) into (21) yields

y(k) =
N∑
i=1

k0G
[νi (k),−μi (k)]
i,k u(k) . (22)
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4 VFOIE Existence Conditions

Similar results as presented in the next Proposition one can find in [8], however for
different equation.

Proposition 1 Let b0 > 0, u(·) be bounded function, and ν ∈ (0, 1] be fractional
order. The fractional-order discrete linear time-invariant inertial element with con-
stant order ν described by an equation

0Δ
[ν]
k y(k) + a0y(k) = b0u(k) (23)

is asymptotically stable if and only if

a0 ∈ Sν = (−∞,−2ν) ∪ (0,+∞) . (24)

Proof Applying to both sides of (23) the one-sided Z-transform, assuming zero
initial conditions one gets the discrete transfer function GI (z) = Y (z)

U (z) = b0
(1− 1

z )
ν+a0

.

The formula for Z-transform of functions a[ν](·) comes, for example, from [9].
System is asymptotically stable if and only if every pole lies inside the unit circle,
i.e. if modules of solutions of the equation

(
1 − 1

z

)ν

+ a0 = 0 (25)

are less then 1. Observe that for a0 < 0 we have that z = 1

1−(−a0)
1
ν
. For a0 < 0 we

solve the inequality |z| < 1 receiving a0 < −2ν . For a0 > 0 Eq. (25) has no roots
outside the unite circle. Hence we have got the condition (24).

Corollary 1 The stability sets (24) satisfy inclusion relations

S1 ⊂ Sν ⊂ S0 . (26)

It means that if for some a0 a classical system is stable then the fractional-order
system (with 0 < ν < 1) is also stable (assuming the same a0).

Lemma 1 Let b0 > 0, a0 �= 0, u(·) be nondecreasing bounded function, and ν(·)
with values in (0, 1] be fractional nondecreasing order function. Then the solution
of equation

k0Δ
[ν(k)]
k y(k) + a0y(k) = b0u(k) (27)

is nondecreasing for y(k0) ≥ 0.

Proof For the simplicitywe take k0 = 0.Weuse in the proof the followingproperty of
coefficients: −a[ν(k+1)](i) ≥ −a[ν(k)](i) ≥ 0 for nondecreasing order function ν(·).
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Let us assume that for all s ∈ {1, . . . , k − 1} holds y(s) ≥ y(s − 1). Then we
show that also y(k + 1) ≥ y(k). We have the formulas, for k ∈ N1:

(1 + a0)y(k + 1) = −
k+1∑
i=1

a[ν(k+1)](i)y(k + 1 − i) + b0u(k + 1)

and

(1 + a0)y(k) = −
k∑

i=1

a[ν(k)](i)y(k − i) + b0u(k) .

Then

(1 + a0) (y(k + 1) − y(k)) = −a[ν(k+1)](k + 1)y(0)

+
k∑

i=1

(−a[ν(k+1)](i)y(k + 1 − i) + a[ν(k)](i)y(k − i)
) ≥ 0 ,

as −a[ν(k+1)](k + 1)y(0) ≥ 0 and −a[ν(k+1)](i)y(k + 1 − i) + a[ν(k)](i)y(k − i) ≥(−a[ν(k+1)](i) + a[ν(k)](i)
)
y(k − i) ≥ 0. Hence, it means that y(k + 1) ≥ y(k) and

from the mathematical induction principle it holds for all k ∈ N0.

Proposition 2 Let a0, b0 > 0, u(·) be nondecreasing bounded function, and ν(·)
with values in (0, 1] be fractional nondecreasing order function. The response to
the positive input signal u(k) � 0 of the first-order discrete linear inertial element
y(k) is not less than the response of the VFOIE to the same signal in Eq. (27) i.e.
y(k) ≥ y(k) for k ∈ N.

Proof For the simplicity we take k0 = 0. Firstly, let us notice that for fixed ν(k) ∈
(0, 1] we have ∀i �= 0 a[ν(k)](i) < 0 and

∑∞
i=0 a

[ν(k)](i) = 0. Hence,

k∑
i=0

a[ν(k)](i) = −
∞∑

i=k+1

a[ν(k)](i) > 0 .

From Lemma 1 we know that sequences {y(k)}k∈N1, {y(k)}k∈N1 are nondecreasing.
Then assuming that for all s ∈ {1, . . . , k − 1} holds y(s) ≥ y(s), we show that also
y(k) ≥ y(k). We have the formulas, for k ∈ N1:

(1 + a0)y(k) = −
k∑

i=1

a[ν(k)](i)y(k − i) + b0u(k) , (1 + a0)y(k) = y(k − 1) + b0u(k) .

Then

(1 + a0) (y(k) − y(k)) = y(k − 1) +
k∑

i=1

a[ν(k)](i)y(k − i)
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and y(k − i) ≤ y(k − 1) < y(k − 1) and −y(k − i) ≥ −y(k − 1). Hence,

(1 + a0) (y(k) − y(k)) ≥ y(k − 1) +
k∑

i=1

a[ν(k)](i)y(k − 1) = y(k − 1)
k∑

i=0

a[ν(k)](i) ≥ 0 .

It means that y(k) ≥ y(k) and from the mathematical induction principle it holds for
all k ∈ N0.

Proposition 3 The VFOIE unit step response of (27) is monotonically increasing
for the fractional-order function satisfying a condition 0 < ν(k) � 1 and coefficient
a0 > 0.

Proof The monotonic growth is characterized by a permanent positivity of the first-
order difference. To prove that the unit step response h(k) of the VFOIE monoton-
ically increases it is sufficient to show that its first-order difference-discrete pulse
response g(k) is positive over (0,+∞). It means that to prove the monotonicity of
the unit step response one should prove the positivity of the discrete pulse response.
The VFOIE is described by the Eq. (27), which can be transformed to an equivalent
form

[
0A

[ν(k)]
k + a001k

]
g(k) = b0δ(k) , δ(k) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
δ(0)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

. (28)

Transcription of Eq. (28) yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a ak,1 · · · ak,k−2 ak,k−1 ak,k
0 a · · · ak−1,k−3 ak−1,k−2 ak−1,k−1
...

...
...

... . . .

0 0 · · · a a2,1 a2,2
0 0 · · · 0 a a1,1
0 0 · · · 0 0 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(k)
g(k − 1)

...

g(2)
g(1)
g(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= b0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where a = 1 + a0 > 0 and ai, j = a[ν(i)]( j) < 0 for i, j = 1, 2, · · · , k. The inequal-
ities follow from the asymptotic stability conditions (24) and coefficients (1)
properties. Now one calculates g(0) = b0

a = b0
1+a0

and assumes that g(i) > 0 for
i = 1, 2, · · · , k − 1. Then from (29) one gets

g(k) = − [
ak,1 ak,2 · · · ak,k−1 ak,k

]
⎡
⎢⎢⎢⎢⎢⎣

g(k − 1)
g(k − 2)

...

g(1)
g(0)

⎤
⎥⎥⎥⎥⎥⎦

> 0. (30)
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The discrete pulse response of the VFOIE is positive. Hence the discrete unit step
response is monotonically increasing. This ends the proof.

Corollary 2 The unit step response of N connected in series and parallel VFOIEs
is monotonically increasing.

5 Numerical Examples

As a support of the analysis, given in previous sections, several numerical examples
are given. One considers three variable-, fractional-order inertial elements connected
in series. Each element is described by the same Eq. (27). The consecutive outputs
are represented by black (Bk), red (Rd) and blue (Bl) plots. In all simulations one
assumes a0 = 0.005.

For the fractional-order function

(a)
ν(k) = (

1 − e−0.01k
)
1(k) (31)

plotted in Fig. 4a one obtains unit step responses presented in Fig. 4b.
(b) For decreasing fractional-order function

ν(k) = (
1 + 0.52e−0.01k) 1(k) (32)

plotted in Fig. 5a one obtains unit step responses presented in Fig. 5b.
(c) Finally we analyze the influence of the coefficient a0 value. In the classical

first-order discrete inertial element it is related to so called time constant. For
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Fig. 4 Fractional-order function and VFO inertial elements responses for ν(k) = (1−
e−0.01k
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Fig. 5 Fractional-order function and VFO inertial elements responses for ν(k) =(
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Fig. 6 VFO inertial elements unit step responses of (22) for different a0 and the same fractional-
order functions

two previously considered fractional-order functions we take into account two
coefficient a0 sets: A1 and A2 (Fig. 6).

6 Final Conclusions

The paper presents the first basic attempt to the problem of stability of the proposed
variable-, fractional-order inertial element (VFOIE) and N -elements parallel con-
nection. We have analyzed the situations accordingly to the corresponding classical
difference system.
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Remarks on Mittag-Leffler Discrete Function
and Putzer Algorithm for Fractional
h-Difference Linear Equations

Ewa Pawłuszewicz

Abstract The paper presents some properties of the discrete Mittag-Leffler two
parameter function. The extension of the Putzer algorithm onto linear linear frac-
tional order systems is given. This algorithm allows to find the general solution
of linear fractional order systems. The problem of approximation of the solutions
to fractional linear differential equation with Caputo operator by the solutions to
fractional difference equations using the Putzer algorithm is considered.

Keywords Fractional h-difference operators · Discrete Mittag-Leffler function ·
Fractional linear h-difference equations · Putzer algorithm

1 Introduction

Fractional differential and difference equations describe a lot of phenomena arising
in engineering, physics or economics. Mittag-Leffler function naturally occurs as the
solution of linear fractional order differential equations. Generally such a solution
can be expressed as an infinite series, see [1–3]. So in order to approximate this
solution, a truncated form is used, see for example in [3]. In the classical linear
differential equation ẋ = Ax case the Puzer algorithm can be applied in order to
find a general solution, see [4]. This algorithm uses some matrices created based on
matrix A, its eigenvalues and a solution of some first order initial value problem, for
details see [4, 5]. The algorithm was extended onto linear systems defined on any,
even nonhomogeneous, time models, see [6].
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Now our goal is to extend Putzer’s algorithm onto fractional h-difference linear
equations. Since its crucial point concentrates on the discreteMittag-Leffler function,
firstly this function should be studied. Some of its properties were examined in [1].
Now some other properties are discussed.

The paper is organized as follows: in Sect. 2 difference fractional h-operators are
introduced. Section3 presents some properties of discrete Mittag-Leffler function.
In Sect. 4 the linear h-difference equation with fractional difference operators is
presented. We focus on equations with operators of Caputo-, Riemman–Louville-
and Grünwald–Letnikov-type. In [7] it is shown that these operators are related to
each other. So, systems with these operators can be studied simultaneously. In Sect. 5
Putzer algorithm for linear fractional order h difference equations is presented. The
proof of this algorithm in main part is the same as the proof of Putzer algorithm
on time scales, see [6]. In Sect. 6 remarks on Mittag-Leffler continuous function for
Caputo operator are presented.

2 Difference Fractional h-Operators

Letα and h be positive real numbers. For a ∈ R let (hN)a := {a, a + h, a + 2h, . . .}.
If x : (hN)a → R, then the forward h-difference operator is denoted as (Δhx)(t) :=
x(t+h)−x(t)

h , t = a + kh, k ∈ N0. The h-difference sum is defined by

(
aΔ

−1
h x

)
(t) := h

k∑
k=0

x(a + kh)

(
aΔ

−1
h x

)
(a) := 0

for any t = a + (k + 1)h and k ∈ N0. The fractional h-sum of order α > 0 for a
function x ∈ (hN)a → R

p is defined as follows

(
aΔ

−α
h x

)
(t) := hα

n∑
k=0

(
n − k + α − 1

n − k

)
x(a + kh) ,

(
aΔ

0
hx

)
(t) := x(t)

where t = a + (α + n)h and n ∈ N0 and

(
α

s

)
=

{
1 for s = 0
α(α−1)···(α−s+1)

s! for s ∈ N.

denotes the binomial coefficient.
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3 Discrete Mittag-Leffler Function

Let α,β be complex numbers with Reα > 0 and let λ ∈ R. The discrete Mittag-
Leffler two-parameter function is defined as, see [1, 2]

E(α,β)(λ, n) =
∞∑
k=0

λk(−1)n−k

(−kα − β

n − k

)
. (1)

As a special cases of this function one has [1, 2]

E(α,1)(λ, n) =
∞∑
k=0

λk(−1)n−k

(−kα − 1

n − k

)

and

E(α,α)(λ, n) =
∞∑
k=0

λk(−1)n−k

(−(k + 1)α

n − k

)
.

Note also that directly from the relation
(−1
k

) = (−1)k , k ∈ N0, it follows that

E(0,1) =
∞∑
k=0

λk(−1)n−k

( −1

n − k

)
=

∞∑
k=0

λk,

i.e. E(0,1)(λ, n) is the well known geometrical series.

Proposition 1 For α,β ∈ C with Reα > 0 and λ ∈ R, it holds

E(α,β)(λ, n) = E(α,β−1)(λ, n) +
∞∑
k=0

λk(−1)n−k

(−kα − β + 1

n − k − 1

)
.

Proof Since (see for example [8])

(−kα − β

n − k

)
=

(−kα − (β − 1) − 1

n − k

)
=

(−kα − (β − 1)

n − k

)
+

(−kα − (β − 1)

n − k − 1

)
,

then

E(α,β)(λ, n) = E(α,β−1)(λ, n) +
∞∑
k=0

λk(−1)n−k

(−kα − β + 1

n − k − 1

)

Corollary 1 For α ∈ C with Reα > 0 and λ ∈ R, it holds

E(1,0)(λ, n) = α

α − 1
E(1,−1)(λ, n) + n

1 − α

α

∞∑
k=0

λk(−1)n−k

( −kα

n − k

)
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Proof Since (see for example in [8])

( −kα

n − k

)
=

(−kα − 1

n − k

)
+

( −kα − 1

n − k − 1

)
and

( −kα − 1

n − k − 1

)
= n − k

−kα

( −kα

n − k

)
,

then

E(1,0)(λ, n) = E(1,−1)(λ, n) +
∞∑
k=0

λk(−1)n−k

(
n

−kα
+ 1

α

( −kα

n − k

))
.

So

E(1,0)(λ, n) = E(1,−1)(λ, n) + 1

α
E(1,0) − n

∞∑
k=0

1

kα

( −kα

n − k

)
.

Proposition 2 For−β < kα < 1 − β the power series definingMittag-Leffler func-
tion given by (1) is absolutely convergent for any |λ| < 1.

Proof In [1] it was shown that for α ∈ (0, 1) and any n ∈ N, it holds

∣∣∣∣(−1)n
(−α

n

)∣∣∣∣ ≤ 1.

Then, for −β < kα < 1 − β one has

|E(α,β)(λ, n)| =
∣∣∣∣∣

∞∑
k=0

λk(−1)n−k

(−kα − β

n − k

)∣∣∣∣∣
≤

∞∑
k=0

∣∣λk
∣∣
∣∣∣∣(−1)n−k

(−kα − β

n − k

)∣∣∣∣ ≤
∞∑
k=0

|λ|k

Since for |λ| < 1 series
∑∞

k=0 |λ|k converges, hence power series defining Mittag-
Leffler function given by (1) is absolutely convergent.

The definition of the discrete Mittag-Leffler two-parameter function can be easily
extended to the case when λ ∈ C. In this case Proposition 2 is valid.

4 h-Difference Fractional Order Operators

It is known that in literature one can meet several definitions/notations of frac-
tional order differences (see for example [9–12]). Here we focus on Caputo-,
Riemman–Louville- and Grünwald–Letnikov-type h-difference operators. h repre-
sents a sample step.
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Definition 1 ([13]) Let α ∈ (0, 1] and a ∈ R. The Caputo-type fractional
h-difference operator C

a Δα
h of order α for a function x : (hN)a → R is defined by

(
C
a Δα

h x
)
(t) =

(
aΔ

−(1−α)
h (Δhx)

)
(t) ,

where t ∈ (hN)a+(1−α)h .

If α = 1 then
(
C
a Δ1

hx
)
(t) = (Δhx) (t).

Proposition 3 ([1]) Letα ∈ (0, 1] andα = (α − 1)h, h > 0. The initial value prob-
lem

(
C
a Δα

h x
)
(t) = Ax(t + a)

x(a) = x0 ∈ R
p,

where t ∈ (hN)a and x : (hN)a → R
p, A is p × p real matrix, has the unique solu-

tion:
x(t + a) = x(nh + a) = E(α,1)(Ah

α, n)x0

for any n ∈ N0.

Definition 2 ([14]) Let α ∈ (0, 1] and a ∈ R. The Riemann–Liouville-type frac-
tional h-difference operator RL

a Δα
h of orderα for a function x : (hN)a → R is defined

by (
RL
a Δα

h x
)
(t) =

(
Δh

(
aΔ

−(1−α)
h x

))
(t) ,

where t ∈ (hN)a+(1−α)h .

If α = 1 then
(
RL
a Δ1

hx
)
(t) = (Δhx) (t). Moreover, for any t ∈ (hN)a+(1−α)h it

holds (see [7]): (
C
a Δα

h x
)
(t) = (

RL
a Δα

h x
)
(t) − x(a)

hα

( t−a
h

−α

)
. (2)

Proposition 4 ([1]) Letα ∈ (0, 1] andα = (α − 1)h, h > 0. The initial value prob-
lem

(
C
a Δα

h x
)
(t) = Ax(t + a)

x(a) = x0,

where t ∈ (hN)a and x : (hN)a → R
p, A denotes p × p real matrix, x0 ∈ R

p, has
the unique solution given as

x(t + a) = x(nh + a) = E(α,α)(Ah
α, n)x0

for any n ∈ N0.
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Definition 3 ([7]) Let α ∈ R. The Grünwald–Letnikov-type h-difference operator
GL
a Δα

h of order α for a function x : (hN)a → R is defined by

(
GL
a Δα

h x
)
(t) =

t−a
h∑

s=0

c(α)
s x(t − sh)

where c(α)
s = (−1)s

(
α
s

)
1
hα .

Let (∇hx) (t) = x(t)−x(t−h)

h denote the h-backward shift operator. Ifa = (α − 1)h,

then (see [7]) ∇h

(
aΔ

−(1−α)
h x

)
(t) = (

GL
0 Δα

h y
)
(t), where y(t) := x(t + a) for any

t ∈ (hN)a . Moreover,

(
GL
0 Δα

h y
)
(t + h) = (

RL
a Δα

h x
)
(t). (3)

Additionally if a = 0, then (3) and (2) imply that
(
C
0 Δα

h x
)
(t) = (

RL
0 Δα

h x
)
(t) =(

GL
0 Δα

h x
)
(t).

Proposition 5 ([1]) The initial value problem

(
GL
0 Δα

h y
)
(t + h) = Ay(t)

y(0) = y0,

where t ∈ (hN)0, A denotes p × p real matrix, y0 ∈ R
p, has the unique solution

given as

x(t) = E(α,α)

(
Ahα,

t

h

)
y0.

5 Putzer Algorithm

Since some definitions and facts that we discuss are the same for each type of differ-
ence operators, we use the common symbol defined by its values, i.e.

(aΥ
αx) (t) =

⎧⎨
⎩

(Ca Δα
h x)(t) or (RLa Δα

h x)(t) for a = (α − 1)h;

(GL
0 Δα

h x)(t + h), for a = 0.

Hence, let us consider the general form of the initial value problem:

(aΥ
αx) (t) = Ax(t + a),

x(a) = x0
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where x : (hN)a → R
p. From Propositions 3–5 it follows that for any t ∈ (hN)a ,

the solution of the initial value problem

(aΥ
αx) (t) = λx(t + a),

x(a) = x0

with a real scalar λ, has a unique solution

x(t + a) = x(nh + a) = E(α,β)(λh
α, n)x0,

where β = 1 for the Caputo-type operator, β = α for the Riemman–Liouville- and
Grünwald–Letnikov-type operators.

Theorem 1 Let A ∈ R
p×p and t ∈ (hN)0. If λ1, . . . ,λn are eigenvalues of A, then

E(α,β)(Ah
α, n) =

n−1∑
i=0

ri+1(t)Pi , (4)

where β = 1 for the Caputo-type operator, β = α for the Riemman–Liouville- and
Grünwald–Letnikov-type operators and r(t) := [r1(t), . . . , rn(t)]T is the solution of
the initial value problem

⎡
⎢⎢⎢⎢⎢⎣

(aΥ
αr1) (t)

(aΥ
αr2) (t)

(aΥ
αr3) (t)
...

(aΥ
αrn) (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 0 . . . 0 0
1 λ2 0 . . . 0 0
0 1 λ3 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 λn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

r1(t + a)

r2(t + a)

r3(t + a)
...

rn(t + a)

⎤
⎥⎥⎥⎥⎥⎦

, (5)

[r1(a), r2(a), r3(a), . . . , rn(a)]T = [1, 0, 0, . . . , 0]T

and matrices P0, P1, . . . , Pn are recursively defined as

P0 = I

Pk+1 = (A − λk+1 I )Pk, k = 0, 1, . . . , n − 1. (6)

Proof Let t ∈ (hN)a . At the beginning note that from Definition 1 one obtains the
following

(
C
a Δα

h

n−1∑
i=0

ri+1

)
(t) = hα

n∑
k=0

(
n − k + α − 1

n − k

)
Δh

(
n−1∑
i=0

ri+1

)
(kh)

=
n−1∑
i=0

hα
n∑

k=0

(
n − k + α − 1

n − k

)
Δhri+1(kh)
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=
n−1∑
i=0

(
C
a Δα

h ri+1
)
(t).

Similarly for Riemman–Louiville-type (and Grünwald–Letnikov-type) operator:

(
RL
a Δα

h

n−1∑
i=0

ri+1

)
(t) =

(
Δh

(
hα

n∑
k=0

(
n − k + α − 1

n − k

) n−1∑
i=0

ri+1

))
(kh + a)

=
n−1∑
i=0

hα
n∑

k=0

(
n − k + α − 1

n − k

)
(Δhri+1) (kh + a)

=
n−1∑
i=0

(
RL
a Δα

h ri+1
)
(t).

So, for any t ∈ (hN)a:

(
aΥ

α

(
n−1∑
i=0

ri+1

))
(t) =

n−1∑
i=0

(aΥ
αri+1) (t). (7)

Since the reasoning in the rest of the proof is the same as in the proof of Putzer
algorithm on time scales, see [6], we present only the main steps of it.

Let matrices P0, P1, . . . , Pn be defined by (6). From the classical Caley–Hamilton
theorem it follows that Pn = ∏n

i=1(A − λn I ) = 0.
Suppose now that amatrix X ∈ R

p×p is defined by the right side of the Eq. (4).We
are going to show that thismatrix is a solution of the fractional equation (aΥ

αX) (t) =
AX (t + a) with the matrix initial condition X (a) = I , where I is identity p × p
matrix. Note that x(a) = P0r1(a) = I and (following the reasoning given in [6]) one
has

(aΥ
αX) (t) − AX (t + a) =

(
aΥ

α

(
n−1∑
i=0

ri+1Pi

))
(t) − A

n−1∑
i=0

ri+1(t + a)Pi

=
n−1∑
i=1

ri (t + a)Pi +
n−1∑
i=0

(λ1 I − A)Piri+1(t + a)

=
n−1∑
i=1

ri (t + a)Pi −
n−1∑
i=0

Pi+1ri+1(t + a) = −rn(t + a)Pn = 0

Hence, (aΥ αX) (t) = AX (t + a).
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6 Remarks on Mittag-Leffler Continuous Function
for Caputo Operator

Recall that the Caputo fractional derivative of the order α, 0 < α ≤ 1, of a real
continuous function x is defined as

C
a D

αx(t) = 1

Γ (n − α)

∫ 1

a

x (n)(τ )

(t − τ )α+1−n
dτ

where Γ denotes the gamma function.
Let t̄h := a + (1 − α)h + nh with n = [

t−a
h

] + 1 and a = (α − 1)h, α ∈ (0, 1].
Also let x : (a, T ](hN)a → R

n .

Proposition 6 ([15]) The solution of the system

(
C
0 D

αx
)
(t) = f (t, x(t)) , x(0) = x0 .

is approximated by the solution of the system

(
C
a Δα

h x
)
(t) = f (t, x(t)) , x(a) = x0 .

in values via the limit limh→0 x(th) = x(t).

Recall that the two parameters continuous Mittang-Leffler function E(α,β) is
defined as, see for example [16, 17]

E(α,β)(z) :=
∞∑
k=0

zk

Γ (kα + β)
, α,β > 0 (8)

whenever the series converges.

Corollary 2 ([18]) Let α ∈ (0, 1], h > 0 and t ≥ a. If t̄h := (1 − α)h + nh, then
the continuous Mittang-Leffler function E(α,β)(At) is approximated by the discrete
Mittag-Leffler function E(α,β)(A, th).

As an immediate consequence of Theorem 1, Corollary 2 and Proposition 6 we
obtain the following

Theorem 2 Let A ∈ R
p×p and t ∈ (hN)0. If λ1, . . . ,λn are eigenvalues of A then

E(α,β)(Ah
α, n) =

n−1∑
i=0

ri+1(t)Pi , (9)
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where r(t) := [r1(t), . . . , rn(t)]T is the solution of the system

⎡
⎢⎢⎢⎢⎢⎣

(0Dαr1) (t)
(0Dαr2) (t)
(0Dαr3) (t)

...

(0Dαrn) (t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 0 . . . 0 0
1 λ2 0 . . . 0 0
0 1 λ3 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 λn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

r1(t)
r2(t)
r3(t)

...

rn(t)

⎤
⎥⎥⎥⎥⎥⎦

, (10)

with t ∈ (a, T ] and initial the initial condition

[r1(0), r2(0), r3(0), . . . , rn(0))]
T = [1, 0, 0, . . . , 0]T (11)

and matrices P0, P1, . . . , Pn are recursively defined as follows

P0 = I

Pk+1 = (A − λk+1 I )Pk, k = 0, 1, . . . , n − 1. (12)

7 Conclusions

The paper studies some properties of the discrete two parameters Mittag-Leffler
E(α,β) function. In general, this function is a natural extension of the classical expo-
nential function onto the discrete fractional case. Moreover, forα = 0 and β = 1 this
function is nothing else but the commonly known geometrical series. Mittag-Leffler
function plays a crucial role in the solution of the linear fractional order difference
equation. It is shown that it can be determined using the Putzer algorithm.
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On the Output-Additive Switching Strategy
for a New Variable Type and Order
Difference

Dominik Sierociuk, Wiktor Malesza and Michał Macias

Abstract The paper introduces definition of recursive fractional order difference
for the case when type of variable order changing is varying in time. The equivalent
switching strategies for this definition, which allow to better understand mechanism
of type of variable order definition changing, are also given. Numerical results of
comparison between given switching schemes and the definition are presented and
analyzed.

Keywords Fractional calculus · Variable order derivative

1 Introduction

Fractional calculus is a generalization of traditional differential calculus for the case
when order of differentiation and integration is a real or even complex number. The
theoretical background for this calculus can be found in [1–5]. One of the most
important application areas of fractional calculus is modelling diffusion processes.
In [6], results of successful modeling for heat transfer process in solid material
were presented. Moreover, in [7] similar results for heat transfer in heterogeneous
materials, described by anomalous diffusion using fractional order partial differential
equation, were shown. Another example of successful using fractional calculus are
ultracapacitors. Modeling of this devices based on anomalous diffusion (fractional
order model) was presented in [8, 9]. Despite of modeling, fractional calculus was
found interesting also in signal processing [10, 11] and control (e.g. fractional order
PID controllers [12]).
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The case when the order is changing in time is more complex to describe than in
the constant order case. In [13–17] four different types of variable order derivatives
definitionswere presented and,what ismore important, correspondingwith these def-
initions equivalent switching strategies were introduced and proved. These switching
schemes allow to make a clear categorization of definitions, and better understand-
ing their behavior, whose are: input-reductive, input-additive, output-reductive and
output-additive. Different type of definition can represent different mechanism of
order changing in the real plant or can be used to obtain desired behavior in control
algorithm.

We can imagine that in practical application, desired method of order changing
can be varying in time, or the system itself changes the switching strategy in time. In
order to describe such behavior and processes we will need to define the fractional
variable order and variable type difference. Similarly to the variable order case, we
can define different manners of type varying. To the best of our knowledge, the
pioneer article devoted to the variable type and order differences is [18], where iter-
ative definitions with corresponding input-additive and output-reductive switching
schemes were introduced.

In this paper, we will introduce next type of recursive definition of variable order
and type difference (other type of recursive definition is presented in [19]). More-
over, we will introduce an equivalent switching strategy that will correspond to this
definition. Finally, we will present results of numerical simulations that confirm
correctness of obtained theoretical achievements.

The remainder of this paper is structured as follows. In Sect. 2, variable fractional
order of constant type difference definitions are recalled. Section3 presents the main
result—definition of recursive fractional variable order and type difference together
with corresponding switching strategies. Finally, in Sect. 4, numerical results are
presented.

2 Fractional Constant Type Variable Order Differences

The following fractional constant order difference of Grünwald–Letnikov type will
be used as a base of generalization onto variable order case

Δαxl =
l∑

j=0

w( j,α)xl− j , (1)

where the order α ∈ R, the values xl ∈ R, l = 0, . . . , k, h > 0 is a sample time, and

w( j,α) = 1

hα
(−1) j

(
α

j

)
. (2)
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For the case of order changing with time (variable order case, with αl ∈ R, for
l = 0, . . . , k), many different types of differences can be found in literature [20–23].
Among them, we present only four—two iterative and two recursive type definitions.
The first one, iterative type, so called A-type difference [21], is the following

AΔαl xl =
l∑

j=0

Aw(l, j,αl)xl− j , (3)

where
Aw(l, j,αl) = 1

hαl
(−1) j

(
αl

j

)
. (4)

The next iterative type definition, so called B-type difference [24], is the following

BΔαl xl =
l∑

j=0

Bw(l, j,αl− j )xl− j , (5)

where
Bw(l, j,αl− j ) = 1

hαl− j
(−1) j

(
αl− j

j

)
. (6)

The recursive type difference definition, so called D-type difference [21], is the
following

DΔαl xl = xl
hαl

−
l∑

j=1

Dw(l, j,αl)
DΔαl− j xl− j , (7)

where
Dw(l, j,αl) = (−1) j

(−αl

j

)
. (8)

The other type of recursive fractional variable order difference, so called E-type
difference [23], is the following

EΔαl xl = xl
hαl

−
l∑

j=1

Ew(l, j,αl− j )
EΔαl− j xl− j , (9)

where
Ew(l, j,αl− j ) = (−1) j

(−αl− j

j

)
hαl− j

hαl
. (10)

One can see from (9) that for calculation present value of E-type difference all
coefficients multiplied by past (early calculated) differences are calculated including
the values of past orders.
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Δα2xlΔα̂1xl
S1

a

b

S2
a

b
DΔαlx lx∗

Fig. 1 Simple input-reductive switching schemeofD-type difference (configuration after switching
from order α1 to α2)

Δα1xl Δᾱ2xl
S1

a

b

S2
a

b
EΔαlxlx∗

Fig. 2 Simple output-additive switching scheme of E-type difference (configuration after switching
from order α1 to α2)

2.1 Switching Strategies

In Fig. 1, the simple input-reductive switching scheme equivalent to D-type differ-
ence for variable order changing from α1 to α2 is presented [21]. The switches Si ,
i = 1, 2, during the time, take the following positions

Si =
{
a for 0 ≤ t < Tsw,

b for t ≥ Tsw,
i = 1, 2,

where Tsw = mh, for some natural number m ∈ (0, k), and α̂1 = α1 − α2.
In Fig. 2, the simple output-additive switching scheme equivalent to E-type dif-

ference for variable order changing from α1 to α2 is presented [23]. The switches
Si , i = 1, 2, during the time, take the following positions

Si =
{
b for 0 ≤ t < Tsw,

a for t ≥ Tsw,
i = 1, 2,

where Tsw = mh, for some natural number m ∈ (0, k), and ᾱ2 = α2 − α1.

3 Fractional Variable Type Differences—Main Result

TheD-type and E-type difference definitions differ in themanner of changing in time
fractional order. Besides of changing order one can also imagine changing in time the
type of difference, that is, for instance,—for some time interval the fractional order
can change according to D-type (E-type) difference, and then varied in pursuance
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of E-type (D-type) difference. What is crucial in the issue of changing in time type
of difference, is (as in the case of changing order) the tactics that can be realized by
means of D-type or E-type routines.

3.1 The E-type Fractional Variable Type and Order
Difference

Below, we define variable type difference allowing varying in time a type of changing
variable order.

Let T = {D, E} be the list of difference definition types symbols, P denotes a
sequence of symbols D and E , and Pl ∈ T, for l = 0, . . . , k, denote l th element
of P.

Definition 1 The E-type difference of fractional variable type and order is defined
as follows

E(P)Δαl xl = xl
hαl

−
l∑

j=1

Pl− j w(l, j)E(P)Δαl− j xl− j , (11)

where

Pl− j w(l, j) =
{
Dw(l, j,αl) for Pl− j = D,
Ew(l, j,αl− j ) for Pl− j = E,

according to (8) and (10), respectively.

The definition introduced above is obtained in such a way that all the coefficients
multiplied by past (early calculated) differences are calculated for type of changing
order that was present for these differences.

3.2 Switching Strategies for Variable Order and Type
Differences

In this section, different types of simple switching schemes, that is—switching
schemes with only one change of changing order’s type, are presented.

In Figs. 3 and 4 are the output-additive switching schemes, where the switches Si ,
i = 1, 2, during the time, take the following positions

Si =
{
b for 0 ≤ t < Tsw,

a for t ≥ Tsw,
i = 1, 2,
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DΔ
αlxl

AΔ
−αlxl

EΔ
αlxl

S1

a

b

S2
a

b
(P )Δαlxlx∗

Fig. 3 Simple output-additive switching scheme ofE(P)-type difference, for P = P1 given by (12)

EΔ BΔ
− DΔ

αlxl
αlxl

αlxl
S1

a

b

S2
a

b
(P )Δαlxlx∗

Fig. 4 Simple output-additive switching schemeofE(P)-type difference, for P = P2 given by (13)

where Tsw = mh, for some natural number m ∈ (1, k). It corresponds, respectively,
to the following sequences

P1
l =

{
D for l = 0, . . . ,m − 1,

E for l = m, . . . , k
(12)

and

P2
l =

{
E for l = 0, . . . ,m − 1,

D for l = m, . . . , k.
(13)

Theorem 1 The output-additive simple switching schemes presented in Figs.3 and 4
are equivalent to the E-type differences for sequences P1 and P2 respectively, where
the sequences are given by (12) and (13).

Remark 1 The duality property [25] can be applied to obtain the following relation

AΔαlDΔ−αl xl =
l∑

j=0

Aw(l, j,αl)
DΔ−αl− j xl− j = xl . (14)

Proof Let us assume the simple output-reductive switching scheme of E-type dif-
ference, for P = P1 given by (12). For this situation, the variable order and type
definition can be rewritten as follows: for 0 ≤ t < Tsw we have
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E(P)Δαl xl = DΔαl xl = xl
hαl

−
l∑

j=1

Dw(l, j,αl)
DΔαl− j xl− j ;

for t ≥ Tsw, where Tsw = mh, and r = l − m + 1, we have

E(P)Δαl xl = xl
hαl

−
l∑

j=r

Dw(l, j,αl)
DΔαl− j xl− j

−
r−1∑
j=1

Ew(l, j,αl− j )
D(P)Δαl− j xl− j . (15)

From the switching strategy presented in Fig. 3, and for 0 ≤ t < Tsw, we have:

E(P)Δ̆αl xl = xl
hαl

−
l∑

j=1

Dw(l, j,αl)
E(P)Δαl− j xl− j = DΔαl xl ,

which is the same as E-type difference for 0 ≤ t < Tsw.
For t ≥ Tsw, that is for l ≥ m, we have

E(P)Δ̆αl xl = E
mΔ

αl
l

A
m Δ

−αl
l

DΔαl xl = 1

hαl

l−m∑
j=0

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j−

l−m∑
j=1

Ew(l, j,αl− j )
E(P)Δ̆αl− j xl− j = 1

hαl

l−m∑
j=0

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j+

1

hαl

l∑
j=l−m+1

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j−

1

hαl

l∑
j=l−m+1

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j−

l−m∑
j=1

Ew(l, j,αl− j )
E(P)Δ̆αl− j xl− j = 1

hαl

l∑
j=0

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j−

1

hαl

l∑
j=l−m+1

Aw(l, j,−αl)
D
0 Δ

−αl− j

l xl− j −
l−m∑
j=1

Ew(l, j,αl− j )
E(P)Δ̆αl− j xl− j =
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xl
hαl

− 1

hαl

l∑
j=l−m+1

Aw(l, j − αl)
D
0 Δ

−αl− j

l xl− j−

l−m∑
j=1

Ew(l, j,αl− j )
E(P)Δ̆αl− j xl− j .

Taking into account that between coefficients ofA- andD-type given by (4) and (8)
respectively the following holds Dw(l, j,α) = 1

hαl
Aw(l, j − αl), we obtain

E(P)Δ̆αl xl = xl
hαl

−
l−m∑
j=1

Ew(l, j,αl− j )
E(P)Δ̆αl− j xl− j

−
l∑

j=l−m+1

Dw(l, j,αl)
DΔαl− j xl− j . (16)

By comparison expression (16) from switching strategy with relation (15) from
E-type difference, we obtain E(P)Δ̆αl xl = E(P)Δαl xl , which ends the proof.

In the case of equivalence between switching scheme from Fig. 4 and E-type
difference for sequence P = P2 given by (13), the proof is analogous.

4 Numerical Results

Example 1 Let the type of changing the variable order changes at Tsw = 5s, the
sample time be h = 0.01s, the variable order

α(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.1 for 0 ≤ t < 2,

−0.2 for 2 ≤ t < 5,

−0.4 for 5 ≤ t < 8,

−0.6 for 8 ≤ t < 10,

and two sequences P1 and P2 given respectively by (12) and (13) for m = Tsw/h =
500.

In Fig. 5, the plots of E(P1)Δαl xl and E(P2)Δαl xl compared with corresponding
simple switching schemes, realized in Matlab/Simulink [26], are presented.
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Fig. 5 Plots of E(P1)Δαl xl (solid line) and E(P2)Δαl xl (dashed line) differences compared with
corresponding output-additive switching schemes (diamonds and circles, respectively)

5 Conclusion

In the paper, definition of the recursive fractional difference for the case when type
of variable order changing is varying in time, has been presented. Definition was
introduced together with corresponding equivalent output-additive switching strate-
gies that allow to better understand its dynamical behavior. Proposed definition can
be used in control applications, when the type of variable order definition has to
be changed in time, and to modelling complex systems, which structure of order
changing also depends on time. Finally, numerical results of comparison between
definition and corresponding switching schemes were also given.
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Large Deviations for Stochastic Fractional
Differential Equations

Murugan Suvinthra

Abstract In this work, a stochastic fractional differential equation is considered
and large deviation principle is established for the corresponding solution distribu-
tions. The weak convergence approach, in particular the variational representation
for functionals of Brownian motion, is exploited to obtain the large deviation result.

Keywords Large deviation principle · Stochastic fractional differential equations ·
Weak convergence

1 Introduction

Fractional order models have the tendency to capture non-local relations in space
and time, thus forming an improvised model for analyzing complex phenomena.
For an introductory study on fractional calculus and fractional derivatives, see the
literatures [1, 2]. Inducing randomness into the model helps us to analyze better by
taking into consideration the effect of uncertainty, thus leading to stochastic fractional
differential equations (refer [3, 4] and references therein). The theory of existence,
controllability and stability for fractional differential equations has been studied
by many authors (for instance, see [5, 6]). However there seems to be possibly
no literature for the study of large deviations for stochastic fractional differential
equations.

Large deviations form the study of probabilities of extremely rare events. It is
significant to study these rare events because of their heavy impact during their
occurrences (one can refer [7–9]). The interlink between the theory of large deviations
and stochastic controllability was introduced by Fleming [10]. Following his works,
Dupuis and Ellis [11] developed the weak convergence approach to study large
deviation principle for random processes. For a detailed description and significance
of establishing large deviations using weak convergence approach, one may refer
[11, 12]. Using the weak convergence approach, the large deviation principle (LDP)
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has been established for two-dimensional stochastic Navier–Stokes equations by
Sritharan and Sundar [13]; and for stochastic delay differential equations by Mo and
Luo [14].

The study of large deviations for stochastic fractional differential equations is a
newly emerging area and there seems possibly no previous literature. Introducing
non-integer order derivatives in the estimation of rate function using large deviation
theory produces relatively good accuracy in the results and can be applied to a variety
of problems based on the model chosen. Indeed they can be applied to determine
the time of exit of a certain measure from a desired domain, to calculate the entropy
in statistical mechanics and also to predict the rate of convergence of a dynamical
system to the desired output.

In this paper, we consider the stochastic fractional differential equations withmul-
tiplicative type Gaussian noise perturbation and establish the LDP for the solution
processes. To deal with this multiplicative noise type, we use the variational rep-
resentations developed by Budhiraja and Dupuis [15] which require a compactness
argument and aweak convergence result.A sequential compactness argument ismade
by introducing a control term and considering the associated control equation. The
weak convergence result is obtained by means of defining measurable maps corre-
sponding to controlled perturbed stochastic differential equations and then studying
the convergence of the solution processes.

2 Preliminaries

Consider the nonlinear stochastic fractional differential equation of the form

CDαx(t) = Ax(t) + f (t, x(t)) + σ(t, x(t)) dW (t)
dt , t ∈ (0,T ],

x(0) = x0,
(1)

where 1
2 < α ≤ 1, x0 ∈ R

n,A is an n × n matrix and for J := [0,T ], f : J × R
n →

R
n;σ : J × R

n → R
n×m. Also W (·) is an m-dimensional Wiener process.

Assume that the nonlinear drift and diffusion coefficients satisfy Lipschitz con-
dition: For all x1, x2 ∈ R

n and t ∈ J , there exist constants L1,L2 > 0 with

‖f (t, x1) − f (t, x2)‖ ≤L1‖x1 − x2‖, (2)

‖σ(t, x1) − σ(t, x2)‖ ≤L2‖x1 − x2‖. (3)

The Lipschitz continuity immediately yields the linear growth property and hence,
for all x ∈ R

n, there exists some constant, say K > 0 such that

‖f (t, x)‖2 ≤ K(1 + ‖x‖2); ‖σ(t, x)‖2 ≤ K(1 + ‖x‖2). (4)
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Let us recall some basic definitions from the fractional calculus. For α,β > 0, with
n − 1 < α < n, n − 1 < β < n and n ∈ N, D is the usual differential operator and
suppose f ∈ L1(R+),R+ = [0,∞). The following definitions and properties arewell
known (see, for instance, [1, 2]):

(i) Caputo fractional derivative:
The Riemann Liouville fractional integral of a function f is defined by

Iαf (t) = 1

Γ (α)

∫ t

0
(t − s)α−1f (s)ds,

and the Caputo derivative of f is

CDαf = In−αDnf = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds,

where the function f (t) has absolutely continuous derivatives upto order n − 1.
(ii) Mittag–Leffler matrix function:

Eα,β(A) =
∞∑
k=0

Ak

Γ (kα + β)
.

In particular, for β = 1,

Eα(A) =
∞∑
k=0

Ak

Γ (kα + 1)
.

The solution representation of (1) is given by

x(t) =Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)f (s, x(s))ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))dW (s). (5)

We now present some basic definitions and results from large deviation theory. For
this, let {Ω,F ,P} be a complete filtered probability space equipped with a complete
family of right continuous increasing subσ-algebras {Ft, t ∈ J} satisfying {Ft ⊂ F},
and {Xε} be a family of random variables defined on this space and taking values in
a Polish space E (that is, a complete separable metric space E).

Definition 1 (Rate Function) A function I : E → [0,∞] is called a rate function if
I is lower semicontinuous. A rate function I is called a good rate function if, for each
N < ∞, the level set KN = {f ∈ E : I(f ) ≤ N} is compact in E.
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Definition 2 (Large Deviation Principle) Let I be a rate function on E. We say
the sequence {Xε} satisfies the large deviation principle with rate function I if the
following two conditions hold:
(i) Large deviation upper bound. For each closed subset F of E,

lim sup
ε→0

ε logP(Xε ∈ F) ≤ −I(F).

(ii) Large deviation lower bound. For each open subset G of E,

lim inf
ε→0

ε logP(Xε ∈ G) ≥ −I(G).

3 Large Deviation Principle

SinceXε is a strong solution to (1) (refer [3]), the Yamada–Watanabe theorem assures
that there exists a Borel-measurable function Gε : C(

J;Rm
) → C

(
J;Rn

)
such that

Xε(·) = Gε
(
W (·)) a.s.

Let

A =
{
v : v isRm-valuedFt-predictable process and

∫ T

0
‖v(s,ω)‖2ds < ∞ a.s.

}
,

SN =
{
v ∈ L2

(
0,T;Rm

) :
∫ T

0
|v(s)|2ds ≤ N

}
,

where L2
(
0,T;Rm

)
is the space of all Rm -valued square integrable functions on

J . Then SN endowed with the weak topology in L2
(
0,T;Rm

)
is a compact Polish

space. Let us also define

AN = {v ∈ A : v(ω) ∈ SN P − a.s} .

We formulate (fromTheorem4.4 in [15]) the following sufficient conditions under
which the Laplace principle holds for the family {Xε : ε > 0} (see [14]).
(A) There exists a measurable map G0 : C(

J;Rm
) → C

(
J;Rn

)
such that the fol-

lowing two conditions hold:

(i) Let {vε : ε > 0} ⊂ AN for some N < ∞. If vε converge to v in distribution as
SN -valued random elements, then

Gε

(
W (·) + 1√

ε

∫ .

0
vε(s)ds

)
→ G0

(∫ .

0
v(s)ds

)
in distribution as ε → 0.
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(ii) For each N< ∞, the set KN =
{
G0

(∫ .

0
v(s)ds

)
: v ∈ SN

}
is a compact subset

of C
(
J;Rn

)
.

Consider the controlled equation associated with (1) with control v ∈ SN :

CDαx(t) = Ax(t) + f (t, x(t)) + σ(t, x(t))v(t),
x(0) = x0.

(6)

Let xv denote the solution of the Eq. (6). Now we state the main result in this section,
which is a Freidlin–Wentzell type theorem.

Theorem 1 The family {Xε(t)} of (1) satisfies the large deviation principle (equiv-
alently, Laplace principle) in C

(
J;Rn

)
with good rate function

I(f ) := inf

{
1

2

∫ T

0
‖v(t)‖2dt; xv = f

}
, (7)

where v ∈ L2
(
0,T;Rm

)
; otherwise, I(f ) = ∞.

In view of Theorem 4.4 in [15], the Proof of Theorem 3.1 is reduced to verifying
the two hypotheses in assumption (A). We begin with the following compactness
argument.

Lemma 1 (Compactness) Define G0 : C(
J;Rm

) → C
(
J;Rn

)
by

G0(g) :=
{
xv, if g = ∫ ·

0 v(s)ds for some v ∈ L2
(
0,T;Rm

)
,

0 , otherwise.

Then, for each N < ∞, the set

KN =
{
G0

(∫ ·

0
v(s)ds

)
: v ∈ SN

}

is a compact subset of C
(
J;Rn

)
.

Proof Consider a sequence {vn} ∈ SN such that vn → v weakly in SN as n → ∞.
Let xn(t) be the solution of (6) with v replaced by vn. Define yn(t) := xn(t) − x(t).
Then

CDαyn(t) = Ayn(t) + f (t, xn(t)) − f (t, x(t)) + σ(t, xn(t))vn(t) − σ(t, x(t))v(t),
yn(0) = 0.

(8)

The solution representation for the Eq. (8) is given by
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yn(t) =
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[f (s, xn(s)) − f (s, x(s))]ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[σ(s, xn(s))vn(s) − σ(s, x(s))v(s)]ds. (9)

Then

‖yn(t)‖ ≤M
∫ t

0
(t − s)α−1‖f (s, xn(s)) − f (s, x(s))‖ds

+ M
∫ t

0
(t − s)α−1‖σ(s, xn(s)) − σ(s, x(s))‖‖vn(s)‖ds

+ M

∥∥∥∥
∫ t

0
(t − s)α−1σ(s, x(s))(vn(s) − v(s))ds

∥∥∥∥ . (10)

Using the Lipschitz condition on f and σ given by (2) and (3), we have

‖yn(t)‖ ≤ML1

∫ t

0
(t − s)α−1‖yn(s)‖ds + ML2

∫ t

0
(t − s)α−1‖yn(s)‖‖vn(s)‖ds

+ M

∥∥∥∥
∫ t

0
(t − s)α−1σ(s, x(s))(vn(s) − v(s))ds

∥∥∥∥ . (11)

Applying Gronwall’s inequality, we get

‖yn(t)‖ ≤ M

∥∥∥∥
∫ t

0
(t − s)α−1σ(s, x(s))(vn(s) − v(s))ds

∥∥∥∥
× exp

(
ML1

∫ t

0
(t − s)α−1ds + ML2

∫ t

0
(t − s)α−1‖vn(s)‖ds

)

≤ M

∥∥∥∥
∫ t

0
(t − s)α−1σ(s, x(s))(vn(s) − v(s))ds

∥∥∥∥
× exp

(
ML1Tα

α
+ 1

2α − 1
ML2T

2α−1 + MN

)
. (12)

Let

ζn(t) =
∫ t

0
(t − s)α−1σ(s, x(s))(vn(s) − v(s))ds. (13)

Observe that {ζn(t)} is a family of linear, continuous real-valued functions mapping
SN to C(J;Rn).

Also notice that the family {ζn(t)} is uniformly bounded by C. Hence {ζn} is
equicontinuous.
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Also observe from (13) that as vn → v weakly in L2
(
0,T;Rm

)
, ζn(t) → 0 point-

wise for t ∈ J . With these observations, an application of Arzéla-Ascoli theorem
immediately implies that ζn → 0 in C

(
J;Rn

)
. Hence

lim
n→∞ sup

t∈J
‖ζn(t)‖ = 0. (14)

Combining this observation with (12) yields the continuity of the map v → xv(t).
Since the space SN is compact and since v → xv(t) is continuous, the set KN ={
G0

( ∫ ·
0 v(s)ds

) : v ∈ SN } for N < ∞ is compact.

Lemma 2 (Weak Convergence) Let {vε : ε > 0} ⊂ AN for some N < ∞. Assume
vε converges to v in distribution as SN-valued random elements, then

Gε

(
W (·) + 1√

ε

∫ ·

0
vε(s)ds

)
→ G0

(∫ ·

0
v(s)ds

)

in distribution as ε → 0.

Proof Consider the nonlinear stochastic fractional differential equation with control
v ∈ SN of the form

CDαxε(t) = Axε(t) + f (t, xε(t)) + σ(t, xε(t))vε(t) + √
εσ(t, xε(t)) dW (t)

dt ,

x(0) = x0.
(15)

The solution representation of (15) is given by

xε(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)f (s, xε(s))ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, xε(s))vε(s)ds

+ √
ε

∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, xε(s))dW (s). (16)

Take yε(t) = xε(t) − x(t), where x(·) denotes the solution of the controlled equation
(6). Then

yε(t) =
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[f (s, xε(s)) − f (s, x(s))]ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[σ(s, xε(s))vε(s) − σ(s, x(s))v(s)]ds

+ √
ε

∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, xε(s))dW (s). (17)
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Then, using Holder’s inequality, the Lipschitz continuity (2) and (3) and further
simplifying, we get

‖yε(t)‖2 ≤ 4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[f (s, xε(s)) − f (s, x(s))]ds

∥∥∥∥
2

+ 4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)[σ(s, xε(s)) − σ(s, x(s))]vε(s)ds

∥∥∥∥
2

+ 4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))(vε(s) − v(s))ds

∥∥∥∥
2

+ 4ε

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, xε(s))dW (s)

∥∥∥∥
2

(18)

≤ 4M2L21
T2α−1

2α − 1

∫ t

0
‖yε(s)‖2ds + 4M2L22

T2α−1

2α − 1

∫ t

0
‖yε(s)‖2‖vε(s)‖2ds

+ 4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))(vε(s) − v(s))ds

∥∥∥∥
2

+ 4ε

∥∥∥∥
∫ t

0
(t − s)2α−2Eα,α(A(t − s)α)σ(s, xε(s))dW (s)

∥∥∥∥
2

. (19)

Taking expectation and applying Burkholder–Davis–Gundy inequality for the sto-
chastic integral term, one gets

e‖yε(t)‖2 ≤ 4M2 T 2α−1

2α − 1
e
∫ t

0
‖yε(s)‖2 (

L2
1 + L2

2‖vε(s)‖2) ds

+ 4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))(vε(s) − v(s))ds

∥∥∥∥
2

+ 4εM2 T 2α−1

2α − 1
e
∫ t

0
‖σ(s, xε(s))‖2ds. (20)

Applying Gronwall’s inequality and using the linear growth property (4), one gets

sup
t∈J

e‖yε(t)‖2 ≤
{
4

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))(vε(s) − v(s))ds

∥∥∥∥
2

+ 8εM2K2 T 2α−1

2α − 1
e
∫ t

0
(1 + ‖xε(s)‖2)ds

}
exp

(
4M2 T 2α−1

2α − 1
(L2

1 + L2
2N)

)
.

(21)

As before, we define

ζε(t) =
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))(vε(s) − v(s))ds.
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Define

f (u) =
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s, x(s))u(s)ds.

Due to the linear growth of σ and h, the map f : SN → C
(
J;R)

is a bounded con-
tinuous function. Note that SN is endowed with the weak topology and vε converge
to v in distribution as SN -valued random elements. Then ζε → 0 in distribution as
ε → 0 follows immediately by Theorem A.3.6 in [11].

Using this fact in (21) yields the convergence in distribution of yε to 0 as ε → 0
and the lemma is established.
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Mean Square Stability of Discrete-Time
Fractional Order Systems
With Multiplicative Noise

Viorica Mariela Ungureanu and Mădălina Roxana Buneci

Abstract This paper studies stability problems for a class of discrete-time linear
fractional systems (LFSs) affected by multiplicative, independent random pertur-
bations. Sufficient conditions for the mean square (MS) stability and mean square
asymptotic (MSA) stability properties of the stochastic LFSs are given. A numerical
simulation illustrates the effectiveness of the theory.

Keywords Fractional order systems · Discrete-time stochastic systems · Mean
square stability · Mean square asymptotic stability

1 Introduction

Fractional calculus (FC) has a long history which goes back to Leibniz who
introduced the notion of “ 1

2 -order derivative” in a letter to L’Hospital from 1695.
Nowadays FC finds important applications in different areas of applied science
including electrochemistry, electromagnetism, biophysics, quantummechanics, radi-
ation physics or control theory (see [1, 2] and the references therein). For example,
fractional partial differential equations were used to model the wave propagation in
viscoelastic media as well as the dissipation in seismology or in metallurgy [3]. Also,
certain adaptive and robust control algorithms (as the one used for the lateral con-
trol of autonomous guided vehicle) can be improved by applying various fractional
adaptation schemes for the adjustment of the feed-forward gain [4].

In many situations, the real-world phenomena are affected by random factors that
exercised a decisive influence in the process evolution. The properties of discrete-time
linear systems affected by independent random perturbations and their applications
have attracted a lot of interest from the scientific community in the last decades (see
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for e.g. [5, 6] and the references therein). In this paper we study the asymptotic
behavior of the solutions for a class of discrete-time LFSs perturbed by sequences
of independent scalars with zero mean and variance b > 0. As far as we know this
subject seems to be new for linear discrete-time fractional systems (DTFSs) with
multiplicative random perturbations. Some recent papers (see for e.g. [7] and the
references therein) study various properties of linear stochastic DTFSs only for the
case of additive noise.

In the deterministic case, different stability results for linear DTFSswere obtained
in [1, 8–11] and the included references. In the stochastic case, we shall prove that
similar conditions to those given in the deterministic case (see Criterion 2 from [1],
p. 66) are sufficient to ensure the mean square boundedness of the LFSs’ solutions
(see Proposition1). Based on Proposition1, we then derive a mean square stability
criterion (see Theorem1) and sufficient conditions for the MSA stability of the solu-
tions (see Theorem2). Finally, a numerical simulation is provided to illustrate these
results.

2 Notations

As usual, we shall write 〈., .〉 for the inner product and ‖.‖ for norms of elements and
operators, unless indicated otherwise. Let d ∈ N

∗ = N − {0} and L
(
R

d
)
be the real

linear space of all linear operators from R
d to R

d . For any T ∈ L
(
R

d
)
we denote

by T ∗ the adjoint operator of T . Through this paper we shall use three norms of an
operator T ∈ L

(
R

d
) : the operatorial norm ‖T ‖ = supx∈Rd

‖T x‖
‖x‖ , the nuclear norm

‖T ‖1 = T r
[√

T ∗T
]

< ∞ and the Hilbert-Schmidt norm ‖T ‖2 = √
T r [T ∗T ] <

∞ [12, 13]. Here T r [.] is the trace operator. For example, the operator x ⊗ x, x ∈
R

d , defined by x ⊗ x (h) = 〈h, x〉 x for all h ∈ R
d has the property that ‖x ⊗ x‖ =

‖x ⊗ x‖1 = ‖x ⊗ x‖2 = ‖x‖2.
The convergence of a double sequence x = {x j,k}i, j∈N ∈ R

d will be defined in
the Pringsheim’s sense [14] as it follows: x = {x j,k}i, j∈N ∈ R

d is said to converge
to the limit l if for every ε > 0, there is a positive integer Nε such that

∥∥x j,k − l
∥∥

< ε for all j, k > Nε. If, in addition, the double sequence x is bounded, i.e. ‖x‖∞ =
supi, j∈N

∥∥x j,k

∥∥ < ∞, then x is said to be boundedly convergent to l. A double series
∞∑

i, j=0
x j,k is boundedly convergent, if its partial sums are boundedly convergent.

Let (Ω,F , P) be a probability space. For any integrable random variable ξ
on (Ω,F , P), we write E [ξ] for its mean (expectation). We will denote by
L2

(
Ω,Rd

)
, the Hilbert space of allRd valued random variables ξ with the property

E
[‖ξ‖2] < ∞. For any ξ ∈ L2

(
Ω,Rd

)
, the linear operator E (ξ ⊗ ξ) defined by

E (ξ ⊗ ξ) (h) = E (〈h, ξ〉 ξ) , h ∈ H has the property that ‖E (ξ ⊗ ξ)‖1 = E ‖ξ‖2
and it is called the correlation operator of the random variable ξ [4]. If ξ,
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η ∈ L2 (Ω,Rp) , then E (ξ ⊗ η) (h) := E (〈h, η〉 ξ) , h ∈ R
p is a linear operator and

‖E (ξ ⊗ η)‖1 ≤ E ‖ξ‖2 E ‖η‖2.

3 Discrete-time Fractional Order Systems with Stochastic
Perturbations

Let R∗+ = {x ∈ R, x > 0} and α ∈ R
∗+,α < 2 be fixed. For all j ∈ N, let

(
α
j

)

denote the generalized binomial coefficient

(
α
j

)
:=

{
1, j = 0

α(α−1)·····(α+1− j)
j ! , j > 0

.

In this paper we consider the Grünwald–Letnikov’s definition of the fractional-
order operators

Δ[α]xk+1 = 1

hα

k+1∑
j=0

(−1) j

(
α
j

)
xk+1− j ,

where h ∈ R
∗+ is the sampling period or the time increment.

Let {ξk}k∈N be a sequence of real-valued, mutually independent random variables
on (Ω,F , P) satisfying E [ξk] = 0 and E

[
ξ2k

] = b < ∞ for all k ∈ N. We consider
the discrete-time fractional system

Δ[α]xk+1 = Axk + ξkBxk, k ∈ N (1)

x0 = x ∈ R
d , (2)

where A, B are real d-dimensional matrices. Note that in the rest of the paper we do
not distinguish between the matrix and the linear operator defined by it.

As in [15], we see that hαΔ[α]xk+1 =
k+1∑
j=0

(−1) j

(
α
j

)
xk+1− j . Multiplying (1) by

hα and using the last relation, we get

xk+1 = (hα
A + αIRd ) xk +

k∑
j=1

(−1) j

(
α

j + 1

)
xk− j + ξkhα

Bxk .

Denoting A0 = hα
A + αIRd , B = hα

B, c j := (−1) j

(
α

j + 1

)
and A j = c j IRd , sys-

tem (1) can be equivalently rewritten as
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xk+1 =
k∑

j=0

A j xk− j + ξk Bxk, (3)

x0 = x ∈ R
d . (4)

Let Fn, n ∈ N
∗ denotes the σ− algebra generated by {ξi , 0 ≤ i ≤ n − 1}. Obvi-

ously (3)–(4) has a unique solution which belongs to L2
(
Ω,Rd

)
. Moreover,

x1 = (A0 + ξ0B) x0, x2 = (A0 + ξ1B) x1 + A1x0,

x3 = (A0 + ξ2B) x2 + A1x1 + A2x0, ..

Let us introduce the sequence Gk, k ∈ N defined recursively by G0 = IRd and

Gk+1 = (A0 + ξk B) Gk +
k∑

j=1

A j Gk− j , k ≥ 1.

A simple computation and an induction argument show that xk = Gk x0 for all k ∈ N.
The operator Gk will be termed the random solution operator associated with the
fractional system (3). It is not difficult to prove that Gk is Fk-measurable for all
k ∈ N

∗ and Gk, ξn are independent for n ≥ k. It follows that xk is Fk-measurable
and ξn independent for all n ≥ k > 0.

Let us introduce the following mean square Lyapunov type stability notions (see
for e.g. [16] for deterministic systems).

Definition 1 The null solution of system (3)–(4) is
(a) mean square (MS) stable if for every ε > 0 there is δ > 0 such that if ‖x0‖ ≤ δ,

x0 ∈ R
d then E ‖xk‖2 < ε for all k ∈ N.

(b) mean square asymptotically (MSA) stable if it is stable and there is δa > 0
such that E ‖xk‖2 →

k→∞ 0 for all ‖x0‖ < δa .

As usually for linear systems, stability of the null solution xk = 0 is equivalent
with stability of any other solution. Then, by a slight abuse of language, we shall use
the terms of MS and MSA stability of (3)–(4).

Thus, the aim of this paper is to provide some easy to verify, sufficient conditions
for MS and MSA stability of system (3)–(4).

4 Asymptotic Behavior of Solutions

Before giving the main results of this paper we shall establish a useful bounded-
ness property of the solution xk, k ∈ N of (3)–(4). For this we need the following
hypothesis.



Mean Square Stability of Discrete-Time Fractional Order Systems … 127

• (H1) ‖A0‖ +
n−1∑
j=1

∣∣c j

∣∣ + √
b ‖B‖ = γ < 1 for all n ∈ N, n ≥ 1.

We recall that
∞∑
j=1

∣∣c j

∣∣ = |1 − α| < 1, α ∈ (0, 2) and (H1) is admissible for (3).

Proposition 1 If (H1) holds, then
∥∥E

[
xk ⊗ x p

]∥∥
1 ≤ ‖x0‖2 for all k, p ∈ N.

Proof We shall use the induction method. For k = p = 0 the statement is obviously
true. Assume that

∥∥E
[
xk ⊗ x p

]∥∥
1 ≤ ‖x0‖2 for all k, p < n and let us prove the

statement for k, p < n + 1. Obviously we only have to show the inequalities for
k = n or p = n. Let k = p = n. As mentioned in the above section, ξn and xn are
independent random variables for all n ∈ N. Recalling that E [ξn] = 0 and E

[
ξ2n

] =
b for all n ∈ N, we have (see [17])

E
[
ξn−1Bxn−1 ⊗ ξn−1Bxn−1

] = E
[
ξ2n−1

]
E

[
Bxn−1 ⊗ Bxn−1

] =

bB E
[
xn−1 ⊗ xn−1

]
B∗

and E
[
ξn−1Bxn−1 ⊗ Ai xn−1−i

] = E
[
ξn−1

]
E

[
Bxn−1 ⊗ Ai xn−1−i

] = 0 for all i ∈
N, i ≤ n − 1. Thus

E [xn ⊗ xn] =

E

⎡
⎣

⎛
⎝n−1∑

j=0

A j xn−1− j + ξn−1Bxn−1

⎞
⎠ ⊗

(
n−1∑
i=0

Ai xn−1−i + ξn−1Bxn−1

)⎤
⎦ =

E

⎡
⎣n−1∑

j=0

n−1∑
i=0

(
A j xn−1− j

) ⊗ (Ai xn−1−i ) + bBxn−1 ⊗ Bxn−1

⎤
⎦

=
n−1∑
j=0

n−1∑
i=0

A j E
[
xn−1− j ⊗ xn−1−i

]
A∗

i + bB E
[
xn−1 ⊗ xn−1

]
B∗.

Agreeing that
q∑

i=r
is 0 if q < r , we pass to the norm ‖.‖1 and we obtain

‖E [xn ⊗ xn]‖1 ≤
=

n−1∑
j=0

n−1∑
i=0

∥∥A j E
[
xn−1− j ⊗ xn−1−i

]
A∗

i

∥∥
1 + b

∥∥B E
[
xn−1 ⊗ xn−1

]
B∗∥∥

1

= ∥∥A0E
[
xn−1 ⊗ xn−1

]
A∗
0

∥∥
1 +

n−1∑
j=1

∣∣c j

∣∣ ∥∥E
[
xn−1− j ⊗ xn−1

]
A∗
0

∥∥
1

n−1∑
i=1

|ci |
∥∥A0E

[
xn−1 ⊗ xn−1−i

]∥∥
1 +

n−1∑
j=2

n−1∑
i=2

|ci |
∣∣c j

∣∣ ∥∥E
[
xn−1− j ⊗ xn−1−i

]∥∥
1

+b
∥∥B E

[
xn−1 ⊗ xn−1

]
B∗∥∥

1 .

(5)
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Weknow that‖AB‖1 ≤ ‖A‖ ‖B‖1 for any A, B ∈ L
(
R

d
)
[13] and

∥∥A j

∥∥ = ∣∣c j

∣∣ , j ∈
N

∗. Thus

‖E [xn ⊗ xn]‖1 ≤ ‖A0‖2
∥∥E

[
xn−1 ⊗ xn−1

]∥∥
1

+
n−1∑
j=1

∣∣c j

∣∣ ‖A0‖
∥∥E

[
xn−1 ⊗ xn−1− j

]∥∥
1 +

n−1∑
i=1

|ci | ‖A0‖
∥∥E

[
xn−1 ⊗ xn−1−i

]∥∥
1 +

n−1∑
j=2

n−1∑
i=2

|ci |
∣∣c j

∣∣ ∥∥E
[
xn−1− j ⊗ xn−1−i

]∥∥
1 + b ‖B‖2 ∥∥E

[
xn−1 ⊗ xn−1

]∥∥
1 .

(6)
From the induction hypothesis, we have

‖E [xn ⊗ xn]‖1 ≤ ((‖A0‖2 + 2
n−1∑
j=1

∣∣c j

∣∣ ‖A0‖ +
n−1∑
j=2

n−1∑
i=2

|ci |
∣∣c j

∣∣) + b ‖B‖2) ‖x0‖2

≤
⎛
⎝

⎛
⎝‖A0‖ +

n−1∑
j=1

∣∣c j

∣∣
⎞
⎠

2

+ b ‖B‖2
⎞
⎠ ‖x0‖2 ≤ γ ‖x0‖2 ≤ ‖x0‖2

and the conclusion follows. In the case k = n and p < n, ξn−1 and x p are independent
and

E
[
xn ⊗ x p

] = E

⎡
⎣

⎛
⎝n−1∑

j=0

A j xn−1− j + ξn−1Bxn−1

⎞
⎠ ⊗ x p

⎤
⎦ =

n−1∑
j=0

E
[
A j xn−1− j ⊗ x p

]
.

Since

∥∥E
[
xn ⊗ x p

]∥∥
1 ≤

n−1∑
j=0

∥∥A j E
[
xn−1− j ⊗ x p

]∥∥
1 ≤

n−1∑
j=0

∥∥A j

∥∥ ∥∥E
[
xn−1− j ⊗ x p

]∥∥
1 ,

we can use again the induction hypothesis to obtain

∥∥E
[
xn ⊗ x p

]∥∥
1 ≤

⎛
⎝‖A0‖ +

n−1∑
j=1

∣∣c j

∣∣
⎞
⎠ ‖x0‖2 ≤ γ ‖x0‖2 ≤ ‖x0‖2 .

Similarly, we can prove that
∥∥E

[
x p ⊗ xn

]∥∥
1 ≤ ‖x0‖2 for all p < n. The proof is

complete.
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The following result is a sufficient criterion for the MS stability of (3)–(4).

Theorem 1 If (H1) holds, then (3)–(4) is mean square stable.

Proof Let ε > 0. There is δε = ε
2 > 0 such that E

∥∥x p

∥∥2 = ∥∥E
[
x p ⊗ x p

]∥∥
1 < ε for

all p ∈ N and ‖x0‖2 ≤ ε
2 . The conclusion follows.

Remark 1 (a) From Proposition1 we get E
[‖x(n)‖2] = ‖E [xn ⊗ xn]‖1 ≤ ‖x0‖2

for all n ∈ N. Consequently, the decreasing, nonnegative sequence defined by yn =
supk≥n E

[‖x(k)‖2], n ∈ N is bounded and has a limit l and l ≤ ‖x0‖2 for all fixed
x0 ∈ R

d .
(b) Using the inequality ‖AB‖2 ≤ ‖A‖ ‖B‖2 , valid for all A, B ∈ L

(
R

d
)
[13],

and repeating the arguments from the proof of the inequality (6) with ‖.‖1 replaced
by ‖.‖2, we can establish that

‖E [xn ⊗ xn]‖2 ≤
n−1∑
j=0

n−1∑
i=0

Bi, j

∥∥E
[
xn−1− j ⊗ xn−1−i

]∥∥
2 , (7)

where Bi, j = ∣∣ci c j

∣∣ for i, j ∈ N
∗, Bi,0 = B0,i = |ci | ‖A0‖ , i ∈ N

∗ and
B00 = ‖A0‖2 + b ‖B‖2.

(c) For all l, k ∈ N we have ‖E [xl ⊗ xk]‖22 ≤ E
[‖xl‖2

]
E

[‖xk‖2
]
and

sup
l≥m,k≥n

‖E [xl ⊗ xk]‖22 ≤ sup
l≥m,k≥n

E
[‖xl‖2

]
E

[‖xk‖2
]

(8)

= sup
l≥m

E
[‖xl‖2

]
sup
k≥n

E
[‖xk‖2

] ≤ ‖x0‖4

Therefore, the double sequence supl≥m,k≥n ‖E [xl ⊗ xk]‖22 , m, n ∈ N is bounded
and, beingdecreasing, it is convergent to an L2 ∈ R. Passing to the limit asm, n → ∞
in (8), we deduce that L2 ≤ l2 i.e.

L = lim
i→∞, j→∞ sup

l≥i,k≥ j
‖E [xl ⊗ xk]‖2 ≤ lim sup

n→∞
E ‖xn‖2 = l. (9)

The next result is a version of Mertens Theorem for double sequences (see The-
orem 9.17 in [14]).

Lemma 1 A necessary and sufficient condition that

limn→∞,m→∞
n,m∑

i, j=0
αi, jΞn−i,m− j =

∞∑
i, j=0

αi, j limk→∞,l→∞ Ξk,l , for every bound-

edly convergent sequence Ξk,l is that
∞∑

i, j=0

∣∣αi, j

∣∣ < ∞.
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Indeed, for any boundedly convergent sequence Ξk,l we can find a double series
∞∑

i, j=0
βi, j such that Ξk,l =

k,l∑
i, j=0

βi, j for all l, k ∈ N. Obviously the series
∞∑

i, j=0
βi, j is

boundedly convergent. A simple computation shows that

m∑
k=0

n∑
l=0

αk,lΞm−k,n−l

is a partial sumof theCauchyproduct double series
∞∑

i, j=0
αi, j∗βi, j and the equivalence

of the above lemma with Theorem 9.17 in [14] is evident.
For the next result we need an additional hypothesis

• (H2) Γ :=
(

‖A0‖ +
∞∑
j=1

∣∣c j

∣∣
)2

+ b ‖B‖2 < 1
d , where d is the dimension of the

state space of (3).

Theorem 2 Assume that (H1) and (H2). Then (3)–(4) is mean square asymptotically
stable.

Proof Let Bi, j be defined as in Remark1b. An easy computation shows that
∞∑

i, j=0

∣∣Bi, j

∣∣ = Γ . Applying Lemma1 for αi, j = Bi, j and

Ξk,l = sup
m≥l,n≥k

‖E [xm ⊗ xn]‖2

and taking into account that Ξk,l is boundedly convergent, we deduce that

lim
n,m→∞

n−1,m−1∑
i, j=0

Bi, j sup
l≥n−1−i,k≥m−1− j

‖E [xl ⊗ xk]‖2 =

Γ lim
i→∞, j→∞ sup

l≥i,k≥ j
‖E [xl ⊗ xk]‖2 = Γ L

Hence, for all ε0 > 0, there is Nε0 ∈ N such that

n−1,m−1∑
i, j=0

Bi, j sup
l≥n−1−i,k≥m−1− j

‖E [xl ⊗ xk]‖2 ≤ Γ L + ε0

for all n, m ≥ Nε0 . It follows that

n−1∑
i, j=0

Bi, j sup
l≥n−1−i,k≥n−1− j

‖E [xl ⊗ xk]‖2 ≤ Γ L + ε0
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for all n ≥ Nε0 . From (7) we obtain

‖E [xn ⊗ xn]‖2 ≤ Γ L + ε0

for all n ≥ Nε0 . On the other hand ‖E [xn ⊗ xn]‖1 ≤ d ‖E [xn ⊗ xn]‖2 and

E
[‖xn‖2

] = ‖E [xn ⊗ xn]‖1 ≤ dΓ L + dε0, n ≥ Nε0

Passing to lim sup as n → ∞, we get

lim sup
n→∞

E
[‖xn‖2

] ≤ dΓ L + dε0. (10)

From Remark1a we know that

L := lim
i→∞, j→∞ sup

l≥i,k≥ j
‖E [xl ⊗ xk]‖2 ≤ l := lim sup

n→∞
E

[‖xn‖2
]

(11)

and (10) leads to the inequality l ≤ dΓ l + dε0 for all ε0 > 0. Letting ε0 → 0, we
obtain l (1 − dΓ ) ≤ 0 and, by hypothesis (H2), l = 0. Therefore limn→∞ E ‖xn‖2 =
0 for any x0 ∈ R

d . By Theorem1we deduce that (3)–(4) isMSA stable with δa = ∞.

5 Numerically Simulated Solutions

We shall consider the system (1)–(2) with d = 1, A, B ∈ R and {ξk}k∈N a sequence
of real-valued, identically distributed random variables from L2 (Ω,R). In order to
compute its solution {xk}k∈N we use the belowMaple procedure called DFSsolution.
In this procedure the input parameters are the following: alpha is the fractional order
of the system, m is the size of the samples drawn from the same distributions as of
the stochastic perturbations, x0 is a sample of size m of the initial state x0 given
as a vector indexed by 1..m, A, B ∈ R are the coefficients of the above system,
h ∈ R

∗+ is the sampling period or the time increment, n is the maximum k for which
we compute a sample from xk and distribution represents the distribution of the
stochastic perturbations ξk , k ∈ N. The procedure returns amatrix x having the entries
x [i, j] = x j (ωi ), j = 1..n, i = 1..m (the column j is a sample from x j ).

DFSsolution := proc (alpha, m, x0, A, B, h, n, distribution)

local j, k, i, Xi, S, x, c, A0, B0;

x := array(1 .. m, 0 .. n); c := array(0 .. n);

A0 := hˆalpha*A+alpha; B0 := hˆalpha*B;

Xi:= Statistics:-RandomVariable(distribution);

S := Statistics:-Sample(Xi, m);

for i to m do x[i,0]:=x0[i]; x[i,1]:=(A0+S[i]*B0)*x0[i] end do;
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c[1]:=-(1/2)*alpha*(alpha-1);

for k to n-1 do

Xi:=Statistics:-RandomVariable(distribution);

S:=Statistics:-Sample(Xi, m);

for i to m do

x[i,k+1]:=(A0+S[i]*B0)*x[i,k]+sum(c[j]*x[i,k-j],j = 1..k)

end do;

c[k+1]:=-c[k]*(alpha-k-1)/(k+2)

end do;

return x

end proc;

Example 1 In (1)–(2) let us consider h = 1, α = 3
4 , A = − 1

4 , B = 1
16 , x0 ≡ 1 and

let us assume that the distribution of ξk is normal N (0, 1) for all k. Then ‖A0‖ =
‖hα A + α‖ = 1

2 , ‖hα B‖ = 1
16 , b = 1, and consequently, Γ < γ < 1

2 + 1
4 + 1

16 =
0.812 < 1 = min

(
1, 1

d

)
. By Theorem2, if {ξk}k∈N are mutually independent, (1)–

(2) is mean square asymptotically stable. If B = 17
16 , then γ = 1.812 and Theorem2

does not apply. We use the above Maple procedure to simulate this system. We can
represent all samples from x0, x1, . . . , xn associating a different color to each xk .
The results are presented in Fig. 1.

Fig. 1 Samples of size m=400 from x0, x1 . . . x25: left B = 1
16 , right B = 17

16
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6 Conclusion

This paper studies asymptotic behavior of solutions for linear stochastic DTFSs of
the form (3)–(4). Inspired by the deterministic case [1] and using the properties of
double series, we derive two simple conditions for the MS and MSA stability. The
method could be extended to other type of stochastic systems as nonlinear DTFSs
or linear DTFSs with Markovian jumps.
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Conformable Fractional Wave-Like Equation
on a Radial Symmetric Plate

Derya Avcı, Beyza Billur İskender Eroğlu and Necati Özdemir

Abstract The generalization of physical processes by using local or nonlocal
fractional operators has been an attractive research topic over the last decade. Frac-
tionalization of integer order models gives quite reality to mathematical descrip-
tions so that one should obtain the sub/super behaviors of real world problems. In
this article, we are motivated to formulate a wave-like equation in terms of the left
sequential conformable fractional derivative on a radial plate and also discuss on the
differences among the statements of classical, existing fractional and conformable
fractional wave equations.

Keywords Sequential conformable fractional derivative · Fractional wave-like
equation · Local fractional derivative

1 Introduction

Fractional partial differential equations (FPDEs) have been one of the fascinating
topics due to the fact that initial-boundary value problems of FPDEs can give more
realistic description to natural phenomenon, such as heat conduction [1], diffusion
and wave processes [2–4], optimization and control problems [5–7] and so on. Var-
ious types of fractional operators such as Riemann–Liouville, Caputo, Hadamard,
Grünwald–Letnikov, Marchaud, Riesz are just a few to name [8–10]. Most of the
existing fractional operators are defined via the fractional integrals with singu-
lar kernels which is due to their nonlocal structures. This property can be inter-
preted in two different point of views. Firstly, the nonlocality leads them to give
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memory, hereditary effects and future dependence to the real world problems
[11–16]. Moreover, sub/super (slow/fast) behaviors of the processes can be inves-
tigated by fractional mathematical models. For example, the flow of groundwaters,
the flyway of migratory birds, the propagation of sea pollutions are some applica-
tions that need to be modelling of sub/super (slow/fast) behaviors. The first point of
view emphasizes the advantageous of fractional operators. On the other hand, this
property brings the computational difficulties with together. In general, fractional
differential equations have been solved by applying numerical methods due to the
lack of analytical solutions [17, 18]. This should be considered as a hardness, or i.e.
disadvantageous, for nonlocal fractional operators. In addition, most of the nonlo-
cal fractional derivatives don’t obey the basic chain, quotient and product rules and
also Rolle’s and Mean Value Theorems satisfied by integer order derivatives. Over
the last decade, new local fractional derivatives have been proposed to overcome
these difficulties [19–21]. Khalil et al. [22] came up with a simple and well-behaved
definition called as “conformable fractional derivative”:

Definition 1 Let f : [0,∞) → R and t > 0. Then the conformable derivative of f
of order α is defined by,

Tα ( f ) (t) = lim
ε→0

f
(
t + εt1−α

) − f (t)

ε
, (1)

for t > 0, α ∈ (0, 1). If f is α−differentiable in some (0, a), a > 0, and

limt→0+ f (α) (t) exists, then define

f (α) (0) = lim
t→0+

f (α) (t) . (2)

If the conformable fractional derivative of f of order α exists, then f is said to
be α−differentiable. Therefore, Tα ( f ) (t) is sometimes written as f (α) (t) to denote
the conformable derivative. Tα ( f ) (t) satisfies all the basic properties given by the
following theorem [22]:

Theorem 1 Let α ∈ (0, 1] , and f, g be α − di f f erentiable at a point t. Then:

(1) Tα (a f + bg) (t) = aTα ( f ) (t) + bTα (g) (t) for all a, b ∈ R.

(2) Tα (t p) = pt p−α for all p ∈ R.

(3) Tα ( f g) (t) = f Tα (g) + gTα ( f ) .

(4) Tα

(
f
g

)
(t) = gTα( f )− f Tα(g)

g2 .

(5) Tα (λ) = 0 for all constant functions f (t) = λ.
(6) If f is differentiable, then Tα ( f ) (t) = t1−α d f

dt .

This new definition is very easier to handle and provides some fundamental prop-
erties and theorems such as chain rule, integration by parts, Taylor series expansion,
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Laplace transform, divergence theorem [23, 24]. However, this fractional deriva-
tive has a weakness because all differentiable functions has zero as conformable
derivative at the point zero.

In the last few years, there is an increasing interest to new properties and applica-
tions of conformable fractional derivative. Abdeljawad [23] improved a remarkable
notion “sequential conformable fractional derivative” in the following:

Definition 2 Let f : [a,∞) → R such that f (n) (t) exists and continuous, 0 <

α ≤ 1 and n∈ Z
+, then the left sequential conformable fractional derivative of order

n is defined by
(n)T a

α f (t) = T a
α T

a
α . . . T a

α︸ ︷︷ ︸
n times

f (t) . (3)

As a special case n = 2 and 0 < α ≤ 1
2 ,

(2)T a
α f (t) = T a

α T a
α f (t) =

{
(1 − α) (t − a)1−2α f ′ (t) + (t − a)2−2α f ′′ (t) t > a

0 t < a.
(4)

Note that the second order sequential conformable derivative may not be continuous
even f is second continuously differentiable for 1

2 < α ≤ 1.

Moreover, the chain rule, integration by parts, Taylor series expansion and Laplace
transform for conformable fractional derivative were proposed in [23]. Atangana et al.
[24] introduced some useful properties and theorems related to partial and sequential
conformable derivatives. Abu Hammad and Khalil [25] introduced different types
of heat equation in terms of conformable fractional derivative and proposed Fourier
series for conformable fractional derivative (see [26]). By a similar manner, Çene-
siz and Kurt researched the solutions of time fractional conformable heat [27] and
wave equations [28] in Cartesian coordinates. Kurt et al. [29] also presented the
approximate analytical solution of the time conformable Burger’s equation. Khalil
and Abu–Shaab [30] solved some conformable fractional differential equations by
using Fourier series. For more applications on conformable notions we referee to
[31–37]. This paper is motivated by the well-description of a conformable fractional
wave-like equation on a radial plate. We aim to solve an initial-boundary value prob-
lem for a nonhomogeneus wave-like equation in terms of sequential conformable
fractional derivative acting on a radial symmetric plate.

2 Statement of the Problem

Let us consider the following conformable fractional wave-like equation

∂α

∂tα
∂α

∂tα
u (r, t) = κ2

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
+ f (r, t) (5)
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subjected to the initial and boundary conditions given respectively as

u (r, 0) = u0 (r) , (6)

∂α

∂tα
u (r, 0) = u1 (r) , 0 < r ≤ R (7)

and
u (0, t) = u (R, t) = 0, t > 0, (8)

where ∂α

∂tα represents the conformable fractional derivative of order α
(
0 < α ≤ 1

2

)
, κ

is a constant, R is radius of plate and f (r, t) denotes an external force. For simplicity,
we assume this function depends only on radius like f (r) in our computations. The
solution is found as a linear sum of two separate problem detailed in the following
sub sections.

2.1 Homogeneous Conformable Fractional Wave-Like
Equation and Non-homogeneous Initial Conditions

Let us consider
∂α

∂tα
∂α

∂tα
u (r, t) = κ2

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
(9)

with the initial and boundary conditions

u (r, 0) = u0 (r) , (10)

∂α

∂tα
u (r, 0) = u1 (r) ,

(
0 < α ≤ 1

2

)
, (11)

u (0, t) = u (R, t) = 0, t > 0. (12)

We shall assume that the solution is

u (r, t) = Q (r) T (t) , (13)

i.e., u is a product in which the dependence of u on r and t is separated as Q (r) and
T (t). By substituting Eq. (13) into Eq. (9), we have the following Bessel ordinary
and sequential conformable fractional differential equations

d2Q

dr2
+ 1

r

dQ

dr
+ μ2Q = 0, (14)
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dα

dtα
dα

dtα
T + (κμ)2 T = 0. (15)

In here, μ2 is separation constant obtained by solving Eq. (14) as μi = λi
R in which

λi denotes the zeros of J0. The solution of Eq. (14) is well-known zero order Bessel
function of first kind

Qi (r) = c1 J0 (μi r) , (16)

where c1 is arbitrary constant which naturally arises in the solution. By using defi-
nition of second order sequential conformable fractional derivative in Eqs. (4), (15)
can be written as

t2−2αT ′′
i (t) + (1 − α) t1−2αT ′

i (t) + (κμi )
2 Ti = 0. (17)

Making the change of variable x = κμi tα

α
, Eq. (17) reduces to a differential equation

with constant coefficients as follows

d2Ti
dx2

+ Ti = 0 (18)

and so we get

Ti (t) = c2 cos

(
κμi tα

α

)
+ c3 sin

(
κμi tα

α

)
, (19)

where c2 and c3 are arbitrary coefficients. Therefore, the fundamental solution of
Problem (9–12) is given by the series

u (r, t) =
∞∑
i=1

[
Ai cos

(
κμi tα

α

)
+ Bi sin

(
κμi tα

α

)]
J0 (μi r) , (20)

where Ai and Bi can be determined by using initial conditions (10) and (11) and also
the following orthogonality property of J0

∫ R

0
r J0 (μi r) J0 (μkr) dr = R2

{
0, i �= k

J 2
1 (λi )

2 , i = k
(21)

where J1 is first kind Bessel function of order 1. Thus, we have

Ai = 2

R2 J 2
1 (λi )

∫ R

0
u0 (r) r J0 (μi r) dr, (22)

Bi = 2

R2κμi J 2
1 (λi )

∫ R

0
u1 (r) r J0 (μi r) dr. (23)
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The critical manner in this work is foundation of Bi . As we noticed that there has been
an unawares mistake related to the calculation of Bi because of the description of
initial condition given by Eq. (11) in the literature. Heuristically, it seems as if Bi can
be calculated by an initial condition ∂

∂t u (r, 0) = u1 (r) . By checking carefully, first
order initial condition only gives the trivial solution for such a problem. However,
it is clear that nontrivial solutions of initial-boundary value problems are worth
investigating. To find the nontrivial solutions of the present problem, we must choose
an initial condition by a conformable fractional derivative of order 0 < α ≤ 1

2 . It
should be noted that the choice of initial condition surely depends on the problem
statement.

Another remarkable point is that time-fractional wave equations in terms of con-
ventional fractional derivatives as Caputo or RL correspond to classical wave equa-
tion for α = 2. This result changes in the case of conformable fractional differential
equations. For instance, the order of sequential conformable fractional derivative as
0 < α ≤ 1

2 in the present wave formulation. In addition, we see that a damping term
arises in reduced Eq. (17) and figures also show this behaviour, clearly. If we take
α = 1

2 , then Eq. (17) represents a wave-like equation in classical sense. Note that the
choice of α differs from the conventional nonlocal fractional derivatives.

This interesting result for conformable fractional wave-like formulation can
not occur in different physical processes. For instance, α ∈ (0, 1) for the con-
formable fractional heat and Burgers equations and the initial condition is given
by u (r, 0) = u0 (r). Furthermore, these equations reduce to the classical cases for
α = 1. However, we must be careful to define the initial conditions of conformable
wave-like equations. It is well known that we need first order initial condition as
ut (r, 0) = u1 (r) to solve a classical wave equation. Unfortunately, this changes
upon the structure of conformable fractional wave equation as seen in this paper.

For the above-mentioned reasons, we must be awake to determine the initial
conditions. In this sense, we have tried to give attention to researchers by this article.

As a result, by substituting Eqs. (22) and (23) into Eq. (20) general solution is
given as follows

u (r, t) =
∞∑
i=1

2

R2 J 2
1 (λi )

[
cos

(
κμi tα

α

) ∫ R

0
u0 (r) r J0 (μi r) dr

+ 1

κμi
sin

(
κμi tα

α

) ∫ R

0
u1 (r) r J0 (μi r) dr

]
J0 (μi r) . (24)

In the following, we illustrate the behaviors of conformable fractional wave-like
equation without an external force under some arbitrary assumptions for problem
parameters. Next, we will formulate the 2th part of the problem.



Conformable Fractional Wave-Like Equation on a Radial Symmetric Plate 143

2.2 Non-homogeneous Conformable Fractional Wave-Like
Equation and Homogeneous Initial Conditions

In an analogous way, we consider the following problem

∂α

∂tα
∂α

∂tα
u (r, t) = κ2

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
+ f (r) (25)

with the homogeneous initial and boundary conditions

u (r, 0) = ∂α

∂tα
u (r, 0) = 0, 0 < r ≤ R, (26)

u (0, t) = u (R, t) = 0, t > 0. (27)

Similar to Sect. 2.1, J0 (μi r) (i = 1, 2, . . .) are the basis functions of the 2th part
problem and so we aim to find the following solution

u (r, t) =
∞∑
i=1

Ti (t) J0 (μi r) (28)

and also assume that the heat source is represented by the basis functions as follows

f (r) =
∞∑
i=1

Ci J0 (μi r) , (29)

where

Ci = 2

R2 J 2
1 (λi )

∫ R

0
f (r) r J0 (μi r) dr. (30)

A particular assumption for f (r) is only accepted for simplicity in calculations. We
surely obtain the same result for Ci by direct computations without an assumption
for f (r), i.e. f (r) can be chosen arbitrarily. By substituting Eqs. (28) and (29) into
the Eq. (25), the obtained conformable fractional differential equation differs from
the Eq. (17) as

t2−2αT ′′
i (t) + (1 − α) t1−2αT ′

i (t) + (κμi )
2 Ti = Ci . (31)

We then find the solution of Eq. (31)

Ti (t) = k1 sin

(
κμi tα

α

)
+ k2 cos

(
κμi tα

α

)
+ Ci

(κμi )
2 , (32)
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where k1 and k2 can be easily obtained by the homogeneous initial conditions (26).
After that we have

Ti (t) = Ci

(κμi )
2

(
1 − cos

(
κμi tα

α

))
. (33)

Therefore, the exact solution of 2th case problem is in the following form:

u (r, t) =
∞∑
i=1

Ci

(κμi )
2

(
1 − cos

(
κμi tα

α

))
J0 (μi r) . (34)

Consequently, we obtain the whole solution of the main problem (5)–(8)

u (r, t) =
∞∑
i=1

2

R2 J 2
1 (λi )

[
cos

(
κμi tα

α

) ∫ R

0
u0 (r) r J0 (μi r) dr

+ 1

κμi
sin

(
κμi tα

α

) ∫ R

0
u1 (r) r J0 (μi r) dr + 1

(κμi )
2 (35)

×
(

1 − cos

(
κμi tα

α

))∫ R

0
f (r) r J0 (μi r) dr

]
J0 (μi r) .
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Fig. 1 Behaviours of the wave-like solutions without an external force
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We show the numerical results for the solution of conformable fractional wave-
like equation are shown in Fig. 1a, b under some assumptions for problem parameters
(Fig. 2).

3 Conclusions

In the last decade, local fractional operators have been an increasing interest among
the researchers because of their simple and well-behaved definitions. They remove
the complexity that naturally arises in the existing fractional operators because of
their singular kernels. Conformable fractional derivative is one of these local oper-
ators which is based on classical derivative with a fractional parameter. This new
derivative quite quickly takes its place in the real world applications defined by par-
tial differential equations. At the beginning, we realized that there is an uncertainty in
the description of initial conditions for sequential conformable fractional differential
equations. Motivated by this, we aim to give a correct statement for a conformable
fractional wave-like equation on a radial symmetric plate. We conclude that we can
obtain nontrivial solutions of a sequential conformable fractional wave-like equation
if and only if the initial condition is defined in terms of a conformable fractional
derivative.
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Reconstruction Robin Boundary Condition
in the Heat Conduction Inverse Problem
of Fractional Order

Rafał Brociek, Damian Słota and Adam Zielonka

Abstract This paper describes a parallel algorithm for reconstruction the bound-
ary condition for the heat conduction equation with derivative of fractional order
with respect to the time. The heat transfer coefficient, occurring in the boundary
condition of the third kind, was reconstructed. Additional information for the con-
sidered inverse problem is given by the temperature measurements at selected points
of the domain. The direct problem was solved by using the implicit finite difference
method. To minimize functional defining the error of approximate solution parallel
Ant Colony Optimization algorithm (ACO) was used. Calculations have been per-
formed in parallel way (multi-threaded). The paper presents examples to illustrate
the accuracy and stability of the presented algorithm.

Keywords Inverse problem · Time fractional heat conduction equation · Identifi-
cation · Heat transfer coefficient

1 Introduction

Artificial intelligence algorithms are widely used in many fields of science [1–4].
Among these algorithms we can distinguish algorithms inspired by behavior of ani-
mals in nature, for example Ant Colony Optimization algorithm [5–7], Artificial Bee
Colony algorithm [8, 9], firefly algorithm [10]. In many cases, these algorithms are
easy to implement and provide better results than conventional methods.
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Inverse problems are used in the analysis of various processes, as well as the design
of different devices. Solving the inverse problem, we can set boundary conditions
or other parameters, so the process described by differential equation, proceeded in
a manner specified in advance. In the case of differential equations of integer order,
this problem has been described in papers [11–15]. Murio dealt with the inverse
problems for the equations with fractional derivatives. The most important of his
papers are [16–19]. In these works the mollification method was applied. The heat
flux and the temperature on the region boundary are reconstructed in case when the
measurements of temperature inside of the domain are known.

In paper [20] the inverse problem of determining the spatial coefficient in source
term of the equation and/or the order of Caputo derivative for the time fractional
diffusion equation was considered. The authors have shown that for appropriate
assumptions, the solution of this problem is unique. Also in the work [21] similar
problems are considered. Authors transform the problem into the first kind Volterra
integral equation. Then, they used the boundary element method and the generalized
Tikhonov regularization to solve this integral equation. Paper [22] describes inverse
problem consisting in reconstruction of a spatially varying potential term in the
one-dimensional time-fractional diffusion equation. Zheng and Wei in papers [23,
24] describe applications of the Fourier regularization and the convolution method
in purpose to reconstruct the value of function and its derivative on the boundary
of semi-infinite domain for the time fractional diffusion equation. Similar problem
formulated in the bounded domain is considered in paper [25]. For solving this
problem the kernel-based meshless method was applied. Xiong et al. [26] discuss
the two-dimensional case in the unbounded domain.

In the work [27] authors discussed the problem of determining the thermal con-
ductivity coefficient in the time fractional heat conduction equation. Thermal con-
ductivity coefficient was reconstructed on the grounds of temperature measurements
at selected points of the region. The direct problem was solved by applying the finite
difference method. To minimize the constructed functional, which expresses the
error of approximate solution, the Fibonacci search algorithm was used. Paper [28]
describes the reconstruction of the boundary condition for the heat conduction equa-
tion of fractional order. To minimize functional defining the error of approximate
solution the Nelder-Mead algorithm was used. The paper presents results of compu-
tational examples to illustrate the accuracy and stability of the presented algorithm.

In this paper we reconstruct the heat transfer coefficient occurring in the boundary
condition for the time fractional heat conduction equation. Fractional derivative with
respect to time, occurring in considered equation, has been defined as the Caputo
derivative. Additional information for the considered inverse problem was given by
the temperature measurements at selected points of the domain. The direct problem
was solved by using the implicit finite difference method [29, 30]. To minimize
functional defining the error of approximate solution the Ant Colony Optimization
algorithm was used [7, 15]. The calculation using this algorithm has been performed
in parallel way.
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2 Formulation of the Problem

We will consider the following heat conduction equation with a fractional derivative
with respect to time

c�
∂αu(x, t)

∂tα
= λ

∂2u(x, t)

∂x2
, (1)

defined in domain
D = {(x, t) : x ∈ [0,L], t ∈ [0, t∗)}.

In this work, we use the terminology adopted in the case of classical heat conduction
equation, despite the change of some units. By c, �,λ we denote the specific heat,
the density and thermal conductivity, respectively. The initial condition is posed

u(x, 0) = f (x), x ∈ [0,L], (2)

as well as the boundary conditions of the second and third kind

− λ
∂u

∂x
(0, t) = q(t), t ∈ (0, t∗), (3)

− λ
∂u

∂x
(L, t) = h(t)(u(L, t) − u∞), t ∈ (0, t∗), (4)

where h is the heat transfer coefficient and u∞ is ambient temperature.
As a fractional derivative with respect to time occurring in Eq. (1), we will take

the Caputo derivative. For α ∈ (0, 1) the Caputo derivative is defined by the formula

∂αu(x, t)

∂tα
= 1

Γ (1 − α)

∫ t

0

∂u(x, s)

∂s
(t − s)−α ds, (5)

where Γ is the Gamma function.
We assume that the function h, describes the heat transfer coefficient, occurs at

the boundary condition of the third kind, will depend on two parameters γ1 and γ2.
Considered inverse problem consists on restore the parameters γ1, γ2 (and therefore
the boundary condition) on the grounds of known values of the function u in the
selected set of points of the domain D. Known values of the function u (input data)
in the selected points (xi, tj) of the domain D, we denote

u(xi, tj) = Ûij, i = 1, 2, . . . ,N1, j = 1, 2, . . . ,N2, (6)

where N1 is the number of the sensors and N2 denotes number of measurements at
each sensor.

Solving the direct problem for fixed values of h, we obtain a values approximating
function u in selected points (xi, tj) ∈ D. These values will be denoted by Uij(h).
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Using the calculated values ofUij(h) and input data Ûij, we create functional defining
the error of approximate solution

J(h) =
N1∑
i=1

N2∑
j=1

(
Uij(h) − Ûij

)2
. (7)

After the minimization of the functional (7), we obtain the approximate value of the
heat transfer coefficient.

3 Method of Solving

Direct problem, defined by Eqs. (1)–(4), for a fixed value of the heat transfer coef-
ficient was solved using an implicit finite difference method. For this purpose, we
built a grid of the form

S = {
(xi, tk), xi = iΔx, tk = k Δt, i = 0, 1, . . . ,N, k = 0, 1, 2, . . . ,M

}
(8)

with size N × M and steps Δx = L/N, Δt = t∗/M. Fractional derivative (5) was
approximated by the formula [29]:

D(α)
t uki = σ(α,Δt)

k∑
j=1

ω(α, j)
(
uk−j+1
i − uk−j

i

)
, (9)

where

σ(α,Δt) = 1

Γ (1 − α) (1 − α) (Δt)α
,

ω(α, j) = j1−α − (j − 1)1−α.

Neumann and Robin boundary condition were approximated in the following way:

− λ
uk1 − uk−1

2Δx
= qk =⇒ uk−1 = uk1 + 2Δxqk

λ
, (10)

− λ
ukN+1 − ukN−1

2Δx
= hk(u

k
N − u∞) =⇒ ukN+1 = ukN−1 − 2Δxhk

λ
(ukN − u∞). (11)

In approximations (10) and (11), we considered additional nodes u−1 and uN+1. Next,
from (10) and (11), we determine valuesuk−1 andukN+1 and use them in discrete form of
Eq. (1). Using Eq. (9), an approximation of Neumann and Robin boundary conditions
(10), (11) and the difference quotient for the second derivative with respect to the
spatial variable, we obtain the following differential equations
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k ≥ 1, i = 0:

(
σ(α,Δt) + 2 a

(Δx)2

)
uk0 − 2 a

(Δx)2
uk1 =

= σ(α,Δt) uk−1
0 − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1

0 − uk−j
0

) + 2

c �Δx
qk,

k ≥ 1, i = 1, 2, . . . ,N − 1:

− a

(Δx)2
uki−1+

(
σ(α,Δt) + 2 a

(Δx)2

)
uki − a

(Δx)2
uki+1 =

= σ(α,Δt) uk−1
i − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1
i − uk−j

i

)
,

k ≥ 1, i = N :

− 2 a

(Δx)2
ukN−1 +

(
σ(α,Δt) + 2 a

(Δx)2
+ 2

c �Δx
hk

)
ukN =

= σ(α,Δt) uk−1
N − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1
N − uk−j

N

) + 2

c �Δx
hk u

∞,

where uki = u(xi, tk), hk = h(tk) and a = λ
c �

is the thermal diffusivity coefficient.
In order to reconstruct the heat transfer coefficient, we will minimize the functional

(7) using the parallel ACO algorithm. It is a heuristic algorithm, so the calculation in
each case need to be repeated a certain number of times. To shorten the calculation
time, we applied parallel computing. Assume the following symbol

F(x) − minimized function, x = (x1, . . . , xn) ∈ D,

nT − number of threads, M = nT · p − number of ants in one population,

I − number of iterations, αi − narrowing parameters

Now, we present the steps of the algorithm.

Initialization of the algorithm

(i) Setting parameters of the algorithm, and generate starting population xk =
(xk1, x

k
2, . . . , x

k
n), where xk ∈ D, k = 1, 2, . . . ,M.

(ii) Dividing the population on nT groups (groups will be calculated in parallel
way) and determining the best solution xbest .

The main algorithm

(iii) Random selection of the vector dx = (dx1, dx2, . . . , dxn), where
−αi ≤ dxj ≤ αi.
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(iv) Generate a new population of ants xk = xbest + dx, k = 1, 2, . . . ,M.
(v) Determining the best solution (parallel computing) in the current population.

If this solution is better than xbest , then we accept this solution as xbest .
(vi) Points 3–5 are repeated I2 times.

(vii) Change the values of narrowing parameters αi: αi = 0.1αi.
(viii) Points 3–7 are repeated I times.

4 Numerical Results

Let us consider Eq. (1) with the following data

t ∈ [0, 500], x ∈ [0, 0.2], c = 1000, � = 2680,

λ = 240, q(t) = 0, u∞ = 300, g(x, t) = 0, f (x) = 900,

h(t) = γ1 Exp
[ t − 45

455
ln

(γ2

γ1

)]
.

The exact values of γ1, γ2 are equal to 1400 and 800, respectively.
Solving the direct problem for the exact value of the heat transfer coefficient, we

get values of the function in grid points of the region D. Then, from these values, we
select only those which correspond to the predetermined grid points (location of the
thermocouple).

Selected values of the function will be simulated temperature measurements and
will be treated as an exact value (exact input data) and denoted by Ûij. The grid used
to generate these data was of the size 300 × 5000. We assume one measuring point
xp = 0.15 (N1 = 1), the measurements from this point will be read every 0.5, 1, 2 s
(N2 = 1000, 500, 250).

In order to investigate the effect of measurement errors on the results of recon-
struction and stability of the algorithm, the input data was perturbed by the pseudo-
random error of sizes 1 and 2 %. In the process of minimizing functional, the direct
problem was solve many times. Used for this purpose grid has size of 100 × 1000
and a different density than the mesh used to generate the input data.

In order to determine the minimum of the functional (7) ACO algorithm was
used. This algorithm is heuristic, therefore required to repeat calculations a certain
number of times. In this paper, we assumed that the calculations for each case will be
repeated ten times. Algorithm was adapted for parallel computations (calculations
on multiple threads), which significantly reduced the computational time. Table 1
presents times of single execution of algorithm depending on different number of
threads. The number of ants in each case was 12.

As we can see, use of a larger number of threads significantly reduces the compu-
tation time. In case of twelve threads, calculation accelerated nearly 8.6 times than



Reconstruction Robin Boundary Condition … 153

Table 1 Times of single execution of algorithm depending on different number of threads

Number of threads Time (s)

1 1826.07

2 914.28

3 610.06

4 477.43

6 348.43

12 211.59

Table 2 Results of calculation in case of measurements every 0.5, 1, 2 s (grid 100 × 500) in
measurement point xp = 0.15 (γi – restored value of γi, δγi – percentage relative error of γi, σ –
standard deviation (i = 1, 2))

Readings Noise (%) γ1 δγ1 (%) σ γ2 δγ2 (%) σ

Every
0.5 s

0 1402.58 0.19 0.46 798.94 0.14 0.47

1 1388.24 0.84 0.46 815.62 1.96 0.52

2 1371.94 2.01 1.60 813.24 1.66 1.95

Every 1 s 0 1402.22 0.16 0.79 799.35 0.09 0.78

1 1403.44 0.25 0.76 810.04 1.26 0.76

2 1382.33 1.27 0.72 817.37 2.18 0.77

Every 2 s 0 1402.17 0.16 0.62 799.26 0.10 0.52

1 1405.97 0.43 0.75 778.81 2.65 0.64

2 1398.51 0.11 0.82 797.66 0.30 1.08

in case of calculations without multithreading. Because calculation need to be repeat
ten times for each case of input data, benefit from saving time is significant.

Table 2 shows result of determining of γ1, γ2 depending on the size of disturbance
input data at the measurement point xp = 0.15.

In case of exact input data, the relative errors of the reconstruction of coefficients
are minimal and do not exceed 0.2 %. In the case of perturbed input data, relative
errors of restoring coefficients γi usually are smaller than the input data errors.

One of the main indicators of evaluating the results are errors of reconstruction
the temperature in the measurement point xp = 0.15. Table 3 presents errors of the
reconstruction the temperature at measurement point in case of measurements every
0.5, 1, 2 s. Based on these results, we can say that the reconstructed temperature at the
measurement point is very good. Relative errors of reconstruction the temperature
in each case do not exceed 0.05 %.

In Fig. 1 there are shown the relative errors of reconstruction of heat transfer
coefficient h for measurements every 0.5, 1, 2 s. In each case under consideration,
relative error of reconstruction the heat transfer coefficient is less than 1.5 %.
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Table 3 Errors of temperature reconstruction in measurement point xp = 0.15 for measurements
every 0.5, 1, 2 s (Δavg – average absolute error, Δmax – maximum absolute error, δavg – average
relative error, δmax – maximum relative error)

Noise 0 % 1 % 2 % 0 % 1 % 2 % 0 % 1 % 2 %

0.5 s 1 s 2 s

Δavg [K] 0.0093 0.1057 0.2452 0.0084 0.1067 0.1372 0.0081 0.1383 0.0599

Δmax [K] 0.0561 0.2050 0.3696 0.0567 0.2346 0.2283 0.0567 0.4121 0.0780

δavg [%] 0.0011 0.0121 0.0281 0.0010 0.0123 0.0157 0.0010 0.0160 0.0069

δmax [%] 0.0063 0.0238 0.0423 0.0064 0.0272 0.0260 0.0064 0.0478 0.0091
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Fig. 1 Relative errors of reconstruction of the heat transfer coefficient for various perturbations of
input data and for measurements every 0.5, 1, 2 s

Fig. 2 Distribution of errors
of temperature
reconstruction in
measurement point
xp = 0.15 for measurements
every 0.5 s and for various
perturbations of input data
(0 % – solid line, 1 % –
dashed line, 2 % – dotted
line)
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Figure 2 presents the distribution of errors of temperature reconstruction in mea-
surement point xp = 0.15 in case of measurements every 0.5 s.
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5 Conclusions

In this paper we considered the inverse problem for the heat conduction equation of
fractional order. Heat transfer coefficient, occurring in Robin boundary condition,
was reconstructed. Direct problem was solved using the finite difference method,
and to minimize the functional, parallel ACO algorithm was used.

Heat transfer coefficient has been reconstructed very well. Errors of this recon-
struction in each case are less than 1.5 % and in most cases do not exceed the input
data errors. Errors of restore temperature at the measurement point are minimal and
do not exceed 0.05 %.

In the paper, parallel ACO algorithm was used, which gives us significant accel-
eration of computation in compare to the calculation does not use multithreading.
Using four threads, algorithm execute nearly 3.8 times faster than calculation does
not use multithreading. In case of calculation on 6, 12 threads, time of computation
was reduced accordingly 5.2 and 8.6 times.
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1 Introduction

To study the behaviour of viscoelastic materials, one often uses rheological models
that can be of Voigt or Maxwell type or a combination of these basic models [1].
For example, the classical phenomenon of creep, in its simplest form, is known to be
governed by a linear ordinary differential equation of order one, given by the linear
Voigt model:

η
dε(t)

dt
+ Eε(t) = σ(t), σ(0) = 0, (1)

where η is the viscosity coefficient and E is the modulus of the elasticity. For a given
stress history σ, the solution of (1) is given by

ε(t) = 1

η

t∫

0

e− t−s
τ σ(s)ds, τ = η

E
, (2)

where for t ≤ 0 the material is at rest, without stress and strain. The constant τ
is called the retardation time and has an analogous meaning to relaxation: it is an
estimation of the time required for the creep process to approach completion. The
expression

k(t) = 1

E

(
1 − exp

(
− t

τ

))
, t ≥ 0, (3)

is known as the creep function. In Sect. 2 we generalize (1)–(3).
Fractional calculus has recently become an important tool in the analysis of vis-

coelastic phenomena, such as stress-strain relationships in polymeric materials: in
[2] the connection between the fractional calculus and the theory of Abel’s integral
equation is shown for materials with memory, while a fractional order Voigt model
is proposed in [3] to better simulate the surface wave response of soft tissue-like
material phantoms. For an historical survey of the contributions on the applications
of fractional calculus in linear viscoelasticty, see [4]. In 1996, Mainardi investigated
linear fractional relaxation-oscillation and fractional diffusion-wave phenomena [5].
Several other works in the same direction of research followed: for an introduction
to the linear operators of fractional integration and fractional differentiation, acces-
sible to applied scientists, we refer to [6]; for a comprehensive overview of fractional
calculus and waves in linear viscoelastic media see [7]; for a book devoted to the
description of the properties of the Mittag-Leffler function, its numerous generaliza-
tions and their applications in different areas of modern science, we refer to [8]; for a
generalization of the partial differential equation of Gaussian diffusion, by using the
time-fractional derivative, in both the Riemann–Liouville and Caputo senses, see [9].
Heymans and Podlubny have given a physical interpretation of initial conditions for
fractional differential equations with Riemann–Liouville fractional derivatives [10].
Here, motivated by such results, we examine fractional creep equations involving
Caputo derivatives of order α ∈ (0, 1). Caputo derivatives were chosen because they
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have a major utility for treating initial-value problems for physical and engineering
applications, where initial conditions are usually expressed in terms of integer-order
derivatives [11, 12]. Precisely, we begin by considering in Sect. 2 the following
extension to (1):

{
ηα

(
C Dα

0 ε
)
(t) + Eαε(t) = σ(t), 0 < t ≤ 1,

ε(0) = 0,
(4)

where E, η > 0 and σ is a continuous function defined on [0, 1]. While the solution
(2) of (1) is described by an exponential function, we show that the solution of
(4) is expressed in terms of the Mittag-Leffler function (see Theorem1), which is
a generalization of the exponential function and was introduced by Mittag-Leffler
in [13], where he investigated some of their properties. The Mittag-Leffler function
Eα(t) with α > 0 is defined by the series representation

Eα(t) =
∞∑
n=0

tn

Γ (αn + 1)
, α > 0, t ∈ C, (5)

where Γ denotes the Gamma function, valid in the whole complex plane. A straight-
forward generalization of the Mittag-Leffler function (5), due to Wiman [14] and
used here, is obtained by replacing the additive constant 1 in the argument of the
Gamma function in (5) by an arbitrary complex parameter β:

Eα,β(t) =
∞∑
n=0

tn

Γ (αn + β)
, α > 0, β > 0, t ∈ C. (6)

Mittag-Leffler functions are considered to be the queen functions of fractional calcu-
lus and they play a fundamental role in the solution to (4). Details about the Mittag-
Leffler function and their importance when solving fractional differential equations
can be found in [15–17] and references therein. Here we transform (4) as a Volterra
integral equation to obtain an explicit solution involving the Mittag-Leffler function
(see Proof of Theorem1). Moreover, we give a physical interpretation to the frac-
tional order Voigt model (4) as a creep phenomenon, by finding the corresponding
creep function (Theorem2). Under some assumptions on σ, when it depends on ε
(nonlinear Voigt model), in Sect. 3 we address the question of existence of positive
solutions, which also contributes to the physical interpretation of the model (Theo-
rem3). Roughly speaking, the existence of nontrivial positive solutions is obtained
by means of the Guo–Krasnosel’skii fixed point theorem. We end with an illustrative
example and Sect. 4 of conclusions.
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2 Solution to the Fractional Rheological Linear Voigt
Model

Viscoelastic relations may be expressed in both integral and differential forms. Dif-
ferential forms are related to rheological models and provide a more direct physical
interpretation of the viscoelastic behavior. Integral forms are very general and appro-
priate for theoretical work. In Sect. 1 we introduced the fractional Voigt model (4)
and explained its physical relevance. Here wemake use of the corresponding integral
representation to obtain an explicit solution to (4).

Theorem 1 (The fractional strain) Assume that the given stress history σ of the
fractional initial value problem (4) is a continuous function on [0, 1]. Then

ε(t) = 1

ηα

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
σ(s)ds, (7)

0 ≤ t ≤ 1, is the fractional strain, that is, is the solution to (4).

Proof Since σ is a continuous function on [0, 1], then we know from [18, Theo-
rem 3.24] that the fractional initial problem (4) is equivalent to the Volterra integral
equation of second kind

ε(t) = 1

ηαΓ (α)

t∫

0

(t − s)α−1σ(s)ds − 1

ταΓ (α)

t∫

0

(t − s)α−1ε(s)ds.

To solve this integral equation, we apply the method of successive approximations.
Let us consider the sequence defined by the following recurrence relation: εm =
Iασ

ηα
− Iαεm−1

τα
, where Iαz(t) = 1

Γ (α)

t∫

0

(t − s)α−1z(s)ds. Setting ε0 = Iασ

ηα
, we

get ε1 = Iασ

ηα
− I 2ασ

ηατα
and ε2 = Iασ

ηα
− I 2ασ

ηατα
+ I 3ασ

ηατ 2α
. Continuing this process,

we obtain that

εm = 1

ηα

m∑
k=0

(
− 1

τα

)k

I kα+ασ.

Consequently, we have

εm(t) = 1

ηα

t∫

0

(t − s)α−1
m∑

k=0

(t − s)kα

Γ (kα + α)

(
− 1

τα

)k

σ(s)ds.

Taking the limit as m → ∞, and by (6), we obtain the explicit solution (7). ��
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Remark 1 Our fractional problem (4) provides a generalization to the linear Voigt
creep model (1). If we take α = 1, then Theorem1 gives the solution (2) to the
classical problem (1).

We now generalize the creep function (3) to our fractional Voigt model (4).

Theorem 2 (The fractional creep function) The creep function associated with the
fractional initial value problem (4) is given by

kα(t) = −
(

τ

η

)α (
Eα

(
−

(
t

τ

)α)
− 1

)
. (8)

Proof We find the creep function kα by using (7), where the latter is defined as

ε(t) =
∫ t

0
kα(t − s)dσ(s), 0 ≤ t ≤ 1.

Integrating expression (7) by parts, we obtain that

ε(t) = 1

ηα
tαEα,α+1

(
−

(
t

τ

)α)
σ(0)

+ 1

ηα

∫ t

0
(t − s)αEα,α+1

(
−

(
t − s

τ

)α)
σ′(s)ds, 0 ≤ t ≤ 1.

The strain is linear in the stress. Therefore, the creep function is given by

kα(t) = 1

ηα
tαEα,α+1

(
−

(
t

τ

)α)
. (9)

Now, by using the definition of Mittag-Leffler function in (9), we obtain that

kα(t) = 1

ηα
tα

∞∑
n=0

(−1)n
( t

τ
)αn

Γ (αn + α + 1)
=

(
τ

η

)α ∞∑
n=0

(−1)n
(
t
τ

)αn+α

Γ (αn + α + 1)

= −
(

τ

η

)α ∞∑
n=1

(−1)n
(
t
τ

)αn

Γ (αn + 1)
= −

(
τ

η

)α (
Eα

(
−

(
t

τ

)α)
− 1

)
.

The proof is complete. ��
Remark 2 If we take α = 1, then we obtain from Theorem2 that

k1(t) = τ

η

(
1 − E1

(
−

(
t

τ

)))
= 1

E

(
1 − exp

(
−

(
t

τ

)))
= k(t),

that is, the creep function (3) is a special case of the kα(t) given by (8).
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Next we generalize (4) to the nonlinear case, where the stress σ depends on the
strain ε.

3 A Nonlinear Fractional Voigt Model

By applying the method of successive approximations, we have proved in Sect. 2 that
the fractional initial value problem (4) has a solution ε in C[0, 1] given by (7). Let us
now consider (4) as a nonlinear problem, that is, consider a fractional Voigt model
described by a differential equation with a nonlinear right-hand side σ depending
on ε: {

ηα
(
C Dα

0 ε
)
(t) + Eαε(t) = σ(ε(t)), 0 < t ≤ 1,

ε(0) = 0.
(10)

We deal with the solvability of the initial value problem (10). Precisely, we are
interested in proving the existence of positive solutions, which are the ones that
make sense in physics. To establish existence of solutions has been a very active
research area in mathematics. This is particularly true with respect to existence of
solutions for fractional differential equations [19], which is also explained by the
development of other fields of research, such as physics, mechanics and biology
[11, 20, 21]. Many methods are used to prove existence of a solution, such as the
fixed point technique, for which several theories are available [22–24]. In recent
years, there has been many papers investigating the existence of positive solutions:
see [25–30] and references therein. In this section, motivated by many papers that
discuss the existence of solutions to initial value problems, e.g. [31–33], we focus
on the fractional initial value problem (10).

Theorem 3 (Existence of a positive solution to the nonlinear fractional Voigt model
(10)) Assume thatσ : R+ → R+ is a continuous, convex anddecreasing function. Let
E0 := limε→0

σ(ε)
ε

and E∞ := limε→∞ σ(ε)
ε
. If E0 = ∞ and E∞ = 0, then problem

(10) has at least one nontrivial positive bounded solution ε ∈ X.

Our Theorem3 is proved by the Guo–Krasnosel’skii fixed point theorem [34,
35]. Roughly speaking, our analysis is mainly based on the following result on the
monotonicity of the Mittag-Leffler function, which was first proved by Schneider
in [36]: the generalized Mittag-Leffler function Eα,β(−t) with t ≥ 0 is completely
monotonic if and only if 0 < α ≤ 1 and β ≥ α. Thus, if 0 < α ≤ 1 and β ≥ α,
then (−1)n dn

dtn Eα,β(−t) ≥ 0 for all n = 0, 1, 2, . . . Note that σ(0) 
= 0 because our
function σ is positive and decreasing and we are interested in a nontrivial solution.
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3.1 Auxiliary Results

Let X = C[0, 1] be the Banach space of all continuous real functions defined on
[0, 1] with the norm ‖u‖ = supt∈[0,1] |u(t)|. Define the operator T : X → X by

T ε(t) = 1

ηα

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
σ(ε(s))ds, 0 ≤ t ≤ 1. (11)

Using the Guo–Krasnosel’skii fixed point theorem, we prove existence of nontrivial
positive solutions. For thatwefirst present and prove several lemmas. Inwhat follows,
K is the cone K := {ε ∈ X : ε(t) ≥ 0, 0 ≤ t ≤ 1}.
Lemma 1 The operator T : K → K is completly continuous.

Proof Taking into account the monotonicity of the Mittag-Leffler function, we have
that the operator T : K → K is continuous in view of the assumptions of non-
negativeness and continuity of σ. Let B ⊂ K be the bounded set B := B(0, η0) =
{ε ∈ K : ‖ε‖ ≤ η0, η0 > 0}, and let ρ = max0≤t≤1,0≤ε≤η0 σ(ε(t)) + 1. Then, for any
ε ∈ B, we have

|T ε(t)| =
∣∣∣∣ 1

ηα

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
σ(ε(s))ds

∣∣∣∣
≤ 1

ηα

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
|σ(ε(s))| ds

≤ ρ

ηαΓ (α + 1)
tα ⇒ ‖T ε‖ ≤ ρ

ηαΓ (α + 1)
.

Hence, T (B) is uniformlybounded.Now,weprove that the operator T is equicontinu-

ous for each ε ∈ B, any ε > 0, and t1, t2 ∈ [0, 1]with t2 > t1. Let δ =
(

ηαΓ (α+1)ε
2ρ

) 1
α

.

Then, for |t2 − t1| < δ,

|T ε(t1) − T ε(t2)|
≤ ρ

ηαΓ (α)

(∫ t1

0
((t1 − s)α−1 − (t2 − s)α−1)ds +

∫ t2

t1

(t2 − s)α−1ds

)

≤ ρ
(
(tα1 + (t2 − t1)α − tα2 + (t2 − t1)α

)
ηαΓ (α + 1)

≤ 2ρ(t2 − t1)α

ηαΓ (α + 1)
= ε.

Therefore, T (B) is equicontinuous. From the Arzela–Ascoli theorem, it follows that
operator T is completely continuous. ��

The following results are also used in the proof of our Theorem3.

Lemma 2 (Jensen’s inequality [37]) Let μ be a positive measure and let Ω be a
measurable set with μ(Ω) = 1. Let I be an interval and suppose that u is a real
function in L1(Ω) with u(t) ∈ I for all t ∈ Ω . If f is convex on I , then



164 A. Chidouh et al.

f

(∫
Ω

u(t)dμ(t)

)
≤

∫
Ω

( f ◦ u)(t)dμ(t).

Lemma 3 (Guo–Krasnosel’skii’s fixedpoint theorem [34]) Let X beaBanach space
and let K ⊂ X be a cone. Assume Ω1 and Ω2 are bounded open subsets of X with
0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : K ∩ (Ω2\Ω1) → K be a completely continuous
operator such that either

(i) T u ≤ u for any u ∈ K ∩ ∂Ω1 and Tu ≥ u for any u ∈ K ∩ ∂Ω2, or
(ii) T u ≥ u for any u ∈ K ∩ ∂Ω1 and Tu ≤ u for any u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2\Ω1).

Since σ is continuous on R+, we can define the function σ(ε) = max
0≤z≤ε

{σ(z)}. Let

E0 = lim
ε→0

σ(ε)

ε
and E∞ = lim

ε→∞
σ(ε)

ε
.

Lemma 4 (See [29]) Assume σ is continuous. Then E0 = E0 and E∞ = E∞.

We are now in condition to prove Theorem3.

3.2 Proof of Theorem 3

By Lemma1, we know that the operator (11) is completely continuous. Now, using
Lemma3,wegive aproof to our result.DenoteΩri = {ε ∈ X : ‖ε‖ < ri }.WhenE0 =
∞, we can choose r1 > 0 sufficiently small such that σ(ε) ≥ �ε for ε ≤ r1, where�

satisfies

(
�

Eα,α(− 1
τα )

ηαα(α + 1)

)
> 1. Now let us show that T ε ≤ ε for any ε ∈ K ∩ ∂Ωr1 .

In fact, if there exists ε1 ∈ ∂Ωr1 such that T ε1 ≤ ε1, the following inequalities hold:

‖ε1‖ ≥ ‖T ε1‖ ≥
∫ 1

0
T ε1(t)dt

≥ 1

ηα

∫ 1

0

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
σ(ε1(s))dsdt

≥ 1

ηα
Eα,α

(
− 1

τα

) ∫ 1

0
σ(ε1(s))

(∫ 1

s
(t − s)α−1dt

)
ds

≥ Eα,α

(− 1
τα

)
ηαα

∫ 1

0
(1 − s)ασ(ε1(s))ds

≥ Eα,α

(− 1
τα

)
ηαα(α + 1)

∫ 1

0
(α + 1)(1 − s)ασ(ε1(s))ds.
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Then, by Lemma2, we have

‖ε1‖ ≥ Eα,α(− 1
τα )

ηαα(α + 1)
σ

(∫ 1

0
(α + 1)(1 − s)αε1(s)ds

)

≥ Eα,α(− 1
τα )

ηαα(α + 1)
σ

(∫ 1

0
(α + 1)(1 − s)αr1ds

)

≥ Eα,α(− 1
τα )

ηαα(α + 1)
σ (r1) ≥ �

Eα,α(− 1
τα )

ηαα(α + 1)
r1 > r1,

which is a contradiction. SinceE∞ = 0, Lemma4 impliesE∞ = 0. Thus, there exists
r2 ∈ (r1,∞) such that σ(r2) < ηαΓ (α + 1)r2. Note that 0 < Γ (α + 1) < 1 for all
α ∈ (0, 1).We now show that T ε ≥ ε for any ε ∈ K ∩ ∂Ωr2 . If there exists ε2 ∈ ∂Ωr2
such that T ε2 ≥ ε2, then

‖ε2‖ ≤ ‖T ε2‖ = sup
t∈[0,1]

1

ηα

∫ t

0
(t − s)α−1Eα,α

(
−

(
t − s

τ

)α)
σ (ε2(s)) ds

≤ 1

ηαΓ (α + 1)
max

0<ε2<r2
σ(ε2)

≤ 1

ηαΓ (α + 1)
σ(r2) < r2,

which is a contradiction. Hence, from the first part of the Lemma3, T has a fixed
point in K ∩ (Ωr2\Ωr1). Therefore, problem (10) has at least one nontrivial bounded
positive solution ε ∈ X .

3.3 An Example

We now take a simple example to illustrate our analysis. Consider problem

{
C D

1
2
0 ε(t) + √

2ε(t) = 1
1+ε(t) , 0 < t ≤ 1,

ε(0) = 0.
(12)

As already mentioned, the term 1
1+ε(t) is the constitutive equation of the creep. Func-

tion σ(ε) = 1
1+ε

: R+ → R+ is continuous, convex and decreasing with σ(0) 
= 0.
Due to the fact that E0 = ∞ and E∞ = 0, it follows from Theorem3 that (12) has
at least one nontrivial bounded positive solution ε ∈ C[0, 1].
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4 Conclusion

In this work we investigated the creep phenomenon described by linear and nonlinear
fractional orderVoigtmodels involving theCaputo derivative.Wewere able to give an
integral representation of our initial value problem and to compute the creep function
in the linear case. The obtained Volterra integral equation involves theMittag-Leffler
function in the kernel, which is a completely monotonic function in the context of
our considerations. This property was the key of our analysis to establish existence
of positive solutions.
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Digital Fractional Integrator

Radosław Cioć

Abstract The paper presents a new approach for determining digital fractional inte-
grator based on the Grünwald–Letnikov differintegrals. The input signal of the inte-
grator includes a sampling time, numerical values and an order of the differintegrals.
The present invention pertains generally to the field of integration of digital signals
and more particularly to digital signal processing (DSP) and especially to infinite
impulse response filters (IIR).

Keywords Grünwald–Letnikov · Differintegrals · DSP · IIR

1 Introduction

A schematic block diagram (Fig. 1) illustrates a prior art implementation of a dig-
ital integrator. Mathematical description of the computation performed by digital
integrator circuit can be expressed as [1]:

yi =
n∑

i=0

(xi + yi−1) (1)

Alternatively, (2) is the z-transform of the digital integrator:

y(z) = 1

1 − z−1
x(z) (2)

Grünwald–Letnikov differintegral, given by the following (3), is a mathematical
definition of the fractional differintegral of functional sequence [2–4]:
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Fig. 1 Implementation of a digital integrator

{ f (n)(t)} = lim
dt→0

1

(dt)n

l∑
m=0

(−1)m
(
n
m

)
{ fl−m(tm)}

≡ tl D
n
t0{ f (t)}0...l (3)

where:
dt = t0 − t1 = t1 − t2 = · · · = tl−1 − tl ;
m = 0, 1, 2, . . . , l;
l = � t0−tl

dt � (floor function);
{ fl−m(tm)} is the m element of the sequence { f (t)}0...l ;
l ≥ n;
tl D

n
t0{ f (t)}0...l is Davis notation of the differintegral;

and f (t) can be expressed as a functional sequence:

f (t) = { f (t)}0...l = { f0(tl), f1(tl−1) . . . fl(t0)}. (4)

2 Grünwald–Letnikov Integral of Functional Sequence

For n < 0,

(
n
m

)
becomes [3, 4]:

(−n
m

)
= −n(−n + 1)(−n + 2) . . . (−n − m + 1)

m!
= (−1)m

�(n + m)

m!�(n)
(5)

By generalising (3)with the aid of (5) to orders (−η < 0)∈R, Grünwald–Letnikov
differintegral of a negative order functional sequence is formulated as [2]:

l
tl D

−η
t0 { f (t)}0...l = lim

dt→0
(dt)η

l∑
m=0

�(η + m)

m!�(η)
{ fl−m(tm)} (6)
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Symbol l in Davis notation is an additional magnitude which value equals the
number of iterations less 1. For the order η = −1 and l = 0 (for a functional sequence
of 1 element), (6) becomes:

0
(tl−dt)D

−1
tl { f (t)}0...0 = lim

dt→0
dt{ f0(tl)} ≡

tl∫

tl−dt

{ f (t)}0...0dt (7)

Zero value of the additional magnitude for η < 0 defines an operation equivalent
to integration in the range that equals to the integration step dt . Equation (7) of the
order −1 corresponds to quadrature rules for integration of { f (t)}0...0 and can be
represented as a sum total of differintegrals:

tl D
−1
t0 { f (t)}0...l = 0

t1D
−1
t0 { f (t)}l...l + 0

t2D
−1
t1 { f (t)}(l−1)...(l−1) +

· · · + 0
tl D

−1
(tl−dt){ f (t)}0...0 = lim

dt→0
dt{ fl(t0)} + lim

dt→0
dt{ fl−1(t1)} +

· · · + lim
dt→0

dt{ f0(tl)} = lim
dt→0

dt
l∑

m=0

{ fl−m(tm)} ≡
t0∫

tl−dt

{ f (t)}0...ldt

=
t0∫

t1

{ fl(t0)}dt +
t1∫

t2

{ fl−1(t1)}dt + · · · +
tl−dt∫

tl

{ f0(tl)}dt (8)

Following (8) for the orders (η < 0) ∈ R:

tl D
−η
t0 { f (t)}0...l = 0

t1D
−η
t0 { f (t)}l...l + 0

t2D
−η
t1 { f (t)}(l−1)...(l−1) +

+ · · · + 0
tl D

−η
(tl−dt){ f (t)}0...0 = lim

dt→0
(dt)η{ fl(t0)} +

+ lim
dt→0

(dt)η{ fl−1(t1)} + · · · + lim
dt→0

(dt)η{ f0(tl)}

= lim
dt→0

(dt)η
l∑

m=0

{ fl−m(tm)} ≡
t0∫

τl−(dt)η

{ f (t)}0...l(dt)η

=
t0∫

τ1

{ fl(t0)}(dt)η +
τ1∫

τ2

{ fl−1(t1)}(dt)η +

+ · · · +
τl−(dt)η∫

τl

{ f0(tl)}(dt)η. (9)
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Fig. 2 Dependence of η on
ΔT/dt

3 Function (dt)η

Let ΔT stands for measurement error of dt . ΔT is interpreted as an absolute error
and added to dt [2]. Let (dt)η stands for variation of dt considering ΔT :

(dt)η = dt + ΔT (10)

where η is a parameter (as well as the order of Grünwald–Letnikov differintegral)
estimating { f (t)}0...l at t1 + ΔT and derived from (10):

η = logdt (dt + ΔT ) (11)

Figure2 shows the dependence of η on the value of ΔT relative to dt .

4 Fractional Integrator

A prior digital integrator (1) hasn’t got information about the error of sampling, but if
the error is significant in relationship with the sampling time, the result of measuring
signal x and the result of signal integration can be twisted (Fig. 3).

Information about value of the error interpreted as function of the order of
Grünwald–Letnikov differintegral (10) will precise the final result of integration.
The mathematical description for the computation performed by digital fractional
integrator circuit can be expressed as [5]:
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Fig. 3 Digital fractional
integrator

yi = hi

n∑
i=0

(xi + yi−1) (12)

where the factor hi is mathematical expression of influence of the sampling time
error to the result of integration:

hi = (dti )
ηi − dti + 1 (13)

For simplifying let dti and ηi be constant for each xi :

hi = h = (dt)η − dt + 1 (14)

Alternatively the z-transform of the digital fractional integrator is:

y(z) = h(z)

1 − z−1
x(z) (15)

Fig. 4 Digital fractional integrator
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Fig. 5 Digital fractional
integrator work: Integrator
dt - integration of the input
signal for the ideal sampling
time dt (ΔT = 0), Integrator
dt_e - integration of the input
signal for the sampling time
dt with the error
(ΔT/dt = 5%), Fractional
Integrator - integration of the
input signal for the sampling
time dt with the error by the
digital fractional integrator

Figure4 shows graphical diagram of the digital fractional integrator and Fig. 5
shows effect of its work for sinusoidal input signal, dt = 0, 01 and ΔT/dt = 5%.

5 Conclusions

Interpretation of the differintegral order as an error of measuring allows to create
applications that increase accuracy of measurements. The example of an application
is the digital fractional integrator used in the field of digital signal processing (DSP)
and especially to Infinite Impulse Response filters (IIR).

References

1. Lyons, R.G.: UnderstandingDigital Signal Processing. PrenticeHall, Upper Saddle River (2010)
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5. Cioć, R.: Cyfrowy integrator rzeczywistego rzȩdu pochodno-całki. Zgłoszenie patentowe (Patent

Application) P.411354, Urza̧d Patentowy Rzeczypospolitej Polskiej (2015)



Optimal Control for Discrete Fractional
Systems

Andrzej Dzieliński

Abstract In the paper optimal control problem for fractional discrete-time systems
with quadratic performance index has been formulated and solved using the dynamic
programming approach. New method for numerical computation of optimal control
via the solution of dynamic programming problem has been presented. The effi-
ciency of the method has been demonstrated on numerical example and illustrated
by graphical representations. Graphs also show the differences between the fractional
and integer-order systems theory.

Keywords Discrete-time fractional systems ·Optimal control ·Dynamic program-
ming

1 Introduction

Optimal control problems aka dynamic optimization problems for integer (not frac-
tional) order systems have been widely considered in literature through recent
decades (see e.g. [1, 2]). Mathematical fundamentals of the fractional calculus on
the other hand have even more prominent history and can be found e.g. in the mono-
graphs [3, 4]. Some optimal control problems for fractional order systems have been
investigated e.g. in [5–8]. Fractional Kalman filter and its application have been
addressed in [9, 10]. In this paper optimal control problem for fractional discrete-
time systems with quadratic performance index will be formulated and solved using
dynamic programming approach. A new method for numerical computation of opti-
mal dynamic programming problem will be presented. The efficiency of the method
will be demonstrated on numerical example and illustrated by graphs. Graphs also
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show the differences between the fractional and classical (standard) systems theory.
The paper is organized as follows. In Sect. 2 some preliminaries are recalled and the
problem will be formulated. The solutions of the problem are presented in Sect. 3. In
Sect. 4 a procedure for computation of the optimal control is proposed and illustrated
by numerical example.

Conclusions of the paper are given in Sect. 5.

2 Problem Formulation

The following notation will be used: R - the set of real numbers, Rn×n - the set of
n × n real matrices (in particularRn is the set of real vectors), In - the n × n identity
matrix, O - the null matrix of appropriate dimensions, Wb

a , V
b
a are n × m or n × n

matrices and a is the lower right index and b is an upper right index. Power index is
not used.

Let us consider a fractional discrete-time system, obtained using Grunwald-
Letnikov’s (shifted) approximation, described by equations

xk+1 =
k∑
j=0

d j xk− j + Buk , k ∈ Z+ , (1a)

where x ∈ R
n , u ∈ R

m are respectively the state and control vectors, A ∈ R
n×n ,

B ∈ R
n×m and

d0 = Aα = A + α In , 0 < α < 1 , (1b)

d j = (−1) j
(

α

j + 1

)
In , j = 1, . . . , k . (1c)

Further, let us consider a performance index of the form

Ji (u) = G(xN ) +
N−1∑
k=i

Fk(xk, uk)

= xTN SxN +
N−1∑
k=i

(
xTk Qxk + uT

k Ruk
)
,

(2)

where R ∈ R
m×m , Q ∈ R

n×n , S ∈ R
n×n and S ≥ 0, Q ≥ 0 and R > 0.

Optimal trajectory starting at the point x0 and ending at the point xk has been
divided into N elementary time intervals [0, N ]. It is desired to find optimal control
sequence u0, u1, . . . , uN−1, u ∈ U, U-set of admissible inputs, which minimizes the
performance index (2) and satisfies the differential equation (1). The solution of this
task by searching for a conditional minimum of the performance index (2) requires
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the solution of N equations with N unknown variables of the form

∂ J (u)

∂uk
= 0 , (k = 0, . . . , N − 1) ,

where J(u) is the performance index (2)with (1) substituted for k = 1, 2, . . . , N − 1.

3 Problem Solution

We shall show that the task of determining the u0, u1, . . . , uN−1 can be reduced to
N tasks of minimizing the functions of one variable.

For i = N the performance index has the form

JN (u) = G(xN ) = xTN SxN ,

which in the general case is a function of final state.
Consider the last N -th section of the optimal trajectory. The corresponding per-

formance index of that section has the form

JN−1(u) = JN (u) + FN−1(xN−1, uN−1)

= xTN SxN + xTN−1QxN−1 + uT
N−1RuN−1 ,

(3)

Denoting SN−1(ΣxN−1) = SN−1(
∑N−1

j=0 xN−1− j ), as a minimum of the performance
index JN−1(u) we can write

SN−1(ΣxN−1) = min
uN−1∈U

{
JN−1(u)

}
. (4)

Substituting (1) for k = N − 1 to (4) equation above takes the form

SN−1(ΣxN−1) = min
uN−1∈U

{
xTN−1QxN−1 + uT

N−1RuN−1

+
⎛
⎝N−1∑

j=0

d j xN−1− j + BuN−1

⎞
⎠

T

S

⎛
⎝N−1∑

j=0

d j xN−1− j + BuN−1

⎞
⎠
⎫⎪⎬
⎪⎭

(5)

Calculating the first derivative of the Eq. (5) and comparing it to zero we obtain

0 = ∂ JN−1(u)

∂uN−1
= (

R + RT
)
uN−1

+ BT
(
S + ST

)
⎛
⎝N−1∑

j=0

d j xN−1− j + BuN−1

⎞
⎠ .
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We determine uN−1 as a function of xN−1, . . . , x0, i.e.

uN−1 =
N−1∑
j=0

W 1
N−1d j xN−1− j , (6)

where
W 1

N−1 = − [
R + RT + BT

(
S + ST

)
B
]−1

BT
(
S + ST

)
.

Substituting (6) to (5) we obtain

SN−1(ΣxN−1) = xTN−1QxN−1

+
⎡
⎣N−1∑

j=0

V R01
N−1d j xN−1− j

⎤
⎦

T

R

⎡
⎣N−1∑

j=0

V R01
N−1d j xN−1− j

⎤
⎦

+
⎡
⎣N−1∑

j=0

V S1
N−1d j xN−1− j

⎤
⎦

T

S

⎡
⎣N−1∑

j=0

V S1
N−1d j xN−1− j

⎤
⎦ .

(7)

where
V R01
N−1 = W 1

N−1, V S1
N−1 = (

In + BW 1
N−1

)
.

Let us consider the N -th and N − 1-th sections of the optimal trajectory. The
corresponding performance index for those sections has the form

JN−2(u) = JN−1(u) + FN−2(xN−2, uN−2)

= JN−1(u) + xTN−2QxN−2 + uT
N−2RuN−2 .

(8)

Denoting SN−2(ΣxN−2) = SN−2(
∑N−2

j=0 xN−2− j ) as minimum of the performance
index JN−2(u) we can write

SN−2(ΣxN−2) = min
uN−1∈U
uN−2∈U

{
JN−2(uN−2)

}

= min
uN−2∈U

{
min

uN−1∈U
JN−1(uN−1) + FN−2(xN−2, uN−2)

}

= min
uN−2∈U

{
SN−1(ΣxN−1) + FN−2(xN−2, uN−2)

}
. (9)

Substituting (1) for k = N − 2 to (9) and calculating the first derivative of the equa-
tion and comparing it to zero we obtain
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0 = ∂ JN−2(u)

∂uN−2
= (

R + RT
)
uN−2 + BT

[
Q + QT

]
⎡
⎣N−2∑

j=0

d j xN−2− j + BuN−2

⎤
⎦ +

[
V R01
N−1d0B

]T [
R + RT

]

⎡
⎣V R01

N−1d0

⎛
⎝N−2∑

j=0

d j xN−2− j + BuN−2

⎞
⎠ +

N−2∑
j=0

V R01
N−1d j+1xN−2− j

⎤
⎦

+
[
V S1
N−1d0B

]T [
S + ST

]
⎡
⎣V S1

N−1d0

⎛
⎝N−2∑

j=0

d j xN−2− j + BuN−2

⎞
⎠

+
N−2∑
j=0

V S1
N−1d j+1xN−2− j

⎤
⎦ .

We determine uN−2 as a function of xN−2, . . . , x0, i.e.

uN−2 =
N−2∑
j=0

[
W 1

N−2d j + W 2
N−2d j+1

]
xN−2− j , (10)

Substituting (1) for k = N − 2 and (10) to (9) we obtain

SN−2(ΣxN−2) = xTN−2QxN−2 (11)

+
⎡
⎣N−2∑

j=0

(
V Q01
N−2d j + V Q02

N−2d j+1

)
xN−2− j

⎤
⎦

T

(12)

× Q

⎡
⎣N−2∑

j=0

(
V Q01
N−2d j + V Q02

N−2d j+1

)
xN−2− j

⎤
⎦ (13)

+
⎡
⎣N−2∑

j=0

(
V R01
N−2d j + V R02

N−2d j+1

)
xN−2− j

⎤
⎦

T

(14)

× R

⎡
⎣N−2∑

j=0

(
V R01
N−2d j + V R02

N−2d j+1

)
xN−2− j

⎤
⎦ (15)

+
⎡
⎣N−2∑

j=0

(
V R11
N−2d j + V R12

N−2d j+1

)
xN−2− j

⎤
⎦

T

(16)
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× R

⎡
⎣N−2∑

j=0

(
V R11
N−2d j + V R12

N−2d j+1

)
xN−2− j

⎤
⎦ (17)

+
⎡
⎣N−2∑

j=0

(
V S1
N−2d j + V S2

N−2d j+1

)
xN−2− j

⎤
⎦

T

(18)

× S

⎡
⎣N−2∑

j=0

(
V S1
N−2d j + V S2

N−2d j+1

)
xN−2− j

⎤
⎦ , (19)

where

V Q01
N−2 = In + BW 1

N−2 , V Q02
N−2 = BW 2

N−2 ,

V R01
N−2 = W 1

N−2 , V R02
N−2 = W 2

N−2 ,

V R11
N−2 = V R01

N−1d0V
Q01
N−2 , V R12

N−2 = V R01
N−1d0V

Q02
N−2 + V R01

N−1 ,

V S1
N−2 = V S1

N−1d0V
Q01
N−2 , V S2

N−2 = V S1
N−1d0V

Q02
N−2 + V S1

N−1 .

In the general case for q last sections of the optimal trajectory the value which
minimize performance index (2) with constraints (1) is given by the relation

SN−q(ΣxN−q) = xTN−q QxN−q

+
q−2∑
l=0

⎧⎪⎨
⎪⎩

⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Ql,p+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦

T

Q

×
⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Ql,p+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦
⎫⎬
⎭

+
q−1∑
r=0

⎧⎪⎨
⎪⎩

⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Rr,p+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦

T

R

×
⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Rr,p+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦
⎫⎬
⎭

+
⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Sp+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦

T

S

×
⎡
⎣N−q∑

j=0

⎛
⎝q−1∑

p=0

V
Sp+1

N−q d j+p

⎞
⎠ xN−q− j

⎤
⎦ .

(20)
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Control uN−q , which minimizes the performance index JN−q(u), in the general case
is given by the relation

uN−q =
N−q∑
j=0

⎛
⎝q−1∑

p=0

W p+1
N−qd j+p

⎞
⎠ xN−q− j , (21)

4 Procedure and Examples

From the above considerations, following procedure for solving the optimal control
problem using the dynamic programming method follows:

Procedure:
Step 1.Knowing the matrices A and B of the system (1) and the coefficient α and the
number of elementary sections N of the optimal trajectory, we determine the matrix
Aα and coefficients d j for j = 0, 1, . . . , N .
Step 2. Knowing the matrices R, Q, S of the performance index (2) and the coeffi-
cients d j for j = 0, 1, . . . , N and using known methods of minimization, we deter-
mine the value of the control (6) which minimizes the performance index (3), and
its minimum value (7) for q = 1. Knowing (7) we determine the value of con-
trol (10) which minimizes the performance index (8) and its minimum value (11)
for q = 2. Continuing the procedure we determine the equations (20) and (21) for
q = 3, 4, . . . , N .
Step 3. Using the formula (21) for q = N we determine u0, the control value in a
discrete time k = 0 depending on the initial conditions x0. Using (20) we determine
minimumof the performance index S0(Σx0). Knowing u0 and x0 from the relation (1)
for k = 0we determine x1. Using the formula (21) for q = N − 1we determine u1 as
a function of x1, x0. Using (20) we determine the minimum value of the performance
index S1(Σx1). Knowing u1 and x1, x0 from the relation (1) for k = 1we can find the
x2. Using the formula (21) for q = N − 2 we determine u2 as a function of x2, x1, x0
and using (20) we can determine S2(Σx2). Continuing this procedure we can deter-
mine the discrete values of control sequence u0, u1, . . . , uN−1 ∈ U, whichminimizes
the performance index (2) and satisfies the differential equation (1) for given initial
conditions x0 and the subsequent minimum value S0(Σx0), . . . , SN (ΣxN ) of the
performance index (2).

Example 1 Consider the fractional discrete-time system (1) with matrices

A =
[
1 2
3 4

]
, B =

[
1
2

]
, x0 =

[
0.5
0.7

]
, (22)
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and the performance index (2) with matrices

S =
[
4 1
1 4

]
, Q =

[
3 2
2 3

]
, R = [

1
]
. (23)

Using the above Procedure we obtain.
Step 1. Assuming α = 0.5 and N = 3, the matrix Aα has the form

Aα = A + α In =
[
1.5 2
3 4.5

]
, (24)

and the coefficients d j for j = 0, 1, . . . , N are as follows

d0 =
[
1.5 2
3 4.5

]
, d1 =

[
0.125 0
0 0.125

]
, d2 =

[
0.063 0
0 0.063

]
,

d3 =
[
0.039 0
0 0.039

]
.

(25)

Step 2. Taking into account the matrices (23) and the coefficients (25) and for q = 1
we determine a matrix

W 1
N−1 = [−0.2400 −0.3600

]
, (26)

and matrices

V R01
N−1 = [−0.2400 −0.3600

]
, V S1

N−1 =
[

0.7600 −0.3600
−0.4800 0.2800

]
. (27)

for q = 2 we determine matrices

W 1
N−2 = [−0.2677 −0.3575

]
, W 2

N−2 = [−0.0028 −0.0474
]
, (28)

and matrices

V Q01
N−2 =

[
0.7323 −0.3575

−0.5353 0.2850

]
, V Q02

N−2 =
[−0.0028 −0.0474

−0.0055 −0.0949

]
,

V R01
N−2 = [−0.2677 −0.3575

]
, V R02

N−2 = [−0.0028 −0.0474
]
,

V R11
N−2 = [

0.0696 −0.0836
]
, V R12

N−2 = [−0.2244 −0.0925
]
,
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V S1
N−2 =

[
0.0975 −0.0499

−0.0727 0.0426

]
, V S2

N−2 =
[

0.7604 −0.3534
−0.4820 0.2458

]
. (29)

Continuing the procedure for q = 3 we obtain

W 1
N−3 = [−0.2689 −0.3566

]
, W 2

N−3 = [−0.0187 −0.0403
]
,

W 3
N−3 = [

0.0019 −0.0068
]
,

(30)

V Q01
N−3 =

[
0.7311 −0.3569

−0.5378 0.2861

]
, V Q02

N−3 =
[−0.0187 −0.0403

−0.0373 −0.0806

]
,

V Q03
N−3 =

[
0.0019 −0.0068
0.0039 −0.0135

]
, V Q11

N−3 =
[

0.0994 −0.0521
−0.0701 0.0389

]
,

V Q12
N−3 =

[
0.7375 −0.3465

−0.5437 0.2668

]
, V Q13

N−3 =
[−0.0033 −0.0456

−0.0047 −0.0979

]
,

V R01
N−3 = [−0.2689 −0.3569

]
, V R02

N−3 = [−0.0187 −0.0403
]
,

V R03
N−3 = [

0.0019 −0.0067
]
, V R11

N−3 = [
0.0785 −0.0889

]
,

V R12
N−3 = [−0.1599 −0.1249

]
, V R13

N−3 = [−0.0141 −0.0085
]
,

V R21
N−3 = [

0.0062 −0.0089
]
, V R22

N−3 = [
0.0821 −0.0566

]
,

V R23
N−3 = [−0.2257 −0.0879

]
,

V S1
N−3 =

[
0.1066 −0.0538

−0.0718 0.0369

]
, V S2

N−3 =
[

0.0985 −0.0477
−0.0748 0.0381

]
,

V S3
N−3 =

[
0.7603 −0.3529

−0.4818 0.2451

]
.

(31)

Step 3. Using (21) for q = N = 3 and (30), (31) we find

u0 = −2.2429. (32)

Knowing u0 and x0 from (1) for k = 0 we determine

x1 =
[−0.0929

0.1642

]
. (33)

Using (20) and (25), (31) we obtain the minimum value of the performance index as

J0(Σx0) = 8.7699. (34)
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Continuing this procedure we can determine subsequent discrete values of control
as

u1 = −0.2662 , u2 = −0.0386. (35)

Values of state vector are given as

x2 =
[−0.0147

0.0152

]
, x3 =

[−0.0106
0.0114

]
. (36)

Minimum values of the performance index are given as

J1(Σx1) = 0.1193 , J2(Σx2) = 0.0027, (37)

and
J3(u) = G(x3) = 0.0007. (38)

Fig. 1 Optimal trajectories for α = 0.5, 0.7, 0.9 and N = 10

Fig. 2 Optimal control and values of performance index for α = 0.5, 0.7, 0.9 and N = 10



Optimal Control for Discrete Fractional Systems 185

Figures1 and 2 illustrate the considerations for the system (1) with matrices (22)
and the performance index (2) with matrices (23) for three different values of α =
0.5, 0.7, 0.9, and the number of elementary sections of the optimal trajectory N = 10.

5 Conclusion

Optimal control problem for fractional discrete-time systems with quadratic perfor-
mance index has been formulated and solved. A new method based on dynamic
programming for numerical computation of optimal control problem has been pre-
sented. The efficiency of the method has been demonstrated on numerical example
and illustrated by graphs. The differences between the fractional and classical (stan-
dard) systems theory have been shown in [11]. A computer algorithm for solving
dynamic programming problems with quadratic performance index for fractional
discrete-time systems has been tested for different cases of coefficient alpha. The
description of a computer algorithm can be found in [12].
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Fractional Order Back Stepping Sliding
Mode Control for Blood Glucose Regulation
in Type I Diabetes Patients

Hamid Heydarinejad and Hadi Delavari

Abstract In this paper a fractional order backstepping sliding mode controller is
proposed for Blood Glucose regulation using Bergman minimal model. A feedback
control law is designed based on backstepping algorithm and a fractional order slid-
ing surface is introduced. The backstepping algorithm makes the controller immune
to matched and mismatched uncertainties and the fractional order sliding mode con-
trol provides robustness. Simulation results show that the proposed fractional order
backstepping slidingmode controller are able to reject bothmatched andmismatched
uncertainties and disturbance with a chattering free control law and the simulation
results of the proposed controller are compared with the Backstepping sliding mode
controller.

Keywords Bergman minimal model · Fractional calculus · Fractional order
backstepping sliding mode control · Robust stability · Type I diabetes

1 Introduction

Diabetes mellitus is a metabolic disease characterized by pancreas inability to regu-
late blood glucose levels within normal range (70–150 mg/dl). Insulin is a hormone
generated by specific cells, called beta cells, in the pancreas. Insulin is required to
transfer blood glucose into cells, where it is stored and then used for energy. There
are two types of diabetes: type I and type II. Type I diabetes or insulin dependent
and type II diabetes or non-insulin dependent. In type I diabetes mellitus (T1DM),
the immune system attacks and destroys the insulin producing b-cells in the pan-
creas. Thus, a key issue in diabetes treatment is the delivery of exogenous insulin to
obtain glucose levels close to normal. There are two situations depending on glucose
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concentration, namely, hyperglycemia and hypoglycemia (Hyperglycemia = Blood
glucose concentration >120 (mg/dl)) and Hypoglycemia = Blood glucose concen-
tration<60 (mg/dl)). Chronic elevation of BG level leads to damage of blood vessels
(angiopathy), resulting in serious long-term complications, such as blindness, neu-
ropathy, heart disease, and kidney failure.

Continuous glucose monitoring (CGM) systems and insulin pumps technolo-
gies have motivated the development of an artificial pancreas system to replace the
conventional treatment strategies in T1DM, Therefore, a system that automatically
monitors and controls the blood glucose level of a diabetic individual permits the
patient to have more participation in the ordinary daily activities with risk reduction
of long-term side effects. In recent years, many studies have been made for intelli-
gent control of blood glucose. Among themwe focus the 3rd order minimal model of
Bergman [1]. From a control viewpoint, the following challenges arise when facing
the design of a control algorithm for an artificial pancreas:

• Slow dynamic response to the control action.
• Nonlinear, uncertain and time-varying models.
• Large disturbances (the meals).
• Nonnegative actuation.
• Measurement errors including noise, drift and bias.

Several methods have been previously employed to design the feedback controller
for insulin delivery, such as classical methods like PID Switching [2], model pre-
dictive control (MPC) [3], Fuzzy logic control [4, 5], Recurrent Neural Net-work
[6], High Order Sliding Mode Control [7, 8], Back stepping Sliding Mode Control
[9], Optimal control [10], State output Feedback H∞ for Fractional Order Model
[11], Hybrid Adaptive PD Controller [12], Reducing Risk of Closed Loop Control of
Blood Glucose in Artificial Pancreas using Fractional Calculus [13]. The augmented
Bergman minimal model had been used to simulate the 1st type of diabetes. In order
to regulate the blood glucose level a fractional order PID controller was employed
[14]. The sliding mode control strategy is a systematic approach to retaining asymp-
totic stability and robust performance in nonlinearities and various uncertainties
such as friction, disturbance, and load changing, and it has been attracting consider-
able interesting. A fractional order Backstepping sliding mode control (FOBSMC)
is designed using backstepping sliding mode method and fractional calculus on a
fractional order sliding surface based on the Lyapunov’s direct stability theorem that
guarantees stability and the tracking error to reach the sliding surface in desired time.
The main advantages of Backstepping sliding mode controller is robustness against
mismatched uncertainties and disturbance [15].

The sensor can measure blood glucose concentration and pass the information
to a feedback control system that would calculate the necessary insulin delivery
rate using robust fractional order backstepping sliding mode control algorithm, to
keep the patient under metabolic control. FOBSMC algorithm, are used to robustly
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stabilize the glucose concentration level of a diabetic patient in presence of the
parameter variations andmeal disturbance. The structure of the proposedFOBSMCis
appropriate for making the insulin delivery pumps in closed loop control of diabetes.
Therefore, a FOBSMC was designed and tested with them. The designed controller
was also applied to Bergman minimal model to check the approach feasibility. Soon
after, to reduce the chattering phenomenon, a tanh function is used to replace the
discontinuous signum function at the reaching phase in traditional sliding mode
control. A computer simulation is performed tomanifest the theoretical analysis. The
robustness with respect to parameter uncertainties and meal disturbance was tested
using Matlab simulation and the simulation results are compared with Backstepping
sliding mode control (BSMC). There are some novelty and advantages, which make
our proposed method attractive:

• The definition of a new fractional order sliding surface.
• Robustness of the proposed controller against mismatched disturbances and uncer-
tainties.

• Lack of restrictions on the upper limit of disturbances.
• The Blood Glucose concentration (output) and Insulin Injection (control law,
Input) are completely stabilized at the basal level (Gb and Ib) in a reasonable
time interval.

2 Fractional Calculus

Fractional calculus is an oldmathematical topic since the 17th century [16]. The frac-
tional integral-differential operators (fractional calculus) are a generalization of inte-
gration and derivation to non-integer order (fractional) operators. There exist many
definitions of fractional derivative [17], there are three commonly used definitions
for the general fractional differentiation and integration, i.e., the Grünwald–Letnikov
(GL), TheRiemann–Liouville (RL) and theCaputo [18]. Let us first introduceCaputo
definition and results needed here with respect to fractional calculus which will be
used later. In spite of intensive researches, the stability of fractional order systems
remains an open problem. Stability of fractional order nonlinear dynamic systems
are studied in [19, 20].

Definition 1 The fractional integral c0D
α
t with fractional order α ∈ R+ of function

x (t) is defined as [18]:

c
0D

α
t f (t) = 1

Γ (α)

∫ t

0
(t − τ )α−1 x (τ ) dτ . (1)

Definition 2 The Caputo derivative of fractional order α ∈ R+ with function x(t)
is defined as [18]:
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c
0D

α
t x (t) = 1

Γ (m − α)

∫ t

0
(t − τ )m−α−1 x (m) (τ ) dτ , (2)

m − 1 < α < m ∈ Z .

Some of important properties for the Caputo fractional calculus that will use them.

Definition 3 If x(t) ∈ Cm[0, 1) and m − 1 < α < m ∈ Z+, then [21]:

c
0D

α
t

c
0D

−α
t x (t) = x (t) for m = 1, (3)

c
0D

−α
t

c
0D

α
t x (t) = x (t) −

m−1∑
k=0

t k

k! x
(k) (0) , (4)

c
0D

α
t

c
0D

n
t x (t) = c

0D
α+n
t x (t) , n ∈ N , (5)

L
{
c
0D

α
t x (t)

} = sαX (s) −
m−1∑
k=0

sα−k−1x (k) (0) , (6)

c
0D

α
t c = 0, where c is any constant. (7)

Theorem 1 (Fractional-order extension of Lyapunov direct method [19]). Let x = 0
be an equilibrium point for the non-autonomous fractional-order system (8). Assume
that there exists a Lyapunov function V (t, x(t)) and class-K functions γi (i = 1, 2, 3)
satisfying:

c
0D

α
t x (t) = f (x, t), (8)

γ1(‖x‖) ≤ V(x,t) ≤ γ2(‖x‖) , (9)

c
0D

α
t V(x,t) ≤ −γ3(‖x‖), (10)

where a ∈ (0, 1). Then the system (8) is asymptotically stable [22].

Using Lemma 1, which allows to find Lyapunov candidate functions for demon-
strating the stability of many fractional order systems, using the fractional-order
extension of the Lyapunov direct method.

Lemma 1 Let x(t) ∈ R be a continuous and derivable function. Then, for any time
instant t ≥ t0:

1

2
c
0D

α
t x

2 (t) ≤ x (t) c
0D

α
t x (t) . (11)

In proof stability of system with proposed controller, Theorem 1 and Lemma 1
will be used [22].
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3 Glucose - Insulin Dynamic

Many models to glucose-insulin process has been presented. Perhaps the most com-
monly used control relevant model for glucose–insulin dynamics is the minimal
model. Bergman’s minimal model has been invented in 1980 by Doctor Richard
Bergman. The main advantages of the Bergman minimal model are the number of
parameters is minimum and it describes the interaction between main components
such as insulin and glucose concentrationswithout getting into biological complexity.
Following is the Bergman Minimal Model (BeM) [9, 23, 24]:

·
B1 (t) = − (p1 + B2 (t)) B1 (t) + p1Gb + D (t) , (12)
·
B2 (t) = −p2B2 (t) + p3 (B3 (t) − Ib) ,
·
B3 (t) = −n (B3 (t) − Ib) + γt [B1 (t) − h]+ + u (t) .

Here B1 (t) , B2 (t) and B3 (t) are plasma glucose concentration, the insulin influence
on glucose concentration reduction, and insulin concentration in plasma respectively,
u(t) ∈ R is injected insulin rate in (mU/min), Gb is the basal pre-injection level of
glucose (mg/dl), Ib is the basal pre-injection level of insulin (μU/ml), p1 the insulin
independent rate constant of glucose uptake in muscles and liver (1/min), p2 the
rate for decrease in tissue glucose uptake ability (1/min), p3 the insulin-dependent
increase in glucose uptake ability in tissue per-unit of insulin concentration above
the basal level ((μU/ml)/min). The term γ [B1 (t) − h]+ t represents the pancreatic
insulin secretion after a meal in take at t = 0. As this work is focused on Insulin
therapy which is usually administrated to Type I diabetes mellitus patients, γ is
assumed to be zero to represent the true dynamic of this disease and p1 should also
be considered zero. The parameter n is the first order decay rate for insulin in blood.
This disturbance can bemodeled by a decaying exponential function of the following
form [9, 25]:

D (t) = Ae−Bt , A, B > 0. (13)

We modeled the pump as a first order delay:

·
u (t) = 1

a
(w (t) − u (t)) , (14)

where w(t) is insulin rate command in pump as input, and a is pump time constant
[9]. The fractional oreder Bergmanminimalmodel is used in [11, 26] but the consider
the fact that the initialization problem of fractional-order systems remains an open
question [11]. One of the advantages of the proposed controller is against other
methods of fractional sliding mode, no requirement to calculus of relative degree for
Bergman minimal model.
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4 Controller Design

4.1 Fractional Order Backstepping Sliding Mode Control

The sliding mode control [27] technique is an effective tool to develop control law
insensitive to the matched uncertainties in a system. It is a discontinuous type of
control which has found wide applications due to its simplicity and robustness [15,
28]. The aim of developing a sliding mode controller is to achieve robustness against
mismatched uncertainty and disturbances. Due to the failure of the sliding mode
controller to tackle mismatched uncertainty, the backstepping algorithm is initially
used It shows unique advantages in dealing with nonlinear system problems [29].
The fractional order backstepping sliding mode controller to control blood glucose
levels in type I diabetes patients in the presence of mismatched uncertainties and
disturbances is proposed.

As we mentioned previously, in this paper due to nonlinearities, uncertainties and
disturbance of system, we used FOBSMC. Thus, four decouple dynamic models are
assumed. The first dynamic part considered as follows:

·
B1 (t) = − (p1 + B2 (t)) B1 (t) + p1Gb + D (t) , (15)

where B2(t) is considered as a pseudo control input which should control B1 (t) for
tracking desired Gb in presence of D(t) disturbances. Let Gb be a desired constant
value of the system output B1 (t), the tracking error of which is defined by:

e1 = B1 (t) − Gd . (16)

Thus according to SlidingModeControl (SMC) theory, the fractional order sliding
surface introduced as follows:

S1 = c
0D

−α
t

·
e1 + λ1e1. (17)

Taking the time fractional order derivative c
0D

α
t of fractional order sliding surface

of (17) and using Definition 3, one can obtain:

c
0D

α
t S1 = ·

e1 + λ1
c
0D

α
t e1 = 0. (18)

With c
0D

α
t S1 = 0 and substituting (16) into (18) leads to:

·
B1 (t) − ·

Gd + λ1
c
0D

α
t e1 =

(
−B2 (t) B1 (t) − p1B1 (t) + p1Gb − ·

Gd + λ1
c
0D

α
t e1

)
= 0. (19)
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The equivalent pseudo control law based on B2 (t) as follows:

B2(eq) (t) = (B1 (t))−1

(
−p1B1 (t) + p1Gb − ·

Gd + λ1
c
0D

α
t e1

)
. (20)

The next step is to design the reaching mode control scheme, in the proposed
method using a switching control law for derives the system trajectories onto the
sliding surface (S(t) = 0). The reaching law can be chosen as:

B2(sw)(t) = (B1(t))
−1k1sgn(S1). (21)

Since the reaching law (21) uses the sign(S) function as a hard switcher, the
undesirable chattering phenomenon occurs [30]. Hence the sign(S) function, in
which S is a fractional order sliding surface, is replaced by the tanh(S) function. So
the FOBSMC law can be proposed as:

B2(sw)(t) = (B1(t))
−1k1tanh(S1), (22)

where k1 is positive constants and will be determined later. Hence, the overall control
law becomes:

B2(d) (t) = (B1 (t))−1

(
−p1B1 (t) + p1Gb − ·

Gd + λ1
c
0D

α
t e1 + k1tanh(S1)

)
.

(23)
The desired B2 (t) which is denoted by B2(d) (t). The fractional order term in

control signal, i.e. c0D
α
t enhanced the controller robustness. Due to adding the extra

degree of freedom, fractional order slidingmode controller can achieve better control
performance than integer order sliding mode controller. For the stability analysis of
the proposed controller in Theorem 2, we need Lemma 1.

Lemma 2 The following equality is valid for every positive scalar a and given scalar
b [31]:

S (atanh(bS)) = |S(atanh(bS))| = ‖S(atanh(bS))‖ ≥ 0 . (24)

Theorem 2 Stability analysis for the first fractional order sliding surface of pro-
posed controller.

Consider the Glucose-insulin systemwith Bergmanminimal model (15), first state
equation. This system is controlled by the control law B2(d) (t) in (23), then the system
trajectories will converge to the sliding surface S1 (t) = 0.

Proof Consider a positive definite Lyapunov function candidate in the following
form:

V1 = 1

2
S1

2. (25)
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To proof stability is done using Theorem 1, Lemmas 1 and 2. Taking the time
fractional order derivative c

0D
α
t from both sides of (24), and substitution (14) in it,

obtains:
c
0D

α
t V1 = 1

2
c
0D

α
t S1

2 ≤ S1
c
0D

α
t S1 = S1

( ·
e1 + λ1

c
0D

α
t e1

)
=

S1

((−B2(d) (t) B1 (t) − p1B1 (t) + p1Gb
) − ·

Gd + λ1
c
0D

α
t e1

)
. (26)

The substitution pseudo control law (23) into (25), obtains:

S1
c
0D

α
t S1 = S1

((
− (B1 (t))−1

(
−p1B1 (t) + p1Gb − ·

Gd + λ1
c
0D

α
t e1+

k1tanh(S1)) B1 (t) − p1B1 (t) + p1Gb) − ·
Gd + λ1

c
0D

α
t e1

)
. (27)

Finally, the simplification (26), obtain:

c
0D

α
t V1 = 1

2
c
0D

α
t S1

2 ≤ S1
c
0D

α
t S1 = −k1tanh(S1) . (28)

According to Lemma 1 it is obvious that the fractional order derivative of
Lyapunov function is negative definite [19] and the positive switching gain k1, guar-
anties stability of the closed loop system with fractional order sliding mode control
[22, 32]. Now the second part of system model is defined as follows:

·
B2 (t) = −p2B2 (t) + p3 (B3 (t) − Ib) . (29)

B2 (t) is virtual control input for second part of Bergmanminimal model, B3(d) (t)
is desired output of the second part control loop of proposed controller, the second
error equation introduced as follows:

e2 = B2 − B2(d). (30)

The second fractional order sliding surface (31) like the first fractional order
sliding surface (17), with the exception that the error dynamic characteristics have
changed:

S2 = c
0D

−α
t

·
e2 + λ2e2. (31)

By using fractional order sliding mode control theory, the desired value of B3 (t)
which consists of equivalent control law and reaching law control, will result as
follows:

B3(eq) (t) = (p3)
−1

(
p2B2 (t) + p3 Ib + ·

B2(d) − λ2
c
0D

α
t e2

)
, (32)
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B3(sw) (t) = − (p3)
−1 k2tanh(S2). (33)

Theorem 3 Stability analysis for the second fractional order sliding surface of
proposed controller.

Consider the second state Eq. (29) of Bergman minimal model (15). This system
is controlled by the control law B3(d) (t) in (32) and (33), then the system trajectories
will converge to the sliding surface S2 (t) = 0.

Proof Consider a positive definite Lyapunov function candidate in the following
form [33, 34]:

V2 = V1 + 1

2
S2

2. (34)

To proof stability is done using Theorem 1, Lemmas 1 and 2. Taking the time
fractional order derivative c

0D
α
t from both sides of (34), and substitution (31) in it,

obtains:
c
0D

α
t V2 = c

0D
α
t V1 + 1

2
c
0D

α
t S2

2 ≤ S1
c
0D

α
t S1 + S2

c
0D

α
t S2 =

− k1S1tanh(S1) + S2
( ·
e2 + λ2

c
0D

α
t e2

)
. (35)

The substitution second part of Bergman minimal model (29), error Eq. (30),
pseudo control law (32) and (33) into (35), obtains:

c
0D

α
t V2 ≤ (−k1tanh(S1) + S2

((−p2B2 (t) + p3
(
(p3)

−1 (p2B2 (t) + p3 Ib+
·
B2d − λ2

c
0D

α
t e2 − k2tanh(S2)

))
− p3 Ib

)
− ·

B2d + λ2
c
0D

α
t e2

))
. (36)

Finally, by simplification of (36), obtains:

c
0D

α
t V2 ≤ −k1S1sgn (S1) − k2S2sgn (S2) . (37)

According to Lemma 1 and Theorem 1, fractional order derivative of Lyapunov
function (34) is negative definite and the second part of system is stable [35, 36].
The fractional order sliding surface for state B3 (t) and u(t) is exactly like to state
B1 (t) and B2 (t). The process of calculating the control law and stability is in the
same case, the sliding variables are defined in:

e3 = B3 (t) − B3d , e4 = u (t) − ud (t) , (38)

S3 = c
0D

−α
t

·
e3 + λ3e3, S4 = c

0D
−α
t

·
e4 + λ4e4. (39)
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The u(t) pseudo controller is designed by (39):

u(d) (t) = n (B3 (t) − Ib) − γt [B1 (t) − h]+ + ·
B3d − λ3

c
0D

α
t e3 − k3tanh(S3).

(40)
Finally, by using sliding mode control theory w(t) is designed as follows:

wd (t) = u (t) + a
·
ud − aλ4

c
0D

α
t e4 − ak4tanh(S4). (41)

By applying the proposed controller, by exerting this signal to the system, the
system state variables will converge quickly without the normalization of system
uncertainties.

Theorem 4 Consider the fractional order sliding surface (17), (42), using Lyapunov
stability theorem in the Theorem 1 and Lemma 1, we guarantee that the fractional
order sliding surface (17) is stable and converges to zero.

S1 = c
0D

−α
t

·
e1 + λ1e1 = 0. (42)

Proof Consider the error fractional order dynamics (43) as follow:

c
0D

q
t e1 = −λ1e1, 0 < q < 1. (43)

Consider a positive definite Lyapunov function candidate for error fractional order
dynamics (43) in the following form:

V = 1

2
e1

2. (44)

Taking fractional order derivative of both sides of (44) with respect to time, one
has:

c
0D

q
t V = 1

2
c
0D

q
t e1

2 ≤ e1
c
0D

q
t e1 = −λ1e1

2. (45)

It implies that the asymptotic stability of the system is guaranteed.

5 Numerical Simulation

In this paper we used nonlinear Bergman minimal model for blood glucose regu-
lation using fractional order backstepping sliding mode control. Fractional calculus
is a useful tool to control and to achieve a significant degree of robustness. The
control system designed in this paper will be next used as an autonomous blood
glucose concentration controller for type I diabetes patients. Consequently, apply-
ing fractional order sliding surface to sliding mode control can modify the classical
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SMC to more robust controller. In this section we evaluate the proposed design
with numerical simulation, and compared them with linear control and the back-
stepping sliding mode control method which is introduced on [9]. Simulations were
performed using MATLAB software, the specification of Bergman minimal model,
FOBSMC parameters is available on Table1. The simulation results are depicted on
Figs. 1, 2, 3, 4, 5, 6, 7 and 8. As it can be seen in Fig. 1 the proposed controller design
(FOBSMC) successfully controlled the Blood Glucose concentration and decreased
the glucose concentration level from the critical area (hyperglycemia) in initial time
and meal disturbance with 80 (mg/dl) amplitude applied at t = 450min. There is no
hypoglycemic undershot, and normoglycemia is achieved in acceptable time. The
theoretical analyses and simulations show that the proposed controller achieves set
point tracking in the presence of disturbance. The BSMC of the proposed controller
(FOBSMC) has better convergence. Both methods have good performance against
disturbances applied. This reflects is the robustness of the method against distur-
bances.

Figure2 show the insulin infusion (control function) for designed controller and
BSMC, it can be seen constrained the nonnegative actuation is regarded, insulin
infusion is continues signal and appropriate value. One of the main advantages of the

Table 1 Bergman minimal model parameters value [9] and FOBSMC parameters value

Bergman
min. model

p1(min−1) p2(min−1) p3(min−1) n(min−1) Ib Gb B1(0) B3(0)

0 0.0123 8.2 × 10−8 0.2659 7 70 200 50

FOBSMC α a k1 k2 k3 k4 λ1 λ2

0.8 2 9 × 10−5 6.5 × 10−2 0.03 37 21 ×
10−3

0.85

λ3 λ4 A B Gd u(0) B2(0) w(0)

2.8 × 10−3 1 80 −0.5 80 0 0 0

Fig. 1 Patient Blood glucose concentration in FOBSMC and BSMC
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Fig. 2 Control low i.e. Insulin injection with pump in FOBSMC and BSMC

Fig. 3 Patient insulin concentration

Fig. 4 Plasma insulin concentration

proposed controller, the FOBSMC controller can track the desired value Ib (Insulin
basal level). Figure3 shows the B2 (t) state, as it can be seen, the proposed controller
Better performance than BSMC controller and closer to real conditions. Figure4
shows the plasma insulin profile designed controller and BSMC.
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Fig. 5 Patient blood glucose concentration in FOBSMC and BSMC with 30% Variation in system
parameters

Fig. 6 Insulin injection with pump in FOBSMC and BSMC with 30% variation in system para-
meters

Fig. 7 Patient insulin concentration with 30% variation in system parameters
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Fig. 8 Plasma insulin concentration with 30% Variation in system parameters

Table 2 The Controllers
performance for Bergman
minimal model with 30%
variation in parameters

Controllers Δe

FOBSMC 4157

BSMC 6453

Bergman minimal model parameters in type I diabetics patients due to the physi-
ological condition of the patient will change over time. The Blood glucose controller
against parameters uncertainties must also have an appropriate performance and is
robust against parametric uncertainties. However, to compare the robust performance
of the proposed controller than BSMC controller, meal disturbance of 80 (mg/dl) is
applied at t = 450min, together with 30% variation in parameters of the system.
Responses are shown in Figs. 5, 6, 7 and 8, by combination of the fractional order
and Backstepping sliding mode controllers, the performance of the proposed frac-
tional order Backstepping sliding mode controller is much improved with respect
to the backstepping sliding mode controller. Simulation results for the proposed
controllers are shown in Table2. It can be seen that the proposed fractional order
SMC have the smaller error and more robustness than backstepping sliding mode
controllers. The error is defined by:

Δe =
∫

|B1 (t) − B1vd (t)| dt , (46)

where B1vd(t) is B1(t) after 30% variation in parameters. Figure 5 the proposed con-
troller design (FOBSMC) successfully controlled the Blood Glucose concentration
with 30% variation in parameters and meal disturbance but BSMC controller with
30% variation in the parameters, we are seeing an increase tracking error.
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6 Conclusion

The diabetes management as one of the challenging control problems in human
regulatory systems has been discussed. The treatment of the disease via robust feed-
back control design using fractional order calculus and sliding mode control has
been considered. Stabilization of blood glucose concentration has been dis-cussed
in presence of the external disturbances such as food intake and Initial condition
critical (Hyperglycemia). From the viewpoint of stability and robust stability analy-
sis and simulation was investigated for the proposed controller. With this aim, a
fractional order backstepping sliding mode control design for blood glucose regu-
lation in type I diabetes. The proposed controller design using the four fractional
order sliding surfaces for appropriate tracking, robustness against mismatched dis-
turbance and uncertainties. The designed controller is checked and confirmed by
computer simulations. According to simulation result the proposed controllers have
a good performance in tracking set point in appropriate time, disturbance rejection,
non-negative actuator and continuous insulin injected.
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Abstract In the paper, we prove the necessary condition for the extremum existence
in terms of the generalized function-dependent fractional derivatives. By using these
results we extend the maximum and minimum principles, known from the theory
of differential equations and from diffusion problems with the Caputo derivative of
constant or distributed order. We study the fractional diffusion problem, where time
evolution is determined by the scale function-dependent Caputo derivative and show
that the maximum or respectively minimum principle is valid, provided the source
function is a non-positive or a non-negative one in the domain. As an application,
we demonstrate how the sign of the classical solution is controlled by the initial and
boundary conditions.
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We consider the time-fractional diffusion problem with the equation including
scale function-dependent fractional derivative:

cDα
0+;[z],t u(x, t) = L(u) + F(x, t) (x, t) ∈ ΩT := G × (0, T ], (1)

where operator L looks as follows

L(u) =
n∑

k=1

(
p(x)

∂2u

∂x2k
+ ∂ p

∂xk

∂u

∂xk

)
− q(x)u (2)

= p(x)Δu + (grad(p), grad(u)) − q(x)u,

functions p ∈ C1(Ḡ), q ∈ C(Ḡ) fulfill conditions p(x) > 0, q(x) ≥ 0, ∀x ∈ Ḡ,
G is an open and bounded region in Rn , Ḡ denotes its closure.

Diffusion equation (1) is subjected to the following initial condition

u|t=0 = u0(x), x ∈ Ḡ (3)

and boundary condition

u|S = v(x, t), (x, t) ∈ S × [0, T ], (4)

where S is the boundary of region G ∈ Rn .
The diffusion and advection-diffusion including the generalized fractional deriv-

ative were introduced in [1, 2]. Their solutions and properties were studied by means
of numerical methods [1–3]. Our aim is to derive the analytical results describing the
solutions via maximum/minimum principles. These theorems are developed in the
classical differential equations theory as well as in the time-fractional diffusion prob-
lems [4–7] and are an important tool in proving the uniqueness results and theorems
on continuous dependence of solutions on the problem data. We shall obtain anal-
ogous maximum/minimum theorems for models with a fractional time-derivative
dependent on the scale function.

The paper is organized as follows. Section2 contains definitions of the classical
solution and of the generalized fractional derivative of the Caputo type, its properties
and the preliminary results on the existence condition for maximum and minimum.
The version, known in calculus for the first-order derivative, is extended to the case
of a two function-dependent fractional derivative. The next part, Sect. 3, includes our
main results - maximum and minimum principles for the diffusion problem with the
generalized Caputo derivative with respect to the time variable and their application
in controlling the sign of the classical solution. The brief conclusion section closes
the paper.
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2 Preliminaries

In this section, we introduce the basic definitions and properties of the generalized
fractional derivative and prove the necessary conditions of the extremum existence
expressed in terms of this operator.

First, we recall the notion of the classical solution and define the generalized time-
fractional derivative appearing in Eq. (1). In the definition of the classical solution,
we restrict the source function and the functions determining the initial and boundary
conditions to the continuous ones.

Definition 1 Function u, determined in region Ω̄T := Ḡ × [0, T ] will be called
a classical solution to problem (1)–(4) with F ∈ C(ΩT ), u0 ∈ C(Ḡ), v ∈ C(S ×
[0, T ]) iff

u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) (5)

and u fulfills Eq. (1), initial condition (3) and boundary condition (4).
W 1

t ((0, T )) ⊂ C1 ((0, T ]) is a function space such that f ∈ W 1
t ((0, T )) ⇐⇒ f ′ ∈

L(0, T ) i.e. derivatives are determined on (0, T ) and absolutely integrable in the
Lebesgue sense.

Now, we introduce the scale and weight function-dependent fractional derivative
which was defined in [8]. We restrict this brief review to the case of order α ∈ (0, 1)
and the left-sided differential operator of the Caputo type. Let us point out that in
fractional calculus analogous derivatives are defined and studied for higher orders, in
Caputo andRiemann–Liouville versions and in both cases: as the left- and right-sided
operators [8, 9].

Definition 2 Let α ∈ (0, 1). The generalized (two function-dependent) left deriva-
tive of the Caputo type is defined as follows

cDα
0+;[z,w] f (t) = I 1−α

0+;[z,w](D[z,w,L] f )(t), (6)

where I 1−α
0+;[z,w] denotes the generalized function-dependent integral operator

I 1−α
0+;[z,w] f (t) = 1

w(t)Γ (1 − α)

∫ t

0

w(s)z′(s) f (s)
[z(t) − z(s)]α ds (7)

and the D[z,w,L]-operator is given below

D[z,w,L] f (t) = [w(t) f (t)]′
w(t)z′(t)

, (8)

with weight functionw ∈ C[0, b], scale function z ∈ C1[0, b] andw > 0, z′ > 0 in
interval [0, b].
The above definition extends the notion of the standard Caputo derivative which is
recovered in the case:
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z(t) = t w(t) = 1 t ∈ [0, b].

We refer the reader to the discussion on generalized two-function dependent frac-
tional derivatives (left and right) enclosed in monograph [9] and to further results in
[8], where Caputo type derivatives are constructed and studied as well. Let us recall
the differentiation formulas for analogs of power functions when β > 0:

cDα
0+;[z,w]

(z(t) − z(0))β−1

w(t)
= Γ (β)

Γ (β − α)

(z(t) − z(0))β−α−1

w(t)
. (9)

In particular, for w = 1 we have the following simpler definition and differentiation
formula:

cDα
0+;[z] f (t) = I 1−α

0+;[z](D[z,L] f )(t), (10)

where I 1−α
0+;[z] denotes the generalized scale function-dependent integral operator

I 1−α
0+;[z] f (t) = 1

Γ (1 − α)

∫ t

0

z′(s) f (s)
[z(t) − z(s)]α ds (11)

and the D[z,L]-operator is given below

D[z,L] f (t) = f ′(t)
z′(t)

, (12)

with scale function z ∈ C1[0, b] and z′ > 0 in interval [0, b]. The differentiation
formula (9) is of the form

cDα
0+;[z] (z(t) − z(0))β−1 = Γ (β)

Γ (β − α)
(z(t) − z(0))β−α−1 . (13)

Now, we shall extend the necessary condition for the maximum existence which
was proved in [4–6] in the case of the Caputo derivative and in [7] for the Caputo
derivative of distributed order. In the theorem below, we formulate the analogous
result for the two-function dependent fractional derivative defined by formula (6).
It is a known fact from calculus that if function f ∈ W 1

t ((0, T )) ∩ C[0, T ] attains
a maximum at point t0 ∈ (0, T ], then f ′(t0) = 0. It can be expressed as follows in
terms of generalized fractional derivatives.

Theorem 1 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its maximum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized two function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z,w]

f

w
(t0) ≥ 0. (14)

Proof We define an auxiliary function:
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g(s) := f (t0) − f (s)

w(s)
s ∈ [0, T ]. (15)

It is easy to check that function g has the following properties:

g(s) ≥ 0 s ∈ [0, T ] (16)

cDα
0+;[z,w]g(t) = −cDα

0+;[z,w]
f

w
(t) t ∈ [0, T ] (17)

|g(s)| ≤ Cε|z(t0) − z(s)| s ∈ [ε, T ], ε ∈ (0, T ), (18)

which follow from the fact that: f ∈ W 1
t ((0, t)) , z ∈ C1[0, T ], w ∈ C[0, T ], z′ >

0, w > 0. Now, we rewrite the derivative and obtain for any ε ∈ (0, t0)

cDα
0+;[z,w]g(t0) = I 1−α

0+;[z,w](D[z,w,L]g)(t0) (19)

= 1

w(t0)Γ (1 − α)

∫ t0

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= 1

w(t0)Γ (1 − α)

∫ ε

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds + 1

w(t0)Γ (1 − α)

∫ t0

ε

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= I1 + I2.

Let us note that f ∈ W 1
t ((0, t)) yields wg ∈ W 1

t ((0, t)), therefore (wg)′ ∈ L
((0, T )), which means that

∀δ > 0 ∃ε > 0 |I1| < δ. (20)

For the I2 - part we have

I2 = lim
s→t0

(z(t0) − z(s))−αw(s)g(s)

w(t0)Γ (1 − α)
− (z(t0) − z(ε))−αw(ε)g(ε)

w(t0)Γ (1 − α)

+ 1

w(t0)Γ (−α)

∫ t0

ε

w(s)g(s)z′(s)
[z(t0) − z(s)]α+1

ds.

The limit in the above equality vanishes:

lim
s→t0

|(z(t0) − z(s))−αw(s)g(s)|
w(t0)Γ (1 − α)

≤ ||w|| lim
s→t0

|(z(t0) − z(s))−α| · Cε|(z(t0) − z(s))|
w(t0)Γ (1 − α)

= 0,
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where we applied property (18) and || · || denotes the supremum norm in theC[0, T ]-
space. From Γ (−α) < 0 for α ∈ (0, 1) and property (16) we obtain I2 ≤ 0 for any
ε ∈ (0, T ). Next, from properties (17), (20) we obtain (14). �

The above theorem holds in the case of the scale function-dependent derivative
defined by formula (10) when w = 1.

Corollary 1 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its maximum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized scale function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z] f (t0) ≥ 0. (21)

The necessary condition for the minimum existence can also be expressed in terms
of a two function-dependent derivative.

Theorem 2 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its minimum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized two function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z,w]

f

w
(t0) ≤ 0. (22)

Proof In the proof, we apply the auxiliary function given in (15). Function g now
obeys the inequality:

g(s) ≤ 0 s ∈ [0, T ] (23)

and it also fulfills (17), (18). Similar to the previous proof, we split the derivative
and obtain for any ε ∈ (0, t0)

cDα
0+;[z,w]g(t0) = (24)

= 1

w(t0)Γ (1 − α)

∫ ε

0

[w(s)g(s)]′
[z(t0) − z(s)]α ds + 1

w(t0)Γ (1 − α)

∫ t0

ε

[w(s)g(s)]′
[z(t0) − z(s)]α ds

= I1 + I2.

Let us note that again for the first term implication (20) holds. For the I2 - term we
have the equality

I2 = lim
s→t0

(z(t0) − z(s))−αw(s)g(s)

w(t0)Γ (1 − α)
− (z(t0) − z(ε))−αw(ε)g(ε)

w(t0)Γ (1 − α)

+ 1

w(t0)Γ (−α)

∫ t0

ε

w(s)g(s)z′(s)
[z(t0) − z(s)]α+1

ds.
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The limit in the above equality vanishes as was shown in the previous proof. From
Γ (−α) < 0 for α ∈ (0, 1) and property (23) we obtain I2 ≥ 0 for any ε ∈ (0, T ).
Next, from properties (17), (20) we obtain (22). �

From the above necessary condition for the minimum, formulated for the two
function-dependent derivative, we obtain the following corollary for the casew = 1.

Corollary 2 Let function f ∈ W 1
t ((0, T )) ∩ C([0, T ]) attain its minimum on inter-

val [0, T ] at point s = t0, t0 ∈ (0, T ]. Then, the generalized scale function-dependent
Caputo derivative of function f fulfills the following inequality for any order
α ∈ (0, 1)

cDα
0+;[z] f (t0) ≤ 0. (25)

3 Main Results

We shall study the generalized fractional diffusion problem with the diffusion equa-
tion (1), the initial condition given in (3) and the boundary conditions determined
in (4). Our aim is to derive the maximum and minimum principles for the multidi-
mensional case and to apply these results in a preliminary study of the properties of
classical solutions to the problem.

First, applying Corollary 1, we prove the theorem which generalizes the classical
maximum principle as well as the result proved in [4–6] for fractional diffusion
problems. We extend the fractional maximum principle to the case, where in the
diffusion equation the Caputo derivative with respect to the time-variable is replaced
with the scale function-dependent derivative of the Caputo type given in (10).

Theorem 3 Let function u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) be the
classical solution of the generalized time-fractional diffusion equation (1) in region
ΩT := G × (0, T ],G ⊂ Rn and let F(x, t) ≤ 0, (x, t) ∈ ΩT . Then, either solu-
tion u is non-positive in Ω̄T or it attains the positive maximum on set STG which
means

u(x, t) ≤ max{0, max
(x,t)∈STG

u(x, t)} (x, t) ∈ Ω̄T , (26)

where STG := (Ḡ × {0}) ∪ (S × [0, T ]).
Proof Let us assume that thesis (26) is not valid. Then point (x0, t0), x0 ∈ G, 0 ≤
t0 ≤ T exists such that

u(x0, t0) > max
(x,t)∈STG

{0, u(x, t)} = M > 0. (27)

We define number ε := u(x0, t0) − M > 0 and the following auxiliary function:
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f (x, t) := u(x, t) + ε

2

z(T ) − z(t)

z(T )
(x, t) ∈ Ω̄T . (28)

From this definition and assumptions of the theorem we have:

f (x, t) ≤ u(x, t) + ε

2
(x, t) ∈ Ω̄T

f (x0, t0) ≥ u(x0, t0) = ε + M ≥ ε + u(x, t) ≥ ε + f (x, t) − ε

2
(x, t) ∈ STG .

From the above inequality we infer that function f cannot attain its maximum on
the STG -part of the boundary of region ΩT . Therefore point (x1, t1) ∈ Ω̄T exists such
that x1 ∈ G and 0 < t1 ≤ T and function f attains its maximum at (x1, t1). At this
point the following inequality is fulfilled

f (x1, t1) ≥ f (x0, t0) ≥ ε + M > ε.

From Corollary 1 and the necessary and sufficient conditions of the existence of the
maximum in region ΩT we obtain the following set of conditions

cDα
0+;[z],t f (x1, t1) ≥ 0 α ∈ (0, 1)

grad( f )|(x1,t1) = 0 Δ f |(x1,t1) ≤ 0

and the relations for derivatives

cDα
0+;[z],t u(x, t) = cDα

0+;[z],t f (x, t) + ε
2z(T )

(z(t)−z(0))1−α

Γ (2−α)
, (29)

grad( f ) = grad(u), Δu(x, t) = Δ f (x, t). (30)

Now, we are ready to test the behavior of the generalized diffusion operator at point
(x1, t1) (

cDα
0+;[z],t u(x, t) − L(u)

) |(x1,t1)

= cDα
0+;[z],t f (x1, t1) + ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)

−p(x1)Δ f (x1, t1) − (
grad(p)|x1 , grad( f )|(x1,t1)

)

+q(x1)

(
f (x1, t1) − ε

2

z(T ) − z(t1)

z(T )

)
− F(x1, t1)

≥ ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)
> 0.
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We note that at point (x1, t1) the following inequality holds

(
cDα

0+;[z],t u(x, t) − L(u)
) |(x1,t1) > 0,

which means that function u is not a solution to Eq. (1). Therefore the assumption
(27) is incorrect and the thesis (26) is valid. �

The above theorem is called the maximum principle. We note that in the case
F(x, t) ≥ 0 an analogous result can be formulated. We prove the minimum prin-
ciple below. The proof is analogous to the proof of the maximum principle, but we
now use the condition from Corollary 2.

Theorem 4 Let function u ∈ CWT (G) := C(Ω̄T ) ∩ W 1
t ((0, T )) ∩ C2

x (G) be the
classical solution of the generalized time-fractional diffusion equation (1) in the
region ΩT := G × (0, T ],G ⊂ Rn and let F(x, t) ≥ 0, (x, t) ∈ ΩT . Then, either
solution u is non-negative in Ω̄T or it attains the negative minimum on set STG which
means

u(x, t) ≥ min{0, min
(x,t)∈STG

u(x, t)} (x, t) ∈ Ω̄T , (31)

where STG := (Ḡ × {0}) ∪ (S × [0, T ]).
Proof Let us assume that thesis (31) is not valid. Then point (x0, t0), x0 ∈ G, 0 ≤
t0 ≤ T exists such that

u(x0, t0) < min
(x,t)∈STG

{0, u(x, t)} = M1 < 0. (32)

We define number ε := u(x0, t0) − M1 < 0 and the following auxiliary function:

f1(x, t) := u(x, t) + ε

2

z(T ) − z(t)

z(T )
(x, t) ∈ Ω̄T . (33)

From this definition and by assumptions we obtain:

f1(x, t) ≥ u(x, t) + ε

2
(x, t) ∈ Ω̄T

f1(x0, t0) ≤ u(x0, t0) = ε + M1 ≤ ε + u(x, t) ≤ ε + f1(x, t) − ε

2
(x, t) ∈ STG .

From the above inequality we infer that function f1 cannot attain its minimum on
the STG -part of the boundary of region ΩT . Therefore point (x1, t1) ∈ Ω̄T exists such
that x1 ∈ G and 0 < t1 ≤ T and function f1 attains its minimum at (x1, t1). At this
point the following inequality is fulfilled

f1(x1, t1) ≤ f1(x0, t0) ≤ ε + M1 < ε.
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From Corollary 2 and the necessary and sufficient conditions of the existence of the
minimum in region ΩT , we obtain the following set of conditions

cDα
0+;[z],t f1(x1, t1) ≤ 0 α ∈ (0, 1)

grad( f1)|(x1,t1) = 0 Δ f1|(x1,t1) ≥ 0

and the relations for derivatives (29), (30), where we have replaced function f by
f1, hold. Now, we analyze the behavior of the generalized diffusion operator at point
(x1, t1) (

cDα
0+;[z],t u(x, t) − L(u)

) |(x1,t1)

= cDα
0+;[z],t f1(x1, t1) + ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)

−p(x1)Δ f1(x1, t1) − (
grad(p)|x1 , grad( f1)|(x1,t1)

)

+q(x1)

(
f1(x1, t1) − ε

2

z(T ) − z(t1)

z(T )

)
− F(x1, t1)

≤ ε

2z(T )

(z(t1) − z(0))1−α

Γ (2 − α)
< 0.

We note that at point (x1, t1) the following inequality holds

(
cDα

0+;[z],t u(x, t) − L(u)
) |(x1,t1) < 0,

which means that function u is not a solution to Eq. (1). Therefore the assumption
(32) is incorrect and the thesis (31) is valid. �

The derived minimum and maximum principles can be applied in generalized frac-
tional diffusion problems to prove the uniqueness results and properties of classical
solutions. One of the applications are the following corollaries on controlling the
sign of the classical solution.

Corollary 3 Let assumptions of Theorem 4 be fulfilled and

min
(x,t)∈STG

u(x, t) ≥ 0.

Then, the classical solution u is non-negative.

Proof From Theorem 4 we immediately obtain the thesis

u(x, t) ≥ min{0, min
(x,t)∈STG

u(x, t)} ≥ 0 (x, t) ∈ Ω̄T



Maximum and Minimum Principles for the Generalized Fractional Diffusion … 213

whichmeans that in the case F(x, t) ≥ 0we control the value of the classical solution
u via the initial and boundary conditions on the STG -part of the boundary. �

Corollary 4 Let assumptions of Theorem 3 be fulfilled and

max
(x,t)∈STG

u(x, t) ≤ 0.

Then, the classical solution u is non-positive.

4 Conclusion

In the paper, we extended the necessary conditions for the extremum existence to the
version expressed in terms of the generalized scale and weight function-dependent
fractional derivative. From these conditions, the corollaries follow, where the exis-
tence ofminimumormaximumat the given point is connectedwith the corresponding
inequality for the left scale and weight function-dependent derivative of the Caputo
type.

The obtained necessary conditions were applied in the proof of maximum and
minimum principles for time-fractional diffusion problem (1)–(4). These theorems
generalize the known classical results as well as the maximum/minimum principle
for diffusion problems with a time-fractional Caputo derivative. In the partial dif-
ferential equations theory, both for the problems of integer and non-integer order,
the maximum/minimum principles are applied to prove uniqueness results for clas-
sical solutions and to control the sign of the solution. We demonstrated for the
generalized diffusion problem of type (1)–(4) that similar results are valid and fol-
low from the maximum/minimum principles. Further applications are still under
investigation.
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On a New Class of Multistage
Fractional-Order Phase-Lead Compensators

Guido Maione

Abstract This paper proposes the transfer function forms for implementing a new
class of fractional-order phase-lead compensators of analog type. A serial structure
of frequency-scaled second-order compensators is defined to reduce the sensitiv-
ity to the tolerance of passive components in analog implementations. Compared
to conventional multiple realizations, the new structure considerably increases the
frequency range in which the phase plot of the compensator shows a flat behavior,
and easily locates this range in the desired position. The new compensator gives new
chances of flexible and robust control system design.

Keywords Fractional-order lead compensators · Frequency-domain · Multistage
compensators · Coefficient sensitivity · Fractional-order control

1 Introduction

After some pioneering results [1, 2], the design and realization approaches of the
fractional-order compensators keep on evolving continuously [3]. The fractional
integral and derivative actions promise to improve performance, robustness, and
flexibility of the phase lead/lag compensators used in industrial loops. However, the
implementation of fractional-order compensators requires both the rational realiza-
tion of irrational transfer functions and new dedicated design solutions. To face the
first issue, a popular solution specifies the order and the required precision of the
approximating transfer function in a given limited frequency band [1, 4]. A similar
approach has been developed by [5]. However, in both methods, the rational transfer
functions of order less than six don’t lead to satisfactory approximations [6]. There
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exist many alternatives, e.g. the truncation of continued fractions expansions [7–10].
Often, however, the zeros and poles of the rational transfer functions become more
and more sensitive to the changes of the coefficients of the numerators and of the
denominators as the degree of these polynomials increases.

To face the second issue, the design approaches successfully used for integer-order
controllers are often adapted to the fractional-order compensators design. Recently,
a renewed interest was for fractional-order lead/lag compensators (FLECs/FLACs)
[11–13], that are on the background of the CRONE control [1, 14]. The lead/lag
compensators are widespread in industry and the prospect of advantages in using
FLECs/FLACs is encouraging. Here the focus is on FLECs, because the same pattern
provides analogous results for FLACs. A new approach determines the coefficients
of the rational transfer function realization of analog FLECs. Then a new class of
compensators, consisting of cascaded frequency-scaled sections, is introduced. Two
are the main contributions.

Firstly, closed formulas for the coefficients of the rational, N -order, transfer func-
tion realization of an analog FLEC are provided. The numerator coefficients are
expressed as a linear combination of the numerator coefficients of the transfer func-
tion approximating sν . The denominator coefficients are determined similarly. The
formulas, which, in principle, can be applied whatever the approach for approximat-
ing sν will be, are computationally efficient.

A second contribution is underlined. Often the implementation of a FLEC leads to
a high-order approximation. However, the higher the order of numerator/denominator
polynomials is, the higher the length of their coefficients is and vice-versa. Then the
direct realization form shows great sensitivity to the accuracy of the coefficients that
change due to the tolerance of passive components whose true values don’t match
the design. To reduce the undesirable effects, the common practice is to build up a
high-order transfer function as a cascade of second-order sections, and a first-order
section if necessary.

A new strategy is here proposed. A second-order approximation of the ana-
log FLEC is first determined. Then other second-order sections are designed by
frequency-scaling the first one, so that each section dominates on a given frequency
interval where it shows a nearly flat phase diagram. The cascade of sections of
frequency-scaled second-order approximations of the FLEC generates an analog
controller that maintains a flat behavior in a frequency range that is much wider than
by conventional series of compensators of the same order.

The paper is organized as follows. Section 2 provides closed formulas for deter-
mining the coefficients of the transfer functions realizing the FLECs in the s-domain.
Section 3 illustrates the properties of multiple FLECs composed by a cascade of two
second-order compensators having Bode plots of the same forms, but appropriately
scaled on the frequency axis. Section 4 gives the conclusions.
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2 Closed-Form Realization of Fractional-Order
Lead Compensators

This section provides closed-form expressions to compute the coefficients of the
s-domain transfer function that realizes the FLEC. The closed formulas are useful
both to obtain a numerically efficient transfer function realization of the FLECs and
to evaluate the sensitivity of the analog implementations to the coefficients variation.
So consider the irrational transfer function

CC(s) =
(

1 + τ s

1 + Δ τ s

)ν

(1)

with 0 < ν < 1 and τ , Δ ∈ R, that represents a fractional-order lead compensator
(FLEC), for 0 < Δ < 1, or a fractional-order lag compensator (FLAC), for Δ > 1.
Since the (1) is irrational, a rational transfer function approximation must be found.
The here proposed realization method is based on a N -order rational transfer function
approximation of the basic function xν , where x ∈ C:

xν ≈ G(x) = β(x)

α(x)
=

∑N
i=0 bN−i x i∑N
i=0 aN−i x i

. (2)

The coefficients aN−i , bN−i can be obtained by one of the existing methods (see [1,
4, 5, 7, 8] and references therein). The analytical formulas given in [8] (where bN−i

and aN−i are respectively denoted by pN ,N−i and qN ,N−i ) are

bN−i = ai = (−1)i
(
N

i

)
(ν + i + 1)(N−i) (ν − N )(i) (3)

for i = 0, . . . , N , where
(N
i

)
is the binomial coefficient, (ν + i + 1)(N−i) = (ν + i + 1)

(ν + i + 2) · · · (ν + N ) and (ν − N )(i) = (ν − N )(ν − N + 1) · · · (ν − N + i − 1),
with (ν + N + 1)(0) = (ν − N )(0) = 1. The formulas easily lead to an effective
approximation of xν . Then using the Möbius transformation [15]

x = r
1 + q y

1 + p y
(4)

with x, y ∈ C, to convert transforms (2) in the rational transfer function GC(s)
approximating the FLEC, some preliminary results are shown. Substituting (4) in (2)
and reducing it to the same denominator (numerator) give:

(
r

1 + q y

1 + p y

)ν

≈ G(y) = Q(y)

P(y)
=

∑N
i=0 bN−i r i (1 + q y)i (1 + p y)N−i

∑N
i=0 aN−i r i (1 + q y)i (1 + p y)N−i

. (5)
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From (5) a closed formula is established for the constants multiplying the powers yk

that appear in the generic terms of both P(y) and Q(y).

Proposition 1 The (i + 1)th term of the sum leading to P(y) is a polynomial
expressed as sum of (N + 1) monomial terms of the form:

aN−i Lki y
k = aN−i r

i

⎡
⎣ μ2∑

j=μ1

(
i

j

)(
N − i

k − j

)
(q) j (p)k− j

⎤
⎦ yk (6)

for k = 0, 1, . . . , N, with μ1 = max{0, k + i − N }, μ2 = min{i, k}. Likewise, the
sum of monomials terms bN−i Lki yk (k = 0, 1, . . . , N ) provides the (i + 1)th term
of the sum defining Q(y).

Proof By the binomial theorem and by the distributive law of the product of sums
[16], the generic entry of P(y) can be re-written as:

aN−i r
i (1 + q y)i (1 + p y)N−i = aN−i r

i
i∑

j=0

N−i∑
m=0

(
i

j

) (
N − i

m

)
(q y) j (p y)m,

(7)
where, for each index i , the second member of (7) represents a polynomial of degree
N that adds monomial terms in the form of a constant multiplying yk . Since the
coefficient of yk adds up in the entries of type (7) for which indices j and m satisfy
j + m = k, the lower indexm in the binomial coefficient in (7) is replaced by (k − j)
to underline the role of k explicitly. Thus it holds aN−i r i (1 + q y)i (1 + p y)N−i =
aN−i r i

∑i
j=0

∑
k

(i
j

) (N−i
k− j

)
(q) j (p)k− j yk .

Since k does not depend on j , for each m satisfying 0 ≤ m ≤ N − i , there exists
one and only one j such that 0 ≤ k − j ≤ N − i , i.e. such that k + i − N ≤ j ≤ k.
These constraints on the index variable j are expected because the bottom index
variable of

(N−i
k− j

)
must be non-negative and not greater than the upper index variable.

Since the bottom index of any binomial coefficient must respect this rule, for the
indices i and j in

(i
j

)
it holds 0 ≤ j ≤ i . It follows j ≥ μ1 = max{0, k + i − N }

and j ≤ μ2 = min{i, k}, where μ1 and μ2 define the start and stop value of the
summation (6), respectively.

Finally, (6) holds also true for Q(y) with bN−i replacing aN−i . �

Proposition 2 The rational approximation of an analog FLEC is given by

(
1 + τ s

1 + Δ τ s

)ν

≈ GC(s) = B(s)

A(s)
=

∑N
k=0 BN−k sk∑N
k=0 AN−k sk

, (8)
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where

AN−k =
N∑
i=0

aN−i L
C
ki , BN−k =

N∑
i=0

bN−i L
C
ki , LC

ki = τ k
μ2∑
j=μ1

(
i

j

)(
N − i

k − j

)
Δk− j

(9)
for k = 0, 1, . . . , N and with μ1 = max{0, k + i − N }, μ2 = min{i, k}.
Proof Defining r = 1, q = τ , p = Δ τ , and y = s and substituting the (4) in G(y)
yield:

(
1 + τ s

1 + Δ τ s

)ν

≈
∑N

i=0 bN−i (1 + τ s)i (1 + Δ τ s)N−i

∑N
i=0 aN−i (1 + τ s)i (1 + Δ τ s)N−i

. (10)

By Proposition 1 and by the above definitions, the monomial term of degree k of the
generic denominator entry in (10) becomes:

aN−i L
C
ki s

k = aN−i

⎡
⎣τ k

μ2∑
j=μ1

(
i

j

)(
N − i

k − j

)
Δk− j

⎤
⎦ sk . (11)

Now add the monomial terms involving sk and belonging to all the entries of the
summation in (10) for i = 0, 1, . . . , N . Then, the resulting constant is a linear com-
bination of the (N + 1) coefficients aN−i and is named AN−k so that (9) follows.
Analogously, the expression of BN−k in (9) follows. Finally, summing the monomials
AN−k sk (BN−k sk) for all values of k leads to (8). �

Example 1 This example shows an application of the previously obtained formulas
for analog realizations. Let N = 2. According to [8], the denominator and numerator
coefficients of a second-order approximation of sν are: a0 = (2 + ν) (1 + ν), a1 =
2 (2 + ν) (2 − ν), a2 = (2 − ν) (1 − ν), and b0 = a2, b1 = a1, b2 = a0. To obtain
AN−k and BN−k , the (9) is used with LC

00 = LC
01 = LC

02 = 1, LC
10 = 2 τ Δ, LC

11 =
τ (1 + Δ), LC

12 = 2 τ and LC
20 = τ 2 Δ2, LC

21 = τ 2 Δ, LC
22 = τ 2. For ν = 0.5, τ = 10

seconds, Δ = 0.1, the following transfer function is obtained:

GC(s) = 153.75 s2 + 105 s + 12

450.75 s2 + 159 s + 12

which has zeros in {−0.5378,−0.1451} and poles in {−0.2433,−0.1094}.
Remark Closed formulas can also be obtained for a digital realization. The coeffi-
cients defining the discrete-time transfer function approximation of a FLEC can be
related to AN−k and BN−k in (9). The proof is beyond the scope of this paper and is
omitted here for sake of space.
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3 Cascade of Frequency-Scaled Compensators

To reduce the undesirable effects due to coefficient variations, high-order transfer
functions are often implemented by low-sensitivity structures consisting of a cas-
cade of second-order transfer function sections. Now consider the irrational analog
compensator CC(s). This section introduces a series of frequency-scaled FLECs
(FS-FLEC), say CC(s ωs), where ωs is a scale factor. These FLECs are implemented
as second-order, frequency-scaled, rational transfer functions, whose coefficients
are easily determined by the formulas of Sect. 2. More precisely, each section of
the serial structure is realized as an analog second-order transfer function, that is
appropriately frequency-scaled with respect to adjacent sections. The series of FS-
FLEC realizations not only reduces the errors due to variations in the coefficients of
second-order transfer functions, but also exhibits a flat phase plot in a much larger
frequency-interval than those guaranteed by the conventional series of multiple iden-
tical FLECs (CM-FLEC).

To introduce the new cascade structure, first denote a FLEC as

CC1(s) =
(

1 + τ s

1 + Δ τ s

)ν

, (12)

where here it is assumed Δ < 1, to fix the ideas and to deal with FLECs only. Then
put s = j ω. It is well known that the maximum phase-lead φm1 ofCC1(s) is obtained
at the geometric mean of the frequencies 1/τ and 1/(Δ τ ) [12, 14]:

ωm1 = 1

τ
√

Δ
. (13)

Given ωm1, the maximum magnitude, Mm1, and the maximum phase, φm1, of the
FLEC can be determined as follows:

Mm1 = |CC1( j ωm1)| = (Δ)−0.5 ν (14)

φm1 = ν

[
tan−1

(
1√
Δ

)
− tan−1

(√
Δ

)]
= ν tan−1

(
1 − Δ

2
√

Δ

)
= ν φ1. (15)

Figure 1 shows the Bode magnitude and phase plots for an analog compensator
CC1(s) with ν = {0.3, 0.5, 0.7, 0.9}, τ = 10 s and Δ = 0.1 (dashed lines). The plots
of a second-order realization GC1(s) of the FLEC are also included (solid lines). As
it will be shown below, the accuracy of a second-order GC1(s) is satisfactory in the
frequency range of interest for the design purposes of a series of multiple frequency-
scaled FLECs. Namely, higher-order, rational transfer function realizations don’t
significantly improve the approximation of CC1(s) in the frequency range where the
phase is nearly flat.

For a given frequency, higher values of ν provide higher phase-leads. However,
curves corresponding to lower values of ν exhibit flatter phase plots (see Fig. 1b).
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Fig. 1 Bode plots of the first FLEC compensator in (12) (dashed lines) and of its second-order
realization given by (8) (solid lines)

Now, it is important to recall that the FLECs have an important restriction. Because
φm1 depends on ν and Δ, the (15) shows that there is a limit in the phase-lead provided
by the FLECs. Namely, many authors suggest that the distance between the pole and
zero must be such that Δ ≥ 0.1 and this value corresponds to φm1 ≈ ν (54.9)◦. So,
if the requested phase-lead is greater than φm1, then a conventional multiple (CM)
compensator can be used by arranging a series of two (or more) sections with the same
zero-pole pair. Each section of the CM-FLECs has the same phase-lead Bode plots
on the same frequency interval, so that the resulting phase plot of the CM-FLECs is
the sum of the equal contributions of all the present sections.

Instead, this paper introduces a cascade of two (or more) adjacent FLECs whose
Bode plots are equal in form, but properly frequency-scaled. The value of the scale
factor for each plot is so chosen that each section dominates on the frequency inter-
vals in which the phase plot is nearly flat. In detail, hereCC1(s) has unity scale-factor,
while the second FLEC, say CC2(s), is obtained by scaling CC1(s) with the substi-
tution s → s ωs = s Δ:

CC2(s) =
(

1 + τ s Δ

1 + τ s Δ2

)ν

. (16)

With this value for the scale factor, CC2(s) reaches its maximum phase-lead φm2 at
the frequency

ωm2 = 1

τ Δ1.5
= ωm1

Δ
(17)

and the maximum magnitude and phase-lead are

Mm2 = |CC2( j ωm2)| = (Δ)−0.5 ν and φm2 = ν tan−1

(
1 − Δ

2
√

Δ

)
. (18)
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Fig. 2 Bode plots of the realization of the first compensator in (12) (dashed lines), of the second
scaled compensator in (16) (dotted lines), and of the multiple compensator in (19) (solid lines)

Moreover, (18) shows that: Mm2 = Mm1, φm2 = φm1. Finally, for a generic frequency
ω, it can be writtenCC1( j ω Δ) = CC2( j ω). Figure 2 shows the Bode magnitude and
phase plots of the rational transfer function approximation for an analog compensator
CC2(s) (see dotted lines in Fig. 2a, b) with the same values of ν, τ , and Δ that are
used for CC1(s) in Fig. 1.

With the chosen parameters, the series connection of the two frequency-scaled
compensators defines the multiple frequency-scaled FLEC (MFS-FLEC), which has
break frequencies in 1/τ and 1/(τ Δ2). Then it holds:

CC12(s) = CC1(s)CC2(s Δ) =
(

1 + τ s

1 + τ Δ2 s

)ν

(19)

and, by (13) and (19), the maximum phase-lead φm12 is obtained at the geometric
mean of the new break frequencies

ωm12 = 1

τ Δ
= ωm1√

Δ
(20)

so that the maximum magnitude is

Mm12 = |CC12( j ωm12)| = (Δ)−ν (21)

and the maximum phase-lead is

φm12 = ν tan−1

(
1 − Δ2

2 Δ

)
. (22)
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As ωm12 gives the center of the frequency interval, where the phase diagram is
nearly flat, in control system design the value of ωm12 is important to locate the
MFS-FLEC on the frequency axis.

Analogously, by using the scaled frequency s/Δ, one can obtain the FS-FLEC

C̃C2(s) =
(

1 + τ s/Δ

1 + τ s

)ν

(23)

with

ω̃m2 =
√

Δ

τ
= ωm1 Δ. (24)

Hence the transfer function of the MFS-FLEC becomes

C̃C12(s) = CC1(s) C̃C2(s) =
(

1 + τ s/Δ

1 + τ s Δ

)ν

(25)

and the maximum phase-lead occurs at the angular frequency

ω̃m12 = 1

τ
= ωm1

√
Δ. (26)

Therefore the maximum magnitude is

M̃m12 = |C̃C12( j ω̃m12)| = (Δ)−ν = Mm12 (27)

and the maximum phase-lead is

φ̃m12 = ν tan−1

(
1 − Δ2

2 Δ

)
= φm12. (28)

In conclusion, both the sections can be scaled and shifted towards the increasing or
decreasing frequencies. Figure 2 shows the Bode plots of the approximations obtained
for the FLEC CC1(s), the FS-FLEC CC2(s), and the MFS-FLEC CC12(s), i.e. the
Bode plots of GC1(s), GC2(s), and GC12(s), respectively.

Finally, CM-FLECs and MFS-FLECs are compared. Figure 3 shows the Bode
diagrams of CM-FLECs, i.e. C∗

C12( j ω) = [CC1( j ω)]2, and MFS-FLECs, i.e. CC12

( j ω) = CC1( j ω)CC2( j ω), for ν = {0.3, 0.5, 0.7, 0.9}, τ = 10 s, and Δ = 0.1.
Compensators C∗

C12( j ω) and CC12( j ω) provide the same high-frequency gain, even
if the slope of the magnitude plot of C∗

C12( j ω) is steeper than that of CC12( j ω).
Then, for the magnitude of C∗

C12( j ω), the maximum shift upward occurs before the
same shift is reached by CC12( j ω). Finally, for a given value of ν, a CM-FLEC
provides the maximum phase-lead φ∗

m12 = 2 φm1 ≈ ν (109.8)◦ that is greater than
φm12 ≈ ν (78.6)◦ given by a MFS-FLEC. However, phase plots of CC12( j ω) are
flatter than those of C∗

C12( j ω).
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Fig. 3 Bode plots of approximated CM-FLECs (dotted lines), irrational MFS-FLECs (solid lines),
approximated MFS-FLECs (dashed lines)

4 Conclusion

This paper proposes a cascade structure of second-order frequency-scaled sections,
which forms the basis of a new implementation approach of fractional-order lead
compensators. The resulting transfer functions show flat phase plots in wider fre-
quency ranges than the ones obtained by the high-order direct form transfer functions
of FLECs. The width and position of these ranges can be easily adjusted by choos-
ing second-order scaled compensators. Moreover, the cascade form of independent
sections limits the negative effects due to coefficient variations. Finally, the closed
formulas proven in Sect. 2 make easier the determination of the coefficients of the
transfer functions. These results make the proposed structure of fractional compen-
sator very robust and convenient.

A limitation of the proposed approach could be the absence of an explicit integral
action in the compensator. In this case, an explicit integrator can be easily added if
required. Moreover, if a higher precision in the approximation is desired, then one
can increase the order by using more sections (in this paper two sections defined
a 4-th order compensator). Nonetheless, practical applications would gain a small
benefit. Finally, the proposed compensators are realized by orders higher than those
obtained by PID controllers, which however can’t yield the same wide frequency
range of flat phase, i.e. the same robustness.

Future work will consider digital realization. Namely, not only analogous closed-
form expressions can be developed for lag compensators but also for digital compen-
sators. In particular, formulas can be obtained for the coefficients of discrete-time
realization of FLECs as linear combination of the coefficients of the analog transfer
function approximation. Care will be paid to reduce the typical quantization effects
that may lead to poor performance or instability.
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On the Existence of Optimal Controls
for the Fractional Continuous-Time
Cucker–Smale Model

Agnieszka B. Malinowska, Tatiana Odzijewicz and Ewa Schmeidel

Abstract In this work the Cucker–Smale fractional optimal control problem is pro-
posed and studied. We show that considered problem has an optimal solution and we
derive necessary conditions for this solution.

Keywords Cucker–Smalemodel ·Consensus ·Fractional optimal control ·Optimal
solution · Fractional analysis
Introduction

The collective behavior models describe migration of interacting agents. By follow-
ing basic local laws they aremoving coherently. Such coordinatedmotion is exhibited
bymany living beings, e.g., birds, fish, bacteria or insects, and its mathematical mod-
eling is nowadays of strong interest with many authors contributing to the theory (see
e.g., [1–7]). One of the simplest and most important models was proposed by Cucker
and Smale [3, 8]:

{
ẋi(t) = vi(t)

v̇i(t) = 1
N

∑N
j=1 a(||xj(t) − xi(t)||)(vj(t) − vi(t)) i = 1, . . . , N,

(1)

wherea ∈ C1([0; 1)) is a nonincreasing positive function and xi ∈ R
d ,vi ∈ R

d are the
state and consensus parameters, respectively. The Cucker–Smalemodel (1) describes
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the emerging of consensus in a group ofN interacting agents described by 2d degrees
of freedom each, trying to align the consensus parameters vi with their neighbors.
Under certain conditions, Cucker and Smale [3, 8] proved that the system converges
to a consensus pattern, characterized by the fact that all the consensus parameters
tend, for t → ∞, to the mean consensus parameter v̄ = 1

n

∑n
j=1 vj(t). For the case

when a consensus is not achieved it was proposed, in [2], to introduce the external
control strategies. The authors considered the optimal control problemof determining
a trajectory solution of

{
ẋi(t) = vi(t)

v̇i(t) = 1
N

∑N
j=1 a(||xj(t) − xi(t)||)(vj(t) − vi(t)) + ui(t) i = 1, . . . , N,

with the initial condition, and minimizing the cost functional being a combination of
a distance from consensus v̄ with the lN

1 − l22-norm of the control, under the control
constraint.

In the above mentioned papers all derivatives are of integer-order. However, it is
well known that many phenomena in nature, processes in physics and engineering
systems can be modeled more accurately by non-integer-order derivatives [9–13].
This was also observed in the context of consensus of multi-agent systems [14].
Motivated by those papers we propose to study optimal control of the fractional
Cucker–Smale model, starting with the simple case of a fractional system of dif-
ferential equations. Namely, the problem under our consideration is: determine a
trajectory solution of

{
Dα

0+xi(t) = vi(t)

Dα
0+vi(t) = 1

N

∑N
j=1(vj(t) − vi(t)) + ui(t) i = 1, . . . , N,

(2)

with the initial condition (I1−α
0+ [x](0), I1−α

0+ [v](0)) = (x0, v0), where Dα
0+, I1−α

0+ are
the Riemann–Liouville fractional operators, and minimizing the cost functional

T∫

0

⎛
⎝ N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖ui(t)‖ld
2

⎞
⎠ dt,

under the control constraint

u(t) ∈ M :=
{

u(t) ∈ (Rd)N :
N∑

i=1

‖ui(t)‖ld
2

≤ K

}
, a.e. on [0, T ],

for a given γ, K > 0. We show that the considered problem has an optimal solution
and we derive necessary conditions for this solution.

The paper is organized as follows. In Sect. 1, after a review of basic definitions, we
recall theoremson the existence of a solution to the fractional optimal control problem
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and a fractional counterpart of Pontryagin’sMaximumPrinciple. Section2 is devoted
to the study of ourmain problem.We justify the existence of an optimal solution to the
Cucker–Smale fractional optimal control problem and derive necessary conditions
for this solution. Finally, an illustrative example is given.

1 Preliminaries

In this section we briefly sketch basic definitions and properties from the fractional
calculus needed in this paper. Moreover, we recall important theorems regarding the
existence of a solution to a fractional optimal control problem and the fractional
counterpart of Pontryagin’s Maximum Principle. For more information on the frac-
tional calculus and the fractional optimal control we refer the reader to the works
[12, 13, 15–19].

1.1 Introduction to Fractional Calculus

Letα > 0 and f ∈ L1([a, b];Rn).We define the left and the right Riemann–Liouville
fractional integrals Iα

a+ and Iα
b− by

Iα
a+[f ](t) := 1

Γ (α)

t∫

a

f (τ )

(t − τ )1−α
dτ ,

Iα
b−[f ](t) := 1

Γ (α)

b∫

t

f (τ )

(τ − t)1−α
dτ ,

for almost every t ∈ (a, b). It is a well known fact that fractional integrals Iα
a+ :

Lp([a, b];Rn) → Lp([a, b];Rn) and Iα
b− : Lp([a, b];Rn) → Lp([a, b];Rn) are

bounded operators for α > 0 and 1 ≤ p < ∞, i.e.,

∥∥Iα
a+[f ]∥∥Lp ≤ K ‖f ‖Lp ,

∥∥Iα
b−[f ]∥∥Lp ≤ K ‖f ‖Lp ,

where K = (b−a)α

Γ (α+1) .

Moreover, let Iα
a+(Lp([a, b];Rn))

(
Iα
b−(Lp([a, b];Rn))

)
denote the set of func-

tions f : [a, b] → R
n represented by the left-sided (right-sided) fractional integral of

function g ∈ Lp([a, b];Rn). Precisely,

Iα
a+(Lp([a, b];Rn)) := {f : [a, b] → R

n : ∃g∈Lp([a,b];Rn)f = Iα
a+[g]}
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and
Iα
b−(Lp([a, b];Rn)) := {f : [a, b] → R

n : ∃g∈Lp([a,b];Rn)f = Iα
b−[g]} .

Now, let α ∈ (0, 1). The Riemann–Liouville fractional differential operators are
given as compositions of classical derivatives and fractional integrals, i.e., the
left Riemann–Liouville fractional derivatives Dα

a+ are defined for functions Iα
a+f ∈

AC([a, b];Rn) by

Dα
a+[f ](t) := d

dt
Iα
a+[f ](t), t ∈ [a, b] a.e.

Similarly, the right Riemann–Liouville fractional derivatives Dα
b− are defined for

functions Iα
b−f ∈ AC([a, b];Rn) by

Dα
b−[f ](t) := d

dt
Iα
b−[f ](t), t ∈ [a, b] a.e.

1.2 Fractional Optimal Control Problem

Let us consider the following fractional optimal control problem (FOCP):

Dα
a+[y](t) = g(t, y(t), u(t)), t ∈ [a, b] a.e., (3)

I1−α
a+ [y](a) = y0, (4)

u(t) ∈ M ⊂ R
m, t ∈ [a, b], (5)

J (y, u) =
b∫

a

f (t, y(t), u(t)) dt → min, (6)

where f : [a, b] × R
n × M → R, g : [a, b] × R

n × M → R
n and α ∈ (0, 1). First

we recall an existence and uniqueness result to problem (3)–(4).

Theorem 1 (cf. Theorem 8, [16]) Let α ∈ (0, 1), 1 ≤ p < 1
1−α

and ‖·‖ be the norm
in R

n. If

(i) t 	→ g(t, y, u) is measurable on [a, b] for all y ∈ R
n, u ∈ M, u 	→ g(t, y, u) is

continuous on M for t ∈ [a, b] a.e. and all y ∈ R
n;

(ii) there exists L > 0 such that

‖g(t, y1, u) − g(t, y2, u)‖ ≤ L ‖y1 − y2‖

for t ∈ [a, b] a.e. and all y1, y2 ∈ R
n, u ∈ M;
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(ii) there exist r ∈ Lp([a, b];R) and γ ≥ 0 such that

‖g(t, 0, u)‖ ≤ r(t) + γ ‖u‖

for t ∈ [a, b] a.e. and all u ∈ M,

then problem (3)–(4) has a unique solution y ∈ Iα
a+(Lp) +

{
d

(t−a)1−α ; d ∈ R
n
}

corre-

sponding to any control u ∈ Lp([a, b]; M).

For g(t, y, u) = A(t)y(t) + B(t)u(t), where A : [a, b] → R
n×m, B : [a, b] →

R
n×m the existence of an optimal solution to problem (3)–(6) is ensured by the

following theorem proved in [15].

Theorem 2 (cf. Theorem 19, [15]) Suppose that 1 < p < 1
1−α

and

(i) M is convex and compact;
(ii) t 	→ f (t, y, u) is measurable on [a, b] for all y ∈ R

n and u ∈ M;
(iii) (y, u) 	→ f (t, y, u) is continuous on R

n × M for a.e. t ∈ [a, b];
(iv) u 	→ f (t, y, u) is convex on M for a.e. t ∈ [a, b] and all y ∈ R

n;
(v) A, B are essentially bounded on [a, b];

(vi) there exists a summable function ψ1 : [a, b] → R
+
0 and a constant c1 ≥ 0 such

that
f (t, y, u) ≥ −ψ1(t) − c1 ‖y‖

for a.e. t ∈ [a, b] and all x ∈ R
n, u ∈ M. Here, ‖·‖ denotes norm in R

n.

Then problem (3)–(6) possesses an optimal solution

(y0, u0) ∈
(

Iα
a+(Lp) +

{
d

(t − a)1−α
; d ∈ R

n

})
× UM,

where
UM = {u ∈ L1([a, b];Rm) : u(t) ∈ M, t ∈ [a, b]} .

Theorem 3 (cf. Theorem 9, [16]) Let α ∈ (0, 1) and 1 ≤ p < 1
1−α

. We assume that
M is compact and

(i) g ∈ C1 with respect to y ∈ R
n and assumptions (a)–(c) of Theorem 1 are satis-

fied;
(ii) t 	→ f (t, y, u) is measurable on [a, b] for all y ∈ R

n, u ∈ M and u 	→ f (t, y, u)

is continuous on M for a.e. t ∈ [a, b] and all y ∈ R
n;

(iii) f ∈ C1 with respect to y ∈ R
n and there exist ā1 ∈ L1([a, b],R+

0 ), ā2

∈ Lp′
([a, b],R+

0 )
(
1
p + 1

p′ = 1
)

, C̄1, C̄2 ≥ 0 such that
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‖f (t, y, u)‖ ≤ ā1(t) + C̄1 ‖y‖p , (7)∥∥∥∥ ∂

∂y
f (t, y, u)

∥∥∥∥ ≤ ā2(t) + C̄2 ‖y‖p−1 , (8)

for a.e. t ∈ [a, b] and all y ∈ R
n, u ∈ M;

(iv) t 	→ ∂

∂y
g(t, y, u), t 	→ ∂

∂y
f (t, y, u) are measurable on [a, b] for all y ∈ R

n,

u ∈ M;

(v) u 	→ ∂

∂y
g(t, y, u), u 	→ ∂

∂y
f (t, y, u) are continuous on M for a.e. t ∈ [a, b] and

all y ∈ R
n;

(vi) for a.e. t ∈ [a, b] and all y ∈ R
n the set

Z̃ := {(f (t, y, u), g(t, y, u)) ∈ R
n+1, u ∈ M

}

is convex.

If the pair

(y∗, u∗) ∈
(

Iα
a+(Lp) +

{
d

(t − a)1−α
; d ∈ R

n

})
× UM

is a locally optimal solution to problem (3)–(6), then there exists a function λ ∈
Iα
b−(Lp′

), such that

Dα
b−[λ](t) = ∂

∂y
g(t, y∗(t), u∗(t))Tλ(t) − ∂

∂y
f (t, y∗(t), u∗(t)) (9)

for a.e. t ∈ [a, b] and
I1−α
b− [λ](b) = 0. (10)

Moreover,

f (t, y∗(t), u∗(t)) − λ(t)g(t, y∗(t), u∗(t)) = min
u∈M

{f (t, y∗(t), u) − λ(t)g(t, y∗(t), u)} (11)

for a.e. t ∈ [a, b].
Remark 1 In [16] the author showed that under certain assumptions FOCP of type
(3)–(6) satisfies the Smooth Convex Extremum Principle (SCEP) (see e.g., Theorem
3 of [16]) and as a consequence he obtained the fractional Pontryagin Maximum
Principle (see Theorem 9 of [16]). In particular, it is shown that if for a.e. t ∈ [a, b]
and all y ∈ R

n the set

Z̃ := {(f (t, y, u), g(t, y, u)) ∈ R
n+1, u ∈ M

}

is convex, then the convexity assumption in SCEP is satisfied. One can easily check
that the convexity of the set Z̃ can be replaced by the condition saying that for any
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u1, u2 ∈ UM , y ∈
(

Iα
a+(Lp) +

{
d

(t−a)1−α ; d ∈ R
n
})

and μ ∈ [0, 1] there exists ũ ∈ UM

such that

f (t, y, ũ) ≤ μf (t, y, u1) + (1 − μ)f (t, y, u2), (12)

g(t, y, ũ) = μg(t, y, u1) + (1 − μ)g(t, y, u2). (13)

2 Optimal Control Problem of the Fractional
Cucker–Smale Model

In this section we shall investigate the Cucker–Smale fractional optimal control
problem. Let N denote the number of interacting agents and (vi, xi) ∈ R

d × R
d be

understood as the state of each agent (xi is the main state of an agent and vi is its
consensus parameter). Consequently, for N agents the main state is described by
N-uple x = (x1, . . . , xN ) and consensus parameter by v = (v1, . . . , vN ).

Let α ∈ (0, 1) and x : [0, T ] −→ (Rd)N , v : [0, T ] −→ (Rd)N be measurable.
Consider the problem of finding a trajectory solution to the system

Dα
0+

[
v

x

]
(t) = A

[
v

x

]
(t) + Iu(t), (14)

describing time evolution of the state (v, x), initialized at

I1−α
0+

[
v

x

]
(0) =

[
v0
x0

]
∈ (Rd)N × (Rd)N . (15)

Here A =
[

AN 0N

IN 0N

]
is the 2dN × 2dN dimensional matrix such that

AN =

⎡
⎢⎢⎢⎢⎢⎣

( 1
N − 1)Id

1
N Id . . . 1

N Id
1
N Id

1
N Id ( 1

N − 1)Id . . . 1
N Id

1
N Id

...
...

. . .
...

...
1
N Id

1
N Id . . . ( 1

N − 1)Id
1
N Id

1
N Id

1
N Id . . . 1

N Id ( 1
N − 1)Id

⎤
⎥⎥⎥⎥⎥⎦

IN is the identity dN × dN matrix, 0N is the zero dN × dN matrix, Id is the identity

d × d matrix, and I =
[
IN

0N

]
. Note that (14) is system (2) written in matrix notation.

A solution to (14) and (15) has to minimize the following cost functional
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T∫

0

⎛
⎝ N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖ui(t)‖ld
2

⎞
⎠ dt, (16)

where controls u = (u1, . . . , uN ) : [0, T ] −→ (Rd)N are integrable functions such
that

u(t) ∈ M :=
{

u(t) ∈ (Rd)N :
N∑

i=1

‖ui(t)‖ld
2

≤ K

}
, a.e. on [0, T ], (17)

for a given γ, K > 0. The functional (16) is the combination of the distance from the
mean consensus parameter v̄ = 1

N

∑N
i=1 vi(t) with the lN

1 − ld
2 -norm of the control.

2.1 Existence of Solutions to the Cucker–Smale Fractional
Optimal Control Problem

We start by showing that an optimal solution to problem (14)–(17) exists.

Theorem 4 Suppose that 1 ≤ p < 1
1−α

. Then, the Cucker–Smale fractional optimal
control problem (14)–(17) possesses an optimal solution (v∗, x∗, u∗) in the set

(
Iα
0+
(
Lp([0, T ]; (Rd)N × (Rd)N )

)+
{ c

t1−α
; c ∈ (Rd)N × (Rd)N

})
× UM,

where
UM = {u ∈ L1

([0, T ]; (Rd)N
) : u(t) ∈ M, t ∈ [0, T ]} .

Proof The procedure is to apply Theorem 2. First, let us note that the set M given
by (17) is compact (as it is closed and bounded) and convex. Now, let us define

f (t, v(t), u(t)) :=
N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖ui(t)‖ld
2
.

Clearly, t 	→ f (t, v, u) is measurable on [0, T ] (it is a composition of measurable
functions), for all v ∈ (Rd)N and u ∈ UM , and (v, u) 	→ f (t, v, u) is continuous on
(Rd)N × M for a.a. t ∈ [0, T ]. Moreover, let u1, u2 ∈ M and μ ∈ [0, 1], then for a.a.
t ∈ [0, T ] and all v ∈ (Rd)N one has
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f (t, v,μu1 + (1 − μ)u2)

=
N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖μu1i(t) + (1 − μ)u2i(t)‖ld
2

≤
N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γμ

N∑
i=1

‖u1i(t)‖ld
2
+ γ(1 − μ)

N∑
i=1

‖u2i(t)‖ld
2

= μ

⎛
⎝ N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖u1i(t)‖ld
2

⎞
⎠

+ (1 − μ)

⎛
⎝ N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖u2i(t)‖ld
2

⎞
⎠

= μf (t, v, u1) + (1 − μ)f (t, v, u2).

Therefore, u 	→ f (t, v, u) is convex on M for a.a. t ∈ [0, T ] and all v ∈ (Rd)N .
Clearly, A and I are essentially bounded on [0, T ]. Finally, observe that

f (t, v, u) =
N∑

i=1

‖vi(t) − 1

N

N∑
j=1

vj(t)‖2ld
2
+ γ

N∑
i=1

‖ui(t)‖ld
2

≥ γ

N∑
i=1

‖ui(t)‖ld
2
.

Hence, by taking ψ(t) = −γ
N∑

i=1
‖ui(t)‖ld

2
and c1 = 0 we fulfill the last assumption

of Theorem 2.

2.2 Necessary Optimality Conditions for the Fractional
Cucker–Smale Optimal Control Problem

The second step is to state the necessary optimality conditions for an optimal solution
to problem (14)–(17).

Theorem 5 Let α ∈ ( 12 , 1
)
. If

(v∗, x∗, u∗) ∈
(

Iα0+
(

L2([0, T ]; (Rd)N × (Rd)N )
)

+
{

c

t1−α
; c ∈ (Rd)N × (Rd)N

})
× UM

is a locally optimal solution to problem (14)–(17), then there exists a function
λ ∈ Iα

0+
(
Lp([0, T ]; (Rd)N × (Rd)N )

)
, such that

Dα
T−[λ](t) = ATλ(t) − 2

⎛
⎝v∗(t) − 1

N

N∑
j=1

v∗j(t)

⎞
⎠
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for a.e. t ∈ [0, T ] and
I1−α
T− [λ](T) = 0.

Moreover

N∑
i=1

‖v∗i(t) − 1

N

N∑
j=1

v∗j(t)‖2ld2 + γ

N∑
i=1

‖u∗i(t)‖ld2
− λ(t)

[
A

[
v∗
x∗

]
(t) + Iu∗(t)

]

= min
u∈M

⎧⎨
⎩

N∑
i=1

‖v∗i(t) − 1

N

N∑
j=1

v∗j(t)‖2ld2 + γ

N∑
i=1

‖ui‖ld2
− λ(t)

[
A

[
v∗
x∗

]
(t) + Iu

]⎫⎬
⎭ (18)

for a.e. t ∈ [0, T ].
Proof It is enough to show that the assumptions of Theorem 3 are satisfied. Let

g(t, x(t), v(t), u(t)) := A

[
v

x

]
(t) + Iu(t)

and the function f (t, v, u) be defined in the same way as in the proof of Theorem 4.
Clearly, (x, v) 	→ g(t, x, v, u) is continuously differentiable and Lipschitz continu-
ous for t ∈ [0, T ] a.e.; all u ∈ M; t 	→ g(t, x, v, u), t 	→ f (t, v, u) are measurable on
[0, T ]; functions u 	→ g(t, x, v, u), u 	→ f (t, v, u) are continuous on M. Moreover,
we have

‖g(t, 0, 0, u)‖lN
1 −ld

2
= ‖u‖lN

1 −ld
2
.

Hence, assumption c of Theorem 1 is satisfied with r(t) ≡ 0 and γ = 1. Observe that
function f is continuously differentiable with respect to v and

∂

∂v
f (t, v, u) = 2

⎛
⎝v − 1

N

N∑
j=1

vj

⎞
⎠ .

One has

‖f (t, v, u)‖lN
1 −ld

2
=

N∑
i=1

(
‖vi − 1

N

N∑
j=1

vj‖2ld
2
+ γ‖ui‖ld

2

)

≤
N∑

i=1

(
2‖vi‖2ld

2
+ γ‖ui‖ld

2

)
+ 2‖v‖2

lN
1 −ld

2
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and

∥∥∥∥ ∂

∂v
f (t, v, u)

∥∥∥∥
lN
1 −ld

2

= 2‖v − 1

N

N∑
j=1

vj‖lN
1 −ld

2

≤ 2

⎛
⎝‖v‖lN

1 −ld
2
+ 1

N

N∑
j=1

‖vj‖ld
2

⎞
⎠ = 2

(
1 + 1

N

)
‖v‖lN

1 −ld
2
.

Therefore, choosing ā1(t) =
N∑

i=1
‖vi(t)‖2ld

2
+ γ‖ui(t)‖ld

2
, ā2(t) ≡ 0 and C̄1 = 2, C̄2 =

2

(
1 + 1

N

)
assumption 3 of Theorem 3 is satisfied with p = 2. Note that partial

derivative of g(t, x, v, u) with respect to (x, v) is equal to A, so it is measurable in

t and continuous in u. Moreover, t 	→ ∂

∂v
f (t, v, u) is measurable on [0, T ] for all

v ∈ (Rd)N , u ∈ M and u 	→ ∂

∂v
f (t, v, u) is continuous on M for a.e. t ∈ [0, T ] and

all v ∈ (Rd)N .
We will finish the proof, showing that conditions (12) and (13) mentioned in

Remark 1 are satisfied. Indeed, for every u1, u2 ∈ UM ,

x, v ∈ Iα
0+
(
L2
([0, T ]; (Rd)N

))+
{

d

t1−α
; d ∈ (Rd)N

}
and μ ∈ [0, 1] one has

μf (t, v, u1) + (1 − μ)f (t, v, u2) ≥ f (t, v,μu1 + (1 − μ)u2),

μg(t, x, v, u1) + (1 − μ)g(t, x, v, u2) = g(t, x, v,μu1 + (1 − μ)u2)

and μu1 + (1 − μ)u2 ∈ UM , by convexity of M. �

2.3 Illustrative Example

Let us consider problem (14)–(17)with d = 1 andN = 3 (i.e., amodelwith 3 agents).

Then matrix A in system (14) is of the form A =
[

A3 03
I3 03

]
, where

A3 =
⎡
⎣− 2

3
1
3

1
3

1
3 − 2

3
1
3

1
3

1
3 − 2

3

⎤
⎦ .
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Functional (16) and the set M are given by

T∫

0

⎛
⎝ 3∑

i=1

⎛
⎝vi(t) − 1

3

3∑
j=1

vj(t)

⎞
⎠

2

+ γ

3∑
i=1

|ui(t)|
⎞
⎠ dt, (19)

M :=
{

u(t) ∈ R
3 :

3∑
i=1

|ui(t)| ≤ K

}
.

By Theorems 4 and 5 we know that the problem possesses an optimal solution
(v∗, x∗, u∗) in the set

(
Iα
0+
(
Lp([0, T ];R3 × R

3
)+

{ c

t1−α
; c ∈ R

3 × R
3
})

× UM

and there exists a function λ ∈ Iα
0+
(
Lp([0, T ];R3 × R

3
)
, such that

Dα
T−[λ](t) = ATλ(t) − 2

⎛
⎝v∗(t) − 1

3

3∑
j=1

v∗j(t)

⎞
⎠

for a.e. t ∈ [0, T ] and
I1−α
T− [λ](T) = 0.

Precisely, the following holds:

Dα
T−[λ1](t) = −2

3
λ1(t) + 1

3
λ2(t) + 1

3
λ3(t) − 2

⎛
⎝v1∗(t) − 1

3

3∑
j=1

vj∗(t)

⎞
⎠ , (20)

Dα
T−[λ2](t) = 1

3
λ1(t) − 2

3
λ2(t) + 1

3
λ3(t) − 2

⎛
⎝v2∗(t) − 1

3

3∑
j=1

vj∗(t)

⎞
⎠ , (21)

Dα
T−[λ3](t) = 1

3
λ1(t) + 1

3
λ2(t) − 2

3
λ3(t) − 2

⎛
⎝v3∗(t) − 1

3

3∑
j=1

vj∗(t)

⎞
⎠ (22)

and I1−α
T− [λ](T) = 0. Note that λ4(t) = λ5(t) = λ6(t) = 0, for a.e. t ∈ [0, T ], since

Dα
T−[λ4](t) = 0, Dα

T−[λ5](t) = 0, Dα
T−[λ6](t) = 0. Clearly, we also have:

Dα
0+[v1∗](t) = −2

3
v1∗(t) + 1

3
v2∗(t) + 1

3
v3∗(t) + u1∗(t), (23)
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Dα
0+[v2∗](t) = 1

3
v1∗(t) − 2

3
v2∗(t) + 1

3
v3∗(t) + u2∗(t), (24)

Dα
0+[v3∗](t) = 1

3
v1∗(t) + 1

3
v2∗(t) − 2

3
v3∗(t) + u3∗(t), (25)

and

Dα
0+[x1∗](t) = v1∗(t),

Dα
0+[x2∗](t) = v2∗(t),

Dα
0+[x3∗](t) = v3∗(t).

Let us define the function

F(v, u,λ) :=
3∑

i=1

(
vi − 1

3

3∑
i=1

vj

)2

+ γ

3∑
i=1

|ui| − λ1

(
−2

3
v1+ 1

3
v2 + 1

3
v3 + u1

)

− λ2

(
1

3
v1 − 2

3
v2 + 1

3
v3 + u2

)
− λ3

(
1

3
v1 + 1

3
v2 − 2

3
v3 + u3

)
.

Note that, by Eq. (18), optimal control u∗ must be such that

F(v∗(t), u∗(t),λ(t)) = min
u∈M

F(v∗(t), u,λ(t)), for a.e. t ∈ [0, T ].

Variables v do not influence on the point, where the minimum of F is attained, but
only on its value. Therefore, every optimal control u∗ must be such that

Z(u∗(t),λ(t)) = min
u∈M

{
γ

3∑
i=1

|ui(t)| − λ1(t)u1(t) − λ2(t)u2(t) − λ3(t)u3(t)

}

for a.e. t ∈ [0, T ], where u∗, λ satisfy Eqs. (20)–(25), and conditions

I1−α
0+

[
v

x

]
(0) =

[
v0
x0

]
, I1−α

T− [λ](T) = 0

hold.
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Determining the Time Elapsed Since Sudden
Localized Impulse Given to Fractional
Advection Diffusion Equation

Marie-Christine Néel

Abstract In some natural media solute transport is ruled by a fractional Advection
Diffusion Equation that accounts for fluid and chemicals stored in quiescent zones
before being released after random times.An adjoint equation helps us deducing from
concentration records where and at what time a solute has been suddenly injected in
such media.

Keywords Fractional advection-diffusion equation · Initial Dirac impulse · Data
inversion · Adjoint equation

1 Introduction

Fractional equations rule solute spreading in some natural media. An example is the
fractional Advection-Diffusion Equation [1, 2] for α in ]0, 1[

∂t u + Λ∂α
t u = ∂x (−vu + ∂x Du) . (1)

The Caputo derivative ∂α
t is usually defined by ∂α

t = I 1−α
0,+ ∂t where the fractional

Riemann–Liouville integral I 1−α
0,+ satisfies I 1−α

0,+ f (t) = 1
�(1−α)

∫ t
0

f (t ′)
(t−t ′)α dt

′ [3]. Hav-
ing in view initial conditions giving to (1) solutions non-differentiable at t = 0+,
we use the more general definition [4] ∂α

t f (t) = ∂t I
1−α
0,+ f (t) − f (0+)t−α

�(1−α)
. It coin-

cides with I 1−α
0,+ ∂t f (t) when f is differentiable everywhere. For instance, Eq. (1)

was found to describe the evolution of a tracer injected at time t = 0 in some river
flow where its parameters (α, v, D, Λ) could be determined [1]. When fortuitous
initially localized contamination invades such medium, finding its origin in time and
space conditions remediation and also the assessment of responsibilities: we pro-
pose a strategy that finds when and where a solute was injected, assuming local and
instantaneous injection.

M.-C. Néel (B)
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After a brief description of the model, we set the principle of a method that
achieves this aim with the help of the numerical solution of an auxiliary equation.
We demonstrate the method by applying it on artificial data that mimic a time profile
of solute concentration measured at some point. If the data are due to a Dirac impulse
Mδx0(x) applied at time t0, we retrieve x0, t0 and M . We then justify our approach.

2 The Model and Its Solutions

2.1 Model and Objectives

Equation (1) represents the evolution of the concentration of a solute in a medium
where it can be trapped for random times which do not have any finite average.
It is equivalent to Fick’s law applied to the mobile fraction while u represents the
total concentration. We consider it in a one-dimensional finite domain represented
by interval [0, �], with the boundary conditions

(∂x Du − vu)(0, t) = 0 , ∂xu(�, t) = 0. (2)

We imagine solute concentration recorded at some interior point xm after a solute
amount M has been injected accidentally in the mobile state at some unknown point
x0 at some unknown instant t0 > 0, when the medium was clean: before that instant
solute concentration was zero and for t > t0 it is u(x, t − t0). We want to deduce t0,
x0 and M from the record.

We ultimately are interested in initial data ϕ of the form of Mδx0(x), δb being the
Dirac distribution concentrated at point b. Yet, most theoretical materials correspond
to initial data ϕ(x) that are at least square integrable functions. Considering such
initial data is a necessary step before proceeding to Dirac impulse, of course not
included in the domain

DX (L) = {
f ∈ H 2(0, �) and D∂x f (0, t) − v f (0, t) = ∂x f (�, t) = 0

}

of L ≡ ∂2
x D − ∂xv in X = L2(0, �). We note 〈·〉 the scalar product of X .

The adjoint operator L∗ of L in X helps us to describe the solutions of (1) and
gives us an auxiliary equation to inspect past history.

2.2 Spectral Properties of L and of Its Adjoint L∗

We define the adjoint L∗ of L in X by

L∗ f ≡ ∂x (v f + ∂x D f ) . (3)
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Its domain isDX (L∗) = {
f ∈ H 2(0, �)/∂x f (0, t) = v( f + D∂x f )(�, t) = 0

}
, and

it satisfies 〈Lu · w〉 = 〈L∗w · u〉 for each (u, w) in DX (L) ×DX (L∗).
Operators L and L∗ are dissipative and invertible. Hence they are closed in

X and have compact inverses (by compact inclusion of H 2(0, �) in X ). More-
over, endowing the set X with the scalar products 〈u ·U 〉H ≡ 〈ue−x v

D ·U 〉 and
〈u ·U 〉H∗ ≡ 〈uex v

D ·U 〉 yields two Hilbert spaces H and H∗ of norms equivalent
to that of X . Operator L (respectively L∗) is self-adjoint in H (resp. H∗) and
has a complete set of eigenfunctions {ϕi } (resp. {ψi }) associated to eigenvalues
. . . ,−λi+1 < −λi < · · · < −λ0 < 0 [5]. We normalize the ϕi with the norm of H
and the ψi with that of H∗. Eigenvectors satisfy ψi (x) = e− vx

D ϕi (x) and

〈ϕi · ψ j 〉 = 〈ϕi · ϕ j 〉H = 〈ψi · ψ j 〉H∗ = δi, j (4)

for each i and j , δi, j being Kronecker index. Thus, each element ϕ of X expands
as ϕ = ∑〈ψi · ϕ〉ϕi (orthogonal in H) and ϕ = ∑〈ϕi · ϕ〉ψi (orthogonal in H∗).
These expansions give us insight into the solutions of (1) and (2). This due to the
asymptotic behavior of the λi , equal to the eigenvalues of the Sturm–Liouville oper-
atorL ≡ −∂2

x2 + v2

4D2 related to L by L = −Dm− v
D

◦ L ◦ m v
D
, wherem v

D
represents

multiplication by e
−v
2D x . The eigenvalues satisfy the following property proved in [6].

Property 1: Operators L and L∗ of X have complete sets of eigenfunctions ϕi and
ψi , whose C([0, �]) norms are bounded by a quantity B. Eigenvalues satisfy

λi ∼ ai2 when i → ∞, (5)

a being a positive constant.
These elements help us to describe the solutions of Eq. (1) for Λ ≥ 0.

2.3 Expansion of the Solutions of (1)

Separation of variables based on the ϕi and ψi expands each classical [5] solution
u(x, t) of (1) and (2) started from initial condition ϕ in DX (L) according to

u(x, t) = S(t)ϕ ≡
∑
i≥0

wλi (t,α,Λ)〈ϕ · ψi 〉ϕi , (6)

as in [7] where multi-term fractional equations with different boundary conditions
are considered. Yet, the properties of wλ show that this expansion still describes
solutions to (1) and (2) in a mild sense when ϕ only belongs to X . For convenience
we skip the arguments α and Λ of function wλ.

Function wλ is equal to e−λt in the conservative case Λ = 0, and satisfies

(∂t + Λ∂α
t + λ)wλ(t) = 0. (7)
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It is linked to the multinomial Mittag-Leffler function E(1−α,1),2 [7, 8]

wλ(t) = 1 − λt E(1−α,1),2(−Λt1−α,−λt) (8)

and has a Laplace transform w̃λ equal to

w̃λ(s) = 1 + Λsα−1

s + Λsα + λ
. (9)

The latter equality implies

wλ(t) = λ

π

∫ ∞

0
e−r t Λrα−1 sin πα

(λ − r + Λrα cosπα)2 + Λ2r2α sin2 πα
dr, (10)

where we see a completely monotonous function satisfying wλ(0+) = 1 hence 0 ≤
wλ(t) ≤ 1 for t ≥ 0.

For each ϕ in X with I representing Id or I 1−α
0,+ or integration I 10,+ over (0, t), this

implies
N∑
i=0

Iwλi (t)〈ϕ · ψi 〉ϕi → I S(t)ϕ when N → ∞ (11)

in H where the series of (orthogonal) general items 〈ϕ · ψi 〉ϕi converges to ϕ
for t ≥ 0. It also converges in DX (L) for t ≥ t∗ > 0 because of the behavior
of λwλ(t) at large λ. We find this behavior by splitting the right hand-side of
(10) into two integrals J(0,rλ) and J(rλ,+∞) over (0, rλ) and (rλ,+∞) separated by
rλ = Min(η λ

2 , (
ηλ

2Λ| cosπα| )
1
α ). We obtain J(rλ,+∞) → 0 when λ → +∞ and

λwλ(t) → Λt−α

�(1 − α)
when λ → +∞. (12)

Hence S(t)ϕ belongs to DX (L) for t > 0.
However, S(t)ϕ is not a generalized solution of (1) as defined in [7] whenϕ is just

an element of X . Nevertheless, it is a mild solution, i.e. it solves the time-integrated
version [9, 10] of (1)

u(x, t) + ΛI 1−α
0,+ u(x, t) =

∫ t

0
Lu(x, t ′)dt ′ +

(
1 + Λ

t1−α

�(2 − α)

)
ϕ(x). (13)

Indeed, (7) implies

(Id + ΛI 1−α
t0,+ )wλi (t) + λi

∫ t

0
wλi (t

′)dt ′ = 1 + Λ
t1−α

�(2 − α)
,
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hence I N1 + I N2 = I N3 , with I N1 = ∑N
i=0(Id + ΛI 1−α

t0,+ )wλi (t)bi , bi = 〈ϕ · ψi 〉ϕi ,

I N2
∫ t
0 L

∑N
i=0 wλi (t

′)bidt ′, and I N3 = (1 + Λ t1−α

�(2−α)
)
∑N

i=0 bi . When N → ∞, (11)

implies that L
∫ t
0

∑N
i=0 wλi bi dt

′ converges in X . Hence
∫ t
0 S(t ′)ϕdt ′ belongs to

DX (L) and L
∫ t
0

∑N
i=0 wλi bi dt

′ converges to L
∫ t
0

∑+∞
i=0 S(t ′)ϕdt ′ in X , since L

is closed. This proves (13).
The same approach applies to an auxiliary equation.

2.4 Adjoint Equation

For ψ in X , replacing L by its adjoint in (13) yields

u∗(x, t) + ΛI 1−α
0,+ u∗(x, t) =

∫ t

0
L∗u∗(x, t ′)dt ′ +

(
1 + Λ

t1−α

�(2 − α)

)
ψ(x), (14)

the mild version of the adjoint equation

∂t u
∗ + ΛI 1−α

0,+ ∂t u
∗ = L∗u∗. (15)

As in Sect. 2.3, for each ψ in X Property 1 implies that

S∗(t)ψ =
∑
i≥0

wλi (t)〈ψ · ϕi 〉ψi (16)

solves (14). Moreover, S(t) and S∗(t) are linear operators (from X to DX (L) and
DX (L∗)) adjoint in X since (6) and (16) imply

〈ϕ · S∗(t)ψ〉 = 〈ψ · S(t)ϕ〉 (17)

for each ϕ and ψ in X .
Finite difference schemes for spatial derivatives and numerical approximations of

Caputo derivatives [11] yield implicit schemes that approximate the solutions of (1)
and (15) and return the black/blue lines and symbols of Fig. 1 that illustrate (17) for
ϕ and ψ in X . Moreover, the evolution of S(t)ϕ at point xm is equivalent to that of
〈δxm · S(t)ϕ〉, and (17) becomes a tool to investigateϕon the basis of localized records
of S(t)ϕ if we replace ϕ or ψ by Dirac impulses. Section4 shows that (17) still holds
in this case, and Fig. 1 demonstrates this identity at fixed ϕ when ψ takes the form
of ρxm ,n(x) ≡ nρ(n(x − xm)), with ρ(x) = 1 for |x | ≤ 1

2 and ρ(x) = 0 elsewhere.
When n → ∞ these ψ approach δxm , 〈ϕ · S∗(t)ψ〉 comes close to 〈ϕ · S∗(t)δxm 〉 and
we define S∗(t)δxm by (16) with 〈δxm · ϕi 〉 = ϕi (xm). Section4 proves that S∗(t)ρxm ,n

indeed tends to S∗(t)δxm in X , which moreover satisfies (14) with ψ = δxm in a weak
sense.
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Fig. 1 Numerical illustration of Eq. (17), for fixed initial data ϕ in L2(0, �), and various examples
of ψ function. The latter is either a staircase function, or a Dirac distribution. Solid lines/symbols
represent right/left hand-side of Eq. (17). Parameters are D = 0.001 v = 0.1,Λ = 0.1, andα = 0.8

Similar limit yields S(t)δx0 and extends (17) to the case when ϕ and ψ are Dirac
measures. In this case (17) gives us insight into the time elapsed since an initial Dirac
impulse imposed to (13).

3 Applying (17) to Data Inversion

Indeed, for ϕ of the form of ϕ = Mδx0 and applied at instant t0, later at time t > t0
actual or numerical experiment recordsΦ(t) = M(S(t − t0)δx0)(xm) at point xm .We
do not know x0, t0 and M , but equality (17) extended to Dirac measures tells us that
Φ(t) must be equal to M(S∗(t − t0)δxm )(x0), while we can compute (S∗(t ′)δxm )(x)
for each t ′ > 0 and x ∈ [0, �]. ComparingΦ with the map of all these (S∗(t ′)δxm )(x)
reveals x0 and t0 provided we know Λ, α, D and v. We check this on artificial profile
Φ computed by numerically solving Eq. (1): we have a series of Φ(t (i)), the t (i)

forming a finite increasing sequence of measurement times with i = 0, . . . ,N .
Discretizing Eq. (15) gives us an approximation to (S∗(t ′)δxm )(x) for all t ′ > 0

and x in [0, �]. Combining Eq. (17) with this discrete field and with profile Φ builds

F(x0, t0) ≡
N∑

i/t (i)≥t

[(S∗(t (i+1) − t0)δxm )(x0)/Φ(t (i+1)) − (S∗(t (i) − t0)δxm )(x0)/Φ(t (i))]2.

The minimum of F(x0, t0) reveals the best candidate (x0, t0) for localization and
application time of Dirac impulse at the origin of Φ, since by (17)

(S∗(t − t0)ψ)(x0)/Φ(t) (18)

must be independent of t .
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Fig. 2 Profile Φ, and the surface representing function F(x0, t0). Parameters D, v,Λ,α are 0.01,
0.1, 0.1, and 0.8. On the left theΦ profile. On the right a three-dimensional global view ofF(x0, t0).
Horizontal/vertical axes represent (x0, t0) and F
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Fig. 3 Logarithmic plot of the levels of the surface representing F on Fig. 2. The levels of
10.log10(F) are reminiscent of the long valley seen on Fig. 2. The right plot is a magnification
of the green shape of left plot, and emphasizes the very thin dark blue pixel that reveals the true
(x0, t0)

The minimum of F is found by just inspecting this function. Figure2 shows an
example of an artificialΦ profile, and a three-dimensional view of the corresponding
F function. We visualize the (x0, t0) having the best chance of being injection point
and injection time by plotting level contours of F (in logarithmic form) represented
on Fig. 3. The global view (at the left) shows a green zone with a thin blue spot at the
minimum of F . Magnifying this zone (on the right) accurately retrieves the actual
(x0, t0) at the origin of Φ. The value of M immediately follows.
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4 The Limit of S∗(t)ψ and S(t)ϕ When ϕ and ψ
are Dirac Measures

This section briefly sets the main steps that give a meaning to S(t)δx0 and S∗(t)δxm ,
based on series (6) and (16) and on integral expressions.

4.1 Preliminary: Integral Formulation of S(t)

Property 1 For ϕ and ψ in X ,

S(t)ϕ =
∫ ∞

0
gα(θ)

∑
i≥0

T (t · hα,Λ(t
1
α −1θ))ϕdθ, (19)

and

S∗(t)ψ =
∫ ∞

0
gα(θ)

∑
i≥0

T ∗(t · hα,Λ(t
1
α −1θ))ψdθ, (20)

where T (t)ϕ = ∑∞
i=0〈ϕ · ψi 〉e−λi tϕi and T ∗(t)ψ = ∑∞

i=0〈ψ · ϕi 〉e−λi tψi . More-
over, hα,Λ is the function defined in ]0, 1[ by

θ(Λhα,Λ(θ))
1
α + hα,Λ(θ) = 1. (21)

Families T (t) and T ∗(t) constitute two semi-groups [12] generated by L and L∗ in
X , equal to S(t) and S∗(t) in the conservative particular case Λ = 0.

Proof The Laplace transform (9) of wλ(t) writes w̃λ(s) = (1 + Λsα−1)
∫ +∞
0

e−(s+Λsα)χ−λχdχ where e−(s+Λsα)χ is reminiscent of the Laplace transform e−sα
of

the probability density function gα of a positively supported stable probability law of
exponent α. It turns out that e−(s+Λsα)χ is the Laplace transform of gα(

t−χ

(Λχ)
1
α
)H(t −

χ) 1

(Λχ)
1
α
[1], while 1

s+Λsα+λ
is that of

∫ t
0 e

−λχgα(
t−χ

(Λχ)
1
α
) 1

(Λχ)
1
α
dχ. Also note that

Λsαe−Λχsα = −s
αχ

d
ds

∫ +∞
0 e−st gα( t

(Λχ)
1
α
)dt writes s

∫ +∞
0

t
αχ

e−st gα( t

(Λχ)
1
α
) dt

(Λχ)
1
α

because behaviors at infinity allowus exchanging integral andderivative. This implies

wλ(t) =
∫ t

0

(
1 + t − χ

αχ

)
e−λχgα

(
t − χ

(Λχ)
1
α

)
dχ

(Λχ)
1
α

. (22)

Since the derivative of hα,Λ satisfies

dhα,Λ

dθ
(θ)

(
1 + 1 − hα,Λ

αhα,Λ(θ)

)
= −(Λhα,Λ(θ))

1
α ,
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setting χ = t · hα,Λ(t
1
α −1θ′) in (22) yields

wλ(t) =
∫ ∞

0
gα(θ′)e−λt ·hα,Λ(t

1
α −1θ′)dθ′. (23)

We finally arrive at (19) by seeing in ‖gα(θ′)〈ϕ · ψi 〉ϕi‖H the general item of a
positive series converging to gα(θ′)‖ϕ‖H, an integrable function.We similarly obtain
(20).

If T (t) and T ∗(t) satisfy estimates or preserve positivity, expressions (19) and
(20) show that of S(t) and S∗(t) inherit these properties. For instance, computing the
resolvent (λId − L)−1 of L (byGreen function) shows that operator T (t) is positivity
preserving. Moreover, simple integration (over (0, �)) of Eq. (1) with Λ = 0 shows
that T (t) satisfies the following property, easily extended to T ∗(t).

Property 2 For each non-negative element ϕ of X , ‖T (t)ϕ‖L1(0,�) ≤ ‖ϕ‖L1(0,�) and
‖T ∗(t)ϕ‖L1(0,�) ≤ ‖ϕ‖L1(0,�).

Because gα is a probability density function, S(t) and S∗(t) are positivity preserving
and inherit these estimates.

4.2 The Limit of S∗(t)ρxm,n in X Exists

Property 3 For t > 0

S∗(t)ρxm ,n →
∑
i≥0

wλi (t)ϕi (xm)ψi ≡ S∗(t)δxm (24)

in C([0, �]) (hence in X ).

Proof Because of (5) wλi (t)(〈ρxm ,n · ϕi 〉 − ϕi (xm))ψi has its C([0, �]) norm dom-
inated by 2B2wλi (t). Moreover, Property 1 and (12) imply that for each ε > 0
there exists i0(ε, t) such that

∑
i≥i0

wλi (t) < ε
4B2 . Then, (24) results from the limit

〈ρxm ,n · ϕi 〉 → ϕi (xm) for each i < i0 when n → ∞.

4.3 The Limit of S∗(t)ρxm,n in X Satisfies Eq. (14)

We check that S∗(t)δxm satisfies Eq. (14) in a generalized sense by starting from

S∗(t)ρxm ,n + ΛI 1−α
0,+ S∗(t)ρxm ,n −

(
1 + Λt1−α

�(2 − α)

)
ρxm ,n =

L∗
∫ t

0
S∗(t ′)ρxm ,ndt

′,
(25)
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where (1 + Λt1−α

�(2−α)
)ρxm ,n tends to (1 + Λt1−α

�(2−α)
)δxm vaguely in the set Mb[0, �] of

finite measures on [0, �]. Moreover, for each t > 0 the limit S∗(t)ρxm ,n → S∗(t)δxm
in X holds in L1(0, �). Since ‖S∗(t)ρxm ,n‖L1(0,�) is bounded for t > 0 by Property 3,
dominated convergence implies

(I 1−α
0,+ S∗)(t)ρxm ,n → (I 1−α

0,+ S∗(t)δxm )(t),
∫ t

0
S∗(t ′)ρxm ,ndt

′ →
∫ t

0
S∗(t)δxm (t ′)dt ′

in L1(0, �). Hence L∗ ∫ t
0 S∗(t ′)ρxm ,ndt ′ converges vaguely to a finite measure μ(t) =

((Id + ΛI 1−α
0,+ )S(t)∗δxm ) − (1 + Λt1−α

�(2−α)
)δxm , while the limit

∫ t
0 S∗(t ′)ρxm ,ndt ′ → ∫ t

0

S∗(t)δxm (t ′)dt ′ in L1(0, �) norm also holds inMb[0, �]. Since L∗ is vaguely closed
(Prop. 2.7.20 of [13]), the vague limit

∫ t
0 S∗(t)δxm (t ′)dt ′ of

∫ t
0 S∗(t ′)ρxm ,ndt ′ belongs

to the domain of L∗ inMb[0, �] and satisfies L∗ ∫ t
0 S∗(t)δxm (t ′)dt ′ = μ(t).

Hence, for each t > 0 the strong limit S∗(t)δxm of S∗(t)ρxm ,n satisfies Eq. (14) in
Mb[0, �], with δxm instead of ψ. For x0 in (0, �) the strong limit S(t)δx0 of S(t)ρx0,n

similarly solves (13), with ϕ = δx0 .

4.4 Equation (17) When ψ and ϕ are Dirac Measures

For t > 0, S(t)ρx0,n → S(t)δx0 in C[0, �], and ρxm ,n ⇀ δxm vaguely in Mb[0, �],
the dual of C[0, �]. Hence, 〈ρxm ,n · S(t)ρx0,n〉 → 〈δxm · S(t)δx0〉 when n → ∞ by
Proposition III.12(iv) of [5]. This proves the following property.

Property 4 For ψ = δxm and ϕ = δx0 , the strong limits S∗(t)δxm of S∗(t)ρxm ,n and
S(t)δx0 of S(t)ρx0,n satisfy (14) and (13). Moreover, (17) holds true when ϕ or ψ or
both are Dirac measures.

5 Conclusion

Examining at point xm the solution of a partial differential equation mimics localized
measurement and the xm value is in fact a duality product involving the fundamental
solution of an adjoint equation started from this point. This motivates giving a mean-
ing to such solutions. They are the basis of an inverse method valid for localized
initial conditions: it retrieves their track by processing localized observations.
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Accuracy Analysis for Fractional Order
Transfer Function Models with Delay

Krzysztof Oprzędkiewicz and Wojciech Mitkowski

Abstract In the paper a new accuracy estimation method for fractional order
transfer functions with delay is presented. Oustaloup’s recursive approximation
(ORA approximation) and Charef approximation allow us to describe fractional-
order systems with the use of integer-order, proper transfer function, a delay is
required to be modeled with the use of Pade approximant. Results are by simulations
depicted.

Keywords Fractional order transfer function · Oustaloup’s recursive approxima-
tion · Approximation · Charef approximation · Time-delay systems

1 An Introduction

Fractional order models are able to properly and accurate describe a number of phys-
ical phenomena from area of electrotechnics, heat transfer, diffusion etc. Fractional -
order approach can be interpreted as generalization of known integer-order models.
Fractional order systems has been presented by many Authors [1–5], an example of
identification fractional order system can be found in [2, 6] the proposition of gen-
eralization the Strejc transfer function model into fractional area was given in [7].

A modeling of fractional-order transfer function in MATLAB/SIMULINK
requires us to apply integer order, finite dimensional, proper approximations. An
important problem is to assign parameters of approximation and estimating its accu-
racy. The most known approximants presented by Oustaloup and Charef (see for
example [4, 8–11]) base onto frequency approach. This is caused by a fact, that
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for fractional order systems the Bode magnitude plot can be drawn exactly and its
parameters can be applied to approximants calculation.

Additionally, for elementary fractional-order elements an analytical form of step
and impulse responses can be given (see [8]). These responses can be applied as
reference to estimate a correctness of built approximant.

The goal of this paper is to present a new method of accuracy estimation for
non integer order transfer function models with delay. The presented method was
previously applied to accuracy analysis for Oustaloup’s recursive approximation
(ORA approximation) and Charef approximation (see [12, 13]). It uses an analytical
formula of step response for fractional order system with delay, the Medium Square
Error (MSE) cost function and numerical calculations donewith the use ofMATLAB.
The proposed approach does not require the use a step response of modeled plant.

The paper is organized as follows: at the beginning considered transfer functions
with delay are presented. Next all the used approximations: ORA, Charef and Pade
are remembered. Furthermore numerical calculations done with the use ofMATLAB
are given and final conclusions are formulated.

2 Considered Non Integer Order Transfer Functions
with Delay

Let us consider an elementary fractional - order plant with delay described by the
following, non integer order differential equation:

y(t) = Tα1
C
0D

α1
t u(t − τ ) + u(t − τ ). (1)

In (1)Dα1
t denotes an integro - differential operator calculated with the use of Caputo

definition (see for example [1, 4]), τ denotes a dead time of plant and Tα1 denotes a
time constant. If we assume, that all initial conditions are equal zero, then the plant
(1) can be described by the following transfer function (2):

G1(s) = e−τ1s

Tα1sα1 + 1
. (2)

In (2) Tα1 and τ1 > 0 are time constant and dead time respectively, α1 ∈ R is a non
integer order of the plant.

The analytical form of the step response ya1(t) for plant described with the use
of Eq. (1) and transfer function (2) is a combination of step response of non integer
order system without delay (see [8, pp. 8–9]) with step response of pure delay and it
can be described as follows:

ya1(t) = L−1

{
1

s
G1(s)

}
=

(
1(t − τ1) − Eα1

(
− t − τ1

Tα1

))
. (3)
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In (3) Eα denotes the one parameter Mittag–Leffler function:

Eα(x) =
∞∑
k=0

xk

Γ (kα + 1)
(4)

where Γ (··) denotes complete Gamma function described as underneath:

Γ (α) =
∫ ∞

0
e−xxα−1dx. (5)

The second proposed model with delay has the following form:

G2(s) = e−sτ2

(Tα2s + 1)α2
. (6)

Parameters of the transfer function (6) are analogical, as transfer function (2): Tα2

and τ2 > 0 denote time constant and dead time respectively, α2 ∈ R is a non integer
order of the inertia.

The analytical form of the step response ya2(t) for plant described with the use of
(6) follows also directly from step response formula for plant without delay (see [8,
p. 9]) and it is expressed as underneath:

ya2(t) = L−1

{
1

s
G2(s)

}
= 1

(Tα2)
α2

·
Γ

(
α2,

t
Tα2

)

Γ (α2)
, (7)

where Γ (α2) denotes complete Gamma function expressed by (5) and

Γ

(
α2,

t

Tα2

)

is the incomplete Gamma function:

Γ

(
α,

t

Tα

)
=

∫ t
Tα

0
e−xxα−1dx. (8)

Let us assume, that the step responses described by (3) or (7) are accurate responses.
This implies, that they can be applied as the reference to estimate an accuracy of
approximations.
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3 Approximations

3.1 The Oustaloup’s Recursive Approximation
(ORA Approximation)

The method proposed by Oustaloup (see for example [11]) allows us to approximate
an elementary non-integer order transfer function sα with the use of a finite and
integer-order approximation expressed as underneath:

sα ∼= GORA(s) = kf

NORA∏
n=1

1 + s
μn

1 + s
νn

= LORA(s)

DORA(s)
. (9)

In (9) NORA denotes the order of approximation, μn and νn denote coefficients calcu-
lated as underneath:

μ1 = ωl
√

η, νn = μnγ, n = 1, . . . ,N,

μn+1 = νnη, n = 1, . . . ,N − 1
(10)

where:

γ =
(

ωh

ωl

) α
N

, η =
(

ωh

ωl

) 1−α
N

. (11)

In (11) ωl and ωh describe the range of angular frequency, for which parameters are
calculated. For convenience during further analysis let us assume, that this frequency
range is logarithmically scaled and expressed by the number P:

ωl = 10−P, ωh = 10P. (12)

A steady–state gain kf is calculated to assure the convergence the step response of
approximation to step response of the real plant in a steady state.

It was proven (see for example [13]) that the frequency range ωl and ωh strongly
determines the accuracy of ORA approximation.

3.2 The Charef Approximation

The Charef approximation allows us to approximate fractional order transfer func-
tion, described by (5)with the use of integer order transfer functionGchar(s)described
as underneath (see [9]):
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GCh(s) = LCh(s)

DCh(s)
=

∏NCh−1
i=0

(
1 + s

zi

)
∏NCh

i=0

(
1 + s

pi

) . (13)

In (13) NCh denotes order of approximation, zi and pi denote zeros and poles of
approximation. They can be calculated with the use of transfer function (1) pole pα

and fractional order α:

pα = 1

Tα
, p0 = pα

√
b,

pi = p0(ab)
i, i = 1, . . . ,N, zi = ap0(ab)

i, i = 1, . . . ,N − 1
(14)

where:
a = 10

Δ
10(1−α) , b = 10

Δ
10α . (15)

In (15) Δ denotes a maximal permissible error of approximation, defined as the
maximal difference between Bode magnitude plots for model and plant, expressed
in [dB].

The orderNCh of Charef approximation can be assigned to minimize the assumed,
maximal approximation error Δ (see [9]):

NCh =
⎡
⎣ log

(
ωmax
p0

)

log(ab)

⎤
⎦ + 1. (16)

In (16) ωmax denotes the angular frequency, for which the maximal error is achieved.
If the value of NCh with respect to (16) is non-integer, it should be rounded to nearest
integer.

3.3 The Pade Approximation

Pade approximation is a classic tool to estimate delay element e−τs with the use of
rational, integer order transfer function. There are known different versions of this
approximant (see for example [14]). The most known is described as underneath:

e−τs ∼= Gp(s) = 2 + ∑M
m=1

(−τs)m

m!
2 + ∑M

m=1
(τs)m

m!
= Lp(s)

Dp(s)
, (17)

where M denotes the order of Pade approximation.
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3.4 The Approximations of the Whole Model

After inserting the both approximants (9) and (17) to the transfer function (2) we
obtain:

Gapr1(s) = Lp(s)DORA(s)

TαLORA(s)Dp(s) + DORA(s)Dp(s)
. (18)

The summarized order of approximant transfer function (18) is equal NORA + M.
Analogically the approximation of transfer function (5) can be written with the use
of (9) and (13):

Gapr2(s) = Lp(s)LCh(s)

Dp(s)DCh(s)
. (19)

The step response of each approximation (18) or (19) is expressed as underneath:

yapr1,2(t) = L−1

{
Gapr1,2(s)

s

}
. (20)

4 Cost Function Describing the Accuracy
of Approximations

Let us assume, that the step response ya(t) described by (3) or (6) is the accurate
response. In real situation it is calculated in discrete timemoments k = 1, . . . ,Ks and
with sample time h. Then y+(k) = y(kh). Analogically y+

apr(k) is the step response of
approximation, described by (20) and calculated along the same, discrete time grid.
Consequently the approximation error e+(k), calculated in discrete time moments
1, . . . ,Ks is defined as follows:

e+(k) = y+
a (k) − y+

apr(k), k = 1, . . . ,Ks. (21)

The accuracy of the approximation can be estimated with the use of typical Medium
Square Error (MSE) cost function:

MSE = 1

Ks

Ks∑
k=1

(
e+(k)

)2
. (22)

The cost function (22) for given plant (described by τ1,2, Tα1,2 and α1,2) is a function
of approximation parameters: orders M, NCh, NORA and angular frequency range
described by P in the case of ORA approximation and maximal error Δ for Charef
approximation.
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It is known (see [13]) that decreasing P improves the accuracy of ORA approxi-
mant for separated element sα, but an influence of this parameter on accuracy of the
whole transfer function (2) is not obvious and it should be tested also. The same was
checked in the case of Charef approximation (see [12]) and parameter Δ.

Next it can be expected, that increasing both orders NCh, NORA and M should
increase an approximant quality, described by cost function (22). However, results
of previous investigations done by authors point, that too high value of NCh, or NORA

can cause bad conditioning of a model and consequently, make it useless.
Furthermore – in the considered case an additional problem can appear – for

particular values parameters of each applied approximant the cancellation of some
poles and roots in approximating transfer function (18) or (19) can appear. This is a
separated important problem, close to issue considered in the paper [10]. This will
be tried to solve during further investigations.

The fastest method to check proper setting the approximation ordersNCh, orNORA,
M is to calculate the cost function MSE (22) as a function of these orders. Such a
setting will be shown in the next section.

5 Examples

As a first example let us consider the optimal order tuning for transfer function in
the form (2) with the following values of parameters:

G1(s) = e−22s

47s1.03 + 1
. (23)

The numerical finding of optimal ordersM and N can be done with the use of known
approach presented for example in [15, p. 572]. It consists in calculating cost function
(22) for increasing values of orders M and NORA. If the significant improvement of
cost function during crossing fromM toM + 1 and analogically between NORA and
NORA + 1 is observed, then estimated orders of model are equalM + 1 andNORA + 1
respectively. Optimal orders of model 1 for transfer function (23) obtained with the
use of the above approach and cost function (22) are given in Table1. The comparison
of analytical and approximated step response are shown in Fig. 2.

As the second example the model expressed by transfer function (24) was tested.
The MSE cost function (22) as a function of both approximation orders is shown in
Fig. 3.
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Table 1 Optimal orders of
approximated model 1

M NORA MSE

4 6 8.0746e-04

Table 2 Optimal orders of
approximated model 2

M NCh MSE

6 7 3.0922e-08

Fig. 1 Cost function (22) as a function of orders: M and NORA for model 1

G2(s) = e−22s

(45s + 1)0.75
(24)

Optimal orders of model 2 for transfer function (24) obtained with the use of
the above approach and cost function (22) are given in Table2. The comparison of
analytical and approximated step response are shown in Fig. 4.

From Tables1 and 2 and Figs. 1, 2, 3 and 4 it turns out that model 2, described
by transfer function (5) and approximated with the use of Charef approximation is
much more accurate, than the model 1, described by transfer function (2) and using
ORA approximation. Next–the good accuracy of the both tested models is achieved
for relatively low orders of all used approximants: Pade, ORA and Charef.
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Fig. 2 Analytical (red) and approximated (blue) step responses for model 1

Fig. 3 Cost function (22) as a function of orders: M and NCh for model 2
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Fig. 4 Analytical (red) and approximated (blue) step responses for model 2

6 Final Conclusions

The final conclusions for the paper can be formulated as follows:

• The model in the form of non integer order inertial plant with delay (5) is much
more accurate in the sense ofMSE cost function than non integer order model with
delay, expressed by transfer function (2).

• The convergence of the both consideredmodels is good, because the good accuracy
is achieved for relatively low orders of used approximations.

• Results of tests for themodel (2) usingORAapproximation point, that the proposed
form of non integer order transfer function should be approximated with the use
of another methods, which should be proposed. This is going to be the area of
further investigations.

• An important issue, which should be considered, is a problem of partial cancel-
lation poles and zeros in transfer functions using both Pade and Charef or ORA
approximation. This phenomenon can appear for certain combination of approxi-
mation parameters and it will cause the loosing of approximation accuracy. Similar
problem during use the Charef approximation was discussed in paper [10]. The
analysis of use concatenation of Pade and ORA/Charef approximation should also
be presented and it is going to be presented as a sequel of this paper.

Acknowledgments This paper was supported by the AGH (Poland) – project no 11.11.120.817.



Accuracy Analysis for Fractional Order Transfer Function Models with Delay 263

References

1. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, New York (2011)
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13. Oprzędkiewicz, K.,Mitkowski,W., Gawin, E.: An estimation of accuracy of Oustaloup approx-
imation. In: Szewczyk, R., et al. (eds.) Challenges in Automation, Robotics and Measurement
Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 299–307. Springer,
New York (2016)

14. Vajta, M.: Some remarks on Pade-approximations. In: Proceedings of the 3rd TEMPUS-
INTCOM Symposium (2000)

15. Isermann, R.,Muenchhof,M.: Identification of Dynamic Systems. An Introduction with Appli-
cations. Springer, New York (2011)



Accuracy Estimation of Digital Fractional
Order PID Controller

Krzysztof Oprzędkiewicz

Abstract In the paper an accuracy estimationmethod for digital fractional order PID
controller is discussed. Integral and derivative parts of a controller are approximated
with the use of Power Series Expansion (PSE) and Continuous Fraction Expansion
(CFE)methods. These approximations are fundamental tools to modeling fractional-
order elements with the use of integer-order, discrete, proper transfer function in the
form of FIR or IIR filter. The accuracy of each approximation is a function of its
order and other parameters. It can be estimated via comparison of step responses:
analytical and approximated in sample moments. The step response expressed by
accurate analytical formula can be interpreted as a standard. Approach presented in
the paper can be applied during implementation of FO PID at each digital platform
(microcontroller, PLC). Results of simulations show, that the CFE approximation
allows us to build a FO PID controller so accurate, as constructed with the use of
PSE, but much more simple to implementation, because its order is significantly
lower.

Keywords Digital fractional order PID controller · PSE approximation ·
CFE approximation

1 An Introduction

One ofmain areas of application fractional order calculus in automation is a fractional
order PID control (FO PID control). Results presented by many Authors [1–5] show
that FO PID controller is able to assure the better control performance than classic
integer order PID controller.

An implementation of FOPID controller at each digital platform (PLC,microcon-
troller) requires us to apply integer order, finite dimensional, discrete approximant.
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The most known are: Power Series Expansion (PSE) approximation and Continuous
Fraction Expansion (CFE) approximation (see for example [1, 2, 6, 7]). They allow
us to estimate a non integer order element with the use of digital filter. The detailed
comparison of the both methods was done for example in [2]. In this paper it was
marked that the CFE is a more effective method according to the PSE method, but
there are some restrictions for the correct choice of the sampling period.

For elementary fractional-order integrator/differentiator an analytical form of step
and impulse responses are known (see [1]) These responses can be applied as refer-
ence to estimate a correctness and accuracy of tested approximants.

The goal of this paper is to discuss an accuracy estimation of PSE andCFE approx-
imations describing a Fractional Order PID controller (FO PID) with the use of a
method proposed by author in papers [8, 9]. The presented approach uses analytical
formula of controller’s step response, known MSE cost function and numerical cal-
culations done with the use of MATLAB. Proposed method will be also applied to
compare of both approximants in the sense of accuracy and numerical complexity.

It is important to notice that the proposed method is dedicated only to optimal
tune of approximants, and this problem is independent on optimal tuning FO PID
parameters, which should be always dedicated to certain controlled plant.

The paper is organized as follows: at the beginning elementary ideas are remem-
bered. Next the tested PSE and CFE approximations are presented and method of its
optimal tuning is proposed. Results are illustrated by simulations done with the use
of MATLAB.

2 Preliminaries

A non integer order operator is generally described as underneath (see for exam-
ple [1]):

aD
α
t f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dαf (t)
dtα α > 0

1 α = 0

∫ t
a f (τ )(dτ )−α α < 0

. (1)

In (1) α denotes a non integer order of operation, a, t denote a time interval to
calculate operator. The operator (1) can be described by different definitions given
by Grünwald and Letnikov (GL definition), Riemann and Liouville (RL definition)
and Caputo, but a discretization of the operator (1) can be done most naturally and
easily with the use of Grünwald–Letnikov definition, given underneath:

aD
α
t f (t) = lim

h→0
h−α

[ t−a
h ]∑

j=0

(−1) j

(
α

j

)
f (t − jh). (2)
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In (2) h is a step of discretization, [..] denotes an integer part, (α
j

)
is a generalization

of Newton symbol into real numbers:

(
α

j

)
=

⎧⎨
⎩
1 dla j = 0

α(α−1)...(α−j+1)
j! dla j > 0

. (3)

For fractional order systems an idea of transfer function can be also given and its
form is analogical as for integer order systems.

Let us consider an elementary non-integer order PID controller described by the
transfer function (4):

Gc(s) = kp + kI
sα

+ kDs
β . (4)

In (4) α, β ∈ R are fractional-orders of integral and derivative actions, kP, kI , kD
are coefficients or proportional, integral and derivative actions of controller. The
analytical form of the step response ya(t) for the above controller can be calculated
with the use of [1, p. 5] and it has the following form:

ya(t) = L−1

{
1

s

(
kp + kI

sα
+ kDs

β

)}
= kp + kI · tα

Γ (α + 1)
+ kD · t−β

Γ (1 − β)
(5)

where Γ (..) denotes complete Gamma function:

Γ (α) =
∫ ∞

0
e−xxα−1dx. (6)

Let us assume, that the continuous-time step response described by (5) and (6) is the
accurate response. It will be applied to accuracy estimation as a standard.

3 The Considered Discrete Approximations

The PSE approximation bases directly onto GL definition given by (2) and it has the
following form: (

k − Lm
h

)Dα
kh f (k)∼=h−α

∑k
j=0(−1) j(α

j) fk−j

. (7)

In (7) Lm denotes the “memory length”, h is the size of time step, (−1) j
(α
j

)
are

coefficients calculated as underneath:

c(α)
0 = 1, c(α)

j =
(
1 − 1 + α

j

)
c(α)
j−1. (8)
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It is important to notice that PSE leads to approximation in the form of polynomials,
that is, the discretized fractional operator has the form of a FIR filter, which has only
zeros. The resulting discrete transfer function, obtained by approximating fractional-
order operators, can be expressed in the z-domain as underneath:

0D
α
khf (t) ∼= h−αPSE

{(
1 − z−1

)α}
n = h−αRn(z

−1), (9)

where z = esh. Coefficients of the transfer function (9) can be calculated for example
with the use ofMATLAB function dfod2 available at [4]. This functionwill be applied
in calculations.

An alternative form of integer order, finite dimensional approximant for non inte-
ger order operator can be obtained with the use of Continuous Fraction Expansion
(CFE) approximation (see for example [1, p. 14]).

0D
α
khf (t) ∼=

(
1 + a

h

)±α (
1 − z−1

1 + az−1

)±α

=
(
1 + a

h

)±α

CFE{...}. (10)

The CFE transfer function (10) has the form of discrete, n–th order IIR filter
containing both poles and zeros. Coefficients of it can be calculated for example
with the use of MATLAB function dfod1 available at [11]. This function will be also
applied during numerical optimization of FO PID.

4 Cost Function Describing the Accuracy
of Approximations

Denote the step response of considered FO PID calculated in sampling moments by
y+(k):

y+
a (k) = ya(kh), k = 1, 2, . . . (11)

Let y+
PSE(k) or y+

CFE(k) denotes the step response of the discrete, approximated con-
troller in k–th timemoment. Then the approximation error e+

PSE,CFE(k) can be defined
as follows:

ePSE,CFE(k) = y+
a (k) − y+

PSE,CFE(k). (12)

The quality of approximation can be estimated with the use of typical MSE cost
function (see for example [12]):

MSEPSE,CFE = 1

Ks

Ks∑
k=1

e+
PSE,CFE(k). (13)
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In (13)Ks denotes a number of all collected samples, e+
PSE,CFE(k) is the approximation

error of each approximant, described by (12).
To estimate the order of each considered approximant, assuring the reasonable

value of cost function (13) can be applied an approach presented in [12, pp. 573,
574].

A criterion to determine an approximation order is the rate of change the cost
function (13) as a function of model order. If the increase of order causes firstly big
and next small improvement of calculated cost function, then this “threshold” value
of order can be interpreted as a its sensible value. This idea will be applied during
experiments.

5 Experiments

As an example let us consider an application of both PSE and CFE approximations to
model the FOPID controller described by (4). During all experiments the coefficients
of controller were constant and equal: kp = 1.0, kI = 1.0 and kD = 1.0, parameters
of the approximation for the both parts I and D of controller were the same. All
results are collected in the Table1. Firstly the PSE approximation (9) was tested.
Calculations were done for different values of memory length, non integer orders α,
β and different values of sample time and with the use of MATLAB function dfod2
[4]. Results are given in Figs. 1, 2 and 3 and the Table1.

Next CFE approximation (10) was tested with the use of analogical approach, as
above. Calculations were done with the use of MATLAB function dfod1 [11]. The
Euler method (parameter a = 0) was applied. Results are shown in Figs. 4, 5 and 6
and Table1 also.

From Table1 it can be concluded at once that:

• Shorter sample time assures the better quality of approximation in the sense of
MSE cost function, but the convergence of approximation is slower,

Table 1 “Threshold” values of memory length Lm, (PSE) and approximation order (CFE) for
different α, β and h in both tested approximations

h [s] α β Threshold
value of Lm

MSEPSE Threshold
value of n

MSECFE

0.1 0.5 0.5 48 8.3639e − 004 5 8.6111e − 004

0.2 0.8 40 1.0098e − 004 5 1.1601e − 004

0.8 0.2 47 0.0039 4 0.0033

0.2 0.5 0.5 25 0.0027 4 0.0027

0.2 0.8 20 2.2611e − 004 4 2.0808e − 004

0.8 0.2 25 0.0155 2 0.0138
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Fig. 1 PSE approximation: MSE cost function for different memory length, different sample time
and non integer orders equal: α = 0.5, β = 0.5

Fig. 2 PSE approximation: MSE cost function for different memory length, different sample time
and non integer orders equal: α = 0.2, β = 0.8
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Fig. 3 PSE approximation: MSE cost function for different memory length, different sample time
and non integer orders equal: α = 0.8, β = 0.2

Fig. 4 CFE approximation: MSE cost function for approximation order n, different sample times
and non integer orders equal: α = 0.5, β = 0.5
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Fig. 5 CFEapproximation:MSEcost function for different approximation order n, different sample
time and non integer orders equal: α = 0.2, β = 0.8

Fig. 6 CFEapproximation:MSEcost function for different approximation order n, different sample
time and non integer orders equal: α = 0.8, β = 0.2
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Fig. 7 Step response of FO PID controller and both its approximants, Lm = 48, n = 5, sample time
h = 0.1[s] and non integer orders: α = 0.5, β = 0.5

Fig. 8 Step response of FO PID controller and both its approximants, Lm = 48, n = 5, sample time
h = 0.2[s] and non integer orders: α = 0.5, β = 0.5
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• The accuracy of the both PSE and CFEmethods for the same sample time and non
integer orders is very close, but the order of CFE approximation is significantly
lower, than PSE approximation.

Examples of step responses of considered FO PID controller for different sample
times are given in Figs. 7 and 8.

6 Final Conclusions

The final conclusions from the paper can be formulated as follows: The both tested
approximation methods well describe a behavior of a FO PID controller at digital
platform.

The order of CFE approximation necessary to obtain the good accuracy is sig-
nificantly shorter that order of the PSE approximation assuring the close accuracy.
This implies that to implementation at digital platform with bounded resources (for
example PLC, microcontroller) is recommended the use of CFE.

Results shown in the paper will be applied during implementation FO PID at PLC
platform.

Acknowledgments This paper was supported by the AGH (Poland) – project no 11.11.120.815.
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Modeling of Fractional-Order Integrators
and Differentiators Using Tustin-Based
Approximations and Model Order Reduction
Techniques

Marek Rydel, Rafał Stanisławski, Marcin Gałek and Krzysztof J. Latawiec

Abstract This paper presents a set of low-order approximators/dis-cretizers of
fractional order derivative and integrator. The approximations are obtained using the
Frequency Weighted (FW) reduction method applied to a high order Tustin–Muir
based model of fractional-order derivative and integrator. Simulation examples con-
firm high accuracy of themodels both in frequency and time domains. This illustrates
the usefulness of the introduced methodology, which can be applied to selection of a
set of relatively low order discrete-time approximators of fractional-order derivative
and integrator.

Keywords Fractional-order system · Discrete-time systems · Approximation

1 Introduction

Both for integer- and noninteger-order systems there are three main methods for
discretization of continuous time systems, providing transformation from the s to z
domains. These include (1) the classical transformations based on the rectangular
rule, called the Eulermethod [1], (2) the trapezoidal rule, called the Tustinmethod [2]
and (3) the Al-Alaoui method which combines the above two methods using specific
weighting coefficient [3, 4]. The most commonly used method is the rectangular
integration rule, which can be simply obtained by the use of the generalized Newton
expansion. However, its FIR structure requires a large number of model elements
to provide discrete-time ‘equivalence’ of continuous time system. The trapezoidal
integration rule leads to the IIR structured discrete-time model, with relatively low
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number of elements. However, it causes the ‘wrapping effect’ due to its nonlinearity
[3, 4]. The Al-Alaoui operator combines the above two methods to minimize the
wrapping effect of the Tustin operator. The Al-Alaoui operator is determined by the
coefficient β ∈ [0, 1] which weights the shares of of the Euler and Tustin methods
in the Al-Alaoui operator. Other approaches behind that research direction are based
on the Laguerre functions approach [5, 6] leading to direct discretization of the
Grünwald–Letnikov (GL) fractional order derivative. The approach uses theLaguerre
filters rather than e.g. FIR ones. It enables to use a low number of elements in the
Laguerre-based model and yet to provide a high approximation accuracy [6, 7].

There are two main methods of practical implementation for the Tustin operator
i.e. (1) using the continued fraction expansion (CFE) method [8] and (2) using the
Muir recursion [7]. The CFE-based Tustin method yields to good approximation
accuracy but can cause numerical problems ending up with a low upper limit of
implementation length for CFE-Tustin approximator. Accurate approximation in a
wide range of frequencies for the fractional-order integrators and differentiators
using the recursive Tustin–Muir algorithm requires a very complex model which is
not useful from the computational point of view. For this reason, the ability of proper
reduction of the model complexity in a given adequacy scope becomes a significant
issue. Reduction of a model is not a unique operation and there are several ways
to reduce the order of the model [9–11]. Among them, the techniques based on the
truncation of balanced realization are given a great interest. The Balanced Truncation
Approximation (BTA) method determines the model by eliminating the low-energy
and hard-to-reach states in the state space model. The reduction method guarantees
thatH∞-norm of difference between full and reduced-order models is upper bounded
by twice the sum of the neglected Hankel singular values [11, 12]. However, for the
integrator and differentiator the magnitude of frequency response varies significantly
with frequency. Therefore, a reduced model obtained by the BTA reduction requires
a large number of states to provide an accurate approximation of frequency-domain
characteristics in a wide frequency range.

The paper is organized as follows. Having introduced the approximation/dis-
cretization problem for fractional-order systems in Sect. 1, the Tustin-based approx-
imations for fractional-order derivative and integrator are recalled in Sect. 2. An
application of the SVD-based method in terms of the FW approach to high order
Tustin–Muir approximation is presented in Sect. 3. Results and simulation analy-
sis of the introduced methodology is shown in Sect. 4 and conclusions of Sect. 5
complete the paper.

2 Fractional-Order Integrator and Differentiator

One of themost commonly used discretization and practical implementationmethods
for both ‘regular’ (integer order) and fractional-order derivatives and integrals is
the trapezoidal rule, called the Tustin method. This approach has two advantages
(1) the conversion of the left half of the s-plane strictly into the inside of the unit
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circle in the textitz-plane (2) warranty that the imaginary axis of the textits-plane
is exactly mapped onto the unit circle circumference in the textitz-plane (see e.g.
[4]). The disadvantage of the Tustin-based discretization is the occurrence of the
wrapping effect in the magnitude characteristic at high frequencies. Discretization
of fractional-order derivative and integrator using the Tustin operator is realized as

sα ≈
(

Δ

T

)α

=̂
(
2

T

)α(
1 − z−1

1 + z−1

)α

(1)

where the fractional-order α ∈ (0, 1) describes fractional-order derivative and α ∈
(−1, 0) fractional order integrator, T is the sampling period and z is the complex
operator. Accurate discretization of fractional-order derivative and integral using
the Tustin operator may produce an irrational function leading to infinite lengths of
numerator and denominator in Eq. (1). It is well known that the functions in Eq. (1)
can be presented in the continued fraction expansion (CFE) form

(
Δ

T

)α

=
⎡
⎢⎣a0(z) + b1(z)

a1(z) + b2(z)

a2(z)+ b3(z)
a3(z)+···

⎤
⎥⎦ (2)

where the elements ai(z), i = 0, 1, . . . and bj(z), j = 1, 2, . . . are rational functions
in the z domain. By finite implementation length in Eq. (2) we obtain the CFE-based
approximation of fractional-order derivative or integrator [13]

(
Δ

T

)α

≈ w(z) =
(
2

T

)α

CFEn

{(
1 − z−1

1 + z−1

)α}
(3)

where T is the sampling period, CFEn denotes the continued fraction expansion of
order n. Of course, the accuracy of the CFE expansion depends on implementation
length. Therefore, it is worth emphasizing that due to numerical problems in the
Matlab environment an implementation length is bounded and depends on values α.

Another Tustin-based approximation for fractional-order derivative and integrator
is based on the Muir recursive scheme. In this case the nominator and denominator
of the rational integer-order approximation is calculated in the following way

w(z) =
(
2

T

)α
An(z−1,α)

An(z−1,−α)
(4)

where An(z−1,α) and An(z−1,α) are the polynomials of orders n, whose coefficients
are calculated in a recursive way

An(z
−1,α) = An−1(z

−1,α) − γnz
−nAn−1(z,α) (5)
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with

γn =
{

α
n n is odd

0 n is even

and
A0(z

−1,α) = 1

TheTustin–Muir approachgivesworse performance in comparison to theCFE-Tustin
one. However, in contrary to the CFEmethod the maximum order of implementation
length is not limited. Therefore, in order to obtain an accurate approximation of
fractional-order derivative in a wide range of frequencies it is necessary to generate
very high order approximators.

In the paper we applymodel order reductionmethods for the Tustin–Muir approx-
imation of the fractional order differentiator and integrator (4).Model order reduction
methods require the representation of Eq. (4) in the state space form

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(6)

with the matrices A ∈ �n×n, B ∈ �n×1,C ∈ �1×n andD ∈ � given directly from (4).

3 Approximation Procedure

The FrequencyWeighted (FW)method is a generalization of the BTAmethod, which
enable to introduce frequency weighting functions [11, 14–18]. Weighting functions
are chosen in terms of frequency-domain responses and adequacy scope of themodel.
A proper selection of weighting functions enables to significantly reduce a relative
approximation error for frequency-domain characteristics in a given frequency range
[19, 20].

The FWmethod has been developed for stable models and stable weighting input
Wi (state matrices: Ai, Bi, Ci, Di) and output filters Wo (state matrices: Ao, Bo, Co,
Do). Introduction of weighting filters modifies the primary model as follows [11, 16]

GWi =
[
Âi B̂i

Ĉi D̂i

]
=

⎡
⎣ A BCi

0 Ai

BDi

Bi

C DCi DDi

⎤
⎦ (7)

WoG =
[
Âo B̂o

Ĉo D̂o

]
=

⎡
⎣ A 0

BoC Ao

B
BoD

DoC Co DoD

⎤
⎦ (8)
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Controllability and observability gramians of the modified system are computed
by taking into account the input and output weights

ÂiP̂Â
T
i − P̂ = −B̂iB̂

T
i (9)

ÂT
o Q̂Âo − Q̂ = −ĈT

o Ĉo (10)

Introduction of weighed functions changes the order of the model, therefore in the
algorithm proposed by Enns [14], as gramians in the reduction algorithm are taken
the sub-matrices P̂11 and Q̂11 of the modified model gramians.

P = P̂11 ∈R
n×n, where: P̂ =

[
P̂11 P̂12

P̂T
12 P̂22

]
(11)

Q = Q̂11 ∈R
n×n, where: Q̂ =

[
Q̂11 Q̂12

Q̂T
12 Q̂22

]
(12)

It is worth mentioning that there exist other alternative ways of determination
gramians matrices P and Q (see details in Refs. [15–18]).

The Enns algorithm guarantees maintaining of the reduced model stability only
for one-side weighing. However, mentioned above modifications provide stability of
two-side weighting [15–18].

All the subsequent steps of the reduction algorithms are identical with those for
the BTAmethod and are presented in detail in [21]. As result of the reduction process
we obtain an integer-order discrete-time model of order k � n.

In the paper we use the above presented FW algorithm to model-order reduction
of the Tusin-Muir approximation presented in (6). Weighting functions are selected
to optimize the approximation performance of the reduced models in the frequency
range ω ∈ 1

T (10−3, 1) [rad/s]. Determination of optimal reduction parameters is a
non-convex problem and application of the global optimization algorithms is neces-
sary, so for a solution to this problem we apply the evolutionary algorithm [19].

4 Results and Simulation Analysis

The approximation procedure presented above enables a selection of discrete-
time models of fractional-order differentiator and integrator. Tables1 and 2 present
approximators of fractional-order derivative and integration, respectively, for various
fractional-orders α and implementation lengths k.

Frequency domain characteristics of the above presented approximators and the
actual characteristic of fractional-order derivative are shown in Fig. 1. In order to
compare an efficiency of the approximations presented in this paper, the frequency
domain characteristics of classical, continued fraction expansion-based (CFE-based)
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Table 1 Discrete-time models of fractional-order differentiator

α k w(z)

0.3 3 w0.3
3 (z) =

(
2

T

)α
1.231z3 − 3.127z2 + 2.578z − 0.6823

z3 − 2.023z2 + 1.112z − 0.08914

5 w0.3
5 (z) =

(
2

T

)α
1.231z5 − 4.714z4 + 6.792z3 − 4.397z2 + 1.118z − 0.0304

z5 − 3.214z4 + 3.369z3 − 0.8003z2 − 0.6509z + 0.2959

0.5 3 w0.5
3 (z) = 2α

Tα

1.414z3 − 3.727z2 + 3.224z − 0.9111

z3 − 1.714z2 + 0.5425z + 0.1718

5 w0.5
5 (z) =

(
2

T

)α
1.414z5 − 3.858z4 + 2.968z3 + 0.292z2 − 1.126z + 0.309

z5 − 1.719z4 − 0.1777z3 + 1.557z2 − 0.6711z + 0.0111

0.7 3 w0.7
3 (z) =

(
2

T

)α
1.625z3 − 4.009z2 + 3.169z − 0.7843

z3 − 0.9659z2 − 0.6408z + 0.6109

5 w0.7
5 (z) =

(
2

T

)α
1.625z5 − 4.166z4 + 2.812z3 + 0.6622z2 − 1.21z + 0.2775

z5 − 1.161z4 − 0.8991z3 + 1.287z2 − 0.09403z − 0.1317

Table 2 Discrete-time models of fractional-order integrator

α k w(z)

−0.3 3 w−0.3
3 (z) =

(
2

T

)α
0.8123z3 − 1.43z2 + 0.4929z + 0.1248

z3 − 2.375z2 + 1.767z − 0.3926

5 w−0.3
5 (z) =

(
2

T

)α
0.8123z5 − 2.523z4 + 2.435z3 − 0.2696z2 − 0.7363z + 0.2812

z5 − 3.726z4 + 5.128z3 − 3.025z2 + 0.5685z + 0.05423

−0.5 3 w−0.5
3 (z) =

(
2

T

)α
0.7071z3 − 0.7562z2 − 0.4429z + 0.4927

z3 − 2.264z2 + 1.544z − 0.2798

5 w−0.5
5 (z) =

(
2

T

)α
0.7071z5 − 1.762z4 + 0.8233z3 + 1.093z2 − 1.143z + 0.2816

z5 − 3.534z4 + 4.428z3 − 2.074z2 − 0.001593z + 0.181

−0.7 3 w−0.7
3 (z) =

(
2

T

)α
0.6156z3 − 0.5102z2 − 0.582z + 0.478

z3 − 2.449z2 + 1.907z − 0.4583

5 w−0.7
5 (z) =

(
2

T

)α
0.6156z5 − 1.368z4 + 0.3359z3 + 1.136z2 − 0.8872z + 0.1669

z5 − 3.648z4 + 4.828z3 − 2.593z2 + 0.2921z + 0.1202
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Fig. 1 Frequency responses, approximation errors and step responses for the reduced models of
approximation of fractional-order differentiator for α = 0.3

Tustin approach [7, 13] of order k = 15 are presented in Fig. 1. Moreover, approxi-
mation errors related to the actual frequency response of fractional-order derivative
as well as the time domain step responses of the approximators are depicted in Fig. 1.
Also, characteristics related to approximation of fractional-order integrator are pre-
sented in Fig. 2.

The presented results of reduction show that all the obtained reduced models give
a very good approximation accuracy both in the frequency domain in the considered
range of frequency ω ∈ (10−3, 1) [rad/s] and in the time domain. It is worth mention-
ing that the obtained models give lower approximation errors and better numerical
conditioning than the CFE-based Tustin approach. To obtain the equivalent accuracy
to the presented in the paper approximators the order of CFE-based Tustin approach
would have to be 10 times higher. Moreover, due to the numerical problems it could
be infeasible because of the upper limit of order of the CFE-based Tustin approach,
e.g. for fractional-order α = 0.5 the limit is 41 in the Matlab environment [7]. It can
be seen in the magnitude characteristics of Figs. 1 and 2 that properly chosen weight-
ing functions in the FW algorithm enable partial elimination of the wrapping effect
affecting the frequency properties of the Tustin approach. Moreover, the reduction
process improves time domain properties of modeling due to elimination of some



284 M. Rydel et al.

M
ag

ni
tu

de
 [d

B
]

ap
pr

ox
im

at
io

n 
er

ro
r

P
ha

se
 [d

eg
]

 [rad/sec]  [rad/sec]

 [rad/sec]
Time (seconds)

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

0 1 2 3 4 5 6 7 8 9 10

-20

-10

0

10

20

30

40

-60

-45

-30

-15

0

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2 Frequency responses, approximation errors and step responses for the reduced models of
approximation of fractional-order integrator for α = −0.5

left half plane poles of the characteristic equation bringing the non-casual properties
to the system.

Table3 shows the approximation errors of the approximators for fractional-order
differentiator and integrator for implementation lengths k = 2 to k = 5. The abbre-
viations in this table are as follows

• MSE - the mean square error of step response,
• RMSAE - relative mean square approximation error for the model adequacy range

ω ∈ (10−3, 1) (rad/s) [22].

The results of Table3 confirm a very good performance of the proposed approxi-
mators both in frequency and time domains.
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Table 3 Approximation errors of approximators for fractional-order differentiator and integrator

α = 0.3 α = 0.5 α = 0.7

k MSE RMSAE MSE RMSAE MSE RMSAE

2 4.782e−03 0.16912 4.686e−04 0.2331 7.427e−05 0.2200

3 9.262e−04 7.731e−02 1.392e−04 9.792e−02 3.329e−04 0.1011

4 4.493e−04 2.958e−02 3.425e−04 5.961e−02 8.671e−03 9.992e−02

5 3.354e−05 1.424e−02 3.184e−04 5.759e−02 9.864e−03 8.780e−02

α = −0.3 α = −0.5 α = −0.7

k MSE RMSAE MSE RMSAE MSE RMSAE

2 49.14 0.1852 266.6 0.3488 1.110e+05 0.3282

3 13.41 8.737e−02 182.5 0.1617 569.3 0.1391

4 1.202 4.130e−02 12.71 6.866e−02 664.1 6.075e−02

5 6.531e−02 1.813e−02 8.896 3.153e−02 226.9 3.076e−02

5 Conclusion

This paper has presented a series of approximators to fractional-order difference and
integration for various orders α and implementation lengths k. The proposed mod-
els are obtained using the SVD-based reduction method in terms of the Frequency
Weighted (FW) approach. However, the procedure to determine the final approxima-
tion is time and memory consuming, especially for long implementation lengths of
the model used in the reduction process. Nevertheless, high implementation lengths
are required in order to obtain an approximation which is adequate in a wide fre-
quency range. Proper selection of weighting functions for the FW method enable
to determine a low order model characterized by low approximation errors both in
the frequency and time domains. Simulation examples confirm the usefulness of the
introduced methodology, which can be applied to selection of a set of relatively low
order approximators to fractional-order differentiation and integration.
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Tempered Fractional Model of Transient
Current in Organic Semiconductor Layers

Renat Sibatov and Ekaterina Morozova

Abstract This study is devoted to the tempered fractional drift-diffusion of charge
carriers in organic semiconductors. The transient current observed in the time-of-
flight experiment for the trap-limited transport is related to a solution of the classic
Fokker–Planck equation. Using this relationship, we consider photocurrent decay in
a multilayered organic samples.

Keywords Tempered fractional equation · Organic semiconductor · Dispersive
transport · Time-of-flight

1 Introduction

Study of charge transport and recombination in organic semiconductors is important
due to their applications in light-emitting diodes, solar cells and field-effect transis-
tors [1–3]. In recent years, systems based on organic blends (such as P3HT:PCBM)
forming bulk heterojunction are actively investigated [1, 4, 5]. Electronic and struc-
tural disorder inherent to the systems leads to energy distribution of localized states
available for nonequilibrium electrons and holes. The correct interpretation of results
of the time-of-flight (ToF) experiments in heterogeneous organic structures is still
actual problem [6]. The ToF-method studies a photocurrent response after injec-
tion of nonequilibrium carriers by short light pulse. Typically, a strong electric field
(>105 V/cm) close to the dielectric breakdown conditions is applied to a sample in
order to avoid space charge effects, bipolar transport of carriers and to reduce con-
tribution of diffusion [6–8]. Among the factors that influence the photocurrent decay
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are density of states (DoS), morphology of percolation area, presence of defective
layers, heterogeneity of an electric field, recombination, and others [7–12].

In most cases, classic drift-diffusion equations are not applicable to description
of charge carrier kinetics in organic semiconductors. Non-Gaussian (e.g. dispersive)
transport regimes are usually observed in these systems [9–11, 13]: the photocur-
rent decay I (t) essentially differs from the ‘normal’ step-wise curve corresponding
to the Gaussian transport. Universal transient currents (with two power law sec-
tions: I (t) ∝ t−1+α for t < tT , and I (t) ∝ t−1−α for t > tT , α is the dispersion
parameter) are typically explained by exponential DoS, but they can also result
from percolation of carriers due to structural disorder [11, 14]. For exponential DoS
ρ(ε) ∝ exp(−ε/ε0) with ε0 > kT , photoinjected carriers never achieve equilibrium
distribution on energy,waiting times are characterized by probability density function
with power law tail ψ(t) ∝ t−α, α = kT/ε0 ∈ (0, 1) [9, 15]. The mean localization
time diverges in this case.

A universal behavior of the transient photocurrent indicates the self-similarity of
charge carrier propagation. The kinetic equation containing derivative of a fractional
order α has been derived in [16] from the self-similarity property. The fractional
differential model allows to describe normal and dispersive transport within a unified
formalism [17]. The fractional differential theory of anomalous charge transport in
solids is described in details in recent book [18].

On the other hand, transport of charge carriers in disordered organic media is
usuallymodeled by hopping via localized stateswith theGaussian energy distribution
[10, 19]. In this case, the equilibrium energy distribution of carriers exists, and
it is achieved at times large enough. After equilibration, transport is normal and
transient current curves have a plateau. Distributions of sojourn times in some local
domains are wide in case σ > kT , but smoothly truncated [20] and all moments
of random waiting times are finite. The Central Limit Theorem is applicable and
transport has to be Gaussian at times large enough. To describe results of the ToF-
experiment in this case the tempered fractionalmodelwas proposed in [20]. The drift-
diffusion equation contains tempered fractional derivative, solutions are expressed
via tempered fractional stable density. This approach allowed authors to provide
probabilistic interpretation of transition from the dispersive regime to the quasi-
Gaussian one at decreased voltages.

The approach uses tempered fractional operators [21] and the class of tempered
Lévy stable distributions and its inverse [22]. It is originated from the model of
truncated Lévy flights [23], a process showing a slow convergence to a Gaussian.
The distribution of jump length has a power law behavior up to some large scale, at
which it has a cutoff and thus have finite moments of any order. Smoothly (exponen-
tially) truncated Lévy flights, introduced by Koponen [24], provided a convenient
analytic representation of results. Authors [25] derived the diffusion equation with
the tempered fractional derivative describing the exponentially tempered Lévy flight.
In papers [22, 26], the approach based on the tempered fractional calculus [21] was
developed to describe crossover from subdiffusive to Gaussian transport. Tempered
subdiffusion model assumes exponentially truncated power law distribution of wait-
ing times [20, 27].
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Here, using tempered fractional diffusion equation, transport in organic semicon-
ductor layers is described. This consideration is motivated by modification of the
ToF-method proposed in [8], which uses an electron beam of high (customizable)
energy to generate nonequilibrium charge carriers in a sample. By varying the elec-
tron energy, it is possible to change continuously the width of generation region.
Authors [13] used this method to analyze surface layers of polymer materials. The
experimental results indicated the presence of a defect layer with a higher concen-
tration of localized states. Based on the observed universality of transient current
curves, authors believe that the density of localized states (DoS) in a surface layer
is described by the same exponential function as in the bulk of the sample, only
concentrations of traps are different. We generalize consideration by using tempered
Lévy distribution for waiting times.

2 Tempered Fractional Drift-Diffusion Equation

We consider the following drift-diffusion equation [28, 30]:

∂

∂t

∫ t

0
p(x, τ ) Φ(t − τ )dτ + ∂

∂x

{
μE(x)p(x, t) − D(x)

∂

∂x
p(x, t)

}
= G(x)Φ(t),

(1)

where Φ(t) is a kernel of delay caused by the energy distribution of localized states,
distribution of random distances between hopping centers, or the presence of dead-
ends in a percolation cluster, E(x) is an electric field, μ and D are effective mobility
and diffusion coefficient, respectively.

In the Continuous Time RandomWalk (CTRW)model [9], the Laplace transform
Φ̃(s) of kernel is related to transforms of function P{θ > t} = Ψ (t) and pdf ψ(t) of
waiting time θ via formula:

Φ̃(s) = Ψ̃ (s)/ψ̃(s). (2)

In the multiple trapping model, ΨMT(t) (see e.g. [11, 14, 15]) can be found as:

ΨMT(t) =
〈
exp

(
− ωεt

exp(ε/kT )

)〉
ε

=
∫ ∞

0
exp

{−ωεte
−ε/kT

}
ρ(ε)dε. (3)

Here, ρ(ε) is DoS, and ωε is a trapping rate. For exponential DoS, ρ(ε) ∝ e−ε/ε0 and
weak dependence of ωε on ε (ωε � ω0), distribution has the form

ΨMT(t) = (cαt)−α

Γ (1 − α)
, cα = ω0

(
sin πα

πα

)1/α

, α = kT

ε0
. (4)
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Laplace transformation of this kernel is

Ψ̃MT(s) ∼ c−α
α sα−1, α < 0. (5)

Using the latter relation,we arrive at the fractional order equation ofmultiple trapping
[18, 28], which contains the Riemann–Liouville derivative

0D
α
t p(x, t) + cα

α

∂

∂x

{
μE(x)p(x, t) − D(x)

∂

∂x
p(x, t)

}
= G(x)δα(t), (6)

where δα(t) = t−α/Γ (1 − α).
For Gaussian DoS, after coarse graining procedure [29], waiting time distribution

can be approximated by tempered power law within some range of accuracy. If we
take pdf ψ(t) in the form of tempered fractional exponent

ψ(t) = νe−γt tα−1Eα,α

(
− (ν − γα)tα

)
(7)

having the following Laplace transform

ψ̃(s) = ν

ν − γα + (s + γ)α
,

we obtain tempered fractional equation of dispersive transport

0D
α,γ
t p(x, t) + νV

∂

∂x
p(x, t) − νC

∂2

∂x2
p(x, t) = G(x)δα,γ(t), (8)

where
0D

α,γ
t p(x, t) = e−γt

0D
α
t e

γt − γα p(x, t)

is the tempered fractional derivative [27]. The Laplace transform of the kernel Φ(t)
in this case has the form

Φ̃(s) = (νs)−1[(s + γ)α − γα]. (9)

3 Transient Current for Tempered Fractional Transport

Laplace transformation of Eq. (1) gives

sΦ̃(s) p̃(x, s) − L̂FP p̃(x, s) = G(x)Φ̃(s), (10)

where we introduced the notation L̂FP = ∂
∂x

{−μE(x) + D(x) ∂
∂x

}
. The solution of

this Fokker–Planck equation can be written in the form [26, 28]
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p̃(x, s) =
∫ ∞

0
dτ f (x, τ )q̃(τ , s). (11)

Here, f (x, τ ) is a solution to the classic Fokker–Planck equation (i.e. Eq. (1) with
the first derivative on operational time τ instead of the integral operator), and q̃(τ , s)
is the Laplace transform of the probability density function of operational time,

q̃(τ , s) = Φ̃(s) exp(−τsΦ̃(s)). (12)

Substituting (11) into the Laplace transform of the transient current density
[9, 15],

I (t) = 1

L

∫ L

0
j (x, t)dx = e

L

d

dt

∫ L

0
(x − L)p(x, t)dx, (13)

after integration by parts and inverse Laplace transformation we obtain the following
expression

I (t) =
∫ ∞

0
dτ IFP(τ )q(τ , t), (14)

where IFP(τ ) = e
L

d
dτ

∫ L
0 (x − L) f (x, τ )dx is a transient current for normal transport,

which can be found by solving classic Fokker–Planck equation. Using the Laplace
transform of the latter equation and expression (12), we have

Ĩ (s) = ĨFP(sΦ̃(s)).

For tempered fractional transport [26]:

q̃(τ , s) = (νs)−1[(s + γ)α − γα] exp(−τν−1[(s + γ)α − γα]). (15)

If E is a homogeneous electric field, μ = const and diffusion is absent, transient
current of normal drift has the rectangular shape IFP(t) = μEL−11(0,L/μE)(t).Using
Laplace transform of this expression, ĨFP(s) = μEL−1s−1[1 − exp(−sL/μE)], we
obtain Ĩ (s) for tempered fractional drift

Ĩ (s) = a {1 − exp(−[(s + γ)α − γα]L/a)}
L[(s + γ)α − γα] = 1

L

∫ L

0
exp

(
−x

[(s + γ)α − γα]
a

)
dx,

where a = μEν. The latter expression can be inverted with the use of the one-sided
tempered stable density [21]. Here, we mention only the case α = 0.5:

I (t) = ae−γt

L
√

πt

[
1 − exp

(
− L2

4a2t
+ L

√
γ

a

)]
+ a

√
γ

L

[
erf(

√
γt) + erf

(
L

2a
√
t

− √
γt

)]
.

(16)

The corresponding curves are presented in Fig. 1 (left panel).
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Fig. 1 Left panel Transient current (16) for different γ (L/a = 100 a.u., α = 0.5). Right panel
Transient current curves (20), a1/a2 = 0.1, α = 0.5, Ii denotes currents in separated layers

4 Transient Current in a Multilayer Sample

Current in a two-layer structure can be found by solving Eq. (1) for each layer with
the continuity condition for current density at boundaries. Another way is using
modified expression (14) for the non-homogeneous case [30]. Transient current of
normal drift in two layers has the form

IFP(t) = μ1E

L
1(0,d/μ1E)(t) + μ2E

L
1(d/μ1E,d/μ1E+(L−d)/μ2E)(t).

First and second terms correspond to first and second layers, respectively. So, tran-
sient current in case of hereditary drift in two layers has the form:

Ĩ (s) = μ1E

LsΦ̃1(s)

[
1 − exp

(
− sΦ̃1(s)

μ1E
d

)]
+

+ μ2E

LsΦ̃2(s)

[
1 − exp

(
− sΦ̃2(s)

μ2E
(L − d)

)]
exp

(
− sΦ̃1(s)

μ1E
d

)
. (17)

Similarly, in case of distributed generation of charge carriers,

Ĩ (s) = μ1E

LsΦ̃1(s)

∫ d

0
dξG(ξ)

[
1 − exp

(
− sΦ̃1(s)

μ1E
(d − ξ)

)]
+

+ μ2E

LsΦ̃2(s)

∫ L

d
dξG(ξ)

[
1 − exp

(
− sΦ̃2(s)

μ2E
(L − ξ)

)]

+ μ2E

LsΦ̃2(s)

[
1 − exp

(
− sΦ̃2(s)

V2
(L − d)

)] ∫ d

0
G(ξ) exp

(
− sΦ̃1(s)

μ1E
(d − ξ)

)
dξ. (18)

Here Φ̃1(s), Φ̃2(s) are transforms of memory kernels, μ1E , μ2E are advection
coefficients in layers 1 and 2, G(x) is a generation function. In case of d = 0, we
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have the result for homogeneous sample,

Ĩ (s) = μ2E

LsΦ̃(s)

∫ L

0
dξG(ξ)

[
1 − exp

(
− sΦ̃(s)

μ2E
(L − ξ)

)]
.

The analogous expression with μ1 instead of μ2 takes place, if d = L .
Consider the situation, when both layers are characterized by the same DoS,

i.e. Φ̃1(s) = Φ̃2(s) = Φ̃(s), but concentrations of localized states are different, and
μ1 �= μ2. Choose the tempered power law for waiting time distribution, Φ̃(s) is
determined by (9). For the near-surface injection G(ξ) = Nδ(ξ), we have

Ĩ (s) = a1
L[(s + γ)α − γα]

[
1 − exp

(
−[(s + γ)α − γα]

a1
d

)]

+ a2 exp (−[(s + γ)α − γα]d/a1)

L[(s + γ)α − γα]
[
1 − exp

(
−[(s + γ)α − γα]

a2
(L − d)

)]
.

(19)
Here, ai = μi Eν. The inverse Laplace transformation of this function is expressed

via the tempered stable density. If α = 1/2 and γ = 0, the current can be presented
in terms of elementary functions,

I (t) = a1
L
√

πt

[
1 − exp

(
− d2

4a21 t

)]

+ a2
L
√

πt

{
exp

(
− d2

4a21 t

)
− exp

[
− 1

4t

(
L − d

a2
+ d

a1

)2
]}

. (20)

Fig. 2 Transient current curves in 3-layer (left panel) and 4-layer (right panel) structures with
exponentially density of states,α = kT/ε0 = 1/2 in all layers. I j are currents in layers. Parameters:
3-layer structure: d1 = 10nm, d2 = 20nm, d2 = 170nm, L = 200nm, a1/a2 = 0.05, a1/a3 = 0.5;
4-layer structure: d1 = 10nm, d2 = 30nm, d3 = 60nm, d4 = 120nm, L = 200nm, a1 = a3, a2 =
a4, a1/a2 = a3/a4 = 0.02
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Graph of this function can have a bump (Fig. 1, right panel). The analogous behav-
ior was observed for the structure with amorphous and crystalline layers in [31].

Similarly, the case of multilayered sample can be considered. Expressions (17),
(18) and (20) can be easily generalized for this case. Results of calculations
for 3- and 4-layer structures are presented in Fig. 2.

5 Concluding Remarks

Trap-limited transport in organic semiconductors is described by the tempered frac-
tional drift-diffusion equation. Transient current I (t) of the time-of-flight experi-
ment for tempered fractional transport is expressed through a solution of the classic
Fokker–Planck equation. Using this relationship, we considered transient current in
a multilayered organic samples. For exponential DoS, i.e. when truncation factor is
γ = 0, our calculations agree with the results presented in [13]. For a particular case
α = 1/2, the solution is expressed via elementary functions. Increased concentra-
tion of traps in a surface layer provides the bump on current curves, and it can be
explained by shift of the transient current component in the second layer. For γ �= 0,
current I (t) is expressed through tempered stable densities. Presented results can be
useful for analysis of surface defect layers in polymers.
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Modeling Heat Transfer Process
in Grid-Holes Structure Changed in Time
Using Fractional Variable Order Calculus

Piotr Sakrajda and Dominik Sierociuk

Abstract Thepaper presents results ofmodelling the heat transfer process in specific
grid-holes media whose geometry is changed in time. The process will be modeled
based on variable fractional order calculus. Responses of variable structure heat
transfer system will be obtained from numerical simulation based on finite elements
method.

Keywords Heat transfer process · Variable order systems · Modeling

1 Introduction

Modeling of diffusive processes was found as a very promising area of using mod-
els based on fractional order calculus. Fractional calculus allows to generalize tra-
ditional integer order partial differential equation, which described the diffusion
process, onto fractional partial differential equations, who can describe anomalous
diffusion processes e.g. sub-diffusion and hyper-diffusion. In [1–3], the heat trans-
fer process was successfully modeled using fractional models based on normal and
anomalous diffusion equation. Papers [2, 4, 5] present, also results of models of
high accuracy of ultracapacitors, the electrical energy storage elements which base
on the Helmholtz effect and diffusion. In [3, 6, 7] anomalous diffusion were used to
describe diffusion process in porous, fractal or discontinuous media, e.g. solid bod-
ies consisted of two different materials. The theoretical background for fractional
order calculus can be found in [8–10]. The case when the order of the system is
varying in time (variable order systems) makes the description much more compli-
cated as for constant order case. In [11–16], four general types of order changing are
given. All of these types are corresponded to some particular switching scheme that

P. Sakrajda · D. Sierociuk (B)
Institute of Control and Industrial Electronics, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland
e-mail: dsieroci@ee.pw.edu.pl

P. Sakrajda
e-mail: sakrajdp@ee.pw.edu.pl

© Springer International Publishing AG 2017
A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 407, DOI 10.1007/978-3-319-45474-0_27

297



298 P. Sakrajda and D. Sierociuk

characterize methodology of order changing. Switching schemes present how the
chain of constant order differentiators, that represent variable order element, changed
its structure in time. Changing of its structure has an effect in changing the order.
There are only a few papers presenting experimental results of modelling real plant
by variable ordermodel. In [17], experimental studies on an electrochemical example
of physical fractional variable-order system are presented. In [18], the variable-order
equations were used to describe a history of drug expression. Both papers assume
that the order changes very slowly and uses only A-type definition. In [13–16] also
analog models of several types of variable order derivatives are presented.

In [19] preliminary results of modeling heat transfer process in variable structure
media was presented. Investigated structure of heated media was chosen a plate
with central one hole. The best results of modelling were obtained by using D-type
variable fractional order derivative.

In this paper, the results of modelling the heat transfer process grid-holes struc-
ture of heated medium will be presented. Moreover, the situation when the grid-
holes structure is varying (changes dimension of holes) in time will be taken into
consideration and modelling results based on fractional variable order calculus will
be presented as well. Responses of variable structure heat transfer system will be
obtained from numerical simulation based on finite element method.

The paper is organized as follows: Sect. 3 presents a basis of fractional constant
and variable order derivative definition. In Sect. 4, short description of modeling heat
transfer process based on fractional calculus is recalled and results of approxima-
tion the heat transfer process in grid-holes media by anomalous diffusion model.
Section5 contains, the main contribution of the paper—modelling of variable grid-
holes structure heat transfer process based on variable fractional order calculus.

2 Problem Statement

Let us investigate the heat transfer process in themedium,which structure is presented
in Fig. 1. It is a copper plate with multiple insulator areas λi . Moreover, let us assume
that the structure of the media is changed in time, what is achieved by changing the
size of insulated regions.

The problem, that is investigated in this paper, is modelling the heat transfer
process in such defined structure, that is changing in time. Because the modelling of
heat transfer process in solid and heterogeneous [3] media was successfully solved
based on fractional order calculus, we can expect, that the fractional variable order
calculus will be extremely helpful to solve that problem.
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Fig. 1 Scheme of heated
plate with measurement
point marked
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3 The Fractional Constant and Variable Order Derivatives

As an approximations of fractional constant order derivative we will use an iterative
definition in Grünwald–Letnikov form.

Definition 1 The iterative fractional order derivative is defined as follows:

0D
α
t f (t) = lim

h→0

1

hα

n∑
r=0

(−1)r
(

α

r

)
f (t − rh),

where h > 0 is a step time, α ∈ R, and n = �t/h�.
There also exists a recursive constant order definition, given as follows:

Definition 2 The recursive fractional order derivative approximation is defined as
follows:

r
0D

α
t f (t) =

⎛
⎝ f (t)

hα −
n∑
j=1

(−1) j
(−α

j

)
r
0D

α
t− jh f (t − jh)

⎞
⎠ .

However, for constant order case both definitions are equivalent [16].
The case when the order is changing defining and description is more compli-

cated. We can point out several types of order changing. All of them will be char-
acterized by different mechanism of order changing, and can be intuitive catego-
rized by corresponding switching scheme, as it was presented in [11, 13, 14]. The
switching schemes describe how the chain of differentiators is changed during order
changes. Because, as it was presented in [19], behavior ofA-type, E-type andB-type
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definitions is expected to be not suitable in our experiment we will only take into
consideration the D-type definition.

The D-type derivative, given by Definition 3, corresponds to the input-reductive
switching scheme as it was presented in [16].

Definition 3 ([12]) The D-type of fractional variable order derivative is defined as
follows:

D
0 D

α(t)
t f (t)

= lim
h→0

(
f (t)

hα(t)
−

n∑
r=1

(−1)r
(−α(t)

j

)
D
0 D

α(t)
t−rh f (t)

)
,

where α(t) ∈ R is an order piecewise constant function.

The input-reductive switching strategy assumes that in differentiators chain for order
changing differentiators from the input are reduced. This allows to obtain very intu-
itive behavior, after switching order output has immediately new order behavior and
started from the same point as previous order finished.

4 Fractional Order Approximation of Heat Transfer
Process in Grid-Holes Media

The physical process of heat diffusion is described by the heat equation:

∂T (x, y, t)

∂t
− λ∇2T (x, y, t) = Q(x, y, t), (1)

where T (x, y, t) is temperature at time t and point (x, y), λ is thermal diffusivity of
considered material, and Q(x, y, t) is a function describing heat loses.

Because, the analytical description of the heat transfer process in heteroge-
neous medium can be extremely complicated, let us approximate the heterogeneous
medium heat transfer process by homogeneous one and replacing normal heat equa-
tion with the fractional order partial differential anomalous diffusion equation:

∂αT (x, y, t)

∂tα
− λα∇2T (x, y, t) = Q(x, y, t), (2)

where α is an order of anomalous diffusion, and λα is thermal diffusivity for anom-
alous diffusion model. Coefficient λα can differ from λ used in Eq.1 describing the
same problem, but in the classical way. This approximation can be valid only for
limited frequency/time range.

In this paper we consider heat transfer in a square-shaped two dimensional struc-
ture consisted of twomaterials: a thermal conductorwith very high thermal diffusivity
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Fig. 2 Heatmap of
researched structure after
1000s of heating. Regions
with different heat
conduction are clearly visible

λc, and thermal insulator with very low thermal diffusivity λi . This plate, with the
insulator located in multiple areas, is shown in Fig. 2. Such porous-like composi-
tion of tested medium results with relatively high anomalous diffusion order α and
moderates analytical complexity of the problem, what makes it possible to formulate
specific expectations about how this system should react. Also, for the purpose of
further description of the system, δ parameter was defined as follows:

δ = 9Li

Lc
,

where Li and Lc are lengths of the edge of the insulator and conductor region,
respectively. In particular δ = 3 and δ = 0 indicate homogeneous plates made of
insulator or conductor only, respectively.

Having prepared the medium an input and an output of considered system was
defined as follows. The input is a constant heat flux H(x, 0, t) = H0 = 0.012 J

s·m2 ,

that heated the structure at the whole bottom edge of the plate (y = 0 in Fig. 1). The
output is a temperature T (0.75, 0, t) that is measured at the middle of the heated
edge.

Furthermore, it was made an assumption that the structure is perfectly thermally
insulated, so the heat losses equals 0.

Having defined all necessary parameters of the researched system, its approxima-
tion by one dimensional anomalous diffusion model was made:

∂αT (y, t)

∂tα
− λα

∂2T (y, t)

∂y2
= 0. (3)
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Knowing that heat flux is given by the equation

H(y, t) = −λ
∂T (y, t)

∂y

one can solve Eq.3, eventually deriving relation between temperature and heat
flux [3]:

T (y, t) = 1√
λα

∂−α/2H(y, t)

∂t−α/2
. (4)

The next step was to find values of α and λα for various λc, λi coefficients and
geometrical properties of the plate. To achieve it solution of the Eq.3 was fitted to
results of Finite Element Method (FEM) simulation.

Described system was simulated in Matlab environment with Partial Differential
Equation toolbox. To provide us with satisfying accuracy the maximum size of edge
of finite element was set to 0.01m. Constant Neumann boundary condition (heat
flux heating the plate) was set for bottom (y = 0) edge of the plate and the λi , λc

diffusivity coefficients were declared. Results of the FEM simulation are shown in
Fig. 2. Temperature for the fitting process was measured at point (0.75, 0).

To fit the mathematical model to the simulation time series Matlab function
fminsearch was used. As the result the accurate values of order and λα coef-
ficient were obtained.

For both cases diffusivity coefficients were chosen as λc = 2.3 × 10−4 and λi =
1.9 × 10−8, what corresponds with copper and insulator, respectively. For δ = 1 the
following parameters were obtained: α = 1.09 and λα = 2.96 × 10−4, while, for
δ = 2, α = 1.26 and λα = 2.56 × 10−4 were obtained. Simulation results and fitted
model time series are shown in Fig. 3.

As it can be seen in Fig. 4 approximation of heat in the heterogeneous medium
presented in this section gives accurate results.

Fig. 3 FEM simulation and
fractional approximation
results for various α orders
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Fig. 4 FEM simulation and
fractional approximation
absolute error for various α
orders
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5 Modelling of Heat Transfer Process in Variable
Grid-Holes Structure Media

Having fractional order system, that was presented in previous chapter, we created a
variable structure system by dynamically changing diffusivity coefficients of heated
media. This changing of diffusivity coefficients will have an effect in changing of
system order. We can imagine many methods for changing these coefficients, but in
this paper the method of changing the part of conductive material into insulator by
switching δ coefficient value in time is considered.

5.1 Description of Heat Transfer Process in Variable
Structure Media

The simulation methodology, that was used to find coefficients and to validate math-
ematical model of heat transfer in constant structure media, was applied with mod-
ifications to the variable structure problem. By changing δ coefficient the structure
shown in Fig. 1 ismodified. In our researchwe switched δ between δ0 = 1 and δk = 2,
effectively increasing the cumulative area of insulated regions four times. Values of
coefficients λc and λi were the same as for the constant order problem.

In simulation process, the switching time tv was set to 1000s. for the total time of
simulation set to 2000s. For obtaining responses for variable order derivatives, set
of dedicated numerical routines [20] implemented in Matlab/Simulink environment
was used.

5.2 Results for Modelling Based onD-Type Definition

The model, that was used in identification is given by the following non-stationary
fractional variable order differential equation:
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T (0, 0.75, t) =D
0 D−α(t)/2

t
1√
λα(t)

H(t),

where

λα(t) =
{

λ1.09 t < tv
λ1.26 t � tv

,

and

α(t) =
{
1.09 t < tv
1.26 t � tv

,

Coefficients λ1.09 and λ1.26 were obtained during identification of constant structure
case.

Results of modelling based on D-type variable order approximations,presented
in Fig. 5, confirm that this type of definition is able to describe investigated problem.

Figure6 shows, that absolute error of this approximation is relatively low. How-
ever, the real system reacts more slightly than the variable order differential model.
Delay compensationmethod, researched to solve this problem,was presented in [19].

One can notice, that there are others fractional variable order derivative definitions.
However, previous studies on similar problem [19] shows, that A-type, B-type and
E-type fail to describe considered process properly.

Fig. 5 Comparison of the
results of the numerical FEM
simulation and D-type
variable order model
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Fig. 6 Absolute error
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6 Conclusions

The paper presents a method for modelling the heating process in particular type of
variable structure media. The structure of the heated media was changed in time by
changing the dimension of holes. In order to obtain responses of variable grid-holes
structure heat transfer process Finite Elements Method (FEM) was used. Proposed
modelling method based on variable fractional order calculus. Obtained results were
compared with proposed variable fractional order model for D-type variable order
derivative definition and shows very high accuracy of modelling process.
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Analysis of Performance Indicators
for Tuning Non-integer Order Controllers

Marta Zagórowska

Abstract Tuning non-integer order controllers using parametric optimization
remains a subject of ongoing research. One of the areas of focus concerns analy-
sis of performance indicators ensuring desired behaviour. In this paper we analyze
linear, quadratic and quartic performance indicators as tools for finding parameters of
PDα and PIγ controllers in RC ladder system of fourth order. Proposed optimization
method uses LIRA approximation method and ensures the stability of non-integer
closed-loop system.

Keywords Non-integer order controller · Fractional calculus · RC ladder system ·
Laguerre impulse response approximation

1 Introduction

Tuning controller parameters is one of the most important issues in control theory.
Choosing and then calculating the performance indicators for the problem is not
obvious and strongly depends on optimized system [1]. The aim of this paper is to
show that it is possible to calculate the performance indicators (linear, quadratic and
quartic) using an approximation method and use them in optimization method for
PDα and PIγ controllers.

Earlier works on parametric optimisation of non-integer order controllers can
be found in [2–4] - both in simulational and in experimental setups. An interesting
approach to non-integer fractional controllerswas investigated in [5],where a concept
of robust non-integer controllers is investigated.
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The rest of the paper is organised as follows. In the first part of the article, we
present a brief description of approximation method for non-integer order systems
(LIRA). Thenwe analyse three performance indicators: integral of impulse response,
quadratic performance indicator and integral of fourth order of the impulse response.
The paper ends with an example of optimization of PDα and PIγ controllers, followed
by conclusion and proposed further works.

2 Optimization Problem

In order to tune the controller, we propose to use parametric optimization methods
allowing to minimize chosen performance indicator based e.g. on impulse response
of the closed-loop system.

2.1 Laguerre Impulse Approximation Method (LIRA)

Most of previous works focus mainly on quadratic performance indicator. The main
purpose of this paper is to provide an extension for other types of performance indices.
Contrarily to classical integer order systems, the solution of non-integer order system
yields problems eitherwith exact formof the solution or its numerical implementation
as it requires the whole “history” beginning with initial conditions (lack of semi-
group property). Moreover, even though there are exact solutions presented, e.g., in
[6], it is worth notice that they require special functions, i.e. Mittag-Leffler function.
Furthermore, taking into account that sα is a multivalued function for complex s and
non-integer α, we can notice that direct calculation of integral of impulse response
is complicated.

The method used in this paper was first shown in [7]. It uses a set of orthonormal
Laguerre functions to approximate a non-integer order system. It concentrates on fit-
ting impulse response of the system in time domain and guarantees, i.a., convergence
both in L1 and L2 spaces [8].

2.2 Optimization Algorithm

We assume that for given system we have already chosen the structure of PIμDα

controller (see, e.g. [6]). Let us denote those parameters as K = [ki], i = 1, 2, . . . , n.
For example, fractional PDα = KP + KDsα is described with three parameters: K =[
k1, k2, k3

] = [
KP,KD,α

]
.
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Fig. 1 Impulse response for
three integral performance
indicators

Before performing optimization method it is necessary to define and/or calculate:

• transfer function G(s) of closed loop system for given system G0(s) and chosen
type of the controller GC(s).
For the system depicted in the Fig. 1, we have

G(s) = G0(s)

1 + G0(s)GC(s)
(1)

• optimizationmethodwith appropriate parameters, e.g. stop criteria: (see, e.g., [9]):

– desired accuracy on minimum
– desired accuracy on function value
– maximal number of iterations for optimization

• performance indicator that takes into account desired properties

Let us denote the parameters of the controller after j iterations as a vector of n
elements Kj = [kji ], i = 1, 2, . . . , n. Let us denote the approximation parameters in
jth iteration as μj, Aj, Bj, Cj.

The algorithm consists of two main steps described below.

(i) Set starting points for controller parameters K0 in such a way that the system
(1) is asymptotically stable.

(ii) Perform the optimization routine calculating the chosen performance indicator.
As this step requires more attention, it will be described separately.

The most important part of this method is the algorithm for calculating perfor-
mance indicator. It consists of three stages. Let us assume that the optimization
routine performed j iterations and we have the parameters of the controller from
iteration j − 1.

(i) For given values of parameters of the controller perform the stability check
of the non-integer order system. If the parameters lie outside the asymptotic
stability region, set the value of performance indicator to infinity and go to the
third step. If the system is asymptotically stable, then go to second step.

(ii) In order to approximate the stable system with LIRA method, find optimal μj

for Kj. If μj is infinite, set the performance indicator to infinity. Otherwise,
calculate the value of performance indicator using Aj, Bj, Cj.
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(iii) On the basis of value of performance indicator, find Kj+1 according to chosen
optimization routine.

It is important to notice that stability analysis is an essential part of the algorithm.
It is worth noticing that although the optimization is performed on approximated
system, the stability test is performed for non-integer order one. To verify the stability,
we used an original algorithm based on D-partition method for non-integer order
systems (see, e.g. [10]).

3 Performance Indicator Analysis

In this sectionwe analysed three performance indicators: linear, quadratic and quartic
performance indicators. In this section we present the way for obtaining performance
indicators using LIRA approximation.

3.1 Linear Performance Indicator

As a first case we analyse the performance indicator as integral of impulse response.

Theorem 1 The performance indicator

J =
∫ ∞

0
y(t)t. = −

√
2

μ
·

n∑
i=0

(−1)iβi (2)

where βk is given by recurrence formula

βk =
√
2μ

k!
k∑

j=0

[
k
j

]
ckj (μ)ĝ

(k−j)(μ) (3)

with ckj (μ) = k−j+1
2μ ckj−1, c

k
0(μ) = (2μ)k, j = 0, 1, 2, . . . , k and μ is a parameter of

LIRA method [8]. Here ĝ(·) denotes the transfer function of analyzed system.

Proof From [11] we have

J =
∫ ∞

0
y(t)t. = −CA−1B (4)

It can be observed that the productA−1B can be computed as a solution of additional
system of equationsAz = Bwhere z denotes the variable of appropriate dimensions.
Matrix A is a triangular matrix, hence the solution is straightforward.
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Using the fact that A is lower triangular, we have z1 = −
√

2
μ
and zk = −

√
2
μ

−
2
k−1∑
i=1

zi where k = 1, 2, . . . , n + 1. Calculating zk we obtain zk = (−1)k
√

2
μ
where

k = 1, 2, . . . , n + 1. Thus, from −CA−1B = −C · z we have

J = −
n∑

i=0

βizi = −
√
2

μ
·

n∑
i=0

(−1)iβi (5)

where βk is given by (3).

3.2 Quadratic Performance Indicators

The optimization consists in minimizing the quadratic performance indicator with
respect to the parameters of the controller.

Integral of impulse response It can be observed (for proof see, e.g. [8, 12]) that

J =
∫ ∞

0
y2(t)dt = ||y||L2 ≈

n∑
i=1

β2
i (6)

It is important to notice that during the procedure both types of parameters are
optimized - μ and controller parameters.

Integral of impulse response and its derivative In case of quadratic performance
indicator, we can take into account more than just impulse response. Here we use also
the derivative of impulse response in order to ensure less steep slopes. According to
[1], we have:

Theorem 2 The performance indicator J can be calculated as

J =
∫ ∞

0
y2(t) + ẏ2(t)t. =

∫ ∞

0
(y(t) + ẏ(t))2 (7)

Proof See [1].

The proof from [1] is done for integer order systems. However, it is also valid
in our case as we calculate y as impulse response of approximating system. Hence
we use this performance indicator for analysis of non-integer order system with
approximation.
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3.3 Quartic Performance Indicator

The third type of performance measure used in this article is quartic performance
indicator.

Theorem 3 Performance indicator can be calculated as

J =
∫ ∞

0
y4(t)t. = −CA−1B (8)

whereA = A ⊗ I ⊗ I ⊗ I + I ⊗ A ⊗ I ⊗ I + I ⊗ I ⊗ A ⊗ I + I ⊗ I ⊗ I ⊗ A,B =
B ⊗ B ⊗ B ⊗ B and C = C ⊗ C ⊗ C ⊗ C. The symbol ⊗ denotes Kronecker
product [1].

Proof For proof see [1].

As previously, it can be observed that the product A−1B can be computed as
a solution of additional system of equations. Matrix A is also a triangular matrix,
hence the solution is straightforward but tedious. Resultingmatrix is sparse triangular
matrix of size 625. Let us denote the elements ofA as ak,l. To simplify the expression
for A we first need to calculate A2 = A ⊗ I + I ⊗ A:

A2(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ak,l k = i − � i
n� · n, l = j − � i

n� · n for 2 ≤ i 	= mn + 1,m ∈ IN,

� i
n� · n + 1 ≤ j ≤ i − 1;

2akk, k = i − � i
n� · n, for i = j;

ak,l k = i + � i
n�, l = j + � j

n� for n + 1 ≤ i, 1 ≤ j ≤ � i
n� · n;

0, otherwise.
(9)

Denoting now elements of A2 as ak,l, we can write:

A(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4akk k = i − � i
n3

� · n3, for i = j;
ak,l, k = i − � i

n2
� · n2, l = j − � i

n2
� · n2 for 2 ≤ i 	= mn2 + 1,m ∈ IN,

� i
n2

� · n2 + 1 ≤ j ≤ i − 1;
ak,l, k = i + � i

n3
�, l = j + � j

n3
� for n3 + 1 ≤ i,

1 ≤ j ≤ � i
n3

� · n3;
0, otherwise.

(10)

Calculating B is straightforward and yields B = 4μ2
[
1 1 . . . 1

]T ∈ IRn4×1.
Matrix C is a vector of size n4 × 1 where each element consists of a certain

products of β
j
i where the sum of indices j in a single element is four. For now, we

have not found explicit analytical formula for C.
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4 Optimization of RC Ladder System

In this section we will present the method that uses various performance indicators
in order to find optimal values for non-integer PD and PI controllers. It ends with
an example calculated for three integrals - linear, of second power (quadratic) and
of fourth power of impulse response.

As optimization method we chose the Nelder–Mead algorithm implemented in
Matlab/Simulink software. In this case, the order of the system was fixed and we
optimized for controller parameters.

4.1 RC Ladder System

In order to verify the results, we chose an RC ladder system depicted in the Fig. 2
with non-integer order PD controller. This system was widely analysed in literature
(see e.g. [13]). Among the others, it is very useful as it allows approximating some
distributed systems, e.g., transmission line [14].

We assume that the control acts only on x4 and we measure the first state, x1.
Therefore, the equations of the system are:

ẋ(t) =Ax(t) + Bu(t)

y =Cx(t)
(11)

where A =

⎡
⎢⎢⎣

−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦, C = [

1 0 0 0
]
. This system is described

with transfer function of integer order

G0(s) = 1

s4 + 8s3 + 21s2 + 20s + 5
(12)

Further, we present the analysis of performance indicators for two types of non-
integer order controllers: PDα and PIγ .

Fig. 2 RC ladder system of fourth order
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The above-mentioned optimization routine was analysed for four performance
indicators - linear, quadratic and quartic performance indicator. The closed loop
system is depicted in the Fig. 1. The approximation order was chosen n = 4. Number
of iterations was the same for all indicators - 200 and desired accuracy - 10−4 both
for the value of performance indicator and variables.
PDα controller The transfer function of the controller is GR(s) = KP + KDsα and
the transfer function of a closed-loop system is

G(s) = 1

s4 + 8s3 + 21s2 + 20s + KDsα + 5 + KP
(13)

PIγ controller The transfer function of the controller is GC(s) = KP + KIs−γ and
the transfer function of a closed-loop system is

G(s) = sγ

s4+γ + 8s3+γ + 21s2+γ + 20s1+γ + (5 + KP)sγ + KI
(14)

Results and discussion In both cases, the order of the controller was fixed α =
γ = 0.5. In order to ensure the stability of non-integer order system (13) we choose
starting points for parameters of the controllers which guarantee initial stability [15].
The regions of stability for both types of the controller are depicted in the Fig. 3. The
results are depicted in the Fig. 4a, b. We show the original impulse response of RC
ladder and the impulse response of controlled system tuned according to four types
of indicator.

Resulting parameters are gathered in Table1. Here PI denotes performance indi-
cator value for given parameters.

The performance indicators induced various behaviour depending on type of the
controller. Linear performance indicator caused semi-oscillations in the system in
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Fig. 3 Stability region obtained with D-partition
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Fig. 4 Impulse response for four integral performance indicators

Table 1 Impulse response for four integral performance indicators
PDα PIγ

PI μ KP KD PI μ KP KI

∞∫
0
ydt 0.3606 1.2747 8.1579 –0.8029 –0.0107 0.7825 –0.4742 2.1551

∞∫
0
y2dt 0.0426 2.5408 3.0970 12.5576 0.0459 1.4627 7.4144 0.000001

∞∫
0
y4dt 0.0007414 0.8661 –1 17.039 0.0008672 3.1004 1.2782 0.2078

∞∫
0

(
y2 + ẏ2

)
dt 0.0825 2.7814 5.742 8.9398 0.092 2.9381 7.9787 0.006

both cases. It is consistent with expectations. The indicator given by (2) may be
negative. Therefore, in case where there are no additional constraints on the parame-
ters, we can expect that minimum of (2) to be −∞. This result is not desirable as it
destabilizes the system. In this system, however, we introduced supplementary infor-
mation about the parameters as we want to ensure stability of closed-loop system.
Hence the optimal impulse response has the form of damped sinusoidal signal.

Quadratic performance indicator is one of the most widely used in control
processes. The value of (6) is bounded with 0, therefore, the performance indicator
does not require additional constraints. Nevertheless, this indicator behaves differ-
ently for PDα and PIγ controller. In the first one, it does not introduce oscillations.
The amplitude of the impulse response is smaller and its shape is preserved. For
PIγ the indicator introduces oscillations. The amplitude slightly decreases and the
convergence to zero is faster for closed-loop system.



316 M. Zagórowska

Almost the same behaviour comes when we use the performance indicator in
form (7). For PDα controller, the amplitude is insignificantly smaller than for classic
quadratic performance indicator but the convergence rate stays the same. In the
second analysis, for PIγ controller, those two indicators are more similar and yield
almost the same response. Therefore, they are not recommended for this problem.

Quartic performance indicator also behaves differently for two kinds of the con-
trollers. For PD controller, it stabilizes the system similarly to open-loop system.
Moreover, it minimizes the amplitude. For PI controller, the decrease in amplitude
is similar to quadratic performance indicators (slightly bigger). However, it does
not introduce oscillations and convergence rate is the fastest. It yields the smallest
amplitude of all performance indicators analyzed here as it puts more weight on
minimizing large errors. Hence, it may be applicable to a specific class of systems.

5 Conclusion

The aim of this paper was to verify the influence of performance indicators on a
method for non-integer order controller tuning. The proposed algorithm is based on
parametric optimization and was verified with PDα and PIγ controllers.We used four
types of performance indicators to evaluate the quality of the algorithm.

The chosen indicators proved to give valid results for two types of the controller.
Their main advantage is that they are based on approximation in form of integer
order system.

Nevertheless, there are certain flaws induced by performance indicators. First of
all, some of them introduce semi-oscillations. If we want to avoid certain behaviour,
it is necessary to introduce additional constraints. Moreover, the use of the quartic
performance indicator is limited by numerics. Calculation of Kronecker product
increases the dimensions of the problem and requires, i.a., sparse matrices analysis.
Hence, it is not directly useful for high approximation orders.

This work is part of wider research concerning on parametric optimization as
method for non-integer order controller tuning. Therefore, further works will focus,
i.a., on further optimization of linear systems, issues linked with approximation
method, stability analysis as one of stop criteria and application in non-linear systems.
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Part III
Controllability and Stability



Controllability of Nonlinear Fractional Delay
Dynamical Systems with Multiple Delays
in Control

Krishnan Balachandran

Abstract This paper describes the controllability of nonlinear fractional delay
dynamical systems with multiple delays in control. Necessary and sufficient condi-
tions for the controllability criteria for linear fractional delay system are established.
Further sufficient conditions for the controllability of nonlinear fractional delay sys-
tem are obtained by using fixed point arguments. Examples are provided to illustrate
the results.

Keywords Fractional delay differential equation · Laplace transform · Controlla-
bility · Mittag-Leffler function · Caputo fractional derivative

1 Introduction

In some real world problems fractional derivative provide an excellent tool for the
description of memory and hereditary properties of various materials and processes.
The mathematical modeling of systems and processes in the fields of physics, chem-
istry, aerodynamics, electrodynamics of complex medium, polymer rhenology etc.
involves derivative of fractional order.

Controllability is one of the fundamental concept in mathematical control theory,
which plays an important role in control systems. The qualitative theory of fractional
differential equation has been extensively studied by several authors. An extensive
list of these publications can be found.Dauer andGahl [1] obtained the controllability
of nonlinear delay systems. Balachandran and Dauer [2] studied the controllability
problems for both linear and nonlinear delay systems. The relative controllability of
nonlinear fractional dynamical systemwithmultiple delays and distributive delays in
control have been discussed by Balachandran et al. [3, 4]. Klamka [5, 6] established
the controllability of both linear and nonlinear system with time variable delay in
control. Recently, Mur et al. [7] studied the relative controllability of linear systems
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of fractional order with delay. Babiarz et al. [8] and Klamka et al. [9] gave some
results on Schauder’s fixed point theorem and Banach fixed point theorem. Detail
study on controllability of fractional delay dynamical systems is given in [10].

2 Preliminaries

This section begins with definitions and properties of fractional operator, special
functions and its Laplace transformation [11, 12].

(a) The Caputo fractional derivative of order α > 0, n − 1 < α < n, is defined as

C Dα f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where the function f (t) has absolutely continuous derivative upto order n − 1.
The Laplace transform of Caputo derivative is in [11].

(b) The Mittag-Leffler functions of various type are defined as

Eα(z) = Eα,1(z) =
∞∑
k=o

zk

Γ (αk + 1)
, z ∈ C, Re(α) > 0, (1)

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z,β ∈ C, Re(α) > 0, (2)

Eγ
α,β(−λtα) =

∞∑
k=0

(γ)k(−λ)k

k!Γ (αk + β)
tαk, (3)

where (γ)n is a Pochhamer symbol which is defined as γ(γ + 1) · · · (γ + n − 1)

and (γ)n = Γ (γ + n)

Γ (γ)
. The Laplace transform of Mittag-Leffler functions (1)–

(3) are given in [11].

In order to prove our main results we need the following fixed point theorem:

Theorem 1 ([13] Schauder’s Fixed Point Theorem) Let M be a compact, convex set
in a Banach space X and T : M → M be continuous. Then T has a fixed point M.
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3 Linear Delay Systems

Consider the fractional delay dynamical systems with multiple delays in control

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)), t ∈ J = [0, T ], (4)

x(t) = φ(t),−h < t ≤ 0,

where 0 < α < 1, x ∈ R
n , u ∈ R

m A, B are n × n matrices and Ci are n × m matri-
ces for i = 0, 1, 2, · · · M. Assume the following conditions
(H1) The functions σi : J → R, i = 0, 1, 2, . . . M are twice continuously differen-
tiable and strictly increasing in J . Moreover

σi (t) ≤ t, i = 0, 1, 2 . . . M, for t ∈ J (5)

(H2) Introduce the time lead functions ri (t) : [σi (0),σi (T )] → [0, T ],
i = 0, 1, 2, . . . M such that ri (σi (t)) = t for t ∈ J . Further σ0(t) = t and for t = T ,
the following inequality holds

σM(T ) ≤ σM−1(T ) ≤ · · ·σm+1(T ) ≤ 0 = σm(T ) < σm−1(T ) = · · ·
= σ1(T ) = σ0(T ) = T . (6)

The following definitions of complete state of the system (4) at time t and relative
controllability are assumed.

Definition 1 [14] The set y(t) = {x(t),β(t, s)}, where β(t, s) = u(s) for s ∈
[min hi (t), t) is said to be the complete state of the system (4) at time t .

Definition 2 System (4) is said to be relatively controllable on [0, T ] if for every
complete state y(t) and every x1 ∈ R

n there exists a control u(t) defined on [0, T ],
such that the solution of system (4) satisfies x(T ) = x1.

The solution of the system (4) by using Laplace transform is expressed as

x(t) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s)

M∑
i=0

Ciui (σi (s))ds. (7)

where

Xα(t) = L−1[sα−1(sα I − A − Be−hs)−1](t),
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and

Xα,α(t) = t1−α

∫ t

0

(t − s)α−2

Γ (α − 1)
Xα(s)ds.

Using the time lead functions ri (t), the solution can be written as

x(t) = xL(t;φ) +
M∑
i=0

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds,

where

xL(t;φ) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds.

By using the inequality (6) we get

x(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds, (8)

where

H(t) =
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.

Now let us define the controllability Grammian matrix
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W =
m∑
i=0

∫ T

0
(Xα,α(T − ri (s))Ci ṙi (s))(Xα,α(T − ri (s))Ci ṙi (s))

∗ds,

where the ∗ denotes the matrix transpose.

Theorem 2 The linear system (4) is relatively controllable on [0, T ] if and only if
the controllability Grammian matrix is positive definite for some T > 0.

Proof Assume W is positive definite. Define the control function by

u(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))Ci ṙi (t))

∗W−1 [x1 − xL(T ;φ) − H(T )] ,

(9)

where the complete state y(0) and the vector x1 ∈ R
n are chosen arbitrary. Taking

t = T in (8) and by using (9) we have X (T ) = x1.

Thus the control u(t) steers from x(0) to x(T ). Hence the system (4) is relatively
controllable. On the otherhand if the Grammian matrix is not positive definite, there
exists a nonzero vector y such that

y∗Wy = 0,

y∗
[

m∑
i=0

∫ T

0
(Xα,α(T − ri (s))Ci ṙi (s))(Xα,α(T − ri (s))Ci ṙi (s))

∗ds

]
y = 0,

which implies

y∗
m∑
i=0

(Xα,α(T − ri (s))Ci ṙi (s)) = 0, on [0, T ].

Consider the zero initial function φ = 0 and u0 = 0 on [−h, 0] and the final point
x1 = y. Since the system is controllable there exists a control u(t) on J that steers
the response to x1 = y. For φ = 0, xL(T ;φ) = 0, H(t) = 0 and on the other hand

y = xL(T ) =
m∑
i=0

∫ T

0
(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)u(s)ds,

then

y∗y =
m∑
i=0

∫ T

0
y∗(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)u(s)ds = 0.

This contradicts for y �= 0. Hence W is nonsingular.
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4 Nonlinear Delay Systems

Consider the nonlinear fractional delay dynamical systems with multiple delays in
control of the form

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)) + f (t, x(t), x(t − h), u(t)), t ∈ J,

x(t) = φ(t),−h < t ≤ 0. (10)

where 0 < α < 1, x ∈ R
n , u ∈ R

m and A, B are n × n matrices, Ci for
i = 0, 1, . . . M are n × m matrices and f : J × R

n × R
n × R

m → R
n is a continu-

ous function. Further we impose the following assumption
(H3) The continuous function f satisfies the condition that

|| f (t, p)|| ≤
q∑
j=1

ρ j (t)φ j (p), (11)

where φ j : Rn × R
n × R

m → R+ are measurable functions and ρi : J → R+ are
L1 functions for j = 1, 2, . . . q.

Denote Q be the Banach space of continuous Rn × R
m valued functions defined

on the interval J with the norm

||(x, u)|| = ||x || + ||u||

where ||x || = sup{x(t) : t ∈ J } and ||u|| = sup{u(t) : t ∈ J }. That is Q = Cn(J ) ×
Cm(J ), where Cn(J ) is the Banach space of continuous Rn valued functions defined
on the interval J with the sup norm.

Similar to the linear system, the solution of nonlinear system (10) using time lead
function ri (t) is given as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds,

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − h), u(s))ds. (12)

Theorem 3 Assume that the Hypotheses (H1), (H2) and (H3) are satisfied and sup-
pose that

detW (0, T ) > 0. (13)

Then the nonlinear system (10) is relatively controllable on J .
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Proof Now, let ψ j (r) = sup{φ j (p); ||p|| ≤ r}, since (H5) holds, there exists r0 > 0
such that

r0 −
q∑

i=1

c jψ j (r0) ≥ d,

which implies that
q∑
j=1

c jψ j (r0) + d ≤ r0. Define the operator � : Q → Q by

�(x, u) = (y, v) where y and v are defined as

v(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))C

∗
i ṙi (t))

∗W−1

[
x1 − xL(T ;φ)

−
m∑
i=0

∫ 0

σi (0)
(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)u0(s)ds

−
M∑

i=m+1

∫ T

0
(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)u0(s)ds

−
∫ T

0
(T − s)α−1Xα,α(T − s) f (s, x(s), x(s − h), u(s))ds

]
,

and

y(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci

×ṙi (s)u0(s)ds +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)v(s)ds

+
M∑

i=m+1

∫ t

α0

(t − ri (s))
α−1Xα,α(t − ri (s))Ci ṙi (s)u0(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − h), v(s))ds,

Let

λ = sup ||Xα,α(T − s)||,ω = sup ||xL(t;φ)||, ξ j = 4λα−1T α||ρ j ||
c j = max{ξ j , δi j }, a = max{b, 1}, δi j = 4aibi ||C∗

i ||||W−1||λα−1T α||ρ j ||

ν = sup ||u0(s)||,μ =
m∑
i=0

aibi ||C∗
i ||Ni +

M∑
i=m+1

aibi ||Ci ||Mi , b =
m∑
i=0

aibi Li ||Ci ||

ai = sup ||Xα,α(T − ri (s))||, bi = sup ||ṙi (s)||, i = 0, 1, · · · , M.
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di = 4[aibi ||C∗
i ||]||W−1||[|x1 + ω + μ|], i = 0, 1, 2, . . .m,

d2 = 4[ω + νμ], d = max{di , d2}, i = 0, 1, 2, . . .m,

Li =
∫ T

0
(T − ri (s))

α−1ds, i = 0, 1, 2, . . .m,

Ni =
∫ 0

σi (0)
(T − ri (s))

α−1ds, i = 0, 1, 2 . . .m,

Mi =
∫ σi (T )

σi (0)
(T − ri (s))

α−1ds, i = m + 1,m + 2, · · · , M.

Then

|v(t)| ≤ 1

4a
(d +

q∑
j=1

c jψ j (r0)).

and

|y(t)| ≤ 1

2
(d +

q∑
j=1

c jψ j (r0)).

Therefore |v(s)| ≤ r0
4a for all s ∈ J and hence ||v|| ≤ r0

4a ,which gives ||y|| ≤ r0
2 . Thus

wehave proved that, if Q(r0) = {(x, u) ∈ Q : ||x || ≤ r0
2 } and ||u|| ≤ r0

2 , then� maps
Q(r0) into itself. Now, let us take t1, t2 ∈ J with t1 < t2 and for all (x, u) ∈ Q(r),
r > 0, we need to show �(Q(r)) is equicontinuous.

||u(t1) − u(t2)|| ≤ ||(T − ri (t1))
1−αC∗

i (Xα,α(T − ri (t1))ṙi (t1))
∗

− (T − ri (t2))
1−αC∗

i (Xα,α(T − ri (t2))ṙi (t2))
∗||

+ ×||W−1||
[
||x1|| + ||xL(T ;φ)|| +

∫ T

0
(T − s)α−1

×
q∑
j=1

||ρi ||||xα,α(T − s)ψ j (r)||ds
]

(14)

and

||x(t1) − x(t2)|| ≤ ||xL(t1;φ) − xL(t2;φ)|| +
∫ t2

t1

G(t2, s)
p∑

j=1

||ρ j ||ψ j (r)ds,

+
M∑

i=m+1

∫ σi (t1)

σi (0)
||H(t1, s) − H(t2, s)||||Ci ||||ṙi (s)||||u0(s)||ds
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+
m∑
i=0

∫ 0

σi (0)
||H(t1, s) − H(t2, s)||||Ci ||||ṙi (s)||||u0(s)||ds

+
m∑
i=0

∫ t1

0
||H(t1, s) − H(t2, s)||||Ci ||||ṙi (s)||||u(s)||ds

+
∫ t1

0
||G(t1, s) − Gt2,s ||

q∑
j=1

||ρ j ||ψ j (r)ds

+
m∑
i=0

∫ t2

t1

H(t2, s)||Bi ||||ṙi (s)||||u(s)||ds (15)

where

H(t, s) = (t − ri (s))
α−1Xα,α(t − ri (s)),

G(t, s) = (t − s)α−1Xα,α(t − s).

Thus the right hand side of the Eqs. (14) and (15) are independent of (x, u) ∈ Q(r)
and tend to zero as t1 → t2.Henceψ(Q(r)) is equicontinuous for all r > 0 and by the
regularity assumption of f , the operator is continuous and hence it is completely con-
tinuous by the application of Arzela-Ascoli theorem. Since Q(r0) is closed, bounded
and convex, the Schauder fixed point theorem guarantees that Similar to the proof
of Theorem 4.1, it can be shown that � has a fixed point (z, v) ∈ Q(r), such that
�(x, u) = (y, v) = (x, u). Hence x(t) is the solution of the system (10) and easy
to verify x(T ) = x1. Thus the control u(t) steers the system (10) from the initial
complete state y(0) to x1 on J. Hence the system (10) is relatively controllable on J .

5 Examples

In this section, we apply the results obtained in the previous sections to the following
fractional dynamical systems with multiple delays in control.

Example 1 Consider the linear fractional delay dynamical system with delay in
control of the form

C Dαx(t) = Ax(t) + Bx(t − 1) + C0u(t) + C1u(t − 1), (16)

x(t) = φ(t),

where A = 1, B = 1,C0 = 1, C1 = 1, h = 1, σ = 1 and φ(t) = 1 with the initial
point x(0) = 1 and final point x(1) = 10. The solution of the Eq. (16) by taking
Laplace transform is of the form
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x(t) =
[t]∑
n=0

(t − n)
1
2 n E 1

2 , 12 n+1((t − n)
1
2 ),

+
[t]∑
n=0

Bn+1
∫ 0

−1
(t − s − n − 1)

1
2 n− 1

2 E 1
2 , 12 (n+1)((t − s − n − 1)

1
2 )φ(s)ds,

+
[t]∑
n=0

∫ t−n

0
(t − s − n)

1
2 n− 1

2 E 1
2 , 12 n+ 1

2
((t − s − n)

1
2 )u(s)ds

+
[t]∑
n=0

∫ t−n

0
(t − s − n)

1
2 n− 1

2 E 1
2 , 12 n+ 1

2
((t − s − n)

1
2 )u(s − 1)ds. (17)

Now, consider the controllability on [0, 1], where [t] = 0. Then the solution (17),
using time lead function the solution can be written as

x(t) = E 1
2
(t

1
2 ) + t

1
2 E 1

2 , 32
(t

1
2 )

+
1∑

i=0

∫ t

0
(t − ri (s))

− 1
2 E 1

2 , 12
((t − ri (s))

1
2 )ṙi (s)u(s)ds,

where r0(s) = s and r1(s) = s − 1. The controllability Grammian matrix is W =
86.8522 is positive definite. Hence by the Theorem 1 the system is controllable on
[0, 1].

Figure1 represent the trajectory of the systemwithout control and Fig. 2 represent
the trajectory of the system with control.

Example 2 Consider the nonlinear fractional delay dynamical system represented
by the scalar fractional differential equation

Fig. 1 The trajectory of the
system without control
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Fig. 2 The trajectory of the
system with control
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C D
1
2 x(t) = Ax(t) + Bx(t − 1) + C0u(t) + C1u(t − 1) + f (t, x(t), x(t − 1), u(t)),

x(t) = 1 (18)

Here, also we consider the controllability on [0, 1] with initial condition x(0) = x0
and final condition x(1) = x1. Take A, B,C0, C1 and h as defined in the previous
example. Let the nonlinear function

f (t, x(t), x(t − 1), u(t)) = x1(t)

x1(t) + x2(t)
+ x2(t)

1 + x1(t) + u(t)
. (19)

Since the linear system (16) is controllable on [0, 1] and the nonlinear function (19)
satisfies the hypothesis in Theorem 2. Then the nonlinear system (18) is controllable
on [0, 1].

6 Conclusion

This paper deals with the controllability of nonlinear fractional delay dynamical
systems with multiple delays in control. Grammian matrix is constructed to obtain
the controllability results. The control has been designed to steer the system from
the initial state to the final state. Further, sufficient conditions are established for the
controllability of nonlinear fractional delay dynamical systems.
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New Controllability Criteria for Fractional
Systems with Varying Delays

Jerzy Klamka and Beata Sikora

Abstract Finite-dimensional dynamical control systems described by linear
fractional-order state equations with multiple delays in control varying in time are
presented in the paper. Both the unconstrained and constrained controls are consid-
ered. The constraints are put on the control values. The set of admissible control
values is assumed to be a convex and compact set containing 0 in its interior and
a cone with vertex at zero and a nonempty interior. New necessary and sufficient
conditions for unconstrained as well as for constrained relative controllability of
fractional-order systems with delayed varying controls are established and proved.
A numerical example is presented to illustrate the obtained theoretical results.

Keywords Fractional systems · Linear control systems · Constrained controllabil-
ity · Varying delays in control · The caputo derivative

1 Introduction

The controllability of dynamical systems is one of the most significant issue in the
control theory. The controllability, in short, is a possibility to steer a control system
from an initial state into a final statewith the aid of admissible controls. Depending on
both class of control systems and a set of admissible controls, various controllability
definitions have been formulated in subject literature. A review of recently analyzed
controllability problems for a broad class of dynamical systems is presented in [1].
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Last decades provide many papers and monographs concerning controllability
of dynamical control systems described by fractional-order differential equations.
Fractional-ordermodels describe the behavior ofmany real-life processesmore accu-
rately than integer-order ones. Control systems modeled using fractional differential
equations occur, among others, in mechanical, biological and chemical problems.
Detailed discussions of fractional differential equations and their practical applica-
tions can be found, among others, in the monographs: [2–8]. The controllability of
discrete-time fractional systems is studied in [9–12], positive fractional discrete-time
systems are discussed in [13], positive fractional linear systems, both discrete- and
continuous-time, are presented in [14] and [15]. The controllability of continuous-
time linear fractional systems is studied, among others, in [16–22].

However, models describing control processes frequently involve delays in state
or in control, because very often future states depend on both a present state and on
past states of a system. If we have delays in the input function, we deal with control
systems with delayed controls. Controllability problems for linear continuous-time
fractional systemswith delayed controlwere analyzed in [14, 15, 23–25]. It should be
noted, however, that themajority of papers on linear fractional systems controllability
address controllability issues for unconstrained controls. The works on controllabil-
ity of linear fractional systems with bounded inputs are [26] for fractional positive
discrete-time linear systems, [27] for fractional positive continuous-time linear sys-
tems and [28] for continuous-time linear fractional systems. It should be stressed
that, in practice, controls are not completely unconstrained.

The aim of the paper is to give some new criteria for both unconstrained and
constrained controllability of continuous-time fractional-order control systems with
multiple delays in control varying in time.

The paper is organized as follows. Section2 recalls some preliminary definitions,
formulas and notations. Moreover, it presents the mathematical model of the consid-
ered fractional systems and the formula for a solution of the discussed systems. The
formula is derived by means of the Laplace transform. Some definitions of relative
and constrained relative controllability of the systems are formulated. Constraints are
imposed on control values. The main results of the paper, contained in Sect. 3, are
the criteria for relative controllability of the fractional system with delayed varying
controls and constrained relative controllability when the set of admissible control
values U is a convex and compact set containing 0 in its interior and a cone with ver-
tex at zero and nonempty interior. All theorems are proved. The theoretical results are
illustrated with a numerical example provided in Sect. 4. Finally, concluding remarks
are included in Sect. 5.
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2 Preliminaries

Let CDαf (t) denote the Caputo fractional derivative of orderα (n<α<n+1, n ∈ N)
for a function f : R+ → R.

Definition 1 [3] The Caputo fractional derivative is defined by the formula

CDαf (t) = 1

Γ (n − α + 1)

∫ t

0

f (n+1)(τ )

(t − τ )α−n
dτ ,

where Γ is the gamma function.

In the Caputo approach the initial conditions for fractional differential equations
take on the same form as for integer-order differential equations, therefore we use
Caputo’s fractional derivatives in the paper.

Applying the definition of the Mittag-Leffler function Eα,β(z) presented, among
others, in [3, 14]

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z ∈ C,

for α > 0, β > 0 and an arbitrary n-th order square matrix A, we introduce the
following notation

Φ0(t) = Eα,1(At
α) =

∞∑
k=0

Aktαk

Γ (kα + 1)
.

Φ0(t) denotes the pseudo-transition matrix of the linear fractional system CDαx(t)
= Ax(t) ([8, 14]). Moreover, let

Φ(t) = tα−1Eα,α(Atα) = tα−1
∞∑
k=0

Aktαk

Γ ((k + 1)α)
.

The following designation are also used throughout the paper. Let L2([0,∞),

R
m) denote the Hilbert spaces of square integrable functions with values in R

m and
L2
loc([0,∞), Rm) denote the linear space of locally square integrable functions with

values in Rm.
In the paper we discuss the linear control systems with multiple varying delays in

control described by the following fractional differential state equation

CDαx(t) = A x(t) +
M∑
i=0

Bi(t) u(vi(t)) (1)
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for t ≥ t0 and 0 < α < 1, where

• x(t) ∈ R
n is a state vector,

• u ∈ L2
loc([t0,∞),Rm) is a control,

• A is a (n × n)-matrix with real elements,
• Bi(t)(i = 0, . . . ,M) are (n × m)-matrices with elements bikj ∈ L2

loc([t0,∞),R),

k = 1, . . . ,M, j = 1, . . . ,m,
• vi : [t0,∞) → R, i = 0, 1, . . . ,M, are absolutely continuous, strictly increasing
functions, satisfying the inequalities

vM(t) < vM−1 < · · · < vk(t) < · · · < v1(t) < v0(t) = t, t ∈ [t0,∞),

where vi(t) = t − hi(t) and hi(t) ≥ 0, i = 0, 1, . . . ,M, are time-dependent
delays in control.

Let be given the initial conditions z(t0) = (x(t0), ut0) ∈ R
M × L2([vM(t0), t0],U)

called the initial complete state of the fractional system (1). In the case of dynamical
systems with delays, both for integer order and fractional order ones, only a complete
state z(t) = (x(t), ut(s)), where ut(s) = u(s) for s ∈ [vM(t), t), fully describes the
behavior of the dynamical system at any time t.

Let U ⊂ R
m be any non-empty set. The set L2([t0, t1],U) of square integrable

functions on [t0, t1]with values inU is the set of admissible controls for the fractional
system (1).

Theorem 1 For given initial conditions z(t0) ∈ R
M × L2([vM(t0), t0],U) and an

admissible control u ∈ L2([t0, t],U), for every t ≥ t0 there exists a unique, absolutely
continuous solution x(t, z(t0), u) of the differential equation (1) that takes the form

x(t, z(t0), u) = Φ0(t)x(t0) +
∫ t

t0

Φ(t − τ )

M∑
i=0

Bi(τ ) u(vi(τ )) dτ . (2)

Proof In order to prove the theoremweuse themethod presented in [14] for fractional
systems without delays. To simplify the notation, let us denote x(t, z(t0), u) = x(t).
First, we apply the Laplace transform to the fractional equation (1) and we obtain

sαL[x(t)] − sα−1x(t0) = AL[x(t)] + L[ M∑
i=1

Bi(t)u(vi(t))
]
,

for any fixed t ≥ t0. So

L[x(t)] = (sαI − A)−1sα−1x(t0) + (sαI − A)−1L[ M∑
i=1

Bi(t)u(vi(t))
] =
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= L[Φ0(t)x(t0)] + L[
Φ(t)

]L[ M∑
i=1

Bi(t)u(vi(t))
]
,

since [8, 14]
L−1[sα−1(sαI − A)−1] = Φ0(t)

L−1[(sαI − A)−1] = Φ(t).

Next, by the convolution theorem for the Laplace transform, we have

L[x(t)] = L[Φ0(t)x(t0)] + L
[ ∫ t

t0

Φ(t − τ )

M∑
i=1

Bi(τ )u(vi(τ ))dτ
]
.

And finally, using the inverse Laplace transform, we have the solution (2). �

As for integer-order dynamical systems, see [29], we can define a set of reachable
states called also the attainable set for the fractional system (1).

Definition 2 The attainable set from the initial complete state z(t0) = (x(t0), ut0)
for the time-delay fractional system (1) is called the set

KU(t) = {x(t) ∈ R
n : x(t) = Φ0(t)x(t0)+

+
∫ t

t0

Φ(t − τ )

M∑
i=0

Bi(τ ) u(vi(τ )) dτ : u(t) ∈ U for t ∈ [t0, t1]
}

. (3)

Analogously to the fractional systems with constant delays in the control (see [28]),
we have the definitions of relative controllability and constrained relative controlla-
bility of the system (1) on [t0, t1].
Definition 3 The fractional system (1) is called relatively controllable on [t0, t1]
from the initial complete state z(t0) = (x(t0), ut0) into S ⊂ R

n, if for each vector
x̂ ∈ S, there exists a control û ∈ L2([t0, t1],Rm) such that

x(t1, z(t0), û) = x̂.

In the paper, constraints put on control values are considered: u(t) ∈ U for t ∈
[t0, t1]. Constraints of this type frequently occur in practical applications concerning
problems of optimal control, industrial or biological processes.

Definition 4 The fractional-order system (1) is called relatively U-controllable on
[t0, t1] from the initial complete state z(t0) = (x(t0), ut0) into S ⊂ R

n, if for each
vector x̃ ∈ S, there exists a control ũ ∈ L2([t0, t1],U) such that

x(t1, z(t0), ũ) = x̃.
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Definition 5 The fractional-order system (1) is called (globally) relatively U-
controllable on [t0, t1] into S ⊂ R

n, if it is relatively U-controllable on [t0, t1] into
the set S for every initial complete state z(t0) = (x(t0), ut0).

Remark 1 Definition 2 implies that the system (1) is (globally) relatively U-
controllable on [t0, t1] if KU(t) = R

n, see [30].

In case of S = R
n we say that (1) is relatively or relatively U-controllable on

[t0, t1] and for S = {0}, we say that (1) is relatively null controllable or relatively null
U-controllability on [t0, t1].

3 Main Results

In this main section we discuss relative and constrained relative controllability (rela-
tive U-controllability) of the fractional system (1). We establish new criteria of rela-
tive controllability of the systemwith varying delays (1) and relativeU-controllability
for controls from closed and convex cone with nonempty interior and vertex at zero
as well as for controls from a cone with vertex at zero and a nonempty interior.

Before we formulate the first criterion, we transform the formula (2) in the fol-
lowing manner. Let us fix a final time t1 > 0. Using the absolute continuity of vi
and exploiting their inverses ri : [vi(t0), vi(t1)] → [t0, t1], i = 0, 1, 2, . . . ,M, we
can rewrite the solution of (1) in the following form:

x(t1, z(t0), u) = Φ0(t1)x(t0) +
M∑
i=0

∫ vi(t1)

vi(t0)
Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )u(τ ) dτ ,

where ṙi means the first derivative of ri.
Without loss of generality, to simplify the notation,wemay assume that t0 = vk(t1)

for some k ≤ M. If such a k does not exist, then we introduce an additional delay
hk with control matrix Bk(t) = 0. Then the solution (2) of the dynamical system (1)
has, at time t1, the form

x(t1, z(t0), u) = Φ0(t1)x(t0) +
k∑

i=0

∫ t0

vi(t0)
Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )ut0(τ ) dτ

+
M∑

i=k+1

∫ vi(t1)

vi(t0)
Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )ut0(τ ) dτ

+
k∑

i=0

∫ vi(t1)

t0

Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )u(τ ) dτ .
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The first three terms on the right hand side depend only on z(t0) = (x(t0), ut0),
We introduce the following denotation

q(z(t0)) = x(t0)+ (4)

+(
Φ0(t1)

)−1
[ k∑

i=0

∫ t0

vi(t0)
Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )ut0(τ ) dτ+

+
M∑

i=k+1

∫ vi(t1)

vi(t0)
Φ(t1 − ri(τ ))Bi(ri(τ ))ṙi(τ )ut0(τ ) dτ

]

and

Bt1(t) = (
Φ(t1 − t)

)−1
i∑

j=0

Φ(t1 − ri(t))Bi(ri(t))ṙi(t), (5)

for t ∈ [vi+1(t1), vi(t1)), i = 0, 1, . . . , k − 1. Bt1(t) is (n × m)-dimensional matrix
defined on [t0, t1] (since t0 = vk(t1)) with square integrable elements.

As in the case of integer order systems [29, 31], the following lemma holds.

Lemma 1 Let
CDαy(t) = Ay(t) + Bt1(t)u(t), t ∈ [t0, t1], (6)

be a linear fractional dynamical system without delays in control. Then

x(t, z(t0), u) = y(t, q(z(t0)), u), t ∈ [t0, t1].

Proof The lemma follows immediately from formulas (2), (4) and (5). �

By Lemma 1, the relative controllability on [t0, t1] of the fractional system with
delays (1) and the controllability on [t0, t1] of the fractional system (6) without
delays in control are equivalent. It follows that we may apply the method known for
fractional-order systems without delays basing on so-called controllability matrix to
verify relative controllability of the systems with delays (1).

Let us denote

Wk(t0, t1) =
∫ t1

t0

Φ(t1 − τ )Bt1(τ )BT
t1(τ )ΦT (t1 − τ ) dτ , (7)

whereΦ(t) = tα−1Eα,α(Atα), ΦT (t) = Eα,α(AT tα) andAT means the transpose ofA.
The matrix Wk(t0, t1) is called the relative controllability matrix of the fractional

system (1).
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Theorem 2 The fractional system (1) is relatively controllable on [t0, t1] if and
only if

rankWk(t0, t1) = n,

where Wk(t0, t1) is given by (7).

Proof Based on Lemma 1, the relative controllability matrixWk(t0, t1) of the system
(1) is the controllability matrix of the system without delays (6), simultaneously. We
can apply the result for fractional systems without delays presented in [16]. Since
Wk(t0, t1) is positive definite, it is non-singular, so it is full rank. This completes the
proof. �

Now we put constraints on the control values, that is let u(t) ∈ U.

Theorem 3 Let U ⊂ R
m be a convex and compact set containing 0 in its interior. If

rank Wk(t0, t1) = n and the linear fractional dynamical system (1) is asymptotically
stable, then the system is relatively null U-controllable on [t0, t1].
Proof Suppose U ⊂ R

m be a convex and compact set containing 0 in its interior.
Since rankWk(t0, t1) = n, based on Theorem 2, the system (1) is relatively control-
lable without any constraints on [t0, t1]. Moreover, owing the asymptotical stabil-
ity assumption, x = 0 is the solution of the system (1) for the admissible control
u(t) = 0. Using the null control u(t) = 0, the solution x(t, z(t0), 0) of (1) satisfies
the conditions

lim
t→∞ x(t, z(t0), 0) = 0 and x(t1, z(t0), 0) ∈ N(0),

for some, finite t1 ∈ (t0,∞), where N(0) is a sufficiently small neighborhood of
0 ∈ R

n. Then, the instantaneous state x(t1, z(t0), 0) can be steered to 0 ∈ R
n in finite

time, so the fractional system (1) is relatively null U-controllable. �

Theorem 4 Let U be a cone with vertex at zero and a nonempty interior in the
one-dimensional space R. The linear fractional dynamical system (1) is relatively
U-controllable on [t0, t1] if and only if rankWk(t0, t1) = n and the matrix A has only
complex eigenvalues.

Proof The necessary condition follows from the fact that if rankWk(t0, t1) < n or A
has not only complex eigenvalues, no open set about origin can be reached, see [32].
The sufficient condition is satisfied, because if rankWk(t0, t1) = n (i.e. the fractional
system (1) is relatively controllable without any constraints—see Theorem 2) and A
has only complex eigenvalues, it is sufficient to reach all states inRn. In fact, sinceU
is the cone with vertex at the origin and nonempty interior in Rn, for any admissible
control u also ku ∈ L2([0,T ],U) for all k ≥ 0. The attainable set KU(t1) is a convex
set containing 0 in its interior (due to the second condition) and it is a cone with
vertex at the origin (because it is linear with respect to u(·)), hence it has to be a
whole space Rn. �
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4 Example

In this section we present a numerical example to illustrate the obtained theoretical
results.

Example 1 Let be given the following fractional system with the delay in control

CD
1
2 x(t) = Ax(t) + B0(t)u(t) + B1(t)u(t − 1) + B2(t)u(−2t), (8)

for t ∈ [1, 2] and u(t) ∈ [0,+∞), with initial conditions z(0) = (0, 0), where

A =
[
0 −3
1 0

]
, B0(t) =

[
0
t

]
, B1(t) =

[−2t
0

]
, B2(t) =

[
t

−t

]
.

The set of admissible control valuesU = [0,+∞) is a conewith vertex at zero and
a nonempty interior in the one-dimensional spaceR.We haveα = 1

2 , n = 2, M = 2.
Moreover, v0 = t, v1 = t − 1 and v2 = −2t. As a consequence, h0(t) = 0, h1(t) = 1
and h2(t) = 3t, because vi(t) = t − hi(t). We will show, using Theorem 4, that the
system (8) is relatively U-controllable on [1, 2].

Since v1(2) = 2 − h1 = 1, k = 1. Therefore the relative controllability matrix (7)
takes the form

W1(1, 2) =
∫ 2

1
Φ(2 − τ )Bt1(τ )BT

t1(τ )ΦT (2 − τ ) dτ ,

for Bt1(t) given by formula (5) and t1 = 2, that is

Bt1(t) = (
Φ(2 − t)

)−1
Φ(2 − t)B0(t).

By the Cayley–Hamilton method we calculate the matrix E 1
2 , 12

(At
1
2 ).

E 1
2 , 12

(At
1
2 ) =

1∑
k=0

Ak t
k
2

Γ ( 12 (k + 1))
=

[
1 0
0 1

]
t0√
π

+
[
0 −3
1 0

]
t
1
2

1
=

[
1√
π

−3t
1
2

t
1
2

1√
π

]

and then

E 1
2 , 12

(AT t
1
2 ) =

1∑
k=0

(AT )k t
k
2

Γ ( 12 (k + 1))
=

[
1√
π

t
1
2

−3t
1
2

1√
π

]
.

As

Bt1(t)B
T
t1(t) =

[
0 0
0 t2

]
,
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we have
W1(1, 2) =

=
∫ 2

1
(2 − τ )−

1
2

[
1√
π

−3(2 − τ )
1
2

(2 − τ )
1
2

1√
π

] [
0 0
0 τ 2

] [
1√
π

(2 − τ )
1
2

−3(2 − τ )
1
2

1√
π

]
dτ =

=
∫ 2

1

[
9τ 2(2 − τ )

1
2 − 3√

π
τ 2

− 3√
π
τ 2 1

π
τ 2(2 − τ )− 1

2

]
dτ =

[
426
35 − 7√

π

− 7√
π

86
15π

]
.

Finally,

rankW1(1, 2) = rank

[
426
35 − 7√

π

− 7√
π

86
15π

]
= 2. (9)

The matrix A has only complex eigenvalues λ1,2 = ±i
√
3. Together with (9),

based on Theorem 4, this implies the relative U-controllability of the fractional
system (8) on [1, 2] for U = [0,+∞).

5 Concluding Remarks

The relative and constrained relative controllability of the linear fractional control
systems with varying delays in control have been discussed. Constraints imposed
on the control values have been considered, i.e. u(t) ∈ U. Definitions of relative
controllability the systems in the cases of both unconstrained and constrained control
values have been formulated.

New controllability criteria for unconstrained and constrained relative controlla-
bility of fractional systems with delays varying in time described by the Eq. (1) have
been established and proved. Theorem 2 presents a necessary and sufficient condition
for relative controllability of the system (1) without constraints. In Theorem 3, U is
assumed to be a convex and compact set containing 0 in its interior. In Theorem 4 the
set U is suppose to be a cone with vertex at zero and nonempty interior. The numer-
ical example has been presented to illustrate how to verify the constrained relative
controllability of the discussed systems with the use of the established criteria.
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Controllability of Nonlinear Stochastic
Fractional Integrodifferential Systems
in Hilbert Spaces

Rajendran Mabel Lizzy

Abstract In this paper we obtain the sufficient conditions for the controllability
of nonlinear stochastic fractional integrodifferential systems and nonlinear systems
with implicit fractional derivative inHilbert spaces by using the fixed point technique.

Keywords Stochastic fractional differential equation · Controllability · Implicit
derivative · Integrodifferential equations

1 Introduction

When it is well-known that the fractional differential equations (FDEs) have attracted
considerable interest due to its ability to model complex phenomena by capturing
non-local relations in space and time (refer [1]), the fluctuations in nature can be
captured only by adding random elements into the differential equations (see for
instant [2, 3]). Our motivation for considering FDEs with random elements comes
from the fact that many phenomena in science that have been modeled by fractional
differential equations have some uncertainty. Therefore for investigating more accu-
rate solutions, we need the solutions of stochastic fractional differential equations
(SFDEs) (see [4]).

The concept of controllability of integer-order systems in both finite and infi-
nite dimensional spaces, that is, systems represented by ordinary differential equa-
tions and partial differential equations is well established (see [5–8]). The notion of
controllability for stochastic differential systems in finite-dimensional spaces was
introduced by Kalman in 1960 (see also [9, 10]). Later, it was extended to infinite
dimensional spaces andmanyworks appeared on the controllability of both linear and
nonlinear stochastic differential systems. We mention a few here [11–13]. Recently,
the controllability results for FDEs in finite dimensional spaces for both linear and
nonlinear systems are studied by many authors (see for instant [14] and references
therein). The controllability of the system,
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C Dαx(t) = Ax(t) + Bu(t) + σ(t)
dW (t)

dt
, t ∈ J = [0, T ],

x(0) = x0, (1)

where 1
2 < α ≤ 1, A and B are bounded linear operators is studied in [15]. Integrod-

ifferential equations and equations with implicit derivative occur naturally while
modelling physical and biological phenomenon. The study of controllability of such
systems have been of great interest in the recent years, for instant, see [11, 14, 16].
However, no work has been reported on the controllability of nonlinear stochastic
fractional integrodifferential systemswith implicit derivative in the literature and this
work will fill the gap. In this paper we obtain the sufficient conditions for controlla-
bility of the nonlinear stochastic fractional integrodifferential system and nonlinear
systems with implicit derivative by using the Banach contraction principle. The tech-
nique of using fixed point theorems to prove controllability results can be referred
in [17].

2 Preliminaries

Let X , U and K be separable Hilbert spaces and for convenience, we will use the
same notation ‖ · ‖ to represent their norms. L(X,U ) is the space of all bounded
linear operators from X to U and L(X, X) = L(X).

Let (Ω,F ,P, {Ft }t≥0) be a complete filtered probability space with the prob-
ability measure P on Ω . The filtration {Ft |t ≥ 0} is generated by the K-valued
Wiener process (W (t))t≥0 defined on (Ω,F ,P, {Ft }t≥0) with the covariance oper-
ator Q ∈ L(K , K ) such that TrQ < ∞. Let L0

2 = L2(Q
1
2 K , X) be the space of all

Hilbert-Schmidt operators with norm denoted by ‖ · ‖L0
2
(see [2]). Denote,

(i) Y := L2(Ω,FT , X), which is the Hilbert space of all FT -measurable square
integrable random variables with values in X .

(ii) H2 to be the subspace of C(J,L2(F , X)) consisting of all Ft -measurable
processes with values in X , identifying processes which are PT a.s. and
endowed with the norm,

‖φ‖2H2
= sup

t∈J
E‖φ‖2.

(iii) Hα
2 to be the subspace of Cα(J,L2(F , X)) = {x ∈ C(J,L2(F , X)) :

C Dαx ∈ C(J,L2(F , X))} consisting of all Ft -measurable processes with val-
ues in X and endowed with the norm,

‖φ‖2H2
= sup

t∈J
E‖φ‖2 + sup

t∈J
E‖C Dαφ‖2.
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(iv) Uad := L
F
2 (J,U ), which is a Hilbert space of all square integrable and Ft -

measurable processes with values in U .

Let us recall some basic definitions from fractional calculus. Let D denote
the usual differential operator and I , the identity operator. Let α,β > 0, with
n − 1 < α < n, n − 1 < β < n and n ∈ N. Suppose f ∈ L1(R+), R+ = [0,∞).
The following definitions and properties are well known (see, for instance, [1]):

(i) Caputo fractional derivative:
The Riemann Liouville fractional integral of a function f is defined as,

Iα f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds,

and the Caputo derivative of f is C Dα f = I n−αDn f , i.e.

C Dα f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where the function f (t) has absolutely continuous derivative up to order n − 1.
(ii) Mittag-Leffler operator function:

If A is a bounded operator then

Eα,β(A) =
∞∑
k=0

Ak

Γ (kα + β)
.

In particular, for β = 1,

Eα,1(A) = Eα(A) =
∞∑
k=0

Ak

Γ (kα + 1)
.

(iii) Solution Representation:
Consider the linear stochastic fractional differential equation in theHilbert space
X of the form,

C Dαx(t) = Ax(t) + Bu(t) + f (t) + σ(t)
dW (t)

dt
, t ∈ J,

x(0) = x0, (2)

where 0 < α ≤ 1, A : H2 → H2 and B : Uad → H2 are bounded linear oper-
ators, σ : J → L

0
2 and W (t) is a K-valued Weiner process. In order to find the

solution representation we need the following hypothesis and Lemma.

(H1) The operator A ∈ L(H2) commutes with the fractional integral operator Iα on
H2(andHα

2 ) and ‖A‖2 ≤ (2α−1)(Γ (α))2

T 2α .
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Lemma 1 [18] Suppose that A is a linear bounded operator defined on a Banach
space, and assume that ‖A‖ < 1. Then (I − A)−1 is linear and bounded. Also

(I − A)−1 =
∞∑
k=0

Ak .

The convergence of the above series is in the operator norm, and ‖(I − A)−1‖ ≤
(1 − ‖A‖)−1.

We next show that the operator ‖IαA‖ ≤ 1 and by the Lemma 1 we obtain (I −
IαA)−1 is bounded and linear. Let x(t) ∈ H2, then by (H1), we have

E‖(IαA)x(t)‖X ≤ T

(Γ (α))2
sup
t∈J

∫ t

0
(t − s)2α−2E‖Ax(s)‖2Xds

≤ T 2α

(2α − 1)(Γ (α))2
sup
t∈J

E‖Ax(t)‖2X ≤ ‖x‖H2 .

Taking supremum over time on the left hand side of the above inequality we obtain
‖IαA‖ ≤ 1. On the other hand, taking Iα on both sides of (2), using Lemma 1 and
the fact that Iα commutes with A, we can get the solution of (2) as in [15],

x(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)Bu(s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α) f (s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)σ(s)dW (s). (3)

Similar to the conventional controllability concept, the controllability of the stochas-
tic fractional dynamical system is defined as follows:
The set of all states attainable from x0 in time t > 0 is given by the set

Rt (x0) = {x(t; x0, u) : u ∈ Uad},

where x(t) is given in (3).

Definition 1 [12] The stochastic fractional system (2) is said to be completely con-
trollable on the interval J if for every x1 ∈ Y , there exists a control u ∈ Uad such
that the solution x(t) given in (3) satisfies x(T ) = x1.
In other words,

RT (x0) = Y.
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Define the operator LT : Uad → Y as (see [12])

LT u =
∫ T

0
(T − s)α−1Eα,α(A(T − s)α)Bu(s)ds.

Clearly, the adjoint operator L∗
T of LT satisfying L∗

T ∈ L(Y,Uad) is obtained as

(
L∗
T x

)
(t) = (T − t)α−1B∗Eα,α(A∗(T − t)α)E{x |Ft }.

Definition 2 The controllability Grammian operator WT :Y →Y is defined as

WT (x) =
∫ T

0
(T − s)2α−2Eα,α(A(T − s)α)BB∗Eα,α(A∗(T − s)α)E{x |Fs}ds,

where * denotes adjoint operator.

It is clear that the operators are linear bounded for all 1
2 < α ≤ 1.

3 Stochastic Fractional Integrodifferential Systems

Consider the nonlinear stochastic fractional integrodifferential system of the form

C Dαx(t) = Ax(t) + Bu(t) + f

(
t, x(t),

∫ t

0
g(t, s, x(s))ds

)

+σ

(
t, x(t),

∫ t

0
h(t, s, x(s))ds

)
dW (t)

dt
,

x(0) = x0, (4)

where 1
2 < α ≤ 1 and the nonlinear function f : J × H2 × H2 → H2,

σ : J × H2 × H2 → L0
3, g : J × H2 × H2 → H2 and h : J × H2 × H2 → H2 are

continuous.

(H2) Assume that there exist constants Ni > 0 for i = 1, . . . , 4 such that

‖ f (t, x1, y1) − f (t, x2, y2)‖2 ≤ N1
(‖x1 − x2‖2 + ‖y1 − y2‖2

)
‖σ(t, x1, y1) − σ(t, x2, y2)‖2L0

2
≤ N2

(‖x1 − x2‖2 + ‖y1 − y2‖2
)

‖g(t, s, x1) − g(t, s, x2)‖2 ≤ N3‖x1 − x2‖2
‖h(t, s, x1) − h(t, s, x2)‖2 ≤ N4‖x1 − x2‖2,

for all x1, x2, y1, y2 ∈ H2.
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Let us take, N5 = supt∈J ‖ f (t, 0, 0)‖, N6 = supt∈J ‖σ(t, 0, 0)‖, N7 = supt∈J
‖ ∫ t

0 g(t, s, 0)ds‖ and N8 = supt∈J ‖ ∫ t
0 h(t, s, 0)ds‖. For each fixed z ∈ H2, con-

sider the corresponding linear system of (4) as

C Dαx(t) = Ax(t) + Bu(t) + f

(
t, z(t),

∫ t

0
g(t, s, z(s))ds

)

+σ

(
t, z(t),

∫ t

0
h(t, s, z(s))ds

)
dW (t)

dt
,

x(0) = x0. (5)

The solution of (5) is given by,

x(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)Bu(s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) f

(
s, z(s),

∫ s

0
g(s, r, z(r))dr

)
ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)σ

(
s, z(s),

∫ s

0
h(s, r, z(r))dr

)
dW (s). (6)

For convenience let us take M1 = sup0≤t≤T ‖Eα(Atα)‖2 and M2 = sup0≤t≤T
‖Eα,α(Atα)‖2. We also assume the following condition,

(H3) Let ρ1 = 8T 2αM2

(2α − 1)

(
N2T

−1+ N2N4 + N1 + N1N3T
)
be such that 0 ≤ ρ1 < 1.

Theorem 1 If the hypothesis (H1)–(H3) are satisfied and if the linear fractional
dynamical system (5) is controllable, then the nonlinear fractional dynamical system
(4) is controllable.

Proof Let x1 be an arbitrary point in Y . Define the operator Φ on H2 by

Φx(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)Bu(s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) f

(
s, z(s),

∫ s

0
g(s, r, z(r))dr

)
ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)σ

(
s, z(s),

∫ s

0
h(s, r, z(r))dr

)
dW (s).

Since the linear system (5) corresponding to the nonlinear system (4) is controllable
we have, WT is invertible (see [15]) and so we can define the control variable u as
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u(t) = (T − t)α−1B∗Eα,α(A∗(T − t)α)E
{
W−1

T

(
x1 − Eα(AT α)x0

−
∫ T

0
(T − s)α−1Eα,α(A(T − s)α) f

(
s, z(s),

∫ s

0
g(s, r, z(r))dr

)
ds

−
∫ T

0
(T − s)α−1Eα,α(A(T − s)α)σ

(
s, z(s),

∫ s

0
h(s, r, z(r))dr

)
dW (s)

) ∣∣∣∣Ft

}
.

If we obtain a fixed point for Φ, then that fixed point will be a solution of the
control problem. Clearly, Φ (x(T )) = x1, which means that the control u steers the
nonlinear system from the initial state x0 to x1 in the time T , provided we can obtain
a fixed point of the nonlinear operator Φ. First we show that Φ mapsH2 into itself.
Estimating u(t) we obtain,

sup
t∈J

E‖u(t)‖2 ≤ 4‖L∗
T ‖2‖W−1

T ‖2
[
E‖x1‖2 + M1E‖x0‖2

+M2N
T 2α

2α − 1
+ M2N

′ T
2α−1

2α − 1

]
= K1 < ∞,

where N = (N1N3 + N1) supt∈J E‖x(t)‖2 + N5 + N1N7 < ∞, N ′ = (N2N4 + N2)

supt∈J E‖x(t)‖2 + N2N8 + N6 < ∞. Further from the assumptions we have,

sup
t∈J

E‖Φx(t)‖2 ≤ 4M1E‖x0‖2 + 4M2K1‖B‖2 T 2α

2α − 1

+4M2N
T 2α

2α − 1
+ 4M2N

′ T
2α−1

2α − 1
< ∞.

Thus Φ maps H2 into itself. Now for x1, x2 ∈ H2, we have

sup
t∈J

E‖Φx1(t) − Φx2(t))‖2

= sup
t∈J

E

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)B L∗

TW−1
T

{∫ T

0
(T − θ)α−1Eα,α(A(T − θ)α)

[
f

(
θ, x1(θ),

∫ θ

0
g(θ, r, x1(r))dr

)
− f

(
θ, x2(θ),

∫ θ

0
g(θ, r, x2(r))dr

)]
dθ

+
∫ T

0
(T − θ)α−1Eα,α(A(T − θ)α)

[
σ

(
θ, x1(θ),

∫ θ

0
h(θ, r, x1(r))dr

)
−σ

(
θ, x2(θ),

∫ θ

0
h(θ, r, x2(r))dr

)]
dW (θ)

}
ds
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+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)

[
f

(
s, x1(s),

∫ s

0
g(s, r, x1(r))dr

)
− f

(
s, x2(s),

∫ s

0
g(s, r, x2(r))dr

)]
ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)

[
σ

(
s, x1(s),

∫ s

0
h(s, r, x1(r))dr

)
− σ

(
s, x2(s),

∫ s

0
h(s, r, x2(r))dr

)]
dW (s)

∥∥∥∥
2

≤ 8T 2αM2

(2α − 1)

(
N2T

−1 + N2N4 + N1 + N1N3T
)
sup
t∈J

E‖x1(t) − x2(t)‖2

≤ ρ1‖x1 − x2‖2H2
.

Using (H3) we conclude that Φ is a contraction mapping and hence there exists a
unique fixed point x ∈ H2 for Φ. Any fixed point of Φ satisfies x(T ) = x1 for an
arbitrary x1 ∈ Y . Therefore the system (4) is controllable on J .

4 Stochastic Fractional Systems with Implicit Derivative

Consider the nonlinear stochastic fractional differential system with implicit frac-
tional derivative of the form

C Dαx(t) = Ax(t) + Bu(t) + f (t, x(t),C Dαx(t)) + σ(t, x(t))
dW (t)

dt
,

x(0) = x0, (7)

where 1
2 < α ≤ 1 and the nonlinear functions f : J × Hα

2 × H2 → H2, σ : J ×
Hα

2 → H2 are continuous.

(H4) Assume that there exist constants L1, L2 > 0 such that

‖ f (t, x1,
C Dαx1(t)) − f (t, x2,

C Dαx2(t))‖2 ≤ L1
(‖x1(t) − x2(t)‖2

+‖C Dαx1(t) −C Dαx2(t)‖2
)

‖σ(t, x1(t)) − σ(t, x2(t))‖2L0
2
≤ L2‖x1(t) − x2(t)‖2,

for all x1, x2 ∈ Hα
2 .

We denote L3 = supt∈J ‖ f (t, 0, 0)‖ and L4 = supt∈J ‖σ(t, 0)‖. For each fixed z ∈
Hα

2 , consider the corresponding linear system of (7):
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C Dαx(t) = Ax(t) + Bu(t) + f (t, z(t),C Dαz(t)) + σ(t, z(t))
dW (t)

dt
,

x(0) = x0. (8)

The solution of (8) is given by,

x(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)Bu(s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) f (s, z(s),C Dαz(s))ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)σ(s, z(s))dW (s). (9)

We also assume the following condition,

(H5) Let ρ2=max

{
8T 2αM2

(2α − 1)

(
L1+L2T

−1
)
,
8T 2αM2L1

(2α − 1)

}
be such that 0 ≤ ρ2 < 1.

Theorem 2 If the hypothesis (H1), (H4) and (H5) are satisfied and if the linear
fractional dynamical system (8) is controllable, then the nonlinear fractional dynam-
ical system (7) is controllable for 1

2 < α ≤ 1.

Proof Let x1 be an arbitrary point in Y . Define the operator Φ on Hα
2 by

Φx(t) = Eα(Atα)x0 +
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)Bu(s)ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) f (s, x(s),C Dαx(s))ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α)σ(s, x(s))dW (s).

Since the linear system (8) corresponding to the nonlinear system (7) is controllable
we have, WT is invertible (see [15]) and so we can define the control variable u as

u(t) = (T − t)α−1B∗Eα,α(A∗(T − t)α)E
{
W−1

T

(
x1 − Eα(AT α)x0

−
∫ T

0
(T − s)α−1Eα,α(A(T − s)α) f (s, x(s),C Dαx(s))ds

−
∫ T

0
(T − s)α−1Eα,α(A(T − s)α)σ(s, x(s))dW (s)

) ∣∣∣∣Ft

}
.

If we obtain a fixed point for Φ, then that fixed point will be a solution of the
control problem. Clearly, Φ (x(T )) = x1, which means that the control u steers the
nonlinear system from the initial state x0 to x1 in the time T , provided we can obtain
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a fixed point of the nonlinear operator Φ. First we show that Φ mapsHα
2 into itself.

Estimating u(t) we obtain,

E‖u(t)‖2 ≤ 4‖L∗
T ‖2‖W−1

T ‖2
[
E‖x1‖2 + M1E‖x0‖2

+M2N
T 2α

2α − 1
+ M2N

′ T
2α−1

2α − 1

]
= K2 < ∞,

where N = L1 supt∈J

(
E‖x(t)‖2 + E‖C Dαx(t)‖2) + L3 < ∞,

N ′ = L2 supt∈J E‖x(t)‖2 + L4 < ∞. Further from the assumptions we have,

sup
t∈J

E‖Φx(t)‖2 ≤ 4M1E‖x0‖2 + 4M2K2‖B‖2 T 2α

2α − 1

+4M2N
T 2α

2α − 1
+ 4M2N

′ T
2α−1

2α − 1
< ∞.

Thus Φ maps Hα
2 into itself. Now for x1, x2 ∈ Hα

2 , we have

sup
t∈J

E‖Φx1(t) − Φx2(t))‖2

= sup
t∈J

E

∥∥∥∥
∫ t

0
(t − s)α−1Eα,α(A(t − s)α)B L∗

TW−1
T

[∫ T

0
(T − θ)α−1Eα,α(A(T − θ)α) [ f (θ, x1(θ)) − f (θ, x2(θ))]dθ

+
∫ T

0
(T − θ)α−1Eα,α(A(T − θ)α)[σ(θ, x1(θ)) − σ(θ, x2(θ))]dW (θ)

]
ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) [ f (s, x1(s)) − f (s, x2(s))] ds

+
∫ t

0
(t − s)α−1Eα,α(A(T − s)α) [σ(s, x1(s)) − σ(s, x2(s))] dW (s)

∥∥∥∥
2

≤ 8T 2αM2

(2α − 1)

(
L1 + L2T

−1) sup
t∈J

E‖x1(t) − x2(t)‖2

+8T 2αM2L1

(2α − 1)
sup
t∈J

E‖C Dαx1(t) −C Dαx2(t)‖2

≤ ρ2‖x1 − x2‖2Hα
2
.

Using (H4) we conclude,Φ is a contraction mapping and hence there exists a unique
fixed point x ∈ Hα

2 for Φ. Any fixed point of Φ satisfies x(T ) = x1 for any arbitrary
x1 ∈ Y . Therefore the system (7) is controllable on J .
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Finding a Set of (A, B, C, D) Realisations
for Fractional One-Dimensional Systems
with Digraph-Based Algorithm

First Approach

Konrad Andrzej Markowski and Krzysztof Hryniów

Abstract This paper presents the first proposition of a method allowing the deter-
mination of a set of (A, B, C) realisations of the one-dimensional fractional system
from created digraph. The algorithm presented is the extension of previously pub-
lished algorithm that finds a complete set of all possible realisations, instead of only
a few realisations, as was in case of canonical form methods. The advantages of the
proposedmethod are the possibilities of obtaining a set of statematrices directly from
digraph form of the system and using fast parallel computing method. The algorithm
is presented in pseudo-code and illustrated with example.

Keywords Realisation · Fractional system · Digraphs · Algorithm ·
One-dimensional system

1 Introduction

One of constant problems in analysis of dynamic systems is the realisation problem.
In many research studies, we can find a canonical form of the system, i.e. constant
matrix form, which satisfies the system described by the transfer function [1, 2].
With the use of this form we are able to write only one realisation of the system,
while there exists a set of solutions.
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The first definition of the fractional derivative was introduced by Liouville and
Riemann at the end of the 19th century [3]. Mathematical fundamentals of fractional
calculus are given in [2–8].

In this paper, a new method allowing for determination of a set of minimal reali-
sations of the fractional continuous one-dimensional (1-D) system will be proposed
and the procedure for computation of the minimal realisation will be given. The
procedure will be illustrated with a numerical example.

Thiswork has been organised as follows: Sect. 2 presents some notations and basic
definitions. In Sect. 3 state-of-the-art in the field of determination of realisations is
presented. Section4 presents the main results of the paper – proposition how to
find (A, B, C) matrices directly from constructed digraph, pseudo-code of parallel
numerical method and illustration of the working of the method with the example.
In Sect. 5 concluding remarks and future work is presented.

2 Notation and Definitions

Notion: In this paper the following notion will be used. The matrices will be denoted
by the bold font (for example A, B, . . .), the sets by the double line (for example
A,B, . . . ), lower/upper indices and polynomial coefficients will be written as a small
font (for example a, b, . . .), fractional derivative will be denoted using a mathfrak
font D and digraph will be denoted using mathcal font D. The set n × m of real
matrices will be denoted by Rn×m and Rn = R

n×1. The n × n identity matrix will be
denoted by In. For more information about the matrix theory, an interested reader
may be referred to, for instance [9, 10].

Digraph: A directed graph (or just digraph) D consists of a non-empty finite set
V(D) of elements called vertices and a finite set A(D) of ordered pairs of distinct
vertices called arcs [11]. We callV(D) the vertex set andA(D) the arc set of digraph
D. We will often writeD = (V,A) which means that V and A are the vertex set and
arc set of D, respectively. The order ofD is the number of vertices inD. The size of
D is the number of arcs in D. For an arc (v1, v2) the first vertex v1 is its tail and the
second vertex v2 is its head.

There are twowell-knownmethods of representation of digraph: list and incidence
matrix. In this paper we are using incidence matrix to represent all digraphs. Method
of constructing digraphs by this method is presented for example in [11]. Adaptation
of this well-known method for dynamic systems was first presented in [12].

We present below some basic notions from graph theory which are used in further
considerations. A walk in a digraph D(1) is a finite sequence of arcs in which every
two vertices vi and vj are adjacent or identical. A walk in which all of the arcs are
distinct is called a path. The path that goes through all vertices is called a finite path.
If the initial and the terminal vertices of the path are the same, then the path is called
a cycle.
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Realisation problem: Let us consider the continuous-time fractional linear system
described by state-space equations:

0D
α
t x(t) = Ax(t) + Bu(t), 0 < α � 1, (1)

y(t) = Cx(t) + Du(t),

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state, input and output vectors, respec-

tively and A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. The following Caputo
definition of the fractional derivative will be used:

C
aD

α
t = dα

dtα
= 1

Γ (n − α)

∫ t

a

f (n)(τ )

(t − τ )α+1−n
dτ , (2)

where α ∈ R is the order of fractional derivative, f (n)(τ ) = dnf (τ )

dτ n and Γ (x) =∫ ∞
0 e−t tx−1dt is the gamma function. The Laplace transform of the derivative-integral
(2) is given in [2].

Transfer matrix of the system (1) has the following form:

T(s) = C
[
Insα − A

]−1
B + D. (3)

Matrices (A, B, C, D) are called realisation of the transfer matrix if they satisfy the
equality (3). The realisation is called minimal if the dimension of the state matrix A
is minimal among all possible realisation of T(s).

3 State–of–the–Art

There are solutions for the problem of determination of entries of the state matrix
A for a given characteristic polynomial. Most of them are based on usage of the
canonical forms of the system [13, 14], i.e. constant matrix form, which satisfies
the system described by the transfer function. All of the state-of-the-art methods
based on canonical forms [15–19] are capable of giving one of possible realisations
of the characteristic polynomial. Due to the complexity of the problem there were
no classical methods of determination of the whole set of possible realisations for a
given characteristic polynomial.

Such solution was proposed for non-fractional 1-D and 2-D systems in [20, 21]
and is based on the multi-dimensional D(n) digraphs theory. In addition to finding
all possible solutions for given characteristic polynomial it can also find solutions
that are minimal in rank of A matrix. The parallel algorithm is shown in [22, 23]
as superior to methods proposed in [15–19] in both number of obtained realisations
and minimality of matrix size.
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Algorithm discussed in this paper is an extension of parallel algorithm described
in [22–24] that solves the realisation problem for dynamic system and finds not only
A matrices, but also B and C matrices from digraph representation of the system.

4 Main Results

4.1 Theory

The essence of the proposed method for determining a minimal realisation for frac-
tional one-dimensional continuous-time system described by the model (1) will be
presented in single-input single-output (SISO) systems. The transfer matrix (3) can
be considered as a pseudo-rational function of the variable λ = sα and for SISO
system has the following form:

T(λ) = C [Inλ − A]−1 B + D = n(λ)

d(λ)
= bnλn + bn−1λ

n−1 + · · · + b1λ + b0
λn + an−1λn−1 + · · · + a1λ + a0

. (4)

The matrix D can be found by the use of the formula:

D = lim
λ→∞

= [bn] . (5)

Using (4) and (5) we can determine strictly proper transfer function in the following
form:

Tsp(λ) = b̃n−1λ
n−1 + · · · + b̃1λ + b̃0

λn + an−1λn−1 + · · · + a1λ + a0
, (6)

where b̃n−i = bn · an−i for i = 1, . . . , n.
Creationof digraph structure that allows todetermine theAmatriceswaspresented

in [23, 24]. Digraph structure is build based on the characteristic polynomial of the
transfer function. Matrices B and C can be obtained from digraph by adding two
additional types of vertices - input vertex s and output vertex y. Wages of arcs
between vertices vi and s correspond to wages of input matrix B and wages of arcs
between vertices vi and y corresponding to wages of output matrix C.

Intersection vertices are vertices that belong to the intersection set of all digraph
representations of monomials consisting of given characteristic polynomial as pre-
sented in [22, 23]. In case where all arcs from input vertex lead to intersection
vertices and all arcs to output vertex start in intersection vertices simplified case
exists that was earlier discussed in [25, 26]. Otherwise, there is need of tracing all
paths on digraph that start in input vertex and end in output vertex, and basing on
them solving a set of equations that allow to determine wages in input and output
matrices.
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To determine B and C matrices from digraph we create all the possible paths
from input vertex to output vertex and multiply all arc wages on the given path to
form a monomial form. Then, we add all the created monomials. After that, for
each cycle appearing in the digraph, a sub-graph is created by removal of all the
vertices belonging to the given cycle. For each of created sub-graphs we determine
all the possible paths from input vertex to output vertex, multiply all the arc wages
on the given path and then multiply them by (−1) and by the removed cycle to get a
monomial form. At the end we add all the monomials obtained from sub-graphs to
previously obtained monomials and distribute monomials to form a set of equations
from which B and C matrices can be created.

As can be seen, in simplified case monomials from sub-graphs do not appear, as
intersection vertices are removed for every cycle (as they belong to every cycle) and
there is no possibility of forming a path starting at input vertex and ending at output
vertex in such case.

Details are presented in Sects. 4.2 and 4.3.

4.2 Algorithm

Algorithm presented in [22, 23] starts with creating digraphs for all monomials in the
characteristic polynomial, then joins them by the use of disjoint union to create all
possible variants of digraphs representing polynomial realisation – which represents
the characteristic polynomial given. The algorithm uses growth and prune steps
alongside with control sums (hashes) where needed to eliminate redundant solutions
before the main computational step. All parts of the algorithm can be paralleled and
computed on device’s multiple CUDA kernels.

Algorithm 1 presents in pseudo-code basics of the algorithm. Due to lack of space
some parts of the algorithm are presented in simplified form and some functions are
only mentioned in comment and their working is not presented in detail – interested
reader should look into [21] for more precise presentation of the algorithm’s code.
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Algorithm 1 DetermineStateMatrices()
1: Determine number of cycles in characteristic polynomial - it is equal to number of monomials;
2: for monomial = 1 to cycles do
3: Determine digraph D(1) for every monomial;
4: MonomialRealisation1D(monomial);
5: Determine number of variants for each monomial apart from the first and put it into array

variants(monomial);
6: Variants mean different placement positions of the sub-digraph on the final digraph;
7: end for
8: Create all possible combinations of variants of all monomials;
9: Remove all redundant variant sets by checking their control sums;
10: [kernels, variant(kernel)] = VariantsStart(cycles, variants)
11: Determine digraph as a combination of the digraph monomial representation and assign each

combination to different CUDA kernel;
12: for kernel = 1 to kernels do
13: PolynomialRealisation1D(kernel, variant(kernel))
14: Check number of cycles in digraph, if differs from cycles remove solution as improper;
15: Record as proper realisation of characteristic polynomial – in this moment we have the

structure of matrix A;
16: end for
17: for all realisations do
18: Each realisation gives as a different structure of A matrix that can be filled by a set of

possible weights;
19: Now the structure of B and C matrices need to be determined from constructed digraph;
20: [B,C] = FullRealisation1D(realisation)
21: Determine weights of the arcs in digraph and write state matrices A, B, C;
22: DetermineWeights(realisation)
23: end for

Algorithm is divided into blocks, each realising different part of the operation.
Each block is a function and can be switched to another block to deal with different
problem efficiently without the need to change whole algorithm and without per-
forming unnecessary operations for simpler problems. Some functions can be run
in different order – for example we can determine weights of A matrix first and
then construct matrices B and C that match given matrix A or we can determine the
structure of all three matrices and then at the end fill the weights in all of them.

Algorithm 2 is much simpler from algorithm constructing monomial realisations
presented earlier, as in [21] it was proven that for 1D monomials both growth and
prune steps can be omitted and only one solution will be created.
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Algorithm 2 MonomialRealisation1D(monomial)
1: size equals size of the monomial (sum of powers of all the variables);
2: Create digraph D(n) for given monomial;
3: for node = 1 to size do
4: if node == size then
5: asize,1 = 1;
6: else
7: asize−1,size = 1;
8: end if
9: end for

Algorithm 3 is addition to algorithm presented in [22, 24] and forms next step
of the algorithm, allowing for creation of B and C matrices directly from digraph.
In lines (5–12) additional sub-graphs are created from which additional elements
are derived. Those elements (line 10) will be with a negative sign as opposed to the
elements formed in line 3. All of the created elements in line 14 will be used to create
elements from matrices B and C after assigning wages.

Algorithm 3 FullRealisation1D(realisation)
1: Create all paths from Sb (source) to Sc (sink);
2: for all paths do
3: Multiply all wages along the path to form monomial;
4: end for
5: Create additional paths from sub-graphs;
6: for all cycles do
7: Remove all nodes belonging to given cycle from digraph creating sub-graph;
8: Create all paths from Sb to Sc through sub-graph;
9: for all paths do
10: Multiply all wages along the path, then multiply it by−1 and by removed cycle to form

monomial;
11: end for
12: end for
13: Add all monomials created from paths to create a polynomial;
14: Distribute monomials based on b to form a set of equations from which B and C matrices can

be created;

4.3 Example

Let be given the strictly proper transfer function in the form:

Tsp(s) = n(s)

d(s)
= b̃2s2·α + b̃1sα + b̃0

s3·α − a2s2·α − a1sα − a0
, for 0 < α < 1. (7)
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Solution: The strictly proper transfer function (7) can be considered as a pseudo-
rational strictly proper transfer functionTsp(λ) of the variableλ = sα in the following
form:

Tsp(λ) = n(λ)

d(λ)
= b̃2λ2 + b̃1λ + b̃0

λ3 − a2λ2 − a1λ − a0
. (8)

Multiplying the denominator of the (8) byλ−3 weobtain the characteristic polynomial
in the form:

d(λ) = 1 − a2λ
−1 − a1λ

−2 − a0λ
−3. (9)

In the next step using procedure presented in paper [23] we determine all the
possible digraph structures corresponding to the characteristic polynomial (9). From
all the potential realisations, we choose the realisation presented in Fig. 1 and we
write the state matrix in the form:

A =
⎡
⎣w(v1, v1) w(v2, v1) w(v3, v1)

w(v1, v2) 0 0
0 w(v2, v3) 0

⎤
⎦ , (10)

where:

a2 = w(v1, v1), a1 = w(v1, v2) · w(v2, v1), a0 = w(v1, v2) · w(v2, v3) · w(v3, v1).

In the next step we must determine matrices B and C. Multiplying nominator of the
strictly proper transfer function (8) by λ−2 we obtain the following polynomial in
the form which is needed to draw the digraph:

n(λ) = b̃2 + b̃1λ
−1 + b̃0λ

−2. (11)

To the digraph presented in Fig. 1 we add source vertex s and output vertex y and
connect them. Assuming that matrix B contains one non-zero entry, we obtain the
following three cases:

Fig. 1 One of the possible
realisation of the
characteristic polynomial (9)

v1 v2 v3

w(v1, v1)λ−1

w(v1, v2)λ−1 w(v2, v3)λ−1

w(v2, v1)λ−1

w(v3, v1)λ−1
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v1

v2

v3

s

y

w(s, v2)

w(v1, y)

w(v2,y)

w(v3, y)

w(v1, v1)λ−1 w(v2, v3)λ−1

w(v1, v2)λ−1

w(v2, v1)λ−1

w(v3, v1)λ−1

Fig. 2 Realisations of the strictly proper transfer function (7) – Case 2

Case 1: The first case, when source is connected with vertex belonging to intersec-
tion set of digraph corresponding monomials (vertex v1). This case was considered
in-detail in papers [25, 26].

Case 2: The second case when source s is connected with vertex v2 (see Fig. 2).
Then, using a created digraph we can write a set of equations in the form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(s, v2)w(v2, y) = b̃2
λ−1 w(v2, v1)w(s, v2)w(v1, y) − w(v1, v1)w(s, v2)w(v2, y)+

w(v2, v1)w(v2, v1) = b̃1
λ−2 w(v2, v3)w(v3, v1)w(s, v2)w(v1, y)−

w(v1, v1)w(v2, v3)w(s, v2)w(v3, y) = b̃0

. (12)

After solving the set of the Eq. (12), we can write the input and output matrices
in the following form:

B =
⎡
⎣ 0

w(s, v2)
0

⎤
⎦ , C = [

c1 c2 c3
]
, (13)

where:

c1 = b̃2w(v1, v1)
2 + b̃1w(v1, v1) + b̃0

w(s, v2) [w(v1, v1)w(v2, v1) + w(v2, v3)w(v3v1)]
, c2 = b̃2

w(s, v2)
,

c3 = w(v1, v1)w(v2, v3)w(v3, v1)̃b2 + w(v2, v3)w(v3, v1)̃b1 − w(v2, v1)̃b0
w(v2, v3)w(s, v2) [w(v1, v1)w(v2, v1) + w(v2v3)w(v3, v1)]

.

The desired realisation of the (7) is given by (10) and (13).

Case 3: The third case when source s is connected with vertex v3 (see Fig. 3). Then,
using a created digraph we can write a set of equations in the form:
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v1

v2 v3

s

y

w(s, v3)

w(v1, y)

w(v2, y)

w(v3, y)

w(v1,v 1)λ−1 w(v2, v3)λ−1

w(v1, v2)λ−1

w(v2, v1)λ−1

w(v3, v1)λ−1

Fig. 3 Realisations of the strictly proper transfer function (7) – Case 3

⎧⎪⎪⎨
⎪⎪⎩

w(s, v3)w(v3, y) = b̃2
λ−1 w(v3, v1)w(s, v3)w(v1, y) − w(v1, v1)w(s, v3)w(v3, y) = b̃1
λ−2 w(v1, v2)w(v3, v1)w(s, v3)w(v2, y)−

w(v1, v2)w(v2, v1)w(s, v3)w(v3, y) = b̃0

. (14)

After solving the set of the Eq. (14), we can write the input and output matrices
in the following form:

B =
⎡
⎣ 0

0
w(s, v3)

⎤
⎦ , C = [

c1 c2 c3
]
, (15)

where:

c1 = b̃1 + w(v1, v1)̃b2
w(v3, v1)w(s, v3)

, c2 = b̃0 + w(v1, v2)w(v2, v1)̃b2
w(v1, v2)w(v3, v1)w(s, v3)

, c3 = b̃2
w(s, v3)

.

The desired realisation of the (7) is given by (10) and (15).

5 Concluding Remarks

In this paper first approach to extending the algorithm presented in [22–24] was pre-
sented.Modifiedmethod allows for finding (A, B, C)matrices directly fromobtained
digraph structures of one-dimensional dynamic system. Presented algorithm finds a
set of possible realisations instead of just a few, as was in the case of canonical
forms approach. Moreover, proposed method is possible to implement numerically
in both time andmemory efficientway due to it’s construction that allows parallelism.
Described method was presented along with pseudo-code algorithm and illustrated
in the article with numerical example.
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Further work includes extension of the algorithm to be able to obtain (A, B, C)

matrices of 2-D fractional systems and analysis of reachability of systems, including
the experimental evaluation of the reachability index for 2-D systems, which is still
an open problem.
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in Automation, Robotics and Measuring Techniques, Advances in Intelligent Systems and
Computing, vol. 350, pp. 73–83. Springer International Publishing, Switzerland (2015)

22. Hryniów, K., Markowski, K.A.: Optimisation of digraphs creation for parallel algorithm for
finding a complete set of solutions of characteristic polynomial. In: 20th International Confer-
ence on Methods and Models in Automation and Robotics (MMAR), pp. 1139–1144 (2015)



368 K.A. Markowski and K. Hryniów

23. Hryniów, K., Markowski, K.A.: Digraphs-building method for finding a set of minimal reali-
sations of positive 2-D dynamic systems. Syst. Control Lett. (2016) (Submitted to)

24. Hryniów, K., Markowski, K.A.: Digraphs minimal positive stable realisations for fractional
one-dimensional systems. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and
Applications of Non-Integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357,
pp. 105–118. Springer International Publishing, Switzerland (2015)

25. Markowski, K.A.: Digraphs structures corresponding to minimal realisation of fractional
continuous-time linear systems with all-pole and all-zero transfer function. In: 2016 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR) (2016)

26. Markowski,K.A.: Twocases of digraph structures corresponding tominimal positive realisation
of fractional continuous-time linear systems of commensurate order. J. Appl. Nonlinear Dyn.
(2016) (Accepted)



Relative Controllability of Nonlinear
Fractional Delay Dynamical Systems
with Time Varying Delay in Control

Joice Nirmala Rajagopal

Abstract This paper investigate the relative controllability of nonlinear fractional
delay dynamical system with time varying delay in control. The necessary and suf-
ficient conditions for the relative controllability criteria for linear fractional delay
system are obtained. The sufficient conditions for the relative controllability of non-
linear fractional delay system are obtained by using Schauder fixed point arguments.
Illustrative examples are given to examine the results obtained.

Keywords Controllability · Delay differential equation · Fractional calculus ·
Laplace transform

1 Introduction

It is evident that many realistic model must include some of the past history of the
system.A formulation by a system of ordinary differential equations is not possible to
describe physical processes and they canbedescribedby a systemof delaydifferential
equations. A related study on analytic solutions of linear delay differential equations
has been studied by Bellman and Cooke [1], Smith [2], Halaney [3] Smith and Hale
[4]. They have applied the method of steps to find series solution of delay differential
equations. Using of Banach and Schauder fixed point theorem we can find in [5, 6].

Fractional differentials and integrals provide more accurate models of systems
under consideration. Many authors have demonstrated the dynamics of interfaces
between nanoparticles and substrates [7], bioengineering [8], continuum and statis-
tical mechanics [9], filter design, circuit theory and robotics [10]. Differential equa-
tionswith fractional order have recently proved to be valuable tools to themodeling of
many physical phenomena.Moreover,Machoda et al. [11, 12] analysed and designed
the fractional order digital control systems and also modeled the fractional dynamics
in DNA. Apart from stability, another important qualitative behavior of a dynamical
system is controllability. Controllability is used to influence an object behavior so
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as to accomplish a desire goal. Dauer and Gahl [13] obtained the controllability of
nonlinear delay systems. Balachandran and Dauer [14] studied the controllability
problems for both linear and nonlinear delay systems. The relative controllability of
nonlinear fractional dynamical system with multiple delays and distributive delays
in control have been discussed by Balachandran et al. [15–17]. Klamka [18, 19]
established the controllability of both linear and nonlinear system with time variable
delay in control. Manzanilla et al. [20] obtained the controllability of differential
equation with delay and advanced arguments. Recently, Mur et al. [21] studied the
relative controllability of linear systems of fractional order with delay. Detail study
on controllability of fractional delay dynamical systems is given in [22, 23].

2 Preliminaries

This section begins with definitions and properties of fractional operator, special
functions and its Laplace transformation. Finally the solution representation of frac-
tional delay differential is given by using Laplace transform [24, 25].

(a) The Caputo fractional derivative of order α > 0, n − 1 < α < n, is defined as

C Dα f (t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where the function f (t) has absolutely continuous derivative upto order n − 1.
The Laplace transform of Caputo derivative is given in [24].

(b) The Mittag-Leffler functions of various type are defined as

Eα(z) = Eα,1(z) =
∞∑
k=o

zk

Γ (αk + 1)
, z ∈ C, Re(α) > 0, (1)

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z,β ∈ C, Re(α) > 0, (2)

Eγ
α,β(−λtα) =

∞∑
k=0

(γ)k(−λ)k

k!Γ (αk + β)
tαk, (3)

where (γ)n is a Pochhammer symbol which is defined as γ(γ + 1) · · ·
(γ + n − 1) and (γ)n = Γ (γ + n)

Γ (γ)
. The Laplace transform of Mittag-Leffler

functions (1), (2) and (3) are given in [24].
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In order to prove our main results we need the following fixed point theorem:

Theorem 1 [26] (Schauder’s Fixed Point Theorem) Let M be a compact, convex set
in a Banach space X and T : M → M be continuous. Then T has a fixed point M.

3 Linear Delay Systems

Consider the fractional delay dynamical systems with multiple delays in control

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)), t ∈ J = [0, T ], (4)

x(t) = φ(t),−h < t ≤ 0,

where 0 < α < 1, x ∈ R
n , u ∈ R

m A, B are n × n matrices and Ci are n × m matri-
ces for i = 0, 1, 2, . . . , M. Assume the following conditions

(H1) The functions σi : J → R, i = 0, 1, 2, . . . , M are twice continuously differ-
entiable and strictly increasing in J . Moreover

σi (t) ≤ t, i = 0, 1, 2 · · · M, for t ∈ J (5)

(H2) Introduce the time lead functions ri (t) : [σi (0),σi (T )] → [0, T ], i = 0, 1,
2, . . . , M such that ri (σi (t)) = t for t ∈ J . Further σ0(t) = t and for t = T , the
following inequality holds

σM(T ) ≤ σM−1(T ) ≤ · · · σm+1(T ) ≤ 0 = σm(T ) < σm−1(T ) = · · · = σ1(T )

= σ0(T ) = T . (6)

The following definitions of complete state of the system (4) at time t and relative
controllability are assumed.

Definition 1 [27] The set y(t) = {x(t),β(t, s)}, where β(t, s) = u(s) for s ∈ [min
hi (t), t) is said to be the complete state of the system (4) at time t .

Definition 2 System (4) is said to be relatively controllable on [0, T ] if for every
complete state y(t) and every x1 ∈ R

n there exists a control u(t) defined on [0, T ],
such that the solution of system (4) satisfies x(T ) = x1.

The solution of the system (4) by using Laplace transform is expressed as

x(t) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s)

M∑
i=0

Ciui (σi (s))ds. (7)
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where

Xα(t) = L−1[sα−1(sα I − A − Be−hs)−1](t),

and

Xα,α(t) = t1−α

∫ t

0

(t − s)α−2

Γ (α − 1)
Xα(s)ds.

Using the time lead functions ri (t), the solution can be written as

x(t) = xL(t;φ) +
M∑
i=0

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds,

where

xL(t;φ) = Xα(t)φ(0) + B
∫ 0

−h
(t − s − h)α−1Xα,α(t − s − h)φ(s)ds.

By using the inequality (6) we get

x(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.

For simplicity, let us write the solution as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds, (8)

where

H(t) =
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
M∑

i=m+1

∫ σi (t)

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds.
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Now let us define the controllability Grammian matrix

W =
m∑
i=0

∫ T

0
(Xα,α(T − ri (s))Ci ṙi (s))(Xα,α(T − ri (s))Ci ṙi (s))

∗ds,

where the ∗ denotes the matrix transpose.

Theorem 2 The linear system (4) is relatively controllable on [0, T ] if and only if
the controllability Grammian matrix is positive definite for some T > 0.

The proof this statement is similar to proof given by Balachandran et al. [15] by
defining the control function as

u(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))Ci ṙi (t))

∗W−1 [x1 − xL(T ;φ) − H(T )] ,

(9)

4 Nonlinear Delay Systems

Consider the nonlinear fractional delay dynamical systems with multiple delays in
control of the form

C Dαx(t) = Ax(t) + Bx(t − h) +
M∑
i=0

Ciu(σi (t)) + f (t, x(t), x(t − h), u(t)), t ∈ J,

x(t) = φ(t),−h < t ≤ 0. (10)

where 0 < α < 1, x ∈ R
n , u ∈ R

m and A, B are n × n matrices, Ci for
i = 0, 1, . . . , M are n × m matrices and f : J × R

n × R
n × R

m → R
n is a con-

tinuous function. Further we impose the following assumption

(H3) The continuous function f satisfies the condition that

lim
p→∞

| f (t, p)|
|p| = 0, (11)

uniformly in t ∈ J , where p = |x | + |y| + |u|. Similar to the linear system, the
solution of nonlinear system (10) using time lead function ri (t) is given as

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − 1), u(s))ds. (12)

Theorem 3 Assume that the hypothesis (H1)–(H3) are satisfied and suppose that
the linear fractional delay dynamical system (4) is relatively controllable. Then the
nonlinear system (10) is relatively controllable on J .
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Proof Define Ψ : Q → Q by

Ψ (x, u) = (y, v)

where

v(t) = (T − ri (t))
1−α(Xα,α(T − ri (t))C

∗
i ṙi (t))

∗

× W−1

[
x1 − xL(T ;φ) −

m∑
i=0

∫ 0

σi (0)

[
(T − ri (s))

α−1Xα,α(T − ri (s))

× Ci ṙi (s)β(s)ds

]

−
M∑

i=m+1

∫ T

0
(T − ri (s))

α−1Xα,α(T − ri (s))Ci ṙi (s)β(s)ds

−
∫ T

0
(T − s)α−1Xα,α(T − s) f (s, x(s), x(s − h), u(s))ds

]
, (13)

and

y(t) = xL(t;φ) +
m∑
i=0

∫ 0

σi (0)
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)v(s)ds

+
M∑

i=m+1

∫ t

α0

(t − ri (s))
α−1Xα,α(t − ri (s))Ci ṙi (s)β(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − 1), v(s))ds, (14)

Let

ai = sup ||Xα,α(T − ri (s))||, bi = sup ||ṙi (s)||, i = 0, 1, 2, . . . , M, ν = sup ||β(s)||

ϑ = sup ||Xα,α(T − s)||, μ =
m∑
i=0

ai bi ||Ci ||Ni +
M∑

i=m+1

ai bi ||Ci ||Mi ,

ci = 4ai bi ||C∗
i ||||W−1||να−1Tα, di = 4ai bi ||C∗

i ||||W−1||[|x1| + β + μ],

a = max{bα−1Tα||Ci ||, 1}, b =
m∑
i=0

ai bi Li , c2 = 4ϑα−1Tα, d2 = 4[β + νμ],

Ni =
∫ 0

σi (0)
(T − ri (s))

α−1ds, Mi =
∫ σi (T )

σi (0)
(T − ri (s))

α−1ds,
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Li =
∫ T

0
(T − ri (s))

α−1ds, c = max{ci , c2}, d = max{di , d2}
sup | f | = {sup | f (t, x(t), x(t − 1), u(t))|, t ∈ J }.

Then

|v(t)| ≤ ||C∗
i ||aibi ||W−1||[||x1|| + β + μ] + aibi ||C∗

i ||||W−1||ϑα−1T α,

≤ 1

4a
(d + c sup | f |)

and

|y(t)| ≤ β + νμ +
(

m∑
i=0

aibi ||Ci ||Liα
−1T α

)
v(s) + ϑα−1T α sup | f |,

≤ d

2
+ c

2
sup | f |.

By Proposition 1 in [28], the function f satisfies the following conditions. For each
pair of positive constants c and d, there exists a positive constant r such that for
|p| ≤ r , then

c| f (t, p)| + d ≤ r for all t ∈ J. (15)

Also, for given c and d, if r is a constant such that r < r1 will also satisfy (15). Now
take c and d as given above and choose r so that (15) is satisfied. Therefore ||x || ≤ r

2
and ||u|| ≤ r

2 , then |x(s)| + |y(s)| ≤ r, for all s ∈ J . It follows that d + c sup | f |
≤ r. Therefore |u(s)| ≤ r

4a for all s ∈ J and hence ||u|| ≤ r
4a , which gives ||x || ≤ r

2 .

Thus,

Q(r) = {(x, u) ∈ Q : ||x || ≤ r

2
and ||u|| ≤ r

2
},

then Ψ maps Q(r) into itself. Our objective is to show that Ψ has a fixed point, since
f is continuous, it follows that Ψ is continuous. Let Q0 be a bounded subset of Q.
Consider a sequence {(y j , v j )} contained in Ψ (Q0), where we let

(y j , v j ) = Ψ (x j , u j ),

for some (x j , u j ) ∈ Q0, for j = 1, 2, . . .. Since f is continuous | f (s, x j (s), x j

(s − h), u j (s))| is uniformly bounded for all s ∈ J , and j = 1, 2, 3, . . .. It follows
that {(y j , v j )} is a bounded sequence in Q. Hence {v j (t)} is equicontinuous and a
uniformly bounded sequence on [0, t1]. Since {y j (t)} is a uniformly bounded and
equicontinuous sequence on [−h, t1], an application of Ascoli’s theorem yield a fur-
ther subsequence of {(y j , v j )} which converges in Q to some (y0, v0). It follows
that Ψ (Q0) is sequentially compact, hence, the closure is sequentially compact.
Thus, Ψ is completely continuous. Since Q(r) is closed, bounded and convex, the
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Schauder fixed point theorem implies that Ψ has a fixed point (x, u) ∈ Q(r), such
that (y, v) = Ψ (x, u) = (x, u). It follows that

x(t) = xL(t;φ) + H(t) +
m∑
i=0

∫ t

0
(t − ri (s))

α−1Xα,α(t − ri (s))Ci ṙi (s)u(s)ds

+
∫ t

0
(t − s)α−1Xα,α(t − s) f (s, x(s), x(s − h), u(s))ds, (16)

for t ∈ J and x(t) = φ(t) for t ∈ [−h, 0]

X (T ) = x1.

Hence the system (10) is relatively controllable on J.

5 Examples

Example 1 Consider the linear fractional delay dynamical systems with delay in
control by the fractional differential equation

C D
3
4 x(t) =

(−1 0
0 −2

)
x(t) +

(
0 0

−1 0

)
x(t − 1) +

(
1
0

)
u(t)

+
(
0
1

)
u(t − 1), (17)

whereα = 3
4 , h = 1,σ = 1, A =

(−1 0
0 −2

)
, B =

(
0 0

−1 0

)
,C0 =

(
1
0

)
, andC1 =(

0
1

)
with initial state x(0) =

(
2
4

)
and final state x(1) =

(
6
8

)
. The solution of the

Eq. (17) by using Laplace transform is of the form

x(t) =
[t]∑
n=0

Bn(t − n)
3
4 n E 3

4 , 34 n+1(A(t − n)
3
4 )

+ B
[t]∑
n=0

Bn
∫ 0

−1
(t − s − n − 1)

3
4 n+ 3

4 −1E 3
4 , 34 (n+1)(A(t − s − n − 1)

3
4 )φ(s)ds

+
[t]∑
n=0

1∑
i=0

BnCi

∫ t−n

0
(t − ri (s) − n)

3
4 n− 1

4 (A(t − ri (s) − n))
3
4 ṙi (s)u(s)ds.
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Fig. 1 The trajectory of the
dynamical system without
control
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Now, consider the controllability on [0, 1], where [t]=0, the solution is of the form

x(t) = E 3
4 ,1(At

3
4 ) + Bt

3
4 E 3

4 , 34
(A(t

3
4 ))

+
1∑

i=0

Ci

∫ t

0
(t − ri (s))

− 1
4 E 3

4 , 34
(A(t − ri (s))

3
4 )ṙi (s)u(s)ds,

The Grammian matrix is defined as

W =
1∑

i=0

∫ 1

0
[Ci E 3

4 , 34
(A(1 − ri (s))

3
4 )ṙi (s)][Ci E 3

4 , 34
(A(1 − ri (s))

3
4 )ṙi (s)]∗ds,

where ri (s) is a time lead function and it is defined as r0(s) = s and r1(s) = s − 1.
Then the Grammian matrix is

W =
(
0.1897 0

0 86.8973

)

which is positive definite. Then by the Theorem 1 the system is controllable on
[0, 1].

Figure1 represent the trajectory of the systemwithout control and Fig. 2 represent
the trajectory of the system with control.

Example 2 Consider the nonlinear fractional delay dynamical system of the form

C D
3
4 x(t) = Ax(t) + Bx(t − 1) + C0u(t) + C1u(t − 1) + f (t, x(t), x(t − 1), u(t)),

x(t) = φ(t) (18)

The matrices A, B,C0 and C1 are defined as above and the function f is taken as
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Fig. 2 The trajectory of the
dynamical system with
control
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f (t, x(t), x(t − 1), u(t)) =
(

0
x1(t) sin t

x21 (t)+x22 (t)
+ 1

x21 (t−1)+u(t)
.

)
(19)

Here also we consider the controllability on the [0, 1]. Since the linear system (17) is
controllable and the nonlinear function (19) satisfies the hypothesis of the Theorem 2
we say that the nonlinear system (18) is controllable on [0, 1].

6 Conclusion

The relative controllability of nonlinear fractional delay dynamical system with time
varying delay in control is discussed. The necessary and sufficient conditions for
the relative controllability criteria for linear fractional delay system are obtained
by constructing Grammian matrix. The controllability of nonlinear fractional delay
dynamical systems is obtainedbyusing theSchauder’s fixedpoint theorem.Examples
with numerical simulation is given to examine the results developed.
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Stability Analysis for the New Model
of Fractional Discrete-Time Linear
State-Space Systems

Andrzej Ruszewski

Abstract In the paper the problem of asymptotic stability of fractional discrete-time
linear systems described by the new model are addressed. Necessary and sufficient
conditions for asymptotic stability are established. It is shown that location of all
eigenvalues of the state matrix in the stability region is necessary and sufficient for
asymptotic stability. The parametric description of boundary of this region is given.
The considerations are illustrated by numerical examples.

Keywords Linear system · Discrete-time · Fractional-order · Asymptotic stability

1 Introduction

The fractional calculus and its application in many areas in science and engineering
have been recently investigated. Fractional differentiation is used in modelling many
physical phenomena. A variety of fractional models can be found in various fields
(e.g. diffusion, fluid flow, turbulence, viscoelasticity and polymer physics). The state
of the art of fractional systems and the application of fractional differentiation has
been presented in monographs and papers (see, e.g. [15, 16, 18, 19, 22, 24]).

The fundamental matter in the dynamical systems theory is the stability prob-
lem. In the case of linear continuous-time fractional systems this problem has been
considered in many publications (see, e.g. [3, 5, 6, 15, 18, 21]). The condition
for asymptotic stability and the stability regions in the complex plane of fractional
discrete-time systems has been derived in [8, 20, 25]. The conditions for practical
stability of fractional discrete-time systems with a given length of practical imple-
mentation has been considered in [4, 7, 14, 15] for positive systems and in [4, 11]
for non-positive (standard) systems. The robust asymptotic stability of the fractional

A. Ruszewski (B)
Faculty of Electrical Engineering, Bialystok University of Technology,
Wiejska 45D, 15-351 Białystok, Poland
e-mail: a.ruszewski@pb.edu.pl

© Springer International Publishing AG 2017
A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 407, DOI 10.1007/978-3-319-45474-0_34

381



382 A. Ruszewski

continuous-time interval systems has been presented in [1, 10, 17], for the fractional
discrete-time interval systems this problem has been analyzed in [2] for positive
systems and in [9, 23] for standard systems.

Two fractional order discrete-time state-space models of linear system have been
analyzed in the paper [13]. The new model has been introduced and solution of this
model has been presented. In this paper the asymptotic stability problem of the new
model will be investigated. New necessary and sufficient condition for asymptotic
stability will be proposed.

2 Problem Formulation

In the paper [13] was analysed the newmodel of the of fractional discrete-time linear
systems. The state equations of this model has the form

Δαx(k) = Ax(k) + Bu(k), k = {0, 1, ...}, α ∈ (0, 1),
y(k) = Cx(k) + Du(k)

(1)

with the initial condition x(0), where x(k) ∈ �n, u(k) ∈ �m, y(k) ∈ �p are the
state, input and output vectors, A ∈ �n×n, B ∈ �n×m, C ∈ �p×n, D ∈ �p×m.

The second model was considered in [13] is better known and more developed.
The state equation of this model has the form

Δαx(k + 1) = Ax(k) + Bu(k). (2)

The stability conditions of the model (2) was derived in [8, 20, 25].
The following Grünwald-Letnikov fractional difference of x(k) [19] is used

Δαx(k) =
k∑

l=0

cl(α)x(k − l) (3)

where α ∈ � is the order of the fractional difference and

cl(α) =
⎧⎨
⎩

0 for l < 0
1 for l = 0

(−1)l α(α−1)...(α−l+1)
l! for l > 0

The fractional-order discrete transfer functions with zero initial conditions of system
(1) has the form [13]

G(z) = C[(1 − z−1)αI − A]−1B + D. (4)
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It follows that the characteristic equation of the system (1) has the form

w(z) = det{(1 − z−1)αI − A}. (5)

From the theory of asymptotic stability of discrete-time linear system we have
the following definition.

Definition 1 The system (1) is called asymptotically stable if

lim
k→∞

x(k) = 0 for all x(0) ∈ �n and B = 0. (6)

The aim of the paper is to give the new necessary and sufficient conditions for
asymptotic stability of the fractional system (1). The conditions will be given in
terms of eigenvalues of the state matrix A.

3 Solution of the Problem

The characteristic equation w(z) = 0 can be written in the form

n∏
i=1

wi(z) = 0, (7)

where
wi(z) = (1 − z−1)α − λi(A) (8)

and λi(A) denotes i-th eigenvalue of A (i = 1, 2, . . . , n).
The fractional system (1) is asymptotically stable if and only if all roots of all

equationswi(z) = 0 (i = 1, 2, . . . , n) are stable, i.e. have absolute values less than 1.
Therefore, first we consider the problem of stability of roots of the equation

(1 − z−1)α − η = 0 (9)

in dependence of η = λi(A).
According to the D-decomposition method [12], the boundary of stability region

in the complex η-plane can be determined. Substituting z = exp(jω), ω ∈ [0, 2π]
(boundary of the unit circle in the complex z-plane) inEq. (9)weobtain the parametric
description of boundary of stability region in the complex η-plane of the form

η(ω) = (1 − e−jω)α, ω ∈ [0, 2π]. (10)

The closed curve (10) divide the complex η-plane into two regions – bounded and
unbounded. The boundaries of the stability region for α = 0.1, α = 0.5 and α = 0.9
on the plane of eigenvalues of A are shown in Fig. 1. It is easy to check that (10) for
α = 1 describes the circle with centre at point (1, 0) and radius 1.
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Fig. 1 The boundaries of the
stability region of system (1)
for α = 0.1 (boundary 1),
α = 0.5 (boundary 2) and
α = 0.9 (boundary 3)
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According to the D-decomposition method for the determination which region is
the stability region it is sufficient to show that the system (1) is stable for at least
one point in the stability region. The asymptotic stability region is chosen by testing
arbitrary points from each region and checking the condition (6).

Let us consider two systems (1) with matrices

A =
[
1 −0.24
1 0

]
, B =

[
0
0

]
(11)

and

A =
[−1 −0.24

1 0

]
, B =

[
0
0

]
. (12)

The matrix A of the system (11) has two eigenvalues z1 = 0.4 and z2 = 0.6 which
lie in the bounded region for α = 0.5, whereas the system matrix (12) has two
eigenvalues z1 = −0.4 and z2 = −0.6 which lie in the unbounded region for all α.
The solutions of the system (11) and (12) for initial condition x(0) = [1 0.5]T can
be computed [13] and they are shown in Fig. 2a, b, respectively. From Definition 1
and Fig. 2 it follows that the system (1), (11) is not asymptotically stable, while the
system (1), (12) is asymptotically stable. Thus, the unbounded region for given α
(see Fig. 1) is the stability region of the system (1). This region will be denoted by
S(α).

From the above we have the following theorem.

Theorem 1 The fractional system (1) is asymptotically stable if and only if all
eigenvalues λi(A) (i = 1, 2, . . . , n) are located in the stability region S(α), i.e.
λi(A) ∈ S(α) for all i = 1, 2, . . . , n.
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Fig. 2 State vectors for α = 0.5; a the system (1), (11), b the system (1), (12)

From Theorem 1 and Fig. 1 we have the following important remarks.

Remark 1 If the state matrix A has all eigenvalue with negative real part, then the
fractional system (1) is asymptotically stable for all α ∈ (0, 1).

Remark 2 If the state matrix A has at least one real eigenvalue λi(A) ∈ (0, 1), then
the fractional system (1) is not asymptotically stable for all α ∈ (0, 1).

Remark 3 Schur stability of the state matrix A (all eigenvalues have absolute values
lees than 1) is neither necessary nor sufficient for asymptotic stability of the fractional
system (1).

For ω = 0 and ω = π from (10) we obtain

η(0) = 0, (13)

η(π) = 2α. (14)

It is easy to see that η(0) < η(π) and the intervals (−∞, η(0)) and (η(π), +∞)

of the real axis lies in the stability region S(α) for any fixed α ∈ (0, 1).

Lemma 1 If all eigenvalues λi(A) are real, then the fractional system (1) is asymp-
totically stable if and only if

λi(A) < 0 or λi(A) > 2α, i = 1, 2, . . . , n. (15)

From Fig. 1 and Lemma 1 it follows that for any fixed α ∈ (0, 1) there exists a circle
D1 = D1(η0, r1) with the centre η0 = 1 and radius r1 = 1 − 2α, which entirely lies
in the bounded region. If, for example, α = 0.5 then r1 = 0.4142. The boundary of
the stability region of system (1) with α = 0.5 and circle D1 are shown in Fig. 3.
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Fig. 3 The boundary of the
stability region of system (1)
for α = 0.5 (boundary 1)
and circle D1 (boundary 2)
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From the above we have the following condition for asymptotic stability, which
is easy to apply.

Lemma 2 The fractional system (1) is not asymptotically stable if all eigenvalues
of A are located in circle D1 = D1(η0, r1), where η0 = 1 and r1 = 1 − 2α.

4 Illustrative Examples

Example 1 Check asymptotic stability of the fractional system (1) with α = 0.4 and
the state matrix

A =

⎡
⎢⎢⎣
4 −6.03 4.054 −1.025
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ . (16)

The matrix A has the following eigenvalues:

λ1,2 = 1.1 ± j0.2; λ3,4 = 0.9 ± j0.1. (17)

Circle D1 = D1(1, r1) has radius r1 = 1 − 2α = 0.3195. The boundary of the
stability region of system (1) for α = 0.4, eigenvalues (17) and circle D1 are shown
in Fig. 4.

From Fig. 4 it follows that eigenvalues (17) lie in the bounded region and circle
D1, therefore the system (1), (16) is not asymptotically stable.



Stability Analysis for the New Model of Fractional Discrete-Time … 387

Fig. 4 The boundary of the
stability region of system (1)
for α = 0.4 (boundary 1),
eigenvalues (17) (*), and
circle D1 (boundary 2)
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Example 2 Check asymptotic stability of the fractional system (1) with α = 0.5 and
the state matrix

A =

⎡
⎢⎢⎣

−1.1 −0.39 0.005 0.025
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ . (18)

The matrix A has the following eigenvalues:

λ1 = −0.5; λ2 = 0.2; λ3,4 = −0.4 ± j0.3. (19)

From Remark 2 we have that the fractional system (1) with the matrix (18) is not
asymptotically stable for any α ∈ (0, 1), because has one real eigenvalue belongs to
the interval (0, 1). Hence, the system is not asymptotically stable for α = 0.5 and
for all α.

Note, that the matrix (18) is Schur stable but the system (1), (18) is not asymp-
totically stable for any α ∈ (0, 1).

5 Concluding Remarks

The asymptotic stability of discrete-time linear system (1) of fractional order α ∈
(0, 1) have been analysed.Necessary and sufficient conditions of asymptotic stability
have been established. It is shown that location of all eigenvalues of the state matrix
A in the stability region is necessary and sufficient for asymptotic stability. The
parametric description of boundary of this region on the plane of eigenvalues of
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A has the form (10). Moreover, it has been shown that Schur stability of the state
matrix A is neither necessary nor sufficient for asymptotic stability of the fractional
system (1).

Acknowledgments This work was supported by the National Science Centre in Poland under the
work No. 2014/13/B/ST7/03467.
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Fractional Differential-Algebraic Systems
with Delay: Computation of Final Dimension
Initial Conditions and Inputs for Given
Outputs

Zbigniew Zaczkiewicz

Abstract The paper presents the problems of computation of the initial data of finite
dimension and inputs for given outputs of linear stationary fractional differential-
algebraic with delay system (FDAD). Necessary and sufficient conditions for exis-
tence of solution to the problem are established. Relatively observability of FDAD
system is formulated and proved. It is shown that there exist the unique solutions to
the problem if FDAD system is relatively observable.

Keywords Fractional differential equations · Differential-algebraic systems ·
Observability

1 Introduction

Differential equations involving differential operators of fractional (non-integer)
order have been proved to be a valuable tool in modeling many phenomena in the
fields of physics, chemistry, engineering and others (see, for example, [1–3]). Mathe-
matical aspects of fractional differential equations andmethods of their solutionwere
discussed by many authors (see, for example, [4–6] and references cited therein).

Observability for fractional linear systemhas been proposed in [7–11]. It should be
pointed out, that the most observability results are known from theoretical approach.
In this paper the problemof computation of initial final conditions and inputs for given
outputs of fractional differential-algebraic systems with delay will be formulated and
solved. Necessary and sufficient conditions for existence of solutions to the problem
will be established. Similar results can be found for fractional continuous [12] and
discrete-time [13] systems.

The paper is organized as follows. In Sect. 2 the state equations of FDAD systems
and the representation of solutions into series of determining equations solutions are
presented. Relative observability and formulation of the problem are introduced in
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Sect. 3. Necessary and sufficient conditions for existence of solutions to the problem
are given in Sect. 4. Finally, Sect. 4 contains an example.

2 Preliminaries

Let us introduce the following notation:
CDα

t is the left-sided Caputo fractional derivatives of order α defined by

CDα
t f (t) = 1

Γ (1 − α)

∫ t

0

(
d
dτ
f (τ )

)
(t − τ )α

dτ ,

where 0 < α < 1, α ∈ R and Γ (t) = ∫ ∞
0 e−τ τ t−1dτ is the Euler gamma function

(see [5] for more details). Tt = limε→+0
[
t−ε
h

]
, where the symbol [z] means entire

part of the number z; In is the identity n by n matrix.
In this paper, we concentrate on the stationary FDAD system in the form:

(
CDα

t x1
)
(t) = A11x1(t) + A12x2(t) + B1u(t), t > 0, (1a)

x2(t) = A21x1(t) + A22x2(t − h) + B2u(t), t ≥ 0, (1b)

y(t) = C1x1(t) + C2x2(t) + C3u(t), (1c)

where x1(·) ∈ R
n1 , x2(·) ∈ R

n2 , u(·) ∈ R
r, y(·) ∈ R

m, A11 ∈ R
n1×n1 , A12 ∈

R
n1×n2 , A21 ∈ R

n2×n1 , A22 ∈ R
n2×n2 , B1 ∈ R

n1×r, B2 ∈ R
n1×r, C1 ∈ R

m×n1 , C2

∈ R
m×n2 , C3 ∈ R

m×r, are constant (real) matrices, 0 < h is a constant delay.
Control and Observation system (1) should be completed with initial conditions:

x1(+0) = x0 ∈ R
n1 ,

[(
CDα−1

t x1
)
(t)

]
t=0 = x0, x2(τ ) = ψ(τ ), τ ∈ [−h, 0), (2)

where x0 ∈ R
n1; ψ ∈ PC([−h, 0),Rn2) and PC([−h, 0),Rn2) denotes the set of

piecewise continuous n2-vector-functions in [−h, 0]. Observe that x2(t) at t = 0
is determined from the Eq. (1b).

Definition 1 The solution x1(t) = x1(t; x0,ψ, u), x2(t) = x2(t; x0,ψ, u), to Con-
trol and Observation system (1) corresponding to initial condition (2) and an
admissible control u = u(t), t ≥ 0, is a pair of arbitrary vector functions x1(t)
and x2(t), t ≥ 0 satisfying the Eq. (1a) for almost all t > 0 and (1b) for all t ≥ 0
under the assumption that x1(·) is a continuous piecewise-smooth vector function
and x2(·) is piecewise continuous on the interval [0,+∞). Let y(t) = y(t; x0,ψ, u)
and ỹ(t) = y(t; x̃0,ψ, u) denote the outputs corresponding to the solutions x1(t) =
x1(t; x0,ψ, u), x2(t) = x2(t; x0,ψ, u) and x̃1(t) = x̃1(t; x̃0,ψ, u), x̃2(t) = x̃2(t; x̃0,
ψ, u) respectively.



Fractional Differential-Algebraic Systems with Delay: Computation of Final … 393

2.1 Representation of Solutions into Series of Determining
Equations Solutions

Let us introduce the determining equations of Control and Observation system (1)
(see [14] for more details).

X1,k(t) = A11X1,k−1(t) + A12X2,k−1(t) + B1Uk−1(t), (3)

X2,k(t) = A21X1,k(t) + A22X2,k(t − h) + B2Uk(t), k = 0, 1, . . . ;
with initial conditions

X1,k(t) = 0,X2,k(t) = 0, Yk(t) = 0 for t < 0 or k ≤ 0;
U0(0) = In1 , Uk(t) = 0 for t2 + k2 �= 0.

Let us introduce the determining equations of homogenous Control and Observation
system (1).

X̃1,k(t) = A11X̃1,k−1(t) + A12X̃2,k−1(t) + Uk−1(t),

X̃2,k(t) = A21X̃1,k(t) + A22X̃2,k(t − h), (4)

Yk(t) = C1X1,k(t) + C2X2,k(t), t ≥ 0, k = 1, 2, . . . ;

with initial conditions

X̃1,k(t) = 0, X̃2,k(t) = 0 for t < 0 or k ≤ 0;
U0(0) = In1 , Uk(t) = 0 for t2 + k2 �= 0.

Applying the solutions of systems (3), (4) and Laplace transform we can obtain
[15]:

Theorem 1 A solution to Control and Observation system (1) with finite initial
conditions (2) for t ≥ 0 exists, is unique and can be represented in the form of a
series in power of solutions to determining systems (3) and (4), in the following
form:

x1(t, x10,ψ) =
+∞∑
k=0

∑
i

t−ih>0

X1,k+1(ih)
∫ t−ih

0

(t − τ − ih)αk

Γ (α(k + 1))
u(τ )dτ

+
+∞∑
k=0

∑
j

t−jh>0

(t − jh)αk

Γ (αk + 1)
X̃1,k+1(jh)x10 (5a)

+
+∞∑
k=0

∑
i,j

t−(i+j)h>0

X̃1,k+1(ih)A12(A22)
i+1

∫ t−(i+j)h

0

(t−τ − (i+j)h)α(k+1)−1

Γ (α(k+1))
ψ(τ −h)dτ ,
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x2(t, x10,ψ) =
+∞∑
k=0

∑
i

t−ih>0

X2,k+1(ih)
∫ t−ih

0

(t − τ − ih)αk

Γ (α(k + 1))
u(τ )dτ+

+
∑
i

t−ih>0

X2,0(ih)u(t − ih) (5b)

+
+∞∑
k=0

∑
j

t−jh>0

(t − jh)αk

Γ (αk + 1)
X̃2,k+1(jh)x10 +

+∞∑
i=0

(A22)
i+1ψ(t−(i+1)h))

+
+∞∑
k=0

∑
i,j

t−(i+j)h>0

X̃2,k+1(ih)A12(A22)
i+1

∫ t−(i+j)h

0

(t−τ −(i+j)h)α(k+1)−1

Γ (α(k+1))
ψ(τ −h)dτ,

where ψ(τ ) ≡ 0 for τ /∈ [−h, 0).

3 Relative Observability and Problem Formulation

Here, by [16] we establish some algebraic properties of Yk(t).

Proposition 1 The solutions Yk(t), t ≥ 0, of the determining equation (4) satisfy the
condition

Yk(lh) = −
�l∑
j=1

r0jYk((l − j)h) −
n1∑
i=0

�l∑
j=0

rijYk−i((l − j)h)

for l = 0, 1, . . ., where �l = min{l, n1n2} and k = n1 + 1, n1 + 2, . . . .

Proposition 2 Solutions Yk(lh), k ≥ 1, l ≥ 0, of determining equation (4) satisfy
the following conditions:

Yk(lh) = −
θ̃k∑
j=1

p0jYk−j(lh) −
n2∑
i=1

θ̃k∑
j=0

pijYk−j((l..i)h),

where k = 1, 2, . . . , l = n2 + 1, n2 + 2, . . ., and θ̃k = min{k − 1, n1(n2)2}.
Now we introduce two definition that will be applied to the problem of computa-

tion of relative initial conditions and inputs for given outputs.

Definition 2 Control and Observation system (1) is said to be Rn-observable with
respect to x1 if for every x10, x̃10 ∈ R

n1 , the condition y(t; x10,ψ, u) ≡ ỹ(t; x̃10,ψ, u);
for every ψ ∈ PC([−h; 0);Rn2), u ∈ PC([0;+∞);Rr) and for t ≥ 0 implies that
x10 = x̃10.
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Definition 3 Control and Observation system (1) is said to be Rn-observable with
respect to x1 on [0;T ] if for every x10, x̃10 ∈ R

n1 , the condition y(t; x10,ψ, u) ≡
ỹ(t; x̃10,ψ, u); for every ψ ∈ PC([−h; 0);Rn2), u ∈ PC([0;+∞);Rr) and for t ∈
[0;T ] implies that x10 = x̃10.

For the sequel, we need the following result:

Proposition 3 [17] Functions fkj(t) = (t−jh)αk

Γ (αk+1) for t − jh > 0 and fkj(t) = 0 for
t − jh ≤ 0, where k = 0, 1, . . . ; j = 0, 1, . . ., are linearly independent for t > 0.

Now we may formulate the observability result:

Theorem 2 Control and Observation system (1) isRn-observable with respect to x1
if and only if

rank

[
Yk+1(lh),

k = 0, 1, . . . , n1; l = 0, 1, . . . , n2

]
= n1. (6)

Proof By (5) and (1c), y(t; x10,ψ, u) ≡ ỹ(t; x̃10,ψ, u) is equivalent to the following:

C1

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk + 1)
X1,k+1(jh)x10

+ C2

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk + 1)
X2,k+1(ih)x10

= C1

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk + 1)
X1,k+1(jh)x̃10

+ C2

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk + 1)
X2,k+1(ih)x̃10.

It follows from here that

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk+1)
[C1,C2]

[
X1,k+1(jh)
X2,k+1(jh)

]
(x10 − x̃10) =

+∞∑
k=0

∑
j

t−jh>0

(t − jh)α(k+1)−1

Γ (αk+1)
Yk+1(jh)(x10−x̃10)=0.
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By Theorem 2, Rn-observable with respect to x1 is equivalent to

[
Yk+1(lh),

k = 0, 1, . . . ; i = 0, 1, . . .

]
(x∗

0 − x̃∗
0) = 0 ⇒ (x∗

0 − x̃∗
0) = 0.

Thus, we have

rank

[
Yk+1(lh),

k = 0, 1, . . . ; i = 0, 1, . . .

]
= n1.

Taking into account Propositions 1 and 2, we may claim that the property of Rn-
observability with respect to x1 is saturated and this completes the proof.

Corollary 1 Control and Observation system (1) is Rn-observable with respect to
x1 on [0,Tobs] if and only if

rank

[
Yk+1(lh),

k = 0, 1, . . . , n1; l = 0, 1, . . . ,min{n2,Tobs}
]

= n1. (7)

The problem of computation of relative initial conditions and inputs for given
outputs can be stated as follows:

Given the output vector y(t) ∈ R
m for t ∈ [0;Tobs] (Tobs is given) of Control and

Observation system (1). Compute the initial conditions x0 ∈ R
n1 ,ψ ≡ 0 and the input

vector
u(t) = u0 + u1t

1 + · · · + un1−1t
n1−1 ∈ R

r, t ≥ 0 (8)

of the system.
In this paper the solvability conditions of the problem will be established for

fractional linear differential-algebraic systems with delay.

4 Problem Solution

Applying the solution representation (5) to (1c) we have

y(t) =
+∞∑
k=0

∑
i,j

t−(i+j)h>0

(
C1X̃1,k+1(jh) + C2X̃2,k+1(jh)

)
A12(A22)

i+1

×
t−(i+j)h∫

0

(t − (i + j)h − τ )α(k+1)−1

Γ (α(k + 1))
ψ(τ − h)dτ +

l∑
i=0

t−ih>0

C2X2,0(ih)u(t − ih)
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+
+∞∑
k=0

∑
j

t−jh>0

(t − jh)αk

Γ (αk + 1)

(
C1X̃1,k+1(jh) + C2X̃2,k+1(jh)

)
x10 (9)

+
+∞∑
k=0

∑
i

t−ih>0

(
C1X1,k+1(ih) + C2X2,k+1(ih)

) t−ih∫

0

(t − ih − τ )αk+

Γ (α(k + 1))
u(τ )dτ

+
+∞∑
i=0

C2(A22)
i+1ψ(t − (i + 1)h) + C3u(t)

Combining (8) and (9) we obtain

y(t) = Ω(t)x0 + F0(t)u0 + · · · + Fn1−1(t)un1−1 (10)

where

Ω(t) =
+∞∑
k=0

∑
j

t−jh>0

(t − jh)αk

Γ (αk + 1)
Yk+1(jh),

Fβ(t) =
l∑

i=0
t−ih>0

C2X2,0(ih)(t − ih)β + C3t
β

+
+∞∑
k=0

∑
i

t−ih>0

(
C1X1,k+1(ih) + C2X2,k+1(ih)

) t−ih∫

0

(t − ih − τ )αk

Γ (α(k + 1))
τβdτ ,

α = 0, . . . , n1 − 1.

For the given output vector y(t) ∈ R
m for t ∈ [0; tobs]we choose t1, t2, . . . , tn1 and

applying (10) we obtain
y = Υ w (11)

where

Υ =

⎡
⎢⎢⎢⎣

Ω(t1) F0(t1) · · · Fn1−1(t1)
Ω(t2) F0(t2) · · · Fn1−1(t2)

...
...

. . .
...

Ω(tn1) F0(tn1) · · · Fn1−1(tn1)

⎤
⎥⎥⎥⎦
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w =

⎡
⎢⎢⎢⎣

x0
u0
...

un1−1

⎤
⎥⎥⎥⎦ ∈ R

(r+1)n1 , y =
⎡
⎢⎣
y1
...

yn1

⎤
⎥⎦

where

yγ = y(tγ), Ω(tγ) =
+∞∑
k=0

∑
j

tγ−jh>0

(tγ − jh)αk

Γ (αk + 1)
Yk+1(jh),

Fβ(tγ) =
l∑

i=0
tγ−ih>0

C2X2,0(ih)(tγ − ih)β + C3t
β

+
+∞∑
k=0

∑
i

tγ−ih>0

(
C1X1,k+1(ih) + C2X2,k+1(ih)

) tγ−ih∫

0

(tγ − ih − τ )αk

Γ (α(k + 1))
τβdτ ,

β = 0, . . . , n1 − 1; γ = 1, . . . , n1.

Now we apply the well-knowing Kronecker–Cappelly Theorem [18] the Eq. (11)
has a solution w for given Υ and y if and only if

rank
[
Υ y

] = rankΥ.

Theorem 3 The Eq. (11) for r + 1 ≥ m has the solution w = [
xT0 uT0 . . . uTn1−1

]T
for any given sequence y1, y2, . . . , yn1 if and only if

rankΥ = m · n1.

Moreover, the solution
w = Υ −1y

is unique if r + 1 = m and the Eq. (11) has many solutions if r + 1 > m.

5 Example

Let us consider the following system:

Dα
t x1(t) =

[
0 1
0 0

]
x1(t) +

[
1 0
0 0

]
x2(t) +

[
0
1

]
u(t), t > 0, (12)
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x2(t) =
[
0 0
1 0

]
x1(t) +

[
0 0
1 0

]
x2(t − 1) +

[
1
0

]
u(t), t ≥ 0.

y(t) = [
1 1

]
x1(t) + [

1 0
]
x2(t) + [0]u(t).

We put the initial conditions should be completed with final initial conditions:

x0 =
[
x01
x02

]
,ψ(τ ) =

[
0
0

]
, τ ∈ [−h, 0),

and the input in the form (8)

u(t) = u0 + u1t,

for the given output

y(t) =
{−16t2 + 3t, t ∈ [0; 1)

−12t, t ∈ [1; 2)

First we present the determining equations of System (12):

X1,k(t) = [1]X1,k−1(t) + [
0 −1

]
X2,k−1(t) + Uk−1(t),

X2,k(t) =
[
0
1

]
X1,k(t) +

[
0 2
0 0

]
X2,k(t − 1),

Yk(t) = [
1 1

]
X1,k(t) + [

1 0
]
X2,k(t), (13)

for k = 0, 1, ...; t ≥ 0 with initial conditions

X1,k(t) = 0,X2,k(t) = 0, Yk(t) = 0 for t < 0 or k ≤ 0;
U0(0) = I2,Uk(t) = 0 for t2 + k2 �= 0.

Nowwe compute Yk(lh), k = 0, 1, 2; l = 0, 1, 2 for the determining system (13)
and substituting into (6) we obtain:

rank

⎡
⎢⎢⎣
1 1
0 0
0 0
0 1

⎤
⎥⎥⎦ = 2.

Thus the system (12) is Rn-observable with respect to x1.
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We choose t1 = 1
4 , t2 = 5

4 applying to (11) we have:

[
y1
y2

]
=

[
Ω(t1) F0(t1) F1(t1)
Ω(t2) F0(t2) F1(t2)

]
⎡
⎢⎢⎣
x01
x02
u0
u1

⎤
⎥⎥⎦ , (14)

where y1 = −0.25, y2 = −15, Ω(t1) =
[

1
1.78

]
, Ω(t2) =

[
1

2.17

]
,

F0(t1) = 1.22, F0(t2) = 2.29, F1(t1) = 0.28, F1(t2) = 2.01.

Then the matrix Υ takes the form:

Υ =
[
1 1.78 1.22 0.28
1 2.17 2.29 2.01

]
, (15)

The matrix (15) has full row rank and the Eq. (11) has many solutions x0, u0, u1 for
any given y1, y2. Applying (15) to (14) we obtain for example

[
x02
u1

]
=

[
0.68 −0.09

−0.73 0.6

] [
y1
y2

]
=

[
1.18

−8.82

]
, for x01 = 0.06 and u0 = 0.05.

Theorem 4 The Eq. (11) has the unique solution only if Control and Observation
system (1) is Rn-observable with respect to x1 on [0,Tobs].
Proof By Theorem 3 the Eq. (11) has the unique solution if only if the matrix Υ

has full column rank and this implies that the matrix (7) has full column rank. Thus
the Eq. (11) has the unique solution only if Control and Observation system (1) is
R

n-observable with respect to x1 on [0,Tobs].
Remark 1 In this paper we presented FDAD systems within Caputo fractional deriv-
atives. The obtained results can be extended to FDAD systems within Riemann–
Liouville fractional derivatives (see [19] for the initial conditions problem for the
fractional systems).

6 Conclusions

Relative observability with respect to x1 for Fractional Control and Observation
differential-algebraic systems with delay (FDAD) has been presented (Theorem 2).
Necessary and sufficient conditions for existence of solution to the problem of com-
putation of the initial data of finite dimension and inputs for given outputs for FDAD
systemswere established. These considerationswill be extended to study the problem
on constrained observability problem.
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Robot Path Control with Al-Alaoui Rule
for Fractional Calculus Discretization

Artur Babiarz, Adrian Łȩgowski and Michał Niezabitowski

Abstract In this paper an application of the fractional calculus to path control is
studied. The integer-order derivative and integral are replaced with the fractional-
order ones in order to solve the inverse kinematics problem. As an approximation
of the fractional differentiator the Al-Alaoui operator with power series expansion
(PSE) is used. The proposed algorithm is a modification of the existing one based
on Grünwald–Letnikov formula. In order to maintain the accuracy and to lower the
memory requirements a history limit and a combination of fractional- and integer-
order derivation are proposed. After reaching assumed accuracy or iteration limit the
algorithm switches to integer order derivative and stops after fewadditional iterations.
This approach allows to reduce the positional error and maintain the repeatability of
fractional calculus approach. The simulated path in task space have been designed in
a way that causes the instability of standard Closed Loop Pseudoinverse algorithm.
Our study proves that use of fractional calculus may improve the joint paths.

Keywords Fractional calculus · Path planning · Motion planning ·
Inverse kinematics · Manipulator · Al-Alaoui operator

1 Introduction

Aproblem of the inverse kinematics (IK) is well known and deeply studied. There are
many algorithms that find the set of joint values for desired task space coordinates.

Many algorithms have been developed, few of them are presented in [1–5]. New
approaches suggest that the topic is still of great importance and that the algorithms
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require further improvements. For the problem of uncertainty of joint lengths the
efficient method is proposed in [6]. In papers [7, 8] authors prove that for well
known structures it is possible to utilize the new neural network based approach. For
manipulators with active spherical ball joints the solution is presented in [9]. There
are manipulators for which finding the IK solution as closed form formulas may be
hard or even impossible and therefore, numerical algorithms for few of them are
proposed in [10]. Paper [6] suggests an application of the Interval Newton method
to solving the IK problem. In order to address the time-efficiency combining the
numerical and analytical approach is proposed in paper [11].

The IK algorithm should be predictable, repeatable and accurate. The approach
presented in this paper allows to meet these requirements with limited memory
consumption which is important for implementation in robots’ controllers.

Our paper is organized as follows. The second section presents the
Grunwald–Letnikov operator with use of the short memory principle and Al-Alaoui
operator. Third section introduces the standard Jacobian-based inverse kinemat-
ics algorithm with integer-order derivative and suggests use of the Moore–Penrose
Pseudoinverse matrix. The next part proposes replacing integer-order calculus with
fractional one and modification of the existing method proposed in [12, 13] by vary-
ing the derivative order andmodifying the fractional operator. Section five introduces
the simulation settings, defines the task and initial conditions. Part six is dedicated
to the simulation results and positional accuracy with comparison of two presented
methods. The last section summarizes obtained results and underlines the advantages
as well as disadvantages of the proposed approach.

2 Fractional Calculus

The idea of non-integer order derivative and integral is nearly as old as well known
integer-order calculus. It goes back to the 1695 andLeibniz’s letter to L’Hospital [14].
There are many definitions of fractional derivative and integral. The three popular
ones are presented in this paper.

TheRiemann–Liouville (RL) derivative of non-integer order 0 < α < 1 is defined
as follows [15]:

0D
α
t y(t) = 1

Γ (1 − α)

d

dt

∫ t

0
(t − τ )−αy(τ )dτ . (1)

The Caputo’s definition of derivative has the following form [16]:

0D
α
t y(t) = 1

Γ (1 − α)

∫ t

0

y′(τ )

(t − τ )α
dτ . (2)

The Grünwald–Letnikov approach is given by the equation [15, 16]:
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aD
α
t y(t) = lim

Δt→0

⎡
⎣ 1

(Δt)α

t−a
Δt∑
k=0

y(t − kΔt)γ(α, k)

⎤
⎦ , (3)

γ(α, k) = (−1)k
Γ (α + 1)

Γ (k + 1)Γ (α − k + 1)
. (4)

The function Γ () is the Gamma function.
Often, the approximation of expression (3) is implemented with use of the short-

memory principle [17] by formula (5):

Dαy(t) ≈ 1

(Δt)α

N∑
k=0

y(t − kΔt)γ(α, k), (5)

where Δt is sampling time and N is the truncation order [12].
The last definition seems to be well suited for software implementation. With use

of lookup table (LUT ) there is no need for computing the value of γ in every iteration.
In this paper we compare the operator given by (3) with the Al-Alaoui operator

[18] after power series expansion (PSE):

sα ≈
(

8

7Δt

1 − z−1

1 + z−1

7

)α

. (6)

Having the expression (6) we can write that:

Dαy(t) ≈
(

8

7Δt

)α ∞∑
k=0

⎡
⎣ k∑

j

h(α, j, k)

⎤
⎦ y(t − kΔt), (7)

where function γ is defined as in (4) and

h(α, j, k) =
(
1

7

)k− j

γ(α, j)
Γ (−α + 1)

Γ (k − j + 1)Γ (−α − k + j + 1)
. (8)

This formula is more complicated than Grünwald–Letnikov operator however, with
proper implementation and truncation it does not require more time for computation.
As earlier, we can use LUT.

Currently researchers are looking for new applications of fractional calculus (FC)
in various branches of science.Many researchers proved that the FC can be applied in
control theory in order to design new type of controllers [19, 20]. In paper [21] frac-
tional continuous models have been studied. Implementation of fractional models
requires accurate methods of approximation. Many of them are based on approxi-
mating the sα in Laplace domain. They have been studied in [15, 18].
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These and many others applications prove the usability of fractional calculus and
therefore, need for finding new applications in order to improve solutions for well
known problems.

3 Integer-Order Inverse Kinematics

The IK solution can be found in various ways e.g. by finding the analytical formulas
[22]. In this paper we focus on differential IK solution. The common approach
suggests using the following equation:

dx

dt
= J (q)

dq

dt
, (9)

where x is the vector of coordinates in task space, q is the vector of coordinates in
joint space and J (q) is the Jacobian matrix for given q. For given target manipulator
position (Xref ) we can rewrite the Eq. (9) as follows:

J−1(qi−1)Δxi = Δqi , (10)

where

Δxi = Xref − xi−1,

qi = Δqi + qi−1,

i = 1, 2, 3, ... .

The process of finding solution is iterative and accuracy may be sensitive to num-
ber of iterations. Trajectory realization requires computing the IK solution for every
given Xref . In every iteration the algorithm takes into account demanded position
(Xref ) and previous values of task and joint space coordinates. This fact can be
written as follows:

qi−1 + J−1(qi−1)(Xref ( jΔt) − xi−1) = qi (11)

where
j = 1, 2, 3, ... .

It is worth noting that for given Xref ( jΔt) we use the value of x computed by
solving the forward kinematics problem in previous iteration. This is the local nature
of integer-order derivative.

Many researchers suggest using Moore–Penrose pseudoinverse (MPp) of matrix
in computations. This approach allows to use the expression (11) for even redundant
structures. Considering this we can write:
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J #(qi−1)Δx(i) = Δq(i) (12)

which can be rewritten as follows:

J #(qi−1)(Xref − xi−1) = qi − qi−1, (13)

qi−1 + J #(qi−1)(Xref − xi−1) = qi (14)

and finally:
qi−1 + J #(qi−1)(Xref ( jΔt) − xi−1) = qi , (15)

where J # is theMPp of matrix J . In this paper we assume that qi represents the i-th
computed value of joints and xi is the i-th computed value of task space coordinates.
These values are not time-dependent. They hold the computation results.

It has been proven that this simple approach often called closed loop pseudoinverse
(CLP) leads to an aperiodic joints motion for certain cyclic end-effector trajectories
[12]. This problemmostly concerns redundant manipulators and specific trajectories.

4 Inverse Kinematics Based on Fractional Calculus

In paper [12] authors study the application of FC to the CLPmethod and in paper [23]
authors try to have a deep insight into the repeatability problem for the redundant
manipulators. The fractional-order derivative is the global operator that has amemory
of all past events. This property may force the periodic motion for desired cyclic end-
effector trajectories. Considering the approximation of Grünwald–Letnikov deriva-
tive, in j-th time moment, we can rewrite the formula (12) as follows:

J #(qi−1)Δ
αx(i) = Δαq(i), (16)

qi +
N∑

k=1

γ(α, k)qi−k = J #(qi−1)

[
Xref ( jΔt) +

N∑
k=1

γ(α, k)xi−k

]
, (17)

where N is the truncation order and

γ(α, k) = (−1)k
Γ (α + 1)

Γ (k + 1)Γ (α − k + 1)
. (18)

Having formula (17) we can compute:

qi =J #(qi−1)

[
Xref ( jΔt) +

N∑
k=1

γ(α, k)xi−k

]
−

N∑
k=1

γ(α, k)qi−k . (19)
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After using Al-Alaoui operator with similar transformations we can rewrite
expression (16) as follows:

qi =J #(qi−1)

⎡
⎣Xref ( jΔt) +

N∑
k=1

⎡
⎣ k∑

j

h(α, j, k)

⎤
⎦ xi−k

⎤
⎦−

−
N∑

k=1

⎡
⎣ k∑

j

h(α, j, k)

⎤
⎦ qi−k,

(20)

where h(α, j, k) is given by (8).
The Eqs. (19) and (20) allow to design an iterative procedure for finding the

solution of IK problem. For given Xref at the time jΔt we compute the value of qi .
The only variable that is the function of time is the reference position.

In paper [12] authors suggest that lowering the differential orderα lowers the posi-
tioning accuracy. We can confirm that for most studied trajectories. To address this
issue we propose a variable order α. It has been proven that integer order derivation
maintains high positional accuracy. Having that in mind we can write that derivation
order is given by the expression (21):

α(c) =
{
1 if c ≥ I − d,

αs if c < I − d,
(21)

where αs is the initial order of derivative, I is the maximal number of iterations, d
defines the number of iterations with integer-order derivation and c is the iteration
number between Xref (( j − 1)Δt) and Xref ( jΔt). With that in mind we can rewrite
Eq. (19) as follows:

qi =J #(qi−1)

[
Xref ( jΔt) +

N∑
k=1

γ(α(c), k)xi−k

]
−

N∑
k=1

γ(α(c), k)qi−k (22)

and the Eq. (20) in the following way:

qi =J #(qi−1)

⎡
⎣Xref ( jΔt) +

N∑
k=1

⎡
⎣ k∑

j

h(α(c), j, k)

⎤
⎦ xi−k

⎤
⎦−

−
N∑

k=1

⎡
⎣ k∑

j

h(α(c), j, k)

⎤
⎦ qi−k .

(23)

Proposed approach may improve the accuracy. It is worth noting that this method
may be more time-efficient since few last iterations consider only previous result.
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Table 1 Denavit–Hartenberg (D–H) parameters [24]

i λi (cm) li (cm) αi (
◦) θi (

◦)
1 0 0 0 θ1

2 λ2 −3 0 −90

3 0 −3 0 θ3

4 0 −1 0 θ4

5 Simulated Path and Settings

In simulation we consider 4 degree of freedom (DOF) manipulator. The task is to
follow the given trajectory. The path is generated by periodic functions. It is chosen
in a way that allows for periodic motion of joints.

We have omitted the lower and upper bounds for joints in order to ease the task
for the algorithm. It is clear that in practical application these constraints have to
be included during the path planning. Considering the presented D–H parameters
(Table1) the Jacobian matrix takes the form:

J =
⎡
⎣−3C13 − 3C1 − C134 0 −3C13 − C134 −C134

−3S13 − 3S1 − S134 0 −3S13 − S134 −S134
0 1 0 0

⎤
⎦ , (24)

where Clm = cos(θl + θm), Slm = sin(θl + θm), Slmn = sin(θl + θm + θn), Clmn =
cos(θl + θm + θn).

The path in task space is given as a location described in Cartesian space:

Xref ( jΔt) =
⎡
⎣xre f ( jΔt)
yre f ( jΔt)
zre f ( jΔt)

⎤
⎦ =

⎡
⎣ 2.5sin(ω1 jΔt) + 1
2.5cos(ω2 jΔt) + 2.3

10cos(ω3 jΔt)

⎤
⎦ , (25)

where Δt is the time step, ω1, ω2, ω3 are the angular frequencies and

0 ≤ jΔt ≤ 50,

j = 0, 1, 2, ... .

The chosen path is designed to cause specific issues. The integer order derivation
causes vast growth of joint values. The initial time is t = 0. The angular frequencies
vary in experiments and therefore, they are specified in every figure or table. We
simulate 100s of robot’s motion (tmax = 100 (s)). The stop criterion for every given
point is defined as a maximal number of iterations I = 250. This value has been
chosen experimentally.



412 A. Babiarz et al.

For every trajectory the initial condition is as follows:

q0 = [6.2024, 10, 5.8199, 3.7168]T .

6 Results

In thefirst experimentwe study the influence ofmemory length (N ) for both fractional
operators. Figures1, 2, 3, 4, 5 and 6 present the trajectories for manipulators’ joints.
We decided to omit the second joint since its trajectory seems to remain untouched

Fig. 1 First joint trajectory with use of Grünwald–Letnikov operator for various N (own source)

Fig. 2 Third joint trajectory with use of Grünwald–Letnikov operator for various N (own source)
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Fig. 3 Fourth joint trajectory with use of Grünwald–Letnikov operator for various N (own source)

Fig. 4 First joint trajectory with use of Al-Alaoui operator for various N (own source)

by the changes. It is clear that for implementation we would use the smallest N
possible.

These Figs. 1, 2, 3, 4, 5 and 6 reveal small differences. For N = 5 the algorithm
seems to perform sufficiently well. Despite the initial step (i.e. for the first joint
from around 6 rad to around −0.5 rad) the trajectory is stable. In this test we require
a periodic motion for every joint with extreme values as close to zero as possible.
Considering this criterion we conclude that N = 5 may be sufficient for our test tra-
jectory. The small number of N meets our other requirement which is small memory
consumption. A proper truncation of the sums in (22) and (23) allows for relatively
low-cost implementation. With use of the LUT there should not be any performance
issues during the computation of γ or h(α, j, k).
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Fig. 5 Third joint trajectory with use of Al-Alaoui operator for various N (own source)

Fig. 6 Fourth joint trajectory with use of Al-Alaoui operator for various N (own source)

Since for N = 5weobtain relatively good results,wedecided to use this truncation
in other simulations. We conclude that for α ≥ 0.6 this parameter would have rather
poor impact. One must notice that function γ decays slower for lower derivative
order (we consider 0 ≤ α ≤ 1).

Figures7, 8 and 9 present the joint trajectories for various order α. In these figures
one can observe that integer-order approach causes the multiple rotations for the first
joint. We conclude that for specific cases lowering the order may improve the motion
performance which can be observed in the Fig. 9 for α = 0.6.

Tables2, 3 and 4 present the accuracy for various alpha with and without integer-
order derivation. The accuracy is defined by formula (26).
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Fig. 7 First joint trajectory with use of Al-Alaoui operator for various α (own source)

Fig. 8 Third joint trajectory with use of Al-Alaoui operator for various α (own source)

Fig. 9 Fourth joint trajectory with use of Al-Alaoui operator for various α (own source)
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Table 2 The positional accuracy for Grünwald–Letnikov approximation, N = 5

ω (rad/s) α = 0.99 α = 0.9 α = 0.8 α = 0.7 α = 0.6

2 0.0259 0.2978 0.6908 1.1781 1.7429

4 0.0253 0.2923 0.6809 1.1634 1.7424

5 0.0251 0.2914 0.6784 1.1615 1.7421

6 0.0253 0.2906 0.6772 1.1617 1.7420

8 0.0589 0.2896 0.6760 1.1605 1.7417

9 0.0262 0.2894 0.6757 1.1605 1.7421

10 0.0392 0.2953 0.6744 1.1604 1.7416

Table 3 The positional accuracy for Al-Alaoui operator, N = 5

ω (rad/s) α = 0.99 α = 0.9 α = 0.8 α = 0.7 α = 0.6

2 0.0254 0.2595 0.6097 1.0508 1.6103

4 0.0252 0.2545 0.5989 1.0466 1.6078

5 0.0251 0.2536 0.5991 1.0453 1.6041

6 0.0252 0.2529 0.5979 1.0448 1.6055

8 0.0571 0.2520 0.5960 1.0438 1.6038

9 0.0882 0.2518 0.5963 1.0445 1.6038

10 0.0244 0.2902 0.5953 1.0436 1.6040

Table 4 The positional accuracy for Al-Alaoui operator with integer-order derivation in last 10
iterations, N = 5

ω (rad/s) αs = 0.99 αs = 0.9 αs = 0.8 αs = 0.7 αs = 0.6

2 4.5754e − 16 4.9886e − 16 4.7150e − 16 4.5578e − 16 4.4400e − 16

4 4.5727e − 16 4.7071e − 16 4.3854e − 16 4.4926e − 16 4.3257e − 16

5 4.5226e − 16 4.6581e − 16 4.4414e − 16 4.3923e − 16 4.3683e − 16

6 4.4739e − 16 4.6029e − 16 4.5136e − 16 4.3621e − 16 4.1981e − 16

8 1.5469e − 15 4.3621e − 16 4.4384e − 16 4.3057e − 16 4.3016e − 16

9 1.9026e − 15 4.9731e − 16 4.5892e − 16 4.5892e − 16 4.4340e − 16

10 4.3797e − 16 4.8115e − 16 4.5356e − 16 4.2807e − 16 4.3440e − 16

Xd( j) = Xref ( jΔt) − Xc( jΔt),

Perr =
∑J−1

j=0

√
Xd( j)T Xd( j)

J
,

(26)

where J is the number of points, Xc( jΔt) is a direct kinematics result for com-
puted joint variables at j-th point. Results contained in Table3 reveal that using the
Al-Alaoui operator allows to slightly improve the accuracy for most presented simu-
lations. Adding few iterations with integer-order derivation causes further improve-
ments.
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7 Conclusions

In this paper we studied the possible application of fractional calculus in solving the
inverse kinematics problem and therefore, to manipulator path control. In this paper
we presented method based on the existing algorithm. Our experiments confirm that
there are benefits of the memory effect. We conclude that lowering the derivation to
fractional-order may improve the repeatability of joint trajectories (Figs. 7, 8 and 9)
for specified end-effector trajectory but it may increase the positional error. Our
modification allows to maintain the accuracy of well known CLP algorithm without
loosing the cyclic joints motion. The Grünwald–Letnikov and fractional Al-Alaoui
operator seem to result in similar trajectories.

The disadvantage of the proposed method is the ignorance of the joint limitations.
Properly designed algorithm has to meet these constraints. Moreover, this simple
approach does not affect the singular configurations since the Jacobian matrix is
computed without any adjustments. This is the reason why presented method may
only be the base for more advanced algorithms.
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Implementation of Bi-fractional Filtering
on the Arduino Uno Hardware Platform

Waldemar Bauer and Aleksandra Kawala-Janik

Abstract In this paper application of method based on bi-fractional filtering on
the Arduino Uno was proposed. The authors showed that the implementation of
a non-integer order filter on a micro-controller hardware platform is possible and
gives promising results. Another aspect of potential implementation of such systems
involves using biomedical data – in particular EEG signals, which were applied
during the research carried out for the purpose of this paper.

Keywords EEG · Bi-fractional filter · Arduino · Time domain Oustaloup

1 Introduction

Nowadays the implementation of non-integer order subsystems on various platform
is a broadly researched topic. One of the questions of great importance is to design
and develop an algorithm for realisation of non-integer order elements in the discrete
implementation (see: [1, 2]).

Only a very few years ago – the technology based on using biomedical data
for the purpose of control was very rare and even voice recognition or touch pan-
els were rarely used and nowadays application of brain signals (EEG) as a source
data (although very novel) has become in the past two decades very popular due
to the growing interest of researchers all over the world [3–5]. This is because
(in accordance with multiple studies) not only people, but also animals, are able to
communicate with computers using biomedical signals [3]. This particularly impor-
tant for handicapped users, unable to conduct simple tasks such as using keyboard
or mouse [4].
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The application of EEG signals is a very difficult task, as it relies on real-time
analysis and interpretation a data of (frequently) a very poor quality. Therefore a
very important role is to choose appropriate signal processing method (see: [3]), and
so the concept of using fractional calculus in technical applications became recently
very popular, although regarding it theory was developed already in the 19th century.
This is because implementation of such filtering (fractional) allows great flexibility
in filter shaping, which is not possible while using traditional filtering methods [6]

The theory of non-integer order systems can be found in e.g.: [7–11] and the
Oustaloup method was in more detail described in: [12]. It is important to mention
that the Oustaloup approximation can be used in simulations, which were described
in: [13–17], in filtering presented in more detail in: [18–20] and with appropriate
care in experiments – presented in: [21, 22].

Its sensitivity and stability problems during discretisation were deeply discussed
in: [23–25]. Different method of approximation is based on Laguerre functions (see:
[1, 26, 27]). The implementation of the algorithm requires the discretisation of the
control system designed in a continuous time domain. The earlier results (see: [28])
prove that the transfer function cannot be directly implemented.

The further part of this paper is organised as follows, where the bi-fractional filter
is presented in a transmutation and differential equation form. Then the time-domain
Oustaloup approximation is shown. The results of experiments are then presented and
the main differences between the Matlab-Simulink and the Arduino Uno hardware
platform filter realisation are discussed. Finally the conclusions and future works are
drawn.

2 Bi-fractional Filter

In this paper the authors focused on the digital realisation of bi-fractional filters. The
filter can be given by the following transfer function (see [28]):

G(s) = c

s2α + 2bsα + c
, (1)

where:

• α is base order;
• b is damping coefficient;
• c is free coefficient.

This formula (1) can be represented in the form of a system of differential equation
with zero initial conditions:

C
0 D

α
t x(t) = Ax(t) + Bu (2)

y(t) = Cx(t)
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Fig. 1 Block diagram
realization of bi-fractional
filter in differential equation
form

with matrix:

A =
[
0 1

−c −2b

]
B =

[
0
1

]
C = [

c 0
]

Such system can be realized with non-integer order integrators as illustrated with
the Fig. 1.

3 The Original Ostaloup Non-integer Time-Domain
Approximation

The Oustaloup filter approximation with a fractional-order differentiator G(s) = sα

has a large use of potential, especially in applications [29]. An Oustaloup filter can
be designed as [12]:

Gt (s) = K
N∏
i=1

s + ω′
i

s + ωi
(3)

where:

ω′
i = ωbω

(2i−1−α)/N
u (4)

ωi = ωbω
(2i−1+α)/N
u (5)

K = ωα
h (6)

ωu =
√

ωh

ωb
(7)

Because the poles of this approximation spacing from close to −ωh to those very
close to −ωb. This spacing is not-linear and more poles are grouping near −ωb. This
is one of the main reasons of problems in discretisation process.

Time Domain Oustaloup Approximation For zero-initial condition it is possible
to describe any part of (3) as follows:
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s + ω′
k

s + ωk
⇐⇒

{
ẋk = Akxk + Bkuk
yk = xk + uk

where
Ak = − ωk, Bk = ω′

k − ωk (8)

This can be written in vector matrix notation – as below:

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

A1 0 0 . . . 0
B2 A2 0 . . . 0
B3 B3 A3 . . . 0
...

...
...

. . .
...

BN BN . . . BN AN

⎤
⎥⎥⎥⎥⎥⎦
x +

⎡
⎢⎢⎢⎢⎢⎣

K B1

K B2

K B3
...

K BN

⎤
⎥⎥⎥⎥⎥⎦
u

y = [
1 1 . . . 1 1

]
x + Ku

(9)

or in brief
ẋ = Ax + Bu

y = Cx + Du
(10)

This approach proved to be more robust to different discretisation schemes (for
more details see: [30]). This form will be use in implementation at the Arduino Uno.

4 Digital Realization Bi-fractional Filter
at the Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328. The
Atmega328 has 32 KB of flash memory for storing code (of which 0.5 KB is used for
the bootloader). It has also 2 KB of SRAM and 1 KB of EEPROM. The board has 14
digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs,
a 16MHz crystal oscillator, a USB connection, a power jack and an ICSP header. It
contains everything needed to support the microcontroller and requires simply only
USB cable in order to be connected to a computer.

4.1 Algorithm of Calculation Non-integer Integrator

In order to perform the realisation of bi-fractional filtering on the Arduino Uno plat-
form (based on Fig. 1) an algorithm to calculate response of non-integer integrator
has to be created. At this stage the time-domain Oustaloup approximation is being
used. Because the considered approximation is realised in the time-domain – dif-
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ferential scheme can be applied for creating the needed algorithm. The proposed
algorithm for the value approximation of response non-integer integrator will have
the following form:

Data: N – order of approximation
A, B,C, D – discrete matrix described approximation
xp – integrator state vector
Bu, Ax – local variable
ut – signal value in time t
x – helper integrator state vector
Result: yt – non-integer integrator response in time t
yt = 0;
for i = 0 to N − 1 do

Bu = B[i] ∗ ut Ax = 0 for j = 0 to N − 1 do
Ax = Ax + A[i][ j] ∗ xp[ j]

end
x[i] = Ax + Bu yt = yt + C[i] ∗ x[i]

end
xp = x ;
return y+ = D ∗ ut

As it was shown above – the complexity of this algorithm can be clearly seen
and it is constant and has a value of O(n2). One can easily observe the presented
algorithmworked only at basic arithmetic operation. For this reasons, it can be easily
adapted for any hardware platform e.g.: micro-controllers, PLC, FPGA.

5 Experiments and Results

The tested EEG signal was recorder using inexpensive EEG headset – Emotiv EPOC
and was ca. 700s long. The tests were carried out during imagery left- and right-hand
movements [3].

An experiment has been conducted in order to compare the performance ofMatlab
Simulink and Arduino Uno with the bi-fractional filter implementation for EEG
signal. The described time domain Oustaloup approximations has been discretised
and implemented on both considered platforms. The scheme of filtering with the use
of the Arduino Uno we can seen in Fig. 2.

The bi-fractional filter settings and time-domain Oustaloup approximation para-
meters are:

• N = 7
• ω = [10−6, 106]
• α = {0.1, 0.7}
• b = 1.5
• c = 2.24
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Fig. 2 Arduino Uno/PC connection schema

Fig. 3 Comparison filtration result with Oustaloup time domain approximation and Matlab
Simulink for α = 0.1

Result of the performed filtering for α = 0.1 is shown in the Figs. 3, 4 and the
results obtained forα = 0.7 illustrate theFigs. 5, 6. The average error betweenMatlab
Simulink and Arduino Uno implementation for the filtered signal in time has value
of 9.5.

Considering the fact that the Arduino Uno represents the floating-point numbers
as float, the presented result is very good. The second case when α = 0.7 gives
the average error value of 12.48. This shows that such implementation work was
correct and was also confirmed with the analysis in the frequency-domain presented
in Figs. 4 and 6.
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Fig. 4 FFT signal filtered by Oustaloup time domain approximation and Matlab Simulink for
α = 0.1

Fig. 5 Comparison filtration result with Oustaloup time domain approximation and Matlab
Simulink for α = 0.7
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Fig. 6 FFT signal filtered by Oustaloup time domain approximation and Matlab Simulink for
α = 0.7

6 Conclusions and Further Research

In this paper the implementation method of bi-fractional filter on the Arduino Uno
platform was proposed. The authors showed that the implementation of non-integer
order filter inmicro-controller hardware platform is possible and gives good scientific
results.

Further work will include different types of non-integer order filter prototypes,
methods of discretisation and implementation on real-time systems hardware plat-
forms.
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Fractional Prabhakar Derivative
and Applications in Anomalous
Dielectrics: A Numerical Approach

Roberto Garrappa and Guido Maione

Abstract Fractional integrals and derivatives based on the Prabhakar function are
useful to describe anomalous dielectric properties of materials whose behaviour
obeys to the Havriliak–Negami model. In this work some formulas for defining these
operators are described and investigated. A numerical method of product-integration
type for solving differential equations with the Prabhakar derivative is derived and
its convergence properties are studied. Some numerical experiments are presented
to validate the theoretical results.

Keywords Havriliak–Negami model · Fractional derivative · Prabhakar function ·
Numerical method · Product integration

1 Introduction

Complex systems in different areas, such as chemistry, electromagnetism, mechan-
ics, optics and so on, are modelled by means of integral and differential operators
of integer or fractional order. Since fractional derivatives and fractional integrals
allow to describe anomalous phenomena in a more accurate way, their use for the
description of real-life problems is gaining an increasing popularity.

In more recent years, an accurate analysis of experimental data has highlighted
the existence of situations in which classical operators of integer or fractional order
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are no more sufficient to fit data in a satisfactory way and more involved operators
have been introduced.

This is the case of the dielectric properties of Havriliak–Negami type observed in
some polymers [1] whose mathematical description in the time-domain is character-
ized in terms of the so-called Prabhakar integrals and derivatives [2, 3].

This work reviews the available formulas for defining fractional operators of
Prabhakar type involved in the description ofHavriliak–Negamimodels and proposes
a numerical method, of product-integration type, for solving the resulting fractional
differential equations.

This paper is organized as follows: in Sect. 2 the Prabhakar function is intro-
duced and its main properties are illustrated. Section3 discusses the applications of
the Prabhakar function in modelling some anomalous dielectrics in the Havriliak–
Negami model and describes the operators involved in the time-domain representa-
tion. Section4 introduces a product-integration formula for the discretization of these
operators and analyses its convergence properties. In Sect. 5 we present some numer-
ical experiments assessing the effectiveness of the proposed approach and validating
the theoretical results and we conclude the paper with some concluding remarks in
Sect. 6.

2 The Prabhakar Function

The Mittag–Leffler (ML) function is a special function playing a key role in frac-
tional calculus. After the introduction in 1902 of a one parameter version [4], the
generalization to two parameters

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z ∈ C , (1)

was proposed few years later [5]. In 1971, the Indian mathematician Tialk Raj Prab-
hakar introduced a three parameter generalization of the ML function [3]

Eγ
α,β(z) = 1

Γ (γ)

∞∑
k=0

Γ (γ + k)zk

k!Γ (αk + β)
, z ∈ C , (2)

and studied integral equations of convolution type with Eγ
α,β(z) in the kernel.

This function can be defined also for complex parameters α, β and γ under the
restriction �α > 0 and it is an entire function of order (�α)−1. It is, moreover,
a generalization of (1) since E1

α,β(z) = Eα,β(z). Nowadays, Eγ
α,β(z) is commonly

known as the three parameter ML function or Prabhakar function.
The Prabhakar function (2) provides an explicit formulation of the derivatives of

the standard ML function (1) since for any k ∈ N it is DkEα,β(z) = k!Ek+1
α,αk+β(z)

(we refer to the monograph [6] for a comprehensive analysis of the ML functions).
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In applications it is usually used a further generalization of (2) given by

eγ
α,β(t;λ) = tβ−1Eγ

α,β(tαλ) , (3)

where λ ∈ C is a parameter and t > 0 the independent real variable. For the practical
computation of eγ

α,β(t;λ) formulas (2–3) can be used only for t very close to the
origin. An asymptotic expansion holding for large values of t has been derived in [7]
for real and negative λ according to

eγ
α,β(t;λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tβ−αγ−1
∞∑
k=0

(−γ

k

)
t−αk |λ|γ−k

Γ (β − αk − αγ)
if β �= αγ

∞∑
k=1

(−γ

k

)
t−αk−1|λ|γ−k

Γ (−αk)
if β �= αγ .

For values of t in a intermediate range both asymptotic expansions (for large and
small values) usually fail to provide acceptable results. For this reason a method
based on the numerical inversion of the Laplace transform (LT) has been presented
in [8]. This method, which allows to compute the Prabhakar function in an accurate
way, presents some advantages because the LT of (3) is much more simple than the
function itself. One can indeed verify that the following LT pair holds [3, 6]

eγ
α,β(t;λ) ÷ sαγ−β

(sα − λ)γ
, �(s) > 0, |λs−α| < 1 .

By using the LT, it is also simple to verify that the integral of the Prabhakar
function is ∫ t

0
eγ
α,β(u;λ) du = eγ

α,β+1(t;λ) (4)

and a term by term derivation of the series in (2) allows to compute

d

dt
eγ
α,β(t;λ) = eγ

α,β−1(t;λ) . (5)

3 Anomalous Dielectrics and the Prabhakar Derivative

In recent years, applications of thePrabhakar functionhavebeen recognized in several
fields, ranging from astronomy [9] to physics [10], quantum mechanics [11] and so
on. One of the most interesting applications is however related to the description of
the relaxation properties of anomalous dielectric materials.

In 1967 a new model of dielectric relaxation, known as Havriliak–Negami (HN),
was proposed [1] with the aim of describing in a more realistic way non-typical
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behaviours experimentally observed in certain classes of polymers. The complex
susceptibility of the HN model (formulated in the frequency domain) is

χ̂(ω) = 1(
1 + (iωτ )α

)γ ,

where τ is the relaxation timeandα andγ two real parameters accounting respectively
for the asymmetry in the shape of the permittivity spectrum and the broadness of the
response. Usually it is assumed 0 < α, γ < 1, although in [7, 12] the extension to
0 < α,αγ < 1 has been also considered.

The HN model generalizes and extends the more familiar Debye and Cole-Cole
models for which, however, it is also available a representation in the time-domain
bymeans of differential operators of integer and fractional order. Finding differential
operators for the HN model is instead less immediate and the research in this field is
still at a very early stage.

From a formal point of view, the relationship in the frequency-domain

ŷ(ω) = χ̂(ω) f̂ (ω)

(in dielectric applications ŷ is the polarization and f̂ the electric field) is formulated
in the time-domain as (

0D
α
t + λ

)γ
y(t) = 1

ταγ
f (t) ,

where λ = τ−α and
(
0Dα

t + λ
)γ

is just a symbol to denote the fractional pseudo-
differential operator resulting from the Fourier inversion of

(
(iω)α + λ

)γ
.

Over the years some attempts have been made to provide robust and practical
characterizations of

(
0Dα

t + λ
)γ
. In [13] it was derived

(
0D

α
t + λ

)γ = exp

(
− tλ

α
0D

1−α
t

)
0D

αγ
t exp

(
tλ

α
0D

1−α
t

)
,

where the exponential of the Riemann–Liouville (RL) derivative 0D1−α
t must be

intended in terms of a series representation; the expansion

(
0D

α
t + τ−α

)γ =
∞∑
k=0

(
γ

k

)
λk

0D
α(γ−k)
t ;

was instead considered in [14, 15] and successively used for numerical simulations
in [16]. In both approaches, however, the criteria for truncating the series in order to
achieve a given accuracy are not completely clear.

Recently, Garra et al. [2] worked on the integral representation obtained by inver-
sion of the Laplace transform and proposed the following characterization
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(
0D

α
t + λ

)γ
y(t) = d

dt

∫ t

t0

e−γ
α,1−αγ(t − τ ;−λ)y(τ ) dτ , (6)

where e−γ
α,1−αγ(t − τ ;−λ) is the Prabhakar function introduced in the previous

section. A regularization in the Caputo sense has also been introduced in [2] accord-
ing to (C

0 D
α
t + λ

)γ
y(t) =

∫ t

0
e−γ
α,1−αγ(t − τ ;−λ)y′(τ ) dτ , (7)

and it has been shown that (7) is related to (6) by the relationship

(C
0 D

α
t + λ

)γ
y(t) = (

0D
α
t + λ

)γ
(y(t) − y(0)) . (8)

The derivatives (6) and (7) are clearly generalizations of the classical fractional
derivatives of RL and Caputo type. Indeed, since by the Euler’s reflection formula
1/Γ (−1) = 0, it is immediate to verify that e−1

α,1−α(t; 0) = t1−α/Γ (1 − α) andhence
when γ = 1 and λ = 0 the derivative (6) coincides with the RL derivative and (7)
with the fractional Caputo derivative.

An integral operator
(
0 Jα

t + λ
)γ

inverting the derivative (6) has been also con-
sidered in [2] as

(
0 J

α
t + λ

)γ
f (t) =

∫ t

0
eγ
α,αγ(t − u;−λ) f (u) du , (9)

thus generalizing the classical RL integral of order α when γ = 1 and λ = 0.
More recently, a further formulation of

(
0Dα

t + λ
)γ

has been proposed in terms
of fractional differences of Grünwald–Letnikov type [17]

(
0D

α
t + λ

)γ
y(t) = lim

h→0

(1 + hαλ)γ

hαγ

∞∑
k=0

Ω
(α,γ)

k y(t − kh) , (10)

where

Ω
(α,γ)

0 = 1, Ω
(α,γ)

k = 1

1 + hαλ

k∑
j=1

(−1) j
(

α

j

)(
(1 + γ) j

k
− 1

)
Ω

(α,γ)

k− j .

4 A Product Integration Rule

Let us consider the initial value problem for the pseudo fractional differential equation
of Havriliak–Negami type

{(
C
0 D

α
t + λ

)γ
y(t) = f (t, y(t))

y(0) = y0
, (11)
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where f (t, y) is assumed Lipschitz continuous with respect to the second argument.
The non-linearity in (11) is motivated by the fact that, in the dielectric applications
the right side f is the electric field which, by the Maxwell equations, itself depends
on the polarization y. Thanks to (9), the above fractional pseudo-differential equation
can be reformulated in the integral form

y(t) = y0 + (
0 J

α
t + λ

)γ
f (t, y(t)) .

In order to numerically approximate the solution of (11) we consider a grid-mesh
t j = jh, with a constant step-size h > 0. After rewriting, at t = tn , the above integral
equation in the piece-wise form

yn = y0 +
n∑
j=1

∫ t j

t j−1

eγ
α,αγ(tn − u;−λ) f (u, y(u)) du ,

the vector field f (u, y(u)) is approximate, on each interval [t j−1, t j ], by interpo-
lating polynomials and the resulting integrals are evaluated in an exact way. This
technique, which is named as product-integration, has been firstly proposed in [18]
for the numerical solution of weakly singular Volterra integral equations and hence
successfully applied to fractional differential equations [19].

The simplest method of this type is obtained by considering the constant approx-
imation f (u, y(u)) ≡ f (t j , y j ) on each interval [t j−1, t j ]. Since it is
∫ t j

t j−1

eγα,αγ(tn − u; −λ) du =
∫ tn

t j−1

eγα,αγ(tn − u; −λ) du −
∫ tn

t j
eγα,αγ(tn − u;−λ) du ,

by applying (4) we obtain

∫ t j

t j−1

eγ
α,αγ(tn − u;−λ) du = eγ

α,αγ+1(tn − t j−1;−λ) − eγ
α,αγ+1(tn − t j ;−λ)

and, since eγ
α,αγ+1(tn − t j ;−λ) = hαγeγ

α,αγ+1(n − j;−hαλ), the corresponding
numerical scheme, which can be considered as a generalization of the implicit Euler
method, reads as

yn = y0 + hαγ
n∑
j=1

w
α,γ
n− j f (t j , y j ) , (12)

where
wα,γ

n = eγ
α,αγ+1(n + 1;−hαλ) − eγ

α,αγ+1(n;−hαλ) . (13)

In the followingwewill assume that the exact solutionof (11) admits an asymptotic
expansion in mixed powers of integer order and fractional order, i.e.
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y(t) = y0 +
∞∑
j=1

c j t
j +

∞∑
j=1

d j t
αγ j (14)

for some sequences of real coefficients c j and d j . To the best of authors’ knowledge,
there exist no theoretical results on this subject; anyway, the assumption (14) appears
reasonable and by no means restrictive since it is congruent with the asymptotic
expansion of the solution of simpler weakly singular convolution integral equations
(e.g., see [20]).

Theorem 1 Let 0 < α,αγ < 1, λ > 0 and assume that the solution y(t) of (11)
admits the expansion (14). For any h > 0 there exist two positive constants C1 and
C2 (which do not depend on h) such that

|y(tn) − yn| ≤ C1h + C2t
αγ−1
n h1+αγ .

Proof The proof will follow very closely the proof of Theorem 2.1 in [21]. After
writing, at t = tn , the exact solution of (11) as

y(tn) = y0 + hαγ
n∑
j=1

w
α,γ
n− j f (t j , y(t j )) + Rn , (15)

where Rn is the quadrature error

Rn =
n∑
j=1

∫ t j

t j−1

eγ
α,αγ(tn − u;−λ)

(
f (u, y(u)) − f (t j , y(t j ))

)
du ,

we subtract (12) from (15) and, thanks to the Lipschitzianity of f , for a constant
L > 0 it is

|y(tn) − yn| < |Rn| + L
n∑
j=1

|wα,γ
n− j | · |y(t j ) − y j | .

We put M1 = sup0<t<T Eα,αγ(−tαλ) (the Prabhakar function is indeed bounded
[3]) and by using again the Lipschitzianity of f we obtain

|Rn| ≤ M1L
n∑
j=1

∫ t j

t j−1

(
tn − u

)αγ−1∣∣y(u) − y(t j )
∣∣ du ,

Note now that wα,γ
1 = Eγ

α,αγ(−λ) while for n > 1 the Taylor expansion, together
with (5), immediately leads to

wα,γ
n = eα,αγ(n + 1 − v;−hαλ), v ∈ [0, 1]
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and hence

wα,γ
n ≤ M1

(n + 1 − v)αγ−1

Γ (αγ)
< M1

nαγ−1

Γ (αγ)

from which we infer

|y(tn) − yn| < |Rn| + M1L
n∑
j=1

(n − j)αγ |y(t j ) − y j | .

Since αγ < 1 and the expansion (14), close to the origin it is |y(u) − y(t j )| ≤
M2hαγ ; away from the origin y(u) is instead smooth and, by the remainder of the
polynomial interpolation, it is |y(u) − y(t j )| ≤ M3h. Therefore, given r ∈ N such
that y(u) can be assumed non smooth for u ≤ tr and smooth elsewhere, we have

|Rn| ≤ M1L
(
M2h

αγ
r−1∑
j=1

∫ t j

t j−1

(
tn − u

)αγ−1
du + M3h

n∑
j=r

∫ t j

t j−1

(
tn − u

)αγ−1
du

)

≤ M4h
1+αγ tαγ−1

n + M5h ,

and the proof follows in the same way as the proof of Theorem 2.1 in [21]. �

An explicit counterpart of themethod (12) can be devised by using in each interval
[t j−1, t j ] the approximation f (u, y(u)) ≡ f (t j−1, y j−1). The resulting method is

yn = y0 + hαγ
n−1∑
j=0

w
α,γ
n− j−1 f (t j , y j ) (16)

and convergence properties can be proved in a similar way as in Theorem1.

5 Numerical Experiments

Tonumerically test the product integrationmethoddevised inSect. 4,wefirst consider
the linear test equation

(C
0 D

α
t + λ

)γ
y(t) = −2y(t) + cos(2πt), y(0) = 1 . (17)

Since the exact solution is not known in an analytical form, for reference we will
use the solution obtained by truncating the Grünwald–Letnikov formula (10) with a
smaller step-size h. Thanks to the first order convergence of this method [17], it can
be considered accurate enough to be used for reference. For some parameters α, γ
and λ the solution of this problem is presented in Fig. 1 (all the experiments are made
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Fig. 1 Solution of the
problem (17) for some
values of α, γ and λ
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α =0.8 γ =0.9 λ =2.0

α =0.8 γ =0.8 λ =1.0

by using Matlab and the Prabhakar function for the weights of the rule is evaluated
by means of the ml.m code devised in [8]).

In Table1 we report the error Eh = |y(tn) − yn| and the estimated order of con-
vergence (EOC) evaluated as log2(Eh/Eh/2) resulting from the application of the
product-integration method described in Sect. 4. As we can readily observe, conver-
gence of the first order is clearly achieved, thus confirming the theoretical findings
of Theorem 1.

For a second test problem we consider the nonlinear equation

(
C
0 D

α
t + λ

)γ
y(t) = t2 − (

y(t)
)2

, y(0) = 1 , (18)

whose solutions are shown in Fig. 2.
Also in this case the theoretical results on the first order convergence are confirmed

by the numerical experiments as reported in Table2, thus validating the effectiveness
of the approach proposed in this work.

Table 1 Errors and EOC for problem (17) at t = 4.0

h α = 0.9 γ = 0.8 λ = 4.0 α = 0.8 γ = 0.9 λ = 2.0 α = 0.8 γ = 0.8 λ = 1.0

Error EOC Error EOC Error EOC

2−5 4.01 × 10−3 4.08 × 10−3 3.57 × 10−3

2−6 2.02 × 10−3 0.987 2.04 × 10−3 0.999 1.73 × 10−3 1.049

2−7 1.01 × 10−3 1.000 1.01 × 10−3 1.008 8.35 × 10−4 1.047

2−8 5.04 × 10−4 1.004 5.04 × 10−4 1.009 4.06 × 10−4 1.039

2−9 2.51 × 10−4 1.005 2.51 × 10−4 1.008 1.99 × 10−4 1.030

2−10 1.25 × 10−4 1.004 1.25 × 10−4 1.006 9.80 × 10−5 1.022
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Fig. 2 Solution of the problem (18) for some values of α, γ and λ

Table 2 Errors and EOC for problem (18) at t = 2.0

h α = 0.9 γ = 0.8 λ = 4.0 α = 0.8 γ = 0.9 λ = 2.0 α = 0.8 γ = 0.8 λ = 1.0

Error EOC Error EOC Error EOC

2−5 6.79 × 10−3 7.09 × 10−3 6.62 × 10−3

2−6 3.52 × 10−3 0.947 3.64 × 10−3 0.961 3.39 × 10−3 0.965

2−7 1.80 × 10−3 0.968 1.85 × 10−3 0.976 1.72 × 10−3 0.978

2−8 9.12 × 10−4 0.981 9.34 × 10−4 0.986 8.70 × 10−4 0.986

2−9 4.60 × 10−4 0.989 4.70 × 10−4 0.992 4.37 × 10−4 0.991

2−10 2.31 × 10−4 0.993 2.36 × 10−4 0.995 2.20 × 10−4 0.994

6 Concluding Remarks

In this paper we have discussed the problem of numerically solving differential
equations with Prabhakar derivatives; problems of this kind arise in the simulation
of anomalous relaxation properties in Havriliak–Negami models.

We have devised a product-integration rule with weights expressed in terms of
the Prabhakar function and studied the convergence properties. By means of some
numerical experiments the effectiveness of the proposed approach has been illus-
trated. As far as we know, this is one of the very few methods available for solving
problems of this kind.
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Finite Element Method for Time Fractional
Keller–Segel Chemotaxis System

Arumugam Gurusamy

Abstract In this paper, we consider finite elementmethod for time fractionalKeller–
Segel chemotaxis system. The existence and uniqueness of solutions are proved by
using the Schauder’s fixed point theorem. The error estimate of the discrete solution
is also established.

Keywords Fractional derivative · Existence of solutions · Finite element method ·
Error estimate

1 Introduction

In recent years, growing attention has been focused on fractional differential equa-
tions because they can provide a better approach to describe the complex phenomena
in nature, such as viscoelastic materials, anomalous diffusion, signal processing and
control theory, etc. Some of the most applications are given in the book of Oldham
and Spanier [1], the book of Podlubny [2] and the papers of Bagley and Trovik [3].
Compared to classical integer–order differential equations, the theoretical investiga-
tions and establishment of numerical schemes for fractional-order (or fractional for
brevity) versions are more complicated due to the special properties of fractional dif-
ferential operators, such as the non-locality, history dependence, and/or long-range
interactions. In general, the fractional partial differential equations (PDEs) can be
classified as three categories: time fractional PDEs [4–6], space fractional PDEs
[7–9] and space–time fractional PDEs [10]. Chemotaxis is the directed movement
of cells as a response to gradients of a chemical signal substance. In 1970 Keller and
Segel proposed a mathematical model for the description of such a phenomenon;
it takes into account two parabolic differential equations. The main purpose of this
paper is to develop a numerical method for a class of time fractional Keller–Segel
chemotaxis models.
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In this paper, we begin with the time fractional Keller–Segel chemotaxis system
which can be written in the dimensionless form as:

∂αu

∂tα
− d1Δu − δ∇ · (ψ(u)∇v) = f in x ∈ Ω × (0, T ),

∂αv

∂tα
− d2Δv = αu − βv in x ∈ Ω × (0, T ),

⎫⎪⎬
⎪⎭ (1)

whered1, d2, δ,α andβ are the positive constants and alsoweassume that chemotaxis
sensitivity function ψ(u) = ∇u. Here, u(x, t) denotes the cell density, v(x, t) stands
for a chemoattractant concentration, δ is a chemotactic sensitivity constant and also
f is a source term. This system (1) with zero flux boundary conditions and initial
conditions

∇u · n = ∇v · n = 0 on ∂Ω, (2)

u(·, 0) = u0 and v(·, 0) = v0 inΩ. (3)

where Ω ⊂ R
d is a polygonal domain. This system (1) has been discussed theoreti-

cally in several papers when ψ(u) = u and α = 1. Liu et. al., studied H 1−Galerkin
mixed finite element method for time fractional reaction–diffusion equation in [11].
The optimal time convergence order O(Δt2−α) and the optimal spatial rate of con-
vergence in H 1 and L2−norms for variableu and its gradient s are derived. The
moving finite element methods are studied for a class of time-dependent space frac-
tional differential equations in [12]. As far as our general analysis is concerned, in
this investigation we are interested to introduce the gradient of the cell density in the
chemotaxis sensitivity function of the original Keller–Segel model. Throughout in
this paper ∂αu

∂tα is Caputo fractional-order derivative operator defined by

∂αu

∂tα
= 1

Γ (1 − α)

∫ t

0

∂u(x, τ )

∂τ

dτ

(t − τ )α
, (4)

where 0 < α < 1.
The layout of the paper is as follows. Section1 is introductory in nature. In Sect. 2,

we formulate the weak formulation of the time fractional Keller–Segel chemotaxis
system (1). In Sect. 3, we introduce the conforming finite element formulation of
the corresponding continuous weak formulation which is derived in the previous
section. Finally, in Sect. 4, we derive the existence, uniqueness and error estimate of
the discrete solutions of (1).
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2 Weak Formulations

In this section, the weak formulation and some auxiliary results are presented.
Let L2(Ω), H 1

0 (Ω), denote the usual Sobolev spaces equipped with the norms
‖ · ‖L2(Ω), ‖ · ‖H 1

0 (Ω) respectively. Denote H 1
0 (Ω) := {v ∈ H 1(Ω), v|∂Ω = 0}.

The weak formulation corresponding to (1) is given by: seek u, v ∈ X := H 1
0 (Ω)

such that

a(u,ϕ) + b(u, v,ϕ) = l1(ϕ) ∀ϕ ∈ X, (5)

a(v,ψ) + l2(u, v,ψ) = 0 ∀ ψ ∈ X, (6)

where ∀η, ζ,χ ∈ X,

a(η, ζ) :=
∫

Ω
0D

α
t ηζdx + di

∫
Ω

∇η · ∇ζdx, i = 1, 2. (7)

b(η, ζ,χ) :=
∫

Ω

δ∇η∇ζ · ∇χdx, (8)

l1(ζ) := ( f, ζ) l2(η, ζ,χ) :=
∫

Ω

(η − ζ)χdx . (9)

In the sequel, let C∞
0 (0, T ) denote the space of all infinitely differentiable functions

on (0, T ) with compact support in (0, T ]. Then we introduce the following Sobolev
space 0Hα(0, T ), 0 < α < 1 which is the closure of 0C∞(0, T ) equipped with the
norm ‖ · ‖Hα(0,T ),where ‖ · ‖Hα(0,T ) denotes the norm in the usual fractional Sobolev
space Hα(0, T ). Further, define the space with 0 < α < 1,

Bα((0, T ) × Ω) =0H
α((0, T ), L2(Ω)) ∩ L2((0, T ), H 1

0 (Ω)), (10)

where Bα((0, T ) × Ω) is a Banach space with respect to the norm

‖v‖Bα((0,T )×Ω) = (‖v‖Hα((0,T ),L2(Ω)) + ‖v‖L2((0,T ),H 1
0 (Ω))

)1/2
.

An equivalent compact vector form corresponding to (5) and (6) is given by: for
given f ∈ L2(Ω), seek � = (u, v) ∈ K := X × X such that

G(�,�) := A(�,�) + B(�,�,�) = L(�,�,�) ∀ � ∈ K, (11)

where ∀ Ξ = (η1, η2),Θ = (θ1, θ2) and Φ = (ϕ1,ϕ2) ∈ K,
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A(Θ,Φ) := a(θ1,ϕ1) + a(θ2,ϕ2), (12)

B(Ξ,Θ,Φ) := b(η1, θ2,ϕ1), (13)

L(Θ,Θ,Φ) := ( f,ϕ1) + (θ1 − θ2,ϕ2). (14)

The properties of boundedness and coercivity of A(·, ·), boundedness of B(·, ·, ·)
and L(·, ·, ·) can be easily verified:

A(Θ,Φ) ≤ ‖Θ‖Hα/2‖Φ‖Hα/2 + ‖Θ‖L2‖Φ‖L2 , (15)

A(Θ,Θ) ≥ C ‖Θ‖Hα/2 + ‖Θ‖L2 , (16)

B(Ξ,Θ,Φ) ≤ C ‖Ξ‖L2‖Θ‖L2‖Φ‖L2 . (17)

A linearization of G around Ψ in the direction Θ is defined as follows:

F(Θ,Φ) := A(Θ,Φ) + 2B(Ψ,Θ,Φ). (18)

3 Conforming Finite Element Methods

Let Th be a regular and conforming triangulation of Ω into closed triangles. Let us
define the mesh discretization parameter as h := maxT∈Th hT . The conforming finite
element space is defined as

Vh =
{
v ∈ H 1(Ω) : v|T ∈ Th with ∂v

∂ν

∣∣∣∣
∂Ω

= 0

}
⊂ H 1

0 (Ω). (19)

The conforming finite element formulations corresponding to (6) is defined by: seek
uh, vh ∈ Vh such that

a(uh,ϕ) + b(uh, vh,ϕ) = l1(ϕ) ∀ϕ ∈ Vh, (20)

a(vh,ψ) + l2(uh, vh,ψ) = 0 ∀ ψ ∈ Vh, (21)

where a(·, ·), b(·, ·, ·), l1(·) and l2(·, ·, ·) are already defined in (7)–(9). An equivalent
vector formulation can also be defined as: seek Ψh ∈ Kh := Vh × Vh such that

A(�h,�) + B(�h, �h,�) = L(�h, �h,�) ∀ � ∈ Kh, (22)

where A(·, ·), B(·, ·, ·) and L(·, ·, ·) are already defined.

Lemma 1 Let Πh : V −→ V be the interpolation operator. Then for
φ ∈ Bα/2((0, T ) × Ω), 0 < α < 1, it holds:

‖φ − Πhφ‖m ≤ Chmin{k+1,α/2}−m‖φ‖α/2, for m = 0, 1, 2. (23)
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Lemma 2 If the bilinear form F(·, ·) is nonsingular on K × K, then the bilinear
form defined by

F(Θ,Φ) := A(Θ,Φ) + 2B(ΠhΨ,Θ,Φ), (24)

is nonsingular on Kh × Kh.

4 Existence, Uniqueness and Error Estimate

In this section, we establish that the results concerning the existence, uniqueness and
error estimate in Bα/2 of the discrete solution. For this purpose of the existence of
the solution of (22), define the nonlinear map Γ : Kh → Kh by

F̃(Γ (Θ),Φ) = L(Θ,Θ,Φ) + 2B(ΠhΨ,Θ,Φ) − B(Θ,Θ,Φ). (25)

Now we prove contraction result fro the nonlinear map Γ and establish the existence
and uniqueness of the solution Ψh .

Theorem 1 (Existence and uniqueness) LetΨh be an isolated solution of (11). Then,
for sufficiently small h, the discrete problem (22) possesses a unique solution.

Proof The proof of this theorem is given in the following 3 steps.

Step 1: (Mapping of ball to ball)
Let BR(ΠhΨ ) := {Φ ∈ K : ‖Φ − ΠhΨ ‖Bα/2 ≤ R}. Now we have to show that for
sufficiently small mesh parameter h, the map Γ maps the ball BR(ΠhΨ ) to itself.
That is, we show that, for any Θ ∈ Kh , there exists a positive constant R(h) such
that

‖Θ − ΠhΨ ‖Bα/2 ≤ R(h) ⇒ ‖Γ (Θ) − ΠhΨ ‖Bα/2 ≤ R(h). (26)

Since F̃(·, ·) is nonsingular, there exists Φ ∈ Kh with ‖Φ‖Bα/2 = 1 such that

β‖Γ (Θ) − ΠhΨ ‖Bα/2 ≤ F̃(Γ (Θ) − ΠhΨ,Φ), (27)

for some positive constant β independent of h. By using the definition of F̃(·, ·),
(11), symmetry of B(·, ·, ·), we obtain
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F̃(Γ (Θ) − ΠhΨ, Φ) = F(Γ (Θ) − ΠhΨ, Φ) + 2B(ΠhΨ, Γ (Θ) − ΠhΨ, Φ)

= L(Θ,Θ, Φ) + 2B(ΠhΨ, Γ (Θ) − ΠhΨ, Φ) − B(Θ,Θ, Φ)

− A(ΠhΨ, Φ)

= A(Ψ, Φ) + B(Ψ, Ψ, Φ) + 2B(ΠhΨ, Θ, Φ) − A(ΠhΨ, Φ)

− B(Θ, Θ,Φ) − 2B(ΠhΨ, ΠhΨ, Φ)

= A(Ψ − ΠhΨ, Φ) + B(Ψ, Ψ − ΠhΨ, Φ)

+ B(Ψ − ΠhΨ, ΠhΨ, Φ) − B(Θ − ΠhΨ, Θ − ΠhΨ, Φ).

Inserting (28) into (27) and simple calculations lead to

β‖Γ (Θ) − ΠhΨ ‖Bα/2 ≤ C (h + ‖Θ − ΠhΨ ‖2Bα/2). (28)

This completes the step 1.

Step 2: (Contraction result)
For Θ1,Θ2 ∈ BR(h)(ΠhΨ ), the following contraction results holds true: let
Γ (Θi ), i = 1, 2 be the solutions of

F̃(Γ (Θi ),Φ) = L(Θi , Θi , Φ) + 2B(ΠhΨ, Θi , Φ) − B(Θi ,Θi , Φ), ∀ Φ ∈ Kh . (29)

Using (29), symmetry of B(·, ·, ·) and boundedness in (17) and the nonsingularity
of F̃ , we obtain

β‖Γ (Θ1) − Γ (Θ2)‖Bα/2 ≤ F̃(Γ (Θ1) − Γ (Θ2),Φ)

= 2B(ΠhΨ,Θ1 − Θ2, Φ) + B(Θ2 − Θ1,Θ2 − Θ1, Φ)

= B(ΠhΨ,Θ1 − Θ2, Φ) + B(ΠhΨ,Θ1 − Θ2, Φ)

+B(Θ2,Θ1, Φ) − B(Θ1,Θ1, Φ)

= B(Θ2 − Θ1,Θ1 − ΠhΨ,Φ)

+B(Θ2 − ΠhΨ,Θ2 − Θ1, Φ)

≤ C‖Θ2 − Θ1‖Bα/2

(‖Θ1 − ΠhΨ ‖Bα/2

+‖Θ2 − ΠhΨ ‖Bα/2

)
. (30)

Since Θ1,Θ2 ∈ BR(h)(ΠhΨ ), we obtain

‖Γ (Θ1) − Γ (Θ2)‖Bα/2 ≤ Ch‖Θ2 − Θ2‖Bα/2 , (31)

for some positive constant C independent of h. This completes the proof of step 2.

Step 3: (Existence and uniqueness results)
By using step 1 and an appeal to Schauder fixed point theorem yield that Γ has a
fixed point Ψh satisfying



Finite Element Method for Time … 447

‖Ψh − ΠhΨ ‖Bα/2 ≤ R(h). (32)

This completes the proof of the existence and uniqueness follows from step 2.

Theorem 2 (Error estimate) Let Ω be a polygonal domain. Let Ψ be an isolated
solution of (11) and Ψh be the solution of (22). For sufficiently small h, there hold

‖Ψ − Ψh‖Bα/2 ≤ Chα/2. (33)

where C is a positive constant independent of h.

Proof A use of triangle inequality, Lemma1 and (32) yields the error estimate

‖Ψ − Ψh‖Bα/2 = ‖Ψ − ΠhΨ + ΠhΨ − Ψh‖
≤ ‖Ψ − ΠhΨ ‖Bα/2 + ‖ΠhΨ − Ψh‖Bα/2

≤ Chα/2. (34)

This completes the proof.

5 Conclusion

In this paper, we have used finite element method to discretise the Keller–Segel
system (1) and also proved the existence and uniqueness of solutions to the discrete
problem (22) by using Schauder fixed point theorem. Finally, we have presented the
Bα/2 norm error estimate to the discrete solutions.
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Adaptive Fractional Order Sliding Mode
Controller Design for Blood Glucose
Regulation-4-3

Hamid Heydarinejad and Hadi Delavari

Abstract Diabetes is a growing health problem in worldwide. Especially, the
patients with Type I diabetes need strict blood glucose level control because the
body’s production and use of insulin are impaired, causing glucose concentration
level to increase in the bloodstream. In this paper, fractional order sliding mode
control and adaptive fractional order sliding mode control for robustly stabilize the
glucose concentration level of a diabetic patient in presence of the parameter vari-
ations and multiple meal disturbance, is proposed. The Bergman minimal model is
used to design the proposed controller. The structure of the proposed controllers is
appropriate for making the insulin delivery pumps because attenuate the effect of
chattering, obtain continuous control law and compliance with constraints insulin
pump for subcutaneous injection of insulin. The numerical simulation result shows
the advantages proposed controller for example robustness, high accuracy in pres-
ence of multiple disturbances with difference value and tracking of a desired glucose
concentration in the appropriate time is verified.

Keywords Bergman minimal model · Fractional order sliding mode control ·
Adaptive control · Robust stability · Type I diabetes mellitus

1 Introduction

Diabetes mellitus is a metabolic disease characterized by pancreas inability to regu-
late blood glucose levels within normal range (70–150mg/dl). Insulin is a hormone
generated by specific cells, called beta cells, in the pancreas. Insulin is required to
transfer blood glucose into cells, where it is stored and then used for energy. There
are two types of diabetes: type I and type II. Type I diabetes or insulin dependent
and type II diabetes or non-insulin dependent. In type I diabetes mellitus (T1DM),
the immune system attacks and destroys the insulin producing b-cells in the pan-
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creas. Thus, a key issue in diabetes treatment is the delivery of exogenous insulin to
obtain glucose levels close to normal. There are two situations depending on glu-
cose concentration, namely, hyperglycemia and hypoglycemia (Hyperglycemia =
Blood glucose concentration > 120 (mg/dl)) and Hypoglycemia = Blood glucose
concentration< 60 (mg/dl)). Chronic elevation of BG level leads to damage of blood
vessels (angiopathy), resulting in serious long-term complications, such as blindness,
neuropathy, heart disease, and kidney failure.

Continuous glucose monitoring (CGM) systems and insulin pumps technolo-
gies have motivated the development of an artificial pancreas system to replace the
conventional treatment strategies in T1DM, therefore, a system that automatically
monitors and controls the blood glucose level of a diabetic individual permits the
patient to have more participation in the ordinary daily activities with risk reduction
of long-term side effects. The ideal treatment for controlling blood glucose levels in
insulin dependent diabetic patients would be the use of an artificial pancreas which
would have the following components: (a) a glucose sensor to monitor the blood
glucose continuously with sufficient reliability and precision, (b) a computer to cal-
culate the necessary insulin infusion rates by an appropriate feedback algorithm and
(c) an insulin infusion pump to supply the required amount of insulin into the blood.

In recent years, many studies have been made for intelligent control of blood
glucose. Among them we focus the 3rd order minimal model of Bergman [1]. From
a control viewpoint, the following challenges arisewhen facing the design of a control
algorithm for an artificial pancreas:

• Slow dynamic response to the control action.
• Nonlinear, uncertain and time-varying models.
• Large disturbances (the meals).
• Nonnegative actuation.
• Measurement errors including noise, drift and bias.

Several methods have been previously employed to design the feedback controller
for insulin delivery, such as classical methods like PID Switching [2], model pre-
dictive control (MPC) [3], Fuzzy logic control [4], Recurrent Neural Network [5],
High Order Sliding Mode Control [6, 7], Back stepping Sliding Mode Control [8],
Optimal control [9], State output Feedback H∞ for Fractional Order Model [10],
Hybrid Adaptive PD Controller [11].

The sensor canmeasure blood glucose concentration and pass the information to a
feedback control system thatwould calculate the necessary insulin delivery rate using
robust fractional order slidingmode control (FOSMC) andAdaptive Fractional order
Sliding Mode Control (AFOSMC) algorithms, to keep the patient under metabolic
control. FOSMC andAFOSMC algorithms, are used to robustly stabilize the glucose
concentration level of a diabetic patient in presence of the parameter variations and
meal disturbance.The structure of theproposedFOSMCandAFOSMCis appropriate
for making the insulin delivery pumps in closed-loop control of diabetes. Therefore,
a second order FOSMC was designed and tested with them. The designed controller
was also applied to Bergman minimal model to check the approach feasibility. Soon
after, to reduce the chattering phenomenon, a tanh function is used to replace the
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discontinuous signum function at the reaching phase in traditional sliding mode
control. A computer simulation is performed tomanifest the theoretical analysis. The
robustness with respect to parameter uncertainties and meal disturbance was tested
using Matlab simulation. There are some novelty and advantages, which make our
proposed method attractive:

• The definition of a new fractional sliding surface.
• Robustness of the proposed controller against disturbances.
• Lack of restrictions on the upper limit of disturbances.
• Using fractional order switching control law for achieved states to sliding surface.

2 Fractional Calculus

Fractional calculus is an old mathematical topic since the 17th century [12]. The
fractional integral-differential operators (fractional calculus) are a generalization of
integration and derivation to non-integer order (fractional) operators. There exist
many definitions of fractional derivative [13, 14], there are three commonly used
definitions for the general fractional differentiation and integration, i.e., the Grü
nwald–Letnikov (GL), The Riemann–Liouville (RL) and the Caputo [15]. Let us
first introduce Caputo definition and results needed here with respect to fractional
calculus which will be used later.

Definition 1 The fractional integral c0D
α
t with fractional order α ∈ R+ of function

x (t) is defined as [15]:

c
0D

α
t f (t) = 1

Γ (α)

∫ t

0
(t − τ )α−1 x (τ ) dτ . (1)

Definition 2 The Caputo derivative of fractional order α ∈ R+ with function x(t)
is defined as [15, 16]:

c
0D

α
t x (t) = 1

Γ (m − α)

∫ t

0
(t − τ )m−α−1 x (m) (τ ) dτ , (2)

m − 1 < α < m ∈ Z .

Here are some of the important properties for the Caputo fractional calculus that
will be used.

Definition 3 If x(t) ∈ Cm[0, 1) and m − 1 < α < m ∈ Z+, then [17]:

c
0D

α
t

c
0D

−α
t x (t) = x (t) f or m = 1, (3)
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c
0D

−α
t

c
0D

α
t x (t) = x (t) −

m−1∑
k=0

t k

k! x
(k) (0) , (4)

c
0D

α
t

c
0D

n
t x (t) = c

0D
α+n
t x (t) n ∈ N , (5)

L
{
c
0D

α
t x (t)

} = sαX (s) −
m−1∑
k=0

sα−k−1x (k) (0) . (6)

3 Bergman Minimal Model

Many models to glucose-insulin process has been presented, perhaps the most com-
monly used control relevant model for glucose–insulin dynamics is the minimal
model. Bergman’s minimal model has been invented in 1980 by Doctor Richard
Bergman. The main advantages of the Bergman minimal model are the number of
parameters is minimum and it describes the interaction between main components
such as insulin and glucose concentrationswithout getting into biological complexity.
The Bergman Minimal Model (BeM) [7, 18, 19] is:

·
B1 (t) = − (p1 + B2 (t)) B1 (t) + p1Gb + D (t) , (7)
·
B2 (t) = −p2B2 (t) + p3 (B3 (t) − Ib) ,
·
B3 (t) = −n (B3 (t) − Ib) + γt [B1 (t) − h]+ + u (t) .

Here B1 (t) , B2 (t) and B3 (t) are plasma glucose concentration, the insulin influ-
ence on glucose concentration reduction, and insulin concentration in plasma respec-
tively, u(t) ∈ R is injected insulin rate in (mU/min), Gb is the basal pre-injection
level of glucose (mg/dl), Ib is the basal pre-injection level of insulin (μU/ml), p1 the
insulin independent rate constant of glucose uptake in muscles and liver (1/min), p2
the rate for decrease in tissue glucose uptake ability (1/min), p3 the insulin-dependent
increase in glucose uptake ability in tissue per-unit of insulin concentration above
the basal level ((μU/ml)/min). The term γ [B1 (t) − h]+ t represents the pancreatic
insulin secretion after a meal in take at t = 0. As this work is focused on Insulin ther-
apywhich is usually administrated to type I diabetesmellitus patients, γ is assumed to
be zero to represent the true dynamic of this disease and p1 should also be considered
zero. The parameter n is the first order decay rate for insulin in blood.

First the relative degree of the system must be defined which is required for
controller design, Assuming y = B1 (t) the relative degree would be defined with
the number of successive differentiation until the control appears in the equation [20,
21]. Relative degree r means that the controller u(t) first appears explicitly in the
r -th total derivative of σ. Using (7), the control function appears in the equations
after the third differentiation, i.e., [7]:
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B(3)
1 (t) = ϕB (B, t) − p3B1 (t) u (t) (8)

ϕB(B,t) = B1
[−p1

(
p1

2 + 3p3 Ib
) − p3 Ib (p2 + n) − p3γt [B1 (t) − h]+

]+

B2
[−p1

2 (1 + Gb) + p1 p2 (2Gb − 1) + 2D (p1 + p2)
] +

B3 [−2p3 (p1 + D)] + B1B2
[− (p1 + p2)

2 − 3p3 Ib
]+

B1B3 [p3 (3p1 + p2 + n)] + B1B2
2 [−3 (p1 + p2)]+

B2
2 (p1Gb + D) + 3p3B1B2B3 − B1B2

3+
··
D + (p1Gb + D)

(
p1

2 + 2p3 Ib
)
. (9)

The relative degreeBergmanminimalmodel is 3 because it is in the third derivative
(8) where the input of insulin u first appears. This disturbance can be modeled by a
decaying exponential function of the following form [22]:

D (t) = Ae−Bt , A, B > 0. (10)

We modeled the pump as a first order delay:

·
u (t) = 1

a
(w (t) − u (t)) , (11)

where w(t) is insulin rate command in pump input, and a is pump time constant [8].

4 Controller Design

4.1 Fractional Sliding Mode Control

Sliding mode control is a robust nonlinear Lyapunov based control algorithm [23]. In
this paper to deal with the disturbances and uncertainties, the FOSMC controller is
proposed [24]. Let Gb be a desired constant value of the output of the system B1 (t),
the error of which is defined by:

e (t) = B1 (t) − Gd . (12)

The sliding surface of the proposed FOSMC scheme can be selected as:

S (t) = c
0D

α
t

··
e (t) + λ1

·
e + λ2e. (13)
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Taking the time derivative of fractional order sliding surface of (13), one can
obtain: ·

S (t) = c
0D

α
t

···
e (t) + λ1

··
e + λ2

·
e = 0. (14)

With
·
S (t) = 0 and substituting (12) into (14) leads to:

c
0D

α
t B

(3)
1 (t) + λ1

··
e + λ2

·
e = 0. (15)

Applying the property (4) of Definition 3 to (15) one can obtain:

c
0D

−α
t

c
0D

α
t

(
B(3)
1 (t)

)
= − c

0D
−α
t

(
λ1

··
e + λ2

·
e
)
, (16)

B(3)
1 (t) −

m−1∑
k=0

t k

k!
(
B(3)
1 (t)

)(k)
(0) = − c

0D
−α
t

(
λ1

··
e + λ2

·
e
)
. (17)

Substituting (8) into (17) results:

ϕB (B, t) − p3B1 (t) u (t) − w = − c
0D

−α
t

(
λ1

··
e + λ2

·
e
)
. (18)

By simple manipulation of the above equation one can obtain the following equiv-
alent control law:

ueq (t) = (p3B1 (t))−1
(
+ϕB (B, t) − w + c

0D
−α
t

(
λ1

··
e + λ2

·
e
))

. (19)

The next step is to design the reaching mode control scheme, in the proposed
method using a new switching control law to derive the system trajectories onto the
sliding surface (S(t) = 0). The reaching law can be chosen as:

usw (t) = (p3B1 (t))−1 c
0D

−α
t (k1S + k2sgn (S)) . (20)

Since the FOSMC law (20) uses the sign(S) function as a hard switcher, the
undesirable chattering phenomenon occurs [25]. Hence the tanh(S) function, is
replaced by the sign(S) function. So the control law can be proposed as:

usw (t) = (p3B1 (t))−1 c
0D

−α
t (k1S + k2tanh (S)) , (21)

where k1 and k2 are positive constants andwill be determined later. Hence, the overall
control law becomes:

u (t) = (p3B1 (t))−1
(
+ϕB (B, t) − w + c

0D
−α
t

(
λ1

··
e + λ2

·
e
)

+

c
0D

−α
t (k1S + k2tanh (S))

)
. (22)
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The fractional order term in control signal i.e., c
0D

−α
t enhanced the controller

robustness. Due to adding the extra degree of freedom, fractional order sliding mode
controller can achieve better control performance than integer order sliding mode
controller.

Consequently, to reduce the chattering effect in the FOSMC, a tanh (S) function
is proposed in the control signal law, the use of this function causes the creation
term tangent hyperbolic at the derivative of Lyapunov function as a result. Using
Lemma 1, we guaranties stability glucose insulin system with FOSMC.

Lemma 1 The following equality is valid for every positive scalar a and given scalar
b [26]:

S (atanh(bS)) = |S(atanh(bS))| = ‖S(atanh(bS))‖ ≥ 0. (23)

Theorem 1 (Stability analysis for the proposed controller) Consider the Glucose-
insulin system with Bergman minimal model (7). This system is controlled by the
control law u(t) in (22), then the system trajectories will converge to the sliding
surface S(t) = 0.

Proof Consider a positive definite Lyapunov function candidate in the following
form:

V = 1

2
S2 (t) . (24)

Taking the time derivative from both sides of (23), and substitution (14) in it,
obtains: ·

V = S
·
S = S

(
c
0D

α
t

···
e (t) + λ1

··
e + λ2

·
e
)
. (25)

The substitution (8) and (12) into (24), obtains:

·
V = S

(
c
0D

α
t (ϕB (B, t) − p3B1 (t) u (t)) + λ1

··
e + λ2

·
e
)
. (26)

The substitution (22) into (25), obtains:

·
V = S

(c

0
Dα

t

(
ϕB(B, t) − p3B1(t)

[
(p3B1(t))

−1(+ϕB(B, t) − w+

c
0D

−α
t

(
λ1

··
e + λ2

·
e
)

+c
0 D

−α
t (k1S + k2tanh (S))

)])
+ λ1

··
e + λ2

·
e
)

(27)

Finally, by simplification of (26) and using the property (4) of Definition 3, one
can obtain: ·

V = (−k1S
2 − k2Stanh (S)

) ≤ 0. (28)

According to Lemma 1 it is obvious that the derivative of Lyapunov function is
negative definite [27] and the positive switching gain k1 and k2, guaranties stability
of the closed loop system with fractional order sliding mode control [28].
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In the previous sections, Fractional order slidingmode controller was designed for
glucose-insulin system and the system trajectories can be driven onto the predefined
sliding surface, but has not provided analysis on the stability of the fractional order
sliding surfaces and the error system converge to S(t) = 0.

Theorem 2 Consider the fractional order sliding surface (13) if Laplace transform
of the error, E(s) = L{e(t)} is bounded, then the state trajectories of the system (13)
will converge to zero as t → ∞.

Proof Let S(t) = 0 [24, 29] and using the Laplace transformof theCaputo derivative
(the property (4) of Definition 3) for (13), results:

E (s) =

(
sq−1E (0) + sq−2

·
E (0) + sq−3

··
E (0) + λ1E (0)

)

(sq + λ1s + λ2)
. (29)

Using the final-value theorem of the Laplace transformation one can obtain:

e (∞) = lim
s→0

sE (s) =

lim
s→0

s

⎡
⎣ sq−1E (0) + sq−2

·
E (0) + sq−3

··
E (0) + λ1E (0)

(sq + λ1s + λ2)

⎤
⎦ = 0 (30)

This shows the convergence of the error system trajectories to the fractional sliding
surface (13).

Bergman’s minimal model parameters are unique to each type I diabetic patients.
The result should be the parameters of each patient using clinical data identified,
even with accurate identification parameters can change the parameters there during
the day but there is no possibility to identify continuous parameters. Using Robust
Control Theory and satisfy conditions for the proposed controller, it can be estab-
lished FOMC is robust controller that the uncertainties parameters and variation
parameters.

Theorem 3 Robust stability analysis for the proposed controller with uncertainty
in the Glucose insulin Dynamic with Bergman Minimal Model. In (8) let us assume
that Bergman Minimal Model ϕB, p3 are unknown and we have the estimation of
these parameters ϕ̂B, p̂3 then we can use these parameters in the controller:

ũ (t) = ( p̂3B1)
−1 ×

(
+ϕ̂B − w + c

0D
−α
t

(
λ1

··
e + λ2

·
e
)

+ c
0D

−α
t (k1S + k2tanh (S))

)
, (31)

where ũ (t) is the estimation of control signal. Replacing (8) into (14) and then using
(31) instead of u(t) in (8), we have:
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·
S = (

c
0D

α
t

(
ϕB − p̂3B1

[
( p̂3B1)

−1 (+ϕ̂B − w+

c
0D

−α
t

(
λ1

··
e + λ2

·
e
)

+ c
0D

−α
t (k1S + k2sgn (S))

)])
+ λ1

··
e + λ2

·
e
)
. (32)

The sufficient condition for fractional order sliding surface is:

V = 1

2
S (t)2 ,

·
V = S (t)

·
S (t) ≤ −η

∣∣S(t)

∣∣ . (33)

To satisfy (33) the control gain k2 should satisfy the following condition:

k2 > max
∣∣∣p3 p̂3

(
c
0D

α
t P̃ϕ̃B + P̃

(
λ1

··
e + λ2

·
e
)

+

p3 p̂3
−1k1

(
c
0D

α
t

··
e (t) + λ1

·
e + λ2e

)
+ η

)∣∣∣ , (34)

where ϕ̃B = ϕB − ϕ̂B, P̃ = 1 − p3 p̂3−1. It means that the proposed controller is
stable for unknown glucose - insulin dynamic if k2 satisfies the (34) condition.

4.2 Adaptive Fractional Sliding Mode Control

In the previous sectionwe have designed a fractional order slidingmode controller for
Blood Glucose Regulation with uncertainty and disturbance. The diabetic patient’s
meal disturbance is unknown value and time varying. In the previous sections, it
has been shown knowing the bounds of disturbances is vital to guarantee the system
stability and set point tracking [29]. However, in practice it is not simple to determine
these bounds precisely. In what follows, we develop an adaptation law to overcome
this problem.

Lemma 2 To tackle the unknown parameters, the following adaptation laws are
proposed.

·
k̂1 = γ1S

2, (35)

·
k̂2 = γ2Stanh (S) , (36)

where k̂1, k̂2 are estimations for k1, k2 respectively, and γ1, γ2 are positive constants.

Proof The chosen a Lyapunov function as follows:

V = 1

2
S2 + 1

γ1
k̃1

2 + 1

γ2
k̃2

2, (37)
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where k̃1 = k̂1 − k1, k̃2 = k̂2 − k2; taking derivative of both sides of (36) with respect
to time yields:

·
V = S

·
S + 1

γ1
k̃1

·
k̂1 + 1

γ2
k̃2

·
k̂2. (38)

Using fractional order sliding surface (13) and relative degree equation (8):

·
V = S

(
c
0D

α
t (ϕB (B, t) − p3B1 (t) u (t)) + λ1

··
e + λ2

·
e
)

+

1

γ1
k̃1

·
k̂1 + 1

γ2
k̃2

·
k̂2. (39)

The substitution control input (22) into (39):

·
V =

[
S
(c

0
Dα

t

(
ϕB(B, t) − p3B1(t)

[
( p̂3B1(t))

−1(+ϕ̂B(B, t) − w+

c
0D

−α
t

(
λ1

··
e + λ2

·
e
)

+ c
0D

−α
t

(̂
k1S + k̂2tanh (S)

))])
+

λ1
··
e + λ2

·
e
)

+ 1

γ1
k̃1

·
k̂1 + 1

γ2
k̃2

·
k̂2

]
(40)

by simplification of the above equation:

·
V = −k̂1S

2 − k̂2Stanh (S) + 1

γ1
k̃1

·
k̂1 + 1

γ2
k̃2

·
k̂2 (41)

by substitution of the adaptation laws (35), (36) into (41):

·
V = −k̂1S

2 − k̂2Stanh (S) + k̃1S
2 + k̃2Stanh (S) = −k1S

2 − k2Stanh (S) (42)

This implies that stability of the Bergman minimal model with adaptive fractional
order sliding mode control is guaranteed.

5 Numerical Simulation

In this paper we used nonlinear Bergman minimal model for glucose regulation
using FOSMC and AFOSMC. Fractional calculus is a useful tool to control and
to achieve a significant degree of robustness. The control system designed in this
paper will be next used as an autonomous blood glucose controller for type I dia-
betes patient. Consequently, applying fractional order surface to slidingmode control
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Table 1 Bergman minimal model parameters value [6] and FOSMC and AFOSMC parameters
value (p1, p2, p3 and n are expressed in (min−1))

Bergman min. model p1 p2 p3 n Ib Gb B1(0) B3(0)

0 0.02 5.3 ×
10−7

0.3 7 70 220 50

FOSMC α a k1 k2 λ1 λ2 A Gd

0.6 2 3.9 5.8 5 9.7 80 80

AFOSMC α a γ1 γ2 λ1 λ2 B Gd

0.6 2 65 ×
10−8

45 ×
10−5

10.85 4.1 −0.5 80

can modify the classical SMC to more robust controller. In this section we evaluate
the proposed design with numerical simulation. Simulations were performed using
MATLAB software, the specification of Bergman minimal model, FOSMC and
AFOSMC parameters is available on Table1.

The simulation results are depicted on Figs. 1, 2, 3, 4, 5, 6, 7 and 8. As it can
be seen in Fig. 1 the proposed controller design (FOSMC) successfully controlled
the Blood Glucose and decreased the glucose concentration level from the critical
area (hyperglycemia) in initial time and meal disturbance with 80 (mg/dl) amplitude
applied at t = 450min. There is no hypoglycemic undershot, and normoglycemia is
achieved in acceptable time. The theoretical analyses and simulations show that the
proposed controller achieves set point tracking in the presence of disturbance.

Fig. 1 Patient Blood glucose concentration with FOSMC
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Fig. 2 Control Input (Injected Insulin) with pump in FOSMC

Fig. 3 Sliding surface for FOSMC

Figure2 shows the insulin infusion (control function) for designed controllers,
it can be seen constrained the nonnegative actuation is regarded, insulin infusion is
continues signal and appropriate value.
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Fig. 4 Patient Blood glucose concentration with AFOSMC

Fig. 5 Control Input (Injected Insulin) with pump in FOSMC

Figure3 shows the sliding surface S(t), as is obvious sliding surface converges to
zero. Figure4 shown the patient Blood glucose concentrationwith adaptive fractional
order sliding mode control, the patient’s blood glucose level could be appropriate
tracking under the meal disturbance. There is no hypoglycemic undershot.
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Fig. 6 Adaptive gain K1

Fig. 7 Adaptive gain K2

Figure5 shows insulin infusion (control law), the AFOSMC controller has a con-
tinuous signal and appropriate insulin injection and patients from an initial state
inappropriate (hyperglycemia) eliminate and tracking set point.

Figures6 and 7 show the adaptation gains k1 and k2 of switching control law and
their convergence. These coefficients are calculated from Eqs. (34) and (35).
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Fig. 8 Sliding surface for AFOSMC

6 Conclusion

The diabetes management as one of the challenging control problems in human reg-
ulatory systems has been discussed. The treatment of the disease via robust feedback
control design using fractional order calculus and slidingmode control has been con-
sidered. Stabilization of blood glucose has been discussed in presence of the external
disturbances such as food intake. From the viewpoint of stability and robust stability
analysis and simulation was investigated for the proposed controller. With this aim,
a fractional sliding mode control and adaptive fractional sliding mode control design
for blood glucose regulation in type I diabetes. The proposed controller designed
using the new switching control law for reaching states to the fractional order sliding
surface. The designed controller is checked and confirmed by computer simulations.
According to simulation result the proposed controllers have a good performance in
tracking set point in appropriate time, disturbance rejection, non-negative actuator
and continuous insulin injected.
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Expansion of Digraph Size of 1-D Fractional
System with Delay

Solutions for Full Characteristic Polynomial

Konrad Andrzej Markowski and Krzysztof Hryniów

Abstract Previous method for determination of state matrices of fractional-order
dynamic systemby use of digraphs had problemswith characteristic polynomials that
were of full size (i.e. had all the terms) due to the constraints onmatrix sizeminimality.
This article proposes the alternative approach that allows to obtain solutions that
can be easily computed even for full polynomials, but creates digraphs (and state
matrices) of larger size. Proposed method is illustrated with the symbolic example of
full characteristic polynomial showing the difference between the two approaches.

Keywords Fractional system · Delay · Digraphs · Characteristic polynomial ·
Digraph expansion · One-dimensional system

1 Introduction

One of constant problems in analysis of dynamic systems is the realisation problem.
In many research studies, we can find a canonical form of the system, i.e. constant
matrix form, which satisfies the system described by the transfer function [1, 2].
With the use of this form we are able to write only one realisation of the system,
while there exists a set of solutions. Digraph-based solution allowing for finding a
set of possible solutions for fractional systems was presented last year in [3], but as
shown later in the article due to different methods of obtaining solutions based on
digraph class, as presented in [4], not all solutions can be computed easily. In this
paper a method of obtaining a set of solutions belonging to the easiest to compute
digraph class by increasing the state matrix size is presented.
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1.1 Notion

In this paper the following notion will be used. The matrices will be denoted by the
bold font (for example A, B, . . .), the sets by the double line (for example A, B, . . .),
lower/upper indices and polynomial coefficients will be written as a small font (for
example a, b, . . .), fractional derivative will be denoted using a mathfrak fontD and
digraph will be denoted using mathcal fontD. The set n × m of real matrices will be
denoted by R

n×m and R
n = R

n×1. The n × n identity matrix will be denoted by In .
For more information about the matrix theory, an interested reader may be referred
to, for instance: [5, 6].

1.2 One-Dimensional System with Delay

Let us consider a fractional continuous-time linear system with q delays in state
vector and input vector described by state-space equations:

0Dα
t x(t) =

q∑
k=0

Ak x(t − kd) +
q∑

l=0

Blu(t − ld), (1)

y(t) = Cx(t) + Du(t), 0 < α � 1,

where x(t) ∈ R
n , u(t) ∈ R

m , y(t) ∈ R
p are the state, input and output vectors respec-

tively and Ak ∈ R
n×n , Bl ∈ R

n×m , k, l = 0, 1, . . . , q, C ∈ R
p×n and D ∈ R

p×m , d
is a delay.

Remark 1 In this paper commensurate fractional-order time-delay system is consid-
ered.

The following Caputo definition of the fractional derivative will be used:

C
a Dα

t = dα

dtα
= 1

Γ (n − α)

∫ t

a

f (n)(τ )

(t − τ )α+1−n
dτ , (2)

where α ∈ R is the order of the fractional derivative, f (n)(τ ) = dn f (τ )

dτ n and Γ (x) =∫ ∞
0 e−t t x−1dt is the gamma function.
After using the Laplace transform to model (1), Caputo definition (2) and assume

zaro initial conditions we can determine the transfer matrix of the considered system
in the following form:

T(s) = C

[
Insα −

q∑
k=0

Ake
−sdk

]−1 q∑
l=0

Bl e
−sdl + D. (3)
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1.3 Digraph

A directed graph (or just digraph) D consists of a non-empty finite set V(D) of
elements called vertices and a finite set A(D) of ordered pairs of distinct vertices
called arcs [7]. We call V(D) the vertex set and A(D) the arc set of digraph D. We
will often writeD = (V,A) which means that V and A are the vertex set and arc set
ofD, respectively. The order ofD is the number of vertices inD. The size ofD is the
number of arcs in D. For an arc (v1, v2) the first vertex v1 is its tail and the second
vertex v2 is its head.

There are twowell-knownmethods of representation of digraph: list and incidence
matrix. In this paper we are using incidence matrix to represent all digraphs. Method
of constructing digraphs by this method is presented for example in [7]. Adaptation
of this well-known method for dynamic systems was first presented in [8].

We present below some basic notions from graph theory which are used in further
considerations. A walk in a digraph D is a finite sequence of arcs in which every
two vertices vi and v j are adjacent or identical. A walk in which all of the arcs are
distinct is called a path. The path that goes through all vertices is called a finite path.
If the initial and the terminal vertices of the path are the same, then the path is called
a cycle.

1.4 Classes of Digraph Structures

Extensive study and experimentation shoved that obtained digraph structures can be
grouped into three classes. Some structures are valid for all possible coefficients of
characteristic polynomial (given in symbolic form) and have minimal number of arcs
needed. Those structures were examined in detail in [4] and [9] and were denoted as
classK1. Some structures give proper solution for given coefficients of characteristic
polynomial – their structure can contain some additional arcs and there is need to
solve a set of linear equations to get wages of digraph arcs. Those are denoted as
class K3. And there are structures that cannot guarantee proper solution for given
characteristic polynomial (or in some specific cases we are unable to determine if the
solution is possible) that are denoted as class K2. More information about digraph
structures and how to determine to which class given digraph belongs is presented
in [4].

• Class K1: Digraph structures belonging to class K1 satisfy all characteristic
polynomials of given type (with the same number and power of terms) for any
ai1,i2,...,i j ! = 0 wages. Those are digraph structures that are the most thoroughly
examined in previous papers and that can be computed quickly using digraph-based
GPGPU (General-Purpose Computation on Graphics Processing Units) methods
as there is no need of solving a system of polynomial equations. Digraph belongs
to class K1 if the following conditions are satisfied:
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(S1a): V1 ∩ V2 ∩ . . . ∩ VM �= {∅},
(S1b): the number of cycles in digraph D(n) equals M ;

where M is a number of monomials in characteristic polynomial and Vk is a set
of vertices of digraph D(n)

k of k-th monomial.
• Class K2: Digraph structures belonging to class K2 cannot satisfy the given char-
acteristic polynomial (or we are unable to determine the solution due to problem
with solving a system of under-determined equations) and are considered invalid
for given characteristic polynomial.

• Class K3: Digraph structures belonging to class K3 satisfy given characteristic
polynomial with specific ai1,i2,...,i j wages, but unlike classK1 structures cannot be
computed directly using digraph-based method and solving a set of equations is
also needed, which significantly slows down the algorithm of finding them.

1.5 Problem Formulation

Althoughmethods presented in [3] allows for obtaining a set of state matrix solutions
for given fractional-order dynamic system, some of them are hard to compute and
solving a set of equations is needed. In some cases, like in case of system transfer
matrix that can be described by full polynomial, there are no solutions belonging to
K1 class and even GPGPU assisted computation cannot obtain numerical solutions
quickly. As a solution, expansion of size of the state matrices is proposed, that allows
for construction of digraphs that will belong to K1 class.

2 Solution

Method for determining full characteristic polynomial of the system (1) will be
presented for the single-input single-output system (SISO). The transfer matrix (3)
can be considered as a function of the operator λ = sα and operator w = esd and for
SISO system has the following form:

T (λ, w) = C

[
Inλ −

q∑
k=0

Akw
−k

]−1 q∑
l=0

Blw
−l + D = n(λ, w)

d(λ, w)
, (4)

where:
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d(λ, w) = λn − an−1(w)λn−1 − an−2(w)λn−2 − . . . (5)

. . . − a2(w)λ2 − a1(w)λ − a0(w) =
λn − (

1 + w−1
)

︸ ︷︷ ︸
an−1(w)

λn−1 − (
1 + w−1 + w−2

)
︸ ︷︷ ︸

an−2(w)

λn−2 − · · · −

. . . − (
1 + w−1 + · · · + w1−n

)
︸ ︷︷ ︸

a1(w)

λ − (
1 + w−1 + · · · + w−n

)
︸ ︷︷ ︸

a0(w)

is the characteristic polynomial.
By multiplying the nominator and denominator of the strictly transfer function

(4) by λ−n , we obtain a characteristic polynomial

d(λ, w) = 1 − an−1(w)λ−1 − an−2(w)λ−2 − · · · − a1(w)λ1−n − a0(w)λ−n (6)

in the form which is needed to draw the digraph.
During experimentation it appeared that some polynomial solutions cannot be

obtained using the minimal possible number of vertices, but were possible to achieve
with addition of one or more vertices. Moreover, it is well-known that for full (i.e.
with all terms) characteristic polynomial we need the (2n − 1) vertices, where n is
the degree of the polynomial, to spin the graph. For such cases previously presented
algorithm [3, 10] created digraph structures that belonged only to classesK2 andK3,
so there was no possibility to obtain easy-to-compute solutions.

A solution to such problems is adding to the previously usedmethod the possibility
of spinning the graph on higher number of vertices then the degree of the polynomial
n, up to the maximum size of (2n − 1). With such modification it is possible to
obtain additional solutions for most characteristic polynomials and to obtain any
solutions belonging to K1 class for full characteristic polynomials. The downside of
used method is the enlargement of size of state matrices, as they are directly related
to number of vertices in the digraph.

With such approach, when obtaining the state matrix solutions for full character-
istic polynomial, we can decide if we want to obtain solutions with minimal size of
state matrices equal to n, but that will always belong to K2 and K3 classes (Case 1
in the example) or we increase the size of state matrices (and number of vertices in
digraph) to 2n − 1 to achieve some solutions that will belong toK1 class and can be
easily computed (Case 2 in the example).

2.1 Example

For the given characteristic polynomial

d(λ, w) = λ2 − (
a1 + a2w

−1
)
λ − (

a3 + a4w
−1 + a5w

−2
)
, (7)
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Fig. 1 a Possible digraph
realisations belonging to
class K2 or K3: a First b
Second

v1 v2

w(v1, v1)λ−1

w(v1, v2)λ−1

w(v2, v1)λ−1

w(v1, v1)λ−1w−1

w(v1, v2)λ−1w−1

w(v2, v1)λ−1w−1

v1 v2

w(v2, v2)λ−1

w(v1, v2)λ−1

w(v2, v1)λ−1

w(v2, v2)λ−1w−1

w(v1, v2)λ−1w−1

w(v2, v1)λ−1w−1

(a)

(b)

determine realisation of the fractional continuous-time linear system with one delay
q = 1 using multi-dimensional digraph theory.
Solution: Multiplying characteristic polynomial (7), by λ−2 we obtain:

d(λ, w) = 1 − (
a1 + a2w

−1
)
λ−1 − (

a3 + a4w
−1 + a5w

−2
)
λ−2. (8)

In the first step, we determine possible weights from which we will build digraphs:
λ−1–corresponding with matrix A0 and λ−1w−1– corresponding with matrix A1.

Consider the following two cases:
Case 1: Solutions with minimal size of state matrices equal to n, but that will

always belong to K2 and K3 classes. In the Fig. 1a and Fig. 1b are presented all the
possible realisations of the characteristic polynomial (7).

Let us consider the first realisation presented in Fig. 1a. From digraph we can
write the following state matrices:

A0 =
[

w(v1, v1)A0 w(v2, v1)A0

w(v1, v2)A0 0

]
, A1 =

[
w(v1, v1)A1 w(v2, v1)A1

w(v1, v2)A1 0

]
, (9)

where:

a1 = w(v1, v1)A0 �= 0,

a2 = w(v1, v1)A1 �= 0,

a3 = w(v1, v2)A0 · w(v2, v1)A0 �= 0, (10)

a4 = w(v1, v2)A0 · w(v2, v1)A1 + w(v1, v2)A1 · w(v2, v1)A0 �= 0,

a5 = w(v1, v2)A1 · w(v2, v1)A1 �= 0.
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Fig. 2 First of possible
digraph realisations
belonging to class K1, spun
on 3 vertices

v1 v2 v3

w(v2, v2)λ−1

w(v1, v2)λ−1

w(v2, v3)λ−1

w(v3, v2)λ−1

w(v2, v2)λ−1w−1w(v1, v2)λ−1w−1

w(v2, v1)λ−1w−1

Fig. 3 Second of possible
digraph realisations
belonging to class K1, spun
on 3 vertices

v1 v2

v3

w(v2, v2)λ−1w−1

w(v1, v2)λ−1w−1

w(v2, v3)λ−1w−1

w(v3, v2)λ−1w−1

w(v2, v2)λ−1w(v1, v2)λ−1

w(v2, v1)λ−1

If the realisation of the characteristic polynomial (7) exist, then the conditions (10)
must be satisfied – realisation then belongs to class K3. Otherwise it belongs to
class K2.

Case 2: Increase the size of state matrices (and number of vertices in digraph) to
2n − 1. In this case we achieve some solutions that will belong to K1 class and can
be easily computed and a solution that belongs to class K2.

In the Figs. 2 and 3 presented are digraphs which satisfy characteristic polyno-
mial (7) and belong to class K1. From digraph presented in Fig. 2 we can write the
following state matrices:

A0 =
⎡
⎣ 0 0 0

w(v1, v2)A0 w(v1, v2)A0 w(v3, v2)A0

0 w(v2, v3)A0 0

⎤
⎦ , (11)

A1 =
⎡
⎣ 0 w(v2, v1)A1 0

w(v1, v2)A1 w(v2, v2)A1 0
0 0 0

⎤
⎦ ,

where:

a1 = w(v2, v2)A0 �= 0,

a2 = w(v2, v2)A1 �= 0,

a3 = w(v2, v3)A0 · w(v3, v2)A0 �= 0, (12)

a4 = w(v1, v2)A0 · w(v2, v1)A1 �= 0,

a5 = w(v1, v2)A1 · w(v2, v1)A1 �= 0.

If the realisation of the characteristic polynomial (7) exist then the conditions (12)
must be satisfied – realisation then belongs to class K1.



474 K.A. Markowski and K. Hryniów

For digraph presented on Fig. 3 we have the state matrices in the form:

A0 =
⎡
⎣ 0 w(v2, v1)A0 0

w(v1, v2)A0 w(v2, v2)A0 0
0 0 0

⎤
⎦ , (13)

A1 =
⎡
⎣ 0 0 0

w(v1, v2)A1 w(v2, v2)A1 w(v3, v2)A1

0 w(v2, v3)A1 0

⎤
⎦ ,

where:

a1 = w(v2, v2)A0 �= 0,

a2 = w(v2, v2)A1 �= 0,

a3 = w(v1, v2)A0 · w(v2, v1)A0 �= 0, (14)

a4 = w(v1, v2)A1 · w(v2, v1)A0 �= 0,

a5 = w(v2, v3)A1 · w(v3, v2)A1 �= 0.

If the realisation of the characteristic polynomial (7) exist then the conditions (14)
must be satisfied – realisation then belongs to class K1.

As can be seen on Fig. 4, digraph consisting of 2n − 1 vertices does guarantee
that some of the solutions will belong to K1 class as theory states, but it does not
guarantee that all the obtained solutions will belong to that class.

For digraph presented on Fig. 4 we have the state matrices in the form:

A0 =
⎡
⎣w(v1, v1)A0 w(v2, v1)A0 0

w(v1, v2)A0 0 w(v3, v2)A0

0 0 0

⎤
⎦ , (15)

A1 =
⎡
⎣w(v1, v1)A1 0 w(v3, v1)A1

0 0 0
w(v1, v3)A1 w(v2, v3)A1 0

⎤
⎦ ,

Fig. 4 Possible digraph
realisation spun on 3 vertices
belonging to class K2

v1

v2

v3

w(v1, v1)λ−1

w(v1, v2)λ−1

w(v2, v1)λ−1 w(v3, v2)λ−1

w(v1, v1)λ−1

w(v2, v3)λ−1

w(v1, v3)λ−1

w(v3, v1)λ−1
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where:

a1 = w(v1, v1)A0 �= 0,

a2 = w(v1, v1)A1 �= 0,

a3 = w(v1, v2)A0 · w(v2, v1)A0 �= 0, (16)

a4 = w(v3, v2)A1 · w(v2, v3)A0 �= 0,

a5 = w(v1, v3)A1 · w(v3, v1)A1 �= 0,

w(v1, v1)A0 · w(v3, v2)A0 · w(v2, v3)A1+
−w(v2, v1)A0 · w(v3, v2)A0 · w(v1, v3)A1 = 0,

w(v3, v2)A0 · w(v1, v1)A1 · w(v2, v3)A1+
−w(v1, v2)A0 · w(v2, v3)A1 · w(v3, v1)A1 = 0.

As all of the conditions (16) cannot be satisfied simultaneously, digraph realisation
belongs to class K2 and we cannot obtain a solution.

3 Concluding Remarks

Previous method for determination of state matrices of fractional-order dynamic
system using digraph theory presented in [3] allowed for obtaining a set of state
matrix solutions, but some of them were hard to compute due to belonging to K3

class and solving a set of equations was needed. In the paper alternative approach
was proposed, that creates both digraph structures and state matrices of larger size
(2n − 1 instead of n, where n is the degree of the characteristic polynomial), but that
creates more solutions and some of them will always belong to easier to compute
class K1. Such approach allows solving one-dimensional fractional-order dynamic
systems with delay that are described by characteristic polynomial of full size (i.e.
with all the possible terms). Furtherwork includes determination of formal conditions
when digraph should be expanded (number of vertices on which it is spun increased
in [n, 2n − 1] interval) to generate additional meaningful solutions.
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A Discrete-Time Fractional Order PI
Controller for a Three Phase Synchronous
Motor Using an Optimal Loop Shaping
Approach

Paolo Mercorelli

Abstract The paper presents an implementation of a discrete-time fractional order
PI controller based on an optimal loop shape approach. This approach consists of
a linearisation of the system using a geometric state feedback and after that a loop
shaping problem is formulated in terms of an optimisation problem with constraints.
The load sensitivity is minimised with some classical loop shape constraints using a
random (genetic) algorithm. The system which is considered is using a synchronous
motor with permanent magnets (PMSM). Such kind of motors are commonly used
in electric or hybrid road vehicles. For railway vehicles, the PMSM as drive motors
have not been widely used yet. The control strategy consists of a combination of a
state feedback linearisation together with a PI and a PMW techniques. A fractional
PI controller is used to obtain robustness and to guarantee the specification of such
kind of strategy. The advantage of using a fractional order PI controller is emphasized
using a loop shaping design technique. A feedforward Euler discretisation is used
to realise the discrete form of the controller. Simulation analysis is carried out to
validate the effectiveness of the proposed application.

Keywords Fractional order PI controller · Electrical motors with permanent mag-
nets · Loop shaping approach · Geometric approach

1 Introduction and Background

The area of fractional calculus (FC) emerged at the same time as the classical differ-
ential calculus and it deals with derivatives and integrals to an arbitrary order (real or
even complex order) [1–4]. However, its inherent complexity postponed the appli-
cation of the associated concepts. Nowadays, the FC theory is applied in almost all
the areas of science and engineering after recognizing its ability to yield a superior
modelling and control in many dynamical systems ([1, 4], and also in [5]). In the
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literature we can find several different definitions for the fractional integration and
differentiation of arbitrary order ([1], and moreover in [2] and also in [4]). One of
the most well-known definitions is given by the Grünwald–Letnikov approach.

The main nomenclature
Dα with α > 0: partial integration of fractional order α
Dα with α < 0: partial differentiation of fractional order α
uin(t) = [ua(t), ub(t), u0(t)]T : three phase input voltage vector
i(t) = [ia(t), ib(t), i0(t)]T : three phase input current vector
uq(t): induced voltage vector
ωel : electrical pulsation
Rs : coil resistance
Ldq : dq coil inductance
A: state matrix of the electrical model
B: input matrix of the electrical model
B = imB: image of matrix B (subspace spanned by the columns of matrix B)
minI(A,B) = ∑n−1

i=0 A
i imB: minimumA-invariant subspace containing im(B)

F: decoupling feedback matrix field
g(ωel): Park transformation
T(ωel): decoupling feedforward matrix field

2 PID Controller from the Fractional Derivative
and Integral Actions

The mathematical definition of a derivative or integral of fractional order has been
the subject of different approaches. One of the most well-known definitions is given
by the Grünwald–Letnikov approach. For example, the fractional derivative α ∈ R

is the following:

Dα f (t) = lim
h→0

[
1

h

∞∑
k=0

(−1)k
(

α

k

)
f (t − hk)

]
, (1)

where (
α

k

)
= Γ (α + 1)

Γ (k + 1)Γ (α − k + 1)
,

with f (t) as a function which is indicated, Γ is the Gamma function and h is the
time increment. An important property revealed by (1) is that while integer-order
operators imply finite series, the fractional order counterparts are defined by infinite
series. This means that integer operators are local time operators in opposition with
the fractional operators that have, implicitly, a ‘memory’ of all past events. From a
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control and signal processing perspective, the Grünwald–Letnikov approach seems
to be the most useful and intuitive, particularly for a discrete-time implementation
[4, 6]. Moreover, in the analysis and design of control systems we usually adopt the
Laplace transformation (L) method. The definition of the fractional-order operator
(1) in the Laplace s-domain, under zero initial conditions, is given by the relation
(α ∈ R):

L{Dα f (t)}sαF(s), (2)

where F(s) = L{F(t)}. Note that expression (2) is a direct generalization of the
classical integer-order scheme with the multiplication of the signal transform F(s)
by the Laplace s-variable raised to a non-integer value α which is more flexible
and give the possibility of adjusting more carefully the dynamical properties of a
control system.As already referred a fractional derivative and integral can be obtained
through the series defined in (1). For a discrete-time algorithm with sampling period
T , this formula can be approximated through n-term truncated series, resulting in
the following relations in the time and z domains:

Dα f (t) ≈ 1

T α

∞∑
k=0

(−1)k
(

α

k

)
f (t − hk),

and

Z{Dα f (t)} ≈
[

1

T α

∞∑
k=0

(−1)k
Γ (α + 1)

k!Γ (α − k + 1)
z−k

]
F(z).

It is clear that in order to obtain good approximations, a large number of terms
should be considered and in the meantime a small sampling time. The simplest
approximation which can be done is an interpolation using just the last two sam-
ples. In this case just an interpolation of the first order is possible after considering
f (k − 1) and f (k) in the interval 0 ≤ t ≤ T which results, using a feedforward Euler
approximation as follows:

f (t) = (
f (k) − f (k − 1)

) t
T

+ f (k − 1). (3)

The integral function of (3), according to the definition of Gamma function, is equal
to:

I( f (t)) =
(

f (k) − f (k − 1)

Γ (2 + 1)

)
t + 1

T
+ f (k − 1)

Γ (1 + 1)
t.

Considering the α integral function, the following expression is obtained:

Iα( f (t)) =
(

f (k) − f (k − 1)

Γ (2 + α)

)
t (1+α)

T
+ f (k − 1)

Γ (1 + α)
tα.
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Its Z-transformation expression is the following:

Z(I f (t)) = Γ (α)

Γ (2 + α)
z−k F(z).

For α = −1, 0, 1 these expressions correspond to the differential (D), proportional
(P) and integral (I) actions respectively. If at the same time an interval with three
elements ( f (k − 2), f (k − 1) and f (k)) of the function f (t) is considered, this is
equivalent to consider a sampling time which is half of the previous sampling time,
an interpolation of the second order is possible as follows:

f (t) = f (k) − 2 f (k − 1) + f (k − 2)

2

(
t

T

)2

− (
f (k − 1) − 4 f (k − 1) + 3 f (k − 2)

) t

T
+ f (k − 2).

In this case it is to consider the interval 2Ts even though Ts = T/2 and the following
two expressions are obtained:

Iα( f (t)) = 2αΓ (α)

Γ (3 + α)

(
(2 − α) f (k) + 4α f (k − 1) + α2 f (k − 2)

)
.

Its Z-transformation expression is the following:

Z(I f (t)) = 2αΓ (α)

Γ (3 + α)

(
(2 − α) + 4αz−1 + α2z−2

)
F(z). (4)

For α = −1, 0, 1 these expressions correspond to the differential (D), proportional
(P) and integral (I) actions respectively.

3 Model of a Synchronous Motor

Among a variety of models presented in the literature since the introduction of
PMSM, the two-axis dq-model, obtained using Park dq-transformation is the most
widely used in variable speed PMSM drive control applications as in, for instance,
[7]. The Park dq-transformation is a coordinate transformation that converts the
three-phase stationary variables into variables in a rotating coordinate system. In dq-
transformation, the rotating coordinate is defined relative to a stationary reference
angle. The dq-model is considered in this work.

⎡
⎢⎢⎣
ud(t)

uq(t)

u0(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 sin(ωel t)
3

2 sin(ωel−2π/3)
3

2 sin(ωel+2π/3)
3

2 cos(ωel t)
3

2 cos(ωel−2π/3)
3

2 cos(ωel+2π/3)
3

1
3

1
3

1
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ua(t)

ub(t)

uc(t)

⎤
⎥⎥⎦ ,
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⎡
⎢⎢⎣
id(t)

iq(t)

i0(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 cos(ωel t)
3

2 cos(ωel−2π/3)
3

2 cos(ωel+2π/3)
3

−2 sin(ωel t)
3

−2 sin(ωel−2π/3)
3

−2 sin(ωel+2π/3)
3

1
3

1
3

1
3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ia(t)

ib(t)

ic(t)

⎤
⎥⎥⎦ .

The dynamic model of the synchronous motor in dq-coordinates can be represented
as follows:

[ did (t)
dt

diq (t)
dt

]
=

⎡
⎣− Rs

Ld

Lq

Ld
ωel(t)

− Rs
Lq

− Ld
Lq

ωel(t)

⎤
⎦

[
id(t)

iq(t)

]
+

[ 1
Ld

0

0 1
Lq

] [
ud(t)

uq(t)

]
−

[
0

Φωel (t)
Lq

]

(5)
and

Mm = 3

2
p
{
Φiq(t) + (Ld − Lq)id(t)iq(t)

}
. (6)

In (5) and (6), id(t), iq(t), ud(t) and uq(t) are the dq-components of the stator
currents and voltages in synchronously rotating rotor reference frame, ωel(t) is the
rotor electrical angular speed, the parameters Rs , Ld , Lq , Φ and p are the stator
resistance, d-axis and q-axis inductance, the amplitude of the permanent magnet flux
linkage, and p the number of couples of permanent magnets, respectively. At the end,
Mm indicates themotor torque. Considering an isotropicmotorwith Ld � Lq = Ldq ,
it follows:

[ did (t)
dt

diq (t)
dt

]
=

[− Rs
Ldq

ωel(t)

− Rs
Ldq

ωel(t)

] [
id(t)

iq(t)

]
+

[ 1
Ldq

0

0 1
Ldq

] [
ud(t)

uq(t)

]
−

[
0

Φωel (t)
Ldq

]
(7)

and

Mm(t) = 3

2
pΦiq(t)

with the following movement equation

Mm(t) − Mw(t) = J
dωmec(t)

dt

where pωmech(t) = ωel(t) and Mw is an unknown mechanical load which consists
of a friction part and an external load.

4 Design of the Control Strategy

Figure1 describes the whole control scheme in which it is possible to see a state
feedback linearisation control action in order to obtain the linearisation of the sys-
tem. The linearisation is obtained using a decoupling control such that a straight-
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Fig. 1 Control scheme

forward resulting system is obtained. From Fig. 1 also the necessary Park direct and
inverse transformations are visible. For achieving a decoupled structure of the system
described in (7), a matrix field F(ωel) is to be calculated such that:

(
A + BF(ωel)

)V ⊆ V

where u(t) = F(ωel)x(t) is a state feedback with u(t) = [ud(t), uq(t)]T and x(t) =
[id(t), iq(t)]T ,

A =
[− Rs

Ldq
ωel(t)

− Rs
Ldq

ωel(t)

]
B =

[ 1
Ldq

0

0 1
Ldq

]
,

andV = im([0, 1]T ) of (4), according to [8], is a controlled invariant subspace.More
explicitly it follows:

F(ωel) =
[
F11 F12

F21 F22

]
and

[
ud(t)

uq(t)

]
= F(ωel)

[
id(t)

iq(t)

]
,

then the decoupling of the dynamics is obtained via the following relationship:
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im

([− Rs
Ldq

ωel(t)

− Rs
Ldq

ωel(t)

])
+ im

([ 1
Ldq

0

0 1
Ldq

] [
F11 F12

F21 F22

] [
0

1

])
⊆ im

[
0

1

]
(8)

where parameters F11, F12, F21, and F22 are to be calculated in order to guarantee
condition (8). Condition (8) is guaranteed if:

F12 = −ωel(t)Ldq ,

the first relation of (5) becomes as follows:

did(t)

dt
= − Rs

Ldq
id(t) + ud(t)

Ldq
.

In the same way we can obtain the following condition

im

([− Rs
Ldq

ωel(t)

− Rs
Ldq

ωel(t)

])
+ im

([ 1
Ldq

0

0 1
Ldq

] [
F11 F12

F21 F22

] [
1

0

])
⊆ im

[
1

0

]

which is guaranteed if
F11 = Rs .

Moreover, considering the following relation

F21 = −ωel(t)Ldq

a feedback linearisation is obtained and the second relation of (5) becomes as follows:

diq(t)

dt
= uq(t)

Ldq
− Φωel(t)

Ldq
. (9)

After this decoupling and the geometric feedback linearisation, considering (3), (3)
and (9) with a linear friction which depends on the angular velocity of the motor and
their Laplace Transformation, then:

P(s) = Ωmec(s)

Uq(s)
=

1
Ldq

J 2
3pΦ s2 + 2

3pΦ s + Φ
Ldq

where Ωmec.(s) is the Laplace Transformation of variable ωmec.(t). Moreover, con-
sidering the transfer function between torque load and angular velocity, then:

S(s) = Ωmec(s)

Mw(s)
= − 2s

3pΦ

J 2
3pΦ s2 + 2

3pΦ s + Φ
Ldq

. (10)
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5 Design a Fractional PI Controller with a Random
Optimisation Algorithm

Considering the following discrete fractional PIα controller in z-domain based on
(4):

Cd(z) = Uc(z)

E(z)
= KpE(z) + Ki

2αΓ (α)

Γ (3 + α)

(
(2 − α) + 4αz−1 + α2z−2

)

where E(z) is the error between the desired and measured angular velocity of the
motor andUc(z) is the output of the controller. In this paper the followingoptimisation
problem is considered:

min
Kp,Ki ,α

∥∥∥∥ S(s)

1 + Cd(e jωc)P( jωc)

∥∥∥∥
2

2

with ω < ωc (11)

whereωc is the cross over frequency. Simultaneously the following constraints should
be fulfilled. In the literature the transfer function S(s) of (10) is indicated as the load
sensitivity function. Three parameters of the controller should be determined such
that the following four conditions are satisfied simultaneously:

• The gain crossover frequency of the open-loop system, ωc, is equal to the desired
value, where the equality

|Cd(e
jωc)P( jωc)| = 0 dB

holds for a desired e jωc where Cd(s) and P(s) are the transfer functions of the PIλ

controller and the motor transfer function respectively.
• The phase margin of the feedback system, φm , is equal to the desired value

arg
(
Cd(e

jωc)P( jωc)
)

> π + φm

which holds for the desired φm .
• The feedback system exhibits a good robustness to variations in the gain of process,
which can be achieved by satisfying the following equality

−D <

(
dCd(e jωc)P( jωc)

dw

)
ωc

< D

where D is a a positive desired value.
• The feedback system attenuates the high frequency noise, which is achieved by
satisfying the inequality:



A Discrete-Time Fractional Order PI Controller for a Three Phase… 485

∣∣∣∣ Cd(e jωc)P( jωc)

1 + Cd(e jωc)P( jωc)

∣∣∣∣ < A dB,∀ω > ωt

where A and ωt are desired constants.

The cost function in the optimisation problem defined in (11) is of crucial importance
because states the insensibility of the controlled system with respect to the distur-
bances inside the bandwidth of the controlled system. In the presented application
a typical case is represented by the change of load to the motor. In the proposed
application condition (5) is very important because of the switching functions due to
the PMWsystemwhich generates high frequency disturbances. The algorithmwhich
is used to find the optimal values of Kp, Ki and α is a random (genetic) one. Basi-
cally the random (genetic) algorithm is an evolutionary one, in which starting from
a relatively limited number of fathers, in our case 9 fathers (three for each parameter
to be optimised), sons are generated to explore the region of optimality. Each father
generates three sons which must respect the four conditions mentioned above. After
that, the gradients between the sons and the respectively fathers are calculated and the
respective two sons with small gradients are not considered for the next generation.
The algorithm stops when the gradients reach a minimum predefined threshold.

6 Simulations Results

In this section simulated results are shown. The left part of Fig. 2 represents the
loadless case with the obtained velocity tracking in case of a PIα of the first and
second order approximation and the right part of Fig. 2 presents the obtained velocity
tracking using a PI controller with set up of its parameters using Ziegler-Nichols
method. From this figure it is to remark that the second order of approximation of a
PIα controller offers the better performance than the first order approximation. On
the right part of Fig. 2 the tracking performance of the PI controller set with Ziegler-
Nichols is shown. In Fig. 3 the PWM signals related to PIα first order approximation
and PIα second order approximation are shown for the loadless case. It is to observe
that using the second order PIα the switching time is increasing and that guarantees a
finer tracking with respect to the first order approximation of PIα. In Figs. 4 and 5 the
load case is shown. In this simulation thanks to the optimal parameter setting due to
the minimisation of the sensitivity function, the difference between the performance
of the PIα case with respect to the PI parameter set using Ziegler-Nichols method is
clearly visible.
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Fig. 2 Loadless case: tracking obtained with PIα first order approximation and PIα second order
approximation (blue). Tracking obtained using a Ziegler-Nichols PI controller (right)

Time (sec.)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

S
w

itc
he

d 
th

re
e-

ph
as

e 
in

pu
t v

ol
ta

ge
s 

(V
)

-400

-300

-200

-100

0

100

200

300

400

Time [sec.]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

S
w

itc
he

d 
th

re
e-

ph
as

e 
in

pt
 v

ol
ta

ge
s 

(V
)

-400

-300

-200

-100

0

100

200

300

400

Fig. 3 Loadless case: three phase PWM signal using PIα second order approximation (left) and
three phase PWM signal using Ziegler-Nichols PI controller (right)
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Fig. 4 Load case: tracking obtained with PIα second order approximation (blue) (left). Tracking
obtained using a Ziegler-Nichols PI controller (right)
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Fig. 5 Load case: three phase PWM signal using PIα second order approximation (left) and Three
phase PWM signal using Ziegler-Nichols PI controller (right)

7 Conclusions

This paper deals with the design of a fractional PIα controller for a three phase
synchronous motor using an optimisation problem with loop shaping constraints in
which the parameter Kp, Ki and α are calculated using a random (genetic) algorithm
implemented in Matlab. The synchronous motor is controlled with a PMW structure
and in this context the rejection of high frequency disturbance plays a decisive role
for the performance of the controlled system.
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Application of SubIval, a Method
for Fractional-Order Derivative
Computations in IVPs

Marcin Sowa

Abstract The paper concerns a numerical method for the computations of the frac-
tional derivative in initial value problems. The method bases on a partition of the
integrodifferentiation interval into subintervals. It has been referred to previously as
the subinterval-based method and is now called SubIval (for simpler reference). The
subintervals are modified during a time stepping process – this is determined by an
original subinterval dynamics algorithm. The method is mainly built in order to aid
in solving problems of circuit theory. Hence, two examples have been introduced to
ascertain the method, where both use a fractional order capacitor and a fractional
order coil.

Keywords Fractional calculus · Numerical analysis · Circuit analysis · Integrodif-
ferential equations

1 Introduction

The concept of the fractional order derivative is lately becoming more and more
popular. In the paper the fractional order derivative of order α ∈ (0, 1) is considered
in Caputo’s definition [1]:

C
taDtbx(t) = 1

�(1 − α)

∫ tb

ta

x(1)(τ )

(t − τ )α
dτ (1)

and in the Riemann–Liouville definition [2]:

RL
ta Dtbx(t) = 1

�(1 − α)

d

dt

∫ tb

ta

x(τ )

(t − τ )α
dτ . (2)
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For simplicity the author uses special notations for (1) and (2) when concerning
intervals, where for Caputo’s definition the fractional derivative is denoted by:

C
taDtb =Cdα

Ξx(t), (3)

while for the Riemann–Liouville definition:

RL
ta Dtb =RLdα

Ξx(t), (4)

whereΞ denotes the integration interval [ta, tb]. In cases where an equation applies to
both definitions – the fractional derivative is simply written as dα

Ξx(t). In whichever
of the thus far proposed definitions ((1), (2) or many others, e.g. given in [3]) the
appearance of the fractional derivative greatly increases the problem complexity. The
mathematical challenge is not the only reason why fractional calculus has become
popular – one can find its usage e.g. in:

• control theory and applications when analyzing fractional order controllers [4, 5],
• circuit theory when modeling lossy coils [6] and supercapacitors [7],
• electromagnetic field analyses where the behavior of some complex materials has
been modeled [8],

• temperature field analysis when materials with relevant memory properties are
concerned [9],

• in design of various systems using fractional order filters [10].

The context in which the fractional derivative appears is relevant as it can lead
to various forms of the Ξ interval – e.g. for initial value problems (IVPs) it is
the interval from an initial time instance t0 to the current time t, while for spatial
derivatives the interval can have a differentmeaning [11]. This (alike the case of either
ordinary or partial differential equations) leads to various methods being favorable
when solutions are sought. The most commonly considered is the fractional time
derivative, in which the author is mostly interested in and which is considered in this
paper.

The study presented in this paper concerns a method for the approximation of
the fractional time derivative in initial value problems. When it comes to solutions
of problems with fractional derivatives – for a limited class of problems (generally
linear, with known source time-functions) analytical solutions can be found. For tran-
sient problems these base on Mittag-Leffler functions [12], while for AC analyses
complex number representations can be used [13]. Analytical solutions can even be
found for some more complicated problems e.g. [14]. However, often more demand-
ing problems require them to be treated as an isolated case. For a more general
approach (allowing for a wide range of different problems to be solved, including
nonlinear problems) numerical methods can be used. Such is also the type of the
method proposed in the presented research.

Lead researchers most often mention the following methods for solving fractional
differential equations:
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• theAdomian decompositionmethod [15] (which is an analytical technique treating
the solution as a series of terms),

• the differential transformmethod [16] (a numerical method based on Taylor series
expansion, constructing the solution as a polynomial),

• the CAS wavelet method [17] (treating the solution in general as a sum of CAS
wavelets with unknown coefficients),

• Taylor expansion approach [18] (which bases on Taylor series expansion, leading
to a system of equations, where the unknowns are the subsequent derivatives),

• collocation method [19] (where the solution is sought in subintervals, as local
polynomials assumed as resulting from interpolations in equidistant nodes),

• methods known as Fractional Linear Multistep Methods (backward difference
methods) explained e.g. in general by Lubich [20],

• methods basing on the fractional difference operator [21] (often considered when
discussing discrete-time systems [22]).

The method presented in this paper bases on polynomial interpolations (basing
on arbitrarily spaced nodes) in designated time subintervals.

2 Basis of the Method

The core of the method relies on the partition of the integrodifferentiation interval
Ξtot = [ta, tb] into S + 1 subintervals Ξs = [ts,start, ts,end], such that ts,start = ts−1,end.
The division yields:

dα
Ξtot

x(t) = dα
ΞM

x(t) +
S∑

s=1

dα
Ξs
x(t). (5)

The interval with index M = S + 1 is written separately on purpose (it has special
properties explained further on). The manner in which the subintervals are cate-
gorized and established is explained in Sect. 4. For every subinterval a Lagrange
interpolation is performed so that:

dα
Ξtot

x(t) ≈ dα
ΞM

x̃M(t) +
S∑

s=1

dα
Ξs̃
xs(t), (6)

where x̃s(t) are polynomials defined on subintervals denoted byΘs (whereΞs ⊆ Θs).
Assuming that in every subinterval defined on Θs there are ns interpolation nodes,
with respect to Lagrange basis polynomials, one can obtain:

x̃s(t) =
ns∑
i=1

xs,iLs,i(cs(t − ts,1)), (7)
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where xs,i are values of x at specific time nodes ts,i where the first one is ts,1 and
the final one is at ts,ns (if Ξs = Θs then ts,1 = ts,start and ts,ns = ts,end). Ls,i is the
base Lagrange polynomial taking arguments in [0, 1]. The normalization is made
preventively for numerical reasons. cs is hence the normalization coefficient:

cs = 1

ts,ns − ts,1
. (8)

The following assumptions are made:

• in the solution process, at each time step, the variable x is computed only for one
time instance t = tnow,

• only the interpolation resulting in x̃M takes into account the node t = tnow.

If all the previous values of x are known then in terms of (6) one can write:

dα
Ξtot

x(t) ≈ ax|t=tnow + b, (9)

where:
a = dα

ΞM
LM,nM (cM(t − tM,1)), (10)

which is independent on x values, and:

b = dα
ΞM

nM−1∑
i=1

xM,iLM,i(cM(t − tM,1)) +
S∑

s=1

dα
Ξs

ns∑
i=1

xs,iLs,i(cs(t − ts,1)), (11)

which (if the mentioned assumptions are true) can be computed at t = tnow since all
x values at previous time nodes are known.

3 Analytical Formulae for Integrodifferentiation

If one obtains the Lagrange basis polynomial coefficients alone (or has the poly-
nomials stored in a symbolic form) one can compute a and b from extracted inte-
grodifferentiations of monomials gξk where the local variable ξ = cs(t − ts,1). For
an auxiliary variable τloc = t − ts,1, for Caputo’s definition one obtains:

Cdα
Ξs

(gξks ) = kgcks
�(1 − α)

∫ �tloc,s

0

τ k−1
loc

(�Ts − τloc)α
dτloc, (12)

where�tloc,s = ts,end − ts,start and�Ts = t − ts,start . For an auxiliary variable θ = τloc
�Ts

the above equation takes the form:
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Cdα
Ξs

(gξks ) = kgcks (�Ts)k−α

�(1 − α)

∫ �tloc,s
�Ts

0

θk−1

(1 − θ)α
dθ. (13)

The integral represents the incomplete beta function:

B�tloc,s
�Ts

(k, 1 − α) =
∫ �tloc,s

�Ts

0

θk−1

(1 − θ)α
dθ. (14)

One can evaluate this by applying the formula [23]:

Bρ(k, 1 − α) = Γ (k)Γ (1 − α)

Γ (k + 1 − α)
(1 − (1 − ρ)1−α

k−1∑
j=0

ρj
∏j−1

i=0(1 − α + i)

j! ). (15)

In conclusion, for already established Θs and Ξs subintervals, with the help of
Lagrange interpolation and the above equation one can compute the a and b coeffi-
cients of Eq. (9) leading to a convenient approximation of the fractional derivative in
Caputo’s definition. For the Riemann–Liouville definition one can do the same and
only needs to add the additional term to b according to the relation [24]:

RLdα
Ξtot

x(t) =C dα
Ξtot

x(t) + x(t0)

�(1 − α)
(t − t0)

−α. (16)

4 Subinterval Dynamics

This section explains how the subintervals are established and modified. Θs and Ξs

are combined into subinterval pairs. Four types of subinterval pairs are distinguished:

• the moving interval pair: ΘM = ΞM which is always the rightmost interval on the
time axis; its interpolation x̃M is always performed on either the maximum number
of nodes (at the beginning of the computations) or an arbitrary number determined
by order p (whichever is less); the interpolation is hence made on [tj−pmov , tj], with
j being the index of the current time step and pmov = min[j, p];

• the built interval pair: is a state of the S-th interval pair; ts,1 is set, while ts,end
changes when the interval pair is expanded; while the subinterval pair is built –
the number of nodes used for the local interpolation changes;

• the S-th interval pair is closed if it can no longer be expanded, ΘS is not changed;
however ΞS changes and extends only as far as the beginning of ΞM (while it is
necessary forΘ subintervals to form a continuous interval and not to overlap, such
is not the case for Θ subintervals, where ΘS will often overlap with ΘM);

• a subinterval pair is sealed if Θs = Ξs and changes are no longer made to it.



494 M. Sowa

Fig. 1 Algorithm of the subinterval dynamics, which for every new time instance tj provides a and
b coefficients for all the selected variables

The subinterval dynamics algorithm is presented in Fig. 1.
For a new tj the subintervals are modified and analytical formulae (presented

previously in Sect. 3) can be applied to obtain the a and b coefficients of Eq. (9).
Because themethod fully supports variable time stepping – tj can be chosen externally
according to any algorithm. An example of how the subinterval dynamics work for
p = 3 is given in Fig. 2.
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Fig. 2 Example of subinterval dynamics (maximum order of polynomials p = 3)

5 Examples

Two examples are presented in order to verify the method. Both of these have analyt-
ical solutions, which will serve as referential ones to be compared with evaluations
computed with the application of SubIval. One is a simple transient state problem,
which has a well-known and relatively simple analytical solution [25] based on the
Mittag-Leffler function. This example is presented in Fig. 3. A comparison of the
results (obtained with an application of SubIval with those obtained by computing
the analytical solution) is presented in Fig. 4.

When using MATLAB then functions (e.g. [26]) are available for for evaluations
of the Mittag-Leffler function.

The second example is more complicated (it is depicted in Fig. 5). Rather than a
transient solution the steady state AC solution is compared with the waveforms to
which the numerical results tend. The result of this comparison is presented in Fig. 6.

The results presented in Figs. 4 and 6 have been obtained through an adaptive time
step technique (as was proposed in [27]), with the core of the computations relying
on the implementation of SubIval (taking new tj values and allowing to obtain a and b
coefficients like depicted in Fig. 1). The corrector used a maximum polynomial order
of themoving subinterval equal to 4, while the predictor’s polynomial order was less
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Fig. 3 Exemplary transient problem of an electric circuit supplied by a unit step source

Fig. 4 Comparison of the results for the transient problem

Fig. 5 Exemplary problem with an AC voltage source and fractional order elements
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Fig. 6 Comparison of the AC analysis result and the transient numerical solution for 8 periods

by one. The maximum error coefficient emax = 0.1% was used in the computations.
emax determines themaximumallowed difference between the predictor and corrector
results. If this value is exceeded then both the predictor and corrector stage must be
repeated for a changed, smaller time step�t. The control error ectrl = 0.01%, which
is a coefficient that controls how the time step is modified so that the difference
between the predictor and corrector results stays within range of this value. The
scheme has been implemented in Matlab, while SubIval computations have been
performed through a connection with an ActiveX DLL with its implementation.

The comparison of the obtained results shows a very good resemblance of the
entire time function for the transient problem of Fig. 3 and of the steady state for
the AC problem of Fig. 5. For all the obtained time functions, when comparing the
numerical results with the referential solutions, the maximum errors (relative to their
respectivemaximum absolute values over time) for each time function did not exceed
0.05%.

6 Conclusions and Remarks

The presented method (SubIval) allows for an approximation of the fractional deriv-
ative (in Riemann–Liouville and Caputo definitions) in IVPs. The approximation
takes form of a linear dependence (given by (9)) on the variable being computed in
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a current time step. This form can be applied in any initial value problem where for
a current time step a fractional derivative appears and can be substituted by apply-
ing this equation (even in nonlinear problems). SubIval has already been tested for
solving systems of fractional differential equations (resulting from circuit analyses)
of the form [27]:

0Dα
t x(t) = Ax(t) + Bu(t) (17)

where 0Dα
t x(t) is a vector of fractional derivatives 0D

αi
t xi(t). There, in every time

step, the implicit solver leads to a reduction of the problem to a form of a linear
system of equations.

When it is possible and when it is desired to have a very accurate result then it is
worthwhile to obtain the solution through evaluations of analytical formulae. How-
ever, the numerical approach allows to treat various problems in a general manner,
where e.g. for the presented problems all could be given in the form of Eq. (17) for
numerical computations.

Themethod fully supports variability of the time step�t e.g. as it was presented in
[27, 28] where the predictor-corrector scheme (applied for the computations whose
results are presented in Sect. 5).

In further papers the author plans to present:

• other examples (mainly concerning circuit theory e,g, introducing the fractional
derivative to the nonlinear coil model [29]),

• an analysis of the accuracy of the results (ascertained through comparisons with
analytical solutions or those obtained by other methods),

• the implementation of improvements like the ones mentioned in [28].
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Application of the Time-Fractional Diffusion
Equation to Methyl Alcohol Mass Transfer
in Silica

Alexey A. Zhokh, Andrey A. Trypolskyi and Peter E. Strizhak

Abstract Non-usual behavior of methyl alcohol mass transfer in mesoporous silica
is experimentally and theoretically investigated. Analysis of the experimental data
in terms of the second Fick’s law and accounting of various pore geometries demon-
strates no correspondence between the experimental data and theoretical solutions.
We show that contrary to standard diffusion approach the experimental data are in
an excellent coincidence with the solution of the time-fractional diffusion equation,
obtained for boundary conditions that correspond to the experimental conditions.
Obtained results reveal that methyl alcohol in mesoporous silica may exhibit anom-
alous features because of geometrical constraints of silica pores.

Keywords Diffusion · Time-fractional diffusion · Anomalous diffusion · Iso-
propanol · Silica

1 Introduction

Time-fractional diffusion describes mass transfer process with temporal non locality
[1], concerning memory effect, which may be determined as a difference between
time-scaled intervals of diffusing particle’s jump, i.e. if mass transfer process time
is depicted on time axis with geometrically equal time intervals, jump’s time is
shorter or longer than the equal time interval length on time axis [2]. These memory
effects govern non-Brownian random walk motion [3]. In this case mean square
displacement of particles is nonlinear versus time and the second Fick’s law is no
more applicable for describing this non-usual diffusion behavior which may occur
as faster or slower transport comparably to normal diffusion [1].

Fast and slow non-Fickian transport may be described by the time-fractional
diffusion equation with fractional order in range from 1 to 2 and from 0 to 1 respec-
tively [4]. These types of transfer may be present in media with fractal structure
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[4, 5]. Unlike normal diffusion, governed by the Brownian motion with the variance
of probability density function proportional to the first power of time; anomalous
transport is characterized by different scaling law [6]. One of the most frequently
used statistical models of anomalous diffusion is the continuous time random walk
model, corresponding the fractional diffusion equation governed by the Lévy diffu-
sion process [7–9]. The parameters of the fractional integral models may be easily
gotten by fitting of the experimental data of mass transfer process. However, like
nonlinear equation models, these models are not computationally cheap and are also
of a phenomenological description which does not necessarily reflect the physical
meaning of the process. Anomalous diffusion through porous media, e.g. silica, is
important for chemical engineering, because quantitative study of diffusion gives an
opportunity to increase the effectiveness of various industrial processes, sorption and
catalysis, only by controlling the regime of mass transport.

Silica is commercially available and extensively used as an effective sorbent
because of large surface area, which may be easily controlled during silica syn-
thesis or silica sorbent regeneration. Silica consists of particles typically obtained by
sol-gel synthesis with their simultaneous aggregation into clusters [10]. Silica aggre-
gates are well-described by fractal geometry [11]. Silica fractal structure has two
different types, mass and surface fractal structures [12]. Fractal silica clusters exhibit
self-similar relaxations of density fluctuations, dynamics of which is described by
fractal approach [13]. However, the presence of anomalous diffusion in silica fractal
structure still is not still fully investigated and a relationship between silica fractal
structure and diffusing regime also remains unclear.

The present paper aims to explore the presence of anomalous time-fractional
methanol diffusion in mesoporous silica. We show that normal diffusion approach
fails describing experimental data. Contrary, we report a good coincidence between
experimental results and theoretical analysis developed in the frame of the time-
fractional diffusion equation.

2 Preliminaries

2.1 Time-Fractional Diffusion Equation

Time-fractional diffusion kinetics in porousmedia is described by the time-fractional
diffusion equation:

∂αC

∂tα
= K · ∂2C

∂x2
. (1)

Here K denotes fractional diffusion coefficient in porous media, cm2/secα , C is
the linear concentration of diffusing species,mole/cm; t is time, sec; x is a coordinate,
cm; α is an order of the time-fractional derivative (0 < α < 2). Time-fractional
derivative is used in Caputo sense [14]:
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∂αC (x, t)

∂tα
= 1

Γ (m − α)
·
∫ t

0
(t − τ)m−α−1 · ∂mC

∂τm
dτ , (2)

where m = 1 if 0 < α < 1 and m = 2 if 1 < α < 2, Γ (x) is the Euler gamma
function.

Clearly, if α = 1 Eq. (1) reduces to standard diffusion equation.

2.2 Green’s Function Approach

Applying Fourier-Laplace transforms technique [15–19] to Eq. (1) one may obtain
asymptotic Green’s functions for short and long times respectively:

Gs (x, t, ε) =
exp

(
− (x−ε)2Γ (m+α)

4·K ·tα
)

2 ·
√

π ·K ·tα
Γ (m+α)

, (3)

Gl (x, t, ε) = x − ε

2 · Γ (m − α) · K · tα . (4)

Here upper index s or l corresponds to short or long time intervals.
For the following initial and boundary conditions:

C (x, 0) = C0 (x) = const , (5)

∂C

∂x

∣∣∣∣
x=0

= 0 (6)

the solution of diffusion equation is given in terms of integral formula [20]:

C (x, t) =
∫ L

0
[G (x, t, ε) + G (x, t,−ε)] · C0 (ε) dε. (7)

Therefore, substituting Eqs. (3) and (4) into Eq. (7) the solutions of time-fractional
diffusion equation at point L are obtained for short and long times respectively:

Cs (L , t) = C0 · L√
π ·K ·tα

Γ (m+α)

, (8)

Cl (L , t) = C0
L2

K · tα · Γ (m − α)
. (9)
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Fig. 1 Sorption isotherm of
N2 on silica surface at 77K
(black and gray circles
correspond to adsorption and
desorption data respectively)

3 Materials and Methods

3.1 Porous Silica

Silica sample, used as the porous media for measurement of methanol mass transport
in this study, was synthesized by routine sol-gel method [21]. Adsorption–desorption
isotherm of silica was obtained using Sorptomatic 1990 instrument. The measure-
ment was made at the boiling point of liquid nitrogen (77K). Surface area and pore
volume were calculated from the isotherm for degassed silica sample.

Silica sample was characterized by adsorption–desorption isotherm of N2 on sil-
ica surface, as shown in Fig. 1. The silica sample has pore volume 0.64cm3/g, BET
surface area 116m2/g, sorption enthalpy 1.16kJ/mol, mean pore diameter 23.2nm,
maximum pore diameter 23.3nm, Dubinin and Radushkevich micropore volume
0.0375cm3/g, Lippens and de Boer micropore volume 0.0221cm3/g, mesopores sur-
face area is 72m2/g.

3.2 Chromatographic Setup

Gas chromatography is a well-known method for mass transfer processes study
[22–24]. Experimental setup is based on gas chromatograph LHM-72, which was
rearranged as follows. Chromatograph column was removed from thermostat and
diffusion cell was installed. Diffusion cell is a short round steel-made tube, her-
metically closed by steel cap from one side, and covered by a steel plate with two
inlets from another side. The first inlet is consecutively joined to gas-carrier source
and chromatograph evaporator, whereas the second inlet is joined to chromatograph
flame-ionization detector. Schematically, the experimental setup is shown in Fig. 2.
Silica grain 0.45cm in diameter was placed inside the diffusion cell. Inert nonporous
sodium silicate was used to fix the grain inside the cell and to cover half surface
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Fig. 2 Experimental setup, based on upgraded LHM-72 chromatograph

of the grain in order to block it from one side and to prevent diffusing species from
penetration through both ends. This configuration corresponds to reflecting boundary
condition.

Methanol mass transfer was studied at 373K, 0.5cm3/s gas-carrier (argon) flow.
The study was performed for two different methanol concentrations that correspond
to the methanol injection into the diffusion cell as 0.3 and 0.5µl.

4 Results and Discussion

An intensity of a chromatograph detector signal versus time is obtained for amount of
methanol injected. After injection almost all methanol amount is absorbed by silica
during very short time. All phenomena governed by methanol adsorption, methanol
pulse flow through the grain, convection in gas phase, and other possible fast mass
transfer phenomena, except diffusion, occur on the time scale of few seconds which
is mainly defined by the methanol pulse flow through the grain. This time interval is
order of linear grain size divided by linear gas flow velocity.

An attempt to fit the experimental results by normal diffusion approach is illus-
trated in Fig. 3. The data are presented as time dependence of normalized methanol
concentration, Cb(t)/C0, where C0 corresponds to methanol at t = 0. Noisy solid
line in Fig. 3 represents the experimental kinetics, solid line gives the best fit for the
Cartesian coordinates, dashed line presents the simulations results in spherical coor-
dinates, and semidashed line gives the simulations results in cylindrical coordinates.
The presented results show that there is a slight almost insignificant difference in
simulations performed in various coordinates.

It is evident from the data presented in Fig. 3 that normal diffusion approach,
accounted by the second Fick’s law, fails to describe mass transfer kinetics of
methanol in silica. Also accounting for any geometry of pores does not lead to
better fit of the experimental data.
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Fig. 3 Experimental data (solid noisy line), fitted by the solution of diffusion equation in Cartesian
coordinates (solid line), spherical coordinates (dashed line), and cylindrical coordinates (semidashed
line) for 0.5µl methanol injected. Values of diffusion coefficient: 1.7 · 10−4 cm2/s for Cartesian
coordinates, 7.5 ·10−6 cm2/s for spherical coordinates, 8.5 ·10−6 cm2/s for cylindrical coordinates

The data presented in Fig. 3 demonstrate that methanol concentration time decay
much faster comparing to theoretical models described by normal diffusion. There-
fore, methanol diffusion in silica may be characterized as anomalous fast diffusion.
This conclusion is approved by the following asymptotic analysis of the experimental
results.

According to Eqs. (8) and (9) the relevant solutions for short and long times
are linearized in logarithmic coordinates, Ln(C/C0) − Ln(t). The corresponding
equations are given by:

ln

[
C (L , t)

C0

]
= ln

⎡
⎣ L√

π ·K
Γ (m+α)

⎤
⎦ − α

2
· ln t , (10)

ln

[
C (L , t)

C0

]
= ln

[
L2

K · Γ (m − α)

]
− α · ln t . (11)

According to Eq. (10) the short time solution has a slope α/2 in Ln(C/C0) −
Ln(t) coordinates and intercept corresponds to the diffusion coefficient. Long time
asymptotic solution is characterized by the slope α also in Ln(C/C0) − Ln(t) coor-
dinates.

Figures4 and 5 demonstrate the fitting of the experimental data by Eqs. (10) and
(11) for short and long times. A correspondence between experimental data and
fittings by these time-fractional is very high.

Values of fractional order α, calculated from linear equations, are 1.3 and 1.2 for
short and long times respectively. Fractional diffusion constant values, obtained in
the same manner, are 1.9 and 1.3 for short and long times respectively. A fairly good
correspondence for the values of the fractional diffusion constant and fractional order,
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Fig. 4 Normalized
methanol concentration time
dependencies of
experimental data (points)
and fitted model according to
Eq. (10) (line) in
Ln(C/C0) − Ln(t)
coordinates for short time.
Linear equation
y = 0.641− 0.676 · x,
correlation coefficient
R2 = 98.8%

Fig. 5 Normalized
methanol concentration time
dependencies of
experimental data (points)
and fitted model according to
Eq. (10) (line) in
Ln(C/C0) − Ln(t)
coordinates for short time.
Linear equation
y = 2.564− 1.2 · x ,
correlation coefficient
R2 = 98.9%

measured for different times, may be concluded. Obtained fractional order values α

are typical for anomalous fast diffusive regime [25].
Finally, analytical solution of the time-fractional diffusion equation was obtained

by the Laplace transform method in analogously to method proposed by Crank [26]
for normal diffusion on a semi-infinite media:

C (x, t) = C0 · erf
⎡
⎣ x

2 ·
√

K ·tα
Γ (m+α)

⎤
⎦ . (12)

The solution of the time-fractional diffusion equation, plotted under Eq. (12),
together with the experimental data is presented in Fig. 6. The coincidence between
experimental data and time-fractional diffusion approach is also evident, as it is shown
in Fig. 6 where dashed line corresponds to the analytical solution of time-fractional
diffusion problem described by Eq. (1) with initial and boundary conditions (5)
and (6).

Asymptotic analysis of experimental results for short and long times together with
the fitting of the experimental data by the analytical solution clearly demonstrate that
normal diffusion approach fails to describe the experimental results. It worse noting
that, contrary to normal diffusion approach, there is a good agreement between the
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Fig. 6 Experimental data
(solid noisy line) fitted by
analytical solution of the
time-fractional diffusion
equation in Cartesian
coordinates (dashed line).
Values of fractional diffusion
coefficient and fractional
order are 4.5 ·10−2 cm2/sα

and 1.4

values of fractional diffusion coefficients and fractional order α obtained from short
and long time analysis of experimental data as well as from the data presented in
Fig. 6. Evidently, methanol diffusion in silica for conditions reported in this paper is
characterized as anomalous fast diffusion, or super-diffusion [27]. It is characterized
by fractional order value in the range of 1.2–1.3 as it follows from the short and long
concentration time scaling, which is in a good agreement with the value 1.4 obtained
by fitting the whole curve presented in Fig. 6. Anomalous transport strongly con-
nected with continuous time random walk model, which describes random particle
displacement and takes into account the jump time and the waiting time of a particle,
before it makes the next movement [28]. This random process does not correspond
to normal Gaussian probability distribution, typical for Fickian transport. In this case
each jump time is independent of previous jumps [29]. That results to non-integer
order of power law kernel for waiting time probability distribution [29]. Therefore,
normal differential time operator is replaced by time-fractional integral and we arrive
to time-fractional diffusion equation.

The measured values of fractional order α for the methanol super-diffusion in
silica, obtained in terms of Caputo fractional derivative, underline the value of dis-
tribution exponent of random time intervals for which molecules stay at one par-
ticular site on the surface of porous media. As demonstrated by Hilfer [30] mass-
conservation law in terms of fractional diffusion holds only for Caputo fractional
integral, because not all continuous time random walks with power-law kernels are
equal to time-fractional diffusion equation [31]. Distribution exponent of random
time intervals for which methanol molecules stay at one particular site on the surface
of porous media may concern alcohol adsorption on silica, which is associated with
energetic disorder of corresponding adsorption sites [32].
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5 Conclusion

Analysis of the experimental data for the methanol transport in silica demonstrates
that standard diffusion approach based on the second Fick’s law fails to describe
experimental data whereas approach based on the time-fractional diffusion equation
fits experimental data very well. We have shown that methanol mass transfer in silica
is described by the time-fractional diffusion equation. We have shown that applying
various types of analysis leads to self-consistent results. The present study reveals
that methyl alcohol transport in silica is characterized as superdiffusion, which is
significantly faster comparing to standard Fickian diffusion. Experimental evidence
for the anomalous diffusion of methanol in silica presented in our study is important
for fundamental understanding of the basis of mass transport phenomena in porous
media and mass transfer modeling in porous media in the frame fractional calculus,
which might be important for chemical engineering applications.
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Kamińska, Kalina, 203
Kawala-Janik, Aleksandra, 419
Klamka, Jerzy, 333
Klimek, Małgorzata, 203

L
Latawiec, Krzysztof J., 277
Łȩgowski, Adrian, 405
Lizzy, Mabel, 345
Lorenc, Piotr, 33

M
Macias, Michał, 101
Maione, Guido, 215, 429
Malesza, Wiktor, 101
Malinowska, Agnieszka B., 227
Markowski, Konrad Andrzej, 467
Mercorelli, Paolo, 477
Morozova, Ekaterina, 287
Mozyrska, Dorota, 21, 65

N
Néel, Marie-Christine, 241
Niezabitowski, Michał, 405

© Springer International Publishing AG 2017
A. Babiarz et al. (eds.), Theory and Applications of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 407, DOI 10.1007/978-3-319-45474-0

511



512 Author Index

O
Odzijewicz, Tatiana, 227
Ostalczyk, Piotr, 65
Özdemir, Necati, 137

P
Pawłuszewicz, Ewa, 89
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