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Abstract. While the business process management community has con-
centrated on modelling and executing business processes with a known
structure, support for processes with a high degree of variability per-
formed by knowledge workers is still not satisfactory. A promising app-
roach to overcome this deficiency is case management. Despite of the
work done in the area of case management in recent years, there is no
accepted case handling formalism that features a well defined semantics.
This paper introduces a novel approach to case management, which is
based on dynamically combining process fragments as required by knowl-
edge workers. An operational semantics defines the meaning of case mod-
els in detail, using states of data objects and enablement conditions of
process fragments.
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1 Introduction

Business process management concepts and techniques have been successfully
applied in a variety of domains to document, analyze, automate and optimize
business processes. Processes with a predefined structure are well supported by
today’s technology. However, this is not true for processes with a high degree of
variability, which are conducted by knowledge workers. As a result, data-driven
and goal-oriented business processes with a high degree of variability are not
well supported.

Increasing the flexibility of business processes has been one of the main
drivers in the development of the BPM field, for instance in areas like
flexible process management, process variants, declarative and object-centric
approaches [12]. Based on these works, the area of case management centers
around the concept of cases and knowledge workers [2]. Case Management is
not a new concept, but IT support for knowledge work is still limited to specific
domains and implemented in an ad-hoc manner.

Case management received attention in the industry [14], however, only few
research publications deal with this topic. According to the literature review of
Hauder et al. [6] a “solution that aims to support knowledge workers needs to
balance between structured processes for repetitive aspects of knowledge work
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and unstructured processes.” While case management is an important approach
that complements traditional process management, there is no agreed opera-
tional semantics for case management. Therefore, Hauder et al. [6] identify the
proposal of a case management theory as one of the key challenges.

In this paper we introduce a case management approach, based on [8] that
provides an operational execution semantics for cases. Case models are specified
by a number of process fragments, which are structured pieces of work that are
dynamically combined during case execution based on data objects and their
states. At runtime this results in a multitude of valid execution paths from case
instantiation to case termination, suiting the flexible nature of knowledge work.

The rest of this paper is structured as follows. We review related work in
Sect. 2. The conceptual framework for case management is presented in Sect. 3,
followed by the operational semantics in Sect. 4. We discuss our approach in
Sect. 5 and then conclude.

2 Related Work

The case handling approach [2] observes that classical WfMS are too rigid for
knowledge workers and relaxes the control-flow of processes. Cases, data objects,
and activities are the central concepts of case handling. Activities can write a
subset of the case’s data objects and while some are optional, other data objects
are mandatory to complete the activity. Activities can be skipped, when their
mandatory data objects are already defined, e.g. by a previous activity. Similarly
to the presented approach, case states in [2] depend not only on control-flow, but
also on case data. Their approach is formalized by giving generic lifecycles for
activities and data objects, as well as event-condition-action rules that describe
the execution semantics.

Artifact- or object-centric approaches to process modeling shift the focus
from the control-flow to the data perspective. Data objects are considered first-
order citizens in the modeling methodology.

The business artifacts approach [4] considers both data and process aspects
and represents key business entities as business artifacts. These artifacts have
an attached lifecycle specifying states of interest an artifact can be in as well
as permissible state transitions, which are realized by services (corresponding to
tasks in workflow approaches). In addition, artifacts have an associated informa-
tion model specifying their attributes similar to a database schema. In [3] the
authors present an artifact-centric design methodology, which involves the steps
of artifact identification, lifecycle and information model design, service specifica-
tion and association, operationalization of the logical specification into so-called
conceptual flows, optimization of those flows, and implementation. The specifi-
cation of services includes input and output artifacts as well as which attributes
can be written, pre-conditions and effects (post-conditions) of service execution.
The association of services to state transitions of artifacts as well as ordering of
services is achieved by event-condition-action (ECA) rules.
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Triggering events might be external messages, attribute and lifecycle state
changes of artifacts, begin and termination of services, and requests by case work-
ers. The condition is specified as a first-order logic formula, although the authors
do not clarify over which domain. Possible actions of rules are the performing
of services and state changes of artifacts. In addition, rules include constraints
on the performers of the service, e.g. requiring certain capabilities. ECA rules
prove a powerful and flexible formalism that can simulate both procedural and
declarative modeling styles.

Although the methodology is very elaborated it begs the question of rule
maintainability. The ECA rules, which contain the business logic to us seem hard
to manage and especially modify. The lack of a visual representation has been
amended with the introduction of conceptual flows. However, they use an ad-hoc
notation, which is harder to understand than for example the BPMN standard.
Additionally, it seems that once the flow is optimized and implemented, the
flexibility existing on the BOM level is reduced.

The case management modeling and notation (CMMN) is a OMG specifica-
tion released in 2014 [11] based on the Guard-Stage-Milestone (GSM) approach.
CMMN’s case plan models structure cases into several stages that are guarded
by sentries waiting for certain events to occur and conditions to be fulfilled to
enter the stage. The sentries’ formulae determine case behavior, however, they
are not part of the graphical model. Stages contain tasks that can be repetitive,
mandatory or optional, and performed in arbitrary order as long as they are not
dependent on another task to terminate. Data is represented as a single case
file with multiple items that can be anything from a XML document to a folder
hierarchy. The downside of this generic definition is that case data is treated
essentially as a black box, and is not used to make automated decisions in the
process. Additionally, the graphical presentation of CMMN models to us seems
hard to understand compared to BPMN, although only an user study could
support this argument.

Declarative process modeling languages follow a different approach. Instead
of explicitly specifying the ordering of activities, they use a set of constraints
between activities, like precedence or non-coexistence, to exclude possible behav-
iors. The language framework DECLARE [1] expresses these constraints as LTL
formulae over finite traces which are transformed into finite automata to check
their satisfaction. In general, constraints are more flexible, i.e. more execution
paths are permitted at runtime, however, constraints might also conflict leaving
no valid behavior. Therefore, DECLARE verifies the models for dead activities
and conflicting constraints. The authors mention that declarative approaches
are not suited for prescriptive, strict processes, and become illegible when many
constraints have to be expressed. Additionally, the approach in [13] does not
handle process data. However, current research on declarative process modeling
[9] includes basic support for task data.
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3 A Hybrid Framework for Case Management

As the presented approach combines aspects of object-centric models with
BPMN, it exhibits quite a few interrelated concepts. We will first provide an
overview of this concepts using a sample scenario before we give their formal
definitions and discuss operational semantics.

3.1 Overview of Concepts

In our approach, business scenarios are captured in a case model that consists of
(a) a domain model, (b) a set of object lifecycles, (c) a set of process fragments,
and (d) a goal state. A case model is instantiated into a case, which represents
the scenario at runtime and hence exhibits the notion of case state that changes
over time, mainly through knowledge workers performing activities. Cases are
similar to process instances in traditional workflow systems, however, contrary
to those, cases are made up of several fragment instances, as well as data objects.

As a running example we will consider the organization of universitary sem-
inars. This scenario clearly qualifies as knowledge work, as it is variant-rich,
goal-oriented, data-driven, and its course unfold over time. A case is usually
started during the semester break by finding a suitable theme and assigning
teaching staff responsible for organizing the seminar.

Data and Lifecycles. The domain model is part of the case model. It defines
the business objects relevant for the scenario as a set of data classes and their
associations in an UML diagram. Each data class is a named entity that has
a set of attributes, which can assume values from a specified domain. For each
data class we can specify a data object creation policy that determines whether
data objects are created automatically during case instantiation. One of the data
classes is designated the case class and as such the root class of any associations.
In our example the seminar is the case class, as it holds references to the other
data classes. Other relevant domain objects in the scenario are the seminar
topics, student enrollments, and teaching staff, as is shown in Fig. 1. As topics
should be explicitly suggested by staff members during case execution, no data
objects of this type are created during instantiation. For the sake of presentation,
we will not consider domain objects like presentations given for and by the
students, and papers or software artifacts handed-in by the students.

Each data class in the domain model has an associated object lifecycle (OLC)
that specifies valid behavior of its instances, i.e. data objects. Object lifecycles
are state transition systems consisting of states and state transitions, as well as
initial and final states. Whenever a data object is instantiated, an instance of the
associated OLC is created. At runtime, each data object is in exactly one of the
states defined by the lifecycle, while different objects of the same class can be
in different states. Valid states for a seminar object, i.e. an instance of the data
class ‘Seminar’, are for example in planing, prepared, or grades submitted,
as depicted in Fig. 2.
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Fig. 1. Domain model for the seminar organization scenario

Fig. 2. Lifecycle for data class ‘Seminar’

Fragments and Activities. The concept of splitting process models into smaller
fragments and combing them dynamically during runtime is the main difference
compared to traditional workflow approaches. A process fragment describes a
structured part of a business scenario, and thus defines the possible behavior
of a case only in unison with the other fragments. Each fragment, just like
usual BPMN process models, consists of events, gateways, activities, and data
objects1. However, our formalization encompasses only a subset of the BPMN
specification [10]. Like data classes, fragments have an associated lifecycle that
controls the behavior of their instances. Fragment instantiation is controlled
by a pre-condition requiring a data object to be in a certain state, and can
occur multiple times for the same case, such that multiple instances of the same
fragment can be present at the same time and run in parallel.

Our exemplary scenario encompasses several fragments. Fragment setup,
depicted in Fig. 3, decides on the format of the seminar, asks staff members for
topic proposals, and selects among them after the proposal deadline. Fragment
topic proposal, shown in Fig. 4 can be instantiated multiple times while the
seminar is in state in planing to create and propose new topics. Due to space
limitations the other fragments dealing with student enrollment and assignment,
preparation of presentations and student supervision, as well as grading are not
depicted in this paper.
1 We need to distinguish between the BPMN modeling construct named data objects

used in fragments and the instances of a data class present at runtime. The former
represent the latter in the model.
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Fig. 3. Fragment for seminar setup

Fig. 4. Fragment for topic proposals

While individual fragments are usually straightforward, their interplay allows
for complex behavior. The set of fragments cannot be considered fixed, as case
workers might find new ways to deal with certain situations, ways, that were
not considered during design of the case model. Therefore, our approach allows
to add fragments during runtime. Let us consider that we would like to support
cancellation of students. The case worker might add a fragment that specifies
how to deal with such a situation.

As usual, activities are the basic units by which work is performed, mainly
by creating and manipulating data objects. Activities are only enabled, when
their data pre-condition is met, i.e. when a set of specified data objects is in
a certain state. Activity instances follow a similar lifecycle like the one defined
in [15]. They are instantiated once the fragment they are part of is instantiated.

Termination of a case is defined differently than for workflows, because cases
contain multiple fragment instances and data objects. Keeping in mind the goal-
orientation of case management, we state that a case is finished, when certain
data objects have reached a desired state. In our example the case is terminated,
when grades have been submitted to the university. In general, several data
objects are involved in the formulation of the termination condition.

3.2 The Domain Model

To formalize our approach we have to formally define the concepts introduced in
the last section, i.e. domain model, object life cycle, and fragment. This will be
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achieved in this section, while the next will instantiate these model-level concepts
and discuss the notions of case state and progress.

Definition 1 (Domain Model). The domain model is a tuple D =
(DC,AT,Dc, pol, class, dom), where DC := {D1, . . . , Dk} is a set of data
classes, AT := {α1, . . . , αl} is a set of typed attributes, and Dc ∈ DC is
a mandatory and unique data class, called the case class. The function pol :
DC → {true, false} specifies, whether data objects of a data class should be
created during case instantiation. The function class : AT → DC maps each
attribute to exactly one data class it belongs to. The function dom(αi) : AT →
{Integer, F loat, String,Boolean}∪DC specifies the domain of an attribute, e.g.
String or a data class Di ∈ DC.

The domain model specifies data classes that represent business entities relevant
for the scenario. Basically, a data class is a named set of typed attributes that
represents a domain element. Data classes can be associated with each other,
however, in this paper we refrain from formalizing associations and multiplici-
ties. Domain models can be expressed as UML class diagrams. The exemplary
scenario, shown in Fig. 1, defines data classes ‘Seminar’, ‘Topic’, ‘Enrollment’,
and ‘StaffMember’.

3.3 Lifecycles

Definition 2 (Lifecycle). A lifecycle L is a labeled transition system repre-
sented by the tuple (Q,Σ, q,Ω,→), where Q is a set of states, Σ is a set of
actions, q ∈ Q is the unique initial state, Ω ⊆ Q is the set of final states, and
→⊆ Q × Σ × Q is the transition relation.

Lifecycles specify valid states and permissible state transition of model elements.
Our framework defines five generic lifecycles LC , LF , LA, LG and LE , that are
independent of a concrete scenario and used for cases, fragments, activities,
gateways, and BPMN events respectively. LC , the case lifecycle, depicted in
Fig. 5, for example determines how case instances behave at runtime. The activity
lifecycle LA, depicted in Fig. 7, governs the behavior of all activity instances. How
exactly the interplay of different instances works, is described in Sect. 4 when
we discuss the operational semantics of case models. Graphically, lifecycles are
represented by the usual notation for state transition systems.

The fragment lifecycle LF , shown in Fig. 6, is very similar to the case lifecycle,
with exception of the enabled state, which indicates whether the data pre-
condition of the fragment is fulfilled. Slightly more complicated is the activity
lifecycle depicted in Fig. 7. To reach the enabled state, activity instances must
be both control-flow-enabled (denoted by action cfe), and data-flow-enabled
(action dfe). Because the data objects references by the activities’ data pre-
conditions can change their state, an activity instance can be data-flow-disabled
(action dfd) again. Activity instances can also be skipped in some situations,
e.g. when the follow a XOR gateway, by performing the action skip.
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Fig. 5. Lifecycle of a Case Fig. 6. Lifecycle of a Fragment

Fig. 7. Lifecycle of an Activity

The gateway lifecycle in Fig. 8 specifies that gateways can be opened, closed,
or skipped. Finally, the valid states of BPMN events are defined by the event
lifecycle in Fig. 9. Events can either occur directly, e.g. a blank start or an end
event, or they are waiting for some external trigger to occur.

In contrast to these generic lifecycles, each data class Di ∈ DC in the domain
model has its own associated scenario-specific lifecycle lc(Di) = LDi

. The func-
tion lc associates lifecycles to elements of the case model, not only to data classes,
but also to cases, fragments, activities, gateway, events, and their lifecycles as
we will see later. We denote the set of scenario-specific data class lifecycles as
LDC for a domain model D = (DC,AT,Dc, pol, class, dom).

Fig. 8. Lifecycle of a Gateway Fig. 9. Lifecycle of an Event

For example, the lifecycle of data class ‘Topic’ from our introductory sce-
nario is depicted in Fig. 10. For each topic that is prepared in the preparation
phase for a seminar, one data object is created as instance of the data class
‘Topic’. All these data objects ‘topic A’, ‘topic B’, etc. follow the same lifecycle
LTopic, T opic ∈ DC. However, different topics might be in different states, e.g.
while ‘topic A’ is proposed, ‘topic B’ might be already selected.
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3.4 Process Fragments

For a domain model D we define a set COND of terms called data object state
conditions. An atomic condition is of the form D[q], where D ∈ DC is a data
class and q ∈ Q is a state in D’s associated lifecycle lc(D) = (Q,Σ, q,Ω,→).
Any combination of atomic conditions written in disjunctive normal form is also
a term ∈ COND. Data objects state conditions are evaluated in the context of a
case state. An examplary data object state condition for our exemplary scenario
is Seminar[in planing].

Fig. 10. Lifecycle for data class ‘Topic’

Definition 3 (Process Fragment). Let G := {G∧
<, G∧

>, G×
< , G×

>} be a set of
gateway types, representing AND split, AND join, XOR split, and XOR join. Let
D = (DC,AT,Dc, pol, class, dom) be a domain model as defined in Definition 1.

Then a process fragment F is a tuple (NA, NE , NG, ND, Cf,Df, γ, δ,Δ),
where

– NA, NE , NG, ND are disjunctive sets of activity nodes, event nodes, gateway
nodes, and data nodes,

– N = NA ∪ NE ∪ NG ∪ ND is the set of all nodes,
– Cf ⊆ (N \ ND) × (N \ ND) is the control-flow and
– Df ⊆ (ND × NA) ∪ (NA × ND) is the data-flow relation,
– δ : ND → ⋃

∀i(Di ×Qi) maps each data node to a pair of data class Di ∈ DC
and one of its states,

– γ : NG → G assigns a gateway type to each gateway node,
– Δ ∈ COND is the fragment’s data pre-condition.

We use the following usual notions.

– ◦N (resp. N◦) denotes the first (resp. last) element of an ordered set N
– •A := {B | (B,A) ∈ Cf} denotes the set of A’s preceding nodes
– A• := {B | (A,B) ∈ Cf} denotes the set of A’s successive nodes
– �A := {δ(D) | (D,A) ∈ Df} denotes the data pre-condition of an activity

node, consisting of pairs of a data class and one of its lifecycle states.
– Similarly, A� denotes the data post-conditions of an activity node
– �F := Δ is used to refer to the data pre-condition of the fragment F .
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The notion of a process fragment formalizes certain aspects of usual BPMN
process models, closely following the BPMN specification [10]. However, we focus
on the parts relevant for this paper and exclude constructs like pools and lanes,
complex gateways, sub-processes, boundary events, as well as message flows.

The BPMN specification provides basic modeling constructs for data mod-
eling, see [10, Section 10.4.1], that are used in fragments to represent data pre-
as well as post-conditions of activities. Following [7] we refer to these model ele-
ments as data nodes. Each data node in the fragment model stands for one data
object at runtime that is required for the activity to be enabled (pre-condition)
resp. that is produced when the activity terminates (post-condition).

Definition 4 (Well-formed Process Fragment). A process fragment F =
(NA, NE , NG, ND, Cf,Df, γ, δ,Δ) is called well-formed, if the following proposi-
tions are true.

(a) The first and last nodes regarding the order Cfare unique, i.e. |◦N | = |N◦| = 1
(b) The last node is an event node N◦ ∈ NE

(c) The first node is an activity node ◦N ∈ NA

(d) Activity and event nodes have exactly one predecessor and one successor,
i.e. ∀X ∈ (NA ∪ NE) \ (◦N ∪ N◦), |•X| = |X•| = 1

As the first and last elements are unique according to (a), we use ◦N,N◦

to refer to the start activity, respectively end event of a fragment. Similarly,
because of (d) we overload to notion of •A and A• to refer to the unique element
rather than the set when talking about activity or event nodes X ∈ NA ∪ NE.
According to (c) start events are not part of the formalization. They are used in
the graphical presentation of fragments to indicate the data pre-condition of a
fragment.

Now, that all its components are defined, we define the notion of a case model,
which captures the essence of a business scenario.

Definition 5 (Case Model). A case model (D,L,F ,A, tc, lc) consists of a
domain model D, a set of lifecycles L := {LC , LF , LA, LG}∪{lc(Di) = LDi

|Di ∈
DC}, a set of well-formed process fragments F , a set of activities A, a termi-
nation condition tc ∈ COND, and a function lc assigning a lifecycle to the other
elements.

4 Operational Semantics of Case Models

This section formally specifies the operational semantics of case models, i.e. their
behavior at runtime. To perform a case model it needs to be instantiated into
a case that is in an initial state. This is described in Sect. 4.1, while Sect. 4.2
explains how the case state can change according to case progress rules.
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4.1 Case State and Instantiation

Cases reside on the instance level and consist of fragment, activity, gateway, and
event instances, as well as data objects, i.e. instances of data classes defined in
the domain model. Each of these elements is at any time in exactly one lifecycle
state and values are assigned to each data object attribute. A case is in flux,
new data objects are created, the states of activity instances change, the case
finally terminates, however, the case identifier stays the same. Each snapshot in
this series is referred to as a case state, which is formally defined as follows.

Definition 6 (Case State). Given a case model M = (D,L,F ,A, tc, lc) mul-
tiple cases c1, c2, . . . can be instantiated forming the set of cases CasesM . At
any time a case c ∈ CasesM is in a certain case state S. A case state S is a
tuple (I, in, cs, val), where I = FI ∪ AI ∪ GI ∪ EI ∪ DO is a set of instances,
partitioned into fragment, activity, gateway, and event instances, as well as data
objects, in ⊂ (I × I) defines the inclusion among instances and data objects,
cs maps instances and data objects, including the case c itself, to their lifecycle
states, and val : (DO×AT ) → dom(AT ) assigns values to data object attributes.
The (infinite) set of all possible states of instances for a case model M is denoted
as StatesM .

The inclusion relation in gives rise to a directed, acyclic graph called case graph.
It is rooted in the case identifier c ∈ CasesM and specifies which activity
instances belong to which fragment instances, as well as which data objects
are bound to which activity instance.

New cases can be either manually instantiated by a knowledge worker or
automatically when an external event occurs. Instantiation of a case model cre-
ates a new case instance, one instance for each fragment, and instances for all
activity, gateway, and event nodes in every fragment. The initial state of these
instances is determined by their associated lifecycles. For some instances, lifecy-
cle transitions occur during instantiation, e.g. an activity instance belonging to
the first activity node of a fragment2 will be control-flow-enabled by the engine.
Activity, gateway, and event instances are in inclusion relation with their respec-
tive fragment instance and depending on the data object creation policy of a data
class, data objects are created in their initial state.

For our exemplary scenario the initial state is S0 = (I0, in0, cs0, val0), where
I0 = FI0 ∪ AI0 ∪ GI0 ∪ EI0 ∪ DO0 and FI0 contains one instance for the setup
fragment (f1) and one for the topic proposal fragment (f2). AI0, GI0, EI0 contain
instances for all activity, gateway, and event nodes respectively. Those instances
are related to their fragment instance via the in relation. DO0 is empty, because
data objects of class ‘Seminar’ and ‘Topic’ have to be created explicitly during
the case according to the data object creation policy. Because DO0 is empty,
there are no attributes to which val0 could assign values. The state cs(f1) of

2 When it is clear from the context, we will speak of the first activity, when we mean
the activity instance belonging to the first activity. Bear in mind, that cases are on
instance level.
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the setup fragment instance is enabled, while cs(f2) = initial, because the data
precondition �F2 = Seminar[in planing] is not fulfilled. The activity instance of
“select title & organizer” is enabled, because it is the first activity of a fragment
and has no data pre-condition. All other activity instances are either in state
initial or df-enabled, depending on whether they have a data pre-condition.

For cases that are automatically started due to an external event, it would be
useful to consider input data for the case derived from the event. To achieve this,
data objects would need to be created with attribute values assigned according
to the triggering event. However, the mapping of external events to data objects
is beyond the scope of the basic formalism.

4.2 Case Progress

Knowledge workers progress a case by performing activities, in addition automat-
ically performed system activities, as well as external events can drive the case’s
progress. These state changes, called global transitions, are governed by a set of
rules that together define the operational semantics of our approach. Because
a case c consists of many component instances – fragment, activity, gateway,
and event instances, as well as data objects – its state S is compounded of the
component instances’ states, which are captured by their associated lifecycle and
changed through lifecycle transitions. However, these transitions cannot occur
on their own in isolation, but only when triggered by a rule due to a global
transition. The following definition introduces triggering of lifecycle transitions.

Definition 7 (Lifecycle transitions). Let M = (D,L,F ,A, tc, lc) be a case
model and S = (I, in, cs, val) ∈ StatesM be the state of a case c of M . Let
further i ∈ I be an instance with associated lifecycle lc(i) = (Q,Σ, q,Ω,→) in
state cs(i) = qs, qs ∈ Q. We write action(i) to denote the triggering of lifecycle
transition (qs, action, qt) ∈ →. This lifecycle transition results in changing the
instance’s state from cs(i) = qs to cs′(i) = qt.

Take for example fragment instance f in state cs(f) = active and activ-
ity instance a, (a, f) ∈ in in state cs(a) = running. Let us assume fur-
ther that the activity node, a is an instance of, is the final activity node
in its fragment. Although the fragment lifecycle LF allows a transition
(active, terminate, finished), this transition is taken only when the end event
of that fragment occurs. When the case worker terminates the final activity
through the frontend, several lifecycle transitions are executed by the engine.
First, the lifecycle state of the terminated activity instance changes. As a result,
the succeeding end event performs the lifecycle transition occur, which triggers
the lifecycle transition terminate of the fragment instance. As a result of the
global transition the case is in state S′ with cs′(a) = cs′(f) = finished.

To ease definition of progress rules we define some helper functions. type :
DO → DC maps data objects to their data class. node maps activity, gateway,
and event instances to the node they are instances of. frag : FI → F maps
fragment instances to the fragment they are instances of. The notion of pre/post-
set of nodes is extended to instances, i.e. i ∈ AI, i• = {x |node(x) ∈ node(i)• ∧
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(i, f), (x, f) ∈ in}, analogously for •i. Also, data pre/post-conditions of activity
nodes are extended to instances, i.e. a ∈ AI, a� = node(a)�.

Data object state conditions as well as data expressions are evaluated in the
context of a case state, yielding either true or false. An atomic condition D[q] ∈
COND holds true in a state S, if and only if there exists a data object of type D
that is in state q, i.e. ∃d ∈ DO : type(d) = D ∧ cs(d) = q. Compound formulae
are evaluated according to the usual rules of conjunction and disjunction. Data
pre-conditions of activities are evaluated in a similar fashion.

Definition 8 (Fulfilled data pre-conditions). Let M = (D,L,F ,A, tc, lc)
be a case model and S = (I, in, cs, val) ∈ StatesM be the state of a case c of
M . Let further a ∈ AI be an activity instance of activity node node(a) = A,
and �A = {(D1, q1), . . . , (Dn, qn)} be the data pre-condition of A. A subset B =
{b1, . . . , bn} ⊆ DO fulfills the data pre-conditions of A in state S, if type(bi) =
Di and cs(bi) = qi. If �A = ∅ the empty set fulfills the data pre-conditions. B is
said to be unbound, if ∀b ∈ B, �x ∈ I : (b, x) ∈ in.

An unbound subset of data objects that fulfills the data pre-conditions of an
activity instance, can be bound to that instance, once it becomes control-flow-
enabled and is started by the user. In our running example, in the case state
after terminating activity “select title & organizer” the data object set {sem}
with type(sem) = Seminar is unbound and fulfills the pre-condition of activity
“specify requirements”. This leads to the first progress rule.

Rule 1 (Activity Start). Let M = (D,L,F ,A, tc, lc) be a case model and
S = (I, in, cs, val) ∈ StatesM be the state of a case c of M . Let a ∈ AI be an
activity instance in state cs(a) = enabled, let f ∈ FI be a fragment instance
with (a, f) ∈ in, and B ⊆ DO be an unbound set of data objects, potentially
empty, that fulfills the data pre-conditions of a.

Then S can make a global transition to S′ = (I ′, in′, cs′, val) with

(a) in′ = in∪{(bi, a) | bi ∈ B}, i.e. data objects are bound to activity instance a
(b) cs′ is defined by the following lifecycle transitions: begin(a) and
(c) If f is not yet active, i.e. cs(f) = enabled,

(i) start(f), i.e. start the fragment instance f
(ii) FI ′ = FI ∪ f ′ where f ′ is a new fragment instance with frag(f ′) =

frag(f), initialized as described in Sect. 4.1

According to Rule 1(c) a fragment instance f stays in state enabled until
one of its activity instances begins execution, only then it makes the lifecycle
transition start(f). At the same time a new fragment instance f ′ of fragment F
is created in its initial state (although enable(f ′) will be performed when �f ′ is
empty or fulfilled). This allows to create new fragment instances at the moment
they are required, ensuring that arbitrarily many instances are available.

Activity Termination with User Input. Running activities can be terminated by
knowledge workers when they finished working on that activity, leading to a new
global case state. If the activity manipulates data objects, i.e. its data post-set
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is non-empty, users can enter attribute values for those data objects through
a form. This input determines the valuation of the attributes of those data
objects. We formalize the input as a valuation function defined for all bound
data objects. When an activity terminates, the state of data objects in its data
post-set is changed according to the model and all of its successors are triggered.

Rule 2 (Activity Termination). Let M , S be defined as before. Let a ∈ AI
be an activity instance in state cs(a) = running included in fragment instance
f ∈ FI, i.e. (a, f) ∈ in. Let B = {b | (b, a) ∈ in} be the data objects bound to a
and valin be the valuation function provided by the user.

Then S can make a global transition to S′ = (I, in′, cs′, val′) with

(a) cs′ is defined by the following lifecycle transitions: terminate(a) and
(i) a’s successor is triggered, i.e. if a• ∈ AI then cf-enable(a•), if a• ∈ GI

then open(a•), if a• ∈ EI then occur(a•)
(ii) The lifecycle states of all bound data objects b ∈ B are changed according

to the data post-conditions of node(a).
type(b) = Di ∧ (Di, qt) ∈ a� ∧ (cs(b), action, qt) ∈ →i =⇒ action(b)

(iii) new data objects d are created in the state cs′(d) = q0,
DO′ = DO ∪ {d | type(d) = D ∧ (D, q0) ∈ a� \ a�}

(iv) Attribute value assignment val′ is pieced together from the previous valu-
ation val and the user input valin.

(v) terminate(c), if the termination condition is fulfilled
(b) in′ = in \ {(b, a) | b ∈ B}, i.e. data objects in B are released

Following this rule cases terminate immediately, once their termination condition
becomes true. On the other hand, nothing prevents the knowledge worker to
continue working on a case that is terminated. The frontend should display that
the termination condition is fulfilled and offer the possibility to close the case.

Rule 3 (Event Occurence). When an event e ∈ EI occurs in a state S, it
triggers its successor x = e•, by performing the appropriate lifecycle transition.
occur(e) =⇒ cf-enable(x), x ∈ AI ∨ open(x), x ∈ GI ∨ occur(x), x ∈ EI

Rule 4 (Gateway Behavior). Let M , S be defined as before and let g ∈ GI
be a gateway instance.

(a) When a XOR split opens it triggers its successors, i.e. open(g) ∧ γ(g) =
G×

< =⇒ cf-enable(xi), xi ∈ AI ∨ open(xi), xi ∈ GI ∨ occur(xi), xi ∈ EI,
for all xi ∈ g•

(b) A XOR split closes and skips all alternatives when one activity begins, i.e.
begin(xi) ∧ γ(g) = G×

< =⇒ close(g) ∧ skip(xj), xj 
= xi

(c) When AND splits and XOR joins open, they trigger their successors and
close, i.e. open(g) ∧ γ(g) ∈ {G∧

<, G×
>} =⇒ close(g) ∧ (cf-enable(xi), xi ∈

AI ∨ open(xi), xi ∈ GI ∨ occur(xi), xi ∈ EI), for all xi ∈ g•
(d) An AND join closes when its last predecessor terminates, i.e.

terminate(yi) ∧ ∀yj ∈ •g \ {yi} : cs(yj) = finished ∧ γ(g) = G∧
> =⇒

close(g) ∧ (cf-enable(xi), xi ∈ AI ∨ open(xi), xi ∈ GI ∨ occur(xi), xi ∈ EI)
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If there exist paths from a XOR split to a XOR join without activities in between,
activities on alternative paths are called optional. Optional activities are enabled,
when the XOR split opens, but have to be skipped explicitly.

Rule 5 (Fragment Termination). If the end event of a fragment instance
occurs, that fragment instance terminates.

occur(N◦) ∧ (N◦, f) ∈ in =⇒ terminate(f)

Application of the rules to an initial case state S0 yields the structure of all
reachable case states. However, as rule applicability depends on user input and
selection of activity bindings, the state space of a case can grow tremendously.

5 Discussion

In this section we explore whether and how our approach eases modeling and
execution of flexible processes. The central idea of our approach is to model
business scenarios as a set of small fragments and use data object states to
combine them at runtime. The alternative would be to express the complex
flows that ensue through dynamic fragment combination in one BPMN model.
Imagine, the scenario allows to cancel a seminar before the semester started. A
BPMN model would necessitate many gateways to allow for cancelation at the
right places in the model and hence would become too large to be manageable.

Our fragment approach makes it easy to add fragments and keeps the frag-
ments simple, because fragment combination is based on data objects instead of
gateways. This fits naturally for flexible processes in knowledge work, where dif-
ferent courses of action can be expressed by different fragments. One could add a
fragment for canceling seminars after they have started, another one for dealing
with students who quit their enrollment. While the fragments are much simpler
there can be quite many of them and the flows resulting from their combination
pose a threat for model comprehension.

Therefore, it is essential for our approach to answer questions about possible
flows, e.g. how can I reach a case state satisfying the termination condition. The
formalization lays the foundation for this kind of formal analysis of case models.
Without the presented operational semantics for cases, analysis techniques would
not be able to generate the state space. Thus, the provided formalization is a
precondition for verification of cases, e.g. to find deadlocks and reachable states.

Finally, the formal background of our approach helped in implementing a
prototypical engine for executing case models [5]. The implementation closely
follows the formal definitions by using state machines to control the state of
instances and implementing the progress rules.

6 Conclusion

Driven by the deficits of traditional process management technology in supporting
knowledge intensive processes, since about a decade there is interest in case man-
agement. As discussed in the related work section, several approaches have been
presented with different assumptions, notations, and limitations.
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In the approach presented in this paper, we have tried to balance the struc-
tured parts of cases with the unstructured, flexible ones. We did so by following
a hybrid approach in which process fragments expressed in BPMN support the
structured part, while enablement conditions based on data objects and their
states support the variability aspects.

To validate the approach in general and the operational semantics in par-
ticular, they have been prototypically implemented in a software system called
Chimera. Initial user tests show the appropriateness of the modeling approach
and the effectiveness of the defined execution semantics. However, a thorough
empirical analysis involving a formal user study is not in the scope of this paper.
On the other hand, this paper provides the technical results of our research which
provide the basis for a future empirical evaluation.
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