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Resource for Precision Medicine 
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    Abstract  

  The Cancer Genome Atlas effort has generated signifi cant interest in a new 
paradigm shift in tumor tissue analysis, patient diagnosis and subsequent 
treatment decision. Findings have highlighted the limitation of sole reliance 
on histology, which can be confounded by inter-observer variability. Such 
studies demonstrate that histologically similar grade IV brain tumors can be 
divided into four molecular subtypes based on gene expression, with each 
subtype demonstrating unique genomic aberrations and clinical outcome. 
These advances indicate that curative therapeutic strategies must now take 
into account the molecular information in tumor tissue, with the goal of 
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identifying molecularly stratifi ed patients that will most likely to receive 
treatment benefi t from targeted therapy. This in turn spares non- responders 
from chemotherapeutic side effects and fi nancial costs. In advancing clinical 
stage drug candidates, the banking of brain tumor tissue necessitates the 
acquisition of not just tumor tissue with clinical history and robust follow-
up, but also high quality molecular information such as somatic mutation, 
transcriptomic and DNA methylation profi les which have been shown to 
predict patient survival independent of current clinical indicators. 
Additionally, the derivation of cell lines from such tumor tissue facilitates 
the development of clinically relevant patient-derived xenograft mouse 
models that can prospectively reform the tumor for further studies, yet have 
retrospective clinical history to associate bench and  in vivo  fi ndings with 
clinical data. This represents a core capability of Precision Medicine where 
the focus is on understanding inter- and intra-tumor heterogeneity so as to 
best tailor therapies that will result in improved treatment outcomes.  
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  Abbreviations 

   bFGF    Basic fi broblast growth factor   
  CMAP    Connectivity map   
  CNS    Central nervous system   
  EGF    Epidermal growth factor   
  GBM    Glioblastoma multiforme   
  GEMM    Genetically engineered mouse model   
  GPCs    Glioma-propagating cells   
  MRI    Magnetic resonance imaging   
  NIH    National Institutes of Health   
  PDX    Patient-derived xenograft   
  TCGA    The Cancer Genome Atlas   

4.1          Introduction 

 Glioblastoma multiforme (GBM) remains a can-
cer with the worst prognosis. Patients often show 
a median survival period of 15 months, even with 
advanced surgical intervention, chemotherapy 
and radiation treatment [ 1 ]. Temozolomide, the 

standard of care drug in the clinic, has annual 
global sales of US$ 1 billion, yet it merely 
extends survival by 3 months. Among the reasons 
for the highly invasive and recurrent nature of the 
disease lies in the cellular and molecular hetero-
geneity of GBM. Recent deep molecular profi l-
ing efforts such as  The Cancer Genome Atlas 
(TCGA)   demonstrated that histologically identi-
cal GBM tumors are molecularly heterogeneous, 
further suggesting that their regulatory pathway 
networks determine each tumor’s sensitivity to 
targeted therapeutic approaches [ 2 ,  3 ]. While 
these computational analyses reveal the putative 
mechanisms underlying tumor resistance and 
recurrence, biological or functional validation in 
preclinical animal models is lacking. In the past 
decade, the use of mouse xenograft models cre-
ated from commercially procured serum-grown 
glioma cells has been challenged by studies dem-
onstrating that such xenografted tumors fail to 
recapitulate the patient’s original tumor morphol-
ogy and transcriptomic profi les [ 4 ]. In addition, 
such  in vitro  serially passaged serum-grown cells 
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often contain genomic aberrations not found in 
the original primary tumor [ 5 ,  6 ]. Indeed, the 
widely used US National Cancer Institute NCI- 
60 panel of human cancer cell lines commonly 
passaged in serum-containing media will soon be 
decommissioned, with an aim to launch a rejuve-
nated repository of cancer models that are derived 
from fresh patient samples and tagged with 
details about their clinical past [ 7 ]. 

  Glioma-propagating cells (GPCs)   have been 
isolated from malignant brain tumors, and culti-
vated as spheroid structures in serum-free media 
supplemented with growth factors [ 8 ]. This media 
composition is similar to that used to passage neu-
ral  stem cells  , and helps promote self- renewal and 
tumorigenicity of GPCs [ 9 ]. In contrast, the addi-
tion of serum encourages differentiation of GPCs, 
resulting in cessation of cell  proliferation   with 
subsequent involution of tumor growth. We and 
others previously demonstrated the preservation of 
karyotypic hallmarks in these cells, similar to the 
original tumors [ 6 ,  10 ]. We developed a method to 
passage these spheroid structures by mechanical 
trituration, thus avoiding constant use of harsh 
enzymatic solutions that have been shown to alter 
karyotypic patterns in human embryonic stem 
 cells      grown as embryoid bodies [ 11 ]. We discuss 
 vitrifi cation  , a technique adapted from  in vitro  fer-
tilization procedures, and emphasize the impor-
tance of preserving these spheroid structures with 
reduced water content to prevent damage from ice 
crystals during the  thawing   process. Collectively, 
these methodologies preserve the integrity of 
GPCs and their ability to establish  patient-derived 
xenograft (PDX)   tumors that faithfully phenocopy 
the original tumor pathophysiology, cytogenetic 
and transcriptomic profi les. This capability refl ects 
the importance of establishing a cell line and 
tumor tissue bank that presents the most clinically 
relevant resource to test and validate computa-
tional predictions generated from large patient 
glioma databases. 

 Crucial to establishing clinical relevance of our 
brain  tumor resource  , we discuss computational 
platforms such as the  Connectivity Map   to link 
molecular data acquired from  in vitro  and animal 
studies with multi-dimensional clinical informa-
tion such as the patient’s age, tumor grade, molec-

ular information, Karnofsky score and magnetic 
resonance imaging (MRI) scans available in large 
clinical databases such as  TCGA   [ 12 ]. These 
computational advances have expanded the scope 
of studies made possible with our brain tumor 
resource [ 13 – 17 ]. Importantly, we now have a 
brain tumor  biobank   that facilitates studies in 
Precision Medicine where biological validation of 
patient-centric predictions is achievable.  

4.2     Brain  Tumor Resource   

 With the advance of  TCGA   efforts, several brain 
tumor banks containing low-passage cell lines have 
been established with a focus on acquisition of 
clinical history with deep content molecular infor-
mation (genotype-phenotype databases). The goal 
of such tumor banks is to facilitate studies requir-
ing capability to remodel the disease accurately so 
as to prospectively test computational predictions 
based on patient information [ 18 ]. Central to this 
 biobank   creation, we previously demonstrated 
three important criteria: (1) Growth of patient-
derived glioma cells in serum- free media supple-
mented with growth factors, (2)  Vitrifi cation   as a 
 cryopreservation   method, and (3) Ability to estab-
lish orthotopic  PDX   models that recapitulate the 
patient’s original tumor pathophysiology. As such, 
genotype–phenotype databases previously needed 
only simple computing technologies, including 
very basic data fi elds relating to pathogenicity, but 
did not capture the process of pathogenicity inter-
pretation. Going forward, this approach will have 
to change, especially if we wish to deliver truly 
Precision Medicine-based fi ndings, which will 
require mechanistic in addition to probabilistic 
modeling, and hence even more sophisticated 
sources of input information and tools for the 
recording of results. 

  GPCs   can be maintained and propagated as 
tumor neurosphere cultures in defi ned serum-free 
condition supplemented with epidermal growth 
factor (EGF) and basic fi broblast growth factor 
(bFGF), a paradigm that is adopted from the 
traditional neurosphere culture [ 19 ,  20 ]. 
Furthermore, Lee and colleagues have shown that 
tumor stem-like cells grown in serum-free condi-
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tion closely mimic the genotype, transcriptomic 
profi le and morphological features of their paren-
tal tumors [ 6 ]. Thus, the establishment of a tumor 
neurosphere repository with preservation of 
essential features of tumor heterogeneity would 
provide a clinically relevant resource to investi-
gate the disease. Such a method would also allow 
us to return to the same experimental cell line 
passages to reduce variability in experimental 
replication. Recent efforts by the Roadmap 
Epigenomics Project spearheaded by the National 
Institutes of Health (NIH) highlighted epigenetic 
silencing differences of  in vitro  cultured cells 
when compared to similar cell lineages in pri-
mary tissue, thus underscoring the importance of 
cryopreserving low-passage  GPCs   with retention 
of its molecular fi ngerprint [ 21 ]. In many studies 
involving the prospective isolation of tumor- 
propagating cells, only small amounts of clinical 
material are available, and this  limitation   is com-
pounded by lack of appropriate methods to pre-
serve such cells at convenient time points. 
Although  in vivo  serial passage of GPC-derived 
tumors has been described as the most reliable 
method to preserve the cells, practically, it is not 
always feasible to have access to suitably-aged 
immunocompromised mice [ 8 ]. We developed 
mechanical trituration as a method to passage 
three-dimensional spheroid cultures for the rea-
son that acute dissociation of such structures into 
single cells promotes cellular senescence over an 
extended period [ 9 ]. In addition, induction of cel-
lular differentiation, such as by the presence of 
serum, results in loss of tumorigenicity and con-
sequent involution of tumor growth [ 22 ]. 

 We adapted a method used in cryopreserva-
tion of embryos from  in vitro  fertilization proce-
dures.  Vitrifi cation   is a process of glass-like 
solidifi cation in which an aqueous solution is pre-
vented from crystallization by rapid cooling [ 23 ]. 
This method has been commonly used for the 
 cryopreservation   of embryos at different devel-
opmental stages from various species such as 
murine, rabbit, sheep and bovine [ 24 – 29 ]. 
Furthermore, human and mouse multi-cell 
embryos have been successfully cryopreserved 
using this strategy [ 30 ]. This highlights the feasi-
bility of cryopreserving cellular aggregates. In 
addition, it has been demonstrated that vitrifi ed 

embryonic stem  cells   retained their pluripotency, 
cytogenetic profi le and viability upon  thawing   
[ 31 ]. Taken together,  vitrifi cation   could provide 
an effective means of storage of brain tumor- 
propagating cells cultured as spherical structures. 
Although adherent  GPC   cultures using laminin 
have been proposed, these growth conditions 
resulted in transcriptomic shift of the cells [ 32 ]. 
In support, Dirks and colleagues showed that a 
chemical genetics screen utilizing GPC spheroid 
cultures identifi ed small molecules affecting neu-
rotransmission in the adult central nervous sys-
tem (CNS), thus suggesting that clinically 
approved neuromodulators may remodel the 
mature CNS and fi nd  application   in the treatment 
of brain cancer [ 33 ]. 

 To facilitate testing of  patient stratifi cation   
methods and identifi cation of molecular mecha-
nisms contributing to disease progression, a 
genomic roadmap is created to characterize the 
cells, tumor xenografts and primary tumors. The 
pivotal goal of molecular profi ling of 
 patient- derived cells aims to stratify patient 
cohorts and identify amenable therapeutic strate-
gies. The content-rich patient tumor molecular 
profi les need to be systematically archived for 
effi cient data mining to evaluate proof-of-con-
cept studies. Initial steps at identifying potential 
cancer- specifi c biomarkers require patient-cen-
tric  bioinformatics   interrogation, information 
from which can then be used for the analysis of 
samples stored in tissue banks. In  TCGA  , the 
quality of samples acquired was assessed from 
several participating tissue banks that surpris-
ingly showed only one percent of the samples 
being reliable for downstream molecular data 
acquisition [ 2 ,  34 ,  35 ]. Sample quality and the 
associated clinical information are important fac-
tors in tissue banking. The importance in having 
expertise at tissue sampling and culturing of 
patient-derived cells, with preservation of cyto-
genetic and transcriptomic hallmarks found in 
the original primary tumor has previously been 
reported by our colleagues [ 6 ,  10 ]. Precision 
Medicine-driven studies, dependent on this 
molecular heterogeneity, warrant a preclinical 
mouse model that recapitulates the patient’s orig-
inal tumor pathophysiology and aids at advancing 
chemotherapeutic candidates into clinical  trials     .  
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4.3     Animal Model Established 
from the  Biobank  : 
An Informative Preclinical 
Mouse Model 

 Modeling brain tumors in animals reveals genetic 
events and molecular mechanisms that contribute 
to oncogenesis. The mouse shares extensive 
molecular and physiological similarities to 
human beings and is a powerful tool for studying 
cancer [ 36 ]. Unlike invertebrate model systems, 
tumor development in mice is accompanied by 
other complex processes such as angiogenesis 
and metastasis, similar to those in human cancer 
[ 37 ]. More importantly, mouse tumor models 
provide a temporal perspective and genetically- 
controlled system for studying the tumorigenic 
process, as well as response to specifi c 
therapies. 

 Genetically engineered mouse models 
(GEMMs) are a popular model to study tumor 
biology [ 37 ]. There are several  limitations   to 
using GEMMs as more than one driver mutation 
is required to initiate tumorigenesis [ 38 ,  39 ]. The 
expression of the transgene is often elevated to 
levels that exceed those in patients. Tumors that 
arise in this model are often sporadic, resulting in 
diffi culty of study designs that require signifi cant 
animal numbers for reproducibility.  TCGA   
efforts have also demonstrated that the spectrum 
of driver  mutations   differs signifi cantly among 
patients, thus the relevance of a particular GEMM 
may be limited [ 2 ,  40 ]. Nevertheless, GEMMs 
will likely provide useful insight into the tumor 
cell-of-origin and initiating events. 

 Xenograft models established from commer-
cially procured serum-grown cell lines date back 
to the late 1960s. However, several studies dem-
onstrated that such xenografted tumors exhibit 
signifi cant morphological and molecular features 
not found in the original primary tissue [ 4 ,  6 ]. 
Such issues have subsequently been overcome 
through the development of  PDX   models. Several 
studies revealed that the orthotopic xenograft 
model established from patient-derived glioma 
cell lines or tumor explants bear more clinical 
relevance [ 41 – 43 ]. This is due to the presence of 
the microenvironment provided by the normal 

brain parenchyma, where better measurement of 
drug delivery and clearance kinetics can be eval-
uated. The orthotopic  PDX   model is useful as 
tumor formation with high incidence and the 
ability to generate large cohorts of animals in 
preclinical studies are attainable. Several investi-
gators have provided evidence that PDX tumors 
phenocopy the pathophysiology and molecular 
features of their parental tumor [ 6 ,  44 ]. 
Importantly, this model allows assessment of 
therapeutic responses using stratifi ed clinical 
material, a core capability of Precision Medicine. 
We and others previously integrated the use of 
such an in-house brain  tumor resource   to inter-
rogate lab fi ndings in clinical glioma databases 
[ 7 ,  10 ,  14 – 17 ]. We showed that transcriptomic 
patterns derived from  in vitro  drug-treated or 
genetically manipulated cells mapped to patient 
clinical databases, and dictated primary tumor 
phenotype. 

 Despite the frequent use of the  PDX   model in 
studying drug therapy response, we recognize 
that immunogenic and microenvironmental fac-
tors may not be fully represented. Additionally, 
 engraftment   ineffi ciency can be as high as 90 %, 
depending on the type of cancer [ 45 ]. Such  limi-
tations   suggest that the use of mouse models 
should be carefully considered to provide maxi-
mum information about the study  question  .  

4.4     Enabling Precision Medicine- 
Based Studies: Highlighting 
the Importance of a  Biobank   

 A brain tumor biobank that merges multi- 
platform data from patient material (cells, xeno-
graft and primary tumors) and seeks to address 
clinical and imaging phenotypes with molecular 
data will advance studies in stratifi ed medicine. 
The development and preclinical validation of 
novel anti-cancer drugs require low-passage cell 
lines that are representative, scalable and repro-
ducible in experimental models. In the absence of 
an integrated human brain biobank, research 
fi ndings from  in vitro  and  in vivo  models of neu-
rological disorders cannot be functionally vali-
dated in the actual disease context.  TCGA   efforts 
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revealed that gene expression drives GBM dis-
ease progression and survival outcome [ 3 ,  46 –
 48 ]. Although an important prognostic factor of 
glioma progression relies on the World Health 
Organization (WHO) grading scheme, the wide 
differences in treatment response and survival 
suggest that the aggressiveness of treatment can-
not be decided just by  histology   alone. These 
fi ndings underscore the  limitation   of relying 
solely on morphological criteria to diagnose 
patients. Future brain tumor classifi cation must 
now include molecular information which in turn 
guides diagnosis and subsequent treatment deci-
sion [ 49 ]. Development and maintenance of  bio-
banks   as an international resource for the study of 
human diseases provides the scientifi c commu-
nity with well-characterized cells and rich pheno-
typic data. Such resources facilitate prospective 
remodeling of the disease in mouse models, with 
retrospective clinical  information   to evaluate cor-
relation patterns and directly validate the 
mechanism. 

 Targeted therapy is an attractive approach to 
overcome the highly infi ltrative and recurrent 
nature of GBM. Recent characterization of the 
epigenome, somatic mutation profi le and tran-
scriptome of tumor tissue has now provided a 
deeper understanding of the alterations underly-
ing the disease phenotype [ 2 ,  3 ,  50 ,  51 ]. Tumor 
cells are assessed for the underlying pattern using 
unsupervised computational approaches to dis-
cern their molecular heterogeneity. An important 
evaluation is to computationally identify regula-
tory pathways that can be targeted with small 
molecule drugs. These predictions are then func-
tionally validated in  PDX   models. Transcriptomic 
resources of xenograft and primary tumors are 
scrutinized for highly variable genes which can 
refl ect a common bias present among primary 
tumors and xenografts established from  GPCs  . 
This common and systematic bias can be con-
trolled and nullifi ed by statistical algorithms such 
as Anova-based batch effect removal and princi-
pal component based analysis [ 52 ,  53 ]. A scatter 
plot accounting for major principal components 
across matched primary and orthotopic tumors 
demonstrates close proximity of matched sam-

ples, indicating that GPCs can recreate the origi-
nal tumor molecular profi le  in vivo  (Fig.  4.1 ).

   Computational evaluation of matched molecu-
lar data from biobanked patient tumors and GPCs 
requires systematic validation of molecular pro-
fi les using  bioinformatics   approaches. A compu-
tational pipeline is required to interrogate gene 
signatures (transcriptomic classifi ers) derived 
from  GPCs   and a large set of independent predic-
tive database collection from patients’ molecular 
data [ 12 ,  54 ,  55 ]. Molecular perturbation experi-
ments on GPCs have demonstrated promising 
evidence in conferring the patient’s prognosis in 
predictive databases and  in vivo  experiments [ 13 , 
 15 ]. The most comprehensive glioma patient’s 
database was established by  TCGA  , where key 
components of clinical phenotype and genomics 
information were catalogued into a multi-tier 
organizational structure for 33 different tumor 
types [ 56 ]. Each tier is confi ned with a data struc-
ture from genomic platforms including somatic 
mutation, copy number, methylation, transcrip-
tomic and proteomic technologies. Importantly, 
we have merged our cell and xenograft  tumor   

  Fig. 4.1     Recapturing molecular portrait of primary 
tumors in orthotopic xenograft tumors derived from  
  GPCs   . Principal Component Analysis (PCA) map dem-
onstrates similar transcriptomic profi les between matched 
xenograft and primary tumors. Each  color  denotes similar 
patient material with corresponding xenograft tumor. 
 Triangle , xenograft tumor;  square , patient tumor       
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molecular patterns with international collections 
by adapting the statistical framework to control 
for systematic batch effects across different col-
lections [ 52 ,  53 ]. This integrated evaluation also 
confi rms the consistency across tumor cell types 
and provides greater statistical power [ 57 ]. We 
have successfully adapted a qualitative enrich-
ment pipeline, the  Connectivity Map   (CMAP) to 
interrogate active pathway programs coded as 
gene signatures in our biobanked cells with our 
patients’ transcriptomic patterns [ 12 ,  13 ,  17 ]. 
These patients’ prognoses can then be retrospec-
tively predicted by mapping survival and clinical 
response parameters with enrichment scores 
from the CMAP pipeline. Thus, molecular per-
turbation experiments tapping into our brain 
tumor biobank serve as effective tools to biologi-
cally validate these patient-centric computational 
 predictions  .  

4.5     Conclusion 

 Biobanking coupled with deep molecular charac-
terization is a core capability for Precision 
Medicine-based studies (Fig.  4.2 ). The ability to 
remodel brain tumors in mice facilitates biologi-
cal and functional validation of computationally 
predicted pathway networks that should be thera-
peutically targeted.
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