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Abstract In the field of parallel kinematics few designs use highly deformable ele-

ments to obtain the end effector movement. Most compliant mechanisms rely on

notches or shape changes to simulate a standard kinematic joint. In this work a kine-

matic model of a simple parallel continuum mechanism that combines a deformable

element and cable is presented. The kinematic model is used to study the workspace

of the manipulator and is validated by experimental measurements of a prototype.

Keywords Parallel continuum robot ⋅ Compliant mechanism ⋅ Kinematic

analysis ⋅ Experimental mechanics

1 Introduction

A new trend in parallel kinematic manipulators design is the use of ultradeformable

elements in order to obtain the end effector movement [1, 2]. One critical problem

in the design process of this type of robots is the lack of available information, which

usually is reduced to classical texts about nonlinear deformations [3]. Some MEMS

(Micro Electro Mechanisms) [4, 5] do share the parallel morphology but lack the

non-linear deformations that their macroscopic counterparts do suffer.

In this paper a two-degree of freedom parallel continuum robot is studied. The

mechanism combines a highly deformable element with a cable, being possible to

change either the cable or the beam lengths, thus, obtaining a larger workspace. In
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order to solve the kinematics of the robot, the fundamentals of non-linear analysis of

flexible bars are briefly explained. The kinematic problem of the parallel continuum

robot is then solved using an analytical procedure. To validate the results a prototype

has been built in which the beam deformation and the tension suffered by the cable

have been measured.

2 Fundamentals of Nonlinear Analysis of Flexible Bars

In the following we will state some fundamentals about the analytical solution of

the non-linear deflection of a slender element under bending in a plane. To start

with, it acquires the form of a planar curve as in Fig. 1, Navier-Stokes hypothesis

assumes that its cross sections remain planar and perpendicular to the bent curve, and

Bernoulli-Euler law establishes that the bending moment M at a point is proportional

to the curvature 𝜅:

𝜅 = d𝜃
ds

= M
EI

(1)

where E is the elastic modulus and I is the moment of the cross section about the

neutral axis.

We define for a section in equilibrium (see Fig. 1): R and 𝜓 as the reaction force’s

magnitude and direction at the extreme, M1 and M2 as the bending moments at a

extremes, and M as the bending moment at a cross-section. The static equilibrium of

moments for a portion of the bar can be expressed to get M and substitute into Eq. 1:

𝜅 = d𝜃
ds

= M
EI

=
M1
EI

+ R
EI

cos𝜓 y − R
EI

sin𝜓 x (2)

Fig. 1 A section of the bar

at equilibrium



Kinematic Analysis of a Flexible Tensegrity Robot 459

Its derivative with respect to the arc length s, expressed in terms of 𝜃, yields:

d𝜅
ds

= d2𝜃
d2s

= R
EI

cos𝜓
dy
ds

− R
EI

sin𝜓 dx
ds

=

= R
EI

cos𝜓 sin 𝜃 − R
EI

sin𝜓 cos 𝜃 = R
EI

sin (𝜃 − 𝜓) (3)

Its integration requires a complex mathematical manipulation. Several approaches

exist in the literature, here we will follow [4], where we get an integral from one

extreme of the bar of length L to the other as:

√
RL2
EI

= ∫
𝜙2

𝜙1

1√
1 − k2 sin2 𝜙

d𝜙 = F(k, 𝜙2) − F(k, 𝜙1) (4)

being F(k, 𝜙) the incomplete elliptic integral of the first kind, and k and 𝜙 are some

auxiliary variables for integration. And the curvature at each point is given by:

𝜅 = d𝜃
ds

= 2k
√

R
EI

cos𝜙 (5)

If we are interested in the case of a bar with a clamped end and the other pinned,

boundary condition on the slope of the bar at the first extreme, 𝜃1, is given (and

always can be taken null), while the other end has a null curvature. For a given force

at extremes R and 𝜓 , we can state the limits for integration, 𝜙1 and 𝜙2:

𝜙1 = arcsin
(1
k
cos

(
𝜓

2

))
𝜙2 = q𝜋∕2 (6)

where𝜙1 =
[
−𝜋∕2, 𝜋∕2

]
, and q has even values that determine the Mode of buckling

(see Fig. 2). The angle 𝜙 will vary continuously from 𝜙1 to 𝜙2. Then, modulus k =
[−1, 1] can be obtained iteratively on Eq. (4) for a certain value of q. Inflection points

of the bar correspond to values 𝜙 = n𝜋∕2 with even values of n below q if they exist.

Fig. 2 Modes 1 and 2 of the buckling of a clamped-pinned bar
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In order to get the x coordinate of a point in the curve we can manipulate Eq. (5)

to get the integral:

x = −
√

EI
R

cos𝜓
[
2E(k, 𝜙i) − 2E(k, 𝜙1) − F(k, 𝜙i) + F(k, 𝜙1)

]
+

+
√

EI
R
2k sin𝜓

[
cos𝜙i − cos𝜙1

]
(7)

where E(k, 𝜙) is the incomplete elliptic integral of the second kind. In order to get

the y coordinate an analogous deduction to the one followed for x can be done.

For a given value of the coordinates of the extreme of the deflected bar, i.e. a, b,

and the boundary conditions, we must iterate on 𝜓 and k in Eq. (4), obtaining a and

b from Eq. (7) and analogous, and verifying that the error obtained is below a given

threshold.

From the above results we can infer that solutions can be found between some

limiting values for k in an unknown range of 𝜓 and for each mode separately. A

minimum value for k, upon analysis of Eq. (6), corresponds to kmin = ‖ cos(𝜓

2

)‖,

positive for the range k =
[
kmin, 1

]
and negative for the range k =

[
−kmin,−1

]
.

If we restrict ourselves to positive values of k, and plot the end positions of the

bar for a given value of 𝜓 in the range from kmin to k = 1 we get the plot in Fig. 3.

As it can be seen, solutions for both modes start from the limiting curve of kmin and

go up to a k value of 1.

Fig. 3 Solutions for Modes

1 (red curve) and 2 (black
curve) for 𝜓 = 200 from kmin
to k=1 (color figure online)
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3 Kinematic Analysis of the 𝟐 DoF Parallel Continuum
Robot

The mechanism proposed is a closed loop device, see Fig. 4. A slender bar is actuated

through a fixed support that keeps a constant orientation at that section, so the length

l of the deformed bar is variable. Also, a cable is attached to the extremity of the bar

inP and its length 𝜆 can also be controlled varying 𝛿. Hence, the system has 2 degrees

of freedom that control the position on the plane of the end-point P.

In order to solve the inverse position problem, given the desired coordinates for

P, i.e. xP and yP, we can find the required length for the cable straightforward. The

orientation of the end-force R, i.e. the angle 𝜓 of the force applied at the end-point

is found. Then, we can iterate in the k parameter for equations Eqs. 6 and 7 until we

find a value that produces an end-point position closer to the objective than a given

threshold. The analytical solution is quite simple and the iterative process reaches a

solution quickly.

The described methodology has been used to obtain information regarding the

workspace of the manipulator. The tension of the cable, the Von Mises stress in the

exit point of the beam have been calculated. As the analytical procedure solves the

inverse kinematic problem, the error between the objective position and the obtained

position has also been calculated. All these values can be seen in Fig. 5.

Cable tension and Von Mises stress behave as expected, increasing as deformation

in the beam increases. The same happens with the error, as it becomes higher with

as the location of the end effector requires a bigger deformation of the beam.

Fig. 4 Continuum Parallel Robot
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Fig. 5 Study of the workspace of the manipulator. a Force in the cable. b Von Mises stress in the

beam. c Analytical procedure error

4 Numerical and Experimental Validation

In order to verify the analytical model of the parallel robot a prototype has been

built. In the prototype it is possible to measure the deformation of the beam and the

tension in the cable. Measurements have been made using a MC 850 ZEISS three-

dimensional measuring machine (precision is ±0.005 mm). The experimental setup

can be seen in Fig. 6. Two different positions have been measured, corresponding to

x = 556.7mm y = 335.3mm and x = 650.4mm y = 199.8mm.

The numerical approach based on FEM has only been used to derive the direct

kinematic problem. The model consists of two elements where the thinner represents

the cable under tension and, the bigger one, the element of the model which is subject

to bending. Both the elements have been considered as two beams, the cable is a bi

articulated beam so it behaves as the cable and the other is a cantilever beam with

the free end attached to the cable. The software used in the simulation has been

ANSYS
®

.

Regarding the deformed shape of the robot, analytical, numerical and experimen-

tal model results are compared in Fig. 7. The shape of the deformed models match

perfectly the experimental data. Calculated cable length also matches the experimen-
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Fig. 6 Experimental setup for experimental measurements

Fig. 7 Deformed shape

comparison for a cable force

3.6 N and b cable force

2.55 N

tal model measures. Discrepancies appear on the applied force. In Fig. 7b, a cable

force of 2.94 N is applied whereas the analytical model predicts a 2.55 N force.

The same happens in Fig. 7a where 4.9 N where applied when the analytical model

yielded 3.65 N. For this latter case, the value of the force in the cable obtained

from the numerical model yields 3.603 N. This deviation may happen because of

the experimental error derived from the accuracy of the measuring devices and the
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friction suffered by the cable and the guide. The force in the cable has been measured

by means of a load cell with a precision of 10 g.

5 Conclusions

Combination of deformable elements and cables may produce a feasible parallel con-

tinuum robot, that still benefit from the compliant mechanism properties. In this

paper a methodology to solve the kinematic problem of such mechanism is pro-

posed. The analytical procedure solves the inverse kinematic problem whereas the

direct kinematic problem is solved using FEM. The numerical results are validated

with an experimental model, showing good correlation between the numerical and

experimental data.
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