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Abstract For handling tasks requiring high accuracy and high dynamics, good
stiffness properties of the manipulator are crucial and need to be taken into account
in the design phase. Known methods to calculate the stiffness properties of
amechanical structure are the Finite Element Analysis, the Virtual Joint Method and
the Matrix Structure Analysis. These methods trade off the complexity and com-
putational costs against the accuracy of the results. This paper presents an extended
procedure to model and analyze the stiffness properties of mechanical structures
based on the Matrix Structure Analysis. The stiffness matrix of the structure is
assembled automatically, following the described algorithm. The deformation of the
structure under external load can then be calculated directly. In this procedure,
complex links and joints with force dependent (non-linear) stiffness properties can
be taken into account. This extended procedure is validated by measurements on a
robotic arm.

Keywords Matrix structure analysis ⋅ Stiffness modelling ⋅ PARAGRIP ⋅
Validation ⋅ Non-linear

1 Introduction

In robotic applications high stiffness of the mechanical structure and control allow
for high precision even for highly dynamic applications and high payloads. The
stiffness of a structure relates external forces and torques to the translational and
rotational distortion of the elements, caused by these external forces and torques. It
is expressed using the stiffness matrix K. The ability to calculate the stiffness of a
mechanical structure, considering different mechanical elements such as links,
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bearings and drives, is crucial for the analysis and optimization of the stiffness
properties. In the design process the analysis of the main contributors to the
compliance of a structure gives useful information for the efficient improvement of
a structure. Furthermore, gravity compensation can be used to increase the accuracy
of an robotic system, if the stiffness properties are known. In this paper an easy to
use and convenient procedure for the stiffness calculation is presented. It is based on
the Matrix Structure Analysis (MSA) using a database with pre-defined flexible
elements. The stiffness matrix of the structure is assembled automatically, using the
element stiffness matrices and their connection and position. The final goal is to
obtain the deformation of the structure under a given external load and this
deformation can be calculated directly, as soon as the stiffness matrix of the
structure is known. In this procedure, complex links and joints with force dependent
(non-linear) stiffness properties can be taken into account. In particular, force
dependent, non-linear elements like rolling contact bearings are considered by
iteration of the linear model. The implementation is validated by measurements on a
robotic arm of the PARAGRIP handling system [1].

2 Methods of Stiffness Analysis—State of the Art

In literature three main methods are introduced to derive the stiffness matrix K of a
mechanical structure: The Finite Elements Analysis (FEA), the Virtual Joint
Method (VJM) and the Matrix Structure Analysis (MSA).

In the well-known Finite Elements Analysis (FEA) the overall structure is
sub-divided into a large number of finite elements that are connected to each other
elastically. The solution to the resulting system of partial differential equations is
approximated numerically. The FEA is the most accurate and reliable method, its
accuracy is only limited by the level of discretization [2]. However, it requires a high
computational effort for the calculation of the system of equations and re-meshing the
model in each configuration of the manipulator. Hence, the method is mainly used for
final design considerations and stiffness analysis of complex sub-systems [3]. Based
on the FEA, other methods have been developed, like Floating Frame of Reference
Formulation (FFRF) for high rotational distortions and the Absolute Nodal Coor-
dinates Formulation (ANCF) for high rotational and translational distortions [4, 5].

Using the Virtual Joint Method, also known as “lumped modeling”, the com-
pliance of every element in a structure is reduced to the compliance of the actuators
by means of virtual compliant joints [6]. It is based on the work of Salisbury and
Gosselin [7, 8], where the stiffness of a structure is derived considering only the
actuator stiffness. The main drawback of this method is that the stiffness of an
element cannot be reduced to the drives if its distortion due to external loads does
not correspond to the compliance of an actuator. In comparison to the FEA, the
VJM gives accurate results with much lower computational effort [2, 9]. In recent
works, the VJM was extended by using 6D virtual joints to account for cross
coupling effects and the stiffness properties of all links [10] as well as non-linear
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properties [11]. The Conservative Congruence Transformation [12] extends the
conventional formulation by considering changes in the Jacobian due to deforma-
tion of the robotic system.

The Matrix Structure Analysis (MSA) relies on the same ideas as the FEA,
modeling the mechanical structure as a combination of beams connected by nodes,
where the stiffness properties of every beam element are represented as a stiffness
matrix [13]. The displacement of every node is calculated analytically from the
overall stiffness matrix. The MSA as introduced originally is limited to relatively
simple elements, but however, it can be extended to integrate more complex effects
such as joint stiffness [14]. Furthermore, the representation of the elements allow for a
parametric description [15, 16]. Compared to the FEA, the MSA is less computa-
tional expensive [2, 5] and results in a good balance between computational costs and
accuracy [17]. In the proposed stiffness calculation method a catalog of predefined
elements is introduced to allow for a fast and convenient assembly of the stiffness
model. The stiffness properties are calculated analytically for beam elements and by
using characteristic curves for the non-linear and force dependent rolling contact
bearings. To account for the force dependency of the stiffness properties, the linear
stiffness model is solved iteratively. This approach allows a computational inex-
pensive determination of stiffness properties for many robotic structures.

3 Extended Procedure for Stiffness Modeling

As introduced in the beginning, the Cartesian stiffness matrix 0Kstruc O of the
structure links the displacement (translation and orientation) of all nodes 0δχO to the
external loads 0FO:

0FO = 0Kstruc O ⋅ 0δχO ð1Þ

The superscripts indicate the coordinate system of reference; the last subscript
indicates the point of reference for the equivalent load or displacement. In this pro-
cedure, the element stiffness matrices are generalized by calculating equivalent dis-
placements and loads at the origin 0O of the global coordinate system 0 as introduced
by Lončarić [18]. Even though this approach is crucial for the proposed procedure,
details of mathematical description cannot be given within the scope of this paper.

3.1 Elements and Element Stiffness Matrices

As described above, different element types are available in the implementation.
The calculation of the element stiffness matrix is shown for some elements in this
section. The focus is on the elements, used in the later example of the PARAGRIP
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manipulator. The two most important are beam elements representing the robot
links and ball bearings used as revolute joints.

Most robotic links can be approximated by beam elements. Their compliance
matrix can be derived from Timoshenko’s beam theory [19] as shown in Eq. 3. Let
the rigid node k be attached to beam i with a fixed reference frame i0 as shown in
Fig. 1.

The compliance matrix iCi in Eq. (2) links the displacement δχ k of the attached
rigid node k to the external load Fk on k. Calculating the generalized inverse of iCi

leads to the required element stiffness matrix 0KiO.

δχ k =
iCi ⋅Fk ð2Þ
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The stiffness properties of rolling contact bearings are non-linear and load
dependent with cross coupling effects between radial displacement, axial dis-
placement and torsion. Current approaches consider these complex correlations
including clearance and dynamic effects but they are very computational expensive
e.g. [20–22]. The manufacturer of the ball-bearings used in the handling system
offers the extensive calculation tool Bearinx® [23] to calculate the nonlinear dis-
placement characteristics, taking into account the internal load distribution, the
bearing deformations, the clearance and tolerances, pre-tensioning and a large set of
further characteristics. To reduce the complexity of the overall stiffness model,
characteristics curves for the axial and radial displacement δax and δrad and the
torsion φrad under different load conditions were generated for a range of
ball-bearings, as shown exemplary in Fig. 2.

The characteristics curves were calculated for a uniaxial load (Fax, Frad and
Mrad) and for all possible load combinations and take into account the backlash of
the bearing. The combined loads are scaled with respect to the maximum load
considered. For example an axial load Fax =500N (20 % of the 2500 N maximum
force) was combined with a moment Mrad =40Nm (also 20 % of the 200 Nm
maximum moment).

Fig. 1 General beam element
under load
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It is evident that combined loads influence the stiffness properties of the
ball-bearings. These combined loads can be interpreted as pre-tensioning,
increasing the stiffness of the bearing. This effect can be accounted for with a linear
interpolation between the uniaxial characteristic curve and the curve for the com-
bined load. The stiffness matrix in Eq. (4) for the ball-bearings is derived by linear
interpolation from the characteristic curves, neglecting cross-coupling effects.

K i =

krad 0 0 0 0 0

0 kax 0 0 0 0

0 0 krad 0 0 0

0 0 0 ktor 0 0

0 0 0 0 0 0

0 0 0 0 0 ktor

0
BBBBBBBB@

1
CCCCCCCCA

krad =
Frad

δrad
kax =

Fax

δax
ktor =

Mrad

φrad

ð4Þ

Further elements (e.g. linear ball bearings, linear spindle-drive actuators and
complex links using FEA results) are implemented in the proposed method, but will
not be discussed in detail. For the end-effector used at the PARAGRIP prototype,
characteristic curves were determined in measurements. Furthermore, any other
kind of stiffness properties based on analytical relations, characteristic curves or
fixed values can be implemented easily by defining new element types. The
introduced element stiffness matrices are expressed with respect to the local element
coordinate system. For the matrix assembly, described below, the element stiffness
matrices are generalized. That means displacements and loads are expressed with
respect to a global coordinate system by calculating equivalent displacements and
loads as introduced by Lončarić [18].

Fig. 2 Characteristics curves for axial displacement of a FAG 3807 ball-bearing under axial
(uniaxial) and combined loads
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3.2 Stiffness Modeling by Matrix Assembly

The generalized Cartesian stiffness matrix of the structure 0KstrucO is assembled
from the generalized element stiffness matrices 0KiO for element i. They link the
equivalent relative (translational and rotational) displacement of two attached rigid
nodes k and l to the equivalent cut load 0FiO, both at the origin 0O of the global
coordinate system 0:

0Fi O = 0Ki O ⋅ 0δχ k O − 0δχ l O
� � ð5Þ

The generalized Cartesian Stiffness Matrix the whole structure 0KstrucO can be
derived by superposition of all 0Ki O. Let n be the number of elements in the
structure and i be the explicit index to identify each element of the structure. Each
element is attached to two rigid nodes k and l with k< l and we index the according
element stiffness matrix 0KiklO. Let j be the number of rigid nodes in the structure,
including the fixed base k=0. 0Kstruc O is a 6j×6j zero matrix, filled up with the
superposition of 0Ki kl O:

0Kstruc O 6k− 5: 6k, 6k− 5: 6kð Þ= ∑
n

i=1
+ 0K i kl Ojk>0

� �

0Kstruc O 6k− 5: 6k, 6l− 5: 6lð Þ= ∑
n

i=1
− 0K i kl Ojk>0

� �

0Kstruc O 6l− 5: 6l, 6k− 5: 6kð Þ= ∑
n

i=1
− 0K i kl Ojk>0

� �

0Kstruc O 6l− 5: 6l, 6l− 5: 6lð Þ= ∑
n

i=1
+ 0K i kl Ojl>0

� �

ð6Þ

where 0Kstruc Oða: b, c: dÞ indicate the sub-matrix of 0KstrucO in the columns a to b
and the rows c to d. With exception of elements attached to the fixed base, that is
k = 0, the generalized 6 × 6 element stiffness matrices are super-positioned four
times to the stiffness matrix of the structure. This corresponds to the well-known
12× 12 stiffness matrices used for the MSA of connected beam elements [24, 25].

3.3 Implementation of the Extended Procedure

To overcome the limitations of the original MSA element representation exclu-
sively by beam theory, a method to automatically calculate the global stiffness
matrix and distortion of a given structure composed of different elements under
external load is introduced. The stiffness assembly is universally valid for all
stiffness matrices representing an element, as long as the local stiffness matrix is
given or can be determined automatically. The proposed method and database is
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implemented in MATLAB. For each type of flexible element the specific calcula-
tion procedure for the local stiffness matrix is stored. For each element the fol-
lowing parameters need to be predefined:

• Connecting nodes.
• Position of the flexible element represented in the global coordinate system.
• Orientation of the flexible element represented in the global coordinate system.
• Element type (e.g. Euler beam (rectangular/cylindrical, solid/hollow), rolling

contact bearing, linear bearing, rotary drive, spindle drive (linear actuation),
predefined local stiffness matrix (e.g. derived from FEA analysis for complex
elements)).

• Element properties dependent on the element type (e.g. length, height, width,
Young’s modulus, shear modulus for rectangular beams or identification num-
ber for bearings).

The positions and orientations of the elements are not calculated automatically,
as the method does not include the kinematic calculation. However, usually the
kinematic calculations are known and the position and orientation of each element
can be calculated with minor effort. With the predefined properties the generalized
stiffness matrix and distortion of the given structure is assembled automatically
using the following algorithm:

(1) Calculation of the local stiffness matrix for each flexible element based on the
element type and element properties (compare Sect. 3.1). For elements with a
force dependent local stiffness matrix (e.g. ball bearings) a predefined unit
force effective on the element is assumed.

(2) Generalization of the local stiffness matrices to the global coordinate system
based on the position and orientation of the element.

(3) Stiffness assembly of the overall stiffness matrix 0Kstruc O, based on the con-
necting nodes (Eq. 6).

(4) Derivation of 0δχO by solving Eq. (1).

If elements with a force dependent local stiffness matrix exist, proceed with step
(5), otherwise jump to step (7).

(5) Calculation of the cut load 0Fi0, effective on the element i with the attached
rigid nodes k and l, as shown in Eq. (5). The displacement vectors 0δχ k 0 and
0δχ l 0 can be extracted from 0δχO.

(6) Repeat step 1–4 with the calculated force, effective on the elements until a
defined threshold divergence or maximum number of iterations is reached.

(7) Reverse the generalization of the distortion 0δχO to the local coordinate
systems if requested.

8) Output of the global stiffness matrix and displacement for each element.

As described above, the linear system of equations is solved in a set of iterations
based on an updated overall stiffness matrix 0Kstruc O, if elements with a force
dependent local stiffness matrix (e.g. bearings) are present. Comparison with
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kinetostatic calculations and the analysis of multiple iteration steps show that two
additional iterations are sufficiently accurate for low distortions in comparison to
the dimensions of the given structure. As shown in Fig. 3, the maximum divergence
(for any direction of translation or rotation) to the previous iteration is about 0.1 %
for the second iteration.

4 Application and Validation for the Example Structure
PARAGGRIP

The reconfigurable modular multi-arm robot system PARAGRIP was developed,
designed and tested at the Department of Mechanism Theory and Dynamics of
Machines (IGM) of the RWTH Aachen University [1]. With this multi-arm robotic
system, object integrative handling operations are performed. The proposed stiff-
ness model is implemented and validated by measurements for a single robotic arm.

The arm structure is modeled using the introduced stiffness elements (Fig. 4):
Beams (k3, k5, k6, k10), ball-bearings (k2, k4, k7, k9, k11) and pre-defined stiffness
elements from FEA analysis (k8). The drive stiffness (kdrive0, kdrive1 and kdrive2),

Fig. 3 Relative divergence in
the stiffness calculations from
previous iterations (for 100
combinations of arbitrary
load and position of
the PARAGRIP arm)
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Fig. 4 Structure and stiffness representation of a single PARAGRIP arm
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including the belt gear and the stiffness properties of the central housing k1 cannot
be derived analytically or by FEA. The stiffness parameters are derived by opti-
mization, based on 3 simple load cases for the structure using static loads on the
joints k4 and k9 and on the end-effector.

The translational deviation of the end-effector under static load in z-direction is
measured to validate the stiffness model. The load was applied using a spring
balance (accuracy 2.25 % for the given load), while the displacement is measured
using an optical coordinate measurement machine (accuracy 0.15 mm). The dif-
ferent load cases are listed in Table 1, they represent typical positions within the
workspace. All measurements were performed for the same position of the actuator
at the base, as a rotation of the planar structure will not alter its stiffness properties.

The calculated displacements are in very good agreement with the measure-
ments, as shown in Figs. 5 and 6. The displacement in the direction of load, as well
as cross coupling effects can be calculated within the measurement precision, using
the introduced model. Furthermore, the model and measurements show a similar
agreement for higher and lower loads. First Measurements for arbitrary loads in x-
and y-direction show a convincing agreement with the model and will be subject to
further investigation. The very good agreement for loads in z-direction enables the
use for the compensation of position dependent deformations due to gravitational
forces.

Table 1 Load cases

Static load Drive angles φ1, φ4 (°) Calculated displacement (x, y, z) (mm)

1 25.34 N in z-direction 45, 3.1 −0.63, −0.41, 2.48
2 25.34 N in z-direction 47.9, 17.8 −1.23, −0.55, 2.56
3 25.34 N in z-direction 57.7, 32.5 −1.73, −0.59, 2.17
4 25.34 N in z-direction 91.3, 25 −0.88, −0.16, 1.45
5 25.34 N in z-direction 149, 46 −0.61, −0.04, 1.07
6 25.34 N in z-direction 146, 26.5 −0.51, −0.10, 1.61
7 25.34 N in z-direction 143, 7 −0.07, −0.21, 2.05
8 25.34 N in z-direction 90.5, 5 −0.38, −0.82, 1.72
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2

2.5

3 measured displacement
model discplacement

Fig. 5 Measured and
calculated z-displacement of
the end-effector under
uniaxial load in z-direction
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5 Conclusions

An extended method for the stiffness calculation of mechanical structures based on
the MSA has been introduced and has been proven to be effective. Complex joints
and links, e.g. with force dependent stiffness properties, can be implemented with
minor effort as shown for the PARAGRIP handling system. The implementation of
predefined elements e.g. Euler Beams and especially rolling contact bearings (using
characteristic curves to determine the stiffness properties) allows an easy set up and
calculation of complex structures. Force dependent, non-linear stiffness properties
can be accounted for with few iterations of the linear model. The stiffness model
was validated by measurements on a robotic arm. The comparison to the mea-
surements showed a very good agreement for the main deviations and cross cou-
pling effects for loads in z-direction. In the future work, the derived stiffness model
will be used to increase the capabilities of kinematic parameter identification by
compensating the gravitational forces on the structure.
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