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Abstract
This chapter is focused on bioceramics for musculoskeletal regenerative medicine,
with emphasis on material and manufacturing compatibility in the development of
synthetic bone grafts. Bioceramics are classified into families depending on their
relative bioactivity: passive, bioactive, and bioresorbable. Passive bioceramics,
such as alumina and zirconia, are mainly used for load-bearing implants. Bioactive
ceramics, such as bioactive glass, are useful to generate a strong bond between
metallic surfaces and bone. Bioresorbable ceramics are applied to bone void filling
and scaffolds for synthetic grafts. A description of bioceramics and their use in
manufacturing processes is given, with major emphasis on techniques that may be
useful in the fabrication of regenerative devices such as synthetic bone grafts. The
manufacturing processes of interest are classified into molding, additive
manufacturing, and coating techniques. The use of bioceramic-based scaffolds in
bone repair animal models and clinical studies is reviewed. Finally, this chapter
provides an outlook of future research directions for improved bioceramic use in
synthetic bone grafts or regenerative skeletal devices.

1 Introduction

Ceramics are nonmetallic and inorganic solids (Kingery et al. 1976). The majority of
ceramics are compounds of metals, metalloids, or nonmetals. Most frequently they
are oxides, nitrides, and/or carbides. However, diamond and graphite are also
classified as ceramics. Glass, not a solid in strict terms, is therefore considered a
special type of ceramic. Semiconductors are also ceramics, although sometimes they
are considered a separate family of materials (Carter and Norton 2007).

An alternative definition for ceramics is given by McColm: “Any of a class of
inorganic, nonmetallic products which are subjected to a temperature of 540 �C or
above during manufacture or use, including metallic oxides, borides, carbides, or
nitrides, and mixtures or compounds of such materials” (McColm 2013). Thus, the
study of ceramics encompasses a wide range of materials.

When used in biomedical applications, especially when placed inside the human
body, ceramics are referred to as bioceramics. The relative bioactivity of a given type
of bioceramic allows its classification into one of the three following broad families:
passive, bioactive, and bioresobable ceramics (see Fig. 1).

Passive or nearly inert bioceramics show minor interaction with human tissues.
The most widely used passive ceramics are formulations of alumina and zirconia.

In contact with human tissue, bioactive materials generate a specific biological
response at the interface, often resulting in the formation a bond between the tissue
and the material. Bioactive ceramics may also be resorbable. If the resorption
byproducts are safe, they are referred to as bioresorbable ceramics. Examples of
bioactive ceramics include glasses such as Bioglass®, glass-ceramics such as apatite-
wollastonite (A/W), dense synthetic hydroxyapatite (HAP), and a variety of bioceramic
composites. When implanted bioactive ceramics form a layer of hydroxy-carbonate
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apatite (HCA), where collagen fibrils are incorporated, therefore binding the inorganic
surface to the organic constituents of tissues (Hench and Wilson 2013). Bioresorbable
ceramics include several calcium phosphates such as tricalcium phosphate (TCP) that
degrades into calcium and phosphate salts (Hench and Wilson 2013).

1.1 Historic Perspective

In orthopedics, although the total hip replacement operation was first conducted in
1938, it was not until 1961 that much improved designs and materials made this
procedure a clinical success (Learmonth et al. 2007). The use of alumina as a coating
for the joint surface in hip implants was first attempted in the 1970s. Indeed, the
current use of bioceramics as implant components is mostly limited to coatings,
particularly for hip and knee implants. These coatings are an improvement over
previous metal-on-metal joints and metal-bone interfaces (Semlitsch et al. 1977;
Chevalier and Gremillard 2009). In the case of alumina coatings, it has been
observed that they significantly reduce the generation of wear particles over previous
metal-on-metal solutions (Hannouche et al. 2005). In order to improve the mechan-
ical properties and reliability of hip implants, zirconia was also introduced as a
candidate joint surface coating in the 1980s (Piconi and Maccauro 1999).

In its early use, approximately one of every six alumina- or zirconia-containing hip
implants failed. With continuous improvement of alumina and zirconia,
these materials today deliver much better ceramic coating-related failure rates in hip
implant applications (i.e., less than 0.01%). The clinical success associated with the
use of these advanced bioceramics has led to the implantation of millions of hip and
knee total joint replacement devices worldwide (Chevalier and Gremillard 2009).

Feldspathic porcelain teeth and dentures were first introduced in the late 1700s in
France. However, widespread use of porcelain in dentistry did not begin until the
1950s with new porcelain formulations that provided improved mechanical proper-
ties and affordable manufacturing procedures (Kelly et al. 1996). In addition to
porcelain, alumina and zirconia are now widely used in dental applications.

In the 1960s, the development of bioactive ceramics began with the formulation
of bioactive glass, commonly referred to as Bioglass® (Hench 2006). Systematic
study of various bioresorbable synthetic calcium phosphates, such as hydroxyapatite

Fig. 1 Classification of
bioceramics based on their
relative bioactivity. Adapted
from (Hench and Wilson
2013)
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and tricalcium phosphate, dates back to the 1980s (Best et al. 2008; Metsger et al.
1982). Today, industry provides a wide range of bone substitute products for use in
non-weight-bearing defects. Most of these materials are composites that combine
various calcium phosphates (Liu et al. 2013).

1.2 Markets

In regards to medical technology, bioceramics have a significant clinical and eco-
nomic relevance (see Fig. 2). Orthopedics and dental applications are the mayor
drivers in this field, with combined sales of $47.7 billion USD worldwide and
significant projected growth in the next few years (Evaluate 2015).

2 Bioceramics and Manufacturing Process Compatibility

The complete scope of medical bioceramic uses includes a large number of material
compositions and manufacturing processes. In order to provide a comprehensive
map, Fig. 3 shows a general representation of material vs. manufacturing process
compatibility.

Fig. 2 Trends in worldwide sales of medical technology, considering the top 15 product categories
(Evaluate 2015). The circled clinical fields indicate the best opportunities for bioceramics. Please
note that many surgical fields other than orthopedics contribute to skeletal repair and regeneration.
To that extent those therapies are equally good opportunities for bioceramic applications
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The forming of bioceramics involves manufacturing processes that utilize mate-
rial removal (cutting and machining), molding, additive manufacturing, and surface
treatments. In addition to the compatibility and process capability issues, there is also
interest in mapping technology readiness levels of devices and current manufactur-

Fig. 3 Material vs. manufacturing process compatibility for bioceramics in musculoskeletal
regenerative medicine
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ing processes. This places each device in the continuum between proof-of-concept
ideas and use in the clinic (i.e., bench to clinic progression) (Woodruff et al. 2012).

2.1 Load-Bearing Implants

Figure 4 shows the major application categories for bioceramics in musculoskeletal
regenerative medicine. Load-bearing implants include components made mainly
with passive bioceramics through material removal and molding processes. Bioac-
tive ceramics are used as coatings or metallic components such as the stem or joint of

Fig. 4 Application of bioceramics in musculoskeletal regenerative medicine (Agarwal et al. 2009;
Bartolo et al. 2012; Bonda et al. 2015; Obregon et al. 2015)
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hip implants or the post, literally a bone screw, of a dental implant. Passive
bioceramics can be processed via additive manufacturing processes but are more
commonly used for product prototyping purposes than for the fabrication of clinical
devices. Functional components require the close tolerance and surface finish capa-
bility of machining and grinding processes in order to minimize micro cracks and
potential catastrophic failure.

2.2 Bone Substitutes for Void Filling

Bone substitutes for void filling may be manufactured with molding processes, using
materials such as hydroxyapatite, tricalcium phosphate, or combinations of different
bioceramics (see Fig. 3). These bone substitutes are available in the form of chips,
granules, putties, or blocks that can be cut to fit a bone defect (Crowley et al. 2013).
Some products are formulated with a matrix of collagen that contains a bioceramic
phase (Pilipchuk et al. 2015).

When spinal fusion is indicated, the procedure involves: (a) removal of the disc,
which in turn creates a void between adjacent vertebrae; (b) implantation of a spinal
cage (a kind of spacer usually made from titanium alloy or high strength polymer
such as PEEK); (c) stabilization with titanium screws and rods; and, finally,
(d) filling the spinal cage with a bioceramic bone substitute. There are a number of
products on the market, each with a specific formulation for spinal fusion and repair
of fracture vertebrae (i.e., balloon kyphoplasty) procedures (Liu et al. 2013). Another
major application of bone substitutes for void filling is related to dental extraction or
periodontal diseases where teeth or jaw bone mass has been lost to the point that the
deficient region cannot support dental implants. This bone supports the roots of the
teeth and is therefore referred to as alveolar (i.e., tooth socket) bone. Repair and/or
reconstruction of alveolar bone and or associated facial sinus augmentation pro-
cedures can involve the use of bioceramic bone fillers (Pilipchuk et al. 2015). Bone
substitutes are also used to regenerate cavity defects left by tumors (Crowley et al.
2013) and repair small cranial defects (Bonda et al. 2015).

2.3 Synthetic Bone Grafts

Synthetic grafts are porous constructs, often shaped in the operating room, to a
specific bone or cartilage defect. These synthetic grafts may include resorbable
bioceramics that may act as a scaffold for cells and growth factors (Bonda et al.
2015). The synthetic bone graft category is a demanding application for bioceramics
in musculoskeletal regenerative medicine. These materials have found limited clin-
ical application in the repair of load-bearing defects.

The use of bioceramics in scaffolds as synthetic grafts can also be prepared as
bioactive and bioresorbable ceramic composites. These composites can be fabricated
with processes such as molding, additive manufacturing, or coating. The composite
materials used for this type of scaffold may also be combined with polymers and
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metals. Biphasic calcium phosphates are a widely studied composite that combine
the properties of hydroxyapatite (HA; bioactive) and beta-tricalcium phosphate
(β-TCP; bioresorbable) (Baradararan et al. 2012). The following sections will
focus on synthetic bone graft materials and constructs, detailing the currently
available bioceramics and manufacturing processes.

3 Synthetic Bone Grafts

Bone is a key component of the musculoskeletal system, providing structure for
ambulatory and environmental manipulating functions, storing nutrients, protecting
vital organs, and playing a key role in hematopoietic and immunological functions.
Although bone possesses an extraordinary regenerative capacity, it can fail to heal
under unstable and large deficit conditions. Defects in bone can be caused by trauma,
cancer, congenital and developmental deformities, arthritis, aging, and infection
(Larsen et al. 2015). In the trauma category alone, there is an estimate of 15 million
fracture cases per year worldwide, with up to 10% of repairs subsequently having
complications due to nonunion of large defects (Liu et al. 2013).

The standard of care treatment for nonreducible bone fractures (i.e., “reduction”
of the gap caused by the break) and resections is an autologous bone graft, also
referred to as autograft. Autografts are harvested from a donor site and implanted
elsewhere in the same patient (Shrivats et al. 2014). Grafted bone has excellent
osteogenic, osteoinductive, and osteoconductive properties. However, this approach
also brings some important disadvantages: potential complications at the donor site
(e.g., pain and morbidity), possibly a limited or insufficient blood supply, and often
there is difficulty shaping the autograft to fit the bone defect (Crowley et al. 2013).

Another option is to seek bone via allogeneic graft (also referred to as allograft).
Allografts are tissues harvested from human donors (i.e., people other than the
patient), with subsequent graft processing for implantation in the patient. The main
disadvantages of this approach are the risk of adverse immunological response (i.e.,
immunological rejection), potential disease transmission, and reduced osteogenic
capacity due to devascularization, decellularization, demineralization, and/or steril-
ization processing. Xenografts are donor tissues derived from nonhuman species.
Similar to allografts, these tissues are processed for sterility and biocompatibility.
The risk of immunological response, disease transmission, and ethical issues asso-
ciated with the use of animal tissues has limited the clinical use of xenografts
(Shrivats et al. 2014).

The common clinical problem of bone defects and the limitations of current
solutions (i.e., autografts, allografts, and xenografts) motivate an enthusiastic, world-
wide search by the scientific community for alternatives to autologous or allogeneic
bone grafts such as entirely synthetic bone graft strategies. Advances in bioceramics
and manufacturing processes have opened a number of new paths for research and
development into an artificial approach.

Early clinical applications of synthetic bone graft materials included scaffolds
shaped from blocks of coral (primarily CaCO3) (Pountos and Giannoudis 2016).
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Similarly, porous hydroxyapatite blocks with 60% interconnected porosity and an
apparent density of 1.26 g/cm3 have been studied. Autologous bone marrow-derived
mesenchymal stem cells (BM-MSC) were expanded in vitro and seeded by capillar-
ity into the scaffold. A pre-operative radiograph shows a 40 mm gap in the bone (see
Fig. 5). After 2.5 years, much of the synthetic HAP was evident indicating an
extremely slow resorption rate (Quarto et al. 2001; Marcacci et al. 2007).

The tissue engineering approach to bone repair studied by Marcacci et al. still has
had limited clinical application due to a number of challenges (Cancedda et al.
2007). However, that clinical experience, together with numerous studies with
animal models, can lead to a more systematic approach to the development of
synthetic bone grafts (Crowley et al. 2013; Li et al. 2015).

Fig. 5 Implantation of a porous bioceramic scaffold seeded with autologous BM-MSCs for clinical
treatment of critical size segmental tibial defect (Marcacci et al. 2007)

Bioceramics for Musculoskeletal Regenerative Medicine: Materials and. . . 169



Another potentially promising process for the generation of a synthetic bone graft
is outlined in Fig. 6. Studies have attempted to capture key performance parameters
of the process at each stage. Based on the type of bone defect repaired, the starting
point will be synthetic bone graft design. At the next stage, a scaffold is
manufactured. The following stage involves combining cells with the scaffold to
constitute a synthetic bone graft. Growth factors (bioactive molecules) may be added
at this stage. For some cases, the scaffold alone (i.e., cell-free) is used as the graft.
Finally, the synthetic bone graft is implanted into the bone defect to help regenerate
new tissue.

Ultimately, we are interested in the quality of the newly regenerated bone.
Neobone quality is measured in terms of the regenerated volume compared to the
original bone defect size, the new bone’s apparent density and its biomechanical
properties. The final bone quality will depend on a complex interaction between the
defect’s wound healing and remodeling response and the synthetic bone graft
material over time. Remodeling is necessary for the production/regeneration of
strong bone. Nonresorbing material that does not degrade within 4–12 months
may block this process.

It is clear that much research is still needed to understand and model the bone
repair process (Larsen et al. 2015). However, a systematic approach to this challenge
calls for defining and controlling key performance parameters at the different stages
of graft fabrication and the healing response.

3.1 Morphology and Mechanical Properties of Scaffolds

In the context of synthetic bone grafts, the morphology and quality of scaffolds
requires standard and comparable parameters. Figure 7 shows examples of this type
of scaffold.

Fig. 6 Tissue engineering process for bone repair based on synthetic bone grafts
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Total scaffold porosity (Πtotal) is defined as a combination of the open or
macroporosity (Πmacro) and the internal or microporosity (Πmicro) of the base mate-
rial, as follows:

Πtotal ¼ Πmacro þ Πmicro (1)

When designing a scaffold, macroporosity (with dimensions over 100 microns)
should be interconnected to allow flow (e.g., influx of nutrients and chemical signals
and removal of waste products) during the osteogenic process. Porosity, tortuosity,
hydrophilicity, and microporosity will all have an effect on scaffold permeability and
its ability to guide new tissue formation. Some of the manufacturing processes for
bioceramics produce an inherent microporosity (i.e., dimensions between

Fig. 7 Examples of scaffolds generated via molds and additive manufacturing (3D printing):
(a) polyurethane foam (Cai et al. 2009), (b) scaffold from β-TCP/BG with 75% porosity (after
sponge impregnation using the polyurethane foam as template and sintering), (c) micro tomography
reconstruction of scaffold from composite of PCL and TCP, using fused deposition modeling
(FDM) for processing (Reichert et al. 2011)
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100 nanometers and a few microns). Microporosity is not interconnected in these
constructs. Some authors refer to the base material microporosity as “strut porosity”
(Hing et al. 2005).

Total scaffold porosity (Πtotal) is related to the apparent dry density (ρa) as
follows:

Πtotal ¼ 1� ρa=ρmð Þ � 100% (2)

where the base material theoretical density is represented by ρm.
The apparent dry density of bone has been closely correlated to its mechanical

properties, such as compressive strength and elastic modulus (see Fig. 8) (Keller
1994). Similarly, any comparison of bioceramic scaffolds and a manufacturing process
should consider the mechanical properties as a function of apparent dry density.

A synthetic bone graft is intended to facilitate the regeneration and remodeling
of bone. While performing this function, the graft should gradually resorb in
response to bone formation. For many critical size defects, the adjacent bone
segments would require stabilization with metallic plates or a rod during this
process. Therefore, in this context, the ideal mechanical properties of the scaffold
are not necessarily those of the healthy bone, but rather what is needed for bone
regeneration. However, in terms of standardized parameters, it is useful to rate
mechanical performance of scaffolds relative to each other and relative to Keller’s
Model for resilient bone (see Fig. 8).

Fig. 8 Compressive strength vs. apparent dry density for bone and bioceramics-based scaffolds
(Almirall et al. 2004; Baradararan et al. 2012; Keller 1994; Miranda et al. 2008)
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3.2 Bioceramics and Manufacturing Process Compatibility

3.2.1 Bioceramic Devices Produced in Molds
Scaffolds for bone regeneration with interconnected porous structure can be pro-
duced in molds using a variety of methods, such as sponge impregnation, freeze
drying, phase inversion, sol-gel foaming, particulate leaching, injection molding,
and direct casting.

In the sponge impregnation method, a polyurethane foam template is impregnated
with bioceramic slurry. The objective is to generate a thick coating of bioceramic
slurry around the struts of the template. After drying the impregnated sponge, a
sintering process is used to remove the polymer leaving behind the intended
interconnected porous structure (Dai et al. 2015; Zreiqat et al. 2010).

Freeze drying, thermally induced phase inversion, and sol-gel foaming involve
chemical reactions that produce a porous structure (Guo et al. 2012; Midha et al.
2013; Tamjid and Simchi 2015; Wang et al. 2007). Particulate leaching is based on a
mixture of bioceramic material and a salt that is either compacted within a mold or
poured into a mold. In a second step, the salt particulates are leached with water to
form a porous structure (Zhang et al. 2016). The size, shape, concentration, and
distribution of the particulate can be important. However, the resulting pore geom-
etry cannot insure interconnectivity.

Injection molding requires a special mold with multiple cores and slides (i.e.,
moving components of the mold) that generate an interconnected geometry (Vivanco
et al. 2012). In direct casting, a core (sometimes referred to as a “negative mold”) is
used to form the complete interconnected network of macropores. Then, a ceramic
slurry is cast around the core (Li et al. 2013). Only injection molding and direct
casting can use a mold to produce a designed structure that includes macroporosity.
All other molding techniques tend to deliver a random distribution of interconnected
macropore diameters, in a foam-like structure (see Fig. 7).

When the material for the scaffold is only bioceramic, a sintering process can be
used to achieve a microstructure with good mechanical properties. The sintering step
is itself a complex process that involves a number of parameters and requires
optimization (Champion 2013). In general, an increased sintering temperature
reduces microporosity and the resorption rate of the bioceramic scaffold (Yuan
et al. 2010).

In terms of materials, some of the most promising advances involve processing
composites that combine bioceramics and polymers through molding processes. In
vivo testing with rats and rabbits were recently reported with this approach: freeze
drying (Park et al. 2016; Chiba et al. 2016), compression molding, and particle
leaching (Zhang et al. 2016), followed by phase inversion (Guo et al. 2012). More
details about these studies can be found in the appendix.

The work reported by Chiba et al. uses octacalcium phosphate with gelatin.
The scaffolds were tested on Japanese white rabbits with cavity tibial defect.
Biomechanical testing of neobone was conducted with an indentation test,
reaching near 100% of the compressive load compared to control cortical bone
(Chiba et al. 2016).
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The composite used by Zhang et al. combines HAP and PLLA/PLGA. They
tested this material in a Sprague-Dawley rat calvarial defect (i.e., 6 mm round defect)
model. After 12 weeks of implantation, an indentation test shows that new bone has
obtained 85% of the hardness and 78% of the elastic modulus, compared to natural
rat cranial bone. In this case, the scaffold had 80% macro porosity, with average pore
size of 145 μm and compressive strength of 0.1 MPa.

Recently, the use of bioactive glass has been studied as a scaffold in in vivo
studies utilizing rabbit, goat, dog, and sheep models (El-Rashidy et al. 2017).
Selected animal studies with emphasis on biomechanical properties include rabbits
(Tang et al. 2016) and goats (Ghosh et al. 2008). Tang et al. shows excellent
biomechanical properties of new bone in rabbit radius segmental defect (16 mm),
utilizing bioactive glass scaffolds manufactured by the sponge impregnation tech-
nique and BMP-2 (Bone Morphogenetic Protein).

A summary of selected in vivo studies using molding processes for scaffolds is
shown in Table A.1. The studies are classified based on the bioceramic family and
manufacturing process.

3.2.2 Additive Manufacturing Methods
Additive manufacturing (3D printing) technologies provide a wide range of possi-
bilities for the fabrication of bioceramic scaffolds that may then be useful as
synthetic bone graft scaffolds, particularly with bioceramics as a printable material
or component of a printable material. Table 1 shows the most common suitable
additive manufacturing methods for bioceramic materials. Other references provide
extensive and detailed description of additive manufacturing (Larsen et al. 2015; Pati
et al. 2015; Raman and Bashir 2015). Here, we provide only brief descriptions of
these technologies.

In addition to those additive manufacturing processes used to produce bioceramic
scaffolds, there are significant advances in recent years in developing powder bed
additive manufacturing for load-bearing passive bioceramics. Partial melting (SLS)
and full melting (SLM) approaches use bioceramics in the form of powder or slurry
to produce parts in a single step or multiple steps (i.e., postprocessing after additive
manufacturing). In this field, the main challenges are the bioceramic powder’s
flowability during the 3D printing process and the final material’s microstructure
(Deckers et al. 2014; Sing et al. 2017; Zocca et al. 2015).

The most advanced applications of bioceramic scaffolds produced via additive
manufacturing are summarized here through in vivo animal model studies. Scaffolds
based on inkjet printing of tricalcium phosphate scaffolds have been tested with rat,
mouse, goat, and dog models. These studies have tested the viability of these bone
regeneration strategies (Tarafder et al. 2013; Inzana et al. 2014; Habibovic et al.
2008; Igawa et al. 2006, respectively). Hi concentrations of ceramic have been
suspended and 3D printed in polycaprolactone (PCL) or poly(lactic-co-glycolic-
acid) (PLGA) for extrusion 3D printing as a flexible material referred to as “hyper-
elastic bone”. This material presented promising results in a rat spine model (Jakus
et al. 2016, 2017). More details about these studies can be found in the appendix.
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Recently, bioactive glass (processed by SLS) was used as a BMP-2 carrier and
tested in rats with a femur segmental defect (5 mm) and stabilization with an internal
rod (Liu et al. 2014). Biomechanical performance of the resulting neobone was
assessed via a three point bending test.

Ceramic/metal composites have also shown promise as viable scaffold biomate-
rials for bone regeneration. Sun et al. report the use of direct ink writing of a paste
made of Wollastonite (CSi) and magnesium for the fabrication of bone scaffolds.
Rabbits with round calvarial defects (8 mm) were used in an in vivo model to test the
viability of these scaffolds. The regenerated bone showed compressive strengths up
to 45 MPa (Sun et al. 2016).

The use of larger animal models with critical size cranial, radial, femoral, or
tibial segmental defects is common (e.g., rabbits, dogs, sheep, goats, pig, or horse
models) once small mammal work, often with a mouse, guinea pig, or rat model,
has shown biocompatibility and other aspects of safety and effectiveness. These
larger mammal models are a more challenging test due to slower metabolism and
wound healing as well as load-bearing, all of which are more like what is seen in a
human patient. Recent studies with a sheep tibial segmental defect show some

Table 1 Additive manufacturing processes suitable for bioceramics, as discussed in ISO/ASTM
52900 (2015). Please see glossary for process column acronyms

ASTM category Process Description

Material
extrusion

Material
melting

FDM: Fused
deposition
modeling

Extrusion of thermoplastic material through a
heated nozzle. Variations of FDM are LDM
(low-temperature deposition modeling) and
PED (precision extruding deposition)

MES: Melt
electrospinning

In this process, the extruded FDM filament is
further stretched by an electrical field

Pressure
dispensing

PAD: Pressure
assisted
dispensing

Dispensing of hydrogels with pressure
assistance (sometimes used for cell bioprinting)

DIW: Direct ink
writing/
robocasting

Dispensing of ceramic paste with pressure
assistance

ELS:
Electrospinning

Stretching of polymer fibers through electrical
field, after a polymer/solvent solution is injected
through a needle

Powder bed fusion SLS: Selective
laser sintering

Sintering or partial melting of powder via laser
without controlled atmosphere (i.e., variable
humidity)

SLM: Selective
laser melting

Full melting of powder e-beam or via laser with
controlled atmosphere

Binder jetting 3DP: Inkjet
printing

Consolidation of powder material through
binder jet

Vat
photopolymerization

SLA:
Stereolithography

Curing of photopolymer through UV laser

DMD: Direct
micromirror
device

Curing of photopolymer through UV lamp and
DLP mask
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preliminary results with bioceramic bone scaffolds (Lohfeld et al. 2012; Reichert
et al. 2011). Lohfeld et al. tested a composite scaffold composed of β-TCP + PCL
(polycaptrolactone) powder (fabricated via SLS). Reichert et al. tested FDM 3D
printed scaffolds composed of a composite of TCP and a resorbable polymer. By
comparison with the mechanical properties of a (control) healthy tibia, the combi-
nation of medical grade PCL with TCP achieved 15% of the torsional moment,
while the autologous bone graft showed 19% (sacrifice at 12 weeks post-
implantation) (see Fig. 9). Abbah et al. tested an FDM-based scaffold for
intervertebral fusion in a pig model with scaffolds combining β-TCP and PCL.
They observed that the biomechanical properties of the fused vertebrae with a
scaffold were similar to those of the autograft treatment (Abbah et al. 2009).

Other promising fabrication processes include electrospinning, which can be used
to generate fine fibers with diameters in the micron and submicron range (Bartolo
et al. 2012). Jaiswal et al. showed the viability of this process in bone regeneration by
combining PLLA fibers and a coating of HAP and testing these composite scaffolds
in vivo (Jaiswal et al. 2013). It is also possible to use electrospun fibers for drug
delivery (Ji et al. 2011).

Eletrospun fibers can also be woven into defined or undefined meshes. The
orientation of electrospun fibers is determined by the orientation of the fiber source
and the cylindrical mandrel onto which those fibers are spun. Melt electrospinning

Fig. 9 Tibial segmental defect (20 mm) in sheep: (a) untreated defect, (b) autologous bone graft,
(c) synthetic bone graft with mPCL-TCP scaffold, (d) synthetic bone graft with PDLLA-TCP-PCL
scaffold (Reichert et al. 2011)
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has been used to deposit polymer fibers with a diameter of about 30 μm, with
embedded bioceramics, in a controlled manner. Therefore, a scaffold with controlled
macroporosity, ceramic constituents, and/or a roughened texture can be fabricated
with this process (Ren et al. 2014).

A summary of selected in vivo studies using additive manufacturing for scaffolds
is shown in Table A.2. The studies are classified based on the bioceramic family and
manufacturing process.

3.2.3 Surface Treatment Methods
The bioceramic-based surface treatment methods discussed here are limited to
bioceramic coatings for scaffolds. In this case, a scaffold or another type of medical
device is first generated through molding, CNC, or an additive manufacturing
processe. Then, a coating is applied to improve functional properties of the device.

Recently, Li et al. report a baghdadite (Ca3ZrSi2O9) scaffold (initially processed
by sponge impregnation) with a coating of nano bioactive glass/PCL (coating
processing by immersion). This scaffold was tested in a sheep tibial segmental
defect (30 mm) model. A plate and a cast provided stabilization for the first 3 weeks
of healing. After 3 weeks, only the cast is removed. Baghdadite scaffolds with and
without the coating were tested. Normalized torsional test of the tibial diaphysis
was conducted after 26 weeks of implantation, resulting in 5–10% torsional
strength and 10–25% torsional stiffness compared with reference healthy tissue
(Li et al. 2016).

In a different study, a PPF scaffold (3D printed by SLA [stereolithography, i.e.,
polymer photocrosslinking]) was coated with biphasic calcium phosphate (BCP),
HAP only, or β-TCP only (by immersion). Different BMP-2 doses were used with
each type of scaffold in a round rabbit calvarial defect (15 mm) model. After a
6-week implantation period, push-out testing was conducted (i.e., with a flat round
indenter). There was no significant difference in volume of new bone among the
different coatings (Dadsetan et al. 2015).

Nie et al. showed compressive strength of bioceramic scaffolds (sponge impreg-
nation of BCP, with 94–97% macroporosity) coated with a composite of nanoHAP/
PLLA cited as reaching the range of spongy bone in a rabbit femoral head defect
(5 � 15 mm) (Nie et al. 2015). Qui et al. report on the use of a coated bioceramic
scaffold for drug delivery in a rat calvarial defect model (6 mm) (Qiu et al. 2016).

Recently a different approach to delivering bioactive molecules involving
ceramic coatings has been tried. Instead of infusing whole bioactive cytokines
such as BMP-2 into the microporous spaces of a ceramic coating, a bioactive
peptide, often the active site, or ligand, of a naturally occurring cytokine, is attached
to a ceramic coating. The Becker laboratory has shown methods utilizing a catechol
strategy for polymer (Policastro et al. 2015) and metal (Tang et al. 2014; Xu et al.
2017) substrates. More details about these studies can be found in the appendix.

A summary of selected in vivo studies using coating processes for medical
device, is shown in Table A.3. These studies are classified based on the bioceramic
material and manufacturing process.

Bioceramics for Musculoskeletal Regenerative Medicine: Materials and. . . 177



4 Conclusions

The development of bioceramics has shown promise for contributing to musculoskel-
etal regenerative medicine. Bioceramic solutions have been found to reduce friction at
joint surfaces in hip and knee joint replacement devices, which are recognized as
standard-of-care practice. The use of bone substitutes for non-load-bearing skeletal
void filling has spurred much research, but, to date, few clinical applications reliably
use regenerative bioceramic materials for use in load-bearing skeletal segments with or
without the assistance of metallic hardware (Kurien et al. 2013).

Thus, when it comes to taking advantage of the inherent properties of bioceramics
for the construction of synthetic bone grafts to regenerate cortical bone, clinical
translation has been more limited. The tissue engineering approach that combines
scaffolds, cells, and signals (mainly in the form of growth factors) involves complex
sets of interactions between synthetic materials and bone-wound healing and bone
biology. Therefore, it is not surprising that the development of load-bearing synthetic
bone graft strategies remains a technology gap area.

Next, we summarize some of the trends observed in our review of the study and
use of bioceramic synthetic bone grafts materials.

4.1 High Resolution Manufacturing Processes and Composites

While bioceramic coatings have become very sophisticated, there remain tremendous
challenges in improving bioceramic materials for use in traditional (e.g., grinding and
molding) and advanced (e.g., electrospinning, additive manufacturing) fabrication pro-
cesses. Early scaffold tested in animal models had relatively simple sources for porous
spaces (i.e., uncontrolled, naturally formed, with imprecise porosity and permeability)
macroporosity (Habibovic et al. 2008). As new additive manufacturing technologies were
developed for ceramic powders, higher resolution and therefore more design flexibility
can be achieved with processes like SLA (Elomaa et al. 2013; Zanchetta et al. 2016) and
DMD (Digital Micromirror Device which houses a Digital Light Processing [DLP] chip;
Felzmann et al. 2012; Tesavibul et al. 2012) photocrosslinking of polymer/ceramic resins.
For example, the use of nano size particles and doping of ceramic material formulations
with 3D printable polymer resins or metallic powders is being explored (Bose et al. 2013;
Shao et al. 2016) for use in regenerative medical devices.

4.2 Graded Materials

Of the research and clinical cases reviewed here, all utilize uniform levels of
macroporosity and microporosity throughout (Paderni et al. 2009; Li et al. 2016).
Moreover, the relationship of geometry, material properties, and functions such as
walking, manipulating the environment, or chewing are rarely considered in the
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design of regenerative medical devices (an exception: Moghaddam et al. 2016a). The
graded nature of natural bone structure suggests that graded material properties may
better mimic the original structure and/or promote regeneration (Jahadakbar et al.
2016; Muller et al. 2015; Zhou et al. 2014). It may be useful to place more effort on
the study of simultaneous restoration of shape and function as part of healthy tissue
capable of maintaining both (see Fig. 10) (Moghaddam et al. 2016b).

4.3 Standardized In Vivo Testing

Currently, the research literature shows a wide range of animal models and testing
methods. There is little discussion about the relationship of the model used to the
intended therapy. It is likely that a generalized, load-bearing, bone substitute will have
success in both small rodents and large mammal models. However, a large animal
model will likely be more comparable to humans as critical size, cortical bone defects,
of the size seen in humans are only available in mammals the size of rabbits and larger
(Schmitz and Hollinger 1986). Rabbits are easy to handle but do not present any bone
that is directly comparable to one that will be treated in human patients. Dogs are
considered an appropriate model for some bones. Sheep, goats, horses, and pigs also
provide some bones that are similar to the structures found in the human skeleton
(Zoetis et al. 2003; Pearce et al. 2007). While nothing will replace the need for human
clinical trials to accurately assess safety and efficacy, it is essential that these studies
demonstrate the regeneration of biomechanically competent, critical size, fractures or
segmental bone defects relevant to the intended human therapy.
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Glossary

3DP Inkjet printing (type of additive manufacturing process)
BCP Biphasic calcium phosphate
BG Bioactive glass
CaP Calcium phosphate
CSF Calcium sulfate (CaSO4)
DCS Dicalcium silicate (Ca2SiO4)
DIW Direct ink writing/robocasting (type of additive manufacturing process)
DLP Digital light processing (type of additive manufacturing process)
DMD Direct micromirror device (type of additive manufacturing process)
ELS Electrospinning (type of additive manufacturing process)
FDM Fused deposition modeling (type of additive manufacturing process)
HAP Hydroxyapatite
LDM Low-temperature deposition modeling (type of additive manufacturing

process)
MES Melt electrospinning (type of additive manufacturing process)
nHA Nano-hydroxyapatite
OCP Octacalcium phosphate (Ca8H2(PO4)6�5H2O)
PA Polyamide
PAD Pressure assisted dispensing (type of additive manufacturing process)
PCL Polycaprolactone
PED Precision extruding deposition (type of additive manufacturing process)
PLA Polylactide acid
PLDLLA Poly(L-lactide-co-D,L-lactide)
PPF Poly(propylene fumarate)
SLA Stereolithography (type of additive manufacturing process)
SLM Selective laser melting (type of additive manufacturing process)
SLS Selective laser sintering (type of additive manufacturing process)
Slide In the design of injection molds, slides are moving components
Sr-HT Sr-hardystonite (Sr-Ca2ZnSi2O7)
TCP Tricalcium phosphate
TTCP Tetracalcium phosphate (Ca4(PO4)2O)

Appendix

See Tables A.1 to A.3.
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