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Abstract
Extrusion-based bioprinting is a powerful three-dimensional (3D) bioprinting
technology that provides unique opportunities for use in organ fabrication. This
technology has grown rapidly during the last decade. Extrusion-based bioprinting
provides great versatility in printing various biological compounds or devices,
including cells, tissues, organoids, and microfluidic devices that can be applied in
basic research, pharmaceutics, drug testing, transplantation, and clinical uses.
Extrusion-based bioprinting offers great flexibility in printing wide range of
bioinks, including tissue spheroids, cell pellets, microcarriers, decellularized
matrix components, and cell-laden hydrogels. Despite these assets, extrusion-
based bioprinting has several limitations, such as inadequate control and resolu-
tion cell deposition, to create a complex tissue micro-microenvironment, shear
stress-induced cell damage, and constraints associated with the current bioink
materials.

1 Introduction

The extrusion process has been widely used in the fabrication of plastic and metal
parts. The ease of complex structure formation and full process automation of
extrusion printing drew the attention of tissue engineering and regenerative medicine
scientists more than a decade ago (Vozzi et al. 2002; Yang et al. 2002; Pfister et al.
2004; Smith et al. 2004). Biocompatible hydrogels replaced plastics, and 3D printers
were modified to print tissue scaffolds. Subsequent efforts were made to investigate
the bioprintability of a wide range of soft materials blended with biological com-
pounds. With the advent of live cell printing and the emergence of other bioprinting
technologies, such as laser-based biofabrication (Odde and Renn 2000) and inkjet-
based bioprinting (Pardo et al. 2003), the use of extrusion-based bioprinting had
begun in earnest (Mironov et al. 2003). Extrusion-based bioprinting can be defined
as the dispensing of a biological medium via an automated robotic system. During
bioprinting, bioink is dispensed by a computer-controlled system, resulting in
precise deposition of cells encapsulated in cylindrical filaments arranged in
custom-shaped 3D structures.

Several researchers have demonstrated extrusion-based bioprinting of tissue
substitutes (Ozbolat and Hospodiuk 2016). Various cell types have been loaded
and deposited in a wide range of biocompatible hydrogels. Recently, artificial liver
tissue constructs were engineered by encapsulation of hepatocytes within a gelatin
methacrylamide (GelMA) hydrogel; cell viability in the construct was 97% after
the bioprinting process (Billiet et al. 2014). In an adipose tissue engineering
experiment, human adipose tissue-derived mesenchymal stem cells (hASCs) were
loaded in a decellularized matrix. The bioink solution was printed in flexible dome
shape in precisely defined patterns. Bioprinted cells showed significantly higher
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adipogenic differentiation than hASCs cultured in nonprinted decellularized adi-
pose tissue matrix (Pati et al. 2015a). Moreover, a new GelMA-based bioink
containing gellan gum and mannose has been developed, which can be printed in
a variety of 3D structures (pyramid, hemisphere, hollow cylinder) without
compromising cell viability (Melchels et al. 2014). Kesti et al. showed 3D
bioprinting of bovine chondrocytes into a complex 3D scaffold that was designed
based on magnetic resonance imaging (MRI) scans (Kesti et al. 2015). Two types of
hydrogels (bioink and support) were required in order to bioprint the nose- and
ear-shaped patterns.

This chapter presents the principles of extrusion-based bioprinting including the
extrusion mechanisms and the physical interactions that occur during extrusion. The
bioink materials including hydrogels, decellularized matrix (dECM) components,
cell aggregates, and microcarriers are presented along with their strengths and
weaknesses. The limitations of extrusion-based bioprinting technology are discussed
and future prospects are provided to the reader.

2 Extrusion-Based Bioprinting

2.1 Principles of Extrusion-Based Bioprinting

Extrusion-based bioprinting system relies on dispensing and positioning of a bioink
solution through a nozzle on a computer-controlled motion stage. The blueprint
design, which can be obtained from medical images, such as computed tomography
(CT) and MRI, or freeform design models, is converted into a toolpath plan that is
sent to the motion control system (Khoda et al. 2011). To bioprint the tissue construct
automatically, an advanced control system that can simultaneously control both the
motion of the bioprinter and the dispensing of the bioink solution is required. Here,
we classify the dispensing mechanisms of extrusion-based bioprinting systems
according to the means of extrusion.

2.1.1 Extrusion-Based Bioprinting Mechanisms
Extrusion-based bioprinting enables dispensing and writing of biomaterials such
as cell-laden hydrogels (Khalil and Sun 2009; Chung et al. 2013; Murphy et al.
2013), cell aggregate-based biomaterials (Boland et al. 2003; Mironov et al.
2009; Jakab et al. 2010), and dECM (Pati et al. 2014) through an extrusion
printhead driven by a computer-controlled dispensing system. A wide variety of
cells can be combined with biomaterials, loaded into syringes and dispensed by
pneumatic, mechanical, or solenoid-driven forces onto a printing platform, as
shown in Fig. 1.
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Fig. 1 Extrusion-based bioprinting mechanisms: (A) pneumatic micro-extrusion including (A1)
valve-free and (A2) valve-based, (B) mechanical micro-extrusion including (B1) piston- or (B2)
screw-driven and (C) solenoid micro-extrusion (Reproduced with permission from Ozbolat and
Hospodiuk (2016))
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Pneumatic-based extrusion system contains a pneumatic dispenser, which
utilizes pressurized air with a valve-free (Fig. 1A1) or a valve-based (Fig. 1A2)
configuration. The valve-free extrusion system has a syringe barrel that can be
loaded with the bioink solution. An air pressure line is connected on top of the
syringe barrel via an adapter to extrude the bioink solution through a micro-needle
nozzle. When extrude pneumatically, the bioink solution must undergo certain
shear stress. In that respect, hydrogels, which have shear-thinning properties,
perform best in pneumatically driven extrusion-based bioprinting as they can
maintain the filament shape upon extrusion. The valve-free extrusion system has
been widely preferred due to its simplicity. However, for high-precision applica-
tions, a valve-based configuration is preferred since it is necessary to maintain a
high degree of air pressure control and pulse frequency (Khalil et al. 2005). The
valve-based system controls the air channel in the printhead via on-off valve
switching that activates the air pressure externally when the valve is on and closes
the channel when the valve is off. The bioink solution is dispensed from the bioink
container through the printhead via air. In general, pneumatically driven systems
have a high degree of precision and accuracy; a microdroplet size of 0.5 nL can be
generated using a valve-based system. However, the cost of the system increases as
the precision of the deposition volume increases. This approach has several disad-
vantages, as the pneumatic-based system requires sterilization of the air provided by
a compressor. Thus, a filter in the airwaymust be used to minimize contamination of
bioprinted structures. In order to extrude bioink solutions smoothly through the
nozzle tip, the bioink solutions should be as homogenous as possible. If the bioink is
in semisolid or solid form, it may require an additional liquid or gel medium to
deliver the bioink solution successfully. Additionally, the bioink can easily attach
on the wall of the nozzle. Due to their liquid nature, gel-based bioink solutions can
easily transmit the extrusion force equally in all directions without entrapment
inside the nozzle.

Mechanical micro-extrusion system is another mechanism which is preferred
for the deposition of highly viscous materials such as synthetic and natural polymers.
Mechanical extrusion can be designed in piston- (Fig. 1B1) or screw-driven
(Fig. 1B2) configurations. The piston-driven mechanical extrusion system utilizes
a piston connected to an electric motor. When the motor starts to rotate via electrical
pulses, it converts the rotational motion to a linear motion. As a result, the piston
advances in the barrel. The screw-driven configuration is useful for extrusion of
bioink solutions with higher viscosity (Fielding et al. 2012). Furthermore, the screw-
driven configuration can accommodate larger pressure drops along the nozzle.
Mechanically driven systems are affordable, easy to program, portable, and do not
need an air compressor unit and accessories. Moreover, sterilization of a mechani-
cally driven system is simple as the mechanical dispenser head can be easily
autoclaved. A mechanically driven system requires a tighter tolerance selection on
the ram and the nozzle unit. An incorrect selection results in an unnecessary power
draw on the motor, additional friction forces, leakage of bioink, or failure of the
nozzle assembly due to overloading. Mechanically driven systems provide a better
bioprinting ability for semisolid or solid bioink materials such as tissue strands.
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Lastly, solenoid micro-extrusion (Fig. 1C) system mechanism operates via
electric pulses. In order to open the valve, the magnetic pull force generated between
a floating ferromagnetic plunger and a ferromagnetic ring magnet is canceled when
the coil is actuated. Similarly, a piezoelectric-actuated system can be modified to
dispense a sub-mL range volume of bioink solution (Bammesberger et al. 2013).
Both systems are suitable for extrusion of low viscosity bioink solutions with an
ionic- or UV-irradiation-based cross-linking mechanism. Additionally, the accuracy
and reproducibility of the bioprinted constructs using this mechanism depend on
several factors including the deflection time between actuation time (where the coil
is energized) and the time when the valve opens. Highly viscous bioink solutions
require a higher actuating pressure in order to extrude the bioink. Also, variations in
the temperature and, hence, the viscosity, significantly, affect the valve opening time
when the bioink has to be displaced in order to move the plunger. Solenoid-based
micro-extrusion systems may not be ideal for thermally controlled nozzle configu-
rations. In addition, re-calibration is required for the valve, especially if long
dispensing tips are mounted. With that in mind, tolerance selection of the nozzle
could be an important factor for the successful initialization of the bioprinting
process.

Extrusion-based bioprinter systems provide a high degree of reproducibility
between bioprinted scaffolds when appropriate bioink materials are utilized; in
particular, hydrogels with suitable shear-thinning properties and rapid cross-linking
capabilities can readily retain their printed shape. In addition, reproducibility of
bioprinted constructs depends on several parameters such as dispensing tip diameter,
viscosity of the bioink, bioprinter motion speed, extrusion force or pressure, and
printing platform surface properties. The resolution of extrusion-based bioprinting is
considerably lower than that of droplet- and laser-based systems. However, anatom-
ically correct structures (Gou et al. 2014) and larger 3D constructs are rapidly
generated. One of the most important aspects of nozzle selection is the friction
coefficient on the wall of the nozzle tip; the friction coefficient mediates shear stress,
which can be detrimental to live cells. Thus, a nozzle surface with a small friction
coefficient that is easy to sterilize would be ideal for bioprinting cells (Bruzewicz
et al. 2012).

2.1.2 Physical Interactions During Extrusion-Based Bioprinting
In order to dispense bioink solutions, the viscosity of the bioink should be able to
quickly recover its original rheological state after extrusion. This is particularly
important in order to maintain the shape of printed constructs. If the viscosity
changes are reversible, the shear-thinning effect is observed (Jungst et al. 2016).
Shear thinning is a time-independent property of a material’s rheological behavior
whereby the viscosity decreases when shear stress is applied and rapidly reverts to its
original state as soon as the pressure is released. High-viscosity bioink will not flow
through the printhead until pressure is exerted. Once shear stress is applied during
extrusion, viscous bioink solutions behave like a liquid under pressure. Thus, bioink
materials with shear-thinning properties are preferred as they can be held as a gel in a
syringe barrel and extruded only when pressure is applied.
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Extrusion-based bioprinting can change the viscosity of the bioink solution over
time when mechanical or air pressure is applied. A viscosity change (particularly for
non-Newtonian pseudoplastic hydrogels) that occurs in a time-dependent manner
after the extrusion-induced disturbance is called thixotropy (Mewis and Wagner
2009). This behavior is similar to shear thinning except the reversion of the material
to its original state takes place over time. In order to hasten and enhance reversibility,
the bioink concentration can be increased using micro- or nanoparticles, which help
decrease the relaxation behavior of the bioink during and after extrusion.

Lastly, in order to deposit the bioink successfully, surface properties of the
printing stage should be optimized to stabilize the bioprinted filaments after extru-
sion. The surface adhesion and roughness of the printing platform is important in
order for the filaments to stick and maintain their original shape. The printing surface
should not warp or deform; bioprinting failure can result from attempting to print on
an uneven surface.

2.2 Bioink

Extrusion-based bioprinting technology (see Fig. 2A) is a universal tool for deposi-
tion of a broad spectrum of bioink materials including, but not limited to, hydrogels,
tissue spheroids, microcarriers, tissue strands and cell pellets, and dECM compo-
nents. Material deposition is governed by the bioink type, a wide range of micro-
nozzle diameters, and nozzle/tip designs.

2.2.1 Hydrogels: Characteristics and Limitations
A wide variety of hydrogels have been investigated for use in extrusion-based
bioprinting. Depending on the cross-linking mechanism, hydrogels in extrusion-
based bioprinting can be classified into three groups:

(i.) Physical (temperature (Duarte Campos et al. 2014) or light (Billiet et al. 2014))
(ii.) Enzymatic (Gregor and Hošek 2011)
(iii.) Chemical (pH (Smith et al. 2004) or ionic compound (Cohen et al. 2010))

Several review papers have been published on hydrogels used in tissue engineer-
ing (Drury and Mooney 2003); thus, this chapter focuses only on bioprintable
hydrogels and their application and performance in extrusion-based bioprinting.

Alginate is an anionic polysaccharide which is present in brown seaweeds. It is
made of copolymers of α-L-guluronic and β-D-mannuronic acid. Its biocompatibility,
affordability, and fast gelation rate popularized this hydrogel in extrusion-based
bioprinting (example shown in Fig. 3A) (Cohen et al. 2011; Jia et al. 2014; Wüst
et al. 2014). Several extrusion-based bioprinting techniques have been investigated
that exploit the rapid gelation property of alginate in ionic solutions of calcium (Ca2+),
such as calcium chloride, calcium carbonate, or calcium sulfate. These automated
techniques include (i) bioplotting (Pfister et al. 2004), (ii) bioprinting with a secondary
nozzle and with cross-linker deposition over hydrogel or a spraying system (Ahn et al.
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2012a), (iii) bioprinting with coaxial nozzle-assisted technology (Ozbolat et al. 2014),
(iv) bioprinting precross-linked hydrogel followed by full cross-linking after deposi-
tion (Chung et al. 2013), and (v) bioprinting hydrogel with an aerosol cross-linking
system (Ahn et al. 2012b). Bioplotting is sometimes confused with “bioprinting,” but

Fig. 2 Processes configurations for various bioink materials: (A) bioprinting cells in hydrogel-
based bioink, (B1) bioplotting hydrogel bioink into a cross-linker reservoir, (B2) cross-linker
deposition or spraying system, (B3) coaxial-nozzle system, (B4) bioprinting pre-cross-linked
bioink, (B5) aerosol cross-linking system, (C) UV-integrated system, (D1) a heating unit-assisted
barrel with cooling unit-assisted bioprinting stage, (D2) a cooling unit-assisted barrel with a heating
unit-assisted nozzle tip, (E) multi-chamber single-nozzle system, (F) bioprinting microcarriers
(preloaded with cells) that can be extruded in hydrogels as a delivery medium, (G1) extrusion of
tissue spheroids in a fugitive cell-inert hydrogel into a support mold for fusion and maturation of
spheroids, (G2) bioprinting pre-aggregated cell pellet into a support material that is inert to cell
adhesion, (G3) bioprinting tissue strands directly without using delivery medium or support mold,
and (H) bioprinting dECM within printed PCL frame to mechanically support gelation of dECM
(Reproduced with permission from Ozbolat and Hospodiuk (2016))
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Fig. 3 Extrusion-based bioprinted constructs made of various hydrogels: (A) alginate scaffold with
sustained release of proteins (pink color) (Reproduced with permission from Poldervaart et al.
(2013)), (B) cell-laden GelMA constructs stained for live and dead cells (Reproduced with permission
from Bertassoni et al. (2014), (C) 3D bioprinted Pluronic-collagen scaffolds stained with picrosirius
red for visualization of collagen type I fibers, (D) 30 layers of fibrin forming a 3D scaffold
(Reproduced with permission from Gregor and Hošek (2011)), (E) omnidirectional printing of
Pluronic F-127 used for 3D microvascular network fabrication (Reproduced with permission from
Wu et al. (2011b)), (F) chitosan scaffold with adipose stem cells extruded in a lattice pattern
(Reproduced with permission from Ye et al. (2014)), (G) a cell-laden tubular agarose construct
bioprinted into fluorocarbon (Reproduced with permission from Duarte Campos et al. (2013)), (H)
live and dead staining of printed cells in Matrigel for a radioprotection study (Reproduced with
permission from Snyder et al. (2011)), (I) PEG as aortic valve scaffold (Reproduced with permission
from Hockaday et al. (2012)), (J) Alcian blue staining of a hyaluronic acid-based osteochondral-
mimetic structure (PCL in black and collagen type I in turquoise color) (Reproduced with permission
from Park et al. (2014)), (K) a nanocellulose scaffold in human ear shape for cartilage tissue
engineering applications (Reproduced with permission from Markstedt et al. (2015))
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they are not the same. In bioplotting (see Fig. 2B1), the hydrogel solution is deposited
into a cross-linker pool, and the tissue construct stays within the pool until the process
is completed. Therefore, the extrusion of bioink without a bioplotting pool is not
considered “bioplotting.” The next technique is shown in Fig. 2B2, where the cross-
linker is deposited or sprayed onto the bioprinted hydrogel using a secondary nozzle
that can rotate around the primary nozzle (Geng et al. 2005). In the third technique (see
Fig. 2B3), alginate is bioprinted through an inner nozzle and the cross-linker is
deposited through the outer nozzle. Using a similar approach but an opposite config-
uration, alginate can be extruded for fabricating core-shell fibers for controlled drug
delivery (Zhang et al. 2012; Davoodi et al. 2014); bioprinting microfluidic channels
for tissue engineering applications (Zhang et al. 2013), generally blood vessels (Zhang
et al. 2015); and immobilizing cell pellets for tissue strand fabrication (Akkouch et al.
2015). In the fourth technique, as shown in Fig. 2B4, precross-linked alginate is
bioprinted with a low cross-linker concentration, providing a bioink deposition that
endures sufficient structural integrity of the tissue construct. This can be further
enhanced by exposing the tissue construct to a second higher concentration cross-
linker solution. This method deposits the bioink unevenly, resulting in discontinuities
and proportional variation during the extrusion process. In the last approach, the cross-
linker is fumed over the bioprinting stage using an ultrasonic humidifier (see
Fig. 2B5). This process provides simultaneous cross-linking between layers and
develops constructs that are well integrated mechanically and structurally. All these
techniques have pros and cons; however, the systems showing promising results (well-
integrated interlayers in 3D) are illustrated in Figs. 2B3–B4 (Ozbolat et al. 2014).
Despite the advantages, alginate is hydrophilic; thus, cell surface receptors are unable
to interact with an alginate matrix. Cells in alginate are immobilized; proliferation and
intercellular interactions are limited. Additionally, mechanical properties of alginate
are poor if low concentration is used; however, lower concentrations support greater
cell viability and an improved proliferation rate. Furthermore, cells do not adhere
easily to alginate surface unless modified with a hydrogel. Therefore, researchers
attempted to modify alginate by addition of cell adhesion ligands as arginine–glyci-
ne–aspartic acid (RGD) peptides (Rowley et al. 1999), which significantly improved
cell adhesion, spreading, and proliferation.

Gelatin is a denatured form of collagen (Gómez-Guillén et al. 2011). It is a
thermally reversible hydrogel which is solid at low temperatures and characterized
by instability under physiological conditions and low mechanical integrity. Gelatin is
used in extrusion-based bioprinting with various chemical and physical modifica-
tions, i.e., metal ions or glutaraldehyde, to improve its bioprintability and stability
(Wang et al. 2006; Xing et al. 2014). One of the common methods to stabilize gelatin
at 37 �C is by chemical modification with methacrylamide (MA) side groups which
enables photopolymerization of gelatin for cell encapsulation. To cross-link
methacrylamide modified gelatin, a water-soluble photoinitiator is required (Van
Den Bulcke et al. 2000). The resulting product, which is a GelMA, can be smoothly
extruded with a pneumatic dispenser fitted with a UV light source (Billiet et al. 2014;
Bertassoni et al. 2014). The reader is referred to Figs. 2C and 3B for a schematic of
the process and an example of a bioprinted tissue construct, respectively. The
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printability of GelMA relies on the following: the hydrogel concentration, cell
density, and duration and intensity of UV curing. The duration of UV exposure
affects cell viability, hydrogel density, and final stiffness of the printed tissue
construct (Billiet et al. 2014; Bertassoni et al. 2014). In addition, chemically
unmodified gelatin can used as a sacrificial material in fabrication of 3D printed
constructs with open fluidic channels (Lee et al. 2010a). After printing, gelatin is
liquefied by incubating the construct at 37 �C, creating perfusable channels within
the construct. Fluidic networks within the construct enable the flow of nutrition,
oxygen, and drugs throughout the construct.

Collagen type I has been broadly used in tissue engineering as a scaffold material
(Achilli and Mantovani 2010). Collagen type I possesses the amino acid sequence
RGD, which binds to cellular transmembrane receptors known collectively as
integrins (Grzesik and Robey 1994). It mediates interactions between the cytoskel-
eton and ECM and serves as a signal conductor, activating various intracellular
signaling pathways and cell functions. Collagen molecules dissolve in acids but
cross-link when the pH, temperature, and ionic strength are adjusted close to
physiological values. When collagen is neutralized to a pH between 7 and 7.4,
collagen cross-links within 30–60 min at 37 �C (Park et al. 2014) making collagen
an attractive candidate for in situ bioprinting. This type of bioprinting refers to the
direct printing of tissue substitutes into a defect or lesion site in a clinical setting
(Ozbolat 2015a). The collagen cross-linking mechanism is also compatible with
thermally controlled extrusion-based bioprinting systems. The ideal time for extru-
sion is the instant polymerization of the collagen begins. Extruded collagen needs to
be incubated at 37 �C until fully cross-linked in order to possess sufficient structural
integrity, as shown in Fig. 3C. Bioprintability of collagen was first demonstrated by
Smith et al. (Smith et al. 2004); collagen type I was blended with bovine aortic
endothelial cells (BAECs) and bioprinted by a pneumatic-driven extrusion-based
bioprinting system. The configuration presented in Fig. 2D2 is used to bioprint
collagen; the bioink is maintained at approximately 4 �C then raised to physiolog-
ically relevant temperatures. After deposition, collagen can be fully cross-linked
after about 30 min of incubation. Collagen type I has also been 3D printed with
different cell types, as well as blended with natural or synthetic biomaterials for
chapter ▶ “Fabrication and Printing of Multi-material Hydrogels” that enhance its
bioprintability and mechanical properties (Rücker et al. 2006).

Fibrin has superior cell adhesion capabilities and is widely used in tissue
engineering (Lee et al. 2010b; Yu et al. 2012; Ehsan et al. 2014). The cross-linking
of fibrin is accomplished simply by mixing fibrinogen and thrombin solutions in an
enzymatic reaction at room temperature or 37 �C. Based on the desired gel stiffness
or cell adhesion properties, cross-linking conditions can be optimized by adjusting
thrombin and fibrinogen concentrations. Despite its extensive use in biological
applications, fibrin exhibits weak mechanical stiffness and rapid degradation. The
rapid and irreversible cross-linking can cause difficulties during bioprinting, gener-
ating unstable structures after deposition (Murphy et al. 2013). There are several
ways to deposit fibrin in an extrusion-based bioprinting system. One involves the
separate deposition of the two fibrin components (fibrinogen and thrombin)
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(Xu et al. 2006; Cui and Boland 2009). The second approach combines fibrinogen
and thrombin on ice, inducing slow gelation; the material is then extruded using the
arrangement illustrated in Fig. 2D2 (Fig. 3D shows an actual printed fibrin con-
struct). The third method uses a multi-chamber single-nozzle approach, where
thrombin and fibrinogen solution are blended into one solution at the end of the
extrusion process, as shown in Fig. 2E (Gregor and Hošek 2011). In the fourth
method, fibrinogen is blended with another hydrogel, bioprinted in a desired pattern,
and then cross-linked with thrombin (Wei et al. 2007). Fibrin has great potential for
in situ bioprinting applications as bioprinted fibrinogen can rapidly cross-link with
naturally occurring thrombin in situ (Li et al. 2015a).

Pluronic® is a triblock polymer consisting of a poly(propylene oxide) core
flanked by two poly(ethylene oxide) chains (PEO-PPO-PEO). Pluronic is temper-
ature sensitive; the intermolecular assembly of PPO blocks leads to the develop-
ment of micelle structures above critical temperature. For example, a 20%
Pluronic F-127 solution is semi-sol at room temperature and gel above 20 �C.
The sol–gel transformation can be modulated by adjusting the solution concentra-
tion (Skardal and Atala 2014). The temperature-dependent gelation of Pluronic
F-127 makes it a superior bioink material for extrusion-based bioprinting technol-
ogy (Wu et al. 2011b; Chang et al. 2011); however, it requires a thermally
controlled extrusion mechanism. Therefore, a nozzle system with temperature
control (shown in Fig. 2D2) is essential to solidify the bioink during the extrusion
process. The bioink is loaded into the syringe barrel as a liquid and kept at low
temperature in a cooling chamber. A heating unit surrounds the dispensing tip,
enabling precise control of the extrusion temperature. This approach allows extru-
sion of Pluronic in solid form. Another option is a heated plate to prevent melting
and deterioration of the structure and shape upon extrusion (see Fig. 4A). Spatially
well-defined tissue constructs can be accurately bioprinted using Pluronic bioink
(Smith et al. 2004). Although easily bioprinted, Pluronic has weak structural and
mechanical properties and dissolves rapidly over time in aqueous solutions (Müller
et al. 2015). Recent work, however, demonstrated that Pluronic could be chemi-
cally modified to improve its structural and biological properties (Melchels et al.
2016). Pluronic F-127 has been used as a sacrificial material, or fugitive ink
(Wu et al. 2011b) as shown in Fig. 3E, or as a support material to create a vascular
network (Homenick et al. 2011).

Chitosan is an antibacterial, antifungal, nontoxic, and biodegradable hydrogel
produced by deacetylation of chitin; it has been used as wound dressing in regen-
erative medicine (Ong et al. 2008). It is widely used in the bone, skin, and cartilage
tissue engineering, due to hyaluronic acid and glycosaminoglycan content that is
similar to native tissue (Ma et al. 2003; Hong et al. 2007; Zhang et al. 2008; Hao
et al. 2010). Chitosan is soluble in acid solutions and cross-linked by ionic and
covalent agents; however, a water-soluble form at neutral pH ranges was found to
facilitate gelation at about 40 �C (Rinaudo 2006). The disadvantage of chitosan in
extrusion-based bioprinting is its slow gelation rate and weak mechanical properties.
In order to maintain structural integrity of a printed shape for several hours, chitosan
must be highly viscous (Hao et al. 2010; Ren et al. 2013). A multilayer printed
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chitosan structure with embedded adipocytes is shown in Fig. 3F. To optimize
strength and polymerization rate, chitosan can be blended with hydrogels with better
mechanical properties. Chitosan has been used in extrusion-based bioprinting of
various tissue constructs and devices, for example, microfluidic perfusable channels
(Zhang et al. 2013), chondrogenic scaffolds encapsulated with adipose stem cells
(Ye et al. 2014), and 3D printed scaffolds to study inflammatory responses (Almeida
et al. 2014). The bioprinting mechanisms shown in Figs. 2B1–5 can be used in
bioprinting of chitosan hydrogel.

Agarose is a polymer extracted from seaweed-based galactose with both
thermoreversible and thermosensitive properties. Several types of agarose, with
varying melting temperatures depending on the degree of hydroxyethylation, are
available (Serwer et al. 1983). For extrusion-based bioprinting, the most suitable
agarose is one with low-melting and low-gelling temperatures that is easy to liquefy
and can solidify at 26–30 �C (Landers et al. 2002). The system configuration for
agarose in extrusion-based bioprinting is presented in Fig. 2D1, where agarose is
extruded in liquid state onto a cold stage resulting in rapid solidification. Recently,
mesenchymal stem cells were encapsulated in agarose and then bioprinted in a
tubular structure with fluorocarbon supporting the entire construct (see Fig. 3G)
(Duarte Campos et al. 2013). The deposited cells are maintained in nearly 100% cell
viability over 21 days. Agarose is also a suitable hydrogel for developing 3D cell

Fig. 4 Bioink types used in extrusion-based bioprinting: (A) Pluronic gel printed in concentric
tubes, (B) polymer microcarriers preloaded with cells (scale bar 20 μm) (Reproduced with permis-
sion from Jakob et al. (2016)), (C) tissue spheroids made of cells and ECM (scale bar 100 μm)
(Reproduced with permission from Norotte et al. (2009)), (D) cell pellet in nozzle tip, (E) tissue
strands, and (F) hybrid printing of dECM with PCL framework (Reproduced with permission from
Pati et al. (2014))
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culture platforms; cells do not adhere to agarose but instead form large cell aggre-
gates (Dean et al. 2007; Norotte et al. 2009; Mironov et al. 2011).

Matrigel, extracted from mouse Engelbreth–Holm–Swarm sarcoma cells and
comprised primarily of laminin, collagen type IV, and enactin, forms a gelatinous
protein mixture. The major advantage of Matrigel is the ability to support differen-
tiation of many cell types and promote tissue outgrowth (Kleinman and Martin
2005). Another important characteristic of this hydrogel is its thermosensitive
behavior (Wu and Ringeisen 2010). Matrigel is liquid at 4 �C but cross-links to
form a gel at 24–37 �C. Complete gelation takes approximately 30 min and is a
nonreversible process. Similar to collagen type I, in order to extrude Matrigel, the
extrusion mechanism must possess a thermally controlled unit (as presented in
Fig. 2D2) to hold the hydrogel at 4 �C. Extrusion-based bioprinting of Matrigel
yielded high viability of human epithelial cells as shown in a live-dead staining
image (see Fig. 3H) (Snyder et al. 2011). Moreover, bone marrow stromal cells
bioprinted in Matrigel showed higher survival rates than cells encapsulated in
alginate or agarose (Fedorovich et al. 2008). Also, multicellular constructs have
been bioprinted and implanted in vivo for bone regeneration. Host tissue vascular-
ization was demonstrated within 2 weeks after implantation (Fedorovich et al. 2011).

Poly(ethylene glycol) (PEG), as well as poly(ethylene oxide) (PEO), is widely
used in non-pharmaceutical products and medical supplements (Giovagnoli et al.
2010; Mooney et al. 2011; Elbert 2012). The PEG-based hydrogels are biocompat-
ible, are minimally immunogenic, and are approved by the Food and Drug Admin-
istration (FDA). One of the advantages of PEG-based hydrogels is their wide
selection of cross-linking methods, using covalent, physical, or ionic agents (Vero-
nese and Pasut 2005). Photopolymerization of PEG attracted major attention because
of its tunable mechanical properties. A UV-integrated system can be used, as
presented in Fig. 2C, to photocross-link polyethylene glycol diacrylate (PEG-DA)
for quick 3D bioprinting of mechanically heterogeneous, complex, and clinically
accurate scaffolds of aortic valve shapes (see Fig. 3I). Porcine aortic valve interstitial
cells were seeded on the scaffold and cultured for up to 21 days (Hockaday et al.
2012). Unfortunately, cells seeded on the scaffold showed limited adhesion and
spreading. Although PEG is a plausible option for cell encapsulation, it does not
possess the cell adhesion motifs of bioink materials such as collagen. Hence,
PEG-based materials need to be functionalized with the addition of cell binding
sites growth factors during the bioprinting process to promote cell proliferation,
migration, and regeneration of tissues (Zhang et al. 1998; Fedorovich et al. 2007).

Hyaluronic acid (HA) is an ubiquitous glycosaminoglycan present in most
connective tissues (Oxlund and Andreassen 1980). During early embryogenesis, a
high concentration of HA is present controlling a variety of cell functions and
behavior, such as movement, angiogenesis, and proliferation. Hyaluronic acid is
an attractive material for extrusion-based bioprinting due to its tunable physical and
biological properties. Moreover, HA is the primary ECM component in cartilage
tissue. A recent study revealed that 3D bioprinted chondrocyte-laden HA hydrogels
(see Fig. 3J, in blue color) exhibited higher cell viability compared to cells loaded in
collagen (Park et al. 2014). The disadvantages of HA are its poor mechanical

268 M. Hospodiuk et al.



properties and rapid degradation rates (Jeon et al. 2007) that limit the use of HA in
extrusion-based bioprinting; however, chemical modifications make it possible to
control the degradation rate. One example is the functionalization of HA with
UV-curable methacrylate (MA), where the duration of photopolymerization readily
controls the degree of stiffness (Gerecht et al. 2007). Thus, the mechanism presented
in Fig. 2C can be applied in the bioprinting of HA hydrogels functionalized with MA
(Dana et al. 2004; Skardal et al. 2010b; Malda et al. 2013; Skardal and Atala 2014).

Methylcellulose (MC), a chemical compound obtained from cellulose as a
semiflexible linear arrangement of polysaccharides, has the simplest chemical com-
position (Lott et al. 2013). Similar to gelatin and Pluronic, methylcellulose has
thermosensitive and thermoreversible properties. The transition between sol and
gel depends on the polymer concentration and molecular weight (Kobayashi et al.
1999). Methylcellulose in aqueous solution is used for cell culture purposes, as
gelling occurs below 37 �C (Thirumala et al. 2013). Silanized hydroxypropyl
methylcellulose hydrogel, a derivative of MC with pH-sensitive capabilities, has
been patented and is used for 3D chondrogenic and osteogenic cultures (Trojani et al.
2005; Vinatier et al. 2005). Extrusion-based bioprinting of MC, as with other
thermosensitive and thermoreversible hydrogels, requires an additional system
such as a thermally controlled chamber (as presented in Fig. 3D2) and a heating
stage. However, MC can be unstable exhibiting partial degradation with exposure to
aqueous solutions such as cell culture media; hence, it is not suitable for long-term
culturing of cells (Thirumala et al. 2013). Extrusion-based bioprinting of a bioactive
glass with MC has shown good mechanical strength, which makes it an excellent
candidate for use in bone regeneration (Wu et al. 2011a). Also, nanofibrillated
cellulose has been blended with alginate, loaded with chondrocytes, and then
bioprinted in the shape of a human ear, which demonstrates the ability of 3D
bioprinting complex structures (see Fig. 3K) (Markstedt et al. 2015). Methylcellu-
lose was also used as a scaffold matrix for corneal stromal cell spheroids fabricated
under both rotary and static cell culture system, which were later used in a
bioprinting procedure (Li et al. 2015b).

For simultaneous bioprinting of multiple hydrogels, a multi-chamber single-
nozzle unit configuration has been developed, as shown in Fig. 2E. A major
advantage of this approach is the ability to print one or more hydrogels to fabricate
a heterogeneous construct with variations along the filament deposition direction
(Ozbolat and Koc 2010). Biofabrication of hybrid porous tissue scaffolds have been
demonstrated using the nozzle assembly, where various functional properties can be
manipulated by modifying the nature and the concentration of the biomaterial used
(Ozbolat and Koc 2011). The rate at which a bioink material is dispensed from the
nozzle depends on the pressure applied using the pneumatic controller unit. An
advanced design with a similar approach is the triple chamber (Mogas-Soldevila
et al. 2014), where chitosan, sodium alginate, and chitin powder were blended in a
static mixer nozzle, and scaffolds were fabricated using a six-axis robotic printer.

Synthetic as well as some naturally available hydrogels lack the proper constit-
uents, such as native ECM proteins, for sustainable growth and proliferation of cells.
Additionally, it is challenging to maintain a cell density similar to that of the native
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tissue (Ozbolat 2015b). Hydrogels containing the RGD sequence, such as gelatin
and collagen, or those with a fibrous microstructure, readily allow cell adhesion. In
absence of such cell binding motifs, cells will not preferentially adhere and prolif-
erate on a biomaterial surface. High concentrations of hydrogels result in a mechan-
ically stronger construct but can be detrimental to cells. Hydrogels, such as Pluronic
F-127, preserve the integrity when deposited in bulk but are unable to preserve
mechanical and structural integrity when printed in filaments as they rapidly dissolve
in culture media. In extrusion-based bioprinting, rheological properties of hydrogel
play an important role, where bioink suspension must overcome surface tension-
driven droplet formation and be extrudable in straight filaments form. The material
can quickly spread over the printing stage if a very low concentration of the bioink is
used as opposed to a highly viscous or concentrated bioink, which requires high
pressure for continuous extrusion. However, increased pressure might induce cell
lysis due to increased shear stress.

Another limitation in hydrogel-based bioinks is the degradation time of hydrogels
and the production of potentially detrimental by-products. Generally, hydrogels
in vitro degrade much slower than in vivo and the degradation behavior differs
from hydrogel to hydrogel. Encapsulated cells often cannot deposit sufficient
amounts of ECM and proliferate within a hydrogel to begin tissue reconstruction
before construct degradation takes place in vivo. Degradation may also trigger a
chronic inflammatory response in the host after implantation. Also, hydrogels should
not produce toxic degradation by-products that are harmful to biologics. In summary,
the hydrogel utilized in extrusion-based bioprinting should be compatible with the
targeted tissue type and support cell growth and function until the tissue regeneration
process is completed.

2.2.2 Other Bioink Types
Microcarriers are defined as small spherical carriers with a porous structure that
provides an expanded surface area for cell attachment and growth (Fig. 4B). Com-
mercially available microcarriers for bone and cartilage regeneration are made of
dextran (Malda et al. 2003; Skardal et al. 2010a), polymers (Bayram et al. 2005;
Curran et al. 2005), glass (Malda et al. 2003), gelatin (Liu et al. 2004), and collagen
(Overstreet et al. 2003; Shikani et al. 2004). Cells proliferate more rapidly on
microcarriers and exhibit improved interaction and aggregation inside microcarriers
than the cells loaded in the hydrogel solution alone. Total surface area available for
cell expansion is significantly higher than 2D culture (Levato et al. 2014). Extrusion-
based bioprinting of microcarriers is similar to printing cell aggregates; however, due
to polymer stiffness, printing may be difficult. Microcarriers are blended with a
hydrogel solution, loaded into the barrel, and dispensed (see Fig. 2F). The major
limitation of polymeric microcarriers is a prolonged degradation time and associated
toxic by-products. Degradation of hydrogel-based microcarriers is dependent on
concentration and material type. If microcarriers are made of hard polymers, they
can clog the nozzle during extrusion process. Deposition of microcarriers is chal-
lenging, as precise delivery to ensure contact between microcarriers is essential to
3D development of the construct.
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Cell aggregates are scaffold-free bioink materials used in self-assembly directed
fabrication of tissues. The greatest advantage of this approach is the short fabrication
required compared to scaffold-based approaches. Large numbers of cells are initially
seeded resulting in rapid deposition of native ECM biomolecules. Several
approaches have been explored for fabrication of cell aggregates, particularly tissue
spheroids, including hanging drop, pellet culture, nonadhesive micromold
hydrogels, microfluidics by hydrodynamic cell trapping, liquid overlay, spinner
flask, and rotating wall vessel techniques (Breslin and O’Driscoll 2013; Mehesz
et al. 2011). It should be noted that not all of these techniques have been applied to
bioprinting, but any of them can be considered as an alternative approach. Examples
of homocellular, as shown in the Fig. 4C, and heterocellular tissue spheroids have
been demonstrated in the literature (Hsiao et al. 2009; Torisawa et al. 2009). Despite
the numerous advantages, cell aggregates present certain challenges when applied to
extrusion-based bioprinting. One of the major difficulties is loading tissue spheroids
into the nozzle, as shown in the Fig. 2G1 (Mironov et al. 2009). Moreover,
aggregates need to be extruded in a delivery medium of either a fugitive ink or a
thermosensitive hydrogel that does not allow cell adhesion. Also, cell aggregates
fuse quickly which resulting in accumulation inside the nozzle tip thereby hindering
printability. Post bioprinting and discontinuities in the printed tissue are possible if
the tissue spheroids have not been deposited in close proximity. Also, permeability
of tissue spheroids is lower than that of hydrogels, limiting the diffusion of oxygen
and other nutrients. Hence, fabrication of spheroids over 400 μm in diameter induces
hypoxia leading to cell death (Achilli et al. 2012). However, resilient cells (such as
stromal cells) or cells that can tolerate hypoxia (such as chondrocytes) can overcome
this issue. Neocapillarization inside the tissue spheroid is highly desirable for scale-
up fabrication of tissues and organs. An example of naturally existing spheroids in
the human body is lymph nodes. This tissue is composed of stromal cells such as
fibroblasts, endothelial cells, and follicular dendritic cells, which provides physio-
logical function in tissue ranging from a few millimeters to 1–2 cm long (Katakai
et al. 2004). For neo vascularization of 3D printed and engineered tissues, cell
aggregates need to be printed before becoming fully mature. Otherwise, mature
tissue spheroids lose their potential to fuse and vascularize. Another type of dense
cell suspension bioink material is a cell pellet, which can be molded into any shape,
as shown in Figs. 2G2 and 4D (Ozbolat 2015b). The main limitation of the cell pellet
is fabrication of large-scale tissues without using a temporary molding material.
Therefore, tissue strands (Akkouch et al. 2015) (Figs. 2G3 and 4E) are considered as
an alternative technique. These constructs are produced as elongated filaments using
a custom-made nozzle apparatus. The labor-intensive method of preparing cell
aggregates is eliminated in this technique. This technique also adds in the advantage
of printing tissue strands with vasculature. Thus this method has great potential in
generating larger-scale tissues and organ constructs (Yu et al. 2014; Yu and Ozbolat
2014).

Decellularized extracellular matrix has recently been developed as a hydrogel-
free technique to transform natural cell matrix into a bioprintable material. This
material has also been blended with other hydrogels for bioprinting purposes (Jang
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et al. 2016). Native tissue ECM is decellularized and fragmented into small pieces
for extrusion bioprinting (Pati et al. 2014). One of the major disadvantages of dECM
is the extremely low yield of material after extraction. In addition, dECM loses its
mechanical and structural integrity as well as some biochemical properties when it is
fragmented. Therefore, polycaprolactone (PCL) can be used as a support structure
for bioprinted dECM bioink (see Figs. 2H and 4F) (Pati et al. 2015b).

2.3 Limitations

Extrusion-based bioprinting is the most convenient technique for rapid fabrication
of 3D cellular porous structures. This technology holds great promise for future
organ fabrication and scale-up tissue engineering. However, it has several limita-
tions that need to be overcome to enhance the potential of extrusion-based
bioprinting systems in organ fabrication. The main disadvantage is the low printing
resolution due to the large nozzle configurations of extrusion-based systems. The
need for rapid gelation to encapsulate cells and form a stable 3D constructs in a
shorter span of time limits the choice of bioink materials. The other impediment is
the presence of shear stress caused by the extrusion process. Shear stress on the
nozzle tip wall results in a lower cell viability in highly concentrated bioinks.
Moreover, changes in the nozzle geometry, dispensing pressure, and bioink con-
centration could collectively induce cell death (Yu et al. 2013). In addition,
accumulation of bioink material in the nozzle can result in nozzle clogging over
time. Depending on the type of biologics being printed, a number of events might
lead to clogging of the nozzle such as diffusion of the cross-linker solution into the
nozzle, imprecise control of the temperature, early fusion of spheroids, coagulation
of the bioparticles/microcarriers loaded in relatively small diameter nozzles, and
heterogeneous bioink solutions.

As the field of bioprinting is rapidly expanding its range of applications, a wide
variety of extrusion-based systems have been developed to increase its functionality
including motion capability of the robotic arms with high degree of freedom, ease of
operation, compact size, full-automation capability, and ease of sterilization
(Dababneh and Ozbolat 2014). Despite its versatility and assets, extrusion-based
bioprinting has some disadvantages when compared to other technologies. First, the
resolution of the technology is quite limited; the minimum feature size is generally
over 100 μm (Duan et al. 2013), which is considerably lower than the resolution of
other bioprinting techniques (Dababneh and Ozbolat 2014). Therefore, cells cannot
be precisely patterned and organized due to limited resolution. In addition, the
bioink, in liquid or sol–gel state, requires shear-thinning ability to overcome surface
tension-driven droplet formation to be extruded in the form of cylindrical filaments.
Furthermore, gelation and solidification requirements for the materials limit the
hydrogel options used in extrusion-based systems. Shear stress on the nozzle tip
has a substantial effect on cell viability, especially if the bioink solution contains
high cell density (Chang et al. 2008).
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2.4 Future Perspectives

Extrusion-based bioprinting is a versatile technique owing to its flexibility in
incorporating different bioink types, its ability to fabricate perfusable and porous
tissue structures, and its capability to rapidly build large tissue constructs with
enhanced mechanical and biological properties, which cannot be achieved using
laser or droplet-based bioprinting. Although remarkable progress has been made in
the field of bioprinting, more efficient and robust end products are needed in order to
transition from basic research to pharmaceutics and clinics (Ozbolat 2015b).

In situ bioprinting is a very promising technology, which involves the bioprinting
of porous tissue analogues into defects and lesion sites. These printed constructs can
integrate with the endogenous tissue and producing a new vascularized tissue to
complete the healing process. Only a few attempts have been made to in situ bioprint
materials employing inkjet (Wang et al. 2009; Hussain et al. 2010) and laser-based
bioprinting techniques (Lopes et al. 2014). Conversely, extrusion-based bioprinting
offers wide flexibility in printing tissue analogues with controlled porous architec-
ture. A pilot study was performed by Cohen et al., in which precross-linked sodium
alginate was deposited into a defect on an ex vivo femur model (Cohen et al. 2010).
This ex vivo defect model provided a translational step toward clinical in situ
bioprinting, bringing the technology from bench to bedside. It is envisaged that in
situ bioprinting can be effectively applied to deep dermal injuries, composite tissues
and flaps, and calvarial or craniofacial defects during maxillofacial or brain
surgeries.

Although considerable progress has been made in developing novel biomaterials,
there is a great need for developing new bioinks with enhanced gelation capabilities,
higher mechanical and structural integrity, and bioprintability, which will be well
suited for extrusion-based bioprinting and adapted for soft tissues. This would usher
in a new field of research under biomaterials and biofabrication, “bioprintable bio-
materials.” One of the major weaknesses in currently existing hydrogel-based
bioinks is the lack of environment for promoting growth and differentiation of
stem cells into multiple lineages (Ker et al. 2011). To mimic the native organizational
structure of tissues and organs which consists of multiple cell types, it is essential to
develop a bioink which would support a similar organization of the heterocellular
tissue microstructure (Carrow and Gaharwar 2014). The structural and physical
properties of the native tissue can be faithfully recapitulated by integrating chemical,
mechanical, and physical stimuli. An ideal hydrogel material should be able to
promote cell adhesion, proliferation, and differentiation toward multiple lineages,
should possess appropriate mechanical integrity and structural stability to persist
even after bioprinting, facilitate engraftment with the endogenous tissue without
generating an immune response, possess shear-thinning properties to ease
bioprinting and rapid gelation, and be abundant, affordable, and commercially
available with appropriate regulatory guidelines for clinical use.

One of the exciting future directions in the field of bioprinting is the bioprinting of
new types of organs. These organs can be tuned to perform specific functions such as
augment the physiology of the human body beyond its normal capabilities or treat
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diseases. The nature of such organs could be entirely biological in perspective or in
the form of cyborg organs intertwining biology and electronics. A proof of concept
cyborg organ has been recently demonstrated by Zhang et al. (2012) where bionic
ears were printed using a hybrid approach. This technique involved bioprinting
chondrocytes in alginate along with silver nanoparticles in the form of an inductive
coil antenna. This cultured cyborg organ model was evaluated and was found to
exhibit enhanced auditory sensing for radio frequency reception.

3 Conclusions

Over the past decade, extrusion-based bioprinting has proven to be a useful tech-
nique for tissue fabrication. There is a rapidly growing interest in extrusion-based
bioprinting systems among researchers in the tissue engineering community due to
the recent advances in bioink materials and new processes for vascularized tissue
fabrication. Due to its greater flexibility in bioprinting of various bioink materials
including hydrogels, dECM components, cell aggregates, and microcarriers,
extrusion-based bioprinting has enabled fabrication of a wide array of tissue con-
structs, organ modules, and organ-on-a-chip devices. One of the major advances in
this field relies on the development of superior bioink materials with fast gelation
mechanisms, simplifying the process of extrusion and bioprinting. Overcoming the
limitations of extrusion-based bioprinting including the improvement of bioprinting
resolution, full automation of the technology, and development of novel bioink
compositions would help translate this technique from bench to bedside.
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