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Abstract With the dawn of the internet, mobile technology, cloud computing etc.
our socio-technical environment has become ever more intertwined and
hyper-complex. The field of complexity management tries to devise methods and
methodologies to cope with the challenges arising from complexity. This chapter
provides a brief overview of the field of complexity management. More specifi-
cally, it defines in detail the terms complexity and dynamic complexity. Dynamic
complexity is most relevant for high impact decisions and I examine two
methods First, causal context modelling (CCM). This is an integrative, qualitative,
transdisciplinary approach which creates a qualitative description of a system
including key variable interdependencies and system boundaries. The sec-
ond methodology I explore is system dynamics (SD). Here I provide examples
from a project carried out within the Use-it-Wisely project which helped the
companies involved understand and deal with the dynamic problems facing them.

Keywords Systems thinking - Causal context model - Context analysis
Qualitative method - Simulation method - Quantitative method - System dynam-
ics + Mixed-methods - Integrative design - Complexity management - Dynamic
complexity

1 Introduction

Leonardo Da Vinci said “simplicity is the ultimate sophistication” (Gaddis 1955;
Granat 2003). Most managers would agree. Nobody would deny that the world has
become more complex during the past decades due to technological change and
globalization. With digitization, the interconnectivity between people and things
has rapidly increased. Dense networks now define our technical, social, and
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particularly, business environments. The idea of applying complexity science to
management was first discussed in the 1990s (Straub 2013). Popular literature
propagated the ideas of complexity theory—in particular, the notion of the “but-
terfly effect” by which a small event in a remote part of the world could trigger a
chain of events that would add up to a disruptive change in the whole system.
Managers’ eyes were opened to the reality that organizations are not just compli-
cated but complex.

This growing complexity is why many management thinkers have been urging
businesses to embrace complexity to become, in effect, system thinkers rather than
reductionists. However, Straub (2013) states that complexity is not something
managers need to embrace, merely something executives need to accept and
manage. In fact, complex issues are often made worse by organizations themselves,
especially by the approaches they adopt to deal with these issues (Isanda 2014).
Managers and other business leaders seem to be vaguely aware of complexity’s
existence, and those that know of its existence do not know how best to deal with it
—usually resorting to wishing it away or using models that give simplistic solutions
that cannot be applied in turbulent and complex environments.

If you ask managers for the major business challenges within the next ten years,
you will get the answer “complexity” quite frequently. It is a reoccurring theme in
annual reports, analyst calls, and public speeches (Satell 2013). Failing to manage
complexity causes high transition and overhead costs as well as frictional losses,
inefficiencies, and difficulties in overall strategic orientation or incomprehensibility
of the value chain. In particular, the challenge of managing high value assets has
become ever more complex (see the challenges in chapter “The Challenge” in this
book). It is therefore all the more important that decisions makers develop a deep
understanding of complexity.

In this chapter, I provide a brief background on complexity and tools for its
management. | define different types of complexities and then focus on dynamic
complexity. Thereafter, I introduce causal context modelling (CMM) a specific
method to structure messy problems. Then, I introduce the simulation methodology
of system dynamics (SD). Both methods are highly useful when addressing the
challenges resulting from the maintenance and upgrading of high-investment,
industrial product-service systems (IPSS).

2 Background on Complexity and Tools
for Its Management

Complex systems can be found anywhere multiple actors interact, are subject to
feedback dynamics, and are influenced by time delays between cause and effect
(Sterman 1994, 2002; Groesser 2014). Section 2 details six systems approaches that
can help to understand and manage complex systems. These are soft system
modelling (SSM), viable system model, mental models of dynamic systems, and
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group model building. Additionally in Sects. 3 and 4, I detail the methods of CMM
and SD. But first, let us take a look into the underpinnings of complexity theory.

2.1 Selected Background on Complexity

The field of complexity theory or complexity science is vast and I do not intend to
cover it comprehensively in this chapter. Rather, I briefly introduce complex
adaptive systems (CAS) because they can be considered a theoretical background to
many methods developed in the field of complexity management. More compre-
hensive overviews are available (Anderson 1999; Lewin 1999; Phelan 2001;
Schwaninger 2009a, b).

“Adaptive social systems are composed of interacting, thoughtful (but perhaps
not brilliant) agents. [...] What it takes to move from an adaptive system to a
complex adaptive system is an open question and one that can engender endless
debate. At the most basic level, the field of complex systems challenges the notion
that by perfectly understanding the behaviour of each component part of a system we
will then understand the system as a whole” (Miller and Page 2007: 3). Miller and
Page refer to the difficulty of including aspects of complexity in a definition such as
this. Simon understands CAS as “a large number of parts that have many interac-
tions” (Simon 1997: 230). This definition corresponds with Gell-Mann (1995) who
speaks of a CAS as an information processing system that “acquires information
about its environment and its own interaction with that environment, identifying
regularities in that information, condensing those regularities into a kind of ‘schema’
or model, and acting in the real world on the basis of that schema. In each case, there
are various competing schemata, and the results of the action in the real world
feedback to influence competition among those schemata” (Gell-Mann 1995: 117).

As Levy (1994) states, CAS can be found in a number of fields, including
ecology, medicine, international relations and economics. In each case there are
nonlinear and network feedback systems that handle information in a similar way.
Gell-Mann (1995), Stacey (1995), Beinhocker (1997) and Pascale (1999) assert that
the behaviour of CAS is at the root of the science of complexity. An illustration is
provided by Bonabeau and Meyer (2001) who cite the example of ant colonies. In
these colonies, interacting ants (agents) in an open-system are guided by simple
rules. On an individual level, the behaviour of the ants seems to be random and
unpredictable. However, on the macro-level, the collective behaviour that emerges
out of the interactions between the ants exhibits a distinct pattern, resulting in a
nonlinear growth of efficiency in the system—the ants’ behaviour is characterized by
flexibility, robustness and self-organization (Bonabeau and Meyer 2001). A similar
example is provided by Kupers (2000) who observes that a group of door-to-door
sales persons use random feedback loops to exchange information with each other on
how to increase sales (i.e. how to increase the efficiency of the system). These
feedback loops and exchanges of information lead to nonlinear and jumpy growth in
sales (i.e. nonlinear increases in the system’s efficiency). Thus, small causes of
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change can possibly have enormous effects on the outcome (the butterfly effect),
through the non-linear amplification from feedback loops. Even a simple feedback
system may result in (deterministic) chaos with an unpredictable outcome (Holbrook
2003). Anderson et al. (1999) suggests four elements that characterize [CAS] models
that have particularly interesting implications for organizational theorists.

— Agents with schemata: Anderson’s first element entails the idea that an orga-
nization’s higher-level outcomes are produced by a system of agents at a lower
level of aggregation such as individuals, groups or coalitions of groups. The
agents act according to a schema, i.e., a cognitive structure that determines what
action the agent takes at time #, given its perception of the environment at time
t (or at an earlier time, if theoretical considerations suggest applying a delay).
The schemata are often modelled as a set of rules, but they can also be repre-
sented by a neural network that consists of a set of connected nodes where a
signal from one node leads to a specific activation of the other. This under-
standing seems to be similar to Gell-Mann’s (1995) depiction of CAS processes.

— Self-organizing networks sustained by importing energy: The second key
element characterizing CAS is seen in the self-organization in such systems,
where pattern and regularity emerge without the intervention of a central con-
troller. There are three important notions behind the concept of
self-organization: First, self-organization is the natural result of nonlinear
interaction between simple agents. Nonlinear interaction in this context refers to
self-reinforcing feedback cycles that can lead to self-amplifying behaviours.
One condition for the existence of self-reinforcing feedback cycles is that
interaction takes place between a large numbers of components. However, there
is niether a lower boundary of interactions for self-organization nor also an
upper one. Second, if interaction takes place between too many organizational
actors, self-organization does not lead to pattern formation. In real human
systems, however, agents only act on information available in their immediate
environments: from those few agents connected to them in a feedback loop. And
third, self-organization only occurs in open systems such as human organiza-
tions when energy is imported from the outside. The pattern, or dissipative
structure, can only be sustained when the members contribute energy to make,
break or maintain their ties to others.

— Coevolution to the edge of chaos: The third element is represented in the
model of a “fitness landscape”. This is a metaphorical map of a mountain region,
where agents act to increase their payoff or fitness, i.e., their altitude (Epstein
and Axtell 1996). The landscape continually shifts because it is affected by the
agent’s actions. Also, the individual fitness functions of agents affect each other
as each individual trajectory is adjusted according to the successes of
its neighbours (Eberhart et al. 2001). In this sense, agents usually co-evolve at a
local level. The co-evolvement leads to a dynamic equilibrium in the system
which might be thought of as teetering on the edge of chaos (Beinhocker 1997).
Small changes in the actions or the behaviour of agents can have small, medium,
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or large impacts on the system as a whole. If the system is in chaos, i.e., beyond
the edge, then small changes in behaviour lead to widely different fitness levels,
systems can reach extraordinary fitness peaks, but cannot remain on them. The
slightest change in behaviour will send the system tumbling off its peak, perhaps
plunging into a region of very low fitness. On the other hand, if small changes in
behaviour lead only to small cascades of co-evolutionary change, the system’s
performance can never improve much.

— Recombination and system evolution: The fourth element is that every aspect
of a complex adaptive system—agents, their schemata, the nature and strength
of connections between them, and their fitness functions can change over time.
That is, new agents and new schemata can be introduced to the system, and ties
between agents emerge, break and are sometimes re-established. To model an
organization, it is important to consider that the relationship between variables
(or agents) is not fixed (as in traditional causal models).

2.2 Definition of Complexity

After this brief examination of the theoretical background of complexity research,
let us move our attention to practical side of things and concentrate on the man-
agement of complexity and the tools used. Research on the management of com-
plexity and complex systems is particularly considered in technological and natural
sciences (Bleicher 2004; Kastl and Schmid 2008). Since the 1960s, the social
sciences have repeatedly analysed the steering of complex systems within the field
of management theory (Malik 2008). In both the realms of scientific research and
society in general, there is still no uniform understanding and consensus on the
concept of complexity. Equally, it is not possible to find a consistent and
generally-accepted definition of complexity. Depending on the pursued research
goal or which method is applied, definitions and interpretations differ substantially
(Kirchhof 2003; Scherf 2003; Rall and Dallhofer 2004; Kersten et al. 2012).
Ulrich and Fluri (1992) define complexity in terms of situations that contain a
high diversity of influencing factors and numerous mutual interdependencies which
prevent structural decision-making. However, complexity must be distinguished
from complicated systems. The difference between complex and complicated issues
is determined by the degree of predominant uncertainty. Results in complicated
systems are predictable due to the linear behaviour of their variables (Simon 1962).
Casti (1994) determines complexity by means of specific criteria. Complex
systems do not possess a central control centre but rather consist of numerous,
communicating units. Furthermore, feedback relationships between variables and
delayed cause-and-effect are present within the complex system. The most promi-
nent feature, however, is the characteristic of irreducibility, i.e., the system as a
whole is greater than the sum of its parts and exhibits dynamic, emergent patterns.
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Klabunde (2003) describes complexity through the characteristics of variety,
connectivity and dynamics. Variety concerns the number and type of elements in a
system, whereas connectivity deals with the number and type of the relationships
between the variables. The characteristic “dynamic” captures the uncertainty and
unpredictability of complex systems (Denk and Pfneissl 2009; Schoeneberg 2010).

Groesser (2015a, b, ¢) and others create the distinction between simple, com-
plicated, complex, and hyper-complex (i.e., chaotic) systems. These four types of
systems can be divided into a four-field matrix representation (Fig. 1), which is
spanned by the system characteristics “variety/diversity” (y-axis) and the
“variability/momentum” (x-axis).

— A simple system is characterized by a low number of components, which are
not subject to variability themselves. An example is a simple process of pre-
determined steps in a production chain. In a simple system it is possible to
estimate the progression of effects since they are stable over time.

— A complicated system comprises many combinatorial possibilities that arise
due to the large number of components in the system and the array of possible
combination between them. This complexity is also referred to as ‘“detail
complexity” or “combinatorial complexity”. Everyday decisions are complex if
a large number of different elements have to be considered for decision-making.
One example is an antique church bell. The mechanical system is highly
complicated. However, in principle the stages of each element can be known,
moreover, how they interact is definable and thus limited. Moreover, the pro-
gression of these interactions is relatively stable.

— The defining characteristics of a complex system are its high variation in the
elements and their relationships in a system, i.e., their variability, momentum, or
behaviour. This leads to the concept known as “dynamic complexity”
(Richardson and Pugh 1981; Senge 1990) which is the ability of a system to be
able to develop into different states over time. For a complex system, it is still
possible to understand the interrelations and development ex-post. The amount

jg, Complicated System Hyper-complex System
T ¢ Large number of elements and relations  Large number of elements and a large
- * Few behavioural possibilites variety of relations
£ * Stable progression of effects * Many behavioural possibilites
o q . * Variabl ion of eff
g Detail complexity ariable progression of effects
[a)
% Simple System Complex System
5 ¢ Small number of elements and relations ¢ Small number of elements and relations
= * Few behavioural possibilites * Many behavioural possibilites
* Stable progression of effects * Variable progression of effects

2 q q
s Dynamic complexity

Low Variability / Momentum High

Fig. 1 System types from simple, to complicated, to complex (Ulrich and Probst 1991; Groesser
2015a, b, ¢)
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of variables and interconnections is moderate; the amount of interconnections
can be large.

— A hyper-complex (chaotic) system comprises of a large amount of different
variables which have a large number of interconnections. Understanding the
development of the system over time is not feasible due to the many interacting
and changing variables. From a management science perspective, it is only of
little use to try to detail the inner workings of such hyper-complex systems since
they cannot be inspected and clearly analysed or only with large estimation
errors.

Table 1 details the definition of simple, complicated and complex systems based
on the system’s characteristics: number of elements, similarity of the elements,
variability of the elements over time, the number of relationships and the con-
nectedness of the relations. The characteristics of hyper-complex systems are not
detailed here. They can be derived from the characteristics of complicated and
complex systems.

Complex systems, as defined in Fig. 1 and Table 1, can exhibit dynamic com-
plexity. Dynamic complexity is the label given to a system whose characteristics do
not follow direct and simple (i.e., linear) cause-effect relationships. Dynamic
complexity results from temporal interactions and interrelationships of system
elements. It is considered to be caused specifically by delays, feedback, accumu-
lations and nonlinearities. Dynamically complex situations are essentially not
transparent for a decision-maker. He or she has no means of intuitively detecting the
connection of circular causality and way of modelling and predicting them exactly.
The decision-maker must expect surprises, side effects and unintended effects of
decisions in different parts of the system.

Criteria for dynamic complexity: A system is dynamically complex if the
following, but not necessarily all, criteria are met:

Table 1 Comparison of simple, complicated, and complex systems

Characteristics Simple systems Complicated Complex systems
systems

Number of elements Few Large Moderate

Similarity of the Identical in all Partly or entirely Partly or entirely

elements characteristics different different

Variability of elements No No Yes

over time

Number of relationships | Few Moderate/large Large

Connectedness of Few Moderate/large Large

relations

Example Pendulum Car, engine Business ecosystem
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. Dynamic: The system develops or changes over time. What seems to be fixed,

varies over a longer time horizon.

Close connection of the system elements: The system elements or agents in
the system interact strongly with each other.

Feedback: Systems are controlled by feedback. This coupling between system
elements actions and events can react upon themselves.

Non-linearity: Non-linearity exists when at least one element in the system
interacts with another in a non-linear way. Non-linearity is graphically
expressed as a curved, e.g., exponential or quadratic line. In particular,
“non-linear” means that an effect is seldom proportional to its cause.

. Past dependent: Past dependent means that the decisions, which must be made

by an agent, depend on the decisions already taken in the past. Structure in any
system is the product of past actions (interactions).

Self-organizing: The dynamics of the system are formed by self-organization
and spontaneous consequence of its internal structure.

. Adaptive: Adaptive means that a system itself changes as a result of experi-

ence. Thus, the skills and decision rules of agents change in a complex system
over time.

Counterintuitive: Decision-makers cannot capture causes and their effects only
relying on intuition. The behaviour of the system is often against, i.e., counter,
the behaviour the decision-makers expect. This is because causal relationships
are often not sufficiently understood since it is often neglected that causes may
have different intended and unintended effects.

Intervention resistant: The complexity of the system, in which an agent is
embedded, overwhelms his or her ability to understand the system.
Consequently, implemented solutions often fail in a complex system or even
aggravate the situation. Interventions do not produce obvious (expected) effects
or even lead to unintended consequences.

Temporal balancing decisions (trade-offs): time delays result in a system in
which the long-term effects of an intervention are often different from the
short-term effects.

2.3 Short Overview of Some Tools for Managing

Complexity

After introducing the foundations of different types of complexity, I will now
briefly look at several tools from the field of complexity and systems theory which
have been developed to cope with the ever growing situations of complexity. We
will not concern ourselves with the methods of CCM and SD in this section since
they are introduced later in detail in dedicated subchapters.
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2.3.1 Soft System Modelling

SSM incorporates an interpretive perspective of social settings (Lane and Oliva
1998). With a focus on action-research, SSM practitioners do not attempt to
describe the real world, rather they use several models, i.e., ideal types, to explain a
problem from different perspectives. The ultimate goal is to gain insights and
changes by comparing ideal types with the real world problem. The models
themselves are represented by a mapping technique which results in “rich pictures”
of the problematic situation (Fig. 2).

2.3.2 Cybernetic Models

The cybernetic view of socio-technical systems is suitable for diagnosing and
de-signing organizations. Stafford Beer’s viable system model (Beer 1979, 1981)
is one of the most wide-ranging theories in this discipline (Fig. 3). Despite its
applicability to any human or social system, it has primarily been used to describe
the viability of organizations. An underlying proposition is that an organization is
only viable if it has a set of management functions and interrelationships as
specified by the theory (Schwaninger and Rios 2008). Differences between the
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Fig. 2 Rich picture as used in the SSM (Checkland 2001)
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elements and links of the real system and the elements and links as proposed by
the Viable System Model result in a possible threat to the viability of the

organization.
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2.3.3 Mental Models of Dynamic System

An anthropocentric approach focussing on humans’ ability to reason is the concept
behind mental models. It has been shown that humans’ ability to perform in
dynamic complex settings is limited and biased. Therefore, improved mental
models which account for accumulation processes, time delays, and feedback loops
are required (Groesser and Schaffernicht 2012). The mental model approach to
dynamic systems has been developed to elicit managerial cognitions about dynamic
situations to represent these cognitions, and to analyse the mental models with the
objective of improving decision-making. The most recent methods of elicitation and
comparison can be found in (Schaffernicht and Groesser 2011; Groesser and
Schaffernicht 2012; Schaffernicht and Groesser 2014).

2.3.4 Group Model Building

Group modelling is a process which is expected to adapt mental models and foster
the implementation of decisions (Rouwette et al. 2011). This process is based on
involving different actors, e.g., clients and experts, who provide particular knowl-
edge about contents or techniques (Vennix 1996). The goals of group model
building are versatile. By means of group model building, the individual and group
mental models can be aligned. This improves the clarity and efficiency between
different system actors.

3 Deep-Dive I: Causal Context Models

3.1 Purpose of Causal Context Models

This section provides details about CMM. A CCM is a qualitative word-and-arrow
diagram, i.e., a graphical representation that details the cause-and-effect relation-
ships between variables in a system. A CCM follows, in principle, the method of a
causal (loop) diagram (Richardson and Pugh 1981; Sterman 2000; Lane 2008;
Groesser 2016). It emphasizes the interdisciplinary interaction between techno-
logical, social, legal, and natural spheres when high-value IPSS, and other systems,
are managed (see chapter “The Challenge” of this book for the challenges of
upgrading and managing IPSS).

The objective of a CCM is to explain the behaviour of technical- and
business-level variables which are key to an organization’s objectives. In doing so,
a good model will reveal the network of influences that impinge on those variables.
Before one can start to use CCMs some prerequisites are helpful: (1) openness to a
new qualitative method, (2) thinking in variables and how they are interconnected,
(3) a mind-set open to crossing disciplinary boundaries to connect different fields of
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thought (e.g., engineering, informatics, and business). A CCM helps those involved
to evaluate the impact of changes to their business-level objectives and compare
various these scenarios using behaviour over time charts. To do this, the user
imagines changing the value of a relevant variable in the model and then traces the
consequences through the model to see if the desired and expected outcomes are
achieved. This is done in a qualitative, imaginative way of reasoning.

3.2 Elements of a Causal Context Model

A CMM consists of variables and directional causal links that have one of two
possible polarities. A link marked positive (+) indicates a positive causal relation
and a link marked negative (-) indicates a negative causal relation.

— A positive causal link (+) means the two variables, which are connected by this
causal link, change in the same direction. In other words, if the initial variable
decreases, the other variable also decreases. Similarly, if the variable, in which
the link starts, increases, the other variable increases as well.

— A negative causal link (—) means the two variables, which are connected by this
causal link, change in opposite directions. In other words, if the initial variable
increases, the other variable decreases and vice versa.

It is common for CCM to have closed chains of causal links known as feedback
loops (Sterman 2000). A feedback loop can either be reinforcing or balancing.

— A reinforcing feedback loop (R) is a closed causal chain in which the effect of a
variation in any variable propagates through the loop and returns to the variable
thus reinforcing the initial deviation. In other words, if a variable increases in a
reinforcing loop the effect through the cycle will return an increase to the same
variable and vice versa. An example of a reinforcing loop is the word of mouth
dynamics. In reaction to any questionable statement or activity of an organi-
zation, social media users can create huge waves of outrage within just a few
hours. These so-called online firestorms pose new challenges for marketing
communications—reinforcing feedback dynamics.

— A balancing feedback loop (B) is the closed causal chain in which the effect of a
variation in any variable propagates through the loop and returns to the variable
a deviation opposite to the initial one. In other words, if a variable increases in a
balancing loop the effect through the cycle will return a decrease to the same
variable and vice versa. An example of a balancing loop is the actions executed
by managers to prepare and avoid online firestorms, as described above. The
company’s capabilities are built-up until the management is satisfied. Then, no
further investments are executed. A balancing feedback loop leads to
goal-seeking dynamics of the respective system.
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A CCM explicates the assumptions and helps thereby to reveal how things are
connected to each other within a system. The example in Fig. 4 shows an example
of a CCM developed for an organization taking part in the UIW-project. The figure
should provide an indication of how a CCM looks; I do not intend to detail or
explain the CCM here. It shows the technical-level (e.g., total construction time or
number of vague regulations) and business-level objectives (e.g., return on
investment), scenario variables (e.g., number of future regulations issued or effec-
tiveness of future regulations), and feedback loops (B1 to B4).

In addition to the causal, structural model, a CCM requires that at least one
behaviour over time chart (also known as a BOT or a time chart) of an important
variable is developed. The variable has to be an element of the CCM (see Fig. 5).

3.3 Causal Context Model Development

CCMs are developed to create comprehensive causal maps, i.e., models that include
different perspectives on a challenge that needs to be managed. For instance, all
companies that participated in the UIW-project (see Part III of this book) estab-
lished CCMs that show the relationships between technical-level objectives and
business-level objectives. The CCM supports the definition of the problem to be
addressed as well as helping elaborate possible solutions. The generic process of
CCM development follows six steps:
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Fig. 4 Example of a causal context model
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Fig. 5 Example of a behaviour over time (BOT) chart

1.

Define the reference behaviour in technical-level objectives by means of
behaviour over time charts: the reference behaviour is the over time devel-
opment of an important technical variable, e.g., availability of relevant infor-
mation to project team. This variable shows problematic behaviour, e.g., that the
level of relevant information the team has access to does not conform to the
intended level. One, or ideally, several such reference modes in technical-level
variables should be defined. The tutorial https://www.youtube.com/watch?v=
ktKGrDds3No provides additional information about step 1.

. Define the reference behaviour in business-level objectives by means of

behaviour over time graphs: Then, perform step 1 now for business-level
objectives. Develop behaviour over time charts for variables that show
business-level objectives. Examples of such variables are market share, rev-
enues, customer satisfaction, or throughput time. The business-level objectives
are then: to have a higher market share, increased revenues, higher customer
satisfaction, or lower throughput time (see the charts in Fig. 4).

Develop the causal model: in order to develop a causal model the next step is to
connect the technical-level and business-level variables by means of causal
links. One will certainly have to include new variables about relevant aspects of
the system being modelled to create the causal paths between the different
variables. Only include variables and causal links that exist in the system. All
the relevant variables have to be included in the final model so as to sufficiently
explain the behaviour of the objective variables in steps 1 and 2.

Define scenario variables: After the causal model is completed, ensure that the
model includes important scenario variables. A scenario is a description of
possible external developments in the future. A scenario variable, e.g.,
requirements for energy efficiency, operationalizes these possible developments
by embedding these clearly in the causal model. Scenario variables assume
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different values, e.g., legal requirements for energy efficiency might be change.
The CCM helps the user to think about the following developments:

— If the scenario variable X increases (or decreases respectively), how will the
technical-level objectives develop?

— If the scenario variable X increases (or decreases respectively), how will the
business-level objectives develop?

5. Define policy variables: A policy is a set of basic principles and associated
guidelines, formulated and enforced by the governing body of an organization,
e.g., a decision maker, to direct and limit his or her actions in pursuit of
long-term goals. In other words, a policy is a decision rule that defines how
available information is used for decision making. One example is a hiring
policy: it guides the each (monthly, annual etc.) decision about how many
people should be hired. Polices are operationalized by policy variables which
are under the control of the decision maker. This step should ensure that the
relevant polices, i.e., measures a decision maker can influence, to achieve the
technical-level and business-level objectives are included in the CCM.

6. Continuously validate the model being created: Validation activities occurs
continuously during the model creation process. For more information on this,
see Groesser and Schwaninger (2012) who go through the modelling process
(both qualitative and quantitative) in more detail (see also Barlas 1996;
Forrester and Senge 1980; Schwaninger and Groesser 2009). The modeller has
to ensure that the resulting CCM only features variables and causal links with
polarities. Other concepts are not used in CCMs.

The process of developing a CCM is a learning process for the participating
organization. For each iteration, the CCMs are expanded with new variables, causal
relationships, scenario and policy variables. Discussions about different meanings
of specific variables as well as different causal relationships foster understanding
between participants and also nurture learning about the context in which the
decisions on the technical and business-level are made.

CCMs offer several benefits: first, different perspectives, e.g., economic, tech-
nical, and social aspects, can be integrated into one holistic model; second, CCMs
are statements about causes and consequences. Such a causal model becomes a tool
with which concrete actions to overcome challenges can be found. A CCM is,
however, a qualitative model. The next step of analysis would be do develop a
quantitative simulation model. The advantage of such a simulation model is that the
participants cannot only identify positive and negative effects, but also by how much
the changes can impact their technical-level objectives and their business-level
objectives. Furthermore, the rigor a simulation model requires leads to a more
intense and in-depth thought process regarding the different causalities and values as
well as the expansion of the model boundary. This is what I address next.
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4 Deep-Dive II: System Dynamics Simulation Modelling

4.1 Purpose of System Dynamics Modelling

System Dynamics (SD) is one of the most popular, widespread and validated
simulation (computational) methodology and cannot be overlooked when dis-
cussing decision making tools and complexity management. In this Sect. 1 will
briefly address SD simulation methodology and address in more detail how it can
be useful when managing real world complexity. The more curious reader will
benefit greatly from the references supplied here.

The basic idea of SD is to capture the underlying characteristics of complex
dynamic systems to understand them better and foster desirable developments
(Schwaninger and Rios 2008; Schwaninger and Groesser 2008). To capture all
these characteristics SD-models must represent nonlinearities, long-term patterns
and the internal structure of a system. This is technically achieved by mapping the
system’s stock- and-flow structure. Jay Forrester, the founder of SD, devised the
means of modelling any dynamic situation by means of stocks and flows. The
process of building an SD model is a continuous learning process consisting of
formulating hypotheses, testing, and revising formal and mental models. SD cap-
tures essential characteristics of management reality, for instance, nonlinear beha-
viours, accumulations, delays, and information feedback, which are not
systematically taken into account by existing methods (Sterman 2000; Schéneborn
2003; Morecroft 2007; Warren 2008). A computational modelling approach is most
helpful in providing insights about the type and magnitude of interaction in high
value asset system and allows an integrated evaluation and thereby complements
the existing methods in the analysis of such systems.

4.2 System Dynamics Modelling Process

When creating a System Dynamics model, a six step modelling development
process is used: (1) selection of the dynamic problem, (2) conceptualization,
(3) formulation, (4) scenario and policy analysis, (5) selection of policies and
implementation planning, and (6) implementation (Fig. 6).

4.2.1 Step 1: Selection of the Dynamic Problem

The first step of the modelling process is to identify the issue and the relevant
stakeholders. This enables modellers to identify from whom to draw expertise when
developing the model as well as from where to collect data in the latter stages of the
process. The development of a model will require the collaboration between the
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Fig. 6 Process for developing system dynamics simulation models

“problem owners” and modellers to produce a high-quality model. Initially, the
problem owners provide the essential information about the issue at hand and are
then involved in every iterative modelling step. It is essential that the problem
owners comprehend the basic functioning of the model and continuously validate
the output of the model. After getting an initial feel for the environment of the
model, the modeller formulates a dynamic hypothesis of the problem. This dynamic
hypothesis is founded on the information provided by the owners as well any
current theories which help to explain the problem.

4.2.2 Step 2: Conceptualization

After identifying and selecting the dynamic problem, the task is to decide upon a
provisional list of variables and a suitable time horizon for the model, from which
the necessary behaviour over time graphs (BOTs) can be generated. All this is done
based on data or the expectations of the relevant stakeholders. This stage should not
be considered as final since the modelling process is iterative and the modeller,
together with the stakeholders and problem owner, will revise these decisions
repeatedly until the model is completed. This iteration also includes repeated
feedback from the stakeholders to gain a better understanding of the model.



86 S.N. Grosser
4.2.3 Step 3: Formulation

Based on the available data resources (e.g., a previously generated Causal Context
Model (CCM)) and the identified problem, the modeller now defines what kind of
model is to be created. For some dynamic problems a qualitative model might
suffice, meaning the model can start out as Causal Loop Diagram (CLD). If a
quantified model is the goal, then a Stock- and Flow-Diagram (SFD) should be
considered more suitable. In the case of a quantified model, after translating the
variable list into a SFD, the modeller populates the variables with values to create a
first iteration of the simulation model. Initially the values and functions added to the
model can be guesses or estimates (or even guessimates!), as the modeller will
revise them for every iterative step and continuously increase their precision. Also,
continuously simulating the model will provide the modeller with insights for
further model development. Step 3 also enables the modeller to continuously test
their model BOTs by comparing it to the initially generated BOTSs, by testing the
robustness of the model and/or testing sensitivity.

4.2.4 Step 4: Scenario and Policy Analysis

Finally, when the modeller is satisfied that the model is of sufficient quality he or
she can start analysing and evaluating policies and scenarios. Scenarios are anal-
ysed by changing exogenous variables to simulate different developments in the
environment of the system. If for example the model depends on economic growth,
the modeller can evaluate the impact and the sensitivity of the system to an eco-
nomic slowdown or sudden increase in economic activity. The degree to which the
system changes as a result of that external change reveals the model’s sensitivity to
that exogenous variable. This allows the practitioner to analyse the likelihood of
any given situation to materialize under a certain set of external conditions. The
model also allows the efficacy of different responses to external changes in the
system to be tested. This gives the modeller the opportunity to select policies and
responses to optimize the resilience of the system in the face of external shocks.

4.2.5 Step 5: Selection of Policies and Planning of Implementation

After agreeing on the most important scenario settings and most effective policies,
the modeller applies these conditions to the model and discusses the results with the
stakeholders. The stakeholders can then evaluate and define the most effective way
to apply the policies in the system in question. With the insight gained from the
discussion of the model, the stakeholders can then implement actions necessary to
change the system in real life while already anticipating and validating whether the
measures achieve the desired effect.
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4.2.6 Step 6: Implementation

Implementing the planned changes and measures is in the responsibility of the
problem owner. Often it is helpful, when the simulation model and its results are
demonstrated to the people who are affected by the changes and measures. It is
especially productive to hold demonstration workshops during which the partici-
pants can experiment with the simulation model for themselves. These sessions will
often throw new light on the problem and provide fresh impetus to make any
necessary changes.

4.3 Applying System Dynamics

With regard to managing complexity, the following paragraphs describe five
advantages of SD simulation methodology as well as explaining some of its dis-
advantages. First, any tool for decision-making has to satisfy several criteria to
effectively deliver decision support. According to John D. C. Little (1970) these
criteria are simplicity, robustness, ease of control, adaptiveness, completeness on
important issues, and simplicity of communication. In close connection with the
decision maker, a computational modelling process begins with a simple model
structure and continuously improves in an evolutionary way using rapid proto-
typing. As a result, this process of elaboration and calibration creates a sufficient,
robust and purpose-oriented model. Furthermore, the involved decision makers
learn how to control the model during its execution. The unfolding model is per-
manently represented as a visual object to ensure transparent communication with
the target audience (Black and Andersen 2012; Nistelrooij et al. 2015).

Second, the approach can improve a company’s capabilities when analysing the
interdependencies in their business models in the face of external changes in the
environment. Since simulation approaches are capable of representing highly
complex situations and handling them in a reasonably simple way, it becomes
possible to address a higher degree of the dynamic complexity present in business
reality (Groesser and Schwaninger 2012). As a direct consequence of structuring
and linking knowledge about a business system, SD allows decision makers to take
decisions which are based on integrative qualitative and quantitative analysis.

Third, risks can be identified through sensitivity analysis of the feedback
dynamics in a simulation model. Risks are often identified in the following three
areas: firstly, balancing feedback loops that limit a desired growth or decay; sec-
ondly, reinforcing feedback loops that lead to undesired growth or decay; and
thirdly, external factors that exacerbate any of above two types of feedback loops.
Analysis of feedback dynamics can make some systemic risks apparent, which
otherwise might be too vague to attract notice. SD can be used to quantify risks
which are attributed to be most relevant (Rodrigues and Bowers 1996).

Fourth, SD emphasizes a continuous perspective (Sterman 2000). This per-
spective strives to look beyond single events to see the dynamic patterns underlying
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them in the short-, as well as, long-term. Then, by identifying those patterns,
simulations help to understand the causes of current issues and can support decision
makers in tackling them. Moreover, applying computational modelling supports the
validation of strategic initiatives and their effect on existing business models—just
as engineers test new technologies or products extensively in a laboratory before
their market launch. In particular, the ability to experiment with different scenarios
and strategic initiatives in a computational environment has the potential to reduce
erroneous management decisions and reveal overlooked factors and patterns that
could become relevant in the future (Groesser 2015a, b, c).

And finally, by amalgamating computational methods with existing business
modelling approaches SD provides an insightful, valid, relatively rapid, and inex-
pensive approach to business model analysis and design (Eden et al. 2000).
Moreover, from a perspective of consistency, it is known that humans cannot
deduce the behavioural consequences of a system with many interdependent ele-
ments (Miller 1956; Forrester 1961; Sterman et al. 2015). Computational modelling
is one of the means, amongst others, of reducing the issue that qualitative models
seem to be insufficient when systems are highly complex (Sterman 2000). Hence, it
enables a deep and integrated understanding of a system through the quantitative
exploration of systemic interdependencies.

Computational modelling of complex systems is a relatively innovative approach
for top management decision makers. Some disadvantages of this method relate to
the relative ease of linking variables together to quickly create large, highly com-
plex models. Some users may, however, be overwhelmed by this complexity if they
do not exercise a cautious approach to modelling (Groesser and Schwaninger
2012). The existence of user-friendly visual representations has, in some cases,
been a disservice by offering the false impression that modelling is always simple
and done quickly. In addition, inclusion of uncertain or only hypothesized feedback
loops may create complex model behaviour that may be difficult to track, falsify, or
validate. Moreover, the empirical evidence about the learning outcomes of com-
putational modelling and its effectiveness is still inconclusive (Karakul and
Qudrat-Ullah 2008; Sterman 2010; Qudrat-Ullah 2014). Consequently, it is not yet
possible to state that businesses applying computational modelling systematically
produce better results than those that do not use it and thus, the requirements of the
strong market test are not yet met (Labro and Tuomela 2003). At the same time, this
is a call for action to conduct more empirical research to prove (or disprove) the
case for computational simulation methods.

5 Conclusion

This chapter introduced the reader to systemic methods which are highly beneficial
in the analysis and management of complexity, especially in cases when managing
high value assets. The chapter introduced two methods in more detail: the quali-
tative method, CCM, and the quantitative method, SD, methodology. The chapter
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explained both methods and provided the reasoning for their applications as well as
discussing their potential benefits.
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