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1 Introduction

In this paper, we address the problem of building real functionals on frequency
distributions whose domain is a finite poset. The topic may seem very technical, but
it is deeply related to relevant open problems in socio-economic statistics. Consider,
for example, the measurement of inequality over multidimensional systems of ordi-
nal indicators. This issue, fundamental in a “beyond GDP” perspective, is usually
addressed by composing inequality measures over attributes into a single index,
through weighted averages. The problem with this approach is that the domain
of the joint frequency distribution (i.e., the collection of k-tuples of attribute
scores) is considered as an unstructured set, while it is in fact a partially ordered
set, whose order relation is the product order of the linear orders corresponding
to ordinal attributes. Inequality is conceptually linked to the way achievements
are distributed on a “low-high” axis so that the order structure, even if partial,
should enter into the computations. Starting from this observation, in this paper
we propose a general theory of functionals over finite posets, to provide a sound
formal basis for the construction of synthetic indicators in socio-economic sciences.
The basic idea of the paper can be introduced as follows. In the classical theory
of statistical indices, one is primarily interested in identifying a set of properties
assuring the index to capture the concept of interest and to behave in a way that is
logically consistent with it. For example, in monetary inequality measurement one
requires indices to increase if income is transferred from the “poor” to the “richer.”
Statistical indices are then seen as functions of the frequency distribution and their
properties are assessed in terms of their behavior under different distribution shapes
or transformations. The order structure of the domain of the statistical variables,
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usually R or N with their natural total order relation, does not come into play
explicitly, being trivial. But when the domain is multidimensional and different
partial order relations can be imposed on it, the role of the order structure becomes
essential and one must control for the way indices behave when the frequency
distribution is kept fixed, but the partial order relation changes. To pursue this
approach, it is natural to look at indices as scalar functions defined on the semilattice
of posets sharing the same ground set. Properties of functionals may then be
connected to algebraic properties of this “poset of posets,” leading to a simple and
coherent axiomatic theory. The paper is organized as follows. Section 2 provides
some basic definitions and sets the notation. Section 3 introduces some fundamental
results in the theory of means, namely the Nagumo–Kolmogorov theorem on quasi-
arithmetic means and their semigroup representation. Section 4 develops the theory
of functionals on finite posets. Section 5 discusses some simple examples. Section 6
concludes.

2 Notation and Basic Definitions

A partially ordered set (or a poset) � D .X; �/ is a set X (called the ground set)
equipped with a partial order relation �, i.e., with a binary relation satisfying the
properties of reflexivity, antisymmetry, and transitivity (Davey and Priestley, 2002;
Neggers and Kim, 1998; Schröder, 2002):

1. x � x for all x 2 X (reflexivity);
2. if x � y and y � x, then x D y, x; y 2 X (antisymmetry);
3. if x � y and y � z, then x � z, x; y; z 2 X (transitivity).

If x � y or y � x, then x and y are called comparable, otherwise they are said
incomparable (written x jj y). A partial order � where any two elements1 are
comparable is called a linear order or a complete order. A subset of mutually
comparable elements of a poset is called a chain. On the contrary, a subset of
mutually incomparable elements of a poset is called an antichain. Given x; y 2 � , y
is said to cover x (written x � y) if x � y and there is no other element z 2 � such
that x � z � y. An element x 2 � such that x � y implies x D y is called maximal;
if for each y 2 � it is y � x, then x is called (the) maximum or (the) greatest element
of � . An element x 2 � such that y � x implies x D y is instead called minimal; if
for each y 2 � it is x � y, then x is called (the) minimum or (the) least element of � .
Given x 2 � , the down-set of x (written #x) is the set of all the elements y 2 � such
that y � x. Dually, the up-set of x (written " x) is the set of all the elements y 2 �

such that x � y. Let � be a poset. If for every choice of x; y 2 � the intersection
of the down-sets of x and y has a maximum (written ^.x; y/ and called the meet

1For the sake of simplicity, in the following elements of X partially ordered by � will be referred
directly as elements of � .
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Fig. 1 Hasse diagram of a
poset ��

0 on five elements

of x and y), then � is called a meet-semilattice. Given two partially ordered sets
� D .X; ��/ and � D .X; �� / on the same set X, we say that � is an extension of
� , if x �� y in � implies x �� y in � . In other terms, � is an extension of � if it may
be obtained from the latter turning some incomparabilities into comparabilities. An
extension of � which is also a complete order is called a linear extension. The set
of linear extensions of a poset � is denoted by �.�/.

We now introduce another mathematical structure which plays a fundamental
role in the following discussion. Let �0 be a poset on a set X and let ….�0/ be the
family of all of the posets over X that are extensions of �0. ….�0/ can be turned
into a poset (Brualdi et al., 1994) (here called extension poset) defining the partial
order v as

�1 v �2 , �2 isanextensionof�1.�1; �2 2 ….�0//: (1)

Endowed with partial order v, the extension poset ….�0/ is a meet-semilattice
(Brualdi et al., 1994), with meet ^ given by intersection of order relations; its
minimum is �0 and its maximal elements are the linear extensions of �0.

Example. Figure 1 depicts the Hasse diagram of a poset ��
0 with five elements. The

extension poset ….��
0 / “generated” by ��

0 is depicted in Fig. 2. As it can be seen,
the linear extensions of ��

0 correspond to the maximal elements of ….��
0 /, while its

minimum is ��
0 itself.

3 Quasi-Arithmetic Means

In this section, we introduce the concept of aggregation system and focus on the
so-called quasi-arithmetic means, a kind of functionals2 which are characterized by
a set of properties crucial for indicators construction. After providing the formal
definitions, we give a particular and useful representation of this class of means,
drawing on the concept of semigroup. This semigroup representation is important,

2By the term “functional,” in this section we mean a function mapping a k-dimensional vector into
a real number.
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Fig. 2 Extension poset ….��

0 / of the poset ��

0 depicted in Fig. 1 (to improve readability, elements
of ….��

0 / have been inserted into ellipses)

in view of the axiomatic theory, since it characterizes the behavior of aggregation
functionals, when a sequence of nested partial aggregations is performed on their
arguments.

3.1 Aggregation Systems

Let x D .x1; : : : ; xk/ be a vector of k real numbers in Œ0; 1�, w D .w1; : : : ; wk/

a vector of k non-negative weights summing to 1, and g.�/ a continuous and
strictly monotone real function, from Œ0; 1� to R, called the generating function.
The weighted quasi-arithmetic mean (Beliakov et al., 2007; Grabisch et al., 2009)
Mg;k.�/ is defined as:
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Mg;k.xI w/ D g�1
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!
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where g�1.�/ is the inverse of function g.�/ which exists and is well-defined from
R to Œ0; 1�, since g.�/ is strictly monotone. Many well-known means belong to the
class of quasi-arithmetic means, namely the weighted power means MŒr�;k.�/:
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When w D .1=k; : : : ; 1=k/, the above formulas reduce to “classical” means (called
quasi-arithmetic means):
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What makes quasi-arithmetic means of particular relevance for our purposes is
that they contain the class of continuous, strictly monotone, and decomposable
functionals. To be formal, let us call aggregation system a collection F D
fF1.�/; F2.�/; F3.�/ : : :g of functionals with 1; 2; 3 : : : arguments, respectively, with
F1.x/ D x by convention. Then continuity, strict monotonicity, and decomposability
for F are defined as follows:

1. Continuity. An aggregation system F is continuous if each of its elements
Fk.�/ 2 F is continuous in each of its k arguments (k D 1; 2; : : :).

2. Strict monotonicity. Let x and y be two k-dimensional real vectors; a functional
Fk.�/ is strictly monotone if x < y in the product order over Rk implies Fk.x/ <

Fk.y/. An aggregation system F is strictly monotone if each of its elements is
strictly monotone.

3. Decomposability. An aggregation system F is decomposable if and only if for
all m; n D 1; 2; : : : and for all x 2 Œ0; 1�m and y 2 Œ0; 1�n:
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FmCn.x; y/ D FmCn.Fm.xm/; : : : ; Fm.xm/„ ƒ‚ …
m times

; y/: (8)

The last formula requires the value of functional FmCn.�/ to be obtained substituting
to the first m arguments their aggregated value Fm.�/, replicated m times. The
statement becomes clearer when specialized to arithmetic means. In this case, it
simply states that one can compute the average of m C n numbers substituting to
each of the first m the average of the first m numbers themselves.

According to the Nagumo–Kolmogorov theorem (Beliakov et al., 2007), an
aggregation system F D fFk.�/g (k D 1; 2; 3; : : :) is continuous, strictly monotone,
and decomposable if and only if there exists a monotone bijective function g.�/ W
Œ0; 1� ! Œ0; 1� such that for k > 1, Fk.�/ is a quasi-arithmetic mean Mg;k.�/.
A functional F is homogeneous if, for every real number c 2 Œ0; 1�, it is F.c � x/ D
c � F.x/; it can be proved that the only homogeneous quasi-arithmetic means are the
power means MŒr�;k.�/ (see again Beliakov et al. 2007). Finally, notice that quasi-
arithmetic means are symmetric, i.e., they are invariant under permutations of their
arguments. As a consequence, they satisfy the property of strong decomposability
(Grabisch et al., 2009), i.e., they are invariant under the aggregation of any subset
of (and not just of consecutive) arguments.

3.2 Semigroup Representation of Quasi-Arithmetic Means

In this paragraph, we show that quasi-arithmetic means can be computed by the
repeated application of a binary associative and commutative operation. This will be
useful when connecting the properties of functionals to the structure of the extension
poset. The presentation follows quite closely (Pursiainen, 2005).

Let F be an aggregation system. Assume its elements are symmetric (as defined
above) and suppose that, if vector x D .x1; : : : ; xm/ is partitioned into k subvectors
x.1/; : : : ; x.k/, of length n1; : : : ; nk, respectively, it holds:

Fm.x/ D Fk
�
Fn1 .x.1//; : : : ; Fnk .x.k//

�
(9)

(i.e., suppose that aggregation can be performed “aggregating partial aggregations”).
An aggregation system satisfying (9) will be called consistentinaggregation. An
important special case of the above formula is the following:

Fm.x1; : : : ; xm/ D F2 .Fm�1.x1; : : : ; xm�1/; xm/ ; (10)

which means that vector x can be aggregated in “two steps,” the first of which
aggregates m � 1 components. Using this formula repeatedly, one can reduce Fm.�/
to a nested sequence of applications of F2.�/; for example:

F4.x1; x2; x3; x4/ D F2 .F3.x1; x2; x3/; x4/ D F2 .F2.F2.x1; x2/; x3/; x4/ : (11)
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One thus sees that F2.�; �/ determines the entire aggregation system F. Thanks to
symmetry, F2.x1; x2/ D F.x2; x1/ and also F2 .F2.x1; x2/; x3/ D F2 .x1; F2.x2; x3//,
i.e., F2.�; �/ is commutative and associative. Thus F2.�; �/ is a commutative semigroup
operation and F is a commutative semigroup, generated by F2.�; �/. Denoting F2.�; �/
as ıF, we can write formula (11) in the following clearer way:

F4.x1; x2; x3; x4/ D .x1 ıF x2/ ıF x3/ ıF x4 D x1 ıF x2 ıF x3 ıF x4; (12)

where the second equality comes from associativity of ıF.
For our purposes, what is interesting is that weighted quasi-arithmetic means,

and power means in particular, are consistent in aggregation and are generated by a
suitable choice of F2.�; �/. To show this, some notation must be introduced first. Let
x1 and x2 be the numbers we want to aggregate, using a weighted quasi-arithmetic
mean with weights w1 and w2. Put x1 D .x1; w1/ and x2 D .x2; w2/; then the
following binary operation ıg generates Mg;k.�/:

x1 ıg x2 D
�

g�1

�
w1g.x1/ C w2g.x2/

w1 C w2

�
I w1 C w2

�
(13)

Specializing this formula to g.�/ D id.�/ (identity function) we get the generating
operator for the weighted arithmetic mean:

x1 ıid x2 D
�

w1x1 C w2x2

w1 C w2

I w1 C w2

�
: (14)

Applying recursively this formula to a set of numbers x1; : : : ; xm, starting with w1 D
w2 D 1, gives the simple arithmetic mean (Pursiainen, 2005).

Remark. Notice that to represent weighted and unweighted quasi-arithmetic means
in semigroup terms, it has been necessary to jointly state the update formula for both
the values and the weights, so as that each step of the recursion carries over all of
the information needed for the next nested application of the semigroup operation.

4 Building Functionals Over Finite Posets

Let us consider a finite poset �0 and a distribution p of relative frequencies defined
on it. Let ….�0/ be the extension poset generated by �0, let � 2 ….�0/ be an
extension of �0, and let F.�; p/ be a functional evaluated on the distribution p
over � . From a statistical point of view, when � is a linear order �, F.�; p/ can
be interpreted as a unidimensional index, in that F.�/ applies on a unidimensional
poset, which can be seen simply as an ordinal attribute. Properties of F.�; p/,
as the distribution p changes, determine the nature of the functional. We do not
address these aspects here, since they pertain to the proper field of the axiomatic
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theory of univariate statistical indexes. Instead, we focus on the properties of
F.�; p/ as the poset � changes in ….�0/, while the distribution p is kept fixed.
More specifically, we ask ourselves whether F.�; p/ can be assigned to elements
of ….�0/ “freely,” or whether the algebraic structure of the poset of posets
imposes consistency constraints on such assignments. This question has two main
motivations. The first is of a formal and technical nature. In order to develop a
satisfactory theory of functionals, we need to link their properties to those of the
“context” they act upon. Given that here we are dealing with the poset of posets,
the only properties that can be considered pertain to extensions and, as it will
be seen below, intersections of posets. The second motivation is of an applied
nature. In the social sciences, posets may arise from evaluation and comparison
processes and may reflect different systems of social values, against which social
facts are assessed through some indicators (see, for example, Fattore 2016). In this
respect, poset structure is an input to the evaluation process and the behavior of a
statistical index as such a structure changes must be taken into account, to assess
its effectiveness as a measurement tool. To work out the consistency constraints to
be imposed on functionals, some preliminary definitions and technical results must
be discussed. They are of a poset theoretical nature and pertain to the properties
and the structure of particular subfamilies of elements of the extension poset. The
role of the frequency distribution is left aside, until it comes back into play when
defining specific statistical indicators, as we do in Sect. 5, in connection to social
polarization.

4.1 Non-overlapping Generating Families of Posets

We begin introducing useful ways to represent posets as the intersection of other
posets.

Definition. A collection of posets �1; : : : ; �k 2 ….�0/ will be called a generating
family for �0, if �0 D ^.�1; : : : ; �k/, i.e., if �0 D �1 \ : : : \ �k.

Examples of generating families for poset ��
0 of Fig. 1 are reported in Fig. 3.

A generating family f�1; : : : ; �kg for �0 is called non-overlapping if the sets
�.�i/ of linear extensions of its elements are disjoint, i.e., if

k\
iD1

�.�i/ D ; (15)

(for the sake of clarity, we stress that in the above formula, we are not taking
the intersection of different linear extensions, but of different families of linear
extensions, i.e., we are imposing to these families to have no linear extension in
common). A generating family is called complete if the union of the sets of linear
extensions of its elements equals the set of linear extensions of �0, i.e., if:

k[
iD1

�.�i/ D �.�0/: (16)



Functionals and Synthetic Indicators Over Finite Posets 79

Fig. 3 Examples of generating families for poset ��

0 of Fig. 1

Definition. A generating family which satisfies both condition (15) and condi-
tion (16) is called a non-overlapping complete (NOC) generating family for �0.

Given a poset �0, at least one NOC generating family exists, namely the set
�.�0/ of its linear extensions. Other examples of NOC generating families for poset
��

0 of Fig. 1 are reported in Fig. 3 (panels A, B and C). NOC generating families
have some simple but relevant properties, summarized in the following proposition:

Proposition. Let G D f�1; : : : ; �kg be an NOC generating family for �0. (A) Sets
�.�1/; : : : ; �.�k/ provide a partition of �.�0/. (B) For a fixed index h (1 � h � k),
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let Gh D f�h1
; : : : ; �hs

g be an NOC generating family for �h; then Gnf�hg [ Gh is
an NOC generating family for �0.

Proof. (A) This is just a restatement of (15) and (16). (B) That Gnf�hg [ Gh is a
generating family for �0 is evident. Since G and Gh are NOC families, the collection
f�.�i/g .�i 2 G/ is a partition of � and f�.�j/g .�j 2 Gh/ is a partition of �.�h/.
Consequently,

S
�2Gn�h[Gh

�.�/ is a partition of �.�0/. Thus Gnf�hg [ Gh is an
NOC generating family for �0.

q.e.d.

In practice, property (B) states that if an element of an NOC generating family
for �0 is substituted by one among its own NOC generating families, the resulting
collection of posets is again an NOC generating family for �0.

4.2 Axiomatic Properties of Functionals on ….�0/

In this paragraph, we specify the properties we want functionals on posets to satisfy,
in order to provide useful aggregation tools for statistical indicator construction. At
the heart of the axiomatic system, there is the consistency between the behavior of
functionals and the nested structure of NOC generating families, that will lead to
quasi-arithmetic means.

Let '.�0; p/ be a functional (e.g., a statistical index) over a distribution p of
relative frequencies defined on a poset �0 (since here we are interested in the
behavior of '.�0; p/ as the poset changes, p being fixed, we drop the second
argument and write simply '.�0/; this should not produce any confusion). Since
�0 may be reconstructed from its generating families, it is natural to assume '.�0/

to be expressible as a function of the values of '.�/ on the elements of such families.
In other words, once '.�/ is assigned on a generating family for �0, its value on �0

itself should be univocally given. Formulated this way, however, this statement is not
really useful. To see why, consider again Fig. 2 and notice that f��

9 ; ��
13g, f��

10:��
12g,

and f��
9 ; ��

10; ��
12:��

13g are generating families for ��
0 ; thus, two functions F2.�/ and

F4.�/ (subscripts stand for the number of arguments) should exist such that one could
equivalently write:

'.��
0 / D F2.'.��

9 /; '.��
13//

'.��
0 / D F4.'.��

9 /; '.��
10/; '.��

12/; '.��
13// (17)

'.��
0 / D F2.'.��

10/; '.��
12//:
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As a consequence

F2.'.��
9 /; '.��

13// D F4.'.��
9 /; '.��

10/; '.��
12/; '.��

13// D F2.'.��
10/; '.��

12//

(18)

so that, on the one hand, F4.�/ should be independent of '.��
10/ and '.��

12/ (first
equality) and, on the other hand, it should be independent of '.��

9 / and '.��
13/

(second equality). In practice, F4.�/ and F2.�/ should be constant functions, leading
to a trivial theory. These problems arise since any subset of ….�0/ comprising a
generating family is a generating family itself. To overcome them, we still require
'.�0/ to be a function of the values of '.�/ on other posets, but restricting them
to elements of NOC generating families for �0. Formally, given two NOC families
f�1; : : : ; �kg and f�1; : : : ; �mg, we require that an aggregation family F exists such
that:

'.�0/ D Fk.'.�1/; : : : ; '.�k// D Fm.'.�1/; : : : ; '.�m// (19)

where Fk.�/; Fm.�/ 2 F. This invariance property has two main consequences:

1. '.�0/ can be computed as a function of the values of '.�/ on the linear extensions
of �0. In fact, �.�0/ is an NOC family and thus one can set:

'.�0/ D F!.'.�1/; : : : ; '.�!// (20)

where �1; : : : ; �! are the linear extensions of �0.
2. Fk.�/ behaves in a consistent way, when an element of an NOC family is replaced

by one of its NOC families. To see this, suppose f�1; �2g is an NOC family for
�0 and let f�1; : : : ; �mg be an NOC family for �1. Since then f�1; : : : ; �m; �2g is
an NOC family for �0, the “invariance” principle requires that:

'.�0/ D F2.'.�1/; '.�2// D FmC1.'.�1/; : : : ; '.�m/; '.�2//: (21)

Similarly, it must be

'.�1/ D Fm.'.�1/; : : : ; '.�m// (22)

so that

'.�0/ D F2.Fm.'.�1/; : : : ; '.�m//; '.�2//: (23)

The above equalities lead to

F2.Fm.'.�1/; : : : ; '.�s//; '.�2// D FmC1.'.�1/; : : : ; '.�s/; '.�2// (24)

which is essentially a “consistency in aggregation” requirement on nested NOC
generating families.
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The first property links functionals over general finite posets to functionals over
the simplest kind of posets, i.e., linear orders [so justifying the use of the concept
of linear extensions in many theoretical and applied studies (see, for example,
Bruggemann and Annoni 2014 and Fattore 2016)]. The second property resembles
formula (10), which expresses the semigroup nature of consistent-in-aggregation
functionals.

In addition to the above properties, we require the aggregation system F to
be continuous and monotone (see Sect. 3). The first is a technical, but natural,
requirement; the second is a natural condition too, in view of application to
statistical indicator construction: suppose that the value of the statistical indicator
of interest grows on each linear extension of �0 (for example, since the underlying
frequency distribution changes in a specific way), then we want it to increase on
�0 as well. According to the discussion of Sect. 3, the most natural candidate
aggregation system for frequency distributions on finite posets is thus the class
of quasi-arithmetic means. Since in applications to statistical indicators it is also
customary to impose homogeneity to aggregation functions, we finally restrict the
class of functionals to power means.

According to the semigroup representation of quasi-arithmetic means (and hence
of power means), it is easy to state how to compute F.�0/, given an NOC generating
family. To be simple, let f�1; �2g be an NOC family and let �1 D �.�1/ and
�2 D �.�2/ be the corresponding sets of linear extensions. Since f�1; �2g is an
NOC family, it is �1 \ �2 D ; and � D �.�0/ D �1 [ �2. Then '.�0/ is simply
the power mean of '.�1/ and '.�2/, with weights given by the relative cardinality
of �1 and �2:

'.�0/ D MŒ2�Iw
�

'.�1/; '.�2/I
� j�1j

j�j ;
j�2j
j�j

��
: (25)

This formula can be directly extended to NOC families with more than two
elements. In particular, for the NOC family composed of the linear extensions of
�0, it reduces to a non-weighted power mean of the values of the functional '.�/ on
the linear extensions themselves.

Final remark. The above discussion may be informally summarized as follows: to
be consistent with the meet-semilattice structure of the extension poset, functionals
over ….�0/ are required to be invariant and consistent in aggregation with respect
to NOC families. As a consequence, once functionals are assigned to maximal
elements of ….�0/ (i.e., to the linear extensions of �0), they can be extended to
any poset in ….�0/, through a power mean MŒk�;w.�/. The axiomatic theory cannot
impose any constraint on the properties of functionals on linear extensions (in view
of statistical indicators construction, these “intrinsic” properties depend upon the
nature of the univariate index corresponding to the functional and upon the way it



Functionals and Synthetic Indicators Over Finite Posets 83

“reacts” to changes in the frequency distribution). It can only give prescriptions on
the “structural” properties of the aggregation system F, for the extension process to
be consistent with the algebraic structure of ….�0/.3

5 Application to Synthetic Index Construction: An Example

For exemplificative purposes, in this section, we apply the extension procedure to the
construction of bi-polarization4 indices (Wolfson, 1994) on ….��

0 / (see Fig. 2) for
different frequency distributions. We must first introduce a univariate bi-polarization
index, to “start” the process. Let p D .pa1

; : : : ; pam
/ be a distribution of relative

frequencies on a linear order a1 < a2 < � � � < am. The following functional (Berry
and Mielke, 1992):

L.pi/ D 2

m � 1

mX
iD1

mX
jD1

pai
paj

jr.ai/ � r.aj/j (26)

(where r.x/ stands for the rank5 of x) is called the Leti index (Leti, 1983) and
can be interpreted as a normalized measure of bi-polarization on ordinal attributes.
We consider six different frequency distributions on ��

0 , to analyze the behavior of
the functionals in different cases. As often in statistics, here we aggregate through
arithmetic means. Frequency distributions are reported in Table 1. We denote by
L.��

j ; pi/, where i D 1; : : : ; 6, j D 0; : : : ; 13, the Leti functional “extended” to
poset ��

j and computed on the frequency distribution pi, i.e., the functional on poset
��

j derived by L.pi/. Formally:

L.��
j ; pi/ D 1

j�.��
j /j

X
�2�.��

j /

L.�; pi/ (27)

where L.�; pi/ is the unidimensional Leti index defined in (26), specialized to the
linear order corresponding to linear extension �. Table 2 reports the values of the
extended Leti functionals in the various cases. Reading the table by rows, one
can see how inequality changes as poset structure changes, while the frequency

3This means, the other way around, that the axiomatic theory presented above imposes constraints
on the way scalar values can be assigned to elements of ….�0/.
4The term “bi-polarization” originally refers to economic variables and attributes that tend to be
concentrated on low and high values. Bi-polarization corresponds to the “vanishing of the middle
class” phenomenon, typical of the so-called developed countries, in the last decades.
5The rank of an element x in a linear order ` equals 1 plus the number of elements below x in `. In
the linear order a1 < a2 < � � � < am, the rank of ai equals i and expression (26) coincides with the
original formulation, given in Berry and Mielke (1992).
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Table 1 Frequency
distributions over the poset
��

0 depicted in Fig. 1

a b c d e

p1 0:2 0:2 0:2 0.2 0:2

p2 0:3 0:0 0:4 0.0 0:3

p3 0:5 0:0 0:0 0.0 0:5

p4 0:0 0:3 0:0 0.4 0:3

p5 0:0 0:5 0:0 0.0 0:5

p6 0:0 0:3 0:5 0.2 0:0

Table 2 Extended Leti
functionals over ….��

0 / for
the six distributions of Table 1

��

0 ��

1 ��

2 ��

3 ��

4 ��

5 ��

6

p1 0:800 0:800 0:800 0:800 0:800 0:800 0:800

p2 0:756 0:840 0:770 0:735 0:840 0:840 0:735

p3 0:900 1:000 0:917 0:875 1:000 1:000 0:875

p4 0:672 0:560 0:630 0:735 0:525 0:630 0:735

p5 0:800 0:666 0:750 0:875 0:625 0:750 0:875

p6 0:498 0:413 0:453 0:520 0:390 0:415 0:565

��

7 ��

8 ��

9 ��

10 ��

11 ��

12 ��

13

p1 0:800 0:800 0:800 0:800 0:800 0:800 0:800

p2 0:735 0:630 0:840 0:840 0:840 0:630 0:630

p3 0:875 0:750 1:000 1:000 1:000 0:750 0:750

p4 0:735 0:840 0:420 0:630 0:630 0:840 0:840

p5 0:875 1:000 0:500 0:750 0:750 1:000 1:000

p6 0:475 0:625 0:410 0:460 0:370 0:580 0:670

Fig. 4 Evaluation of the extended Leti index, for a generic frequency distribution, based on the
NOC family of the linear extensions

distribution is kept fixed; reading it by columns, one sees how the index changes
when the frequency distribution changes on the same poset. Values associated
with the various posets satisfy the consistency-in-aggregation constraint. To help
grasping this, Figs. 4 and 5 report “symbolically” the computation of the extended
Leti index on ��

0 , for different NOC families (shaded Hasse diagrams stand for the
evaluation of the Leti index on the corresponding poset, i.e., they represent scalars).
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Fig. 5 Evaluation of the extended Leti index, for a generic frequency distribution, based on the
NOC families reported in Fig. 3

6 Conclusion

In this paper, we have developed an axiomatic theory of continuous, monotone, and
consistent-in-aggregation functionals on frequency distributions defined on finite
posets, as a step towards a general theory for the construction of synthetic indicators
over multidimensional systems of ordinal attributes. In concrete applications to
socio-economic measurement, the formal setting outlined before must be integrated
with the axiomatics of specific classes of indicators, since what specifies a particular
functional as an inequality, a polarization, or a variability index (to make a few
examples) lays outside the general theory here proposed. This, in fact, may be seen
as a “trick” to extend to partially ordered sets univariate indicators, i.e., indicators
defined on linear orders. This “device” has been exemplified in the case of the Leti
bi-polarization index, but it may be applied to any kind of indicator and may be
seen as a general procedure to produce well-behaved “multidimensional versions”
of univariate indices. The advantage of this approach over classical attempts to get
multidimensional generalizations of univariate measures is that the axiomatic setting
is neat and general and does not involve any attempt to generalize “core” axioms,
which are “context specific.” A prototypical example of this situation concerns
again the measurement of bi-polarization. While it is clear how to (partially) order
univariate distributions in terms of bi-polarization (Allison-Foster criterion), it is not
clear how to do this neatly in the multidimensional case. Correspondingly, while
an axiom of “monotonicity” can be easily and unambiguously stated for univariate
polarization indices, the same is not true for the corresponding multidimensional
versions. These problems are circumvented when one imposes the index to behave
consistently under changes in the order structure of the domain of the frequency
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distributions. The resulting multidimensional index is coherent as a bi-polarization
index since (1) on linear orders it behaves as expected and (2) on multidimensional
posets it behaves consistently with changes of the partial order structure. As usual
when dealing with finite posets, computations may be difficult due to the huge
number of linear extensions. The problem is well known and can be addressed using
sampling procedures (Bubley and Dyer, 1999) to estimate the values of statistical
indicators, rather than to compute them exactly. However, the primary interest of the
paper is of a theoretical kind, so we have not considered this issue here.
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