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Applications to Air Traffic Management
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16.1 Introduction

Air traffic management (ATM) is an endless source of challenging optimization
problems. Before discussing applications of metaheuristics to these problems, let us
describe an ATM system in a few words, so that readers who are not familiar with such
systems can understand the problems being addressed in this chapter. Between the
moment passengers board an aircraft and the moment they arrive at their destination,
a flight goes through several phases: pushback at the gate, taxiing between the gate
and the runway threshold, takeoff and initial climb following a Standard instrument
departure (SID) procedure, cruise, final descent following a standard terminal arrival
route (STAR), landing on the runway, and taxiing to the gate. During each phase, the
flight is handled by several air traffic control organizations: airport ground control,
approach and terminal control, and en-route control. These control organizations
provide services that ensure safe and efficient conduct of flights, from departure to
arrival.

These services are provided by human operators. In order to share the tasks among
several operators, the airspace is divided into several airspace sectors, each monitored
by one or two air traffic controllers. Within this sectorized airspace, aircraft fly on a
network of predefined routes, occasionally deviating from their route when instructed
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so by a controller, in order to avoid collisions with other aircraft. The design of the
route network and sector boundaries must satisfy contradicting objectives: each flight
should follow the most direct route from origin to destination; however, the overall
traffic must be organized so as to be manageable by human controllers. The latter
objective requires, for example, that each sector contains only a relatively small
number of crossing points between routes, so that controllers can have a clear mental
picture of the traffic of which they are in charge. In addition, there should be enough
room around each crossing point to allow for lateral maneuvering of conflicting
aircraft. As we shall see in this chapter, airspace sectorization and route network
design are themselves challenging optimization problems that can be formulated
and addressed in many different ways.

The smooth and efficient operation of an ATM system relies on an efficient orga-
nization of the system that is subject to many constraints. Large portions of airspace
are the responsibility of various managerial units (air traffic control centers). The air
traffic controllers working in these centers are trained and qualified to work in spe-
cific geographic areas. Consequently, airspace sectors are grouped by qualification
zones, also called functional airspace blocks in this chapter. The staff operating a
given functional airspace block follow a duty roster where several teams relays with
each other to provide air navigation services to airspace users 24 hours a day, 7 days
a week, all year long. In a control room, a controllers’ working position can han-
dle one or several airspace sectors belonging to the same functional airspace block.
Several questions arise concerning the optimization of the ATM system regarding
these organizational and operational issues. At the strategic level, how can the func-
tional airspace blocks be optimized in order to balance the workload and minimize
coordination? In daily operations, how does one allocate sectors to controllers’ work-
ing positions in order to optimally balance the workload among the open working
positions, while preventing overloads?

It is not always possible to avoid overloads only by reassigning airspace sectors to
different working positions. One must sometimes enforce traffic regulation measures,
for example, by rerouting some flights, or by allocating takeoff slots to departing
flights. These measures smooth the traffic demand, so that it does not exceed the
capacity of the ATM system to handle this traffic. The resulting slot allocation and
flight rerouting problems are challenging constrained optimization problems of large
size that must be addressed on a continental scale.

The core of the air traffic controllers’ activity is to facilitate the flow of traffic
through the sectors that they are responsible for, while avoiding collisions between
aircraft. To satisfy this essential safety constraint, they must resolve conflicts between
trajectories. Such conflicts may occur at any time during a flight, during taxiing,
takeoff, climb, cruise, descent, or landing. The underlying constrained optimization
problem is to minimize the deviations from the nominal trajectories while main-
taining horizontal and vertical separations between conflicting aircraft. Conflicts
related to runway occupancy can only be resolved by optimizing the landing and
takeoff sequences. When aircraft are taxiing, conflict resolution can be achieved by
choosing different paths or by making aircraft wait on some taxiways. An additional
constraint may then occur: some flights must respect their takeoff slots. For airborne
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aircraft, the air traffic controller can order pilots to make different types of maneu-
vers: horizontal deviations, vertical maneuvers, a modified rate of climb or descent,
or speed adjustments.

In this quick description of an ATM system, several optimization problems have
been introduced. These problems are complex and not always easy to formulate
explicitly for the actors, in the system, for several reasons. First, all these problems
are related to one another, and ideally they should all be answered at once. For exam-
ple, one can avoid airspace congestion by smoothing the traffic (e.g., by delaying
departing flights), but one can also address this by dynamically reassigning airspace
sectors to working positions or by addressing both problems simultaneously. This
gives us three different formulations for the same general problem (airspace conges-
tion). Second, ATM relies on complex systems involving many actors from different
domains, operating with different temporal horizons. Airlines, air navigation service
providers, and airports conduct different activities in the short, medium, and long
term. Finally, these activities are subject to many uncertainties: predicting an aircraft
trajectory is difficult because of errors generated by uncertainties in the weather,
the pilot’s intentions, and aircraft parameters. Before departure, missing luggage or
passengers can generate unexpected delays in takeoffs. Dealing with uncertainties
requires complex models that must be robust and reactive.

Modeling ATM problems is a difficult task in this context: if the model is too sim-
ple, it cannot handle realistic hypotheses; if it is too complex, it becomes impossible
to optimize. Furthermore, when problems are correctly modeled, they are often hard
to solve by exact methods, because of their huge size.

For all these reasons, metaheuristics are generally good candidates for answering
many ATM optimization problems. We will see with some examples that they can
sometimes be less efficient than exact methods, and with some other examples that
they are the best methods known.

In this chapter, we present several examples of applications grouped by theme:
route network optimization, airspace optimization, takeoff slot allocation, airport
traffic optimization, and en-route conflict resolution. For each example, we give
details of the model chosen, explain the complexity of the problem, describe the
metaheuristics used, and present alternative methods when they exist.

16.2 Air Route Network Optimization

The air route network, as it exists today, is the result of successive modifications
that have been made over time, taking into account some geographic and technical
constraints. In the recent past, every air route was defined as a sequence of segments
starting and ending at waypoints, which had to be located at the geographic coordi-
nates of ground-based radionavigation aids. This is not the case anymore, as modern
navigation systems can handle waypoints located almost anywhere. However, there
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remain other constraints on the positioning of the nodes of the network.1 Typically,
the crossing point of two intersecting routes should not be too close to a sector bound-
ary, so that there is enough room for lateral maneuvers in the vicinity of this crossing
point.

The continuous increase in overall traffic since the beginning of commercial avi-
ation has often led people to rethink and redesign the route network, on a local or
global scale, and even to propose new concepts for the operation of air routes and
airspace sectors. An example of such a new concept, which has been proposed several
times for air traffic but has not been implemented yet, is to define 3D routes dedicated
to the most important traffic flows. This concept is similar to that of highways for
ground traffic that accommodate flows of car traffic between large cities.

Optimizing the air route network is a problem that can be formulated and addressed
in several ways. Let us list a few of them:

• Node and edge positioning. The route network can be seen as a planar graph in
dimension 2 in which the edges must not cross.

• Node positioning only. Starting from an initial network (e.g., a regular grid), one
can move the nodes in order to optimize a given criterion related to the routing of
the traffic flow, while maintaining the planar property of the graph.

• Optimal positioning of 2D routes for the largest traffic flows.
• In dimension 3, optimal placement of separated “3D tubes” for the largest origin–

destination flows.

16.2.1 Optimal Positioning of Nodes and Edges Using
Geometric Algorithms

In current operations, air traffic controllers resolve conflicts occurring within the
airspace volumes (sectors) of which they are in charge. The airways followed by
aircraft must take this sectorization constraint into account: crossing points should
not be near sector boundaries, and there must be enough space around each crossing
point to allow for lateral maneuvers. In addition, the network must be designed so
as to minimize trajectory lengthening when compared with the direct routes. Ideally,
large traffic flows should be deviated less from their direct routes than small flows.

The horizontal projection of an air route network can be seen as a planar graph
whose nodes are the intersections between the routes, and whose edges are route
segments between crossing points. The objective, when building such a network, is
to position the nodes and edges so as to satisfy a constraint on the distances between
nodes while minimizing the trajectory lengthenings for aircraft flying on the network.

The method to address this problem that we are now going to present is not a
metaheuristic. It consists in applying first a clustering method to the crossing points

1The waypoints are considered here as the nodes of the air route network. Note that a dual repre-
sentation, where route segments are nodes and waypoints are edges, is also possible.
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between direct routes, and then a geometric triangulation algorithm to build route
segments joining the barycenters of the clusters. This method was introduced by
Mehadhebi [72] (see also [42], (in French) for the application of a similar method).
It is not aimed at finding a global optimum for the positioning problem. However,
the method can build a network satisfying the node separation constraint, and the
solutions are of good quality, by construction, because the method is applied to an
initial situation where the routes are direct, from origin to destination. As such, this
method could be used as a baseline in future work for trying to apply metaheuristics
to the node and edge positioning problem. This is why it is worth mentioning here.

The aim of the clustering method is to position the nodes of the network taking
account of the traffic demand, so that they satisfy a minimum separation distance
between nodes. For this purpose, the crossing points between direct routes are first
computed, using for example a sweep line geometric algorithm. Then, the crossing
points are clustered according to proximity criteria, so that the barycenters of the
clusters are at least a distance d1 apart, and the points that are closer to a barycenter
than a distance d2 belong to the corresponding cluster. Typically, a variant of the
k-means method can be used to compute the clusters. In computing the barycenter,
weights related to the traffic flows passing through the crossing points can be used.
Such a weighting of the crossing points avoids moving crossing points with heavy
traffic too much. Figures 16.1 and 16.2 illustrate this clustering process applied to
French airspace.

Once the network nodes have been computed, the edges are positioned so that
they do not cross (otherwise the graph would not be planar), using a geometric
triangulation method. Figures 16.3 and 16.4 show the results obtained by applying
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Fig. 16.3 Voronoi diagram of the barycenters of the clusters

the S. Fortune algorithm [39] to the barycenters of the clusters of crossing points.
This algorithm computes both a Delaunay triangulation of the set of points and its
dual graph, a Voronoi diagram.

Each polygonal cell of the Voronoi diagram is such that the points inside that
cell are closer to the barycenter of the cell (i.e., a network node) than to any other
barycenter. This interesting side effect of this geometric method allows us to associate
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Fig. 16.4 Delaunay triangulation of the barycenters of the clusters

a cell of airspace with each node of the network. The area of this cell gives an
indication of how much room is available in the vicinity of the node for the lateral
maneuvers of conflicting aircraft.

In [72], Mehadhebi used the areas of the cells to measure the density of conflicts
when building a network, in order to avoid excessive densities in a given airspace. For
each crossing point, the density was obtained by computing the ratio of a number
quantifying the conflicts2 at that crossing point and the area of the Voronoi cell
associated with the crossing point. In a dense area, moving the crossing points further
apart has the effect of increasing the cell areas, thus decreasing the density. The
optimization method used by Mehadhebi was not described in detail in [72], but it
seems to be an iterative method that locally smooths the density in congested areas.

Once the full network (nodes and edges) has been defined, the flights have to
choose a path in this network, from the departure airport to the destination airport.
These paths must take into account a constraint on the angle between successive
route segments: for any route to be actually flown by an aircraft, the angle between
successive segments must not be too acute. This constraint was handled differently
in [72], where it was satisfied as best as possible in the clustering phase, and in [42],
where it was examined afterwards, when searching for the shortest path in the network
for each flight.

2This quantification of conflicts can be done, for example, using the number of conflicts at the
crossing point weighted by the difficulty of each conflict.
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16.2.2 Node Positioning with Fixed Topology, Using a
Simulated Annealing or Particle Swarm Optimization
Algorithm

In [81], Riviere focused on a different problem, where the network topology has
already been fixed, and where only the node positioning problem is addressed. Start-
ing from an initial regular grid over the European airspace, he used simulated anneal-
ing [65] to modify this grid, minimizing the sum of trajectory lengthenings between
origin and destination (Fig. 16.5). This optimization process takes account of a min-
imum distance that must be maintained between crossing points.

The evaluation of the trajectory-lengthening criterion requires the computation
of the shortest paths in the network between all origin–destination pairs. This was
done using the Floyd–Warshall algorithm, taking account of a constraint on the angle
between two successive route segments: this angle should not exceed 90◦.

As the objective function being minimized requires the computation of the shortest
paths in the network, the gradient of the objective function cannot be computed
and gradient descent methods cannot be used. One must instead use derivative-free
methods, and metaheuristics such as the simulated annealing method used in [81] or
the particle swarm optimization method used in [16] (which will be described later
on) are a good option.

Starting from an initial point, the simulated annealing algorithm explores the
search space by randomly choosing another point in the neighborhood of the current
point. The move is accepted if the new point improves the objective function. It can
also be accepted if it does not, with a probability that decreases with the number of
iterations (according to the annealing scheme). In the route network design problem,
a point in the search space is a route network, and a local move in the neighborhood
of the current point is a random change in this network.

In more recent work [16], Cai et al. used an approach similar to that of Riviere [81],
but for the Chinese airspace and with a formulation as a multiobjective optimization

Fig. 16.5 Air route network found by simulated annealing (right), starting from an initial regular
grid (left)
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problem. Two criteria were minimized in this work. The first was related to the
trajectory lengthenings, as in [81]. The second one, taken from [83], was the sum
over all crossing points of the average number of potential conflicts per unit of time.

The metaheuristic used in [16] was a hybrid method combining a variant of particle
swarm optimization (CLPSO; “Comprehensive Learning Particle Swarm Optimiza-
tion,” introduced in [69]) and an ad hoc method relying on local moves of the crossing
points to improve the optimized criteria.

In its canonical version, the particle swarm optimization algorithm iteratively
moves a population of particles, characterized by their positions and velocities, in
the search space, memorizing the best positions found by each particle. Each particle
is moved in the direction of its velocity vector. After each move, the speed vector
is updated, combining several directions, namely, the current velocity vector (i.e.,
the inertia of the particle), the direction to the best position found by the particle,
and the direction to the best position found by the whole swarm (or a subset of the
population). The CLPSO variant uses all the best positions found by the particles to
update the velocity vector, in order to avoid premature convergence toward a local
minima.

The hybrid algorithm proposed in [16] is similar to CLPSO, except that a local
optimization is performed after updating the particles’ positions and velocities. For
each particle (i.e., an air route network), the local optimization tries to move each
node so as to improve the chosen criteria, considering the relative positions of the
nodes and the traffic flows on the edges connected to each node.

Cai et al. compared their hybrid method with the simulated annealing proposed
by Riviere [81], applied to the Chinese airspace. The simulated annealing approach
minimized only one of the two criteria chosen by the authors, so the comparison of
the Pareto fronts was naturally to the advantage of the multi-objective particle swarm
optimization algorithm.

The results were also compared with the current route network in China, showing
significant improvements. The method proposed by Cai et al. is being integrated into
a program used to modify the air route network in China.

16.2.3 Defining 2D Corridors with a Clustering Method
and a Genetic Algorithm

Xue and Kopardekar [91] proposed a method for positioning a limited number of
2D routes (or “corridors”) to accommodate the largest flows over the territory of the
United States. The aim was not to build a network for all of the traffic, but only for
the large flows. How these corridors would be handled, concerning for example the
entry and exit procedures and how to resolve conflicts at the crossing points of these
corridors, was not detailed in the publication. The work focused on how to position
these corridors, considering proximity criteria for the origin–destination flows.

There are many ways to specify an air traffic flow, for example by choosing an
origin and a destination, or by considering the flow through a given sector, through
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a specific airspace sector boundary, or over a waypoint, etc. In their publication,
Xue and Kopardekar considered aircraft trajectories as great circles on the Earth’s
surface, and a flow was defined as a group of such great circles that are close to one
another.

To cluster these great circles according to a proximity criterion, Xue and
Kopardekar transformed the direct trajectories from departure to arrival into a set
of points in a dual space, using a Hough transform. In this dual space, each trajec-
tory was represented by a pair (ρ, θ), where ρ is the shortest distance between the
trajectory and a reference point, and θ is the angle between a reference direction
and the line perpendicular to the trajectory passing through the reference point. Xue
and Kopardekar then used a basic clustering technique, of a kind usually applied in
image processing, to aggregate the trajectories. By placing a grid with a step size
(�ρ,�θ) over the set of dual points, they simply counted the number of points in
each cell and determined the cells of highest density.

This method allowed them to find groups of trajectories that were geographically
close to one another. In the dual representation of the largest flows, the points in the
cells with the highest densities were replaced by a single corridor (a point in the dual
space). As a first approximation, they took the barycenter of the points (trajectories
in the initial space).

One drawback of this representation in the dual space is that the arrival and
departure points in the original space are lost in the transformation. One cannot
directly measure the trajectory lengthening in the dual space for aircraft flying in the
corridors computed by this method. The additional distance flown by the aircraft is
a very important cost criterion for airline operators.

A genetic algorithm [54, 74] was then used to refine the approximate solution
found by the above method. This algorithm iterated on a population of individu-
als, following a Darwinian process of selection (according to a fitness criterion),
crossover, and mutation. An individual here was a set of barycenters (representing
corridors in the initial space). This was encoded as a collection of coordinates (ρ, θ)

in the dual space. The initial population was built from the approximate solution
found by the first method. The fitness criterion was the sum of the trajectory length-
enings in the initial space, for all flights flying in the corridors.

With 200 elements in the population, 200 generations, a crossover probability of
0.8, and a mutation probability of 0.2, the proportion of flights flying in the corridors
with no more than a 5 % trajectory lengthening increased from 31 % for the initial
solution to 44 % for the best solution found by the genetic algorithm.

16.2.4 Building Separate 3D Tubes Using an Evolutionary
Algorithm and an A∗ Algorithm

In the studies we have presented so far on the optimization of the air route network,
there was no attempt to avoid intersecting routes (or corridors) while building the
network. Crossing points were actually part of the planar graph representation that
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was used in the geometric methods [42, 72], where defining the nodes and edges of
such a planar graph was the objective, as well as in the metaheuristic approaches [16,
81], where the aim was to position the network nodes, starting from an initial reg-
ular grid. The optimal positioning of 2D corridors in [91] also allowed corridors to
intersect.

For the network structure actually to be beneficial in decreasing the number of
conflicts between aircraft flying through it, one must introduce a vertical segregation
of traffic flows. This vertical segregation can be introduced locally at the crossing
points, or by considering origin–destination flows, or for each flight, depending on
the direction of the route it follows. Graph coloration methods, which will not be
described here, can be used to assign different flight levels to crossing flows [8,
67]. However, such methods only consider cruising flights. Descending or climbing
aircraft are not taken into account.

Another approach, proposed by Gianazza et al. [42, 43, 49–51] is to build sep-
arate 3D tubes for the largest origin–destination flows. A 3D tube, as illustrated in
Fig. 16.6, is a volume computed from the envelope of the minimum and maximum
climb or descent profiles of all aircraft flying in the tube. Vertical and horizontal
distance buffers are added to this envelope to take account of the standard vertical
and horizontal separations.

The idea is that aircraft flying in such 3D tubes would be sequenced at the departure
point and would ensure self-separation from other aircraft in the same tube. They
would have priority over the rest of the traffic. The 3D tubes would be built so as not
to intersect, thus ensuring there would be no conflicts between flights in the main
traffic flows.

The aim is to assign one 3D tube to each flow of sufficient importance. A flow
is defined here by two points (origin, destination) and a cruising flight level (the
requested flight level, denoted by RFL). A variant of the k-means method is used to
cluster the flights into origin–destination–RFL flows. As a consequence, there might
be several flows for a given origin–destination pair, corresponding to several cruising
flight levels.

The 3D tubes must be as short as possible. The tubes assigned to different origin–
destination pairs must not intersect. For tubes having the same origin and destination
with different cruising flight levels, the initial climb and final descent are common
to them (and considered as the same tube for these phases). The possible lateral and
vertical deviations of a 3D tube, which might be introduced to avoid other 3D tubes,
are shown in Fig. 16.7. A 3D tube associated with an origin–destination–RFL flow

Fig. 16.6 Example of a 3D
tube, with only one cruising
flight level
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is completely defined by a discrete choice from among several options for the 2D
route, and by a sequence of pairs (dk, CFLk), where dk is the distance along the route
at which a vertical deviation toward the flight level CFLk begins. (CFL stands for
“cleared flight level.”)

This constrained optimization problem is highly combinatorial. To solve it,
Gianazza et al. used an evolutionary algorithm hybridized with an A∗ algorithm. The
evolutionary algorithm iterates on a population of elements where each individual is
a full network of 3D tubes, applying selection, crossover, and mutation operators to
this population of networks. The fitness of an individual is assessed by computing
a triangular matrix C, where the diagonal elements i are the costs of the deviations
of 3D tube number i from the most direct trajectory (the direct route between origin
and destination, at requested flight level). These diagonal elements are the costs to be
minimized. The nondiagonal elements contain the constraint violations. An element
(i, j) of the matrix C, with i < j, contains the number of intersections of 3D tubes
i and j. Denoting the number of constraint violations for tube i, by f (i), the fitness
criterion F is expressed as follows:

F =
{

1 + n
1+∑

i Cii
if

∑
i f (i) = 0

1∑
i f (i) if

∑
i f (i) > 0

The fitness criterion to be maximized by the evolutionary algorithm is less than 1
when intersections of 3D tubes remain, and greater than 1 when all 3D tubes are sep-
arated. In the latter case, the fitness increases when the lateral or vertical deviation
decreases. This raw fitness is scaled, using a sigma truncation scaling. A cluster-
ized sharing operator is then applied, which modifies the fitness landscape so as to
avoid premature convergence toward local optima. An elitist strategy is employed,
preserving the best element of each cluster in the population when its fitness is close
enough to the fitness of the best element. Apart from the best elements, the pool of
parents is selected using the principle of stochastic remainder without replacement.
The crossover and mutation operators are applied according to chosen probabilities.

The crossover operator is similar to the one proposed by Durand et al. [31, 35]. This
operator is specifically designed for partially separable objective functions. It remains
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efficient when large problems are being addressed, as shown in [28]. This specific
crossover operator requires one to define a local fitness for each gene (here a 3D tube)
of each individual (here a full network) in the population. The local fitness chosen
here is fk = −f (k), the negative of the number of constraint violations for flow k. The
crossover itself is either a standard barycentric crossover (with probability 2

3 in [43])
or a deterministic crossover (with probability 1

3 ). In the deterministic crossover, the
first descendant inherits gene k of parent p1 and the second inherits gene k of parent
p2 when fk(p1) = fk(p2). When the local fitnesses differ, both descendants inherit the
best gene.

The mutation is where the hybridization with the A∗ algorithm takes place. A gene
(3D tube) is selected for mutation, preferentially, one picks a tube with a bad local
fitness if F < 1 (when there remain constraint violations) or with a high deviation
cost if F ≥ 1 (when all tubes are separated). The mutation operator replaces the
chosen tube with a new one, computed using an A∗ algorithm. If no solution is found
by the A∗ algorithm, one of the parameters defining the chosen tube is randomly
modified: the route choice, entry or exit flight levels, if any, or one of the cruising
flight levels. For these last parameters, we have a choice (with equiprobability) from
among several possibilities: add a new cruising flight level, remove an existing flight
level, or modify one by changing the associated distance dj or the level value CFLj.
As the A∗ algorithm is relatively costly in computation time, it can be replaced (with
a chosen probability) by a greedy method.

In [43], the two variants of the hybrid evolutionary algorithm (with A∗ in the muta-
tion, or with A∗ and a greedy method) were compared with nonhybrid evolutionary
algorithms (the canonical algorithm, with or without a bias in the selection for the
mutated elements, or with the crossover operator for partially separated problems).
The comparison was done on two test cases, one with 10 3D tubes and the other
with 40 tubes. The results were improved when the hybrid method and the specific
operators, were used. Figure 16.8 shows the evolution of the fitness criterion of the
best element in the population for the two test cases where the origin and destination
were located on a circle. The algorithm was run with 350 elements in the population,
with a crossover probability of 0.6 and a mutation probability of 0.05.
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Fig. 16.9 Solution by an A∗
algorithm, on a test case with
10 3D tubes
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The hybrid evolutionary algorithm was also compared with a standalone A∗ algo-
rithm. In this case, the standalone A∗ algorithm was applied successively to each
3D tube, building a new 3D tube that avoided the previous ones. The drawbacks of
this approach are first that it does not aim to find a global optimum, and second that
the solution found depends on the order in which we compute the tubes. Figure 16.9
shows a solution found by the A∗ algorithm alone for the problem with 10 tubes. The
fitness criterion F of this solution is 1.1674, which is less than the results found by
the variants of the evolutionary algorithm, for which the average value over 10 runs
was always above 1.19. For the problem with 40 tubes, the A∗ algorithm was not
able to find solutions satisfying the separation constraints.

To conclude on the construction of 3D tubes for the main traffic flows, the results
presented in [43] show that using a metaheuristic to address this problem gives good
results, and even better results when this metaheuristic is hybridized with an exact
best-first tree-search method such as the A∗ algorithm. The results of application of
this hybrid method to real traffic over France and Europe [42] confirm these results,
but they also show the limits of the concept. Building 65 separate 3D tubes over
Europe, for flows with more than 20 flights per day, captured only 6 % of the overall
traffic. This is due to the fact that the flows are built by considering departure and
arrival airports. To improve the concept, one needs first to clusterize airports that are
geographically close, as was done in [85], and then define 3D tubes between these
clusters.

16.3 Airspace Optimization

In the previous section, we presented several approaches to building a route network,
or independent “tubes,” for the principal flows. In Sect. 16.2.1, the modeling of the
partitioning of airspace into sectors with Voronoï cells for which a density criterion
can be calculated was briefy described. This could be a way to build simultaneously
a route network and partitioning of an airspace into sectors.

In this section, we suppose that the route network has been defined, and we focus
on three problems related to the definition and management of airspace sectors. In the
first problem, we want to define the sector edges so that we minimize different criteria
such as the workload due to the coordination of flights crossing sector boundaries
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or the workload related to trajectory monitoring and conflict resolution within the
sector boundaries.

In the second problem, elementary sectors have been defined, and we want to
optimize the functional airspace blocks3 in order to balance the traffic between blocks
and limit the flows between the blocks.

In the third problem, we try to dynamically optimize the daily management of an
airspace block: the problem is to group sectors in order to balance the controllers’
workload, to avoid overloads and respect various operational constraints.

In the following sections, we give some examples of solutions using metaheuristics
for these three problems.

16.3.1 Airspace Sectorization

The control sectors have evolved as traffic has increased, but they are still manually
defined by human experts, mostly air traffic controllers. It is worth asking whether
the partition of airspace into sectors is optimal regarding the evolution of traffic. The
problem is difficult, because the model must be able to take into account various
shapes of sectors, but remain simple enough to be solved. Delahaye presented a
simple model for sectors in the horizontal plane in his Ph.D. thesis [20] (see also [21,
22]) (he did not consider the vertical dimension). In this model, n control sectors are
characterized by n centers of a Voronoi diagram representing the limits of the sectors
(see Fig. 16.10).

The main advantage of this model is that a sector is defined by a single point.
However, different sets of points can define the same Voronoi diagram. This is the case
for the example in Fig. 16.10, where the triplets (C0, C1, C2) and (C′

0, C′
1, C′

2) define
the same sectorization. This is also the case for the triplets (C1, C2, C0), (C2, C0, C1)

and for every permutation of the triplet (C0, C1, C2) which gives the same result.
Another issue with this model is that it only produces convex sectors, whereas real
sectors are not always convex. Delahaye optimized the airspace sectorization with a
classical evolutionary algorithm as described in [54, 58]:

• A vector of reals represents the coordinates of the class centers used to build the
Voronoi diagram.

• The optimized criteria take into account the coordination workload (the number of
aircraft flying from one sector to another), the monitoring workload (the number
of aircraft inside the sector), and the resolution workload (the number of pairwise
conflicts inside a sector). The objective function is aimed at balancing these three
criteria while respecting constraints such as:

3A functional airspace block is a set of sectors in which several teams of controllers are qualified.
Airspace blocks are independently managed by these different teams, which work in relays with
one another. Several sectors in the same airspace block can be merged and controlled by the same
pair of controllers. However, two sectors from different airspace blocks cannot be merged.
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Fig. 16.10 Sector modeled
by class centers

– the time spent by an aircraft in a sector should be longer than some minimum
time;

– the routes followed by aircraft should not cross too close to the border of the
sector.

An analytical expression that summarizes all these criteria is not possible; only a
simulation can measure the quality of a sectorization. Metaheuristics are a good
option in such a case because the objective function can be seen as a black box.

• The crossover operator identifies the class centers closest to both parents (which
is a minimization problem) and applies a classical arithmetic crossover operation
on these pairs.

• The mutation operator randomly moves one or several class centers in a defined
neighborhood.

After his Ph.D. thesis, Delahaye proposed improved models in order to handle
nonconvex sectors [26]. He also added the vertical dimension to his model in order
to make it more realistic [24, 25]. Kicinger and Yousef [64] also proposed an evolu-
tionary algorithm combined with an elementary cell aggregation heuristic in order to
partition the airspace into sectors. Xue [90] introduced an approach using a Voronoi
diagram optimized with an evolutionary algorithm, applied to the American airspace.
In 2009, Zelinski [92] compared three methods for defining sectors, one based on
traffic flow aggregation, another based on Voronoi diagrams optimized with evolu-
tionary algorithms, and a third one using integer linear programming. Experiments
showed the advantages and drawbacks of each method, but none really outperformed
the others.

16.3.2 Definition of Functional Airspace Blocks

In Europe, the airspace structure follows the national borders of the different states.
Nowadays, more than 60 control centers cover the airspace of around 40 member
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Fig. 16.11 Graph model for an airspace partition

Fig. 16.12 Three functional blocks and the corresponding sectors

states of the European Organization for the Safety of Air Navigation (Eurocontrol).
In the context of FABEC,4 the problem is to reorganize the control centers in order
to simplify the global structure. Among the numerous criteria that Eurocontrol has
defined, three are quantifiable and could lead to a better balance of the distribution
of centers:

• airspace blocks must minimize flows on their borders;
• important flows must take place inside the blocks;
• traffic must be balanced between different airspace blocks.

In his Ph.D. thesis, Bichot [11] modeled the problem as a graph partitioning
problem. Here, the vertices of the graph are the sectors, and the edges are the flows
connecting the sectors. The edge weights are the mean numbers of aircraft in the
flows connecting the sectors.

Figure 16.11 shows a graph modeling a five-sector problem. Figure 16.12 shows
a partition of the airspace into three functional blocks and the associated graph.

The minimization criterion chosen by Bichot was a normalized cut ratio criterion
corresponding to the sum of the flows entering or exiting the functional blocks divided
by the sum of the internal flows. He added a balance constraint: the weight of a block
must not exceed k times the mean weight of every block. After showing the problem
was NP-complete [12], Bichot tested several different classical algorithms on real

4Functional Airspace Block Central Europe.
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recorded data (several months of European traffic), and compared them with two
metaheuristics and also established with an innovative metaheuristic named “fusion–
fission.”

16.3.2.1 Simulated Annealing Algorithm

A simulated annealing algorithm requires a starting point. Bichot used a random
configuration based on a percolation algorithm to build the starting point. He sup-
posed that the graph was known, as well as the vertices and edges. The number of
blocks was also fixed. A percolation algorithm simulates the movement of fluids
through porous materials. Bichot defined as many sources of fluid as the desired
number of functional blocks. Each source of fluid was a sector that was the kernel
of the functional airspace block to which all other sectors were progressively linked.
A detailed explanation of the algorithm is given in [12]. With this starting point,
Bichot used a standard simulated annealing algorithm: in every step, a sector was
randomly chosen in a functional airspace block and linked to another airspace block.
The algorithm was divided into two phases. During the first phase of the algorithm,
the control temperature was still high and the chosen sector was linked to a block
with a low cut ratio. During the second phase, the control temperature was lower, and
the chosen sector was linked to a neighboring block. The temperature adjustment
and the time at which the algorithm switched to the second phase seem to have been
chosen empirically.

16.3.2.2 Ant Colony Algorithm

In order to apply ant colony optimization to the functional airspace block partitioning
problem, Bichot introduced a model in which one ant colony represented one block.
Each block was the territory of one colony. The different colonies competed to
get sectors and deposit their pheromones. More concretely, a sector belonged to the
colony that had the largest amount of pheromones on it. After each ant movement, the
value of the new state was calculated. If the ant movement decreased the criterion, the
new partition was accepted, otherwise the partition was accepted with a probability
following a rule similar to the simulated annealing method. This approach, like the
previous one, requires one to adjust many parameters.

16.3.2.3 A Fusion–Fission Method

In his Ph.D. thesis [11], Bichot introduced a heuristic called “fusion–fission,” by
analogy with nuclear fusion and fission. For the fusion part, the idea is to merge
two functional airspace blocks sharing the largest amount of traffic (as shown in
Fig. 16.13). For the fission part, the principle is to divide the largest airspace block
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Fig. 16.13 Fusion of two blocks

Fig. 16.14 Fission of the largest functional airspace block

into two blocks (see Fig. 16.14). Bichot refined his method by allowing some sectors
to move from one block to another according to the cut ratio minimization criterion.

In [12], Bichot et al. showed that this last approach seemed more efficient and
easier to apply than the simulated annealing and ant colony approaches. He also
compared fusion–fission with classical graph-partitioning methods.

16.3.2.4 Comparison of Fusion–Fission and Classical-Graph
Partitioning Methods

Bichot and Durand [13] compared two classical graph-partitioning algorithms (the
Scotch and Graclus algorithms) with the fusion–fission approach and showed that
the latter was more efficient than the Scotch and Graclus algorithms, but also much
more time-consuming. Table 16.1 compares the normalized cut criterion, the balance
between block sizes, and the maximum number of sectors per functional airspace
block for the three algorithms. It also gives the values of the criteria for the existing
partition of French airspace.

Figures 16.15 and 16.16 show the existing and optimized functional blocks for
two flight levels (16 000 and 36 000 feet). The optimized partition divides the French
airspace into only five blocks, instead of six for the existing partition. This result
could provide an argument in favor of a partition with more blocks in the lower
airspace and fewer blocks in the higher airspace.

Table 16.1 Partitions of french airspace

Algorithm Ncut Balance Max number of sectors

Fusion–Fission 1.09 1.14 26

Scotch 1.18 1.20 30

Graclus 1.28 1.52 38

Existing partition 1.64 1.50 31
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Fig. 16.15 Existing French functional airspace blocks (left, 16 000 feet; right, 36 000 feet)

Fig. 16.16 Optimized French functional airspace blocks (left, 16 000 feet; right, 36 000 feet)

16.3.3 Prediction of ATC Sector Openings

We have seen in Sect. 16.3.1 how to define the airspace sector boundaries, given
the air routes and traffic flows. In Sect. 16.3.2, we have seen how to group these
airspace sectors into functional blocks, each placed under the responsibility of an air
traffic control center. Operations such as sectorization and the definition of functional
airspace blocks are in fact a strategic redesign of the whole airspace, which should
be done well in advance before daily operations take place.

In this section, we focus on real-time or pretactical operations, assuming that
the airspace sector geometry is fixed and that sectors have already been allocated
to functional airspace blocks, as the result of a strategic design of the airspace. We
consider a set of airspace sectors belonging to an air traffic control center (or a
functional airspace block). In the daily operations of a control room, airspace sectors
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are dynamically assigned to air traffic controllers’ working positions. The group of
airspace sectors assigned to a working position is called an air traffic control (ATC)
sector.

Figures 16.17 and 16.18 illustrate the partitioning of an airspace into ATC sectors
using a toy example with five airspace sectors, denoted by numbers, and a list of
acceptable groups denoted by letters.

The partitioning may change several times during the day, depending on the work-
load perceived by the controllers. Figure 16.19 shows a few other possible partitions
that could be used instead of the partition presented in Fig. 16.17. Some operational
constraints must also be taken into account: the duty roster, the maximum number of
working positions that can be opened, and the list of possible groups that can actually
be operated as ATC sectors (as already illustrated in Fig. 16.18).

List of acceptable groups:

a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Fig. 16.17 A toy example of airspace sectors belonging to the same functional block

1
5

2

4

3

Airspace sectors Controllers' working positions
in the control room

Fig. 16.18 Assignment of airspace sectors to controllers’ working positions
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Fig. 16.19 Other possible partitions of the airspace

The primary objective of this dynamic partitioning of the set of elementary
airspace sectors into ATC sectors is to avoid overloads, as these may threaten the
overall safety of the flights controlled in the ATC sectors affected. When an ATC
sector becomes overloaded, some of its airspace sectors are transferred to another
working position (a new one, or one that is already open but underloaded) when this
is possible. When such reassignments are not possible, one must enforce traffic reg-
ulation measures such as delaying departing flights or rerouting aircraft. Overloads
must be anticipated with enough look-ahead time, so that regulation measures can be
taken early enough. A secondary objective, which might sometimes come into con-
tradiction with the primary objective of avoiding overloads, is to be as cost-efficient
as possible by opening as few ATC sectors as possible and by avoiding under-loads.

Currently, this reassignment of airspace sectors to controllers’ working positions
is quite efficient for the purpose of sharing workload among ATC sectors in real time.
However, we still lack prediction tools that would allow control room managers and
flow management operators to anticipate how workload and airspace partitioning
could evolve in the next few hours. Such tools require two things: a reliable estimation
of the future workload in any given ATC sector, and an algorithm that can compute
an optimal partition of the airspace into ATC sectors according to the predicted
workload.

16.3.3.1 Difficulty of the Problem and Possible Approaches

The problem of optimal partitioning of airspace is highly combinatorial: the total
number of candidate partitions is equal to the Bell number. However, taking opera-
tional constraints into account, such as restricting oneself to a list of acceptable groups
of airspace sectors, reduces the number of sector combinations to be explored.

For relatively small and sufficiently constrained problem instances, exact tree-
search methods that exhaustively explore (or discard) all possible partitions of the
airspace into ATC sectors might be tractable. For larger instances, where the func-
tional airspace block considered is made up of a large number of airspace sectors, or
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for less constrained problems with a larger number of acceptable sector groups, such
methods are likely to be unsuccessful. In such cases, an optimal or nearly optimal
partition can be searched for using a metaheuristic.

16.3.3.2 Using a Genetic Algorithm

In [47, 48], Gianazza and Alliot used a genetic algorithm [54, 74] to build an optimal
partition of the airspace into ATC sectors. This metaheuristic approach was compared
with two tree-search methods (a depth-first branch and bound search and a best-first
search) on airspace sectors belonging to the five French en-route control centers.

In this approach, each element of the population is a sector configuration, i.e., a
partition of the set of airspace sectors for the chosen control center. In each iteration,
the genetic algorithm selects a pool of parents. Randomly chosen parents are then
recombined, using crossing and mutation operators. The resulting offspring is added
to the new population, which is completed by randomly picking individuals from
the pool of parents. This completion is done so that the fittest individuals have a
greater chance of being chosen. Several refinements exist for the selection, crossing,
and mutation operations, with for example the application of scaling and sharing
operators to the raw fitness. A description of these refinements can be found in
Chap. 3 of [38].

In [47, 48], the mutation of an individual (a sector configuration) was done by
first picking at random one ATC sector and one of its neighbors. The volume of
airspace made up of the two chosen ATC sectors was then repartitioned. This partial
reconfiguration of the sectors was also random, with the constraint that the result
should not contain more than three ATC sectors. The new ATC sectors then replaced
the two initial sectors in the mutated individual.

The crossover operator removed some ATC sectors from each of the two par-
ents and tried to form a new partition from each amputated partition, using ATC
sectors from the other parent. This did not usually result in a complete partition of
the airspace. A full partition was obtained by randomly choosing control sectors
compatible with the incomplete partition.

The fitness criterion depended on the following factors, in decreasing order of
priority: excessive overloads, the number of working positions (i.e., the number
of ATC sectors in the configuration), excessive underloads, and small overloads
or underloads. For any ATC sector, the workload was assessed by considering the
difference between the flow of incoming traffic and a threshold value, called the sector
capacity. The capacity values were the ones that were actually used in operations at
the time. Once computed, the raw fitness criterion was modified using clusterized
sharing and sigma truncation (see [54], or [38] p. 59), so as to leave a chance even for
the least fit individuals to reproduce, thus allowing a better exploration of the search
space. For the sharing operator, a difficulty arises in defining a distance criterion
between partitions of the set of airspace sectors. A pseudo-distance between two
partitions, similar to the Hamming distance, was specifically designed for this sharing
operator. The only difference from the Hamming distance was that the sequence of
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symbols (ATC sectors) that were compared—counting the differences between the
two partitions—need not have the same length.

An elitist strategy was applied in order to preserve the best individuals of the
old population when building a new one. The new population was made of the
fittest elements of the previous population, of the mutated individuals, and of the
offspring resulting from the crossover operator. Both the mutation and the crossover
operator were applied to individuals randomly chosen from a pool of parents, with
probabilities Pc (crossover) and Pm (mutation). The population was then completed
according to the stochastic remainder without replacement mechanism (see [38]), so
as to attain the same fixed size as the previous population.

This approach using genetic algorithms was compared, using real instances, with
two tree-search methods. Other authors have used constraint programming on a sim-
ilar problem. We shall now briefly present these exact approaches that exhaustively
explore the search space of possible airspace partitions.

16.3.3.3 Tree-Search Methods, Constraint Programming

Two tree-search strategies were presented in [47, 48]. One is a depth-first search,
illustrated in Fig. 16.20, using our toy example with five airspace sectors. The other
is a best-first search inspired by an A∗ algorithm that develops first the nodes that
have the best estimate of the total cost for the path from the root to a leaf of the tree.

In his Ph.D. thesis [6], Barnier successfully applied constraint programming meth-
ods to a similar problem of airspace partitioning (although not with the same capac-
ity values). The partitioning problem was formalized as a constraint satisfaction
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Valid groups of sectors:
a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Best_conf = ({e})

Best_val = Eval_conf({e})
Best_val = Eval_conf({d},{a},{4})
Best_conf = ({d},{a},{4})
if Eval_conf({d},{a},{4}) > Best_val then

then cut this branch
if Eval(node) < Best_val

otherwise continue the search

and so on...

Fig. 16.20 Search for an optimal partition by a depth-first tree-search algorithm
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problem. The solution of this problem also relied on a tree-search method (back-
tracking) that iteratively reduced the domain of each variable.

All these tree-search methods were tested on real instances, using the airspace
sectors of the five French air traffic control centers. The results showed that, on these
real instances of relatively small size, when taking into account some operational
constraints such as a list of restrictions concerning the valid groups of sectors, the
global optimum could be reached in a very short time (a few seconds at most, with
a 1.8 GHz Pentium IV).

In [47, 48], the depth-first and best-first strategies were compared with the genetic
algorithm presented in Sect. 16.3.3.2. With 220 elements in the population, evolving
over 300 generations, and with a crossover probability of 0.6 and a mutation proba-
bility of 0.2, the genetic algorithm found the global optimum in nearly all cases. The
computation times were, however, much longer (several minutes).

16.3.3.4 A Neural Network for Workload Prediction

In [6, 47, 48], the chosen variables (input traffic flow) and the ATC sector capacities,
which were the values actually used in operations at the time, did not provide a
reliable estimate of the air traffic controllers’ workload. Further studies [44, 52,
53] by Gianazza and Guittet were aimed at selecting more relevant indicators, from
among the multitude of ATC complexity metrics proposed in the literature, to better
explain the controller workload.

In these studies the dependent variables that were chosen to represent the actual
workload were related to the status of the ATC sector. Considering past sector open-
ings, the following observations can be used to assess the workload in any given
sector:

• when the sector is “collapsed” (merged) with other sectors to form a larger sector,
we can assume that this is due to a low workload;

• when the sector is “opened” (i.e., actually operated on a controllers’ working
position), we can assume a normal workload;

• when the sector is “split” into several smaller sectors, this reflects an excessive
workload in the initial sector.

The basic assumption is that this observed sector status (“collapsed,” “opened,” or
“split”) is statistically related to the actual workload perceived by the controllers.

A neural network was used to compute a triple (p1, p2, p3) representing the prob-
abilities for a sector to be in the above states. The network inputs were the ATC
complexity indicators computed from aircraft trajectories, and metrics of the sector
geometry (the sector volume). The neural network was first trained on a set of exam-
ples, based on recorded traffic and historical data on sector openings from the five
French air traffic control centers.

Training a neural network consists in adjusting the weights assigned to the net-
work connections so as to minimize the error in the output when compared with
the desired output in the examples. This requires the use of an optimization method
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operating in the space of the weights. The first methods that were designed to train
multilayer perceptrons relied on the gradient of the error to search iteratively for the
optimal weight vector. In these methods, starting from an initial point in the space
of the weights, every step consists in computing a new iterate from the current one,
following a descent direction based on the error gradient. Subject to several condi-
tions on the objective function, these descent method converge to a local minimum.
Such methods require the computation of the error gradient, which can be done effi-
ciently using backpropagation of the error in the network [14]. More recently, several
metaheuristics have also been proposed, either to optimize the network topology or
to tune the weights: genetic algorithms [68], particle swarm optimization [57], ant
colonies [15], differential evolution [84], etc.

The results presented in [44, 52, 53] on the prediction of ATC controllers’ work-
load were obtained using a quasi-Newton method (specifically, BFGS) to train the
network. Some preliminary results using particle swarm optimization and differential
evolution showed fairly similar results.

In [45, 46], the depth-first tree-search algorithm that computed optimal airspace
partitions (see Sect. 16.3.3.3) was combined with the neural network for workload
prediction in order to provide realistic predictions of ATC sector openings. This
prediction of the workload and airspace partitioning is illustrated in Fig. 16.21.

An initial evaluation of this research approach was done by comparing the number
of working positions computed by these algorithms with the number of positions that
were actually open on the same day. In Fig. 16.22, the two dotted lines representing
these quantities are quite close. The continuous line above the dotted lines shows the
total traffic in the ATC center, and is given here only as an indication of the evolution
of traffic during the day.

16.3.3.5 Conclusions About the Prediction of Sector Openings

We have seen that the difficulty of the problem of partitioning an airspace into
ATC sectors assigned to controllers’ working positions, which is in essence highly

Fig. 16.21 Prediction of
workload and airspace
partitioning
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Fig. 16.22 Computed versus actual number of controllers’ working positions

combinatorial, is reduced when operational constraints are taken into account, such
as by restricting the number of ways to group airspace sectors to an existing list
of valid ATC sectors. We have also seen that a realistic prediction of ATC sector
configurations requires a reliable workload prediction model.

Metaheuristics can be useful for both of these problems (airspace partitioning and
workload prediction). For large instances that cannot be addressed by exact tree-
search methods, metaheuristics are often the only option: they rely on a random
walk in the search space, guided by a heuristic that introduces a bias toward good
solutions. Metaheuristics can also be used to tune the weights of a neural network
for predicting the air traffic controllers’ workload.

In conclusion, it must be noticed that in this specific example based on real
instances of airspace sectors and ATC sectors from the French airspace, metaheuris-
tics are not the fastest and most efficient methods. For such instances of relatively
small size, optimal partitions can be obtained in a short time using exact tree-search
methods.

However, exact methods can become impracticable for larger instances with more
airspace sectors or more ATC sectors. In such cases, using a metaheuristic can be a
good alternative for finding optimal or near-optimal partitions of ATC sectors.

16.4 Departure Slot Optimization

In order to prevent saturation of controlled airspace in Europe, departure slots are
sometimes imposed on aircraft. A departure slot is a 15 min time window during
which an aircraft must takeoff. The Network Manager Operations Centre (NMOC),
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formerly called the CFMU,5 tries to optimize the delays that aircraft, are subjected
to. This optimization problem has been studied by several research teams around the
world, using different models and algorithms. In the United States, delays are mainly
due to congestion at the arrival airport: instead of making an aircraft stack before
landing, it is better to delay its departure. This generates two types of problems.
In Europe, which aircraft should be delayed, and for how long, in order to respect
control sector capacities? In the United States, which aircraft should be delayed, and
for how long, in order to prevent them from stacking at their destination?

The first approaches to dealing with these problems mainly used integer linear
programming [71, 76]. Similar approaches were used by Bertsimas and Patterson
[10] at the end of the 1990s and by Bertsimas et al. [9] in 2008.

The first article introducing the use of evolutionary algorithms to optimize takeoff
slots was written by Delahaye and Odoni [23]. At first, Delahaye used a simple toy
problem in which the route and takeoff time were optimized. Later, Oussedik et
al. [77–79] adapted this approach to real traffic data. Cheng et al. [17] solved a small
example with a genetic algorithm. In 2007, Tandale and menon [87] used a genetic
algorithm on the FACET6 simulator developed by NASA7 in order to solve problems
in which sector capacities were respected. They compared their algorithm with an
exhaustive method using an example dealing with two airports, and generalized their
approach to a problem involving 10 airports.

In 2000, Barnier and Brisset [7] gave a more accurate definition of a sector capacity
and used a constraint programming approach in order to optimize slots. Once again,
comparing methods is challenging because research teams do not share data. In his
Ph.D. thesis, Allignol [2] resolved conflicts by modifying takeoff slots. An initial
calculation was done to detect all potential conflicting trajectories. This calculation
generated constraints on the takeoff times for aircraft pairs: the difference between
the takeoff times for aircraft pairs should not belong to some time interval.

Two approaches are being used to solve the problem. The first one is based on
constraint programming, and the second on an evolutionary algorithm. In the con-
straint programming approach, the problem is to find an instantiation for every delay
that resolves every conflict, and to minimize the total delay. In the evolutionary algo-
rithm, approach, separation constraints are taken into account in the fitness function.
Numerical results on real French data [29] show that constraint programming gen-
erally gives better results and is faster than evolutionary algorithms, but the latter
penalize fewer aircraft with a larger mean delay. Su et al. [86] adapted a cooperative
coevolution approach to Chinese data. Unfortunately, it is impossible to compare
results on different data sets.

5Central Flow Management Unit.
6Future ATM Concepts Evaluation Tool.
7National Aeronautics and Space Administration.
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16.5 Airport Traffic Optimization

Many optimization problems can be formulated in the field of airport traffic man-
agement: indeed, airports have to be highly reactive to many kinds of events, that
may be more or less usual (delays to passengers and flights, meteorological phenom-
ena, equipment failures, surface congestion, terrorism risks, etc.), which makes their
traffic difficult to predict. For these reasons, the various stakeholders often need to
adapt their planning and operations in real time. All the decisions that are taken in
this way can induce various positive or negative effects in the global situation of the
airport, and result in very variable operating costs.

In this domain, the problems of gate assignment, scheduling of aircraft on the
runway, strategic surface routing, and, more generally, the development of decision
support tools that can help operations planning are major concerns for all airport
services (Fig. 16.23).

16.5.1 Gate Assignment

Assigning gates (and stands) to aircraft appears to be the first important step in
the planning process at an airport. It involves many operational aspects, such as
constraints related to each gate and all the connections between flights.

Hu and Paolo [59] modeled the problem with a global minimization criterion,
defined by a balance between three measures: the waiting times of aircraft on the
aprons, the walking distances, of passengers, and the baggage transport distances.

1000m0

Fig. 16.23 Simulation of traffic at Roissy-Charles-De-Gaulle airport
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The variables must assign not only a parking spot to each aircraft but also the order
in which each aircraft will access the gate. For these reasons, these authors compared
different possible encodings for solving the problem with a genetic algorithm. They
showed that a binary encoding, which seemed at first to be more complex than other
possibilities, associated with a specific uniform crossover, made the genetic algorithm
more efficient.

16.5.2 Scheduling the Aircraft on the Runway

Runways are often seen as the main bottlenecks in an airport, because some important
separation times (over one minute) are needed between movements, in order to keep
a following aircraft free from the wake vortex turbulence of the previous aircraft.
These separation times depend on the type of movement (takeoff or landing) and on
the categories of the two aircraft (the heavier an aircraft is, the stronger its vortex is,
but the less it is penalized by the vortex of the previous aircraft). Thus, the separation
time after an aircraft A depends not only on A but also on the following aircraft B, as
illustrated in Fig. 16.24. This makes the problem less symmetrical than many other
classical scheduling problems.

In [62], Hu and Di Paolo focused on the optimization of an arrival sequence, and
compared the efficiency of two different encodings for a genetic algorithm:

• The first one, rather intuitive, was integer based and consisted of a rank assigned
to each arrival in the sequence.

• The second one was based on a binary matrix, specifying all of the Boolean priority
relationships between each pair of arrivals.

The second encoding, associated with a uniform crossover (which makes each child
inherit a specific part of the priority relationships of its parents) gave the best results,
especially by avoiding premature convergence toward local optima. This kind of

Fig. 16.24 Scheduling of
aircraft on the runway

t

t
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encoding maintains some promising subsequences across several generations, while
still favoring a good exploration of all the possible sequences.

Hu and Di Paolo confirmed the efficiency of this kind of encoding for the genetic
algorithm by extending it to a problem of arrivals that have to be distributed over
several runways [63]: here, the arrivals have to be scheduled on each runway, but
they also have to be assigned to one of the available runways. In [61], these authors
improved their results further with a new ripple spreading genetic algorithm: in this
model, each chromosome encodes an epicenter point in a two-dimensional artificial
space, and a method to project each aircraft into this space (depending on its wake vor-
tex category and its soonest landing time). The ripple spreading procedure is a simple
algorithm that assigns a runway to each aircraft and defines the sequence on each
runway from the set of points in the artificial space (by sorting each point by increas-
ing distance from the epicenter). Thus, each chromosome is reduced to five numbers
(x, y, δ1, δ2, δ3), where (x, y) are the coordinates of the epicenter and (δ1, δ2, δ3) are
the coefficients defining the projection in the artificial space. A big advantage of this
method is that the size of the chromosomes does not depend anymore on the number
of aircraft, but only on the number of parameters used to characterize them.

Particle swarm methods can also be used to optimize the departure flow of aircraft
that have to be scheduled on a runway and can use different routes to access that
runway [40, 66]: in this model, each departure route is seen as a first-in-first-out
queue (aircraft using the same route cannot change their order). The problem is to
find the gate departure times and the takeoff times that minimize the time spent in
offloading all of the traffic (while maintaining separation constraints between taxiing
aircraft). Using an evolution function based on an oscillating equation of second order
(inherited from control theory) [66], or by controlling the evolution with a simulated
annealing method [40], the authors of those publications improved the convergence
of the particle swarm, while avoiding local optima.

In Europe, departure scheduling appears to be more complex, because some of the
departures are also constrained by a takeoff slot assigned by the European Network
Manager Operations Centre (because these flights fly through overloaded airspace).
For these constrained departures, a specific takeoff time is specified, and the corre-
sponding flight can only takeoff five minutes before or ten minutes after the given
time. In his Ph.D. thesis [18], Deau provided a global formulation for the aircraft
scheduling problem on a mixed runway (on which both landing and takeoff may be
scheduled), where some of the departures are constrained by a specific takeoff slot:
the variables are the takeoff and landing times, and the minimization criterion is a
balance between the deviations from the constrained slots (for the constrained depar-
tures) and the delays (of the other flights). By taking advantage of some particular
properties of the problem (symmetries, equivalences, between aircraft, and detection
of suboptimal scheduling as illustrated in Fig. 16.25), this author produced a branch
and bound algorithm that found and proved an optimal solution in a few seconds, for
a large sample of problems involving more than 50 aircraft.

Applying the same scheduling algorithm to shifting periods in a whole day of
traffic at Roissy-CDG airport [19], Deau et al. found a global schedule for all move-
ments, on all runways, compliant with all the constrained takeoff slots, that generated
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Fig. 16.25 Detection of a
suboptimal scheduling

a global delay that appeared to be half of that measured from a complete simulation
of the same traffic. These results show that the runways are not the only source of
delay at an airport such as Roissy-CDG, and that the traffic also needs to be optimized
during taxiing.

16.5.3 Surface Routing Optimization

Airport studies often ignore the problem of taxiing aircraft, although this step causes
serious issues to airport controllers and can generate important delays (especially
in the stand area, where aircraft have to maneuver or be maneuvered at low speed,
without the possibility of overtaking other aircraft).

The first detailed study concerning airport surface routing optimization was pro-
vided in [80]: the authors of that study modeled the taxiways of the airport as an
oriented graph connecting the stands to the runways (and conversely). Classical path
enumeration algorithms were used to compute a set of alternative routes for each
aircraft. The routing problem was then formulated as the choice of the routes asso-
ciated with some optional holding points, in such a way that a minimum distance
is ensured between each aircraft pair in each time step, while minimizing a global
criterion based on the total delay (due to route lengthening and waiting times). To
solve this very combinatorial problem, the authors compared two strategies:

• The first strategy consists in simplifying the problem by attaching priority levels
to the aircraft: a total order allows the aircraft to be sorted and to be considered one
after the other. Each aircraft is assigned a trajectory (a route and some optional
holding points) in the given order. Thus, the nth aircraft has to avoid the n − 1
previous ones, once their trajectories have been fixed. The problem is thus split
into a succession of best-path searches with avoidance of obstacles, which can be
performed very quickly by a simple A* algorithm.
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Fig. 16.26 Encoding in
genetic algorithm for the
aircraft routing problem

Route

Aircraft

Holding position

Holding time

Fig. 16.27 Trajectory
prediction with speed
uncertainties

• The second strategy is based on a genetic algorithm that deals with the whole prob-
lem, without presuming any priority levels of aircraft: each chromosome describes
a route and a holding position (associated with a holding time) for each aircraft
(see Fig. 16.26). More efficient mutation and crossover operators can be defined
with this kind of encoding, taking advantage of some partial fitnesses (one per
aircraft) that allow the parts of the chromosomes that are the least promising to be
changed more often.

Measured by simulation of some actual traffic at Roissy-CDG airport, the genetic
algorithm appeared more efficient, as it reduced the mean aircraft delay by one minute
(from 4 min), compared with the strategy based on priority levels.

In his Ph.D. thesis [55], Gotteland developed and refined this study:

• Aircraft trajectories where we predicted with a given rate of uncertainty in their
speeds (see Fig. 16.27), and conflicts were detected between all the possible posi-
tions of each aircraft.

• The criterion to be minimized measured the deviations from the takeoff slots
assigned to the constrained departures.

• Conflicts caused by arrivals crossing the departure runway after landing were also
considered.

With this formulation, the problem is a mix between the aircraft routing problem,
the management of the arrivals that have to cross the departure runway, and the
scheduling of departures on the runway. A new genetic algorithm was introduced,
in the form of a hybridization of the two previous routing strategies (priority levels
and genetic algorithm):

• Each chromosome described a route and a priority level (or rank) for each aircraft
(see Fig. 16.28).
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Fig. 16.28 Encoding in
hybrid genetic algorithm for
the routing problem

Aircraft

Route Rank

• To evaluate such a chromosome, the aircraft were considered one after the other
(by increasing rank), and were assigned their specified route. For each aircraft,
a branch and bound algorithm (which appeared more efficient than the previous
A* algorithm once the choice of the route had been made) was run to find the
corresponding best trajectory, avoiding the ones already computed.

The efficiency of this hybrid genetic algorithm was compared with the two pre-
vious strategies, using the same simulator with an actual sample of traffic at Roissy-
CDG airport. The delays due to surface conflicts were decreased by more than one
minute from 5 min during heavy periods, and the assigned takeoff slots were all
respected (in the 15 min tolerance time window) and better scheduled (more than
80 % happened at less than one minute from the specified time).

Dealing with the aircraft routing problem at Madrid-Barajas airport, García et al.
[41], combined a deterministic flow management algorithm with a genetic algorithm
to assign a route and a beginning time to each movement (a landing time for arrivals
and an off-block time for departures).

In [82], for simpler, fictional airport (with fewer taxiways and fewer movements),
Roling and Visser succeeded in modeling and globally solving the airport surface
traffic planning problem, using mixed integer linear programming (where the vari-
ables described the times at which each aircraft traveled on each portion of taxiway).
They obtained a route assignment process associated with some specific aircraft
holding positions that globally minimized the taxi times.

16.5.4 Global Airport Traffic Planning

In the more global framework of traffic planning at busy airports, several different
concepts or systems are often studied:

• Arrival management (AMAN) includes all the predictions that can be made about
the arrival flow, taking into account the constraints of the approach sectors (which
are sometimes shared by different airports), in order to evaluate aircraft landing
times with the best possible accuracy.

• Departure management (DMAN) starts with the prediction of the takeoff
sequences, taking into account the departure times targeted by the airlines, poten-
tial constraints on takeoff slots, and the separation times needed on the runways.
By considering the taxi-out times of aircraft and the takeoff sequences, it is also
possible to delay some off-block times for departures, in order to make them hold
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at the gate (with engines off) rather than in a queue for the runway (with engines
on).

• Surface management (SMAN) deals with the routing of aircraft at the airport
(taking into account all the AMAN and DMAN information): the goal is to assign
strategic routes that are compliant with the predicted landing or takeoff times of
aircraft, while keeping the ground traffic situation as fluent as possible.

Deau et al. [19], pointed out the obvious dependency problems that arise in these
predictive systems: the delay of an arrival can affect the time of its subsequent
departure, and decisions made while handling taxiing aircraft can quickly result
in situations where the takeoff sequences must be updated (as the off-block and
landing times must also be, when the runway is shared by both types of movements).
Moreover, the uncertainties that exist in the speed of aircraft during taxiing (which can
easily reach 50 % of their average speed on each taxiway portion) make the ground
traffic situation hard to predict (the possible positions of an aircraft 5 min later extend
over one kilometer). Thus, the predictions of the different systems cannot share the
same magnitude: it is over 30 min for the AMAN–DMAN system, but under 10 min
for the SMAN. Deau et al. proposed an iterative process that would allow coordination
between the different systems, in which some optimal takeoff and landing sequences
are computed, taking into account the current positions of the aircraft (with a runway
time window T WR of 30 min). These sequences are then used to resolve the ground
conflicts more efficiently (with a surface time window T WS of 5 min), as illustrated
in Fig. 16.29.

By carrying out fast simulations of some actual traffic at Roissy-CDG, Deau
et al. measured how the mean delay of aircraft could be decreased, first by the
optimization of runway sequences, and then by the use of a hybrid genetic algorithm
(rather than a sequential method using fixed priority levels) to solve ground conflicts
(see Fig. 16.30).

Fig. 16.29 Coordination of AMAN–DMAN and SMAN systems
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Fig. 16.30 Mean delay of aircraft in Roissy-CDG simulations (FIFO, first-in first-out; GA, genetic
algorithm)

Still on the topic of integrating different predictive systems, the management of
the capacity of several neighboring airports has also been studied: Hu et al. [60],
considered a set of airports made up of one main airport surrounded by other satellite
airports, between which arrivals could be exchanged. The capacity of each airport
varied, owing to meteorological conditions, its configuration (the runways used and
the distribution of arrivals and departures on each runway), and its traffic composition
(aircraft types). The problem was modeled as follows:

• The variables described the airports’ successive configurations on one hand and
the assignment of airports to arriving aircraft on the other hand.

• The minimization criterion was formulated as a balance between the size of the
various aircraft queues (for arrival and for departure, at each airport) and the
number of airport changes (compared with the initial airport assignments).

Hu et al. showed that a genetic algorithm could find some efficient solutions to the
problem for a one-day traffic sample, using successive resolutions of the situations
(for shifting periods of the day).

16.6 Aircraft Conflict Resolution

An air traffic controller is charged with the task of separating aircraft in order to
prevent conflicts.8

Alliot et al. [5] first introduced, in 1993, a conflict resolution method using a
genetic algorithm. The model was very simple: time was discretized in 16 steps
of 40 seconds each. Each aircraft could, in each of the 16 time steps, either go
straight, turn right, or turn left, with a 30◦ heading change. Each maneuver was

8Two aircraft are conflicting if the horizontal distance between them is less than 5 nautical miles
and the vertical distance is less than 1000 feet.
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encoded with two bits (00 and 01 = go straight; 10 = turn right; 11 = turn left).
Each trajectory was encoded with 32 bits. For a two-aircraft problem, 64 bits were
necessary. Results obtained with the genetic algorithm were compared with an A*
algorithm and a simulated annealing method. The genetic algorithm showed good
efficiency on simple examples.

In his Ph.D. thesis, Durand [27] modeled the problem differently: the maneuvers
were not encoded as bit strings but as reals and quantitative values: each aircraft
could execute at most one maneuver starting at time t0 and ending at time t1. This
could be a heading change of 10, 20, or 30◦ to the right or to the left of the initial
heading. An n-aircraft conflict was thus encoded by 3n variables. Durand and Alliot
defined a crossover operator adapted to partially separable problems [32]: from two
parents, two children are built using the “best” characteristics of their parents. Fig-
ures 16.31 and 16.32 detail the principle of this operator for a seven-aircraft conflict.
The objective of the operator is to copy from each parent the part that resolves the
largest number of conflicts.

Thanks to this operator, an evolutionary algorithm was able to resolve large con-
flicts involving up to 30 aircraft in a very short time (less than a minute). Durand and
Alliot tested the method on a fast time simulator using real traffic data and showed
that they could resolve every conflict, even with important uncertainty margins on
the trajectory predictions [4, 30, 33, 36].

Granger et al. [56] adapted the previous results to direct routes by modeling
existing routes. Akker et al. [1] used a free-route approach. Malaek et al. [70] used
a model close to Durand’s approach and took the impact of wind into account. A
genetic algorithm was used to coordinate continuous aircraft maneuvers.

Fig. 16.31 Aircraft cluster;
structure of the two parents
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Fig. 16.32 Adapted
crossover operator A1
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16.6.1 Ant Colony Optimization Approach

Other metaheuristics have been tested on the conflict resolution problem. Durand
and Alliot [32] introduced an ant colony optimization algorithm to resolve complex
conflicts. Here, in every generation, each aircraft is represented by an ant. Ants
which have been able to reach their destination without creating any conflict with
other ants deposit pheromones according to the shortness of the path found. The other
ants do not deposit pheromones. For difficult problems, the separation constraints
between aircraft can be relaxed: ants deposit pheromones even if they do not respect
constraints. The amount of pheromone is inversely proportional to the number of
conflicts generated. This idea was used by Meng and Qi [73] with a naive formulation.

16.6.2 Free-Flight Approaches

Evolutionary algorithms have been used in distributed approaches. In the United
States, Mondoloni et al. [75] and Vivona et al. [89] introduced free-flight models for
optimizing coordinated trajectories.
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Free-flight models were also used in the reactive approach introduced by Durand
et al. [34, 37]. This approach uses a neural network for each aircraft in order to avoid
intrusive aircraft. The parameters of the neural network parameters are optimized by
an evolutionary algorithm for a set of conflicts representing different configurations.

Figure 16.33 shows the data used as an input for the neural network, and its
structure. Figure 16.34 gives examples of the conflicts used to optimize the weights
of the neural network. The fitness function used in the evolutionary algorithm takes
into account the fact that conflicts are resolved and that trajectories generate little
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Fig. 16.35 Solution
comparison: top local
method; bottom, neural
network

delay. Figure 16.35 compares maneuvers obtained with the neural network (bottom)
and a classical optimization tool (top).

16.6.3 A Framework for Comparing Different Approaches

It is very challenging to compare results obtained by different teams when reading
articles on conflict resolution methods. Research teams generally use different data,
they do not offer free access to the data they use, and they are often experts in one
optimization method only.
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Fig. 16.36 Trajectory prediction with uncertainty

Recent studies have tried to answer this issue by offering benchmarks that can
be downloaded to test different algorithms. Vanaret et al. [88] compared three meta-
heuristics on the conflict resolution problem: a differential evolution method, an
evolutionary algorithm, and a particle swarm optimization approach. These authors
showed that, most of the time, differential evolution was as efficient as the evolu-
tionary algorithm and sometimes even better, and always better than particle swarm
optimization in many examples.

In [3], Allignol et al. proposed a benchmark that can easily be used by anyone
by accessing it on the link http://clusters.recherche.enac.fr. It does not require any
knowledge of air traffic control. The benchmark contains 120 different scenarios of
conflicts involving n aircraft (n varying from 5 to 20) and three levels of uncertainties
εlow, εmedium and εhigh. Uncertainties in speeds and also in headings and turning points
are considered. Future positions of aircraft are represented by convex hulls, the sizes
of which evolve with time (see Fig. 16.36). In each scenario, aircraft can choose from
among m = 151 different trajectories.

In the benchmark, one file contains a description of the trajectory of each aircraft
maneuver and another file describes the four dimensional conflict matrix. For each
aircraft–maneuver pair (i, k) and aircraft–maneuver pair (j, l), the matrix returns 1
if there is a conflict, and 0 otherwise. The file also gives the cost of each maneuver.
The model is completely separated from the problem to be solved. The problem
can thus be solved with constraint programming methods as well as evolutionary
algorithms. Results (Table 16.2) show that the approach is often more efficient when
the problems are not too large, and it has the great advantage that it can prove the
optimality of the solution, or prove that no solution can be found.

http://clusters.recherche.enac.fr
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Table 16.2 Mean cost of the best solutions for different conflict sizes and different levels of
uncertainties. Conflicts for which optimality was not proven are shaded. The cells with only one
number for both CP (constraint programming) and EA (evolutionary algorithm) correspond to
instances for which both algorithms reached the optimum

16.7 Conclusion

In this chapter, we have presented many applications of metaheuristics to air traffic
management problems. We have focused on the different possible models that have
been explored, and detailed the solution methods that were used.

When it was possible, we have tried to compare the different methods used. More
particularly, some problems could be solved with exact methods as well as with
metaheuristics, and in those cases we have given some elements of a comparison.
The complexity of the problems, their connection with external problems, their huge
size, and the uncertainties that are involved, make these problems very challenging
and exciting to deal with, but they also limit the possibility of a rigorous scientific
approach in which one compares many different methods on series of freely acces-
sible benchmarks. As a consequence, it is not easy to find exhaustive comparisons
of methods on problems, that are reproducible by other research teams with publicly
available data. However, a few benchmarks have been put online recently.

For some problems, we have shown that it was possible to use exact optimization
methods, especially on highly constrained problems such as allocation of sectors to
teams of controllers. On other problems, such as the creation of a route network,
geometrical methods can give good solutions, even if they do not optimize the solu-
tion.

In many cases, however, metaheuristics are the most efficient existing methods,
sometimes the only applicable methods to deal with difficult combinatorial problems
for which the criteria to be optimized require one to run a simulation. Metaheuris-
tics are useful tools and sometimes are necessary to tackle air traffic management
problems. They allow us to model problems in a realistic way instead of using a
simplified mathematical model that is often unable to handle realistic constraints.
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