
Patrick Siarry Editor

Metaheuristics

Metaheuristics

Patrick Siarry
Editor

Metaheuristics

123

Editor
Patrick Siarry
Laboratory LiSSi (EA 3956)
Université Paris-Est Créteil
Créteil
France

ISBN 978-3-319-45401-6 ISBN 978-3-319-45403-0 (eBook)
DOI 10.1007/978-3-319-45403-0

Library of Congress Control Number: 2016952499

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1 Introduction . 1
Patrick Siarry
1.1 “Hard” Optimization . 2
1.2 Source of the Effectiveness of Metaheuristics 4

1.2.1 Trapping of a “Classical” Iterative Algorithm
in a Local Minimum . 4

1.2.2 Capability of Metaheuristics to Extract Themselves
from a Local Minimum . 5

1.3 Principles of the Most Widely Used Metaheuristics 5
1.3.1 Simulated Annealing . 5
1.3.2 The Tabu Search Method . 7
1.3.3 Genetic Algorithms and Evolutionary Algorithms 9
1.3.4 Ant Colony Algorithms . 12
1.3.5 Other Metaheuristics . 13

1.4 Extensions of Metaheuristics . 14
1.4.1 Adaptation for Problems with Continuous

Variables . 14
1.4.2 Multiobjective Optimization . 14
1.4.3 Hybrid Methods . 14
1.4.4 Multimodal Optimization. 15
1.4.5 Parallelization . 15

1.5 Place of Metaheuristics in a Classification of Optimization
Methods . 15

1.6 Applications of Metaheuristics . 16
1.7 An Open Question: The Choice of a Metaheuristic 17
1.8 Outline of the Book . 17
References. 18

2 Simulated Annealing . 19
Patrick Siarry
2.1 Introduction . 19

v

2.2 Presentation of the Method . 20
2.2.1 Analogy Between an Optimization Problem

and Some Physical Phenomena 20
2.2.2 Real Annealing and Simulated Annealing 21
2.2.3 Simulated Annealing Algorithm 21

2.3 Theoretical Approaches . 22
2.3.1 Theoretical Convergence of Simulated Annealing 23
2.3.2 Configuration Space . 24
2.3.3 Rules of Acceptance . 25
2.3.4 Program of Annealing . 26

2.4 Parallelization of the Simulated Annealing Algorithm 27
2.5 Some Applications . 30

2.5.1 Benchmark Problems of Combinatorial
Optimization . 30

2.5.2 Layout of Electronic Circuits. 32
2.5.3 Search for an Equivalent Schema in Electronics 35
2.5.4 Practical Applications in Various Fields 37

2.6 Advantages and Disadvantages of the Method 38
2.7 Simple Practical Suggestions for Beginners 39
2.8 Modeling of Simulated Annealing

Through the Markov Chain Formalism. 40
2.8.1 Asymptotic Behavior of Homogeneous Markov

Chains . 41
2.8.2 Choice of Annealing Parameters 42
2.8.3 Modeling of the Simulated Annealing Algorithm

by Inhomogeneous Markov Chains 47
2.9 Annotated Bibliography . 47
References. 48

3 Tabu Search . 51
Eric Taillard
3.1 Introduction . 51
3.2 The Quadratic Assignment Problem . 53

3.2.1 Example . 54
3.3 Basic Tabu Search . 54

3.3.1 Neighborhood . 55
3.3.2 Moves and Neighborhoods . 56
3.3.3 Neighborhood Evaluation . 58
3.3.4 Neighborhood Limitation: Candidate List 60
3.3.5 Neighborhood Extension: Ejection Chains. 61

3.4 Short-Term Memory . 63
3.4.1 Hash Table . 63
3.4.2 Tabu List . 64
3.4.3 Duration of Tabu Conditions . 65
3.4.4 Aspiration Conditions . 71

vi Contents

3.5 Long-Term Memory . 72
3.5.1 Frequency-Based Memory . 72
3.5.2 Forced Moves . 74

3.6 Convergence of Tabu Search . 75
3.7 Conclusion . 75
3.8 Annotated Bibliography . 76
References. 76

4 Variable Neighborhood Search. 77
Gilles Caporossi, Pierre Hansen and Nenad Mladenović
4.1 Introduction . 77
4.2 Description of the Algorithm . 78

4.2.1 Local Search . 78
4.2.2 Diversification of the Search . 81
4.2.3 The Variable Neighborhood Search 83

4.3 Illustration and Extensions . 85
4.3.1 Finding Extremal Graphs with VNS 86
4.3.2 Improving the k-Means Algorithm 93
4.3.3 Using VNS for Continuous Optimization Problems. . . . 95

4.4 Conclusion . 96
4.5 Annotated Bibliography . 96
References. 97

5 A Two-Phase Iterative Search Procedure:
The GRASP Method . 99
Michel Vasquez and Mirsad Buljubašić
5.1 Introduction . 99
5.2 General Principle Behind the Method . 99
5.3 Set Covering Problem. 101
5.4 An Initial Algorithm . 102

5.4.1 Constructive Phase . 102
5.4.2 Improvement Phase . 104

5.5 Benchmark . 105
5.6 Experiments with greedy(a)+descent. 105
5.7 Local Tabu Search . 107

5.7.1 The Search Space . 107
5.7.2 Evaluation of a Configuration . 107
5.7.3 Managing the Tabu List . 108
5.7.4 Neighborhood . 108
5.7.5 The Tabu Algorithm . 109

5.8 Experiments with greedy(a)+descent+Tabu 109
5.9 Experiments with greedy(1)+Tabu . 111
5.10 Conclusion . 112
5.11 Annotated Bibliography . 113
References. 113

Contents vii

6 Evolutionary Algorithms. 115
Alain Petrowski and Sana Ben Hamida
6.1 From Genetics to Engineering . 115

6.1.1 Genetic Algorithms or Evolutionary Algorithms? 116
6.2 The Generic Evolutionary Algorithm . 117

6.2.1 Selection Operators . 117
6.2.2 Variation Operators . 118
6.2.3 The Generational Loop . 119
6.2.4 Solving a Simple Problem . 119

6.3 Selection Operators. 120
6.3.1 Selection Pressure . 121
6.3.2 Genetic Drift . 122
6.3.3 Proportional Selection . 123
6.3.4 Tournament Selection . 129
6.3.5 Truncation Selection . 130
6.3.6 Environmental Selection . 130
6.3.7 Fitness Function . 132

6.4 Variation Operators and Representation 133
6.4.1 Generalities About the Variation Operators 133
6.4.2 Crossover . 135
6.4.3 Mutation . 136

6.5 Binary Representation. 137
6.5.1 Crossover . 138
6.5.2 Mutation . 139

6.6 Real Representation . 140
6.6.1 Crossover . 141
6.6.2 Mutation . 145

6.7 Some Discrete Representations for Permutation Problems 149
6.7.1 Ordinal Representation . 150
6.7.2 Path or Sequence Representation 151

6.8 Syntax Tree-Based Representation for Genetic
Programming . 154
6.8.1 Initializing the Population . 156
6.8.2 Crossover . 156
6.8.3 Mutations . 158
6.8.4 Application to Symbolic Regression 159

6.9 The Particular Case of Genetic Algorithms. 162
6.10 The Covariance Matrix Adaptation Evolution Strategy 163

6.10.1 Presentation of Method . 163
6.10.2 The CMA-ES Algorithm . 168
6.10.3 Some Simulation Results . 170

6.11 Conclusion . 173
6.12 Glossary . 174
6.13 Annotated Bibliography . 175
References. 175

viii Contents

7 Artificial Ants . 179
Nicolas Monmarché
7.1 Introduction . 179
7.2 The Collective Intelligence of Ants . 180

7.2.1 Some Striking Facts . 180
7.2.2 The Chemical Communication of Ants 181

7.3 Modeling the Behavior of Ants . 183
7.3.1 Defining an Artificial Ant . 183
7.3.2 Ants on a Graph . 183

7.4 Combinatorial Optimization with Ants . 185
7.4.1 The Traveling Salesman Problem 185
7.4.2 The ACO Metaheuristic. 187
7.4.3 Convergence of ACO Algorithm 196
7.4.4 Comparison with Evolutionary Algorithms 197

7.5 Conclusion . 199
7.6 Annotated Bibliography . 200
References. 201

8 Particle Swarms. 203
Maurice Clerc
8.1 Unity Is Strength . 203
8.2 Ingredients of PSO . 204

8.2.1 Objects . 204
8.2.2 Relations . 205
8.2.3 Mechanisms. 206

8.3 Some Versions of PSO . 210
8.3.1 1998. A Basic Version . 210
8.3.2 Two Improved “Standard” Versions 212

8.4 Applications and Variants . 215
8.5 Going Further . 216
8.6 Appendix . 217

8.6.1 A Simple Example . 217
8.6.2 SPSO 2011 with Distance–Fitness Correlation 217
8.6.3 Comparison of Three Simple Variants. 219
8.6.4 About Some Traps. 219
8.6.5 On the Importance of the Generators of Numbers 223

References. 225

9 Some Other Metaheuristics. 229
Ilhem Boussaïd
9.1 Introduction . 229
9.2 Artificial Immune Systems . 230

9.2.1 Negative-Selection-Based Algorithms 232
9.2.2 Clonal Selection-Based Algorithms 233
9.2.3 Artificial Immune Networks . 234

Contents ix

9.2.4 Danger-Theory-Inspired Algorithms 235
9.2.5 Dendritic Cell Algorithms . 236

9.3 Differential Evolution . 237
9.3.1 Mutation Schemes . 239
9.3.2 Crossover . 240

9.4 Bacterial Foraging Optimization Algorithm 243
9.4.1 Chemotaxis . 244
9.4.2 Swarming . 245
9.4.3 Reproduction . 246
9.4.4 Elimination and Dispersal . 246

9.5 Biogeography-Based Optimization (BBO) 248
9.6 Cultural Algorithms . 253
9.7 Coevolutionary Algorithms . 255
9.8 Conclusion . 256
9.9 Annotated Bibliography . 257
References. 257

10 Nature Inspires New Algorithms . 263
Sébastien Aupetit and Mohamed Slimane
10.1 Bees . 264

10.1.1 Honeybee Foraging . 264
10.1.2 Classical ABC Implementation 266
10.1.3 Parameterization and Evolution

of the Classical ABC Algorithm 269
10.2 In Search of the Perfect Harmony. 270

10.2.1 Memory Initialization . 273
10.2.2 Improvisation of a New Harmony 273
10.2.3 Updating of the Memory Slots 274
10.2.4 Parameterization and Evolution of the Classical

Algorithm . 275
10.3 The Echolocation Behavior of Microbats 275

10.3.1 Initialization Step. 277
10.3.2 Moves of the Bats . 278
10.3.3 Update of the Emission Properties

of the Ultrasound. 279
10.3.4 Evolution of the Algorithm . 279

10.4 Nature Continues to Inspire New Algorithms 280
10.4.1 Bacterial Foraging Optimization 280
10.4.2 Slime Mold Optimization . 281
10.4.3 Fireflies and Glowworms. 281
10.4.4 Termites . 282
10.4.5 Roach Infestation. 282
10.4.6 Mosquitoes . 282
10.4.7 Wasps . 282
10.4.8 Spiders . 282
10.4.9 Cuckoo Search . 282

x Contents

10.5 Conclusion . 283
10.6 Annotated Bibliography . 283
References. 283

11 Extensions of Evolutionary Algorithms to Multimodal
and Multiobjective Optimization . 287
Alain Petrowski
11.1 Introduction . 287
11.2 Multimodal Optimization . 288

11.2.1 The Problem . 288
11.2.2 Niching with the Sharing Method 289
11.2.3 Niching with the Deterministic Crowding Method 291
11.2.4 The Clearing Procedure . 292
11.2.5 Speciation . 295

11.3 Multiobjective Optimization . 297
11.3.1 Problem Formalization. 297
11.3.2 The Quality Indicators . 299
11.3.3 Multiobjective Evolutionary Algorithms 302
11.3.4 Methods Using a Pareto Ranking 302
11.3.5 Scalarization Methods . 314

11.4 Conclusion . 324
11.5 Annotated Bibliography . 325
References. 325

12 Extension of Evolutionary Algorithms to Constrained
Optimization . 329
Sana Ben Hamida
12.1 Introduction . 329
12.2 Penalization . 331

12.2.1 “Death Penalty” Method . 333
12.2.2 Static Penalty Methods . 334
12.2.3 Dynamic Penalty Methods. 334
12.2.4 Adaptive Penalty Methods. 335
12.2.5 Self-adaptive Penalty Methods. 339
12.2.6 Segregated Genetic Algorithm (SGGA). 341

12.3 Superiority of Feasible Solutions . 342
12.3.1 Method of Powel and Skolnick 342
12.3.2 Deb’s Method . 343
12.3.3 Stochastic Ranking . 343

12.4 Searching for Feasible Solutions. 344
12.4.1 Repair Methods: GENOCOP III 345
12.4.2 Behavioral Memory. 346

12.5 Preserving the Feasibility of Solutions . 347
12.5.1 GENOCOP System . 347
12.5.2 Searching on the Boundary of the Feasible Region 348

Contents xi

12.5.3 “Homomorphous Mapping”. 349
12.6 Multiobjective Methods . 350

12.6.1 Method of Surry et al. 350
12.6.2 Method of Camponogara and Talukdar 351
12.6.3 IDEA Method of Singh et al. 352

12.7 Hybrid Methods . 352
12.8 Conclusion . 353
12.9 Annotated Bibliography . 354
References. 354

13 Methodology . 357
Eric Taillard
13.1 Introduction . 357

13.1.1 Academic Vehicle Routing Problem 358
13.2 Decomposition Methods . 359

13.2.1 Chain of Decomposition . 359
13.2.2 Decomposition into Subproblems of Smaller Size 360

13.3 Problem Modeling . 364
13.4 Population Management and Adaptive Memory

Programming . 366
13.4.1 Evolutionary or Memetic Algorithms 367
13.4.2 Scatter Search . 367
13.4.3 Ant Colonies . 368
13.4.4 Vocabulary Building . 369
13.4.5 Path Relinking. 369

13.5 Comparison of Heuristics . 371
13.5.1 Comparing Proportions . 371
13.5.2 Comparing Iterative Optimization Methods 373

13.6 Conclusion . 377
References. 378

14 Optimization of Logistics Systems Using Metaheuristic-Based
Hybridization Techniques . 381
Laurent Deroussi, Nathalie Grangeon and Sylvie Norre
14.1 Logistics Systems . 382

14.1.1 Definitions and General Considerations 382
14.1.2 Integrated View of Supply Chain 383
14.1.3 Difficulties of Performance Optimization

in a Supply Chain . 384
14.1.4 Decision Support System. 385
14.1.5 Reason for Interest in Metaheuristics. 386

14.2 Hybridization Techniques . 387
14.2.1 Generalities . 387
14.2.2 Metaheuristic/Optimization-Method Hybridization. 390

xii Contents

14.2.3 Metaheuristic/Performance-Evaluation-Method
Hybridization. 391

14.3 Application to Supply Chain Management 393
14.3.1 Preamble . 393
14.3.2 Production/Distribution Planning 394
14.3.3 Location–Routing Problem . 397
14.3.4 Multiplant Multiproduct Capacitated Lot-Sizing

Problem . 399
14.3.5 Flexible Manufacturing System 401

14.4 Conclusion . 402
References. 403

15 Metaheuristics for Vehicle Routing Problems 407
Caroline Prodhon and Christian Prins
15.1 Introduction . 407
15.2 Vehicle Routing Problems . 408

15.2.1 Basic Version . 408
15.2.2 Variants of the Classical Vehicle Routing Problem 409

15.3 Basic Heuristics and Local Search Procedures 411
15.3.1 Basic Heuristics . 411
15.3.2 Local Search . 412

15.4 Metaheuristics. 418
15.4.1 Path Methods . 419
15.4.2 Population or Agent-Based Methods 420
15.4.3 Evolution of the Field, and Trends 422

15.5 The Split Approach . 423
15.5.1 Principle and Advantages . 423
15.5.2 Split Algorithm . 425
15.5.3 Integration into Heuristics and Metaheuristics 427

15.6 Example of a Metaheuristic Using the Split Approach 427
15.6.1 General Principle of GRASP�ELS 427
15.6.2 Application to the Capacitated Vehicle Routing

Problem . 428
15.7 Conclusion . 430
15.8 Annotated Bibliography . 430
References. 431

16 Applications to Air Traffic Management . 439
Nicolas Durand, David Gianazza, Jean-Baptiste Gotteland,
Charlie Vanaret and Jean-Marc Alliot
16.1 Introduction . 439
16.2 Air Route Network Optimization . 441

16.2.1 Optimal Positioning of Nodes and Edges Using
Geometric Algorithms . 442

Contents xiii

16.2.2 Node Positioning with Fixed Topology,
Using a Simulated Annealing or Particle Swarm
Optimization Algorithm. 446

16.2.3 Defining 2D Corridors with a Clustering Method
and a Genetic Algorithm . 447

16.2.4 Building Separate 3D Tubes Using an Evolutionary
Algorithm and an A� Algorithm 448

16.3 Airspace Optimization . 452
16.3.1 Airspace Sectorization . 453
16.3.2 Definition of Functional Airspace Blocks 454
16.3.3 Prediction of ATC Sector Openings 458

16.4 Departure Slot Optimization . 465
16.5 Airport Traffic Optimization . 467

16.5.1 Gate Assignment . 467
16.5.2 Scheduling the Aircraft on the Runway. 468
16.5.3 Surface Routing Optimization . 470
16.5.4 Global Airport Traffic Planning 472

16.6 Aircraft Conflict Resolution . 474
16.6.1 Ant Colony Optimization Approach 476
16.6.2 Free-Flight Approaches . 476
16.6.3 A Framework for Comparing Different Approaches . . . 478

16.7 Conclusion . 480
References. 481

Index . 485

xiv Contents

Contributors

Jean-Marc Alliot Institut de Recherche en Informatique de Toulouse, Toulouse,
France

Sébastien Aupetit Laboratoire Informatique (EA6300), Université François
Rabelais Tours, Tours, France

Sana Ben Hamida Université Paris Ouest, Nanterre, France

Ilhem Boussaïd University of Sciences and Technology Houari Boumediene,
Bab-Ezzouar, Algiers, Algeria

Mirsad Buljubašić Centre de Recherche LGI2P, Parc Scientifique Georges Besse,
Nîmes Cedex 1, France

Gilles Caporossi GERAD and HEC Montreal, Montreal, Canada

Maurice Clerc Independent Consultant, Groisy, France

Laurent Deroussi Laboratoire LIMOS, IUT d’Allier, Montlucon Cedex, France

Nicolas Durand Laboratoire MAIAA (Ecole Nationale de l’Aviation Civile),
Toulouse, France

David Gianazza Laboratoire MAIAA (Ecole Nationale de l’Aviation Civile),
Toulouse, France

Jean-Baptiste Gotteland Laboratoire MAIAA (Ecole Nationale de l’Aviation
Civile), Toulouse, France

Nathalie Grangeon Laboratoire LIMOS, IUT d’Allier, Montlucon Cedex, France

Pierre Hansen GERAD and HEC Montreal, Montreal, Canada

Nenad Mladenović GERAD and LAMIH, Université de Valenciennes et du
Hainaut-Cambrésis, Valenciennes, France

xv

Nicolas Monmarché Laboratoire d’Informatique (EA6300), Université François
Rabelais Tours, Tours, France

Sylvie Norre Laboratoire LIMOS, IUT d’Allier, Montlucon Cedex, France

Alain Petrowski Telecom SudParis, Evry, France

Christian Prins ICD-LOSI, UMR CNRS 6281, Université de Technologie de
Troyes, Troyes Cedex, France

Caroline Prodhon ICD-LOSI, UMR CNRS 6281, Université de Technologie de
Troyes, Troyes Cedex, France

Patrick Siarry Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi, E.A.
3956), Université Paris-Est Créteil Val-de-Marne, Vitry-sur-Seine, France

Mohamed Slimane Laboratoire Informatique (EA6300), Université François
Rabelais Tours, Tours, France

Eric Taillard HEIG-VD, Yverdon-les-bains, Switzerland

Charlie Vanaret Laboratoire MAIAA (Ecole Nationale de l’Aviation Civile),
Toulouse, France

Michel Vasquez Centre de Recherche LGI2P, Parc Scientifique Georges Besse,
Nîmes Cedex 1, France

xvi Contributors

Chapter 1
Introduction

Patrick Siarry

Every day, engineers and decision-makers are confronted with problems of
growing complexity in diverse technical sectors, for example in operations research,
the design of mechanical systems, image processing, and, particularly, electronics
(CAD of electrical circuits, the placement and routing of components, improvement
of the performance or manufacturing yield of circuits, characterization of equiva-
lent schemas, training of fuzzy rule bases or neural networks, …). The problem to
be solved can often be expressed as an optimization problem. Here one defines an
objective function (or several such functions), or cost function, which one seeks
to minimize or maximize vis-à-vis all the parameters concerned. The definition of
the optimization problem is often supplemented by information in the form of con-
straints. All the parameters of the solutions adopted must satisfy these constraints,
otherwise these solutions are not realizable. In this book, our interest is focused
on a group of methods, called metaheuristics or meta-heuristics, which include in
particular the simulated annealing method, evolutionary algorithms, the tabu search
method, and ant colony algorithms. These have been available from the 1980s and
have a common aim: to solve the problems known as hard optimization as well as
possible.

We will see that metaheuristics are largely based on a common set of principles
which make it possible to design solution algorithms; the various regroupings of
these principles thus lead to a large variety of metaheuristics.

P. Siarry (B)
Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi, E.A. 3956),
Université Paris-Est Créteil Val-de-Marne,
122 rue Paul Armangot, 94400 Vitry-sur-Seine, France
e-mail: siarry@u-pec.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_1

1

2 P. Siarry

1.1 “Hard” Optimization

Two types of optimization problems can be distinguished: “discrete” problems and
problems with continuous variables. To be more precise, let us quote two examples.
Among the discrete problems, one can discuss the well-known traveling salesman
problem: this is a question of minimizing the length of the route of a “traveling
salesman,” who must visit a certain number of cities before return to the town of
departure. A traditional example of a continuous problem is that of a search for the
values to be assigned to the parameters of a numerical model of a process, so that the
model reproduces the real behavior observed as accurately as possible. In practice,
one may also encounter “mixed problems,” which comprise simultaneously discrete
variables and continuous variables.

This differentiation is necessary to determine the domain of hard optimization.
In fact, two kinds of problems are referred to in the literature as hard optimization
problems (this name is not strictly defined and is bound up with the state of the art
in optimization):

• Certain discrete optimization problems, for which there is no knowledge of an
exact polynomial algorithm (i.e., one whose computing time is proportional to
N n , where N is the number of unknown parameters of the problem and n is an
integer constant). This is the case, in particular, for the problems known as “NP-
hard,” for which it has been conjectured that there is no constant n for which the
solution time is limited by a polynomial of degree n.

• Certain optimization problems with continuous variables, for which there is no
knowledge of an algorithm that enables one to definitely locate a global optimum
(i.e., the best possible solution) in a finite number of computations.

Many efforts have been made for a long time, separately, to solve these two types of
problems. In the field of continuous optimization, there is thus a significant arsenal
of traditional methods for global optimization [1], but these techniques are often
ineffective if the objective function does not possess a particular structural property,
such as convexity. In the field of discrete optimization, a great number of heuristics,
which produce solutions close to the optimum, have been developed; but the majority
of them were conceived specifically for a given problem.

The arrival of metaheuristics marks a reconciliation of the two domains: indeed,
they can be applied to all kinds of discrete problems and they can also be adapted
to continuous problems. Moreover, these methods have in common the following
characteristics:

• They are, at least to some extent, stochastic: this approach makes it possible to
counter the combinatorial explosion of the possibilities.

• They are generally of discrete origin, and have the advantage, decisive in the contin-
uous case, of being direct, i.e., they do not resort to often problematic calculations
of the gradients of the objective function.

1 Introduction 3

(a) One-dimensional representa-
tion in the domain [−100, 100]

-10
-5

0
5

10

x

-10

-5

0

5

10

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F6(x, y)

(b) Two-dimensional representation in the
domain [−10, 10]

Fig. 1.1 Shape of the test function F6

• They are inspired by analogies: with physics (simulated annealing, simulated
diffusion, …), with biology (evolutionary algorithms, tabu search, …), or with
ethology (ant colonies, particle swarms, …).

• They also share the same disadvantages: difficulties of adjustment of the parame-
ters of the method, and a large computation time.

These methods are not mutually exclusive: indeed, with the current state of
research, it is generally impossible to envisage with certainty the effectiveness of a
given method when it is applied to a given problem. Moreover, the current tendency
is the emergence of hybrid methods, which endeavor to benefit from the specific
advantages of different approaches by combining them. Finally, another aspect of
the richness of metaheuristics is that they lend themselves to all kinds of extensions.
We can quote, in particular:

• multiobjective optimization [6], which is a question of optimizing several contra-
dictory objectives simultaneously;

• multimodal optimization, where one endeavors to locate a whole set of global or
local optima;

• dynamic optimization, which deals with temporal variations of the objective func-
tion;

• the use of parallel implementations.

These extensions require, for the development of solution methods, various specific
properties which are not present in all metaheuristics. We will reconsider this subject,
which offers a means for guiding the user in the choice of a metaheuristic, later. The
adjustment and comparison of metaheuristics are often carried out empirically, by
exploiting analytical sets of test functions whose global and local minima are known.
We present in Fig. 1.1 the shape of one of these test functions as an example.

4 P. Siarry

1.2 Source of the Effectiveness of Metaheuristics

To facilitate the discussion, let us consider a simple example of an optimization prob-
lem: that of the placement of the components of an electronic circuit. The objective
function to be minimized is the length of the connections, and the unknown factors—
called “decision variables”—are the sites of the circuit components. The shape of the
objective function of this problem can be represented schematically as in Fig. 1.2,
according to the “configuration”: each configuration is a particular placement, asso-
ciated with a choice of a value for each decision variable. Throughout the entire
book—except where otherwise explicitly mentioned—we will seek in a similar way
to minimize an objective. When the space of the possible configurations has such a
tortuous structure, it is difficult to locate the global minimum c∗. We explain below
the failure of a “classical” iterative algorithm, before commenting on the advantage
that we can gain by employing a metaheuristic.

1.2.1 Trapping of a “Classical” Iterative Algorithm in a
Local Minimum

The principle of a traditional “iterative improvement” algorithm is the following:
one starts from an initial configuration c0, which can be selected at random, or—for
example in the case of the placement of an electronic circuit—can be determined by
a designer. An elementary modification is then tested; this is often called a “move-
ment” (for example, two components chosen at random are swapped, or one of them
is relocated). The values of the objective function are then compared, before and after
this modification. If the change leads to a reduction in the objective function, it is
accepted, and the configuration c1 obtained, which is a “neighbor” of the preceding
one, is used as the starting point for a new test. In the opposite case, one returns
to the preceding configuration before making another attempt. The process is car-
ried out iteratively until any modification makes the result worse. Figure 1.2 shows
that this algorithm of iterative improvement (also known as the classical method or
descent method) does not lead, in general, to the global optimum, but only to one

Fig. 1.2 Shape of the
objective function of a hard
optimization problem
depending on to the
“configuration”

FUNCTION

OBJECTIVE

CONFIGURATIONc0 c1 cn n c*

‘

1 Introduction 5

local minimum cn , which constitutes the best accessible solution taking the initial
assumption into account.

To improve the effectiveness of the method, one can of course apply it several
times, with arbitrarily selected different initial conditions, and retain as the final solu-
tion the best local minimum obtained. However, this procedure appreciably increases
the computing time of the algorithm, and may not find the optimal configuration c∗.
The repeated application of the descent method does not guarantee its termination and
it is particularly ineffective when the number of local minima grows exponentially
with the size of the problem.

1.2.2 Capability of Metaheuristics to Extract Themselves
from a Local Minimum

Another idea for overcoming the obstacle of local minima has been demonstrated to
be very profitable, so much so that it is the basic core of all metaheuristics based on
a neighborhood (the simulated annealing and tabu methods). This is a question of
authorizing, from time to time, movements of increase, in other words, accepting a
temporary degradation of the situation, during a change in the current configuration.
This happens, for example, if one passes from cn to c′

n in Fig. 1.2. A mechanism for
controlling these degradations—specific to each metaheuristic—makes it possible
to avoid divergence of the process. It consequently becomes possible to extract the
process from a trap which represents a local minimum, to allow it to explore another
more promising “valley.” The “distributed” metaheuristics (such as evolutionary
algorithms) also have mechanisms allowing the departure of a particular solution
out of a local “well” of the objective function. These mechanisms (such as mutation
in evolutionary algorithms) affect the solution in hand; in this case, they help the
collective mechanism for fighting against local minima, represented by the parallel
control of a “population” of solutions.

1.3 Principles of the Most Widely Used Metaheuristics

1.3.1 Simulated Annealing

Kirkpatrick and his colleagues were specialists in statistical physics, who were inter-
ested specifically in the low-energy configurations of disordered magnetic materials,
referred to by the term spin glasses. The numerical determination of these configu-
rations posed frightening problems of optimization, because the “energy landscape”
of a spin glass contains several “valleys” of unequal depth; it is similar to the “land-
scape” in Fig. 1.2. Kirkpatrick et al. [14] (and, independently, Cerny [2]) proposed
to deal with these problems by taking as a starting point the experimental technique

6 P. Siarry

“ ”

Fig. 1.3 Comparison of the techniques of annealing and quenching

of annealing used by metallurgists to obtain a “well-ordered” solid state, of mini-
mum energy (avoiding the “metastable” structures characteristic of local minima of
the energy). This technique consists in heating a material to a high temperature and
then lowering this temperature slowly. To illustrate the phenomenon, we represent
in Fig. 1.3 the effect of the annealing technique and that of the opposite technique of
quenching on a system consisting of a set of particles.

The simulated annealing method transposes the process of annealing to the solu-
tion of an optimization problem: the objective function of the problem, similarly to
the energy of a material, is then minimized, with the help of the introduction of a
fictitious temperature, which in this case is a simple controllable parameter of the
algorithm.

In practice, the technique exploits the Metropolis algorithm, which enables us
to describe the behavior of a thermodynamic system in “equilibrium” at a certain
temperature. On the basis of a given configuration (for example, an initial placement
of all the components), the system is subjected to an elementary modification (for
example, one may relocate a component or swap two components). If this trans-
formation causes the objective function (or energy) of the system to decrease, it is
accepted. On the other hand, if it causes an increase �E in the objective function,
it can also be accepted, but with a probability e

−�E
T . This process is then repeated

in an iterative manner, keeping the temperature constant, until thermodynamic equi-
librium is reached, at the end of a “sufficient” number of modifications. Then the

1 Introduction 7

Fig. 1.4 Flowchart of the
simulated annealing
algorithm

temperature is lowered, before implementing a new series of transformations: the
rule by which the temperature is decreased in stages is often empirical, just like the
criterion for program termination.

A flowchart of the simulated annealing algorithm is schematically presented in
Fig. 1.4. When it is applied to the problem of the placement of components, simulated
annealing generates a disorder–order transformation, which is represented in pictorial
manner in Fig. 1.5. One can also visualize some stages of this ordering by applying
the method of placement of components to the nodes of a grid (see Fig. 1.6).

The disadvantages of simulated annealing lie in the “adjustments,” such as the
management of the decrease in the temperature; the user must have the know-how
about “good” adjustments. In addition, the computing time can become very signif-
icant, which has led to parallel implementations of the method. On the other hand,
the simulated annealing method has the advantage of being flexible with respect to
the evolution of the problem and easy to implement. It has given excellent results for
a number of problems, generally of big size.

1.3.2 The Tabu Search Method

The method of searching with tabus, or simply the tabu search or tabu method, was
formalized in 1986 by Glover [10]. Its principal characteristic is based on the use of
mechanisms inspired by human memory. The tabu method, from this point of view,
takes a path opposite to that of simulated annealing, which does not utilize memory

8 P. Siarry

Fig. 1.5 Disorder–order
transformation created by
simulated annealing applied
to the placement of
electronic components

Fig. 1.6 Evolution of a
system at various
temperatures, on the basis of
an arbitrary configuration: L
indicates the overall length
of the connections

at all, and thus is incapable of learning lessons from the past. On the other hand,
the modeling of memory introduces multiple degrees of freedom, which hinders—
even in the opinion of the original author [11]—any rigorous mathematical analysis
of the tabu method. The guiding principle of the tabu method is simple: like simu-
lated annealing, the tabu method functions at any given time with only one “current
configuration” (at the beginning, an unspecified solution), which is updated during
successive “iterations.” In each iteration, the mechanism of passage of a configura-
tion, called s, to the next one, called t , comprises two stages:

1 Introduction 9

• One builds the set of neighbors of s, i.e., the set of the configurations that are
accessible in only one elementary movement of s (if this set is too large, one
applies a technique for reduction of its size: for example, one may utilize a list of
candidates, or extract at random a subset of neighbors of fixed size). Let V (s) be
the set (or a subset) of these neighbors.

• One evaluates the objective function f of the problem for each configuration
belonging to V (s). The configuration t which succeeds s in the series of solutions
built by the tabu method is the configuration of V (s) in which f takes the minimum
value. Note that this configuration t is adopted even if it is worse than s, i.e., if
f (t) > f (s): this characteristic helps the tabu method to avoid the trapping of f
in local minima.

The procedure cannot be used precisely as described above, because there is a sig-
nificant risk of returning to a configuration already obtained in a preceding iteration,
which generates a cycle. To avoid this phenomenon, the procedure requires the updat-
ing and exploitation, in each iteration, of a list of prohibited movements, the “tabu
list.” This list—which gave its name to the method—contains m movements (t → s),
which are the opposite of the last m movements (s → t) carried out. A flowchart of
this algorithm, known as the“simple tabu,” is represented Fig. 1.7.

The algorithm thus models a rudimentary form of memory, a short-term memory of
the solutions visited recently. Two additional mechanisms, named intensification and
diversification, are often implemented to equip the algorithm with a long-term mem-
ory also. This process does not exploit the temporal proximity of particular events
more, but rather the frequency of their occurrence over a longer period. Intensifica-
tion consists in looking further into the exploration of certain areas of the solution
space, identified as particularly promising ones. Diversification is, in contrast, the
periodic reorientation of the search for an optimum towards areas seldom visited
until now.

For certain optimization problems, the tabu method has given excellent results;
moreover, in its basic form, the method has fewer adjustable parameters than
simulated annealing, which makes it easier to use. However, the various additional
mechanisms, such as intensification and diversification, bring a notable amount of
complexity with them.

1.3.3 Genetic Algorithms and Evolutionary Algorithms

Evolutionary algorithms (EAs) are search techniques inspired by the biological evo-
lution of species and appeared at the end of the 1950s [9]. Among several approaches
[8, 13, 16], genetic algorithms (GAs) constitute certainly the most well-known exam-
ple, following the publication in 1989 of the well-known book by Goldberg [12].
Evolutionary methods initially aroused limited interest, because of their significant
cost of execution. But, in the last ten years, they have experienced considerable devel-
opment, which can be attributed to the significant increase in the computing power

10 P. Siarry

INITIAL CONFIGURATION s

INITIAL TABU LIST EMPTY

PERTURBATION OF s ACCORDING TO
N not tabu MOVES ;

EVALUATION OF N NEIGHBORS

NEW CURRENT
CONFIGURATION s = t

SELECTION OF BEST NEIGHBOR t

INSERTION OF MOVE
t s IN THE TABU LIST

stopping
criterion
reached ?

STOP

YES

NO

UPDATE OF THE BEST
KNOWN SOLUTION

Fig. 1.7 Flowchart of the simple tabu algorithm

of computers, in particular, following the appearance of massively parallel architec-
tures, which exploit “intrinsic parallelism” (see for example [5] for an application
to the placement of components). The principle of a simple evolutionary algorithm
can be described as follows: a set of N points in a search space, selected a priori at
random, constitutes the initial population; each individual x of the population has a
certain performance, which measures its degree of adaptation to the objective aimed
at. In the case of the minimization of an objective function f , x becomes more pow-
erful as f (x) becomes smaller. An EA consists in evolving gradually, in successive
generations, the composition of the population, with its size being kept constant.
During generations, the objective is to improve overall the performance of the indi-
viduals. One tries to obtain such a result by mimicking the two principal mechanisms
which govern the evolution of living beings according to Darwin’s theory:

• selection, which favors the reproduction and survival of the fittest individuals;
• reproduction, which allows mixing, recombination and variation of the hereditary

features of the parents, to form descendants with new potentialities.

1 Introduction 11

 Two parent individuals Two offspring individuals

0 0 1 1 0 1 0 1

1 0 1 0 0 0 1 1

0 0 1 1 0 0 1 1

1 0 1 0 0 1 0 1

0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1

 Individual before mutation Individual after mutation

(b) Mutation (one single bit)

(a) Crossover (one-point)

Fig. 1.8 Examples of crossover and mutation operators, in the case of individuals represented by
binary strings of eight numbers

In practice, a representation must be selected for the individuals of a population.
Classically, an individual can be a list of integers for a combinatorial problem, a
vector of real numbers for a numerical problem in a continuous space, or a string
of binary numbers for a Boolean problem; one can even combine these representa-
tions into complex structures if the need is so felt. The passage from one generation
to the next proceeds in four phases: a phase of selection, a phase of reproduction
(or variation), a phase of performance evaluation, and a phase of replacement. The
selection phase designates the individuals that take part in reproduction. They are
chosen, possibly on several occasions, a priori more often the powerful, they are.
The selected individuals are then available for the reproduction phase. This phase
consists in applying variation operators to copies of the individuals selected to gener-
ate new individuals; the operators most often used are crossover (or recombination),
which produces one or two descendants starting from two parents, and mutation,
which produces a new individual starting from only one individual (see Fig. 1.8 for
an example). The structure of the variation operators depends largely on the repre-
sentation selected for the individuals. The performances of the new individuals are
then evaluated during the evaluation phase, starting from the objectives specified.
Lastly, the replacement phase consists in choosing the members of the new genera-
tion: one can, for example, replace the least powerful individuals of the population

12 P. Siarry

F

Fig. 1.9 Principle of an evolutionary algorithm

by the best individuals produced, in equal numbers. The algorithm is terminated after
a certain number of generations, according to a termination criterion to be specified.
Figure 1.9 represents the principle of an evolutionary algorithm.

Because they handle a population of solution instances, evolutionary algorithms
are particularly suitable for finding a set of different solutions when an objective
function has several global optima. In this case they can provide a sample of com-
promise solutions when one is solving problems with several objectives, possibly
contradictory. These possibilities are discussed more specifically in Chap. 11.

1.3.4 Ant Colony Algorithms

This approach, proposed by Colorni et al. [7], endeavors to simulate the collective
capability to solve certain problems observed in colonies of ants, whose members
are individually equipped with very limited faculties. Ants came into existence on
earth over 100 million years ago and they are one of the most successful species:
10 million billion individuals, living everywhere on the planet. Their total weight
is of the same order of magnitude as that of humans! Their success raises many
questions. In particular, entomologists have analyzed the collaboration which occurs
between ants seeking food outside an anthill. It is remarkable that the ants always
follow the same path, and this path is the shortest possible one. This is the result of a
mode of indirect communication via the environment called “stigmergy.” Each ant
deposits along its path a chemical substance, called a pheromone. All members of
the colony perceive this substance and direct their walk preferentially towards the
more “odorous” areas.

This results particularly in a collective ability to find the shortest path quickly
after the original path has been blocked by an obstacle (Fig. 1.10). Although this

http://dx.doi.org/10.1007/978-3-319-45403-0_11

1 Introduction 13

(2)

(3)

(1)

1. Real ants follow a path between the nest and a source of food.
2. An obstacle appears on the path, and the ants choose to turn to the left or right with

equal probabilities; the pheromone is deposited more quickly on the shortest path.
3. All the ants choose the shortest path.

Fig. 1.10 Ability of an ant colony to find the shortest path after the path has been blocked by an
obstacle

behavior has been taken as a starting point for modeling the algorithm, Colorni et
al. [7] proposed a new algorithm for the solution of the traveling salesman problem.
Since this research work, the method has been extended to many other optimization
problems, some combinatorial and some continuous.

Ant colony algorithms have several interesting characteristics; we shall mention
in particular high intrinsic parallelism, flexibility (a colony of ants is able to adapt to
modifications of the environment), robustness (a colony is able to maintain its activity
even if some individuals fail), decentralization (a colony does not obey a centralized
authority), and self-organization (a colony finds a solution, which is not known in
advance, by itself). This method seems particularly useful for problems which are
distributed in nature, problems of dynamic evolution, and problems which require
strong fault tolerance. At this stage of development of these recently introduced
algorithms, however, their application to particular optimization problems is not
trivial: it must be the subject of a specific treatment, which can be difficult.

1.3.5 Other Metaheuristics

Whether other metaheuristics are variants of the most famous methods or not, they are
legion. The interested reader can refer to Chaps. 9 and 10 of this book and three other
recent books [15, 17, 19] each one of which is devoted to several metaheuristics.

http://dx.doi.org/10.1007/978-3-319-45403-0_9
http://dx.doi.org/10.1007/978-3-319-45403-0_10

14 P. Siarry

1.4 Extensions of Metaheuristics

We review here some of the extensions which have been proposed to deal with some
special features of optimization problems.

1.4.1 Adaptation for Problems with Continuous Variables

Problems with continuous variables, by far the most which are common ones in
engineering, have attracted less interest from specialists in informatics. The majority
of metaheuristics, which are of combinatorial origin, can however be adapted to
the continuous case; this requires a discretization strategy for the variables. The
discretization step must be adapted in the course of optimization to guarantee at the
same time the regularity of the progression towards the optimum and the precision
of the result. Our proposals relating to simulated annealing, the tabu method, and
GAs are described in [3, 4, 21].

1.4.2 Multiobjective Optimization

More and more problems require the simultaneous consideration of several contra-
dictory objectives. There does not exist, in this case, a single optimum; instead, one
seeks a range of solutions that are “Pareto optimal,” which form the “compromise
surface” for the problem considered. These solutions can be subjected to final arbitra-
tion by the user. The principal methods of multiobjective optimization (either using
a metaheuristic or not) and some applications, in particular in telecommunications,
were presented in the book [6].

1.4.3 Hybrid Methods

The rapid success of metaheuristics is due to the difficulties encountered by traditional
optimization methods in complex engineering problems. After the initial success of
using various metaheuristics, the time came to make a realistic assessment and to
accept the complementary nature of these new methods, both with other methods
of this type and with other approaches: from this, we saw the current emergence of
hybrid methods (see for example [18]).

1 Introduction 15

1.4.4 Multimodal Optimization

The purpose of multimodal optimization is to determine a whole set of optimal solu-
tions, instead of a single optimum. Evolutionary algorithms are particularly well
adapted to this task, owing to their distributed nature. The variants of the “multi-
population” type exploit several populations in parallel, which endeavor to locate
different optima.

1.4.5 Parallelization

Multiple modes of parallelization have been proposed for the various metaheuristics.
Certain techniques were desired to be general; others, on the other hand, benefit
from specific characteristics of the problem. Thus, in problems of placement of
components, the tasks can be naturally distributed between several processors: each
one of them is responsible for optimizing a given geographical area and information
is exchanged periodically between nearby processors (see, for example, [20, 22]).

1.5 Place of Metaheuristics in a Classification of
Optimization Methods

In order to recapitulate the preceding considerations, we present in Fig. 1.11 a general
classification of mono-objective optimization methods, already published in [6]. In
this figure, one can see the principal distinctions made above:

• Initially, combinatorial and continuous optimizations are differentiated.
• For combinatorial optimization, one can approach the problem by several different

methods when one is confronted with a hard problem; in this case, a choice is
sometimes possible between “specialized” heuristics, entirely dedicated to the
problem considered, and a metaheuristic.

• For continuous optimization, we immediately separate the linear case (which is
concerned in particular with linear programming) from the nonlinear case, where
the framework for hard optimization can be found. In this case, a pragmatic solution
can be to resort to the repeated application of a local method which may or may
not exploit the gradients of the objective function. If the number of local minima
is very high, recourse to a global method is essential: those metaheuristics are then
found which offer an alternative to the traditional methods of global optimization,
those requiring restrictive mathematical properties of the objective function.

• Among the metaheuristics, one can differentiate the metaheuristics of “neighbor-
hood,” which make progress by considering only one solution at a time (simulated
annealing, tabu search, …), from the “distributed” metaheuristics, which handle
in parallel a complete population of solutions (genetic algorithms, …).

16 P. Siarry

OPTIMIZATION

Minimization
of a cost Identification Characterization problem

Inverse

COMBINATORIAL CONTINUOUS

method
EXACT

(specialized) method
APPROXIMATE NONLINEAR

 + (often)
not analytically known

LINEAR
Linear
programming

method
GLOBAL

method
LOCAL

HEURISTIC
specialized

META- -
HEURISTIC

CLASSICAL
(often with
gradients)

WITH
GRADIENTS

WITHOUT
GRADIENTS

of NEIGHBORHOOD DISTRIBUTED

method
HYBRID

SIMPLE COMPLEX

Difficult optimization

Fig. 1.11 General classification of mono-objective optimization methods

• Finally, hybrid methods often associate a metaheuristic with a local method. This
cooperation can take the simple form of relaying between the metaheuristic and the
local technique, with the objective of refining the solution. But the two approaches
can also be intermingled in a more complex way.

1.6 Applications of Metaheuristics

Metaheuristics are now regularly employed in all sectors of engineering, to such an
extent that it is not possible to draw up a complete inventory of the applications here.
Several examples will be described in the chapters devoted to various metaheuristics.
The last part of this book is devoted to a detailed presentation of three case studies,
in the fields of logistics systems, air traffic, and vehicle routing.

1 Introduction 17

1.7 An Open Question: The Choice of a Metaheuristic

This presentation must not ignore the principal difficulty with which an engineer is
confronted in the presence of a concrete optimization problem: that of the choice of
an “efficient” method, able to produce an “optimal” solution—or one of acceptable
quality—in “reasonable” computing time. In relation to this pragmatic concern of
the user, the theory is not yet of great help, because convergence theorems are often
nonexistent or applicable only under very restrictive assumptions. Moreover, the
“optimal” adjustment of the various parameters of a metaheuristic that might be
recommended theoretically is often inapplicable in practice, because it induces a
prohibitive computing cost. Consequently, the choice of a “good” method, and the
adjustment of the parameters of that method, generally calls upon the know-how and
“experience” of the user, rather than the faithful application of well-laid-down rules.
The research efforts in progress, for example the analysis of the “energy landscape”
or the development of a taxonomy of hybrid methods, are aimed at rectifying this
situation, which is perilous in the long term for the credibility of metaheuristics.
Nevertheless, we will try to outline, in Chap. 13 of this book, a technique that may
be of assistance in the selection of a metaheuristic.

1.8 Outline of the Book

This book comprises three parts.
The first part is devoted to a detailed presentation of the more widely known

metaheuristics:

• the simulated annealing method (Chap. 2);
• tabu search (Chap. 3);
• variable neighborhood search (Chap. 4);
• the GRASP method (Chap. 5);
• evolutionary algorithms (Chap. 6);
• ant colony algorithms (Chap. 7);
• particle swarm optimization (Chap. 8).

Each one of these metaheuristics is actually a family of methods, the essential ele-
ments of which we try to discuss.

In the second part (Chaps. 9–13) we present some other metaheuristics, which are
less widespread or still emergent. Then we describe some extensions of metaheuris-
tics (constrained optimization, multiobjective optimization, …) and some ways of
searching.

Lastly, we consider the problem of the choice of a metaheuristic, and we describe
two unifying methods which may help to reduce the difficulty of this choice.

The last part concentrates on three case studies:

http://dx.doi.org/10.1007/978-3-319-45403-0_13
http://dx.doi.org/10.1007/978-3-319-45403-0_2
http://dx.doi.org/10.1007/978-3-319-45403-0_3
http://dx.doi.org/10.1007/978-3-319-45403-0_4
http://dx.doi.org/10.1007/978-3-319-45403-0_5
http://dx.doi.org/10.1007/978-3-319-45403-0_6
http://dx.doi.org/10.1007/978-3-319-45403-0_7
http://dx.doi.org/10.1007/978-3-319-45403-0_8
http://dx.doi.org/10.1007/978-3-319-45403-0_9
http://dx.doi.org/10.1007/978-3-319-45403-0_13

18 P. Siarry

• hybrid metaheuristics designed for optimization of logistics systems (Chap. 14);
• metaheuristics aimed at solving vehicle routing problems (Chap. 15);
• applications in air traffic management (Chap. 16).

References

1. Berthiau, G., Siarry, P.: État de l’art des méthodes d’optimisation globale. RAIRO Operations
Research 35(3), 329–365 (2001)

2. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient simu-
lation algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)

3. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization
of multimodal functions. Journal of Heuristics 6, 191–213 (2000)

4. Chelouah, R., Siarry, P.: Tabu Search applied to global optimization. European Journal of
Operational Research 123, 256–270 (2000)

5. Cohoon, J., Hegde, S., Martin, W., Richards, D.: Distributed genetic algorithms for the floorplan
design problem. IEEE Transactions on Computer-Aided Design 10(4), 483–492 (1991)

6. Collette, Y., Siarry, P.: Multiobjective Optimization. Springer (2003)
7. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceed-

ings of the European Conference on Artificial Life, ECAL’91, pp. 134–142. Elsevier (1991)
8. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artifical Intelligence Through Simulated Evolution.

Wiley (1966)
9. Fraser, A.S.: Simulation of genetic systems by automatic digital computers. Australian Journal

of Biological Sciences 10, 484–491 (1957)
10. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers

and Operations Research 13(5), 533–549 (1986)
11. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic (1997)
12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley (1989)
13. Holland, J.H.: Outline for logical theory of adaptive systems. Journal of the Association for

Computing Machinery 3, 297–314 (1962)
14. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science

220(4598), 671–680 (1983)
15. Pham, D., Karaboga, D.: Intelligent Optimisation Techniques. Genetic Algorithms, Tabu

Search, Simulated Annealing and Neural Networks. Springer (2000)
16. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Estab-

lishment Library Translation (1965)
17. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Advanced Topics in

Computer Science Series. McGraw-Hill Ryerson (1995)
18. Renders, J., Flasse, S.: Hybrid methods using genetic algorithms for global optimization. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(2), 243–258 (1996)
19. Saït, S., Youssef, H.: Iterative Computer Algorithms with Applications in Engineering. IEEE

Computer Society Press (1999)
20. Sechen, C.: VLSI Placement and Global Routing Using Simulated Annealing. Kluwer Acad-

emic (1988)
21. Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced Simulated Annealing for globally min-

imizing functions of many continuous variables. ACM Transactions on Mathematical Software
238, 209–228 (1997)

22. Wong, D., Leong, H., Liu, C.: Simulated Annealing for VLSI Design. Kluwer Academic (1988)

http://dx.doi.org/10.1007/978-3-319-45403-0_14
http://dx.doi.org/10.1007/978-3-319-45403-0_15
http://dx.doi.org/10.1007/978-3-319-45403-0_16

Chapter 2
Simulated Annealing

Patrick Siarry

2.1 Introduction

The complex structure of the configuration space of a hard optimization problem
has inspired people to draw analogies with physical phenomena, which led three
researchers at IBM—Kirkpatrick, Gelatt, and Vecchi—to propose in 1982, and to
publish in 1983, a new iterative method, the simulated annealing technique [23],
which can avoid local minima. A similar method, developed independently at the
same time by Cerny [7], was published in 1985.

Since its discovery, the simulated annealing method has proved its effectiveness
in various fields, such as the design of electronic circuits, image processing, the
collection of household garbage, and the organization of the data-processing network
of the French Loto Lottery. On the other hand, it has been found too greedy to solve
certain combinatorial optimization problems, which could be solved better by specific
heuristics, or completely incapable of solving them.

This chapter starts by initially explaining the principle of the method, with the
help of an example of the problem of the layout of an electronic circuit. This is
followed by a simplified description of some theoretical approaches to simulated
annealing, which underlines its strong points (conditional guaranteed convergence
towards a global optimum) and its weak points (tuning of the parameters, which can
be delicate in practice). Then various techniques for parallelization of the method are
discussed. This is followed by the presentation of some applications. In conclusion,
we recapitulate the advantages and the most significant drawbacks of simulated
annealing. We put forward some simple practical suggestions, intended for users
who are planning to develop their first application based on simulated annealing. In

P. Siarry (B)
Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi, E.A. 3956),
Université Paris-Est Créteil Val-de-Marne, 122 rue Paul Armangot,
94400 Vitry-sur-Seine, France
e-mail: siarry@u-pec.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_2

19

20 P. Siarry

Sect. 2.8, we recapitulate the main results of the modeling of simulated annealing
based on Markov chains.

This chapter presents, in part, a summary of the review book on the simulated
annealing technique [42], which we published at the beginning of 1989; this presenta-
tion is augmented by mentioning more recent developments [31, 40]. The references
mentioned in the text were selected either because they played a significant role or
because they illustrate a specific point in the discussion. A much more exhaustive
bibliography—although old—can be found in [37, 42, 47, 50] and in the article
[8] on the subject. Interested readers are also recommended to read the detailed
presentations of simulated annealing in the article [29] and in Chap. 3 of [31].

2.2 Presentation of the Method

2.2.1 Analogy Between an Optimization Problem
and Some Physical Phenomena

The idea of simulated annealing can be illustrated by a picture inspired by the prob-
lem of the layout and routing of electronic circuits: let us assume that a relatively
inexperienced electronics specialist has randomly spread the components out on a
plane, and connections have been made between them without worrying about tech-
nological constraints.

It is clear that the solution obtained is an unacceptable one. The purpose of devel-
oping a layout-routing program is to transform this disordered situation to an ordered
electronic circuit diagram, where all connections are rectilinear, and the components
are aligned and placed so as to minimize the length of the connections. In other
words, this program must carry out a disorder–order transformation which, starting
from a “liquid of components,” leads to an ordered “solid.”

However, such a transformation occurs spontaneously in nature if the tempera-
ture of a system is gradually lowered; there are computer-based digital simulation
techniques available which show the behavior of sets of particles interacting in a way
that depends on the temperature. In order to apply these techniques to optimization
problems, an analogy can be established which is presented in Table 2.1.

Table 2.1 Analogy between an optimization problem and a physical system

Optimization problem Physical system

Objective function Free energy

Parameters of the problem “Coordinates” of the particles

Find a “good” configuration (or even an
optimal configuration)

Find the low-energy states

2 Simulated Annealing 21

To lead a physical system to a low-energy state, physicists generally use an anneal-
ing technique: we will examine how this method of treatment of materials (real
annealing) is helpful in dealing with an optimization problem (simulated annealing).

2.2.2 Real Annealing and Simulated Annealing

To modify the state of a material, physicists have an adjustable parameter: the tem-
perature. To be specific, annealing is a strategy where an optimum state can be
approached by controlling the temperature. To gain a deeper understanding, let us
consider the example of the growth of a monocrystal. The annealing technique con-
sists in heating the material beforehand to impart high energy to it. Then the material is
cooled slowly, in a series of stages at particular temperatures, each of sufficient dura-
tion; if the decrease in temperature is too fast, it may cause defects which can be elim-
inated by local reheating. This strategy of a controlled decrease in the temperature
leads to a crystallized solid state, which is a stable state, corresponding to an absolute
minimum of energy. The opposite technique is that of quenching, which consists in
lowering the temperature of the material very quickly: this can lead to an amorphous
structure, a metastable state that corresponds to a local minimum of energy. In the
annealing technique, the cooling of the material causes a disorder–order transforma-
tion, while the quenching technique results in solidifying a disordered state.

The idea of using an annealing technique in order to deal with optimization prob-
lems gave rise to the simulated annealing technique. This consists in introducing a
control parameter in to the optimization process, which plays the role of the temper-
ature. The “temperature” of the system to be optimized must have the same effect
as the temperature of a physical system: it must condition the number of accessible
states and lead towards the optimal state if the temperature is lowered gradually in a
slow and well-controlled manner (as in the annealing technique), and towards a local
minimum if the temperature is lowered abruptly (as in the quenching technique).

To conclude, we have to describe an algorithm in such a way that will enable us
to implement annealing on a computer.

2.2.3 Simulated Annealing Algorithm

The algorithm is based on two results from statistical physics.
On one hand, when thermodynamic equilibrium is reached at a given temperature,

the probability that a physical system will have a given energy E is proportional to

the Boltzmann factor: e
−E
kBT , where kB denotes the Boltzmann constant. Then, the

distribution of the energy states is the Boltzmann distribution at the temperature
considered.

On the other hand, to simulate the evolution of a physical system towards its
thermodynamic equilibrium at a given temperature, the Metropolis algorithm [25]

22 P. Siarry

can be utilized: starting from a given configuration (in our case, an initial layout for all
the components), the system is subjected to an elementary modification (for example,
a component is relocated or two components are exchanged); if this transformation
causes a decrease in the objective function (or “energy”) of the system, it is accepted;
in contrast, if it causes an increase �E in the objective function, it may also be
accepted, but only with a probability e−�E/T . (In practice, this condition is realized
in the following manner: a real number is drawn at random, ranging between 0 and 1,
and a configuration causing a degradation by �E in the objective function is accepted
if the random number drawn is less than or equal to e−�E/T .) By repeatedly following
this Metropolis rule of acceptance, a sequence of configurations is generated, which
constitutes a Markov chain (in the sense that each configuration depends on only that
one which immediately precedes it). With this formalism in place, it is possible to
show that, when the chain is of infinite length (in practice, of “sufficient” length),
the system can reach (in practice, can approach) thermodynamic equilibrium at the
temperature considered: in other words, this leads us to a Boltzmann distribution of
the energy states at this temperature.

Hence the role given to the temperature by the Metropolis rule is well understood.
At high temperature, e−�E/T is close to 1, and therefore the majority of the moves
are accepted and the algorithm becomes equivalent to a simple random walk in the
configuration space. At low temperature, e−�E/T is close to 0, and therefore the
majority of the moves that increase the energy are rejected. Hence the algorithm
reminds us of a classical iterative improvement. At an intermediate temperature, the
algorithm intermittently allows transformations that degrade the objective function:
hence it leaves a chance for the system to be pulled out of a local minimum.

Once thermodynamic equilibrium is reached at a given temperature, the temper-
ature is lowered “slightly,” and a new Markov chain is implemented in this new tem-
perature stage (if the temperature is lowered too quickly, the evolution towards a new
thermodynamic equilibrium is slowed down: the theory of the method establishes a
narrow correlation between the rate of decrease in the temperature and the minimum
duration of the temperature stage). By comparing the successive Boltzmann distrib-
utions obtained at the end of the various temperature stages, a gradual increase in the
weight of the low-energy configurations can be noted: when the temperature tends
towards zero, the algorithm converges towards the absolute minimum of energy. In
practice, the process is terminated when the system is “solidified” (which means that
either the temperature has reached zero or no more moves causing an increase in
energy have been accepted during the stage).

2.3 Theoretical Approaches

The simulated annealing algorithm was implemented in many theoretical studies for
the following two reasons: on one hand, it was a new algorithm, for which it was
necessary to establish the conditions for convergence; and on the other hand, the
method contains many parameters and has many variants, whose effect or influence

2 Simulated Annealing 23

on the mechanism needed to be properly understood if one wished to implement the
method to maximum effect.

These approaches, especially those which appeared during the initial years of its
formulation, are presented in detail in the book [42]. Here, we focus on emphasizing
on the principal aspects treated in the literature. The theoretical convergence of
simulated annealing is analyzed first. Then those factors which are influential in the
operation of the algorithm are analyzed in detail: the structure of the configuration
space, the acceptance rules, and the annealing program.

2.3.1 Theoretical Convergence of Simulated Annealing

Many mathematicians have invested effort in research into the convergence of the
simulated annealing (see in particular [1, 16, 17]) and some of them have even
endeavored to develop a general model for the analysis of stochastic methods of
global optimization (notably [32, 33]). The main outcome of these theoretical stud-
ies is that under certain conditions (discussed later), simulated annealing probably
converges towards a global optimum, in the sense that it is possible to obtain a solu-
tion arbitrarily close to this optimum with a probability arbitrarily close to unity.
This result is, in itself, significant because it distinguishes simulated annealing from
other metaheuristic competitors, whose convergence is not guaranteed.

However, the establishment of the “conditions of convergence” is not unani-
mously accepted. Some of these conditions, such as those proposed by Aarts and Van
Laarhoven [1], are based on the assumption of decreasing the temperature in stages.
This property enables one to represent the optimization process in the form of com-
pletely connected homogeneous Markov chains, whose asymptotic behavior can be
described simply. It has also been shown that convergence is guaranteed provided
that, on one hand, reversibility is respected (the opposite of any allowed change must
also be allowed) and, on the other hand, connectivity of the configuration space is
also maintained (any state of the system can be reached starting from any other state
with the help of a finite number of elementary changes). This formalization has two
advantages:

• it enables us to legitimize the lowering of the temperature in stages, which improves
the convergence speed of the algorithm;

• it enables us to establish that a “good”-quality solution (located significantly close
to the global optimum) can be obtained by simulated annealing in a polynomial
time for certain NP-hard problems [1].

Some other authors, in particular Hajek et al. [16, 17], were interested in the
convergence of simulated annealing within the more general framework of the theory
of inhomogeneous Markov chains. In this case, the asymptotic behavior was the more
sensitive aspect of the study. The main result of this work was the following: the
algorithm converges towards a global optimum with a probability of unity if, as the

24 P. Siarry

time t tends towards infinity, the temperature T (t) does not decrease more quickly
than the expression C/log(t), where C is a constant related to the depth of the “energy
wells” of the problem. It should be stressed that the results of this theoretical work,
at present, are not sufficiently general and unambiguous to be used as a guide to an
experimental approach when one is confronted with a new problem. For example,
the logarithmic law of decrease of the temperature recommended by Hajek is not
used in practice for two major reasons: on one hand, it is generally impossible to
evaluate the depth of the energy wells of the problem, and, on the other hand, this
law leads to an unfavorable increase in computing time.

We now continue this analysis with careful, individual examination of the various
components of the algorithm.

2.3.2 Configuration Space

The configuration space plays a fundamental role in the effectiveness of the simu-
lated annealing technique in solving complex optimization problems. It is equipped
with a “topology,” originating from the concept of proximity between two configura-
tions: the “distance” between two configurations represents the minimum number of
elementary changes required to pass from one configuration to the other. Moreover,
there is an energy associated with each configuration, so that the configuration space
is characterized by an “energy landscape.” All of the difficulties of the optimization
problem lie in the fact that the energy landscape comprises of a large number of
valleys of varying depth, possibly relatively close to each other, which correspond
to local minima of energy.

It is clear that the shape of this landscape is not specific to the problem under study,
but depends to a large extent on the choice of the cost function and the choice of the
elementary changes. However, the required final solution, i.e., the global minimum
(or one of the global minima of comparable energy), must depend primarily on
the nature of the problem considered, and not (or very little) on these choices. We
have shown, with the help of an example problem of placement of building blocks,
considered specifically for this purpose, that an apparently sensitive problem can
be greatly simplified either by widening the allowable configuration space or by
choosing a better adapted topology [42].

Several authors have endeavored to establish general analytical relations between
certain properties of the configuration space and the convergence of simulated anneal-
ing. In particular, some of their work was directed towards an analysis of the energy
landscapes, and they sought to develop a link between “ultrametricity” and simulated
annealing [22, 30, 44]: the simulated annealing method would be more effective for
those optimization problems whose low local minima (i.e., the required solutions)
formed an ultrametric set. Thereafter, Sorkin [45] showed that certain fractal proper-
ties of the energy landscape induce polynomial convergence of simulated annealing;
Sorkin explained this on the basis of the effectiveness of the method in the field of
electronic circuit layouts. In addition, Azencott [3] utilized the “theory of cycles”

2 Simulated Annealing 25

(originally developed in the context of dynamic systems) to establish general explicit
relations between the geometry of the energy landscape and the expected performance
of simulated annealing. This work led to the proposal of the “method of distortions”
for the objective function, which significantly improved the quality of the solu-
tions for certain difficult problems [11]. However, all these approaches to simulated
annealing are still in a nascent stage, and their results have not yet been generalized.

Lastly, another aspect of immediate practical interest relates to the adaptation of
simulated annealing to the solution of continuous optimization problems [9, 39].
Here, we stress only the transformations necessary to make the step from “combina-
torial simulated annealing” to “continuous simulated annealing.” In fact, the method
was originally developed for application in the domain of combinatorial optimization
problems, where the free parameters can take discrete values only. In the majority
of these types of problems encountered in practice, the topology is almost always
considered as data for the problem: for example, in the traveling salesman problem,
the permutation of two cities has a natural tendency to generate round-trip routes
close to a given round-trip route. The same thing occurs in the problem of placement
of components when the exchange of two blocks is considered. On the other hand,
when the objective is to optimize a function of continuous variables, the topology has
to be updated. This gives rise to the concept of “adaptive topology”: here, the length
of the elementary steps is not imposed by the problem anymore. This choice must
instead be dictated by a compromise between two extreme situations: if the step is
too small, the program explores only a limited region of the configuration space; the
cost function is then improved very often, but by a negligible amount. In contrast, if
the step is too large, the test results are accepted only seldom, and they are almost
independent of each other. From the point of mathematical interest, it is necessary
to mention the work of Miclo [26], which was directed towards the convergence of
simulated annealing in the continuous case.

2.3.3 Rules of Acceptance

The principle of simulated annealing requires that one accepts, occasionally and
under the control of the “temperature,” an increase in the energy of the current state,
which enables it to be pulled out of a local minimum. The rule of acceptance generally
used is the Metropolis rule described in Sect. 2.2.3. This possesses the advantage that
it originates directly from statistical physics. There are, however, several variations
of this rule [42], which can be more effective from the point of view of computing
time.

Another aspect arises from examination of the following problem: at low tem-
perature, the rate of acceptance of the algorithm becomes very small, and hence
the method is ineffective. This is a well-known problem encountered in simulated
annealing, which can be solved by substituting the traditional Metropolis rule with an
accelerated alternative, called the “thermostat” [42], as soon as the rate of acceptance
falls too low. In practice, this methodology is rarely employed.

26 P. Siarry

2.3.4 Program of Annealing

The convergence speed of the simulated annealing methodology depends primarily
on two factors: the configuration space and the program of annealing. With regard to
the configuration space, readers have already been exposed to the effects of topology
on convergence and the shape of the energy landscape. Let us discuss the influence
of the “program of annealing”: this addresses the problem of controlling the “tem-
perature” as well as the possibility of a system reaching a solution as quickly as
possible. The program of annealing must specify the following values of the control
parameters for the temperature:

• the initial temperature;
• the length of the homogeneous Markov chains, i.e., the criterion for changing to

the next temperature stage;
• the law of decrease of the temperature;
• the criterion for program termination.

In the absence of general theoretical results which can be readily exploited, the
user has to resort to empirical adjustment of these parameters. For certain problems,
the task is complicated even further by the great sensitivity of the result (and the
computing time) to this adjustment. This aspect—which unites simulated annealing
with other metaheuristics—is an indisputable disadvantage of this method.

To elaborate on the subject a little more, we shall look at the characteristic of the
program of annealing that has drawn most attention: the law of decrease of the tem-
perature. The geometrical law of decrease, Tk+1 = α · Tk , α = constant, is a widely
accepted one, because of its simplicity. An alternative solution, potentially more
effective, is an adaptive law of the form Tk+1 = α(Tk) · Tk , but it is then necessary to
exercise a choice from among several laws suggested in the literature. One can show,
however, that several traditional adaptive laws, which have quite different origins
and mathematical expressions, are in practice equivalent (see Fig. 2.1), and can be
expressed in the following generic form:

Tk+1 =
(

1 − Tk · �(Tk)

σ 2 (Tk)

)
· Tk

where
σ 2 (Tk) = 〈

f 2
Tk

〉 − 〈
fTk

〉2
,

f denotes the objective function, and �(Tk) depends on the adaptive law selected.
The simplest adjustment, �(Tk) = constant, can then be made effective, although it
does not correspond to any of the traditional laws.

Owing to our inability to synthesize the results (both theoretical and experimental)
presented in the literature, which show some disparities, the reader is referred to
Sect. 2.7, where we propose a suitable tuning algorithm for the four parameters of
the program of annealing, which can often be useful at least to start with.

2 Simulated Annealing 27

Fig. 2.1 Lowering of the
temperature according to the
number of stages for the
geometrical law and several
traditional laws

Iteration

T

Those readers who are interested in the mathematical modeling of simulated
annealing are advised to refer to Sect. 2.8: the principal results produced by the
Markov formalism are described there.

2.4 Parallelization of the Simulated Annealing Algorithm

Often, the computing time becomes a critical factor in the economic evaluation of
the utility of a simulated annealing technique for applications to real industrial prob-
lems. A promising research direction to reduce this time is the parallelization of
the algorithm, which consists in simultaneously carrying out several of the calcu-
lations necessary for its realization. This step can be considered in the context of
the significant activity that has been developing around the algorithms and architec-
tures of parallel computation for quite some time now. This may appear paradoxical,
because of the sequential structure of the algorithm. Nevertheless, several types of
parallelization have been considered to date. A book [3] completely devoted to this
topic has been published; it describes simultaneously the rigorous mathematical
results available and the results, of simulations executed on parallel or sequential
computers. To provide a concrete idea, we shall describe the idea behind two prin-
cipal modes of parallelization, which are independent of the problem being dealt

28 P. Siarry

with and were suggested very soon after the invention of simulated annealing. The
distinction between these two modes remains relevant today, as has been shown in
the recent status of the state of the art described by Delamarre and Virot [11].

The first type of parallelization [2] consists in implementing several Markov chain
computations in parallel, by using K elementary processors. To implement this,
the algorithm is decomposed into K elementary processes, constituting K Markov
chains. Let L be the length of these Markov chains, assumed constant, each chain
is divided into K subchains of length L/K . The first processor executes the first
chain at the initial temperature, and implements the first L/K elements of this chain
(i.e., the first subchain); then it calculates the temperature of the following Markov
chain, starting from the states already obtained. The second elementary processor
then begins executing the second Markov chain at this temperature, starting from the
final configuration of the first subchain of the first chain. During this time, the first
processor begins the second subchain of the first chain. This process continues for
the K elementary processors. It has been shown that this mode of parallelization—
described in more detail in [42]—allows one to divide the total computing time by
a factor K , if K is small compared with the total number of Markov chains carried
out. However, the procedure has a major disadvantage: its convergence towards an
optimum is not guaranteed. The formalism of Markov chains enables one to establish
that the convergence of simulated annealing is assured provided that the distribution
of the states, at the end of each Markov chain is close to the stationary distribution.
In the case of the algorithm described here, however, this closeness is not established
at the end of each subchain, and the larger the number K of processors in parallel,
the larger is the deviation from closeness.

The second type of parallelization [24, 35] consists in carrying out the computa-
tion in parallel for several states of the same Markov chain while keeping in mind the
following condition: at low temperature, the number of elementary transformations
rejected becomes very important; it is thus possible to assume that these moves are
produced by independent elementary processes, which may likely be implemented
in parallel. Then the computing time can be divided by approximately the number
of processes. One strategy consists in subdividing the algorithm into K elementary
processes, each of which is responsible for calculating the energy variations corre-
sponding to one or more elementary moves, and for carrying out the corresponding
Metropolis tests. Two operating modes are considered:

• At “high temperature,” a process corresponds to only one elementary move. Each
time K elementary processes are implemented in parallel, one can randomly
choose a transition from among those which have been accepted, and the memory,
containing the best solution known, is updated with the new configuration.

• At “low temperature,” the accepted moves become very rare: less than one transi-
tion is accepted for K moves carried out. Each process then consists in calculating
the energy variations corresponding to a succession of disturbances until one of
them is accepted. As soon as any of the processes succeeds, the memory is updated.

These two operating modes can ensure behavior, and in particular convergence,
which is strictly identical to that of sequential algorithms. This type of parallelization

2 Simulated Annealing 29

has been tested by experimenting on the optimization problem of the placement
of connected blocks [35]. We estimated the amount of computing time saved in
two cases: the placement of presumed point blocks in predetermined sites and the
placement of real blocks on a plane. With five elementary processes in parallel, the
saving in computing time was between 60 and 80 %, depending on the program of
annealing used. This work was then continued, in the thesis work of Roussel-Ragot
[34] by considering a theoretical model, which was validated by programming the
simulated annealing using a network of “transputers.”

In addition to these two principal types of parallelization of simulated annealing,
which should be applicable to any optimization problem, other methodologies have
been proposed to deal with specific problems. Some of these problems are problems
of placement of electronic components, problems in image processing and problems
of meshing of areas (for the finite element method). In each of these three cases,
information is distributed in a plane or in space, and each processor can be entrusted
with the task of optimizing the data pertaining to a geographical area by simulated
annealing; here information is exchanged periodically between neighboring proces-
sors.

Another step to reduce the cost of synchronization between processors has been
planned: the algorithms known as “asynchronous algorithms” are designed to calcu-
late the energy variations starting from partially out-of-date data. However, it seems
very complex and sensitive to control the admissible error, except for certain partic-
ular problems [12].

As an example, let us describe the asynchronous parallelization technique sug-
gested by Casotto et al. [6] to deal with the problem of the placement of electronic
components. The method consists in distributing the components to be placed into K
independent groups, assigned to K respective processors. Each processor applies the
simulated annealing technique to seek the optimal site for the components that belong
to its group. The processors function in parallel, and in an asynchronous manner with
respect to each other. All of them have access to a common memory, which contains
the current state of the circuit plan. When a processor plans to exchange the position
of a component in its group with that of a component in another group belonging
to another processor, it temporarily blocks the activity of that processor. It is clear
that the asynchronous working of the processors involves errors, in particular in the
calculation of the overlap between the blocks, and thus in the evaluation of the cost
function. In fact, when a given processor needs to evaluate the cost of a move (trans-
lation or permutation), it will search in the memory for the current positions of all the
components in the circuit. However, the information collected is partly erroneous,
since certain components are in the course of displacement because of the activities of
other processors. In order to limit these errors, the method is supplemented by the fol-
lowing two processes. On one hand, the distribution of the components between the
processors is in itself an object of optimization by the simulated annealing technique,
which is performed simultaneously with the optimization process already described:
in this manner, membership of the components geographically close to the same
group can be favored. In addition, the maximum amplitude of the moves carried out
by the components is reduced as the temperature decreases. Consequently, when the

30 P. Siarry

temperature decreases, the moves relate mainly to nearby components, which thus
generally belong to the same group. In this process, the interactions between the
groups can be reduced, thus reducing the frequency of the errors mentioned above.
This technique of parallelization of simulated annealing was validated using several
examples of real circuits: the algorithm functioned approximately six times faster
with eight processors than with only one, the results being of comparable quality to
those of the sequential algorithm.

2.5 Some Applications

The majority of the preceding theoretical approaches are based on asymptotic behav-
iors which impose several restrictive assumptions, very often causing excessive
increases in computing times. This is why, to solve real industrial problems under
reasonable conditions, it is often essential to adopt an experimental approach, which
may frequently result in crossing the barriers recommended by the theory. The sim-
ulated annealing method has proved to be interesting for solving many optimization
problems, both NP-hard and not. Some examples of these problems are presented
here.

2.5.1 Benchmark Problems of Combinatorial Optimization

The effectiveness of the method was initially tested on some “benchmark problems”
of combinatorial optimization. In this type of problem, the practical purpose is sec-
ondary: the initial objective is to develop the optimization method and to compare
its performance with that of other methods. We will detail only one example: that of
the traveling salesman problem.

The reason for the choice of this problem is that it is very simple to formulate
and, at the same time, very difficult to solve: the largest problems for which the
optimum has been found and proved comprise a few thousands of cities. To illustrate
the disorder–order transformation that occurs in the simulated annealing technique
as the temperature goes down, we present in Fig. 2.2 four intermediate configurations
obtained by Eric Taillard, in the case of 13 206 towns and villages in Switzerland.

Bonomi and Lutton also considered very high-dimensional examples, with
between 1000 and 10 000 cities [4]. They showed that, to avoid a prohibitive com-
puting time, the domain containing the cities can be deconstructed into areas, and
the moves for the route of the traveler can be forced so that they are limited to being
between cities located in contiguous areas. Figure 2.3 shows the effectiveness of
this algorithm for a problem comprising 10 000 cities: the length of this route does
not exceed that of the optimal route by more than 2 % (the length of the shortest
route can be estimated a priori when the number of cities is large). Bonomi and
Lutton compared simulated annealing with traditional techniques of optimization

2 Simulated Annealing 31

Fig. 2.2 The traveling salesman problem (13 206 cities): the better known configurations (length
L) at the end of four temperature stages (T)

Fig. 2.3 The traveling
salesman problem: solution,
by simulated annealing for a
case of 10 000 cities

for the traveling salesman problem: simulated annealing was slower for small-
dimensional problems (N lower than 100) but, on the other hand, it was far more pow-
erful for higher-dimensional problems (N higher than 800). The traveling salesman

32 P. Siarry

problem has been extensively studied to illustrate and establish several experimental
and theoretical developments in the simulated annealing method [42].

Many other benchmark problems of combinatorial optimization have also been
solved using simulated annealing [29, 42]: in particular, the problems of the “par-
titioning of a graph,” the “minimal coupling of points,” and“quadratic assignment.”
Comparison with the best known algorithms leads to different results, varying accord-
ing to the problems and the authors. Thus the studies by Johnson et al. [19–21], which
were devoted to a systematic comparison of several benchmark problems, conclude
that the only benchmark problem for which the results favor simulated annealing is
that of the partitioning of a graph. For some problems, promising results were only
obtained with the simulated annealing method for high-dimensional examples (a few
hundreds of variables), and at the cost of a high computing time. Therefore, if sim-
ulated annealing has the merit to be adapted simply to a great diversity of problems,
it cannot claim very much to supplement the specific algorithms that already exist
for these problems.

We now present the applications of simulated annealing to practical problems.
The first significant application of industrial interest was developed in the field of
electronic circuit design; this industrial sector still remains the domain in which the
greatest number of publications describing applications of simulated annealing have
been produced. Two applications in the area of electronics are discussed in detail in
the following two subsections. This is followed by discussions of other applications
in some other fields.

2.5.2 Layout of Electronic Circuits

The first application of the simulated annealing method to practical problems was
developed in the field of the layout and routing of electronic circuits [23, 41, 49].
Numerous studies have now been reported on this subject in several publications
and, in particular, two books have been completely devoted to this problem [37, 50].
Detailed bibliographies, concerning the work carried out in the initial period from
1982 to 1988 can be found in the books [37, 42, 47, 50].

The search for an optimal layout is generally carried out in two stages. The first
consists in calculating an initial placement quickly, by a constructive method: the
components are placed one after another, in order of decreasing connectivity. Then
an algorithm for iterative improvement is employed that gradually transforms, by
elementary moves (e.g., exchange of components, and operations of rotation or sym-
metry), the initial layout configuration. The algorithms for iterative improvement
of the layout differ according to the rule adopted for the succession of elementary
moves. Simulated annealing can be used in this second stage.

Our interest was in a unit of 25 identical blocks to be placed on predetermined
sites, which were the nodes of a planar square network. The list of connections was
such that, in the optimal configurations, each block would be connected only to its
closer neighbors (see Fig. 2.4a): an a priori knowledge of the global minima of the

2 Simulated Annealing 33

(a) Optimal configuration : L = 200

(b)

SIMULATED
ANNEALING

CLASSICAL
METHOD

L = 775

(c) Configuration corresponding to a local
minimum of energy : L = 225

configuration :
Random disordered

Fig. 2.4 The traditional method getting trapped in a local minimum of energy

problem then made it easier to study the influence of the principal parameters of
the method on its convergence speed. The cost function was the overall Manhattan
length (i.e., the length of L-type) of the connections. The only allowed elementary
move was the permutation of two blocks. A detailed explanation for this benchmark
problem on layout design—which is a form of “quadratic assignment” problem—can
be found in [38, 43]. Here, the discussion will be limited to the presentation of two
examples of applications. First of all, to appreciate the effectiveness of the method,
we started with a completely disordered initial configuration (Fig. 2.4b), and an initial
“elevated” temperature (in the sense that at this temperature 90 % of the moves are
accepted). In this example, the temperature profile was that of a geometrical decrease,
of ratio 0.9. A global optimum of the problem could be obtained after 12 000 moves,
whereas the total number of possible configurations is about 1025.

To illustrate the advantages of the simulated annealing technique, we applied
the traditional method of iterative improvement (simulated annealing at zero tem-
perature), with the same initial configuration (see Fig. 2.4b), and allowed the same
number of permutations as during the preceding test. It was observed that the tra-
ditional method got trapped in a local minimum (Fig. 2.4c); it is clear that shifting
from this configuration to the optimal configuration as shown in Fig. 2.4a would
require several stages (at least five), the majority of which correspond to an increase
in energy, which is inadmissible in the traditional method. This particular problem of
placement made it possible to develop empirically a program of “adaptive” anneal-
ing, which could achieve a gain in computing time by a factor of 2; the lowering of
the temperature was carried out according to the law Tk+1 = Dk · Tk , where:

Dk = min

(
D0,

Ek

〈Ek〉
)

34 P. Siarry

Here, D0 = 0.5 to 0.9, Ek is the minimum energy of the configurations accepted
during stage k, and 〈Ek〉 is the average energy of the configurations accepted during
stage k. (At high temperature, Dk = Ek/〈Ek〉 is small, and hence the temperature is
lowered quickly; at low temperature, Dk = D0, which corresponds to slow cooling).

Then we considered a more complex problem consisting of positioning compo-
nents of different sizes, with the objective of simultaneous minimization of the length
of the necessary connections and of the surface area of the circuit used. In this case,
the translation of a block is a new means of iterative transformation of the layout.
Here we can observe that the blocks can overlap with each other, which is allowed
temporarily, but must generally be excluded from the final layout. This new con-
straint can be accommodated within the cost function of the problem by introducing
a new factor called the “overlapping surface” between the blocks. Calculating this
surface area can become very cumbersome when the circuit comprises many blocks.
For this reason the circuit was divided into several planar areas, whose size was such
that a block could overlap only with those blocks located in the same area or in a very
close area. The lists of the blocks belonging to each area were updated after each
move, using a chaining method. Moreover, to avoid leading to a circuit obstruction
such as an impossible routing, a fictitious increase in the dimensions of each block
was introduced. The calculation of the length of the connections consisted in deter-
mining, for each equipotential, the barycenter of the terminations, and then adding
the distances of L-type of the barycenter with each termination. Lastly, the topology
of the problem was adaptive, which can be described in the following manner: when
the temperature decreases, the maximum amplitude of the translations decreases,
and exchanges are considered more between neighboring blocks only.

With the simulated annealing algorithm, it was possible to optimize industrial
circuits, in particular some used in hybrid technology, in collaboration with the
Thomson D.C.H. (Department of Hybrid Circuits) company. As an example, we
present in Fig. 2.5, the result of the optimization of a circuit layout comprising 41
components and 27 equipotentials: the automated layout design procedure leads to
a gain of 18 % in the connection lengths compared with the initial manual layout.

This study showed that the flexibility of the method enables it to take into account
not only the rules of drawing, which translate the standards of technology, but also
the rules of know-how, which are intended to facilitate routing. In particular, the rules
of drawing impose a minimum distance between two components, whereas the rules
of know-how recommend a larger distance, allowing the passage of connections. To
balance these two types of constraints, the calculation of the area of overlap between
the blocks, on a two-to-two basis, was undertaken according to the formula

S = Sr + a · Sv,

where Sr is the “real” overlapping area, Sv is the “virtual” overlapping area, and a is
a weight factor (typically: 0.1).

These areas Sr and Sv were calculated by increasing the dimensions of the
components fictitiously, with a larger increase in Sv. This induces some kind of
an “intelligent” behavior, similar to that of an expert system. We notice from Fig. 2.5

2 Simulated Annealing 35

• Top: initial manual layout; length of connections: 9532,
• Middle: final layout, optimized by annealing; length of connections

7861,
• Bottom: manual routing using the optimized layout.

Fig. 2.5 Optimization by simulated annealing of the design of an electronic circuit layout com-
prising 41 components

a characteristic of hybrid technology which was easily incorporated into the pro-
gram: the resistances, shown by a conducting link, can be placed under the diodes
or integrated circuits.

The observations noted by the majority of authors concerning the application
of the simulated annealing technique to the layout design problem agree with our
observations: the method is very simple to implement, it can be adapted easily to
various evolving technological standards, and the final result is of good quality, but
it is sometimes obtained at the cost of a significant computing time.

2.5.3 Search for an Equivalent Schema in Electronics

We now present an application which mixes the combinatorial and the continuous
aspects: automatic identification of the “optimal” structure of a linear circuit pat-
tern. The objective was to automatically determine a model which includes the least

36 P. Siarry

possible number of elementary components, while ensuring a “faithful” reproduction
of experimental data. This activity, in collaboration with the Institute of Fundamen-
tal Electronics (IEF, CNRS URA 22, Orsay), began with the integration, in a single
software package, of a simulation program for linear circuits (implemented at the
IEF) and a simulated annealing-based optimization program developed by us. We
initially validated this tool by characterizing models of real components, with a com-
plex structure, described using their distribution parameters S. Comparison with a
commercial software package (developed using the gradient method) in use at the
time of the IEF showed that simulated annealing was particularly useful if the orders
of magnitude of the parameters of the model were completely unknown: obviously
the models under consideration were of this nature, since even their structure was to
be determined. We developed an alternative simulated annealing method, called log-
arithmic simulated annealing [9], which allows an effective exploration of the space
of variations of the parameters when this space is very wide (more than 10 decades
per parameter). Then the problem of structure optimization was approached by the
examination—in the case of a passive circuit—of the progressive simplification of
a general “exhaustive” model: we proposed a method which could be successfully
employed to automate all the simplification stages [10]. This technique is based on
the progressive elimination of the parameters according to their statistical behavior
during the process of optimization by simulated annealing.

We present here, with the help of illustrations, an example of a search for an equiv-
alent schema for a monolithic microwave integrated circuit (MMIC) inductance, in
the frequency range from 100 MHz to 20 GHz. On the basis of an initial “exhaus-
tive” model with 12 parameters, as shown in Fig. 2.6, and allowing each parameter
to move over 16 decades, we obtained the equivalent schema shown in Figure 2.7
(the final values of the six remaining parameters are beyond the scope of our present
interest: they are specified in [10]). The layouts in the Nyquist plane of the four
S parameters of the quadrupole shown in Fig. 2.7 coincided nearly perfectly with
the experimental results for the MMIC inductance, and this was true over the entire
frequency range [10].

Fig. 2.6 Initial structure with 12 elements

2 Simulated Annealing 37

Fig. 2.7 Optimal structure
with six elements

2.5.4 Practical Applications in Various Fields

An important field of application of simulated annealing is image processing: here
the main problem is to restore images, mainly in three-dimensional forms, using a
computer, starting from incomplete or irregular data. There are numerous practical
applications in several domains, such as robotics, medicine (e.g., tomography), and
geology (e.g., prospecting). The restoration of an image using an iterative method
involves, under normal circumstances, the treatment of a large number of variables.
Hence it calls for the development of a suitable method which can limit the comput-
ing time of the operation. Based on the local features of the information contained in
an image, several authors have proposed numerous structures and algorithms specif-
ically to address the problem of carrying out calculations in parallel. Empirically, it
appears that the simulated annealing method should be particularly well suited for
this task. A rigorous theoretical justification of this property can be obtained starting
from the concepts of Markovian fields [14], which provide a convenient and coher-
ent model of the local structure of the information in an image. This concept has
been explained in detail in [42]. The “Bayesian approach” to the problem of optimal
restoration of an image, starting from a scrambled image, consists in determining
the image which has “the maximum a posteriori probability.” It has been shown that
this problem can ultimately be expressed as a well-known minimization problem of
an objective function, comprising a very large number of parameters, for example
the light intensities of all the “pixels” of an image in case of an image in black and
white. Consequently, the problem can be considered as a typical problem for simu-
lated annealing. The iterative application of this technique consists in updating the
image by modifying the intensities of all of the pixels in turn, in a prespecified order.
This procedure leads to a significant consumption of computing time: indeed, the
number of complete sweeps of the image necessary to obtain a good restoration is
typically about 300 to 1000. But, as the calculation of the energy variation is purely
local in nature, several methods have been proposed to update the image by simulta-
neously treating a large number of pixels, using specialized elementary processors.
The formalism of Markovian fields has made it possible to treat by simulated anneal-
ing several crucial tasks in the automated analysis of images: restoration of scrambled
images, image segmentation, image identification. Apart from this formalism, other
problems in the image-processing domain have also been solved by annealing: for
example, the method has been utilized to determine the geological structure of the
basement, starting from the results of seismic experiments.

38 P. Siarry

To finish, we will mention some specific problems, in very diverse fields, where
simulated annealing has been employed successfully: organization of the data-
processing network for Loto (this required ten thousand playing machines to be
connected to host computers), optimization of the collection of household garbage
in Grenoble, timetabling problems (one problem was, for example, to perform the
optimal planning of rest days in a hospital), and optimization of structures (in a
project on constructing a 17-floor building for an insurance company, it was neces-
sary to distribute the activities among the various parts so that the work output from
2000 employees could be maximized). Several applications of simulated annealing
to scheduling problems can be found, in particular, in [5, 18, 27, 48]. The adequacy
of the method for this type of problem has also been discussed. For example, Van
Laarhoven et al. [48] showed that the computing time involved was unsatisfactory.
Moreover, in [13], Fleury underlined several characteristics of scheduling problems
which make them unsuitable for simulated annealing and he recommended a dif-
ferent stochastic method for this problem inspired by simulated annealing and tabu
search: the “kangaroo method.”

2.6 Advantages and Disadvantages of the Method

From the preceding discussion, the principal characteristics of the method can be
established. Firstly, the advantages: it is observed that the simulated annealing tech-
nique generally achieves a good-quality solution (i.e., an absolute minimum or good
relative minimum for the objective function). Moreover, it is a general method: it is
applicable, to all problems which can potentially employ iterative optimization tech-
niques, and it is easy to implement, under the condition that after each transformation
the corresponding change in the objective function can be evaluated directly and
quickly (often the computing time becomes excessive if complete re–computation of
the objective function cannot be avoided after each transformation). Lastly, it offers
great flexibility, as one easily can build new constraints into the program afterwards.

Now, let us discuss the disadvantages. Users are sometimes repelled by the
involvement of a great many parameters (initial temperature, rate of decrease of the
temperature, length of the temperature stages, termination criterion for the program).
Although the standard values published for these parameters generally allow effective
operation of the method, the essentially empirical nature of them can never guarantee
suitability for a large variety of problems. The second defect of the method—which
depends on the preceding one—is the computing time involved, which is excessive
in certain applications.

In order to reduce this computing time, we still require an extensive research
effort to determine the best values of the parameters of the method beyond the
generalized results published so far [39], particularly the law of decrease of the
temperature. Any progress in the effectiveness of the technique and in the computing
time involved is likely to be obtained by continuing the analysis of the method in three
specific directions: the utilization of interactive parameter setting, parallelization of

2 Simulated Annealing 39

the algorithm, and the incorporation of statistical physics-based approaches to the
analysis and study of disordered media.

2.7 Simple Practical Suggestions for Beginners

• Definition of the objective function: some constraints can be integrated into the
objective function, whereas others constitute a limitation on the form of the dis-
turbances for the problem.

• Choice of disturbance mechanisms for the “ current configuration”: the calculation
of the corresponding variation �E of the objective function must be direct and
rapid.

• Initial temperature T0: this may be calculated in a preliminary step using the
following algorithm:

– initiate 100 disturbances at random; evaluate the average 〈�E〉 of the corre-
sponding variations �E ;

– choose an initial rate of acceptance τ0 of the “degrading perturbations” according
to the assumed “quality” of the initial configuration; for example:
· “poor” quality: τ0 = 50 % (starting at high temperature),
· “good” quality: τ0 = 20 % (starting at low temperature);

– deduce T0 from the relation: e−〈�E〉/T0 = τ0.

• Metropolis acceptance rule: this can be utilized practically in the following man-
ner: if �E > 0, a number r in [0, 1] is drawn randomly, and the disturbance is
accepted if r < e−�E/T , where T indicates the current temperature.

• Change to next temperature stage: this can take place as soon as one of the fol-
lowing two conditions is satisfied during a temperature stage:

– 12 · N perturbations accepted;
– 100 · N perturbations attempted, N indicates the number of degrees of freedom

(or parameters) of the problem.

• Decrease of the temperature: this can be carried out according to the geometrical
law Tk+1 = 0.9 · Tk .

• Program termination: this can be activated after three successive temperature
stages without any acceptances.

• Essential verifications during the first executions of the algorithm:

– the generation of the real random numbers (in [0, 1]) must be very uniform;
– the “quality” of the result should not vary significantly when the algorithm is

implemented several times:
· with different “seeds” for the generation of the random numbers,
· with different initial configurations;

40 P. Siarry

– for each initial configuration used, the result of simulated annealing should
compare favorably, theoretically, with that of the quenching (“disconnected”
Metropolis rule).

• An alternative version of the algorithm in order to achieve less computation time:
simulated annealing is greedy and not very effective at low temperature; hence one
might be interested in utilizing the simulated annealing technique, prematurely
terminated, in cascade with an algorithm of local type for specific optimization of
the problem, whose role is to “refine” the optimum.

2.8 Modeling of Simulated Annealing Through the Markov
Chain Formalism

Let R be the complete space of all possible configurations of the system, and let r ∈ R
be a “state vector,” whose components entirely define a specified configuration (or
“state”). Let the set IR consist of the numbers assigned to each configuration of R:

IR = (1, 2, . . . , |R|)

where |R| is the cardinality of R. Finally, let us denote by C(ri) the value of the
cost function (or “energy”) in the state i , where ri is the state vector for the state,
and let Mi j (T) be the probability of a transition from the state i to the state j at a
“temperature” T . In the case of the simulated annealing algorithm, the succession of
states forms a Markov chain, in the sense that the probability of transition from the
state i to the state j depends only on these two states, and not on the states previous
to i . In other words, all the past information about the system is summarized in
the current state. When the temperature T is maintained constant, the probability of
a transition Mi j (T) is constant, and the corresponding Markov chain is known as
homogeneous. The probability of a transition Mi j (T) from the state i to the state j
can be expressed in the following form:

Mi j (T) =
{

Pi j · Ai j (T) if i �= j
1 − �k �=i Pik · Aik(T) if i = j

where Pi j is the probability of perturbation, i.e., the probability of generating the
state j when one is in the state i , and Ai j (T) is the probability of acceptance, i.e.,
the probability of accepting the state j when one is in the state i at a temperature T .

The first factor, Pi j , can be calculated easily. In fact, the system is generally per-
turbed by randomly choosing a movement from the allowed elementary movements.

2 Simulated Annealing 41

The results of this is that

Pi j =
{ |Ri |−1 if j ∈ IRi

0 if j /∈ IRi

where Ri denotes the subset of R comprising all the configurations which can be
obtained in only one movement starting from the state i , and IRi denotes the set
of the numbers of these configurations. As for the second factor, Ai j (T), this is
often defined by the Metropolis rule. Aarts and Van Laarhoven [1] noted that, more
generally, the simulated annealing method makes it possible to impose the following
five conditions:

1. The configuration space is connected, i.e. two unspecified states i and j corre-
spond to a finite number of elementary movements.

2. ∀i, j ∈ IR : Pi j = Pji (reversibility).
3. Ai j (T) = 1, if �Ci j = C(r j) − C(ri) ≤ 0 (the movements which result in a

reduction in energy are systematically accepted).

4. If �Ci j > 0

⎧⎨
⎩

lim
T →∞ Ai j (T) = 1

lim
T →0

Ai j (T) = 0

(movements which result in an increase in energy are all accepted at infinite
temperature, and all refused at zero temperature).

5. ∀i, j, k ∈ Ir | C(rk) ≥ C(r j) ≥ C(ri) : Aik(T) = Ai j (T) · A jk(T).

2.8.1 Asymptotic Behavior of Homogeneous Markov Chains

By using the results obtained for homogeneous Markov chains, one can establish the
following properties.

2.8.1.1 Property 1

Consider a Markov process generated by a mechanism of transition which observes
the five conditions stated above. This mechanism is applied n times, at constant
temperature, starting from a specified initial configuration, arbitrarily chosen. When
n tends towards infinity, the Markov chain obtained has one and only one equilibrium
vector, called q(T), which is independent of the initial configuration. This vector,
which consists of |R| components, is called distribution of static probability of the
Markov chain. Its i th component, i.e., qi (T), represents the probability that the
system is in the configuration i when, after an infinity of transitions, the steady state
is reached.

42 P. Siarry

2.8.1.2 Property 2

qi (T) is expressed by the following relation:

qi (T) = Ai0i (T)

|R|∑
i=1

Ai0i (T)

,

where i0 denotes the number of an optimal configuration.

2.8.1.3 Property 3

When the temperature tends towards infinity or zero, the limiting values of qi (T) are
given by lim

T →∞ qi (T) = |R|−1 and

lim
T →0

qi (T) =
{ |R0|−1 if i ∈ IR0

0 if i /∈ IR0

where R0 denotes the set of the optimal configurations, i.e.,

R0 = {
ri ∈ R | C (ri) = C

(
ri0

)}

Property 3 results immediately from property 2 when condition 4 is used. Its inter-
pretation is the following: for larger values of the temperature, all configurations
can be obtained with the same probability. On the other hand, when the temperature
tends towards zero, the system reaches an optimal configuration with a probability
equal to unity. In both cases, the result is obtained at the end of a Markov chain of
infinite length.

Remark If one chooses the probability of acceptance Ai j (T) recommended by
Metropolis (see [1] for a justification for this choice regardless of any analogy with
physics),

Ai j (T) =
{

e−�Ci j /T if �Ci j > 0
1 if �Ci j ≤ 0

one finds in property 2 the expression for the Boltzmann distribution.

2.8.2 Choice of Annealing Parameters

We saw in the preceding subsection that the convergence of the simulated annealing
algorithm is assured when the temperature tends towards zero. A Markov chain of

2 Simulated Annealing 43

infinite length undoubtedly ends in the optimal result if it is built at a sufficiently low
(though nonzero) temperature. But this result is not of any practical utility because,
in this case, the equilibrium is approached very slowly. The Markov chain formalism
makes it possible to examine theoretically the convergence speed of the algorithm.
One can show that this speed is improved when one starts from a high temperature
and this temperature is then decreased in stages. This procedure requires the use of
an annealing program, which defines the optimal values of the parameters of the
descent in temperature. We will examine four principal parameters of the annealing
program:

• the initial temperature;
• the length of the homogeneous Markov chains, i.e., the criterion for changing

between temperature stages;
• the law of decrease of the temperature;
• the criterion for program termination.

For each of them, we will indicate first the corresponding result of the theory, which
leads to an optimal result but often at the cost of a prohibitive computing time. Then
we mention some values obtained by experiment.

2.8.2.1 Initial Temperature

There exists a necessary but not sufficient condition so that the optimization process
does not get trapped in a local minimum. The initial temperature T0 must be suffi-
ciently high that, at the end of the first stage, all configurations can be obtained with
the same probability. A suitable expression for T0 which ensures a rate of acceptance
close to 1 is the following:

T0 = r · max
i j

�Ci j

with r � 1 (typically r = 10). In practice, in many combinatorial optimization prob-
lems, this rule is difficult to employ, because it is difficult to evaluate maxi j �Ci j a
priori. The choice of T0 in this case has to be obtained from an experimental proce-
dure, carried out before the process of optimization itself. During such a procedure,
one calculates the evolution of the system during a limited time; one acquires some
knowledge about the configuration space, from which one can determine T0. This
preliminary experiment can consist simply in calculating the average value of the
variation in energy �Ci j , with the temperature maintained at zero. Aarts and Van
Laarhoven [1] proposed a more sophisticated preliminary procedure: they estab-
lished an iterative formula which makes it possible to adjust the value of T0 after
each perturbation so that the rate of acceptance is maintained constant. These authors
indicated that this algorithm led to good results if the values of the cost function for
the various system configurations were distributed in a sufficiently uniform way.

44 P. Siarry

2.8.2.2 Length of the Markov Chains (or Length of the Temperature
Stages); Law of Decrease of Temperature

The length of the Markov chain, which determines the length of the temperature
stages, and the law of decrease of the temperature, which affects the number of
stages, are two parameters of the annealing program that are very closely dependent
on each other and which are most critical from the point of view of the computing
time involved. An initial approach to the problem is to seek the optimal solution
by fixing the length M of the Markov chains so as to reach quasi-equilibrium, i.e.
to approach equilibrium to within a short distance ε that is fixed a priori and is
characterized by the vector of the static probability distribution q(T). One obtains
the following condition:

M > K
(|R|2 − 3 |R| + 3

)

where K is a constant which depends on ε. In the majority of combinatorial opti-
mization problems, the total number of configurations |R| is an exponential function
of the number N of variables of the system. Consequently, the above inequality leads
to an exponential computing time, which has been confirmed by experimental obser-
vations in the case of a particular form of the traveling salesman problem (the cities
considered occupy all the nodes of a plane square network, which makes it possible
to easily calculate the exact value of the global optimum of the cost function: this a
priori knowledge of the solution is very useful for analyzing the convergence of the
algorithm). These experimental results also show that a considerable gain in CPU
time is obtained if one is willing to deviate a little from the optimum. A deviation in
the final result of only 2 % compared with the optimum makes it possible to decrease
the exponential computing time to a cubic time in N .

This gave rise to the idea of performing the theoretical investigations again, seek-
ing parameters of the annealing program that ensure a deviation from the true opti-
mum, independently of the dimension of the problem considered. The starting pos-
tulate of the reasoning is as follows: for each homogeneous Markov chain generated
during the process of optimization, the distribution of the states must be close to the
static distribution (i.e., the Boltzmann distribution, if one adopts the Metropolis rule
of acceptance). This situation can be implemented on the basis of a high temperature
(for which one quickly reaches quasi-equilibrium, as indicated by property 3). Then
it is necessary to choose the rate of decrease of the temperature such that the static
distributions corresponding to two successive values of T are close together. In this
way, after each change between temperature stages, the distribution of the states
approaches the new static distribution quickly, so that the length of the successive
chains can be kept small. Here one can see the strong interaction that exists between
the length of the Markov chains and the rate of decrease of the temperature. Let T
and T ′ be the temperatures of two unspecified successive stages and let α be the rate
of decrease of the temperature

(
T ′ = αT < T

)
. The condition to be satisfied can be

written as ∥∥q(T) − q(T ′)
∥∥ < ε

(ε is a positive small number).

2 Simulated Annealing 45

This condition is equivalent to the following, which is easier to use:

∀i ∈ IR : 1

1 + δ
<

qi (T)

qi (T ′)
< 1 + δ

(δ is also a positive and small number, called the distance parameter). It can then
be shown, with the help of some approximations, that the rate of decrease of the
temperature can be written as

α = 1

(1 + T · ln (1 + δ)/3 · σ (T))
(2.1)

where σ(T) is the standard deviation of the values of the cost function for the states
of the Markov chain at a temperature T .

Aarts and van Laarhoven recommend the following choice for the length of the
Markov chains:

M = max
i∈IR

|Ri | (2.2)

where Ri is the subset of R comprising all the configurations that can be obtained
in only one movement starting from the state i . The Markov chain formalism thus
leads to an annealing program characterized by a constant length of the Markov
chain and a variable rate of decrease of the temperature. This result, which is based
on theory, differs from the usual empirical approach: in the latter case, one adopts
a variable length of the temperature stages and a constant rate α of decrease of
the temperature, typically ranging between 0.90 and 0.99. It is observed, however,
that the parameter α is not very critical to achieving convergence of the algorithm,
provided the temperature stages last long enough.

2.8.2.3 Program Termination Criterion

Quantitative information on the progress of the optimization process can be obtained
from the entropy, which is a natural measurement of the order of the system. This is
defined by the following expression:

S(T) = −
|R|∑
i=1

qi (T) · ln (qi (T))

It can be shown that S(T) can be written in the following form:

S(T) = S(T1) −
∫ T1

T

σ 2
(
T ′)

T ′3 dT ′

46 P. Siarry

and σ 2 (T) can easily be estimated numerically using the values of the cost function
for the configurations obtained at the temperature T . A termination criterion can
then be formulated starting from the following ratio, which measures the difference
between the current configuration and the optimal configuration:

S(T) − S0

S∞ − S0

where S∞ and S0 are defined by the relations

S∞ = lim
T →∞S(T) = ln |R|

S0 = lim
T →0

S(T) = ln |R0|

One can also detect a disorder–order transition (and consequently decide to slow
down the cooling) by observing any steep increase in the following parameter, which
is similar to the specific heat: σ 2(T)/T 2. If one wishes to perform precise numerical
calculations, these criteria are applicable in practice only when the Markov chains
are of sufficient length. If this is not the case, another termination criterion can be
obtained starting from extrapolation to zero temperature of the smoothed average
Cl(T) of the values of the cost function obtained during the process of optimization:

∣∣∣∣dCl(T)

dT
· T

C(T0)

∣∣∣∣ < εs (2.3)

where εs is a positive small number, and C(T0) is the average value of the cost
function at the initial temperature T0.

Remark If one adopts the rate of decrease of the temperature and the termination cri-
terion defined by the relations (2.1) and (2.3), respectively, Aarts and Van Laarhoven
showed the existence of an upper limit, proportional to ln |R|, for the total num-
ber of temperature stages. Moreover, if the length of the Markov chains is fixed in
accordance with the relation (2.2), the execution time of the annealing algorithm is
proportional to the following expression:

max
i∈IR

|Ri | · ln |R|

But the term max |Ri | is generally a polynomial function of the number of vari-
ables of the problem. Consequently, an annealing program defined by the relations
(2.1)–(2.3) allows one to solve the majority of the NP-hard problems while obtain-
ing, in polynomial time, a result which varies by only a few percent from the global
optimum, and this is true regardless of the dimension of the problem considered.
The above theoretical considerations have been confirmed by the application of this
annealing program to the traveling salesman and logical partitioning problems.

2 Simulated Annealing 47

2.8.3 Modeling of the Simulated Annealing Algorithm
by Inhomogeneous Markov Chains

The results which we have presented up to now are based on the assumption of a
decrease of the temperature in stages (which ensures fast convergence of the simu-
lated annealing algorithm, as we have already mentioned). This property makes it
possible to represent the process of optimization in the form of a complete set of
homogeneous Markov chains, whose asymptotic behavior can be described simply.
We have seen that this results in a complete theoretical explanation of the operation
of the algorithm, and the development of usable annealing program. Some authors
have been interested in the convergence of the simulated annealing algorithm within
the more general framework of the theory of inhomogeneous Markov chains. In
this case, the study of the asymptotic behavior is more delicate: for example, Gidas
[15] showed the possibility of the appearance of phenomena similar to phase tran-
sitions. We will be satisfied here with highlighting the main result of this work, of
primarily theoretical interest: the annealing algorithm converges towards a global
optimum with a probability equal to unity if, as the time t tends towards infinity,
the temperature T (t) does not decrease more quickly than the expression C/ln (t),
where C denotes a constant that is related to the depth of the “energy well” of the
problem.

2.9 Annotated Bibliography

Reference [42] This book describes the principal theoretical approaches to sim-
ulated annealing and the applications of the method in the early
years of its development (1982–1988), when the majority of the
theoretical basis was established.

Reference [31] The principal metaheuristics are described in great detail in this
book. An elaborate presentation of simulated annealing is given
in Chap. 3. Some applications are presented, in particular, the
design of electronic circuits and the treatment of scheduling prob-
lems.

Reference [36] In this book several metaheuristics are extensively described,
including simulated annealing (in Chap. 3). The theoretical ele-
ments relating to the convergence of the method are clearly pre-
sented in detail. The book includes also a study of an application
in an industrial context (that of the TimberWolf software pack-
age, in connection with the layout-routing problem). This is an
invaluable resource for those undertaking academic study of the
subject. Each chapter is supplemented with suitable exercises.

http://dx.doi.org/10.1007/978-3-319-45403-0_3
http://dx.doi.org/10.1007/978-3-319-45403-0_3

48 P. Siarry

Reference [28] The principal metaheuristics are also described in this book.
Chapter 5 is completely devoted to simulated annealing and con-
cludes with an application in the field of industrial production.

Reference [46] This book is a collection of contributions from a dozen authors.
Simulated annealing is not treated in detail, however.

References

1. Aarts, E.H.L., Van Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial
optimisation problems. Philips Journal of Research 40, 193–226 (1985)

2. Aarts, E.H.L., De Bont, F.M.J., Habers J.H.A., Van Laarhoven, P.J.M.: A parallel statistical
cooling algorithm. In: Proceeding of the 3rd Annual Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Computer Science, vol. 210, pp. 87–97 (1986)

3. Azencott, R.: Simulated Annealing: Parallelization Techniques. Wiley-Interscience Series in
Discrete Mathematics. John Wiley and Sons (1992)

4. Bonomi, E., Lutton, J.L.: The N-city travelling salesman problem, Statistical Mechanics and
the Metropolis Algorithm. SIAM Review 26(4), 551–568 (1984)

5. Brandimarte, P.: Neighbourhood search-based optimization algorithms for production schedul-
ing: a survey. Computer-Integrated Manufacturing Systems 5(2), 167–176 (1992)

6. Casotto, A., Romea, F., Sangiovanni-Vincentelli, A.: A parallel simulated annealing algorithm
for the placement of macro-cells. IEEE Transactions on C.A.D. CAD-6(5), 838–847 (1987)

7. Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simula-
tion algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)

8. Collins, N.E., Eglese, R.W., Golden, B.: Simulated annealing—An annotated bibliography.
American Journal of Mathematical and Management Sciences 8, 209–307 (1988)

9. Courat, J., Raynaud, G., Mrad, I., Siarry, P.: Electronic component model minimisation based
on Log Simulated Annealing. IEEE Transactions on Circuits and Systems I 41(12), 790–795
(1994).

10. Courat, J., Raynaud, G., Siarry, P.: Extraction of the topology of equivalent circuits based
on parameter statistical evolution driven by Simulated Annealing. International Journal of
Electronics 79, 47–52 (1995)

11. Delamarre, D., Virot, B.: Simulated annealing algorithm: technical improvements. Operations
Research 32(1), 43–73 (1998)

12. Durand, M., White, S.: Permissible error in parallel simulated annealing. Technical report,
Institut de Recherche en Informatique et Systèmes aléatoires, Rennes (1991)

13. Fleury, G.: Application de méthodes stochastiques inspirées du recuit simulé à des problèmes
d’ordonnancement. RAIRO A.P.I.I. (Automatique—Productique—Informatique industrielle)
29(4–5), 445–470 (1995)

14. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 721–741
(1984)

15. Gidas, B.: Nonstationary Markov chains and convergence of the Annealing Algorithm. Journal
of Statiscal Physics 39, 73–131 (1985)

16. Hajek, B.: Cooling schedules for optimal annealing. Mathematics of Operations Research 13,
311–329 (1988)

17. Hajek, B., Sasaki, G.: Simulated annealing—to cool or not. Systems and Control Letters 12,
443–447 (1989)

18. Jeffcoat, D., Bulfin, R.: Simulated annealing for resource-constrained scheduling. European
Journal of Operational Research 70(1), 43–51 (1993)

19. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an
experimental evaluation—Part I (Graph partitioning). Operational Research 37(6), 865–892
(1989)

http://dx.doi.org/10.1007/978-3-319-45403-0_5

2 Simulated Annealing 49

20. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing:
an experimental evaluation—Part II (Graph coloring and number partitioning). Operational
Research 39(3), 378–406 (1991)

21. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing:
an experimental evaluation—Part III (The travelling salesman problem). Operational Research
(1992)

22. Kirkpatrick, S., Toulouse, G.: Configuration space analysis of travelling salesman problems.
Journal de Physique 46, 1277–1292 (1985)

23. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

24. Kravitz, S., Rutenbar, R.: Placement by simulated annealing on a multiprocessor. IEEE Trans-
actions on Computer Aided Design CAD-6, 534–549 (1987)

25. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calcu-
lations by fast computing machines. Journal of Chemistry Physics 21, 1087–1090 (1953)

26. Miclo, L.: Évolution de l’énergie libre. Applications à l’étude de la convergence des algorithmes
du recuit simulé. Ph.D. thesis, Université de Paris 6 (1991)

27. Musser, K., Dhingra, J., Blankenship, G.: Optimization based job shop scheduling. IEEE Trans-
actions on Automatic Control 38(5), 808–813 (1993)

28. Pham, D., Karaboga, D.: Intelligent Optimisation Techniques. Genetic Algorithms, Tabu
Search, Simulated Annealing and Neural Networks. Springer (2000)

29. Pirlot, M.: General local search heuristics in Combinatorial Optimization: a tutorial. Belgian
Journal of Operations Research and Computer Science 32(1–2), 7–67 (1992)

30. Rammal, R., Toulouse, G., Virasoro, M.: Ultrametricity for physicists. Reviews of Modern
Physics 58(3), 765–788 (1986)

31. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Advanced Topics in
Computer Science Series. McGraw-Hill Ryerson (1995)

32. Rinnooy Kan, A., Timmer, G.: Stochastic global optimization methods—Part I: Clustering
methods. Mathematical Programming 39, 27–56 (1987)

33. Rinnooy Kan, A., Timmer, G.: Stochastic global optimization methods—part II: Multi level
methods. Mathematical Programming 39, 57–78 (1987)

34. Roussel-Ragot, P.: La méthode du recuit simulé: accélération et parallélisation. Ph.D. thesis,
Université de Paris 6 (1990)

35. Roussel-Ragot, P., Siarry, P., Dreyfus, G.: La méthode du "recuit simulé" en électronique:
principe et parallélisation. In: 2e Colloque National sur la Conception de Circuits à la Demande,
session G, Article G2, pp. 1–10. Grenoble (1986)

36. Saït, S., Youssef, H.: Iterative computer Algorithms with Applications in Engineering. IEEE
Computer Society Press (1999)

37. Sechen, C.:VLSI Placement and Global Routing Using Simulated Annealing. Kluwer Academic
ers (1988)

38. Siarry, P.: La méthode du recuit simulé: application à la conception de circuits électroniques.
Ph.D. thesis, Université de Paris 6 (1986)

39. Siarry, P.: La méthode du recuit simulé en électronique. Adaptation et accélération. Compara-
ison avec d’autres méthodes d’optimisation. Application dans d’autres domaines. Habilitation
à diriger les recherches en sciences physiques, Université de Paris-Sud (Orsay) (1994)

40. Siarry, P.: La méthode du recuit simulé: théorie et applications. RAIRO A.P.I.I. (Automatique—
Productique—Informatique industrielle) 29(4–5), 535–561 (1995)

41. Siarry, P., Dreyfus, G.: An application of physical methods to the computer aided design of
electronic circuits. Journal de Physique Lettres 45, L39–L48 (1984)

42. Siarry, P., Dreyfus, G.: La méthode du recuit simulé: théorie et applications. IDSET, ESPCI,
Paris (1989)

43. Siarry, P., Bergonzi, L., Dreyfus, G.: Thermodynamic optimization of block placement. IEEE
Transactions on Computer Aided Design CAD-6(2), 211–221 (1987)

44. Solla, S., Sorkin, G., White, S.: Configuration space analysis for optimization problems. In:
E. Bienenstock (ed.) Disordered Systems and Biological Organization, pp. 283–292. Springer,
New York (1986)

50 P. Siarry

45. Sorkin, G.B.: Efficient simulated annealing on fractal energy landscapes. Algorithmica 6, 367–
418 (1991)

46. Teghem, J., Pirlot, M.: Optimisation approchée en recherche opérationnelle: recherches
locales, réseaux neuronaux et satisfaction de contraintes. IC2: information, commande, com-
munication. Hermès Science (2002)

47. Van Laarhoven, P., Aarts, E.: Simulated annealing: theory and applications. Reidel, Dordrecht
(1987)

48. Van Laarhoven, P., Aarts, E., Lenstra, J.: Job-shop scheduling by simulated annealing. Opera-
tional Research 40, 113–125 (1992)

49. Vecchi, M., Kirkpatrick, S.: Global wiring by simulated annealing. IEEE Transactions on
C.A.D. CAD-2(4), 215–222 (1983)

50. Wong, D., Leong, H., Liu, C.: Simulated Annealing for VLSI Design. Kluwer Academic (1988)

Chapter 3
Tabu Search

Eric Taillard

3.1 Introduction

Tabu search was first proposed by Fred Glover in an article published in 1986 [3],
although it borrowedmany ideas suggested before during the 1960s. The two articles
entitled simply “Tabu search” [4, 5] proposed most of tabu search principles which
are currently used. Some of these principles did not gain prominence among the
scientific community for a long time. Indeed, in the first half of the 1990s, the
majority of the research publications on tabu search used a very restricted range
of the principles of the technique. They were often limited to a tabu list and an
elementary aspiration condition.

The popularity of tabu search is certainly due to the contribution of de Werra’s
team at the Federal Polytechnic School of Lausanne during the late 1980s. In fact,
the articles by Glover, the founder of the method, were not well understood at the
time, when there was not yet a “culture” of metaheuristics-based algorithms. Hence
the credit for the popularization of the basic technique must go to [8, 10], which
surely played a significant role in the dissemination of the algorithm.

At the same time, competition developed between simulated annealing (which
then had an established convergence theorem as its theoretical advantage) and tabu
search. For many applications, tabu-search-based heuristics definitely showed more
effective results [12–15], which increased the interest in the method among some
researchers.

At the beginning of the 1990s, the technique was extensively explored in Canada,
particularly in the Center for Research on Transportation in Montreal, where several
postdoctoral researchers from de Werra’s team worked in this field. This created
another focus in the field of tabu search. The techniquewas then quickly disseminated

E. Taillard (B)
HEIG-VD, 1401 Route de Cheseaux 1, Cp, Yverdon-les-bains, Switzerland
e-mail: eric.taillard@heig-vd.ch

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_3

51

52 E. Taillard

among several research communities, and this culminated in the publishing of the
first book which was solely dedicated to tabu search [7].

In this chapter, we shall not deal with all of the principles of tabu search presented
in the book by Fred Glover and Manuel Laguna [6], but instead we shall focus on
the most significant and most general principles.

What unquestionably distinguishes it from the local search technique presented in
the preceding chapter is that tabu search incorporates intelligence. Indeed, there is a
huge temptation to guide an iterative search in a good, promissing, direction, so that it
is not guidedmerely by chance and the value of an objective function to be optimized.
Implementing a tabu searchgives rise to a couple of challenges: first, as in any iterative
search, it is necessary that the search engine, i.e., the mechanism for evaluating
neighboring solutions, is effective; and second, pieces of knowledge regarding the
problem under consideration should be transmitted to the search procedure so that it
will not get trapped in bad regions of the solution space. On the contrary, it should
be guided intelligently in the solution space, if such a term is permitted to be used.

Glover proposed a number of learning techniques that can be embedded in a local
search. One of the guiding principles is to construct a history of the iterative search
or, equivalently, to equip the search with memory.

• Short-term memory. The name “tabu search” is a reference to the use of a short-
term memory that is embedded in a local search. The idea is to memorize in a
data structure T the elements that the local search is prohibited from using. This
structure is called a tabu list. In its simplest form, a tabu search scans the whole set
of neighboring solutions in each iteration and chooses the best that is not forbidden,
even if it is worse than the current solution. To prevent the search being blocked
or being forced to visit only solutions of bad quality owing to tabu conditions, the
number of elements in T is limited. Since the number of prohibitions contained in
T is limited—this number is frequently called the tabu list size—this mechanism
implements a short-term memory.

• Long-term memory. A tabu list does not necessarily prevent a cycling phenom-
enon, that is, visiting a subset of solutions cyclically. If the tabu duration is long
enough to avoid a cycling phenomenon, the search may be forced to visit only
bad solutions. To avoid both of these complementary phenomena, another kind of
memory, operating over a longer term, must be used.

• Diversification. A technique for avoiding cycling, which is the basis of variable
neighborhood search, is to perform jumps in the solution space. But, in contrast
to variable neighborhood search, which performs random jumps, tabu search uses
a long-term memory for these jumps, for instance by forcing the use of solution
modifications that have not been tried for a large number of iterations. Another
diversification technique is to change the modeling of the problem, for instance
by accepting nonfeasible solutions but assigning them a penalty.

• Intensification. When an interesting solution is identified, an idea is to tentatively
examine more deeply the solution space in its neighborhood. Many intensification
techniques are used. The simplest one is to come back to the best solution found so
far and to change the search parameters, for instance by limiting the tabu duration,

3 Tabu Search 53

by using a larger neighborhood, or by using a more constrainted model of the
problem.

• Strategic oscillations. For tackling particularly difficult problems, it is convenient
to alternate phases of diversification and intensification. So, the search oscillates
between phases where the solution structure is greatly modified and phases where
better solutions are built again. This strategy is the origin of other metaheuristics
thatwere proposed later, such as variable neighborhood search, large neighborhood
search, and iterated local search.

Some of these principles of tabu search will be illustrated with the help of a
particular problem, namely the quadratic assignment problem, so that these principles
does not stay in the clouds. We chose this problem for several reasons. First of all,
it has applications in multiple fields. For example, the problem of placing electronic
modules,whichwediscussed inChap. 1devoted to simulated annealing, is a quadratic
assignment problem. In this case, its formulation is very simple, because it deals with
finding a permutation. Here, it should be noted that many combinatorial optimization
problems can be expressed in the form of searching for a permutation.

3.2 The Quadratic Assignment Problem

Given n objects and a set of flows fi j between objects i and j (i, j = 1, . . . , n), and
given n locations with distance drs between the locations r and s (r, s = 1, . . . , n),
the problem deals with placing the n objects on the n locations so as to minimize the
sum of the products flows × distance. Mathematically, this is equivalent to finding a
permutation p, whose i th component pi denotes the position of the object i , which
minimizes

∑n
i=1

∑n
j=1 fi j · dpi p j .

This problem has multiple practical applications; among them, the most popular
ones are the assignment of offices or services in a building (e.g., a university campus
or hospital), the assignment of departure gates to aircraft at an airport, the placement
of logicalmodules in FPGA (field-programmable gate array) circuits, the distribution
of files in a database, and the placement of the keys on typewriter keyboards. In these
examples, the flow matrix represents the frequency with which people may move
from one office to another, the number of people who may transit from one aircraft
to another, the number of electrical connections to be made between two modules,
the probability of requesting the access to a second file if one is accessing the first
one, and the frequency with which two particular characters appear consecutively
in a given language, respectively. The distance matrix has an obvious meaning in
the first three examples; in the fourth, it represents the transmission time between
databases and, in the fifth, it represents the time separating the striking of two keys.

The quadratic assignment problem is NP-hard. One can easily show this by noting
that the traveling salesman problem can be formulated as a quadratic assignment
problem. Unless P = NP, there is no polynomial approximation scheme for this
problem. This can be shown simply by considering two problem instances which

http://dx.doi.org/10.1007/978-3-319-45403-0_1

54 E. Taillard

Table 3.1 Number of connections between modules in the SCR12 problem

Module 1 2 3 4 5 6 7 8 9 10 11 12

1 — 180 120 — — — — — — 104 112 —

2 180 — 96 2445 78 — 1395 — 120 135 — —

3 120 96 — — — 221 — — 315 390 — —

4 — 2445 — — 108 570 750 — 234 — — 140

5 — 78 — 108 — — 225 135 — 156 — —

6 — — 221 570 — — 615 — — — — 45

7 — 1395 — 750 225 615 — 2400 — 187 — —

8 — — — — 135 — 2400 — — — — —

9 — 120 315 234 — — — — — — — —

10 104 135 390 — 156 — 187 — — — 36 1200

11 112 — — — — — — — — 36 — 225

12 — — — 140 — 45 — — — 1200 225 —

differ only in the flow matrix. If an appropriate constant is removed from all the
flow components of the first problem to obtain the second, the last have an optimum
solution value of zero. Consequently, all ε-approximations to the second problem
has an optimum solution, which is possible to implement in polynomial time only if
P = NP. However, problems generated at random (with flows and distances drawn
uniformly) satisfy the following property: as n → ∞, the value of any solution (even
the worst one) tends towards the value of an optimal solution [1].

3.2.1 Example

Let us consider the placement of 12 electronic modules (1, . . . , 12) on 12 sites
(a, b, . . . , l). The number of wires connecting any pair of modules is known, and is
given in Table3.1. This problem instance is referred to as SCR12 in the literature.

The sites are distributed on a 3 × 4 rectangle. Connections can be implemented
only horizontally or vertically, implying wiring lengths measured with Manhattan
distances. In the solution of the problem represented in Fig. 3.1, which is optimal,
module 6 was placed on site a, module 4 on site b, etc.

3.3 Basic Tabu Search

From here onwards and without being restrictive, we can make the assumption that
the problem to be solved can be formulated in the following manner:

3 Tabu Search 55

a

lk

hgf

ji

e

dcb
3 96

11027

8 5 1112

4

Fig. 3.1 Optimal solution of a problem of connection between electronic modules. The thickness
of the lines is proportional to the number of connections

1 2 3 4 5 6 9 7 8 1 2 7 4 5 6 9 3 8

Fig. 3.2 A possibility for creating a neighboring solution in a permutation problem

min
s∈S

f (s)

In this formulation, f denotes the objective function, s a feasible solution of the
problem, and S the entire collection of feasible solutions.

3.3.1 Neighborhood

Tabu search is primarily centered on a nontrivial exploration of all the solutions
by using the concept of a neighborhood. Formally, one can define, for any solution
s of S, a set N (s) ⊂ S that is a collection of the neighboring solutions of s. For
instance, for the quadratic assignment problem, s can be a permutation of n objects
and the set N (s) can be the possible solutions obtained by exchanging two objects in
a permutation. Figure3.2 illustrates one of the moves of the set N (s), where objects
3 and 7 are exchanged.

Local search methods are almost as old as the world itself. As a matter of fact,
how does a human being behave when they are seeking a solution to a problem for
which they cannot find a solution or if they do not have enough patience to find an
optimal solution? The person may try to slightly modify the proposed solution and
may check whether it is possible to find better solutions by carrying out such local
changes. In other words, they will stop as soon as they meet a local optimum relative

56 E. Taillard

to the modifications to a solution that are allowed. In this process, nothing proves
that the solution thus obtained is a global optimum—and, in practice, this is seldom
the case. In order to find solutions better than the first local optimum met with, one
can try to continue the process of local modifications. However, if precautions are
not taken, one risks visiting a restricted number of solutions, in a cyclic manner.
Simulated annealing and tabu search are two local search techniques which try to
eliminate this disadvantage.

Some of these methods, such as, simulated annealing, have been classified as
artificial intelligence techniques. However, this classification is certainly incorrect, as
they are guided almost exclusively by chance—someauthors even compare simulated
annealing to thewandering of a person suffering fromamnesiamoving in fog. Perhaps
others describe these methods as intelligent because, often after a large number
of iterations during which they have generated several poor-quality solutions, they
produce a good-quality solution which would otherwise have required a very large
human effort.

In essence, tabu search is not centered on chance, although one can introduce
random components for primarily technical reasons. The basic idea of tabu search is
to make use of memories during the exploration of some part of the solutions to the
problem, which consists in moving repeatedly from one solution to a neighboring
solution. It is thus primarily a local search, if we look beyond the limited meaning
of this term and dig for a broader meaning. However, some principles that enable
one to carry out jumps in the solution space have been proposed; in this respect, tabu
search, in contrast to simulated annealing, is not a pure local search.

3.3.2 Moves and Neighborhoods

Local searches are based on the definition of a set N (s) of solutions in the neighbor-
hood of s. But, from a practical point of view, it may be easier to consider the set M of
modifications that can be applied to s, rather than the set N (s). A modification made
to a solution can be called a move. Thus, a modification of a solution of the quadratic
assignment problem (see the Fig. 3.2) can be considered as a move characterized by
two elements to be transposed in a permutation. Figure3.3 gives the neighborhood
structure for the set of permutations of four elements. This is presented in graphical
form, where the nodes represent the solutions and the edges represent the neighbors
relative to transpositions.

The set N (s) of solutions in the neighborhood of s can be expressed as the set of
feasible solutions that can be obtained by applying a move m to solution s, where m
belongs to a set of moves M . The application of m to s can be denoted as s ⊕ m and
one has the equivalent definition N (s) = {s ′| = s ⊕ m, m ∈ M}.When it is possible,
expressing the neighborhood in terms of moves facilitates the characterization of the
set M . Thus, in the above example of modification of a permutation, M can be char-
acterized by all of the pairs (place 1, place 2) in which the elements are transposed,
independently from the current solution. Note that in the case of permutations with

3 Tabu Search 57

3412

3142

312
4

13
24

13
42

14
32

41
32

321432413421
4321

4312

2143

2413

421
3

41
23

14
2312

43

12
34

4231

2431

2341

2314

21342134

Fig. 3.3 Set of permutations of four elements (represented by nodes) with neighborhood relations
relative to transpositions (represented by edges)

a transposition neighborhood, |S| = n! and |M | = n·(n−1)/2. Thus, the solution set
is much larger than the set of moves, which grows as the square of the number of
elements.

However, in some applications this simplification can lead to the definition
of moves which would produce unacceptable solutions and, in general, we have
|N (s)| ≤ |M |, without |M | being much larger than |N (s)|. For a given problem with
few constraints, it is typically the case that |N (s)| = |M |.

3.3.2.1 Examples of Neighborhoods for Problems on Permutations

Many combinatorial optimization problems can be formulated naturally as a search
for a permutation of n elements. Assignment problems (which include the quadratic
assignment problem), and the traveling salesman and scheduling problems are rep-
resentative examples of such problems. For these problems, several definitions of
neighboring solutions are possible; some examples are illustrated in Fig. 3.4. Among
the simplest neighborhoods, one can find the inversion of two elements placed

58 E. Taillard

1

1

1

52 3 4 6 9 7 8

2 3 4 5 6 9 7 8

2 3 4 5 6 9 7 8

1 2 3 5 4 6 9 7 8

1 2 3 7 5 6 9 4 8

1 2 3 7 4 5 6 9 8

Fig. 3.4 Three possible neighborhoods with respect to permutations (inversion, transposition,
displacement)

successively in the permutation, the transposition of two distinct elements, and,
finally, the movement of an element to another place in the permutation. Depending
on the problem considered, more elaborate neighborhoods that suit the structure of
good solutions may be considered. This is typically the case for the traveling sales-
man problem, where there are innumerable neighborhoods suggested that do not
represent simple operations if a solution is regarded as a permutation.

The first type of neighborhood shown in the example in Fig. 3.4 is themost limited
one as it is of size n − 1. The second type defines a neighborhood with, n·(n−1)/2

moves, and the third is of size n(n − 2) + 1. The abilities of these various types
of neighborhoods to guide a search in a few iterations towards good solutions are
very different; generally, the first type shows the worst behavior for many problems
since it is a subset of the others. The second type can be better than the third for
some problems (such as the quadratic assignment problem), whereas, for scheduling
applications, the third type often shows better performance [12].

3.3.3 Neighborhood Evaluation

In order to implement an effective local search engine, it is necessary that the ratio
between the quality or suitability of the moves and the computational resources
required for their evaluation is as high as possible. If the quality of a type of move
can be justified only by intuition and in an empirical manner, the evaluation of the
neighborhood can, on the other hand, often be accelerated considerably by alge-
braic considerations. Let us define �(s, m) = f (s ⊕ m) − f (s). In many cases it is
possible to simplify the expression f (s ⊕ m) − f (s) and thus to evaluate �(s, m)

quickly. An analogy can be drawn with continuous optimization: the numerical eval-
uation of f (s ⊕ m) − f (s) would be the equivalent of a numerical evaluation of
the gradient, whereas the calculation of the simplified function �(s, m) would be
the equivalent of the evaluation of the gradient by means of a function implemented
using the algebraic expressions for the partial derivatives.

Moreover, if a move m ′ was applied to solution s in the previous iteration, it is
often possible to evaluate �(s ⊕ m ′, m) for the current iteration as a function of

3 Tabu Search 59

�(s, m) (which was evaluated in the previous iteration) and to evaluate the entire
neighborhood very rapidly, simply by memorizing the values of �(s, m),∀m ∈ M .

It may appear that �(s, m) would be very difficult and expensive to evaluate.
For instance, for vehicle routing problems (see Sect. 13.1), a solution s can consist
of partitioning customers demands into subsets whose weights are not more than
the capacities of the vehicles. To evaluate f (s), we have to find an optimal order in
which onewill deliver to the customers for each subset, which is a difficult problem in
itself. This is the well-known traveling salesman problem. Therefore, the evaluation
of f (s), and consequently that of �(s, m) cannot reasonably be performed for every
eligible move (i.e., all moves belonging to M); possibly �(s, m) would need to be
calculated for each move selected (and in fact carried out), but, in practice, f (s) is
evaluated exactly for a limited number of solutions only. Hence the computational
complexity is limited by estimating �(s, m) in an approximate manner.

3.3.3.1 Algebraic Simplification for the Quadratic Assignment Problem

As any permutation is an acceptable solution for the quadratic assignment problem,
its modeling is also trivial. For the choices of neighborhood, it should be realized
that moving the element into the i th position in the permutation to put it into the j th
position implies a very significant modification of the solution. This is because all
of the elements between the i th and the j th position are moved. The inversion of the
objects in the i th and the (i + 1)th position in the permutation generates too limited
a neighborhood. In fact, if the objective is to limit ourselves to the neighborhoods in
which the sites assigned to two elements only are modified, it is only reasonable to
transpose the elements i and j occupying the sites pi and p j . Each of these moves
can be evaluated in O(n) (where n is the problem size).With a flowmatrixF = (fi j)

and a distance matrix D = (drs), the value of move m = (i, j) for a solution p is
given by

�(p, (i, j)) = (fii − f j j)(dp j p j − dpi pi) + (fi j − f ji)(dp j pi − dpi p j)

+∑
k
=i, j (f jk − fik)(dpi pk − dp j pk) + (fk j − fki)(dpk pi − dpk p j)

(3.1)

If solution p was modified into solution q by exchanging the objects r and s, i.e.,
qk = pk (k
= r, k
= s), qr = ps , qs = pr in an iteration, it is possible to evaluate
�(q, (i, j)) in O(1) in the next iteration by memorizing the value �(p, (i, j)) of the
move (i, j) that was discarded:

�(q, (i, j)) = �(p, (i, j))
+ (fri − fr j + fs j − fsi)(dqs qi − dqs q j + dqr q j − dqr qi)

+ (fir − f jr + f js − fis)(dqi qs − dq j qs + dq j qr − dqi qr)

(3.2)

http://dx.doi.org/10.1007/978-3-319-45403-0_13

60 E. Taillard

Fig. 3.5 Left in light color, the elements for which it is necessary to recalculate the scalar product
of the matrices to evaluate the move (r, s) applied to p (giving the solution q). Right the circled
elements are those for which it is necessary to recalculate the product to evaluate the move (i, j)
applied to q, compared with those which would have been calculated if the move (i, j) had been
applied to p

Figure3.5 illustrates the modifications of �(p, (i, j)) that are necessary to obtain
�(q, (i, j)) if the move selected for going from p to q is (r, s). It should be noted
here that the quadratic assignment problem can be regarded as the problem of the
permutation of the rows and columns of the distance matrix so that the “scalar”
product of the two matrices is as small as possible.

Consequently, by memorizing the values of �(p, (i, j)) for all i and j , the com-
plete neighborhood can be evaluated in O(n2): by using Eq. (3.2), one can evaluate
the O(n2) moves that do not involve the indices r and s, and, by using Eq.3.1, one
can evaluate the O(n) moves which involve precisely these indices.

3.3.4 Neighborhood Limitation: Candidate List

Generally, a local search does not necessarily evaluate all the solutions in N (s) in
each iteration, but only a subset. In fact, simulated annealing only evaluate a single
neighbor in each iteration. Conversely, tabu search is supposed to make an “intelli-
gent” choice of a solution from N (s). A possible way to acclerate the evaluation of
the neighborhood is to reduce its size; this reduction can also have the other goal of
guiding the search.

To reduce the number of eligible solutions in N (s), some authors adopt the strategy
of randomly selecting from N (s) a number of solutions which is much smaller
than |N (s)|. If the neighborhood is given by a static collection M of moves, one
can also consider partitioning M into subsets; in each iteration, only one of these
subsets is examined. In this manner, one can use a partial but cyclic evaluation of
the neighborhood, which allows one to choose a move more quickly. This implies
a deterioration in quality, since not all moves are not taken into consideration in
each iteration. However, at a global level, this limitation might not have too bad an
influence on the quality of the solutions produced, because a partial examination
can generate a certain diversity in the visited solutions, precisely because the moves

3 Tabu Search 61

which were chosen were not those which would have been chosen, if a complete
examination of the neighborhood had been carried out.

Finally, in accordance with Glover’s intuition when he proposed the concept of a
candidate list, one can make the assumption that a good-quality move for a solution
will remain good for solutions that are not too different. Practically, this can be
implemented by ordering the entire set of all feasible moves by decreasing quality,
in a given iteration. During the later iterations, only those moves that have been
classified among the best will be considered. This is implemented in the form of a
data structure called a candidate list. Naturally, the order of the moves will become
degraded during the search, since the solutions become increasingly different from
the solution used to build the list, and it is therefore necessary to periodically evaluate
the entire neighborhood to preserve a suitable candidate list.

However, for some problems, a static candidate list can be used. For instance, a
frequently used technique for speeding up the evaluation of the neighborhood for
Euclidean traveling salesman and vehicle routing problems is to consider, for each
customer, only the x closest customers. Typically, x is limited to a few dozen. So,
the size of the neighborhood grows linearly with the problem size. One form of tabu
search exploiting this principle is called granular tabu search [17].

3.3.5 Neighborhood Extension: Ejection Chains

An ejection chain is a technique for creating potentially interesting neighborhoods
by performing a substantial modification of a solution in a compound move. The
idea is to remove (eject) an element from a solution and to insert it somewhere else,
ejecting another element if necessary. This is repeated until either a suitable solution
is found or no suitable ejection can be performed. This process implies a need to
manage solutions that are not feasible, called reference structures by Glover.

3.3.5.1 Lin and Kernighan Neighborhood for the Traveling Salesman
Problem

The best-known ejection chain technique is certainly that of Lin and Kernighan [11]
for the traveling salesman problem. The idea is as follows: An edge is removed from
a valid tour to obtain a chain (a nonoriented path). One of the extremities of the chain
is connected to an internal vertex. The reference structure so obtained is made up
of a cycle on a subset of vertices and a chain connected to this cycle. By removing
an edge of the cycle adjacent to a node of degree 3 and by connecting both nodes
of degree 1, a new feasible tour is obtained. Such a modification corresponds to the
traditional 2-opt move.

62 E. Taillard

An interesting exploitation of this reference structure is to transform it into another
reference structure. After an edge adjacent to a node of degree 3 has been removed—
one gets a chain connecting all vertices—one of the extremities of the chain can be
connected to an internal node, creating another reference structure. To guide the
ejection chain and determine when to stop, the following rules can be applied:

• The weight of the reference structure must be lower than that of the initial solution.
• Once an edge has been added during an ejection chain, this edge cannot be removed
again.

• Once an edge has been removed during an ejection chain, it cannot be added again.
• The ejection chain stops as soon as it is not possible to modify the reference
structure while maintaining a weight lower than that of the starting solution or
when an improved solution has been found.

This process is illustrated in Fig. 3.6.

(b) (c) (d)(a)

(f) (g) (h)(e)

Fig. 3.6 Lin and Kernighan neighborhood for the traveling salesman problem. This neighborhood
can be seen as an ejection chain. To start the chain, an edge is removed from the initial solution (a)
to obtain a chain (b). This chain is then transformed into a reference structure (c) of weight lower
than that of the initial solution by adding an edge. From the reference structure (c), it is possible
to get either a new tour (d) or another reference structure (e) by replacing an edge by another one.
The process can be propagated to construct solutions that are increasingly different from the initial
solution. Solution (d) belongs to the 2-opt neighborhood of solution (a). Solution (f) belongs to the
3-opt neighborhood of (a) and solution (h) to its 4-opt neighborhood

3 Tabu Search 63

Fig. 3.7 Trajectories that block a search or disconnect it from the optimal solution in a strict tabu
search

3.4 Short-Term Memory

When one wishes to make use of memory in an iterative process, the first idea that
comes to mind is to check if a solution in the neighborhood has already been visited.
However, the practical implementation of this idea can be difficult and, even worse, it
may prove not to be very effective. It requires one to memorize every solution visited
and, in each iteration, for every eligible solution, to test whether that solution has
already been enumerated. This could possibly be done efficiently by using hashing
tables, but it is not possible to prevent a significant growth in the memory space
requirement, as that increases linearly with the number of iterations. Moreover, the
pure and simple prohibition of solutions can lead to absurd situations. Assume that
the entire set of feasible solutions can be represented by points whose coordinates
are given on a surface in the plane and that one can move from any feasible solution
to any other by a number of displacements of unit length. In this case, one can easily
find trajectories which disconnect the current solution from an optimal solution or
which block an iterative search owing to a lack of feasible neighboring solutions if
it is tabu to pass through an already visited solution. This situation is schematically
illustrated in Fig. 3.7.

3.4.1 Hash Table

An initial idea for guiding an iterative search, which is very easy to implement, is to
prohibit a return to a solution whose value has already been obtained during the last
t iterations. Thus one can prevent a cycle of length t or less. This type of prohibition
can be implemented in an effective manner: Let L be a integer, relatively large, such
that it is possible to store a table of L entries in the main memory of the computer.
If f (sk) is assumed to be the integer value of solution sk in iteration k (this is not

64 E. Taillard

restrictive when one is working with a computer), one can memorize the value k + t
in T [f (sk) modulo L]. If a solution s ′ in the neighborhood of the solution in iteration
k ′ is such that T [f (s ′) modulo L)] > k ′, s ′ is not considered anymore as an eligible
solution. This effective method of storing the tabu solutions only approximates the
initial intention, which was to prevent a return to a solution of a given value, as not
only any solution of the given value is prohibited during t iterations but also all those
which have this value modulo L . Nevertheless, only a very moderate modification
of the search behavior can be observed in practice if L is selected to be sufficiently
large. A benefit of this collateral effect is that it suppresses neutral moves (moves
with null cost), which can trap a local search on a large plateau.

This type of tabu condition works only if the objective function has a vast span of
values. However, there are many problems where the objective function has a limited
span of values. One can circumvent this difficulty by associating with the objective
function, and using in its place, another function that has a large span of values. In
the case of a problem on permutations, one can associate, for example, the hashing
function

∑n
i=1 i2 · pi , which takes a number of O(n4) different values.

More generally, if a solution of a problem can be expressed in the form of a vector
x of binary variables, one can associate the hashing function

∑n
i=1 zi · xi with zi , a

set of n numbers randomly generated at the beginning of the search [18].
When hashing functions are used for implementing tabu conditions, one needs to

focus on three points. Firstly, as already mentioned, it is necessary that the function
used has a large span of possible values. Secondly, the evaluation of the hashing
function for a neighboring solution should not impose a significantly higher compu-
tational burden than the evaluation of the objective function. In the case of problems
on permutations with a neighborhood based on transpositions, the functions men-
tioned above can be evaluated in constant time for each neighboring solution if the
value of the hashing function for the starting solution is known. Thirdly, it should
be noted that even with a very large hashing table, collisions (different solutions
with identical hashing values) are frequent. Thus, for a problem on permutations of
size n = 100, with the transposition neighborhood, approximately five solutions in
the neighborhood of the solution in the second iteration will have a collision with
the starting solution, if a table of 106 elements is used. One technique to reduce the
risk of collisions effectively, is to use several hashing functions and several tables
simultaneously [16].

3.4.2 Tabu List

As it can be ineffective to restrict the neighborhood N (s) to those solutions which
have not yet been visited, tabu conditions are instead based on M , the set of moves
applicable to a solution. This set is often of relatively modest size (typically O(n) or
O(n2) if n is the size of the problem) andmust have the characteristic of connectivity,
i.e., an optimal solution can be reached from any feasible solution. Initially, to sim-
plify our analysis, we assume that M also has the property of reversibility: for any

3 Tabu Search 65

movem applicable to a solution s, there is a movem−1 such that (s ⊕ m) ⊕ m−1 = s.
As it does not make sense to apply m−1 immediately after applying m, it is possible,
in all cases, to limit the moves applicable to s ⊕ m to those different from m−1.
Moreover, one can avoid visiting s and s ⊕ m repeatedly in the process if s is a local
minimum of the function in the neighborhood selected and if the best neighbor of
s ⊕ m is precisely s.

By generalizing this technique of limiting the neighborhood, i.e., by prohibiting
for several iterations the reverse of a move which has just been made, one can
prevent other cycles composed of a number of intermediate solutions. Once it again
becomes possible to carry out the reverse of a move, one hopes that the solution has
been sufficiently modified that it is improbable—but not impossible—to return to an
already visited solution. Nevertheless, if such a situation arises, it is hoped that the
tabu list would have changed, and therefore the future trajectory of the search would
change. The number of tabu moves must remain sufficiently limited. Let us assume
that M does not depend on the current solution. In this situation, it is reasonable to
prohibit only a fraction of M . Thus, the tabu list implements a short-term memory,
relating typically to a few or a few tens of iterations.

For easier understanding, we have assumed that the reverse moves of those that
have been carried out are stored. However, it is not always possible or obvious to
definewhat a reversemove is. Take the example of a problemwhere the objective is to
find an optimal permutation of n elements. A reasonable move could be to transpose
the elements i and j of the permutation (1 ≤ i < j ≤ n). In this case, all of the M
moves applicable to an unspecified solution are given by the entire set of pairs (i, j).
But, thereafter, if the move (i, k) is carried out, the prohibition of (i, j) will prevent
the visiting of certain solutions without preventing the cycling phenomenon: indeed,
the moves (i, j)(k, p)(i, p)(k, j)(k, i)(j, p) applied successively do not modify the
solution. So, the tabu condition must not necessarily prohibit one to perform the
reverse of a move too quickly, but it may be defined in such a way to prevent the use
of some attribute of the moves or solutions. In the preceding example, if pi is the
position of element i and if the move (i, j) has been performed, it is not the reverse
move (i, j) which should be prohibited, but, for example, the simultaneous placing
of the element i on position pi and the element j on position p j . One can thus at
least prevent those cycles which are of length less than or equal to the number of
tabu moves, i.e., the length of the tabu list.

3.4.3 Duration of Tabu Conditions

Generally speaking, the short-term memory will prohibit the performance of some
moves, either directly by storing tabumoves or tabu solutions, or indirectly by storing
attributes of moves or attributes of solutions that are prohibited. If the minimization
problem can be represented as a landscape limited to a territory which defines the
feasible solutions and where altitude corresponds to the value of the objective func-
tion, the effect of this memory is to visit valleys (without always being at the bottom

66 E. Taillard

Fig. 3.8 Influence of the number of iterations during which moves are tabu

of the valley, because of tabu moves) and, sometimes, to cross a pass leading to
another valley.

The higher the number of tabu moves is, the more likely one is to cross the
mountains, but the less thoroughly the valleys will be visited. Conversely, if moves
are prohibited for only a few iterations, there will be fewer chances of crossing the
passes surrounding the valleys because, almost surely, there will be an allowed move
which will lead to a solution close to the bottom of the valley; but, on the other hand,
the bottom of the first valley visited will most probably be found.

More formally, for a very small number of tabu moves, the iterative search will
tend to visit the same solutions over and over again. If this number is increased, the
probability of remaining confined to a very limited number of solutions decreases and,
consequently, the probability of visiting several good solutions increases. However,
the number of tabu moves must not be very large, because it then becomes less
probable that one will find good local optima, for lack of available moves. To some
extent, the search is guided by the few allowed moves rather than by the objective
function.

Figure3.8 illustrates these phenomena in the case of the quadratic assignment
problem: for each of 3000 instances of size 12, drawn at random, 50 iterations of
a tabu search were performed. This figure gives the following two statistics as a
function of the number of iterations during which a reverse move is prohibited:
firstly, the average value of all the solutions visited during the search and, secondly,
the average value of the best solutions found by each search. It should be noted that
the first statistic grows with the number of prohibited moves, which means that the
average quality of the visited solutions degrades. On the other hand, the quality of
the best solutions found improves with an increase in the number of tabu moves,
which establishes the fact that the search succeeds in escaping from comparatively
poor local optima; then, their quality worsens, but this tendency is very limited here.

3 Tabu Search 67

Thus, it can be concluded that the size of the tabu list must be chosen carefully,
in accordance with the problem under consideration, the size of the neighborhood,
the problem instance, the total number of iterations performed, etc. It is relatively
easy to determine the order of magnitude that should be assigned to the number of
tabu iterations, but the optimal value cannot be obtained without testing all possible
values.

3.4.3.1 Random Tabu Duration

To obtain simultaneous benefits from the advantages of a small number of tabu
moves—for through exploration of a valley—and a large number—for the ability to
escape from the valley—the number of tabumoves can bemodified during the search
process. Several methodologies can be considered for this choice: for example, this
number can be decided at randombetween a lower and an upper limit, in each iteration
or after a certain number of iterations. These limits can often be easily identified; they
can also be increased or decreased on the basis of characteristics observed during the
search, etc. These were the various strategies employed upto the end of the 1980s
[12, 13, 16]. These strategies were shown to be much more efficient than the use of
tabu lists of fixed size (often implemented in the form of a circular list, although this
may not be the best option, as can be seen in Sect. 3.5.2).

Again for the quadratic assignment problem, Fig. 3.9 gives the average number
of iterations necessary for the solution of 500 examples of problems of size 15
generated at random, when the technique was to choose the number of tabu moves
at random between a minimum value and that value increased by Delta. The size
of the dark disks depends on the average number of iterations necessary to obtain
optimal solutions for the 500 problems. An empty circle indicates that at least one of
the problems was not solved optimally. The size of these circles is proportional to the
number of problems for which it was possible to find the optimum. For Delta = 0,
i.e., when the number of tabu moves is constant, cycles appear. On the other hand,
the introduction of a positive Delta, even a very small one, can ensure much more
protection against cycling.As canbenoted inFig. 3.8, the lower the tabu list size is, the
smaller is the average number of iterations required to obtain the optimum. However,
below a certain threshold, cycles appear, without passing through the optimum. From
the point of view of robustness, one is thus constrained to choose sizes of tabu lists
slightly larger than the optimal value (for this size of instances, it seems that this
optimal value should be [7, 28] (minimum size = 7, Delta = 21), but it can be
noticed that for [8, 28] a cycle appeared).

This technique of randomly selecting the number of tabu moves can thus guide
the search automatically towards good solutions. However, such a mechanism could
be described as myopic because it is guided mainly by the value of the objective
function. Although it provides very encouraging results considering its simplicity, it

68 E. Taillard

Delta

Fig. 3.9 The effect of random selection of the number of iterations during which moves are pro-
hibited, for instances of the quadratic assignment problem of size 15 drawn at random. The number
of iterations during which the reverse of a move was prohibited was drawn at random, uniformly
between a minimum value and that value increased by Delta. The size of the filled disks grows
with the average number of iterations necessary for the resolution of the problem until the optimum
is found. An empty circle indicates that a cycling phenomenon appeared. The size of the circles is
proportional to the number of problem instances solved optimally

cannot be considered as an intelligent way of guiding the search, but must rather be
viewed as a basic tool for implementing the search process.

3.4.3.2 Type of Tabu List for the Quadratic Assignment Problem

A solution to the quadratic assignment problem can be represented in the form of a
permutation p of n elements. A type of move very frequently used for this problem is
to transpose the positions of two objects i and j . It is possible to evaluate effectively,
in O(n2), the entire set of moves applicable to a solution.

As was discussed earlier, one technique for guiding the search in the short-term
is to prohibit, for t iterations, the application of the reverse of the moves which have
just been carried out. If a move (i, j) is applied to the permutation p, the reverse of
the move can be defined as a move which simultaneously places the object i on the
site pi and the object j on the site p j . There are other possible definitions of the
reverse of a move, but this is one of the most effective ones for preventing cycles
and appears to be the least sensitive one to the value of the parameter t , the number
of iterations during which one avoids applying the reverse of a move. A fixed value
of t does not produce a robust search, because the cycles may appear (see Fig. 3.9)

3 Tabu Search 69

even for large values of t . To overcome this problem, it was proposed in [13] that
t should be drawn uniformly at random, between �0, 9 · n� and 1, 1 · n + 4�. In
fact, experiments have shown that a tabu duration equal to the size of the problem, or
slightly larger for small examples, seems rather effective. This paved the way for the
idea of selecting the value of t in a dynamic manner during the search, by choosing
a maximum value slightly higher and an average value lower than the value which
would have been ideal in the static case.

To implement this tabu mechanism in practice, a matrix T can be used whose
entry tir gives the iteration number in which the element i was last moved from the
site r (to go to the site pi); this is the number to which one adds the tabu duration t .
Thus, the move (i, j) is prohibited if both of the entries tip j and t jpi contain values
higher than the current iteration number.

Let us consider the small 5 × 5 instance of the quadratic assignment problem
known in the literature as NUG5, with flow matrix F and distance matrix D:

F =

⎛
⎜⎜⎜⎜⎝

0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

⎞
⎟⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎜⎝

0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

⎞
⎟⎟⎟⎟⎠

With the tabu duration fixed at t = 5 iterations, the evaluation of the tabu search is
the following.

Iteration 0. On the basis of the initial solution p = (5, 4, 3, 2, 1), meaning that the
first element is placed in position 5, the second in position 4, etc., the value of this
solution is 64. The search starts by initializing the matrix T = 0.

Iteration 1. The value of �(p, (i, j)) is then calculated for each transposition m
specified by the objects (i, j) exchanged:

m (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Cost −4 −4 16 4 2 14 16 0 14 2

It can be seen that two moves can produce a maximum profit of 4, by exchanging
either objects (1, 2) or objects (1, 3). We can assume that it is the first of these moves,
(1, 2), which is retained, meaning that object 1 is placed in the position of object 2,
i.e., 4, and object 2 is placed in the position of object 1, i.e., 5. It is forbidden for
t = 5 iterations (i.e., up to iteration 6) to put element 1 in position 5 and element 2
in position 4 simultaneously. The following tabu condition matrix is obtained:

70 E. Taillard

T =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 6
0 0 0 6 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Iteration 2. The move chosen in iteration 1 leads to the solution p = (4, 5, 3, 2, 1),
of cost 60. The computation of the value of every move for this new solution gives

m (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Cost 4 10 22 12 −8 12 12 0 14 2
Tabu Yes

For this iteration, it should be noted that the reverse of the preceding move is
now prohibited. The allowed move (2, 3), giving the minimum cost, is retained, for
a profit of 8. The matrix T becomes

T =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 6
0 0 0 6 7
0 0 7 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Iteration 3. The solution p = (4, 3, 5, 2, 1), of cost 52, is reached, which is a local
optimum. Indeed, at the beginning of iteration 3, no move has a negative cost:

m (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Cost 8 14 22 8 8 0 24 20 10 10
Tabu Yes

The move (2, 4) selected in this iteration has zero cost. It should be noted here
that the move (1, 2), which was prohibited in iteration 2, is again allowed, since the
element 5 was never in the third position. The matrix T becomes

T =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 6
0 0 8 6 7
0 0 7 0 0
0 8 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

3 Tabu Search 71

Iteration 4.The current solution isp = (4, 2, 5, 3, 1), of cost 52, and the data structure
situation is as follows:

m (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Cost 8 14 22 8 8 0 24 20 10 10
Tabu Yes

However, it is not possible anymore to choose the move (2, 4) corresponding to
the minimum cost, which could bring us back to the preceding solution, because this
move is prohibited. Hence we are forced to choose an unfavorable move, (1, 2), that
increases the cost of the solution by 8. The matrix T becomes

T =

⎛
⎜⎜⎜⎜⎝

0 0 0 9 6
0 9 8 6 7
0 0 7 0 0
0 8 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Iteration 5. The solution at the beginning of this iteration is p = (2, 4, 5, 3, 1). The
computation of the cost of the moves gives

m (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Cost −8 4 0 12 10 14 12 20 10 −10
Tabu Yes

It can be noticed that the move degrading the quality of the solution in the preced-
ing iteration was beneficial, because it now facilitates arriving at an optimal solution
p = (2, 4, 5, 1, 3), of cost 50, by choosing the move (4, 5).

3.4.4 Aspiration Conditions

Sometimes, some tabu conditions are absurd. For example, a move which leads to
a solution better than all those visited by the search in the preceding iterations does
not have any reason to be prohibited. In order not to miss this solution, it is necessary
to disregard the possible tabu status of such moves. In tabu search terminology, this
move is said to be aspired. Naturally, it is possible to assume other aspiration criteria,
less directly related to the value of the objective to be optimized.

It should be noted here that the first presentations on tabu search insisted heavily
on aspiration conditions, but, in practice, these were finally limited to allowing a tabu
movewhich helped to improve the best solution found so far during the search.As this

72 E. Taillard

later criterion became implicit, little research was carried out later on defining more
elaborate aspiration conditions. On the other hand, aspiration can also sometimes be
described as a form of long-termmemory, consisting in forcing amove that has never
been carried out over several iterations, irrespective of its influence on the objective
function.

3.5 Long-Term Memory

In the case of a neighborhood defined by a static set of moves, i.e., when it does not
depend on the solution found in the process, the statistics of the moves chosen during
the search can be of great utility. If some moves are chosen much more frequently
than others, one can suspect that the search is facing difficulties in exploring solutions
of varied structure and that it may remain confined in a “valley.” In practice, problem
instances that include extended valleys are frequently observed. Thus, these can be
visited using moves of small amplitude, considering the absolute difference in the
objective function. If the only mechanism for guiding the search is to prohibit moves
which are the reverse of those recently carried out, then a low number of tabu moves
implies that it is almost impossible to escape from some valleys. A high number of
tabu moves may force the search procedure to reside often on a hillside, but even if
the search can change between valleys, it cannot succeed in finding good solutions in
the new valley because numerousmoves are prohibited after the visit to the preceding
valley. It is thus necessary to introduce othermechanisms to guide a search effectively
in the long term.

3.5.1 Frequency-Based Memory

One technique to ensure some diversity throughout the search without prohibiting
too many moves, consists in penalizing moves that are frequently used. Several
penalization methods can be imagined, for instance a prohibition of moves whose
frequency of occurrence during the search exceeds a given threshold, or the addition
of a value proportional to their frequency when evaluating moves. Moreover, the
addition of a penalty proportional to the frequency has a beneficial effect for problems
where the objective function takes only a small number of values, as that situation
can generate awkward equivalences from the point of view of guiding the search
when several neighboring solutions have same evaluation. In these situations, the
search will then tend to choose those moves which are least employed rather than
select a move more or less at random.

Figure3.10 illustrates the effect of a method of penalization of moves which adds
a factor proportional to their frequency of usage at the time of their evaluation. For
this purpose, the experiment carried out to show the influence of the tabu duration
(see Fig. 3.8) was repeated, but this time; the coefficient of penalization was varied;

3 Tabu Search 73

Fig. 3.10 Effect of a coefficient of penalization based on the frequencies of moves

the moves were thus penalized, but never tabu. This experiment relates again to the
3000 quadratic assignment instances of size 12 generated at random. In Fig. 3.10,
the average of the best solutions found after 50 iterations and the average value of all
the solutions visited are given as functions of the coefficient of penalization. It can
be noticed that the behavior of these two statistics is almost the same as that shown
in Fig. 3.8, but overall, the solutions generated are worse than those obtained by the
use of a short-term memory.

Just like what has been done for short-term memory, this method can be gener-
alized to provide a long-term memory of a nonstatic set of moves, i.e., where M
depends on s: in this case the frequency with which certain characteristics of moves
have been employeed to is recorded rather than the moves themselves. Here, the sim-
ilarities in implementing these two forms of memory should be noticed: one method
stores the iteration in which one can use a characteristic of a move again, whereas the
other memorizes the number of times this characteristic has been used in the chosen
moves.

3.5.1.1 Value of the Penalization

It is necessary to tune the value associated with a penalization method based on fre-
quencies. This tuning can be carried out on the basis of the following considerations.
Firstly, if f req(m) denotes the frequency of usage of move m, it seems reasonable
to penalize that move by a factor proportional to f req(m), though other possible
functions can be used, for instance f req2(m).

Secondly, if the objective function is linear and if a new problem instance is
considered where all the data are multiplied by a constant, it is not desired that

74 E. Taillard

a mechanism of penalization based on frequencies should depend on the value of
the constant. In the same way, the mechanism of penalization should not work in
a different manner if one adds a constant to the objective function. Consequently,
it also seems legitimate to use a penalization which is proportional to the average
amplitude of two neighboring solutions.

Thirdly, the larger the neighborhood is, themore the distribution of the frequencies
becomes concentrated on small values. The penalty should thus be multiplied by a
function that is strictly increasing with the size of the neighborhood, so that the
penalty does not become zero when the size of the problem increases. If the identity
function proves to be too large in practice (cf. [14, 15]), one can consider, for example,
a factor proportional to

√|M |.
Naturally, the concept of using penalization based on frequencies also requires

taking the mechanism of aspiration into consideration. If not, then it is highly likely
that we may miss excellent solutions.

3.5.2 Forced Moves

Another long-term mechanism consists in performing a move which has never been
used during a large number of iterations, irrespective of its influence on the quality
of the solution. Such a mechanism can be useful for destroying the structure of a
local optimum, and therefore escaping from the valley in which it was confined. This
is also valid for high-dimensional problems, as well as instances that have a more
modest size but are very structured (i.e., for which the local optima are separated by
very bad solutions).

In the earlier example of the quadratic assignment problem, it is not even necessary
to introduce a new data structure to implement this mechanism. In fact, it is enough
to implement the tabu list in the form of a matrix with two dimensions (element,
position), whose entries indicate in which iteration each element is allowed to occupy
a given position, either to decide if a move is prohibited (the entries in the matrix
corresponding to the move contain values larger than the number of the current
iteration) or, instead, to decide if a given element has not occupied a given position
during the last v iterations. If the matrix contains an entry whose value is lower than
the number of the current iteration decreased by the parameter v, the corresponding
move is chosen, independent of its evaluation. It may happen that several moves
could be simultaneously chosen because of this rule. This problem can be solved
by imagining that, before the search was started, one had carried out all |M | moves
(a static, definite neighborhood of all M moves is assumed) during hypothetical
iterations −|M |,−|M | + 1, . . . ,−1. Of course, it is necessary that the parameter
v be (sufficiently) larger than |M |, so that these moves are only imposed after v

iterations.

3 Tabu Search 75

3.6 Convergence of Tabu Search

Formally, one cannot speak about “convergence” for a tabu search, since in each
iteration the solution is modified. On the other hand, it is definitely interesting to pass
at least once through a global optimum. This was the focus of discussion in [9], on a
theoretical level, using an elementary tabu search. It was shown that the search could
be blocked if one prohibited passing through the same solution twice. Consequently,
it is necessary to allow the same solution to be revisited. By considering a search
which memorizes all the solutions visited and which chooses the oldest one that has
been visited if all of the neighboring solutions have already been visited, it can be
shown that all of the solutions of the problem will be enumerated. This is valid if the
set of solutions is finite, and if the neighborhood is either reversible (or symmetric:
any neighboring solution to s has s in its neighborhood) or strongly connected (there
is a succession of moves that enables one to reach any solution s ′ starting from any
solution s). Here, all of the solutions visited must be memorized (possibly in an
implicit form), and it should be understood that this result remains theoretical.

Another theoretical result on the convergence of tabu search was presented in [2].
The authors of that study considered probabilistic tabu conditions. It is then possible
to choose probabilities such that the search process is similar to that of simulated
annealing. Starting from this observation, it can be expected that the convergence
theorems for simulated annealing can easily be adapted to a process called proba-
bilistic tabu search. Again, it should be understood that the interest of this result
remains of a purely theoretical nature.

3.7 Conclusion

Only some of the basic concepts of tabu search have been presented in this chapter.
Other principlesmay lead to amore effective and intelligentmethod.Whenpossible, a
graphical representation of the solutions visited successively during the search should
be used, as it will actively stimulate the spirit of the designer and will suggest, often
in an obvious way, how to guide the search more intelligently. The development of
a tabu search is an iterative process: it is almost impossible to propose an excellent
method at the first attempt. Adaptations, depending on the type of problem as well
as on the problem instance considered, will certainly be required. This chapter has
described only those principles which should enable a designer to proceed towards
an effective algorithm more quickly. Other principles, often presented within the
framework of tabu search suggested by F. Glover, such as scatter search, vocabulary
building and path relinking, will be presented in Chap. 13, devoted to methodology.

http://dx.doi.org/10.1007/978-3-319-45403-0_13

76 E. Taillard

3.8 Annotated Bibliography

Reference [6] This book is undoubtedly the most important reference on tabu
search. It describes the technique extensively, including certain
extensions which will be discussed in this book in Chap. 13.

References [4, 5] These two articles can be considered as the founders of the dis-
cipline, even if the name “tabu search” and certain ideas already
existed previously. They are not easily accessible; hence certain
concepts presented in these articles, such as path relinking and
scatter search, were studied by the research community only sev-
eral years after their publication.

References

1. Burkard, R.E., Fincke, U.: Probabilistic properties of some combinatorial optimization prob-
lems. Discrete Applied Mathematics 12, 21–29 (1985)

2. Faigle, U., Kern, W.: Some convergence results for probabilistic tabu search. ORSA Journal
on Computing 4, 32–37 (1992)

3. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers
and Operations Research 13, 533–549 (1986)

4. Glover, F.: Tabu search—Part i. ORSA Journal on Computing 1, 190–206 (1989)
5. Glover, F.: Tabu search—Part ii. ORSA Journal on Computing 2, 4–32 (1990)
6. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
7. Glover, F., Laguna, M., Taillard, É.D., de Werra, D.: Annals of or 41. In: Tabu Search. Baltzer

(1993)
8. Glover, F., Taillard, É.D., de Werra, D.: A user’s guide to tabu search. Annals of Opera-

tions Research 41, 1–28 (1993). http://mistic.heig-vd.ch/taillard/articles.dir/GloverTW1993.
pdf. doi:10.1007/BF02078647

9. Hanafi, S.: On the convergence of tabu search. Journal of Heuristics 7(1), 47–58 (2001)
10. Hertz, A., deWerra, D.: The tabu searchmetaheuristic: Howwe used it. Annals ofMathematics

Artificial Intelligence 1, 111–121 (1990)
11. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman. Opera-

tions Research 21(2), 498–516 (1973)
12. Taillard, E.D.: Some efficient heuristic methods for the flow shop sequencing problem. Euro-

pean Journal of Operational Research 47(1), 65–74 (1990)
13. Taillard, E.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing

17, 443–455 (1991)
14. Taillard, E.D.: Parallel iterative search methods for vehicle routing problems. Networks 23,

661–673 (1993)
15. Taillard, E.D.: Parallel taboo search techniques for the job shop scheduling problem. ORSA

Journal on Computing 6(2), 108–117 (1994)
16. Taillard, E.D.: Comparison of iterative searches for the quadratic assignment problem. Location

Science 3(2), 87–105 (1995)
17. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-routing problem.

INFORMS Journal on Computing 15, 333–346 (2003)
18. Woodruff, D.L., Zemel, E.: Hashing vectors for tabu search. In: G. Glover, M. Laguna, E.D.

Taillard, D. deWerra (eds.) Tabu Search, no. 41 inAnnals ofOperations Research, pp. 123–137.
Baltzer, Basel (1993)

http://dx.doi.org/10.1007/978-3-319-45403-0_13
http://mistic.heig-vd.ch/taillard/articles.dir/GloverTW1993.pdf
http://mistic.heig-vd.ch/taillard/articles.dir/GloverTW1993.pdf
http://dx.doi.org/10.1007/BF02078647

Chapter 4
Variable Neighborhood Search

Gilles Caporossi, Pierre Hansen and Nenad Mladenović

4.1 Introduction

The variable neighborhood search (VNS) metaheuristic was invented by Nenad
Mladnović and Pierre Hansen and has been developed at GERAD (Group for
Research in Decision Analysis, Montreal) since 1997. From that time on, VNS has
various developments and improvements as well as numerous applications. Accord-
ing to Journal Citation Reports, the original publications [8, 13] on VNS were cited
more than 600 and 500 times, respectively (and more than 1700 and 1200 times
according to Google Scholar), which shows the interest in the method from the
development and application points of view.

Applications of VNS may be found in various fields, such as data mining, local-
ization, communications, scheduling, vehicle routine, and graph theory. The reader
may refer to [10] for a more exhaustive survey.

VNS has many advantages. The most important, is that it usually provides excel-
lent solutions in a reasonable time, which is also the case for most of the modern
metaheuristics, but it is also easy to implement. In fact, VNS is based upon a com-
bination of methods which are quite classical in combinatorial and continuous opti-
mization. It also has very few parameters (and sometimes none) that have to be tuned
in order to get good results.

The goal of this chapter is not to provide an exhaustive review of the variants
of VNS and their applications, but rather to give the basic rules so as to make its
implementation as easy as possible.

The key concepts are presented and illustrated by an example based upon a search
for extremal graphs. These illustrations were inspired by an optimization imple-
mented in the first version of the AutoGraphiX (AGX) software package [2]. AGX is
dedicated to the search for conjectures in graph theory. We decided to use this exam-
ple because it involves all the main components of VNS and their use is intuitive.

G. Caporossi (B) · P. Hansen
GERAD and HEC Montreal, Montreal, Canada
e-mail: gilles.caporossi@gerad.ca

N. Mladenović
GERAD and LAMIH, Université de Valenciennes et du Hainaut-Cambrésis,
Valenciennes, France

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_4

77

78 G. Caporossi et al.

4.2 Description of the Algorithm

Like other metaheuristics, VNS is based upon two complementary methods: on one
hand, the local search and its extensions aim at improving the current solution, and on
the other hand, the perturbations allow the space of explored solutions to be extended.
These two principles are usually known as intensification and diversification. In
the case of VNS, these principles are combined in an intuitive way that is easy to
implement.

4.2.1 Local Search

The local search used in a large number of metaheuristics consists in finding suc-
cessive improvements of the current solution through an elementary transformation
until no improvement is possible. The solution so found is called a local optimum
with respect to the transformation used.

Technically, the local search consists in a succession of transformations of the
solution in order to improve it. We denote by N (S) the set of solutions that may be
obtained from the solution S by applying the transformations once. We call N (S)

the neighborhood of S. The current solution S is replaced by a better one S′ ∈ N (S).
The process stops when it is no longer possible to find an improving solution in the
neighborhood N (S), as described in Algorithm 4.1.

Input: S
Input: N
Let imp ← true
while imp = true do

imp ← f alse
foreach S′ ∈ N (S) do

if S′ better than S then
S ← S′
imp = true.

end
end

end
return S

Algorithm 4.1: Local Search.

After a complete exploration of the neighborhoodN (S), the local search ensures
that a local optimum with respect to the transformation considered has been found.
Of course, the notion of a local optimum remains relative to the transformation used.
A solution may be a local optimum for a given transformation, but not for another
one. The choice of the transformations was an important part in the development of
the VNS algorithm.

4 Variable Neighborhood Search 79

4.2.1.1 Changing the Neighborhoods

A way to improve the quality of the solution is to consider the use of various trans-
formations (and thus various neighborhoods) or various ways to use them.

The performance of the local search, measured according to the computational
effort required, the quality of the solution obtained, or the data structure implemen-
tation, depends on the transformations and the rules for choosing which one to apply.

It is possible that more than one improving solution may be found in the neigh-
borhood of the current solution. The choice of the best of them seems natural, but
this implies the complete exploration of the neighborhood. The computational time
required may be too large for the benefit gained. For this reason, it is sometimes
better to apply the first improvement found. The reader may refer to [9] for a deep
analysis in the case of the traveling salesman problem.

Except when a transformation is integrated into the local search scheme, it is also
possible to work on the transformations themselves. Consider a transformation t that
may be applied in various ways to the solution S. This transformation allows the
construction of a set N t (S) of solutions from S.

For a problem with implicit or explicit constraints, given a transformation t , the
solutions S′ ∈ N t (S) may always, sometimes or never be realizable. According to
the nature of the transformation, it may be possible to predict the realizability of a
solution in the neighborhood N (S) of S, and thus to decide whether to use it or not
before any attempt.

Apart from the realizability or not of a solution, the transformations have other
properties that should be analyzed before implementation.

Each neighborhood corresponds to a set of solutions and the larger this set is, the
more we can expect that it contains good solutions. On the other hand, the systematic
exploration of this large neighborhood will be time-consuming. The best neighbor-
hood would be one that contains the best solution, and thus improves significantly
the current solution while being fast to explore.

Unfortunately, finding such a neighborhood is not always possible. However,
machine learning may be used to select the most promising of them during the
optimization itself [3].

4.2.1.2 The Variable Neighborhood Descent

To take advantage of the various existing transformations for a given problem and
their specificities, it is possible to adapt the local search to use more than just one of
them. This is the principle of the variable neighborhood descent (VND).

In the same way as the local search explores the various solutions within a neigh-
borhood, the VND successively explores a series of transformations. Consider the
list N t (S) for t = 1, . . . , T , where T is the number of transformations considered.

Using successively all the transformations in the list to apply local searches, the
VND stops only when no transformation leads to an improved solution. The local

80 G. Caporossi et al.

optimum obtained after the VND is relative to all the transformations in the list, not
just one of them.

The performance of the variable neighborhood descent depends not only on the
neighborhoods used, but also on the order in which they are applied. Let us con-
sider two transformations t1 and t2 from which two neighborhoods may be built.
If N t1(S) ⊂ N t2(S), using the neighborhood based upon t1 after the one based on
t2 will not improve the solution. One might conclude that a local search using the
neighborhoodN t1(S)would be useless, but onemay also consider the computational
effort that the exploration of these neighborhoods requires.

At the beginning of the search, the solutions are usually of poor quality. If the
exploration of N t1(S) is faster than that of N t2(S), but its improvements are never-
theless good enough, using t1 as the first step could lead to a faster search than using
t2 solely. If the quality of the solution is the only criterion,N t1(S) is not as efficient
as N t2(S), but using t1 before t2 may speed up the process significantly.

IfN t1(S) contains solutions that are not inN t2(S) and vice versa, then the use of
both transformations is fully justified.

To improve the global performance of the search, it is often better to use the
smallest neighborhoods first, and those which require more computation time after
the first has failed.

Adopting this principle, the VND consists in applying such local searches one
after another until none succeeds in improving the solution. When a neighborhood
fails, the next one is used. If a local search succeeds, the algorithm restarts from the
first neighborhood (the fastest to explore). The strongest, but longest to apply, is used
when all others fail. The VND is described in Algorithm 4.2 and may be considered
as an mta-local search.

Input: S
Input: N t , t = 1, . . . , T
Let t = 1
while t < T do

S′ ← LocalSearch(S,N t)

if S′ better than S then
S ← S′
t ← 1
imp ← true.

end
else

t ← t + 1
end

end
return S

Algorithm 4.2: VND.

4 Variable Neighborhood Search 81

4.2.2 Diversification of the Search

Another way to improve the quality of the solution obtained is to change its starting
point.

4.2.2.1 The Multistart Search

The first method consists in applying multiple local searches starting from various
initial random solutions, and keeping only the best solution obtained, as described
in Algorithm 4.3. This is the so-called multistart search.

Input: S
Let S∗ ← S, the best known solution.
repeat

Let S be a random solution.
S′ ← LocalSearch(S)

if S′ better than S∗ then
S∗ ← S′

end
until stopping criterion;
return S∗

Algorithm 4.3: Multistart search.

If the problem has a moderate number of local optima which are far from each
other, the multistart algorithm will give good results. Unfortunately, in most cases,
owing to the number of local optima and their characteristics, it is unlikely that this
approach will give good results.

To illustrate this difficulty, let us consider two optimization problems with only
one variable. Figures 4.1 and 4.2 represent the objective function as a function of the
decision variable x .

If the initial values of x are chosen randomly in its definition interval, themultistart
algorithm will succeed in finding the best solution in the case of problem 1, but it
is very unlikely to do so in the case of problem 2. First, the number of local optima

Fig. 4.1 Illustration of
problem 1 with one variable

82 G. Caporossi et al.

Fig. 4.2 Illustration of
problem 2 with one variable

is large, and most initial solutions will lead to the same local optimum (the one on
the right or the one on the left). Because it often provides the same solutions, the
algorithm may also give the impression that it is the best possible one because it is
the easiest to find. In the case of higher dimensions, there is no reason to believe
that the situation will change. On the contrary, it is likely that this phenomenon will
increase, so that generally, the multistart algorithm is a bad choice when local optima
are close to one another.

The first question that arises, then, is whether the problem under study is more
similar to problem 1 or problem 2. Even if there is no general rule on that topic, it
seems that in most cases the local optima share a large number of properties, which
tends to indicate that they are similar to problem 2 in their nature.

Let us consider a few examples:

• The traveling salesman problem, a problem in which a salesman needs to meet a
list of clients and return to his office, minimizing the total length of the journey
required to visit them. It is likely that in a good solution, the two clients that are
the furthest away from each other will not appear one after the other in a tour that
would be found after a local search. In the same way, if two clients are very close
to each other, it is likely that they will be visited one after the other. Globally, the
local optima will share some common characteristics.

• Clustering, a problem in which one wants to group objects that are alike (homo-
geneity criterion) and have different objects in different clusters (separation crite-
rion). There exists a wide variety of criteria to evaluate the quality of a partition,
but in all cases, one can expect that very similar objects will be in the same cluster
while very different objects will not. Again, whatever the criterion and the local
search (as long as it is reasonably good) used, all the local optima will have some
common characteristics. The difference between local optima will likely concern
only a small portion of the objects.

In these two examples, but many others as well, it is likely that the problem is
more similar to problem 2 than to problem 1 (one must, however, remain cautious).

Not only will a multistart search lead to the solutions that are easiest to find (not
necessarily the best), but also a lot of computational effort will be spent on separating
objects that are very different and on grouping some that are very similar.

4 Variable Neighborhood Search 83

4.2.2.2 Perturbations

In order to reduce the computational effort, instead of starting from a random solution
in each local search, another approach consists in modifying the best known solution
slightly, and starting the next local search from that perturbed solution.

An algorithm that uses multiple local searches starting from solutions that are
relatively close to the best known solution will benefit from the characteristics found
during the previous local searches. It will therefore use the information gained so far,
which is completely ignored in the multistart algorithm. For this reason, VNS does
not proceed by successive local searches from random solutions, but from solutions
close to the best known one.

The choice of the magnitude of the perturbation is important. If it is too small,
only a small portion of the solution space will be explored (wemay possibly get back
to the previous local optimum after the local search). If, instead, it is too large, the
characteristics of the best known solution will be ignored and the perturbation will
not be better than a random solution. For that reason, a parameter k is used to indicate
the magnitude of the perturbation. The higher k is, the further the perturbed solution
will be from the previous one. The neighborhoods used for the perturbations must
then have a magnitude related to k. Nested neighborhoods or neighborhoods built by
a succession of random transformations as described in Algorithm 4.4 are generally
appropriate. A simple but efficient method consists in applying the transformations
used in the local search.

Input: S
Input: k
Input: N
repeat k times

Choose randomly S′ ∈ N (S),
let S ← S′.

return S
Algorithm 4.4: PERTURB.

If the problem has constraints (either implicit or explicit), it is better to use trans-
formations that preserve the realizability of the solution. For instance, in the the
traveling salesman problem, a transformation that creates subtours (a solution that
consists of disjoint tours) should be avoided. Note that this description is only an
indication. It is likely that other schemes may be better, depending on the problem.

4.2.3 The Variable Neighborhood Search

The variable neighborhood search proceeds by a succession of local searches and
perturbations.After each unsuccessful local search, themagnitude of the perturbation

84 G. Caporossi et al.

k is increased to allow a wider search. Beyond a maximum value kmax which is fixed
as a parameter, k is reset to its minimum value to avoid inefficient perturbations that
are too large (and would behave like random solutions).

Depending on the application, it may be better to enlarge or reduce the local
search, and this provides various formulations of the variable neighborhood search.
Although the local search allows an improvement of the current solution, it is never-
theless expensive in term of computation, and there is therefore a trade-off between
the quality of the solution and the time required to obtain it. The choice of the
transformations to use during the local search is thus important.

Algorithm 4.5 describes the basic variable neighborhood search.

Input: S
Denote by S∗ = S the best known solution.
Let k = 1
Define kmax
repeat

S ← P E RT U R B(S∗, k),
S′ ← LocalSearch(S′).
if S′ better than S∗ then

S∗ ← S′,
k ← 1.

end
else

k ← k + 1.
if k > kmax then

let k ← 1.
end

end
until stopping criterion;
return S∗.

Algorithm 4.5: Basic variable neighborhood search.

Based on the structure of the variable neighborhood search, two extensions may
be considered. The general variable neighborhood search concentrates on the quality
of the solution at the expense of the computational effort. On the other hand, the
reduced variable neighborhood search aims at reducing the computational effort at
the expense of the quality of the solution.

4.2.3.1 The General Variable Neighborhood Search

In the general variable neighborhood search, the local search is replaced by a vari-
able neighborhood search descent, which may be considered as a meta-local search.
Algorithm 4.6 describes the general variable neighborhood search. One of the neigh-
borhoods used for the variable neighborhood descent is usually used for the pertur-
bation.

4 Variable Neighborhood Search 85

Input: S
Let S∗ ← S the best known solution.
Let k ← 1
Define kmax
repeat

S ← P E RT U R B(S∗, k),
S′ ← V N D(S′).
if S′ better than S∗ then

S∗ ← S′,
k = 1.

end
else

k ← k + 1.
if k > kmax then

let k ← 1.
end

end
until stopping condition;
return S∗.

Algorithm 4.6: General variable neighborhood search.

This kind of variable neighborhood search is well suited to situations where the
computational effort is not crucial and emphasis is put on the quality of the solutions.

4.2.3.2 The Reduced Variable Neighborhood Search

The variable neighborhood descent gives better results than the local search at the cost
of intensive computation. In contrast, for some problems, the reverse is required. For
these, a variant of VNS without local search is better, the succession of perturbations
playing simultaneously the roles of diversification and stochastic search. This is the
reduced variable neighborhood search. Algorithm 4.7 describes the reduced variable
neighborhood search.

4.3 Illustration and Extensions

To illustrate how the variable neighborhood search works, let us explain it with
some examples. The first example is one of finding extremal graphs. This example
is directly inspired by the variable neighborhood search used in the first version of
the AutoGraphiX software package [2].

The second example is based upon a possible extension of the k-means clustering
algorithm.With itswide use, this algorithm is considered as a reference for clustering.
It turns out that this algorithm finds a local optimum which depends strongly on the
initial solution. We propose here a way to use k-means within a variable local search

86 G. Caporossi et al.

Input: S
Let S∗ ← S the best known solution.
Let k ← 1
Define kmax
repeat

S ← P E RT U R B(S∗, k),
if S′ better than S∗ then

S∗ ← S′,
k ← 1.

end
else

k ← k + 1.
if k > kmax then

let k ← 1.
end

end
until stopping criterion;
return S∗.

Algorithm 4.7: Reduced variable neighborhood search.

algorithm. This adaptation is simple, but allows significant improvement on the
performance of k-means.

As a third example, we will then briefly explain how to adapt the variable neigh-
borhood search to continuous optimization problems.

4.3.1 Finding Extremal Graphs with VNS

Let G = (V, E) be a graph with n = |V | vertices and m = |E | edges. An example of
a graph with n = 6 and m = 7 is drawn in Fig. 4.3. Even though we are not working
here with labeled vertices (for which each vertex is characterized), the vertices are
labeled in order to simplify the descriptions.

Fig. 4.3 A graph G with
n = 6 vertices and m = 7
edges

5

4

6

3

2

1

4 Variable Neighborhood Search 87

Fig. 4.4 Adjacency matrix
of the graph G

1 2 3 4 5 6

1 0 1 0 0 0 0
2 1 0 1 0 1 0
3 0 1 0 1 1 0
4 0 0 1 0 1 0
5 0 1 1 1 0 1
6 0 0 0 0 1 0

Since the representation of the graph has no impact on the calculation, the same
graphmay also be represented by its adjacencymatrix (see Fig. 4.4) A = {ai j }, where
ai j = 1 if the vertices i and j are adjacent, and ai j = 0 otherwise, or by a list indicat-
ing which other vertices each vertex is adjacent to. The choice of the representation
method (adjacency matrix, adjacency list, or some other) and the choice of the label-
ing of the vertices are purely arbitrary and have no impact on the computations, since
the object under study is independent of its representation.

We denote by I (G) a function which associates with the graph G a value inde-
pendent of the way the vertices are labeled. Such a function is called an invariant.
For instance, the number of vertices n and the number of edges m are invariants.

To give some other examples, we can mention the chromatic number χ(G), the
minimum number of colors that are required for a coloring. A coloring assigns a
color to each vertex such that two adjacent vertices do not share the same color.
Here, χ(G) = 3, and a coloring could consist of assigning blue to vertices 1, 3, and
6, red to vertices 2 and 4, and another color to vertex 5, for example green. As another
example, the energy of a graph, E = ∑n

i=1 |λi |, is the sum of the absolute values of
the eigenvalues of the adjacency matrix of G. The number of graph invariants is too
large to enumerate them here, but the reader may refer to [5, 16] for a comprehensive
survey.

A search for extremal graphs consists in finding a graph that maximizes or mini-
mizes some invariant (or a function of invariants, which is also an invariant), possibly
under some constraints. The solutions to those problems are graphs, each different
graph being a possible solution to the problem. The graphs with the best values of
the objective function (largest or smallest depending on whether the objective is to
be maximized or minimized) form the set of optimal solutions.

4.3.1.1 Which Transformations to Use?

The local search can be defined by the addition or removal of an edge, or some more
complex transformation. As the neighborhood of a graph varies according to the
transformation considered, it is possible that one transformation may not allow any
improvement of the current solution while another would. The transformations used
in the first version of AGX are described in [2] and presented in Fig. 4.5. We notice,
for example, that some neighborhoods preserve the number of vertices while others

88 G. Caporossi et al.

Fig. 4.5 Neighborhoods
used in the first version of
AGX

do not. As in most cases the number of vertices is fixed, some of these neighborhoods
are useless.

We notice also that the transformation 2-opt is the only one that preserves the
degree of the vertices; it is thus the only useful transformation in a search for extremal
regular graphs when the current graph is also regular. Other transformations may be
used to find an initial realizable solution, but would no longer be needed after that
step.

In the specific case of regular graphs, it may be interesting to invent other trans-
formations such as the one described in Fig. 4.6. This transformation, based upon
a subgraph on five vertices, is computationally demanding, but could be justified in
this case.

4 Variable Neighborhood Search 89

Fig. 4.6 A transformation
specifically designed for
regular graphs

4.3.1.2 In Which Sequence Should the Transformations Be Used?

The choice of the sequence in which the transformations are applied can have an
impact on the performance of the algorithm, since the time required to complete the
search may be significantly affected.

Consider a transformation t1 which consists of the addition or removal of an edge,
and denote by N t1(G) the corresponding neighborhood. Any graph in N t1(G) has
one edge more or less than G. Consider now another transformation t2, defined by a
move of an edge, and denote byN t2(G) the corresponding neighborhood. Any graph
inN t2(G) has the same number of edges asG. It is clear that these two neighborhoods
are exclusive; no graph belong to both.

Let t3 be a third transformation which consists of applying t1 twice, and denote
by N t3(G) the corresponding neighborhood.

As an addition followed by a removal could be a transformation from t3, it turns
out thatN t2(G) ⊂ N t3(G). Applying t2 would therefore be useless after t3 was used.
However, this does not mean that t2 is useless. In fact, t3 allows one to find graphs
that cannot be obtained with t2, while the reverse is not true, but exploringN t3(G) is
more time-consuming. Without considering isomorphism (which is difficult to test),
if G has n vertices and m edges, we have:

• |N t1(G)| = n(n − 1)/2,
• |N t2(G)| = m(n(n − 1)/2 − m), and
• |N t3(G)| = (n(n − 1)/2)2.

Exploring a neighborhood as large as N t3(G) may result in a useless waste of
time. At the beginning of the optimization, when the current solution is not good,
neighborhoods that are easy and fast to explore seem better as they allow a quick
improvement of the solution. At the end of the process, when the exploration has
achieved good solutions, a deeper search is needed. In such a context, the use of
larger neighborhoods may be worthwhile.

4.3.1.3 Using the Basic VNS

To illustrate the basic VNS, consider the graph G shown in Fig. 4.3 as the initial
solution. Suppose that the problem is to a connected graph on six vertices with
minimum energy, and that the local search is based upon the transformation t (=t1)
defined as adding or removing an edge.

90 G. Caporossi et al.

The value of the objective function is E(G) = 7.6655 for this initial solution.
As the problem is restricted to connected graphs, some of the edges cannot be

removed (for instance, the edge between vertices 1 and 2, or that between vertices 5
and 6).

The set of graphs in the neighborhood N t (G) of G (represented in Fig. 4.3)
associated with the transformation t is shown in Fig. 4.7. Owing to isomorphism,
it is generally possible that one of these graphs could be obtained in various ways
from the same graph, but this is not the case here (see Fig. 4.7), as the graphs all have
different values of energy.

At this point, the best known solution is G, so we set G∗ = G and k = 1.
Comparing the values of the energy for graphs in N (G) with the value E(G) =

7.6655 for the initial graph G, we find that G1, G2, G3, G4, and G5 are better
solutions than G. The local search could thus proceed from any of these solutions.
If the best-first criterion is chosen, one chooses G3. At the next iteration, we have
G1 = G3 as the current solution for iteration 1, and the value of the objective function
is E(G1) = E(G3) = 6.4852 (Fig. 4.8).

Repeating the process in the next iteration (iteration 2), we get the graph G2,
whose energy is E(G2) = 5.81863. In exploring the neighborhood N (G2) of G2,
we notice that no graph is better than G2, i.e., G2 is thus a local optimum according
to the transformation t1. As it is the best known solution, we write G∗ = G2, k = 1,
and the corresponding value of the objective function is E∗ = 5.81862.

In the following step of the algorithm,we then proceed to a perturbation of the best
known solution. Since k = 1, this perturbation may consist of adding or removing
one edge randomly. After this perturbation, a local search is applied again. If this
local search fails, the value k is increased by 1 before the next perturbation is applied
(to the best known solution).

During the perturbation, the process of randomly adding or removing an edge is
repeated k times, and a local search is applied, etc.

4.3.1.4 The Variable Neighborhood Search Descent

Suppose that a generalized variable neighborhood search had been applied. Instead of
entering the perturbation phase after the local search, one would then apply another
local search, based upon the next transformation in the list. The perturbation would
only be applied when no transformation succeeded.

In the present case, one could try t2 (moving an edge) and start the search from
the graph G3. Removing the edge between vertices 1 and 2 and inserting it between
vertices 1 and 5 would improve the solution again. The solution obtained is then a
star on six vertices whose energy is E = 4.47214. It is the optimal solution, since it
is known that E ≥ 2

√
m [4] and m ≥ n − 1 for connected graphs.

4 Variable Neighborhood Search 91

5

4

6

3

2

1

5

4

6

3

2

1

5

4

6

3

2

1

G1: E = 7.34249 G2: E = 7.41598 G3: E = 6.4852

5

4

6

3

2

1

5

4

6

3

2

1

5

4

6

3

2

1

G4: E = 7.20775 G5: E = 7.30056 G6: E = 8.1183

5

4

6

3

2

1

5

4

6

3

2

1

5

4

6

3

2

1

G7: E = 7.21743 G8: E = 7.98063 G9: E = 8.18269

5

4

6

3

2

1

5

4

6

3

2

1

5

4

6

3

2

1

G10: E = 8.01883 G11: E = 8.1183 G12: E = 7.73831

5

4

6

3

2

1

G13: E = 8.04578

Fig. 4.7 Graphs of the neighborhood N t (G)

92 G. Caporossi et al.

Fig. 4.8 Current graph at
each iteration of the local
search, together with its
energy

Iteration Graph Energy

0

5

4

6

3

2

1

7.6655

1

5

4

6

3

2

1

6.4852

2

5

4

6

3

2

1

5.81863

4.3.1.5 Perturbations

As is often the case with VNS, the perturbations may be built from a transformation
used in the local search. This perturbation is simply applying the transformation
randomly k times. Algorithm 4.8 describes a perturbation that consists of adding or
removing an edge.

Input: G
Input: k
repeat k times

Choose a pair (i, j) of vertices of G.
if there is an edge between i and j then

Let G ′ be the graph obtained by removing the edge (i, j).
end
else

Let G ′ be the graph obtained by adding the edge (i, j).
end

return G ′
Algorithm 4.8: Algorithme PERTADDREM.

4 Variable Neighborhood Search 93

If the number of edges is fixed, it is likely that such a perturbation would not give
good results. In such a case, a transformation such as that described byAlgorithm 4.9,
which preserves the number of edges, would be better.

Input: G
Input: k
repeat k times

Choose a pair (i, j) of nonadjacent vertices of G.
Choose a pair (i ′, j ′) of adjacent vertices of G.
Let G ′ be the graph obtained by
adding the edge (i, j), and
removing the edge (i ′, j ′).

return G ′
Algorithm 4.9: Algorithm PERTMOVE.

If the degree of every vertex is fixed, the transformation 2-opt would be better,
etc.

4.3.2 Improving the k-Means Algorithm

Clustering is one of the important applications of VNS. The most well-known algo-
rithm for clustering is certainly the k-means algorithm [12]. This algorithm is avail-
able in most data analysis software and is considered as a reference.

The criterion used by the k-means algorithm is the sum of the squared errors,
which means the sum of the squares of the differences between the observations and
their barycenter, as described in Algorithm 4.10.

For this problem, a solution is a partition of the observations into P clusters.
This partition may be described by the binary variables zip = 1 if and only if the
observation i belongs to the cluster p. Each observation is described by a vector
of dimension m, denoted by xi j , which gives the value of the variable j for the
observation i . We denote by μpj the average of the variable j for the cluster p (the
barycenter μp of the cluster p), as defined by Eq. (4.1):

μpj =
∑

i zipxi j∑
i zip

. (4.1)

Algorithm 4.10 is a local search. It turns out that this local search is very fast but
that the local optimum it provides depends strongly on the initial solution. Unfortu-
nately, for this kind of problem (and this local search), the number of local optima
is large and the solution provided by the k-means algorithm may be very bad. A
researcher who believes it produces the best possible solution could make important
errors [15].

94 G. Caporossi et al.

Input: S
Let improved ← true
while improved = true do

improved ← f alse
Step 1:
Compute μpj according to Eq. (4.1).
Step 2:
foreach observation i do

Let p such that zip = 1
Let dip denote the euclidean distance between the observation i and the barycenter
μp .
if ∃p′ such that dip′ < dip then

improved ← true
zip ← 0
zip′ ← 1.

end
end

end
return S

Algorithm 4.10: k-means algorithm.

Instead of trying to find a way to build the initial solution that would lead to a
better solution, we propose to use the algorithm as a local search within the VNS
scheme. For better results, the reader could consider j-means [6], but the goal of the
current section is to show that VNS could easily be implemented starting from an
existing local search such as k-means.

Since we have a fast local search, it only remains to build the perturbations.
Algorithm 4.11 describes a first perturbation.

Input: k
Input: S
repeat k times

Randomly choose an observation i .
Randomly choose a cluster p′.

Let zip ← 0 ∀p = 1, . . . , P.

Let zip′ ← 1.
return S

Algorithm 4.11: Algorithm PERTBASE.

The perturbation PERTBASE consists in randomly moving an observation from
its cluster to another, k times. Such a perturbationwill not be very efficient in practice,
as it will not change the structure of the solution very much. The more sophisticated
perturbations PERTSPLIT and PERTMERGE are defined in Algorithms 4.12 and
4.13, respectively. Those perturbations modify the solution by taking the nature of
the problem into account. They produce a solution of different nature that remains
consistent.

4 Variable Neighborhood Search 95

Input: k
Input: S
repeat k times

Randomly choose a cluster p1.
Move all the observations of p1 to the closest cluster.
Randomly choose a cluster p2 �= p1.
Randomly assign the observations of p2 to p1 or p2.
Apply k-means to observations of clusters p1 and p2.

return S
Algorithm 4.12: Algorithm PERTSPLIT.

A perturbation based on PERTSPLIT applies Algorithm 4.12 k times.
One of the reasons these two perturbations are efficient is that k-means usually

provides reasonable results if the number of clusters is small. The k-means algorithm
is used here to provide some local optimization, restricted to two clusters.

Input: k
Input: S
repeat k times

Randomly choose a cluster p1.
Randomly choose an observation i of p1.
Denote by p2 the closest cluster of i (except p1).
Randomly assign the observations of p1 and p2 to p1 or p2 (shuffle observations of p1
and p2).
Apply k-means to observations of clusters p1 and p2.

return S
Algorithm 4.13: Algorithm PERTMERGE.

Although the perturbation PERTMERGE seems to provide slightly better results
than PERTSPLIT in practice, a combination of the two schemes remains the best
option.

4.3.3 Using VNS for Continuous Optimization Problems

Although we have only described the use of VNS in the context of combinatorial
optimization, it may also easily be used for continuous optimization [14].

4.3.3.1 Local Search

For continuous optimization problems, the local search cannot be described in the
same way as previously. There are two possibilities:

96 G. Caporossi et al.

• The objective function is differentiable and descent techniques such as gradient
methods or any other descent method (such as the Newton, quasi-Newton, or con-
jugate gradient method, among others) can be used. The variable neighborhood
search can easily be adapted to any kind of local search (as already stressed when
we considered the use of the k-means algorithm for a local search). The variable
neighborhood descent method may be less justified, even if it could still theoreti-
cally be applied. Any continuous optimization technique suitable for the problem
may be used to find a local optimum.

• If the objective function is not differentiable, the use of direct search methods is
needed. An example of VNS combined with a direct search algorithm is described
in [1].

4.3.3.2 Perturbations

In the case of continuous optimization, the perturbations may be as simple as mod-
ifying randomly some variables by a magnitude that is proportional to k. However,
some more complex strategies may be needed or more efficient.

4.4 Conclusion

In this chapter, the general principles of the variable neighborhood search method
were presented, as well as the main variants of the algorithm, namely, the basic VNS,
the general VNS, and the reduced VNS.

As demonstrated in numerous papers, VNS usually provides very good results in
a reasonable amount of time. There exist a large number of applications for which
VNS provides better results than other metaheuristics, and its performance is always
respectable.

As shown in Sect. 4.3, dedicated to applications, and mainly the way to improve
k-means, the implementation of VNS is relatively easy and comparable to that of
multistart. This is certainly one of the main advantages of VNS.

As a final point, we should recall that VNS, like most metaheuristics, proposes
a general scheme, a framework that a researcher may use as a starting point. This
scheme may and should be adapted for each problem to which it is applied.

4.5 Annotated Bibliography

1. The main reference paper is [8]. This provides a description of the variable neigh-
borhood search, as well as some applications, for instance the traveling sales-
man problem, the p-median problem, the multisource Weber problem, minimum
sum-of-squares clustering (k-means), and bilinear programming under bilinear

4 Variable Neighborhood Search 97

constraints. Some extensions are then described, amongwhich are variable neigh-
borhood search with decomposition and nested variable neighborhood search.

2. Further information may be found in [7], which is dedicated to the description
of developments related to VNS. The first part deals with the ways in which
the method can be implemented, especially when applied to large-size problems.
A number of applications are then described, varying from task scheduling on
multiprocessor architectures to the problem of themaximum clique and the search
for a maximum spanning tree with degree constraints.

3. The use of VNS in a context where the variables are continuous is detailed in
[14]. Both the constrained and the unconstrained cases are treated.

4. More recently, two publications [10, 11] have been dedicated to surveys that cover
techniques as well as a wide variety of applications. In addition to the extensive
text, these two publications provide an important number of references from the
technical point of view as well as from the point of view of the applications.

References

1. Audet, C., Béchard, V., LeDigabel, S.: Nonsmooth optimization through mesh adaptive direct
search and variable neighborhood search. Journal of Global Optimization 41(2), 299–318
(2008)

2. Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs. 1. The Auto-
GraphiX system. Discrete Mathematics 212(1–2), 29–44 (2000)

3. Caporossi, G., Hansen, P.: A learning optimization algorithm in graph theory—versatile search
for extremal graphs using a learning algorithm. In: LION’12, pp. 16–30 (2012)

4. Caporossi,G.,Cvetković,D.,Gutman, I.,Hansen, P.:Variable neighborhood search for extremal
graphs 2. finding graphs with extremal energy. Journal of Chemical Information and Computer
Sciences 39, 984–996 (1999)

5. Gross, J., Yellen, J., Zhang, P.: Handbook of Graph Theory, 2nd edition. Chapman and
Hall/CRC (2013)

6. Hansen, P.,Mladenović, N.: J-means, a new local search heuristic for minimum sum-of-squares
clustering. Pattern Recognition 34, 405–413 (2001)

7. Hansen, P., Mladenović, N.: State-of-the-Art Handbook of Metaheuristics, chapter Develop-
ments of Variable Neighborhood Search. Kluwer, Dordrecht (2001)

8. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Euro-
pean Journal of Operational Research 130, 449–467 (2001)

9. Hansen, P., Mladenović, N.: First vs. best improvement: An empirical study. Discrete Applied
Mathematics 154(5), 802–817 (2006)

10. Hansen, P., Mladenović, N., Perez, J.A.M.: Variable neighborhood search: Methods and appli-
cations. 4OR 6(4), 319–360 (2008)

11. Hansen, P., Mladenović, N., Brimberg, J., Perez, J.A.M.: Handbook of Metaheuristics, chapter
Variable neighborhood search, pp. 61–86. Kluwer (2010)

12. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
5th Berkeley Symposium on Mathematics Statistics and Probability, pp. 281–297 (1967)

98 G. Caporossi et al.

13. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Operations
Research 24, 1097–1100 (1997)

14. Mladenović, N., Dražić, M., Kovačević-Vujčić, V., Čangalović, M.: General variable neighbor-
hood search for the continuous optimization. European Journal of Operational Research 191,
753–770 (2008)

15. Steinley, D.: Local optima in k-means clustering: What you don’t know may hurt you. Psycho-
logical Methods 8(3), 294–304 (2003)

16. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH (2000)

Chapter 5
A Two-Phase Iterative Search Procedure:
The GRASP Method

Michel Vasquez and Mirsad Buljubašić

5.1 Introduction

The GRASP method generates several configurations within the search space of a
given problem, based on which it carries out an improvement phase. Being relatively
straightforward to implement, this method has been applied to a wide array of hard
combinatorial optimization problems, including scheduling [1], quadratic assign-
ment [2], the traveling salesman problem [3], and maintenance workforce schedul-
ing [4]. The interested reader is referred to the annotated bibliography by Festa
and Resende [5], who have presented nearly 200 references on the topic. Moreover,
the results output by this method are of similar quality to those determined using
other heuristic approaches such as simulated annealing, tabu search, and population
algorithms.

This chapter will present the principles behind the GRASP method and offer a
sample application to the set covering problem.

5.2 General Principle Behind the Method

The GRASP method consists of repeating a constructive phase followed by an
improvement phase, provided a stop conditionhas not yet beenmet (inmost instances,
this condition corresponds to a computation time limit expressed, for example, in
terms of number of iterations or in seconds). Algorithm 5.1 describes the generic
code associated with this procedure.

M. Vasquez (B) · M. Buljubašić
Centre de Recherche LGI2P, Parc Scientifique Georges Besse, 30035 Nîmes Cedex 1, France
e-mail: michel.vasquez@mines-ales.fr

M. Buljubašić
e-mail: mirsad.buljubasic@mines-ales.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_5

99

100 M. Vasquez and M. Buljubašić

input: α, random seed, time limit.
output: best solution found X∗
repeat

X ← Randomized Greedy(α);
X ← Local Search(X , N);
if z(X) better than z(X∗) then

X∗ ← X ;
end

until CPU time > time limit;

Algorithm 5.1: GRASP procedure

The constructive phase corresponds to a greedy algorithm, during which the step
of assigning the current variable is slightly modified so as to generate several choices
rather than just a single one at each iteration. These potential choices constitute a
restricted candidate list (or RCL), from which a candidate will be chosen at random.
Once the (variable, value) pair has been established, theRCL is updated by taking into
account the current partial configuration. This step is then iterated until a complete
configuration is obtained. The value associated with the particular (variable, value)
pairs (as formalized by the heuristic function H), for the variables still unassigned,
reflects the changes introduced by selecting previous elements. Algorithm 5.2 sum-
marizes this configuration construction phase, whichwill then be improved by a local
search (simple descent, tabu search, or any other local-modification-type heuristic).
The improvement phase is determined by the neighborhood N implemented in the
attempt to refine the solution generated by the greedy algorithm.

input: α, random seed.
output: feasible solution X
X = ∅ ;
repeat

Assemble the RCL on the basis of heuristic H and α;
Randomly select an element xh from the RCL;
X = X ∪ {xh};
Update H;

until configuration X has been completed;

Algorithm 5.2: Randomized greedy algorithm

The evaluation of the heuristic function H serves to determine the insertion of
(variable, value) pairs into the RCL. The way in which this criterion is taken into
account exerts considerable influence on the behavior exhibited during the construc-
tive phase: if only the best (variable, value) pair is selected relative toH, then the same
solution will often be obtained, and iterating the procedure will be of rather limited
utility. If, on the other hand, all possible candidates were to be selected, the random
algorithm derived would be capable of producing quite varied configurations, but
of only mediocre quality: the likelihood of the improvement phase being sufficient

5 A Two-Phase Iterative Search Procedure: The GRASP Method 101

to yield good solutions would thus be remote. The size of the RCL is therefore a
determining parameter of this method. From a pragmatic standpoint, it is simpler to
manage a qualitative acceptance threshold (i.e., H(x j) better than α × H∗, where
H∗ is the best benefit possible and α is a coefficient lying between 0 and 1) for the
random drawing of a new (variable, value) pair to be assigned rather than to imple-
ment a list of k potential candidates, which would imply a data sort or the use of
more complicated data structures. The terms used in this context are threshold-based
RC L in the case of an acceptance threshold and cardinality-based RC L in all other
cases.

The following sections will discuss in greater detail the various components of
the GRASP method through an application to the set covering problem.

5.3 Set Covering Problem

Given a matrix (with m rows and n columns) composed solely of 0’s and 1’s, the
objective is to identify the minimum number of columns such that each row contains
at least one 1 in the identified columns. One example of minimum set covering
problem is shown in Fig. 5.1.

More generally speaking, an n-dimensional vector cost has to be considered,
containing strictly positive values. The objective then consists of minimizing the
total cost of the columns capable of covering all rows: this minimization is known
as the set covering problem, see Fig. 5.2 for a linear formulation.

For 1 ≤ j ≤ n, the decision variable x j equals 1 if column j is selected, and
0 otherwise. In the case of Fig. 5.1, for example, x =< 101110100 > constitutes a
solution whose objective value z is equal to 5.

If cost j equals 1 for each j , then the problem becomes qualified as a unicost
set covering problem, of the kind stated at the beginning of this section. Both the
unicost set covering problem and more general set covering problem are classified
as combinatorial NP-hard problems [6]; moreover, once such problems reach a cer-
tain size, their solution within a reasonable amount of time becomes impossible by

Fig. 5.1 Incidence matrix
for a minimum coverage
problem

cover=

0 1 1 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 1
1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 1 1 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

102 M. Vasquez and M. Buljubašić

Fig. 5.2 Mathematical
model for the set covering
problem

means of exact approaches. This observation justifies the implementation of heuristic
approaches, such as the GRASP method, to handle these instances of hard problems.

5.4 An Initial Algorithm

This section will revisit the algorithm proposed by Feo and Resende in one of their
first references on the topic [7], where the GRASPmethod was applied to the unicost
set covering problem. It will then be shown how to improve the results and extend
the study to the more general set covering problem through combining GRASP with
the tabu search metaheuristic.

5.4.1 Constructive Phase

Let x be the characteristic vector of all columns X (where x j = 1 if column j belongs
to X and x j = 0 otherwise): x is the binary vector in the mathematical model in
Fig. 5.2. The objective of the greedy algorithm is to produce a configuration x with
n binary components, whose corresponding set X of columns covers all the rows.
In each iteration (out of a total of n), the choice of column j to be added to X
(x j = 1) will depend on the number of still uncovered rows that this column covers.
As an example, the set of columns X = {0, 2, 3, 4, 6} corresponds to the vector
x =< 101110100 >, which is the solution to the small instance shown in Fig. 5.1.

For a given column j , we define the heuristic function H(j) as follows:

H(j) =
{ C(X∪{ j})−C(X)

cost j
if x j = 0

C(X\{ j})−C(X)

cost j
if x j = 1

where C(X) is the number of rows covered by the set of columns X . The list of
candidates RCL is managed implicitly: H∗ = H(j) maximum is first calculated
over all columns j such that x j = 0. The next step calls for randomly choosing a
column h such that xh = 0 andH(h) ≥ α × H∗. The pseudocode of the randomized
greedy algorithm is presented in Algorithm 5.3.

5 A Two-Phase Iterative Search Procedure: The GRASP Method 103

input: coefficient α ∈ [0, 1]
output: feasible set X of selected columns
X = ∅ ;
repeat

j∗ ← column, such that H(j∗) is maximized;
threshold ← α × H(j∗);
r ← rand() modulo n;
for j ∈ {r, r + 1, . . . , n − 1, 0, 1, . . . , r − 1} do

if H(j) ≥ threshold then
break;

end
end
X = X ∪ { j} (add column j to the set X ⇔ x j = 1);

until all rows have been covered;

Algorithm 5.3: greedy(α)

Table 5.1 Occurrences of solutions by z value for the instance S45

α\z 30 31 32 33 34 35 36 37 38 39 40 41 Total

0.0 0 0 0 0 0 1 9 10 15 17 21 15 88

0.2 0 0 0 1 3 15 34 23 18 5 1 0 100

0.4 0 0 0 5 13 30 35 16 1 0 0 0 100

0.6 0 2 2 45 38 13 0 0 0 0 0 0 100

0.8 0 11 43 46 0 0 0 0 0 0 0 0 100

1.0 0 55 19 26 0 0 0 0 0 0 0 0 100

The heuristic function H(), which determines the insertion of columns into the
RCL, is reevaluated at each step so as to take into account only the uncovered rows.
This is the property that gives rise to the adaptive nature of the GRASP method.

Let us now consider the instance with n = 45 columns and m = 330 rows that
corresponds to the data file data.45 (renamed S45) on Beasley’s OR-Library site
[8], included in the four unicost set covering problems derived from Steiner’s triple
systems. By choosing the values 0, 0.2, . . . , 1 for α and 1, 2, . . . , 100 for the seed of
the pseudorandom sequence, the results table presented in Table5.1 was obtained.
This table lists the number of solutions whose coverage size z lies between 30 and
41. The quality of these solutions is clearly correlated with the value of the parameter
α. For the case α = 0 (random assignment), it can be observed that the greedy()
function produces 12 solutions of a size that strictly exceeds 41. No solution with an
optimal coverage size of 30 (known for this instance) is actually produced.

104 M. Vasquez and M. Buljubašić

5.4.2 Improvement Phase

The improvement algorithm proposed by Feo and Resende [7] is a simple descent
on an elementary neighborhood N . Let x denote the current configuration; then a
configuration x ′ belongs to N (x) if a unique j exists such that x j = 1 and x ′

j = 0
and, moreover, that ∀i ∈ [1, m],∑n

j=1 coveri j × x ′
j ≥ 1. Between two neighboring

configurations x and x ′, a redundant column (from the standpoint of row coverage)
is deleted.

input: characteristic vector x from the set X
output: feasible x without any redundant column
while redundant columns continue to exist do

Find redundant j ∈ X such that cost j is maximized;
if j exists then

X = X \ { j}
end

end

Algorithm 5.4: descent(x)

Algorithm 5.4 describes this descent phase and takes into account the cost of each
column, with respect to the column deletion criterion.

The statistical study of the occurrences of the best solutions done with the
greedy() procedure on its own (see Table5.1) was repeated, this time with the
addition of the descent() procedure, yielding the results presented in Table5.2. A
leftward shift is observed in the occurrences of the objective value z; such an obser-
vation effectively illustrates the benefit of this improvement phase. Before pursuing
the various experimental phases, the characteristics of our benchmark will first be
presented.

Table 5.2 Occurrences of solutions by z value for the instance S45 with descent ()

α\z 30 31 32 33 34 35 36 37 38 39 40 41 Total

0.0 0 0 0 0 1 9 10 15 17 21 15 8 96

0.2 0 0 1 3 15 34 23 18 5 1 0 0 100

0.4 0 0 5 13 30 35 16 1 0 0 0 0 100

0.6 2 2 45 38 13 0 0 0 0 0 0 0 100

0.8 11 43 46 0 0 0 0 0 0 0 0 0 100

1.0 55 19 26 0 0 0 0 0 0 0 0 0 100

5 A Two-Phase Iterative Search Procedure: The GRASP Method 105

Table 5.3 Characteristics of the various instances considered

Instance n m Instance n m Instance n m

G1 10,000 1000 H1 10,000 1000 S45 45 330

G2 10,000 1000 H2 10,000 1000 S81 81 1080

G3 10,000 1000 H3 10,000 1000 S135 135 3015

G4 10,000 1000 H4 10,000 1000 S243 243 9801

G5 10,000 1000 H5 10,000 1000

5.5 Benchmark

The benchmark used for experimentation purposes was composed of 14 instances
available on Beasley’s OR-Library site [8].

The four instancesdata.45,data.81,data.135, anddata.243 (renamed
S45, S81, S135, and S243, respectively) make up the test datasets in the reference
article by Feo and Resende [7]: these are all unicost set covering problems. The
10 instances G1, …, G5 and H1, …, H5 are considered as set covering problems.
Table5.3 indicates, for each test dataset, the number n of columns and number m of
rows.

The GRASP method was run 100 times for each of the three values 0.1, 0.5,
and 0.9 of the coefficient α. The seed g of the srand(g) function took the values
1, 2, . . . , 100. For each execution of the method, the CPU time was limited to 10 s.
The computer used for this benchmark was equipped with an i7 processor running at
3.4 GHz with 8 GB of hard drive memory. The operating system was Linux, Ubuntu
12.10.

5.6 Experiments with greedy(α)+descent

Algorithm 5.5 shows the pseudocode of the initial version of the GRASP method,
GRASP1, which was used for experimentation on the 14 datasets of our benchmark.

The functions srand() and rand() used in the experimental phase were those
of Numerical Recipes in C [9]. We should point out that the coding of the function
H is critical: the introduction of an incremental computation is essential to obtaining
relative short execution times. The values given in Table5.4 summarize the results
output by the GRASP1 procedure. This table of results indicates the following:

• the name of the instance tested;
• the best value z∗ known for this particular problem;
• for each value of the coefficient α = 0.1, 0.5, and 0.9:

106 M. Vasquez and M. Buljubašić

input: α, random seed, time limit.
output: zbest

srand(seed);
zbest ← +∞;
repeat

x ← greedy(α);
x ← descent(x);
if z(x) < zbest then

zbest ← z(x);
end

until CPU time > time limit;

Algorithm 5.5: GRASP1

Table 5.4 Results from greedy(α)+descent

α = 0.1 α = 0.5 α = 0.9

Instance z∗ z #
∑

zg
100 z #

∑
zg

100 z #
∑

zg
100

G1 176 240 1 281.83 181 1 184.16 183 3 185.14

G2 154 208 1 235.34 162 7 164.16 159 1 160.64

G3 166 199 1 222.59 175 2 176.91 176 3 176.98

G4 168 215 1 245.78 175 1 177.90 177 5 178.09

G5 168 229 1 249.40 175 1 178.56 174 6 175.73

H1 63 69 1 72.30 67 29 67.71 67 5 68.19

H2 63 69 2 72.28 66 1 67.71 67 1 68.51

H3 59 64 1 68.80 62 1 64.81 63 34 63.66

H4 58 64 1 67.12 62 18 62.86 63 80 63.20

H5 55 61 1 62.94 59 2 60.51 57 99 57.01

S45 30 30 100 30.00 30 100 30.00 30 100 30.00

S81 61 61 100 61.00 61 100 61.00 61 100 61.00

S135 103 104 2 104.98 104 4 104.96 103 1 104.10

S243 198 201 1 203.65 203 18 203.82 203 6 204.31

– the best value z found using the GRASP method;
– the number of times (#) this value was reached per 100 runs;
– the average of the 100 values produced by this algorithm.

For the four instances S45, S81, S135 and S243 the value displayed in the
column z∗ is optimal [10]. On the other hand, the optimal value for the other 10
instances (G1, …, G5 and H1, …, H5) remains unknown: the z∗ values for these
instances are the best values published in the article by Azimi et al. [11].

With the exception of instance S243, the best results were obtained using the
values 0.5 and 0.9 of the RCL management parameter α. For the four instances
derived from the Steiner’s triple problem, the values published by Feo and Resende

5 A Two-Phase Iterative Search Procedure: The GRASP Method 107

[7] are corroborated. However, when compared with the results of Azimi et al. [11],
performed in 2010, or even those of Caprara et al. [12], dating back to 2000, these
results prove to be relatively far from the best published values.

5.7 Local Tabu Search

This section focuses on adding a tabu search phase to the GRASP method in order to
generate results that aremore competitivewith respect to the literature. The algorithm
associated with this tabu search is characterized by:

• an infeasible configuration space S, such that z(x) < zmin;
• a simple move (of the 1-change) type;
• a strict tabu list.

5.7.1 The Search Space

By relying on the configuration x0 output by the descent phase (corresponding to a
set X of columns guaranteeing row coverage), the tabu search explores the space of
configurations x with objective value z(x) less than zmin = z(xmin), where xmin is the
best feasible solution found by the algorithm. The search space S is thus formally
defined as follows:

S = {x ∈ {0, 1}n / z(x) < z(xmin)}

5.7.2 Evaluation of a Configuration

It is obvious that the row coverage constraints have been relaxed. The evaluation
function H of a column j now contains two components:

H1(j) =
{
C(X ∪ { j}) − C(X) if x j = 0
C(X \ { j}) − C(X) if x j = 1

and

H2(j) =
{

cost j if x j = 0
−cost j if x j = 1

This step consists of repairing the coverage constraints (i.e., maximizing H1) at the
lowest cost (minimizing H2).

108 M. Vasquez and M. Buljubašić

5.7.3 Managing the Tabu List

This task involves the use of the reverse elimination method proposed by Glover and
Laguna [13], which was implemented in order to manage the tabu status of potential
moves exactly: a move is forbidden if and only if it leads to a previously encountered
configuration. This tabu list is referred to as a strict list.

input: j ∈ [0, n − 1]
running list[i teration] = j ;
i ← i teration;
i teration ← i teration + 1;
repeat

j ← running list[i];
if j ∈ RC S then

RC S ← RC S/{ j};
end
else

RC S ← RC S ∪ { j};
end
if |RC S| = 1 then

j = RC S[0] is tabu;
end
i ← i − 1

until i < 0;

Algorithm 5.6: updateTabu(j)

The algorithm described in Algorithm 5.6 is identical to one successfully run
on another combinatorial problem with binary variables [14]. The running list is
actually a table in which a recording is made, in each iteration, of the column j
targeted by the most recent move: x j = 0 or x j = 1. This column is considered as
the move attribute. The RC S (for residual cancellation sequence) is another table,
in which attributes are either added or deleted. The underlying principle consists of
reading past move attributes one by one, from the end of the running list, and adding
the RCS should they be absent and removing the RCS if they are already present.
The following equivalence is thus derived: |RC L| = 1 ⇔ RC L[0] prohibited. The
interested reader is referred to the academic article by Dammeyer and Voss [15] for
further details of this specific method.

5.7.4 Neighborhood

We have made use of an elementary 1-change move: x ′ ∈ N (x) if ∃! j/x ′
j �= x j .

The neighbor x ′ of configuration x differs only by one component yet still satisfies
the condition z(x ′) < zmin, where zmin is the value of the best feasible configuration

5 A Two-Phase Iterative Search Procedure: The GRASP Method 109

identified. Moreover, the chosen non-tabu column j minimizes the hierarchical cri-
terion ((H1(j),H2(j))). Algorithm 5.7 describes the evaluation function for this
neighborhood.

input: column interval [j1, j2]
output: best column identified j∗
j∗ ← −1;
H∗

1 ← −∞;
H∗

2 ← +∞;
for j1 ≤ j ≤ j2 do

if j non-tabu then
if (x j = 1) ∨ (z + cost j < zmin) then

if (H1(j) > H∗
1) ∨ (H1(j) = H∗

1 ∧ H2(j) < H∗
2) then

j∗ ← j ;
H∗

1 ← H1(j);
H∗

2 ← H2(j);
end

end
end

end

Algorithm 5.7: evalH(j1, j2)

5.7.5 The Tabu Algorithm

The general Tabu() procedure uses as an argument the solution x produced by the
descent() procedure, along with a maximum number of iterations N . Rows 2
through 6 of Algorithm 5.8 correspond to a search diversification mechanism. Each
time a feasible configuration is produced, the value zmin is updated and the tabu list
is reset to zero.

5.8 Experiments with greedy(α)+descent+Tabu

For this second experimental phase, the benchmark was similar to that discussed in
Sect. 5.5. The total CPU time remained limited to 10 s, while themaximumnumber of
iterations without improvement for the Tabu() procedure equaled half the number
of columns for the instance treated (i.e., n/2). The pseudocode of the GRASP2
procedure is specified in Algorithm 5.9.

Table5.5 illustrates the significant contribution of the tabu search to the GRASP
method. All values in the z∗ column were found using this version of the GRASP
method. In comparison with Table5.4, the parameter α has less influence on the

110 M. Vasquez and M. Buljubašić

input: feasible solution x , number of iterations N
output: zmin, xmin

1 zmin ← z(x);
i ter ← 0 ;
repeat

2 r ← rand() modulo n;
3 j∗ ← evalH(r, n − 1);
4 if j∗ < 0 then
5 j∗ ← evalH(0, r − 1);

end
if x j∗ = 0 then

add column j∗;
else

remove column j∗;
end
if all the rows are covered then

zmin ← z(x);
6 xmin ← x ;

i ter ← 0;
delete the tabu status;

end
updateTabu(j∗);

until i ter ≥ N or j∗ < 0;

Algorithm 5.8: tabu(x,N)

input: α, random seed seed, time limit.
output: zbest

zbest ← +∞;
srand(seed);
repeat

x ← greedy(α);
x ← descent(x);
z ← Tabu(x , n/2);
if z < zbest then

zbest ← z;
end

until CPU time > time limit;

Algorithm 5.9: GRASP2

results. It would seem that the multi-start function of the GRASP method is more
critical to the tabu phase than control over the RCL. However, as was demonstrated
in the following experimental phase, it still appears that rerunning the method, under
control of the parameter α, does play a determining role in obtaining the best results
(Table5.6).

5 A Two-Phase Iterative Search Procedure: The GRASP Method 111

Table 5.5 Results from greedy(α)+descent+Tabu

α = 0.1 α = 0.5 α = 0.9

Instance z∗ z #
∑

zg
100 z #

∑
zg

100 z #
∑

zg
100

G1 176 176 100 176.00 176 96 176.04 176 96 176.04

G2 154 154 24 154.91 154 32 155.02 154 57 154.63

G3 166 167 4 168.46 167 10 168.48 166 1 168.59

G4 168 168 1 170.34 170 35 170.77 170 29 170.96

G5 168 168 10 169.59 168 7 169.66 168 10 169.34

H1 63 63 11 63.89 63 2 63.98 63 5 63.95

H2 63 63 21 63.79 63 13 63.87 63 5 63.95

H3 59 59 76 59.24 59 82 59.18 59 29 59.73

H4 58 58 99 58.01 58 98 58.02 58 100 58.00

H5 55 55 100 55.00 55 100 55.00 55 100 55.00

S45 30 30 100 30.00 30 100 30.00 30 100 30.00

S81 61 61 100 61.00 61 100 61.00 61 100 61.00

S135 103 103 49 103.51 103 61 103.39 103 52 103.48

S243 198 198 100 198.00 198 100 198.00 198 100 198.00

Table 5.6 Results from greedy(1)+descent+Tabu

Instance z #
∑

zg
100 Instance z #

∑
zg

100 Instance z #
∑

zg
100

G1 176 95 176.08 H1 63 2 63.98 S45 30 100 30.00

G2 154 24 155.22 H2 63 4 63.96 S81 61 100 61.00

G3 167 19 168.48 H3 59 36 59.74 S135 103 28 103.74

G4 170 3 171.90 H4 58 91 58.09 S243 198 98 198.10

G5 168 20 169.39 H5 55 97 55.03

5.9 Experiments with greedy(1)+Tabu

To confirm the benefit of this GRASP method, let us now observe the behavior of
Algorithm 5.10, TABU. For each value of the pseudo-random function rand() seed
(between 1 and 100), a solution was built using the greedy(1) procedure, whereby
redundant x columns were deleted to allow for completion of the Tabu(x, n) pro-
cedure, provided the CPU time remained less than 10s.

For this final experimental phase, row 1 in Algorithm 5.8 was replaced by
zmin ← +∞. Provided the CPU time allocation had not been depleted, the Tabu()
procedure was reinitiated starting with the best solution it was able to produce during
the previous iteration. This configuration was saved in row 6. The size of the running
list was twice as long.

112 M. Vasquez and M. Buljubašić

input: random seed, time limit.
output: zbest

zbest ← +∞;
srand(seed);
x ← greedy(1);
xmin ← descent(x);
repeat

x ← xmin;
z, xmin ← Tabu(x , n);
if z < zbest then

zbest ← z;
end

until CPU time > time limit;

Algorithm 5.10: TABU

In absolute value terms, these results fall short of those output by Algorithm 5.9,
GRASP2. This TABU version produces values of 167 and 170 for instances G3 and
G4 versus 166 and 168, respectively, for theGRASP2 version.Moreover, themajority
of the average values are of poorer quality than those listed in Table5.5.

5.10 Conclusion

This chapter has presented the principles behind the GRASPmethod and has detailed
their implementation with the aim of solving large-sized instances associated with a
hard combinatorial problem. Section5.4.1 demonstrated the simplicity of modifying
the greedy heuristic proposed by Feo and Resende, namely

H(j) =
{
C(X ∪ { j}) − C(X) if x j = 0
C(X \ { j}) − C(X) if x j = 1

in order to take the column cost into account and apply the construction phase not
only to the minimum coverage problem but also to the set covering problem.

The advantage of enhancing the improvement phase has also been demonstrated
by adding, to the general GRASP method loop, a local tabu search on an elementary
neighborhood.

A distinct loss of influence of the parameter α was observed when the tabu search
was used. This behavior is very likely to be correlated with the instances being
treated: Tables5.1 and 5.2 show that even for the value α = 1, the greedy algorithm
builds different solutions. The experiments described inSects. 5.4 and5.5 nonetheless
effectively illustrate the contributions provided by this construction phase. Such
contributions encompass both the diversified search space and the capacity of the
greedy(α) procedure to produce high-quality initial solutions for the local tabu
search, thus yielding a powerful retry mechanism.

5 A Two-Phase Iterative Search Procedure: The GRASP Method 113

In closing, other methods such as Path Relinking have also been proposed for the
improvement phase. Moreover, from the implementation perspective, the GRASP
method is well suited to parallelism. As regards these last two points, the interested
reader will benefit from references [16, 17], to name just two.

5.11 Annotated Bibliography

Reference [1] In this reference, the GRASP method is introduced to solve a job shop scheduling
problem, which entails minimizing the running time of the most heavily used
machine in terms of job duration (or makespan). The tasks (jobs) correspond
to ordered sequences of operations. During the construction phase, individual
operations are scheduled one by one at each iteration on a given machine. The
candidate list for this phase is composed of the set of terminal operations sorted
in increasing order of their insertion cost (calculated as the makespan value after
insertion − the value before insertion). This order, along with the memorization
of elite solutions, influences the choice of the next operation to be scheduled. The
improvement phase thus comprises a local search on a partial configuration as well
as on a complete configuration: this phase involves exchanging tasks within the
disjunctive graph, whose objective is to reduce the makespan.

Reference [7] This is one of the first academic papers on the GRASP method. The principles
behind this method are clearly described and illustrated by two distinct implemen-
tation cases: one of them inspired the solution of the minimum coverage problem
presented in this chapter, and the other was applied to solve the maximum inde-
pendent set problem an a graph.

Reference [3] This article presents an application of the GRASP method to the traveling sales-
man problem. The construction phase relies on a candidate list determined by its
size (known as a cardinality-based RCL) and not by any quality threshold. The
improvement phase features a local search using a variation of the 2-opt and 3-
opt neighborhoods. Rather sophisticated data structures were implemented in this
study, and the results obtained on TSPLIB instances are of high quality.

References

1. Binato, S., Hery, W.J., Loewenstern, D.M., Resende, M.G.C.: A greedy randomized adaptive
search procedure for job shop scheduling. IEEE Transactions on Power Systems 16, 247–253
(2001)

2. Pitsoulis, L.S., Pardalos, P.M., Hearn, D.W.: Approximate solutions to the turbine balancing
problem. European Journal of Operational Research 130(1), 147–155 (2001)

3. Marinakis, Y.,Migdalas, A., Pardalos, P.M.: Expanding neighborhoodGRASP for the traveling
salesman problem. Computational Optimization and Applications 32(3), 231–257 (2005)

4. Hashimoto, H., Boussier, S., Vasquez, M., Wilbaut, C.: A GRASP-based approach for tech-
nicians and interventions scheduling for telecommunications. Annals of Operations Research
183(1), 143–161 (2011)

5. Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Essays and Surveys on Meta-
heuristics, C.C. Ribeiro and P. Hansen (eds.), Kluwer Academic, pp. 325–367 (2002)

114 M. Vasquez and M. Buljubašić

6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman (1979)

7. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Opti-
mization 6, 109–134 (1995)

8. Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal of the Oper-
ational Research Society 41(11), 1069–1072 (1990)

9. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd
edition. Cambridge University Press (1992)

10. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Solving large Steiner triple covering prob-
lems. Operations Research Letters 39(2), 127–131 (2011)

11. Azimi, Z.N., Toth, P., Galli, L.: An electromagnetismmetaheuristic for the unicost set covering
problem. European Journal of Operational Research 205(2), 290–300 (2010)

12. Caprara, A., Fischetti, M., Toth, P.: Algorithms for the set covering problem. Annals of Oper-
ations Research 98, 2000 (1998)

13. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, vol. 7, pp. 239–240 (1997)
14. Nebel, B. (ed.): Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence, IJCAI 2001, Seattle, August 4–10, 2001. Morgan Kaufmann (2001)
15. Dammeyer, F., Voß, S.: Dynamic tabu list management using the reverse elimination method.

Annals of Operations Research 41(2), 29–46 (1993)
16. Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop

scheduling. Parallel Computing 29, 393–430 (2002)
17. Crainic, T.G., Mancini, S., Perboli, G., Tadei, R.: GRASP with path relinking for the two-

echelon vehicle routing problem. Advances in Metaheuristics, Operations Research/Computer
Science Interfaces Series 53, 113–125 (2013)

Chapter 6
Evolutionary Algorithms

Alain Petrowski and Sana Ben Hamida

6.1 From Genetics to Engineering

Biological evolution has generated extremely complex autonomous living beings
which can solve extraordinarily difficult problems, such as continuous adaptation
to complex, uncertain environments that are in perpetual transformation. For that
purpose, the higher living beings, such as mammals, are equipped with excellent
capabilities for pattern recognition, training, and intelligence. The large variety of the
situations to which life has adapted shows that the process of evolution is robust and
is able to solve many classes of problems. This allows a spectator of the living world
to conceive the idea that there are ways other than establishing precise processes,
patiently derived from high-quality knowledge of natural laws, to satisfactorily build
up complex and efficient systems.

According to Darwin [16], the original mechanisms of evolution of living beings
are based on a competition which selects the individuals most well adapted to their
environment while ensuring descent, that is, transmission to children of the useful
characteristics which allowed the survival of the parents. This inheritance mechanism
is based, in particular, on a form of cooperation implemented by sexual reproduction.

The assumption that Darwin’s theory, enriched by our current knowledge of genet-
ics, can account for the mechanisms of evolution is still not justified. Nobody can
confirm today that these mechanisms are well understood, and that there is no essen-
tial phenomenon that remains unexplored.

However, Neo-Darwinism is the only theory of evolution available that has never
failed up to now. The development of electronic calculators facilitated the study

A. Petrowski (B)
Telecom SudParis, 91000 Evry, France
e-mail: Alain.Petrowski@telecom-sudparis.eu

S. Ben Hamida
Université Paris Ouest, 92000 Nanterre, France
e-mail: sbenhami@u-paris10.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_6

115

116 A. Petrowski and S. Ben Hamida

of this theory by simulations and some researchers desired to test it on engineer-
ing problems, way back in the 1950s. But this work was not convincing, because
of insufficient knowledge at that time of natural genetics and also because of the
weak performance of the calculators available. In addition, the extreme slowness the
evolution crippled the idea that such a process could be usefully exploited.

During the 1960s and 1970s, as soon as calculators of more credible power came
into existence, many attempts to model the process of evolution were undertaken.
Among those, three approaches emerged independently, mutually unaware of the
presence of the others, until the beginning of the 1990s:

• the evolution strategies of Schwefel and Rechenberg [9, 45], which were designed
in the middle of the 1960s as an optimization method for problems using contin-
uously varying parameters;

• the evolutionary programming of Fogel et al. [23], which aimed, during the middle
of the 1960s, to make the structure of finite-state automata evolve with iterated
selections and mutations; it was intended to provide an alternative to the artificial
intelligence of the time;

• the genetic algorithms, which were presented in 1975 by Holland [32], with the
objective of understanding the underlying mechanisms of self-adaptive systems.

Thereafter, these approaches underwent many modifications according to the vari-
ety of the problems faced by their founders and their pupils. Genetic algorithms
became extremely popular after the publication of the book Genetic Algorithms
in Search, Optimization and Machine Learning by Goldberg [26] in 1989. This
book, published worldwide, resulted in an exponential growth in interest in this
field. Whereas there were about a few hundred publications in this area in the 20
years before this book appeared, there are several hundreds of thousands of refer-
ences related to evolutionary computation available today, according to the Google
Scholar website.1 Researchers in this field have organized joint international confer-
ences to present and combine their different approaches.

6.1.1 Genetic Algorithms or Evolutionary Algorithms?

The widespread term evolutionary computation appeared in 1993 as the title of a
new journal published by MIT Press, and it was then widely used to designate all of
the techniques based on the metaphor of biological evolution theory. However, some
specialists use the term “genetic algorithm” to designate any evolutionary technique
even if it has few points in common with the original proposals of Holland and
Goldberg.

The various evolutionary approaches are based on a common model presented in
Sect. 6.2. Sections 6.3–6.8 describe various alternatives for the selection and variation
operators, which are basic building blocks of any evolutionary algorithm. Genetic

1https://scholar.google.com/scholar?q=genetic+algorithms.

https://scholar.google.com/scholar?q=genetic+algorithms

6 Evolutionary Algorithms 117

algorithms are the most “popular” evolutionary algorithms. This is why Sect. 6.9 is
devoted especially to them. This section shows how it is possible to build a simple
genetic algorithm from a suitable combination of specific selection and variation
operators.

Finally, Sect. 6.10 presents the covariance matrix adaptation evolution strategy
(CMA-ES). This powerful method should be considered when one or more optima
are sought in R

n. It derives directly from studies aimed at improving the evolution
strategies but, strictly speaking, it is not an evolutionary algorithm as defined in
Sect. 6.2.

The chapter concludes with a mini-glossary of terminology usually used in the
field and a bibliography with accompanying notes.

6.2 The Generic Evolutionary Algorithm

In the world of evolutionary algorithms, the individuals subjected to evolution are the
solutions, which may be more or less efficient, for a given problem. These solutions
belong to the search space of the optimization problem. The set of individuals treated
simultaneously by the evolutionary algorithm constitutes a population. It evolves
during a succession of iterations called generations until a termination criterion,
which takes into account a priori the quality of the solutions obtained, is satisfied.

During each generation, a succession of operators is applied to the individuals
of a population to generate a new population for the next generation. When one or
more individuals are used by an operator, they are called the parents. The individuals
originating from the application of the operator are its offspring. Thus, when two
operators are applied successively, the offspring generated by one can become parents
for the other.

6.2.1 Selection Operators

In each generation, the individuals reproduce, survive, or disappear from the popu-
lation under the action of two selection operators:

• the selection operator for the reproduction, or simply selection, which determines
how many times an individual will reproduce in a generation;

• the selection operator for replacement, or simply replacement, which determines
which individuals will have to disappear from the population in each generation
so that, from generation to generation, the population size remains constant or, in
some cases, is controlled according to a definite policy.

In accordance with the Darwinist creed, the better an individual, the more often it is
selected to reproduce or survive. It may be, according to the variant of the algorithm,

118 A. Petrowski and S. Ben Hamida

that one of the two operators does not favor the good individuals compared with the
others, but it is necessary that the application of the two operators together during
a generation introduces a bias in favor of the best. To make selection possible, a
fitness value, which obviously depends on the objective function, must be attached
to each individual. This implies that, in each generation, the fitnesses of the offspring
are evaluated, which can be computationally intensive. The construction of a good
fitness function from an objective function is rarely easy.

6.2.2 Variation Operators

In order that the algorithm can find solutions better than those represented in the
current population, it is required that they are transformed by the application of
variation operators, or search operators. A large variety of them can be imagined.
They are classified into two categories:

• mutation operators, which modify an individual to form another;
• crossover operators, which generate one or more offspring from combinations of

two parents.
The designations of these operators are based on the real-life concept of the sexual
reproduction of living beings, with the difference that evolutionary computation,
not knowing biological constraints, can be generalized to implement the com-
bination of more than two parents, and possibly the combination of the entire
population.

The way in which an individual is modified depends closely on the structure of
the solution that it represents. Thus, if it is desired to solve an optimization problem
in a continuous space, for example a domain of Rn, then it will be a priori adequate
to choose a vector in R

n to represent a solution, and the crossover operator must
implement a means such that two vectors in R

n for the parents correspond to one
vector (or several) in R

n for the offspring. On the other hand, if one wishes to use
an evolutionary algorithm to solve instances of the traveling salesman problem, it is
common that an individual corresponds to a round trip. It is possible to represent this
as a vector where each component is a number that designates a city. The variation
operators should then generate only legal round trips, i.e., round trips in which each
city in the circuit is present only once. These examples show that it is impossible to
design universal variation operators, independent of the problem under consideration.
They are necessarily related to the representation of the solutions in the search space.
As a general rule, for any particular representation chosen, it is necessary to define
the variation operators to be used, because they depend closely on it.

6 Evolutionary Algorithms 119

Crossover
of the selected

individuals

Mutation
of the λ
offspring

Fitness
evaluation

of the λ
offpsring

Environmental
selection

(replacement)

Parental
selection

(for
reproduction)

Stop ?

Yes

No
Population
initialization

μ individuals

Fitness
evaluation

of the μ
individuals

λ offspring
+

μ parents

λ offspring
+

μ parents

λ offspring
+

μ parents

μ
individuals

μ individuals

μ
individuals

Best individual(s)

κ selected
individuals

+
μ parents

Fig. 6.1 The generic evolutionary algorithm

6.2.3 The Generational Loop

In each generation, an evolutionary algorithm implements a “loop iteration” that
incorporates the application of these operators on the population:

1. For reproduction, selection of the parents from among a population of μ individ-
uals to generate λ offspring.

2. Crossover and mutation of the λ selected individuals to generate λ offspring.
3. Fitness evaluation for the offspring.
4. Selection for survival of μ individuals from among the λ offspring and μ parents,

or only from among the λ offspring, according to the choice made by the user, in
order to build the population for the next generation.

Figure 6.1 represents this loop graphically with the insertion of a stopping test
and addition of the phase of initialization of the population. Note that the hexagonal
shapes refer to the variation operators, which are dependent on the representation
chosen, while the “rounded rectangles” represent the selection operators, which are
independent of the solution representation.

6.2.4 Solving a Simple Problem

Following our own way of illustrating the operation of an evolutionary algorithm, let
us consider the maximization of the function C(x) = 400 − x2 for x in the interval
[−20, 20]. There is obviously no practical interest in using this type of algorithm to
solve such a simple problem; the objectives here are exclusively didactic. This exam-
ple will be considered again and commented on throughout the part of this chapter
presenting the basics of evolutionary algorithms. Figure 6.2 shows the succession

120 A. Petrowski and S. Ben Hamida

of operations from the initialization phase of the algorithm to the end of the first
generation. In this figure, an individual is represented by a rectangle partitioned into
two zones. The top zone represents the value of the individual x, ranging between
−20 and +20. The bottom zone contains the corresponding value of the objective
function C(x) after it has been calculated during the evaluation phase. When this
value is not known, the zone is shown in gray. As we are confronted with a problem
of maximization that is very simple, the objective function is also the fitness function.
The 10 individuals in the population are represented in a row, while the vertical axis
describes the temporal sequence of the operations.

The reader should not be misled by the choice of using 10 individuals to con-
stitute a population. This choice can be useful in practice when the computation of
the objective function takes much time, suggesting that one should reduce the com-
putational burden by choosing a small population size. It is preferred, however, to
use populations of the order of at least 100 individuals to increase the chances of
discovering an acceptable solution. According to the problem under consideration,
the population size can exceed 10 000 individuals, which then requires treatment on
a multiprocessor computer (with up to several thousand processing units) so that the
execution time is not crippling.

Our evolutionary algorithm works here with an integer representation. This means
that an individual is represented by an integer and that the variation operators must
generate integers from the parents. To search for the optimum of C(x) = 400 − x2,
we have decided that the crossover will generate two offspring from two parents,
each offspring being an integer number drawn randomly in the interval defined by
the values x of the parents. The mutation is only the random generation of an integer
in the interval [−20,+20]. The result of this mutation does not depend on the value
of the individual before mutation, which could appear destructive. However, one can
notice in Fig. 6.2 that mutation is applied seldom in our model of evolution, which
makes this policy acceptable.

6.3 Selection Operators

In general, the ability of an individual to be selected for reproduction or replacement
depends on its fitness. The selection operator thus determines a number of selections
for each individual according to its fitness.

In our “guide” example (see Fig. 6.2), the 10 parents generate eight offspring. This
number is a parameter of the algorithm. As shown in the figure, the selection operator
thus copies the best parent twice and six other parents once to produce the population
of offspring. These are generated from the copies by the variation operators. Then
the replacement operator is activated and selects the 10 best individuals from among
the parents and the offspring to constitute the population of parents for the next
generation. It can be noticed that four parents have survived, while two offspring,
which were of very bad quality, have disappeared from the new population.

6 Evolutionary Algorithms 121

Mutations

Crossovers

Selection for
reproduction and
mating

Initialization:
fitness function
evaluations

1 6 -13-6 14 -14 51- 51 61-10

399 364 364 300 231 204 204 175 175 144

1 2 3 4 5 6 7 8 9 10

Problem
dependent
operation

Problem
independent
operation

1

399

-10

300

-13

231

14

204

1

399

6

364

-6

364

15

175

-51 2-7 4 3 6 8

12 -14

375

-51 2-7 3 6

399 375351 396391 364

-6

364

-14

204

12

256

1

399

-5 1 2-7 3 6

399364 351 396391 364

-10

300

6

Fitness function
evaluations

Replacement
selections

1 6 -13-6 14 -14 51- 51 61-10

Fig. 6.2 Application of an evolutionary algorithm to a population of μ = 10 parents and λ = 8
offspring

6.3.1 Selection Pressure

The individuals that have the best fitnesses are reproduced more often than the others
and replace the worst ones. If the variation operators were inhibited, the best individ-
ual would reproduce more quickly than the others until its copies completely took
over the population. This observation led to the first definition of the selection pres-
sure, suggested by Goldberg and Deb in 1991 [27]: the takeover time τ ∗ is defined
as the number of generations necessary to fill the population with copies of the best
individual under the action of the selection operators only. The selection pressure is
higher when τ ∗ is lower.

122 A. Petrowski and S. Ben Hamida

The selection intensity S provides another method, borrowed from the field of
population genetics [31], to define the selection pressure. Let f̄ be the average fitness
of the μ individuals of the population before a selection. Let ḡ be the average fitness
of the λ offspring of the population after the selection. Then S measures the increase
in the average fitness of the individuals of a population determined before and after
selection, with the standard deviation σf of the individual fitnesses before selection
taken as a unit of measure:

S = ḡ − f̄

σf

If the selection intensity is computed for the reproduction process, then f̄ = ∑μ

i=1 fi/μ,
where fi is the fitness of individual i, and ḡ = ∑λ

i=1 gi/λ, where gi is the fitness of
individual i.

The definitions presented above are general and are applicable to any selection
technique. It is possible also to give other definitions, whose validity may be limited
to certain techniques, as we will see later with regard to proportional selection.

With a high selection pressure, there is a great risk of premature convergence.
This situation occurs when the copies of one superindividual, which is nonoptimal
but reproduces much more quickly than the others take over the population. Then the
exploration of the search space becomes local, since it is limited to a search randomly
centered on the superindividual, and there is a large risk that the global optimum will
not be approached if local optima exist.

6.3.2 Genetic Drift

Like selection pressure, genetic drift is also a concept originating from population
genetics [31]. This is concerned with random fluctuations in the frequency of alleles
in a population of small size, where an allele is a variant of an element of a sequence
of DNA having a specific

function. For this reason, hereditary features can disappear or be fixed at random
in a small population even without any selection pressure.

This phenomenon also occurs within the framework of evolutionary algorithms.
At the limit, even for a population formed from different individuals but of the same
fitness, in the absence of variation generated by mutation and crossover operators,
the population converges towards a state where all the individuals are identical.
This is a consequence of the stochastic nature of the selection operators. Genetic
drift can be evaluated from the time required to obtain a homogeneous population
using a Markovian analysis. But these results are approximations and are difficult
to generalize on the basis of the case studies in the literature. However, it has been
verified that the time of convergence towards an absorption state becomes longer as
the population size increases.

6 Evolutionary Algorithms 123

Another technique for studying genetic drift measures the reduction in the variance
of the fitnesses in the population in each generation, under the action of the selection
operators only, when each parent has a number of offspring independent of its fitness
(neutral selection). This latter condition must be satisfied to ensure that the reduction
in variance is not due to the selection pressure. Let r be the ratio of the expectation of
the variance of fitness in a given generation to the variance in the previous generation.
In this case, Rogers and Prügel–Bennett [47] have shown that r depends only on the
variance Vs of the number of offspring of each individual and on the population size,
assumed constant:

r = E(Vf (g + 1))

Vf (g)
= 1 − Vs

P − 1

where Vf (g) is the variance of the fitness distribution of the population in generation
g. Vs is a characteristic of the selection operator. It can be seen that increasing the
population size or reducing the variance Vs of the selection operator decreases the
genetic drift.

The effect of genetic drift is prevalent when the selection pressure is low, and this
situation leads to a loss of diversity. This involves a premature convergence, which
may a priori be far away from the optimum, since it does not depend on the fitness
of the individuals.

In short, in order that an evolutionary algorithm can work adequately, it is neces-
sary that the selection pressure is neither too strong nor too weak for a population of
sufficient size, with the choice of a selection operator characterized by a low variance.

6.3.3 Proportional Selection

This type of selection was originally proposed by Holland for genetic algorithms. It
is used only for reproduction. The expected number of selections λi of an individual
i is proportional to its fitness fi. This implies that the fitness function is positive in the
search domain and that it must be maximized, which itself can require some simple
transformations of the objective function to satisfy these constraints. Let μ be the
population size and let λ be the total number of individuals generated by the selection
operator; then λi can be expressed as

λi = λ∑μ

j=1 fj
fi

Table 6.1 gives the expected number of selections λi of each individual i for a total
of λ = 8 offspring in the population of 10 individuals in our “guide” example.

However, the effective number of offspring can only be an integer. For example,
the situation in Fig. 6.2 was obtained with a proportional selection technique. In this
figure, individuals 7, 8, and 10, whose respective fitnesses of 204, 175, and 144
are among the worst ones, do not have offspring. Except for the best individual,

124 A. Petrowski and S. Ben Hamida

Table 6.1 Expected number of offspring in the population of 10 individuals

i 1 2 3 4 5 6 7 8 9 10

fi 399 364 364 300 231 204 204 175 175 144

λi 1.247 1.138 1.138 0.938 0.722 0.638 0.638 0.547 0.547 0.450

Fig. 6.3 RWS method:
individual 3 is selected after
a random number is drawn

Random value

1.247

1.138 1.138

0.938

0.722 0.638

0.6380.547

0.547

0.450
12 345 67 8910

which is selected twice, the others take part only once in the process of crossover.
To obtain this type of results, a stochastic sampling procedure constitutes the core
of the proportional selection operator. Two techniques are in widespread use and are
described below: the roulette wheel selection (RWS) method, which is the operator
originally proposed for genetic algorithms, but suffers from high variance, and the
stochastic universal sampling (SUS) method, which guarantees a low variance of the
sampling process [7].

6.3.3.1 Proportional Selection Algorithms

The RWS method exploits the metaphor of a biased roulette wheel, which has as
many compartments as individuals in the population, and where the size of these
compartments is proportional to the fitness of each individual. Once the game has
been started, the selection of an individual is indicated by the stopping of the ball in
its compartment. If the compartments are unrolled into a straight line segment, the
selection of an individual corresponds to choosing, at random, a point on the segment
with a uniform probability distribution (Fig. 6.3). The variance of this process is high.
It is possible that an individual that has a good fitness value is never selected. In
extreme cases, it is also possible, by sheer misfortune, that bad quality individuals
are selected as many times as there are offspring. This phenomenon creates a genetic
drift that helps some poor individuals to have offspring to the detriment of better
individuals. To reduce this risk, the population size must be sufficiently large.

It is the SUS method which was used in our “guide” example. One still considers
a straight line segment partitioned into as many zones as there are individuals in
the population, each zone having a size proportional to the fitness. But this time the
selected individuals are designated by a set of equidistant points, their number being
equal to the number of offspring (Fig. 6.4). This method is different from the RWS
method because here only one random drawing is required to place the origin of the
series of equidistant points and thus to generate all the offspring in the population.
In Fig. 6.4, individuals 7, 8, and 10 are not selected, the best individual is selected
twice, and the others are selected only once. For an expected number of selections λi

6 Evolutionary Algorithms 125

Random
offset

1.247
1.138 1.138

0.938
0.722 0.638

0.6380.547
0.547

0.450
12 345 67 8910

Fig. 6.4 SUS method: the selected individuals are designated by equidistant points

of the individual i, the effective number of selections will be either the integer part
of λi or the immediately higher integer number. Since the variance of the process is
weaker than in the RWS method, the genetic drift appears to be much less and, if
λ ≥ μ, the best individuals are certain to have at least one offspring each.

6.3.3.2 Proportional Selection and Selection Pressure

In the case of proportional selection, the expected number of selections of the best
individual, with fitness f̂ , from among μ selections for a population of μ parents, is
appropriate for defining the selection pressure:

ps = μ∑μ

j=1 fj
f̂ = f̂

f̄

where f̄ is the average of the fitnesses of the population. If ps = 1, then all the
individuals have an equal chance of being selected, indicating an absence of selection
pressure.

Let us consider a search for the maximum of a continuous function, for example
f (x) = exp(−x2). The individuals of the initial population are assumed to be uni-
formly distributed in the domain [−2,+2]. Some of them will have a value close to
0, which is also the position of the optimum, and thus their fitness f̂ will be close to
1. The average fitness of the population f̄ will be

f̄ ≈
∫ +∞

−∞
f (x)p(x) dx

where p(x) is the probability density of the presence of an individual at x. A uniform
density has been chosen in the interval [−2,+2], and thus p(x) is 1/4 in this interval
and 0 elsewhere. Thus

f̄ ≈ 1

4

∫ +2

−2
e−x2

dx

126 A. Petrowski and S. Ben Hamida

that is, f̄ ≈ 0.441, which gives a selection pressure of the order of ps = f̂ /f̄ ≈ 2.27.
The best individual will thus have an expected number of offspring close to two
(Fig. 6.5a).

Now let us assume that the majority of the individuals of the population are in a
much smaller interval around the optimum, for example [−0.2,+0.2]. This situa-
tion occurs spontaneously after some generations, because of the selection pressure,
which favors the reproduction of the best, these being closest to the optimum. In this
case, assuming a uniform distribution again, f̄ ≈ 0.986 and ps ≈ 1.01 (see Fig. 6.5b).
The selection pressure becomes almost nonexistent: the best individual has practi-
cally as many expected offspring as any other individual, and it is genetic drift which
will prevent the population from converging towards the optimum as precisely as
desired.

This undesirable behavior of proportional selection, where the selection pressure
decreases strongly when the population approaches the optimum in the case of a
continuous function, is overcome by techniques of fitness function scaling.

6.3.3.3 Linear Scaling of the Fitness Function

With a technique of proportional selection, the expected number of selections of
an individual is proportional to its fitness. In this case, the effects of a misadjusted
selection pressure can be overcome by a linear transformation of the fitness function
f . The adjusted fitness value f ′

i for an individual i is equal to fi − a, where a is a
positive value if it is desired to increase the pressure; otherwise it is negative. a is
identical for all individuals. Its value should be chosen so that the selection pressure
is maintained at a moderate value, neither too large nor too small, typically about
2. With such a technique, one attention must be paid to the fact that the values of
f ′ are never negative. They can be possibly be bounded from below by 0, or by a
small positive value, so that any individual, even of bad quality, has a small chance of
being selected. This arrangement contributes to maintenance of the diversity of the

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x)

x

(a)

Average fitness of the population = 0.441

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

f(
x)

x

(b)
Average fitness of the population = 0.986

Fig. 6.5 The selection pressure decreases when the population is concentrated in the neighborhood
of the optimum

6 Evolutionary Algorithms 127

population. Assuming that no individual is given a negative fitness value, the value
of a can be calculated in each generation from the value of the desired selection
pressure ps:

a = ps f̄ − f̂

ps − 1
with ps > 1

In the context of the above example, if the individuals are uniformly distributed
in the interval [−0.2,+0.2], then a = 0.972 for a desired selection pressure ps = 2.
Figure 6.6 illustrates the effect of the transformation f ′ = f − 0.972. It can be noticed
that there are values of x for which the function f ′ is negative, whereas this situation
is forbidden for proportional selection. To correct this drawback, the fitnesses of the
individuals concerned can be kept clamped at zero or at a small constant positive
value, which has the side effect of decreasing the selection pressure.

6.3.3.4 Exponential Scaling of the Fitness Function

Rather than performing a linear transformation to adjust the selection pressure, it is
also quite common to raise the objective function to a suitable power k to obtain the
desired selection pressure:

f ′
i = f k

i

where the parameter k depends on the problem. Boltzmann selection [19] is another
variant, where the scaled fitness is expressed as

f ′
i = exp

(fi
T

)

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

f(
x)

x

Adjusted average fitness of the population = 0.014

Fig. 6.6 Adjustment of the selection pressure by subtraction of a positive constant from f (x)

128 A. Petrowski and S. Ben Hamida

The value of the parameter T , known as the “temperature,” determines the selec-
tion pressure. T is usually a decreasing function of the number of generations, thus
enabling the selection pressure to grow with time.

6.3.3.5 Rank-based Selection

These techniques for adjusting the selection pressure proceed by ranking the indi-
viduals i according to the values of the raw fitnesses fi. The individuals are ranked
from the best (first) to the worst (last). The fitness value f ′

i actually assigned to each
individual depends only on its rank by decreasing value (see Fig. 6.7) according to,
for example, the formula given below, which is usual:

f ′
r =

(
1 − r

μ

)p

Here μ is the number of parents, r is the rank of the individual considered in the
population of the parents after ranking, and p is an exponent which depends on
the desired selection pressure. After ranking, a proportional selection is applied
according to f ′. With our definition of the pressure ps, the relation is ps = 1 + p.
Thus, p must be greater than 0. This fitness scaling technique is not affected by
a constraint on sign: fi can be either positive or negative. It is appropriate for a
maximization problem as well as for a minimization problem, without the necessity
to perform any transformation. However, it does not consider the importance of the
differences between the fitnesses of the individuals, so that individuals that are of
very bad quality but are not at the last row of the ranking will be able to persist in
the population. This is not inevitably a bad situation, because it contributes to better
diversity. Moreover, this method does not require an exact knowledge of the objective
function, but simply the ability to rank the individuals by comparing each one with

1

0.8

0.6

0.4

0.2

0
1 µRank

r

r

(a)
1

0.8

0.6

0.4

0.2

0
1 µ Rank

 f´ r

 fr
(b)

 f

 f

Fig. 6.7 Performance obtained after ranking. a f ′
r = (1 − r/μ)2: strong selection pressure; b f ′

r =√
(1 − r/μ): weak selection pressure

6 Evolutionary Algorithms 129

the others. These good properties mean that, overall, it is preferred by the users of
evolutionary algorithms over the linear scaling technique.

6.3.4 Tournament Selection

Tournament selection is an alternative to the proportional selection techniques, which,
as explained above, present difficulties in controlling the selection pressure during
evolution; it is relatively expensive in terms of the computational power involved.

6.3.4.1 Deterministic Tournament

The simplest tournament consists in choosing at random a number k of individuals
from the population, and selecting for reproduction the one that has the best fitness.
In a selection step, there are as many tournaments as there are individuals, selected.
The individuals that take part in a tournament can be replaced in the population or
can be withdrawn from it, according the choice made by the user. Drawing without
replacement makes it possible to conduct �N/k	 tournaments with a population
of N individuals. A copy of the population is regenerated when it is exhausted,
and this is implemented as many times as necessary, until the desired number of
selections is reached. The variance of the tournament process is high, which favors
genetic drift. It is, however, weaker in the case of drawing without replacement. This
method of selection is very much used, because it is much simpler to implement than
proportional reproduction with behavior and properties similar to that of ranking
selection.

The selection pressure can be adjusted by varying the number of participants k in
a tournament. Consider the case where the participants in a tournament are replaced
in the population. Then the probability that the best individual in the population
is not selected in k drawings is ((N − 1)/N)k . If we make the assumption that N is
very large compared with k, this probability is approximately 1 − k/N , by a binomial
expansion to first order. Thus, the probability that the best individual is drawn at least
once in a tournament is close to k/N . If there are M tournaments in a generation, the
best individual will have kM/N expected selections, which have a selection pressure
of k, according to the definition given earlier for proportional reproduction (with
M = N). This pressure will necessarily be greater than or equal to 2.

6.3.4.2 Stochastic Tournament

In a stochastic binary tournament, involving two individuals in competition, the best
individual wins with a probability p ranging between 0.5 and 1. It is still easy to
calculate the selection pressure generated by this process. The best individual takes
part in a tournament with a probability of 2/N (see Sect. 6.3.4.1). The best individual

130 A. Petrowski and S. Ben Hamida

in the tournament will be selected with a probability p. Since the two events are
independent, the probability that the best individual in the population is selected
after a tournament is thus 2p/N . If there are N tournaments, the best will thus have
2p expected offspring. The selection pressure will thus range between 1 and 2.

Another alternative, the Boltzmann tournament, ensures that the distribution of
the fitness values in a population is close to a Boltzmann distribution. This method
makes a link between evolutionary algorithms and simulated annealing.

6.3.5 Truncation Selection

This selection is very simple to implement, as it does nothing but choose the n best
individuals from a population, n being a parameter chosen by the user. If the truncation
selection operator is used for reproduction to generate λ offspring from n selected
parents, each parent will have λ/n offspring. If this operator is used for replacement
and thus generates the population of μ individuals for the next generation, then
n = μ.

6.3.6 Environmental Selection

Environmental selection, or replacement selection, determines which individuals in
generation g, from among the offspring and parents, will constitute the population
in generation g + 1.

6.3.6.1 Generational Replacement

This type of replacement is the simplest, since the population of the parents for the
generation g + 1 is composed of all the offspring generated in generation g, and only
them. Thus, μ = λ. The canonical genetic algorithm, as originally proposed, uses
generational replacement.

6.3.6.2 Replacement in the Evolution Strategies “(μ, λ)- ES”

Here, a truncation selection of the best μ individuals from among λ offspring forms
the population for the next generation. Usually, λ is larger than μ.

6 Evolutionary Algorithms 131

6.3.6.3 Steady-State Replacement

Here, in each generation, a small number of offspring (one or two) are generated and
they replace a smaller or equal number of parents, to form the population for the next
generation. This strategy is useful especially when the representation of a solution
is distributed over several individuals, possibly the entire population. In this way,
the loss of a small number of individuals (those that are replaced by the offspring)
in each generation does not disturb the solutions excessively, and thus they evolve
gradually.

The choice of the parents to be replaced obeys various criteria. With uniform
replacement, the parents to be replaced are chosen at random. The choice can also
depend on the fitness: the worst parent is replaced, or it is selected stochastically
according to a probability distribution that depends on the fitness or other criteria.

Steady-state replacement generates a population where the individuals are subject
to large variations in their lifespan, measured in number of generations, and thus large
variations in number of their offspring. The high variance of these values augments
genetic drift, which is especially apparent when the population is small [18].

6.3.6.4 Elitism

An elitist strategy consists in preserving in the population, from one generation to the
next, at least the individual that has the best fitness. The example shown in Fig. 6.2
implements an elitist strategy since the best individuals in the population, composed
of the parents and the offspring, are selected to form the population of parents for the
next generation. The fitness of the best individual in the current population is thus
monotonically nondecreasing from one generation to the next. It can be noticed, in
this example, that four parents of generation 0 find themselves in generation 1.

There are various elitist strategies. The strategy employed in our “guide” example
originates from the class of evolution strategies known as “(μ + λ)-ES.” In other
currently used alternatives, the best parents in generation g are copied systematically
into P(g + 1), the population for generation g + 1. Or, if the best individual in P(g)

is better than that in P(g + 1), because of the action of the variation or selection oper-
ators, then the best individual in P(g) is copied into P(g + 1), usually by replacing
the lowest-fitness individual.

It appears that such strategies improve considerably the performance of evolution-
ary algorithms for some classes of functions, but prove to be disappointing for other
classes, because they can increase the rate of premature convergence. For example,
an elitist strategy is harmful for seeking the global maximum of the F5 function of De
Jong (Fig. 6.8). In fact, such a strategy increases the exploitation of the best solutions,
resulting in an accentuated local search, but to the detriment of the exploration of
the search space.

Choosing a nonelitist strategy can be advantageous, but there is then no guarantee
that the fitness function of the best individual increases during the evolution. This
obviously implies a need to keep a copy of the best solution found by the algorithm

132 A. Petrowski and S. Ben Hamida

-60
-40

-20
 0

 20
 40

 60
x -60

-40
-20

 0
 20

 40
 60

y
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Objective

Fig. 6.8 F5 function of De Jong

since the initiation of the evolution, without this copy taking part in the evolutionary
process, however.

6.3.7 Fitness Function

The fitness function associates a fitness value with each individual in order to deter-
mine the number of times that individual will be selected to be reproduced, or whether
it will be replaced or not. In the case of the function C(x) described in Sect. 6.2.4,
the fitness function is also the objective function for our maximization problem. This
kind of situation is exceptional, however, and it is often necessary to carefully con-
struct the fitness function for a given problem. The quality of this function greatly
influences the efficiency of a genetic algorithm.

6.3.7.1 Construction

If a proportional selection method is chosen, it may be necessary to transform the
problem under consideration so that it becomes a problem of maximization of a
numerical function with positive values in its domain of definition. For example,
the solution of a system of equations S(x) = 0 could be obtained by searching for
the maxima of 1/(a + |S(x)|), where the notation |V| represents the modulus of the
vector V, and a is a nonnull positive constant.

The construction of a good fitness function should consider the representation
chosen and the nature of the variation operators so that it can give nondeceptive
indications of the progress towards the optimum. For example, it may be necessary to
try to reduce the presence of local optima on top of broad peaks if a priori knowledge

6 Evolutionary Algorithms 133

available about the problem allows it. This relates to the study of the fitness landscapes
that will be introduced in Sect. 6.4.1, referring to the variation operators.

Moreover, a good fitness function must satisfy several criteria which relate to its
complexity, to the satisfaction of the constraints of the problem, and to the adjustment
of the selection pressure during the evolution. When the fitness function is excessively
complex, consuming considerable computing power, a search for an approximation
is desirable, and sometimes indispensable.

6.3.7.2 Reduction of the Computing Power Required

In general, in the case of real-world problems, the evaluation of the fitness function
consumes by far the greatest amount of the computing power during an evolutionary
optimization. Let us assume that the calculation of a fitness value takes 30 s, that there
are 100 individuals in the population, and that acceptable solutions are discovered
after a thousand generations, each one implying each time the evaluation of all the
individuals; the process will then require 35 days of computation. In the case of real-
world problems, the fitness evaluations usually involve computationally intensive
numerical methods, for example finite element methods. Various strategies must
be used to reduce the computation times. Parallel computing can be considered;
this kind of approach is efficient but expensive in terms of hardware. One can also
consider approximate calculations of the fitness function, which are then refined
gradually as the generations pass. Thus, when a finite element method is being
used, for example, it is natural to start by using a coarse mesh at the beginning of
the evolution. The difficulty is then to determine when the fitness function should
be refined so that the optimizer does not converge prematurely to false solutions
generated by the approximations. Another way to simplify the calculation is to make
use of a tournament selection or a ranking selection (Sect. 6.3.3.5). In these cases, it
is not necessary to know the precise values of the objective function, because only
the ranking of the individuals is significant.

6.4 Variation Operators and Representation

6.4.1 Generalities About the Variation Operators

The variation operators belong to two categories:

• crossover operators, which use several parents (often two) to create one or more
offspring;

• mutation operators, which transform one individual.

134 A. Petrowski and S. Ben Hamida

These operators make it possible to create diversity in a population by building “off-
spring” individuals, which partly inherit the features of “parent” individuals. They
must be able to serve two mandatory functions during the search for an optimum:

• exploration of the search space, in order to discover the interesting areas, those
which are most likely to contain the global optima;

• exploitation of these interesting areas, in order to concentrate the search there and
to discover the optima with the required precision, for those areas which contain
them.

For example, a purely random variation operator, where solutions are drawn at
random independently of each other, will have excellent qualities of exploration,
but will not be able to discover an optimum in a reasonable time. A local search
operator that performs “hill climbing” will be able to discover an optimum in an area
of the space effectively, but there will be a great risk that it will be a local solution,
and the global solution will not be obtained. A good algorithm for searching for the
optimum will thus have to find a suitable balance between exploration capabilities
and exploitation of the variation operators that it uses. It is not easy to think of how
to do this, and the answer depends strongly on the properties of the problem under
consideration.

A study of the fitness landscape helps us to understand why one variation operator
may be more effective than an other operator for a given problem and choice of
representation [53]. This notion was introduced in framework of theoretical genetics
in the 1930s by Wright [56]. A fitness landscape is defined by:

• a search space �, whose elements are called “configurations”;
• a fitness function f : � → R;
• a relation of neighborhood or accessibility, χ .

It can be noticed that the relation of accessibility is not a part of the optimization prob-
lem. This relation depends instead on the characteristics of the variation operators
chosen. Starting from a particular configuration in the search space, the application
of these stochastic operators potentially gives access to a set of accessible configu-
rations with various probabilities. The relation of accessibility can be formalized in
the framework of a discrete space � by a directed hypergraph [24], whose hyperarcs
have values given by the transition probabilities to an “offspring” configuration from
a set of “parent” configurations.

For the mutation operator, the hypergraph of the accessibility relation becomes a
directed graph which, starting from an individual or configuration X, represented by
a node of the graph, gives a new configuration X ′, with a probability given by the
value of the arc (X, X ′). For a crossover operation between two individuals X and Y
that produces an offspring Z , the probability of generating Z knowing that X and Y
have been crossed is given by the value of the hyperarc ({X, Y}, {Z}).

The definition of the fitness landscape given above shows that it depends simul-
taneously on the optimization problem under consideration, on the chosen represen-
tation, defined by the space �, and on the relation of accessibility defined by the
variation operators. What is obviously expected is that the application of the latter

6 Evolutionary Algorithms 135

will offer a sufficiently high probability of improving the fitness of the individuals
from one generation to another. This point of view is a useful one to adopt when
designing relevant variation operators for a given representation and problem, where
one needs to make use of all of the knowledge, formalized or not, that is available
for that problem.

After some general considerations regarding crossover and mutation operators,
the following subsections present examples of the traditional operators applicable to
various popularly used search spaces:

• the space of binary strings;
• real representation in domains of Rn;
• representations of permutations, which can be used for various combinatorial prob-

lems such as the traveling salesman problem and problems of scheduling;
• representations of parse trees, for the solution of problems by automatic program-

ming.

6.4.2 Crossover

The crossover operator often uses two parents to generate one or two offspring.
The operator is generally stochastic, and hence the repeated crossover of the same
pair of distinct parents gives different offspring. As the crossovers in evolutionary
algorithms are not subject to biological constraints, more than two parents, and in
the extreme case the complete population, can participate in mating for crossover
[21].

The operator generally respects the following properties:

• The crossover of two identical parents produces offspring identical to the parents.
• By extension, on the basis of an index of proximity depending on the chosen

representation (defined in the search space), two parents which are close together
in the search space will generate offspring close to them.

These properties are satisfied by the “classical” crossover operators, such as most
of those described in this chapter. They are not absolute, however, as in the cur-
rent state of knowledge of evolutionary algorithms, the construction of crossover
operators does not follow a precise rule.

The crossover rate determines the proportion of the individuals that are crossed
among the offspring. For the example in Fig. 6.2, this rate was fixed at 1, i.e., all
offspring are obtained by crossover. In the simplest version of an evolutionary algo-
rithm, the individuals are mated at random from among the offspring generated by
the selection, without taking account of their characteristics. This strategy can prove
to be harmful when the fitness function has several optima. Indeed, it is generally not
likely that a crossover of high-quality individuals located on different peaks will give
good-quality individuals (see Fig. 6.9). A crossover is known as lethal if it generates
from good parents one or two offspring with too low a fitness to survive.

136 A. Petrowski and S. Ben Hamida

A solution to avoiding too large a proportion of lethal crossovers consists in
preferentially mating individuals that resemble each other. If a distance is defined in
the search space, the simplest way to proceed is to select two individuals according to
the probability distribution of the selection operator and then to cross them only if the
distance between them is lower than a threshold rc, called the restriction radius. If the
latter is small, however, this will lower the rate of effective crossover significantly,
which can be prejudicial. It is then preferable to select the first parent with the
selection operator and then, if there are individuals in its neighborhood, one of them
is selected to become the second parent. In all situations, if rc is selected to be too
small, it significantly reduces the exploration of the search space by accentuating the
local search, and this can lead to premature convergence. This effect is especially
sensitive to the initialization of the evolution, when the crossover of two individuals
distant from each other makes it possible to explore new areas of the search space
that potentially contain peaks of the fitness function. Thus, to make the technique
efficient, the major problem consists in choosing a good value for rc; however, it
depends largely on the fitness landscape, which is in general not known. It is also
possible to consider a radius rc that decreases during the evolution.

6.4.3 Mutation

Classically, the mutation operator modifies an individual at random to generate an
offspring that will replace it. The proportion of mutated individuals in the offspring
population is equal to the mutation rate. Its order of magnitude can vary substantially
according to the model of evolution chosen. In the example in Fig. 6.2, two individuals
are mutated from among the eight offspring obtained from the selection process. In

Search domain

 f

Parent 1

Offspring 1

Offspring 2

Parent 2

Fig. 6.9 Crossover of two individuals placed on different peaks of a fitness function f

6 Evolutionary Algorithms 137

genetic algorithms, mutation is considered as a minor operator, aimed at maintaining
a minimum diversity in the population, which crossover cannot ensure. With this
model, the mutation rate is typically low, about 0.01–0.1, whereas the crossover rate
is high. In contrast, mutation was essential in the original model of the evolution
strategies since there was no crossover. The mutation rate in that case was 100 %.

Most of the mutation strategies modify an individual in such a way that the result
of the transformation is close to it. In this way, the operator performs a random local
search around each individual to be mutated. Mutation can considerably improve
the quality of the solutions discovered compared with crossover, which loses its
importance when most of the population is located in the neighborhood of the maxima
of the fitness function. In fact, the individuals located on the same peak are often
identical because of the process of selection for reproduction and do not undergo
any modification by the crossover operator. If they belong to different peaks, the
offspring generally have low fitness. On the other hand, the local random search due
to the mutations gives a chance for each individual to approach the exact position of
the maximum, to the extent that the characteristics of the chosen operator allow it.

Mutation with a sufficiently high rate plays an important part in the preservation of
diversity, which is useful for efficient exploration of the search space. This operator
can fight the negative effects of a strong selection pressure or a strong genetic drift,
phenomena which tend to reduce the variance of the distribution of the individuals
in the search space.

If the mutation rate is high and, moreover, the mutation is so strong that the
individual produced is almost independent of the one which generated it, the evolution
of the individuals in the population is equivalent to a random walk in the search space,
and the evolutionary algorithm will require an excessive time to converge.

The utilization of mutation as a local search operator suggests combining it
with other, more effective, local techniques, although these will be more problem-
dependent, such as a gradient technique, for example. This kind of approach has led
to the design of hybrid evolutionary algorithms.

6.5 Binary Representation

The idea of evolving a population in a space of binary vectors originated mainly
from genetic algorithms, which are inspired by the transcription from genotype to
phenotype that occurs in the living world. In the framework of genetic algorithms,
the genotype consists of a string of binary symbols or, more generally, a string of
symbols belonging to a low-cardinality alphabet. The phenotype is a solution of
the problem in a “natural” representation. The genotype undergoes the action of the
genetic operators, i.e., selections and variations, while the phenotype is used only
for fitness evaluation.

For example, if a solution can be expressed naturally as a vector of real numbers,
the phenotype will be that vector. The genotype will thus be a binary string which
codes this vector. To code the set of the real variables of a numerical problem as a

138 A. Petrowski and S. Ben Hamida

binary string, the simplest way is to convert each variable into binary format, and
then to concatenate these binary numbers to produce the genotype. The most obvious
technique to code a real number in binary format is to represent it in fixed-point format
with a number of bits corresponding to the desired precision.

6.5.1 Crossover

For a binary representation, there exists three classical variants of crossovers:

• “single-point” crossover;
• “two-point” crossover;
• uniform crossover.

After a pair of individuals has been chosen randomly among the selected individ-
uals, the “single-point” crossover [32] is applied in two stages:

1. Random choice of an identical cut point on the two bit strings (Fig. 6.10a).
2. Cutting of the two strings (Fig. 6.10b) and exchange of the two fragments located

to the right of the cut (Fig. 6.10c).

This process produces two offspring from two parents. If only one offspring is
used by the evolutionary algorithm employed, this offspring is chosen at random from
the pair and the other one is discarded. The “single-point” crossover is the simplest
type of crossover and is, traditionally, the one most often used with codings using an
alphabet with low cardinality, such as binary coding. An immediate generalization of
this operator consists in multiplying the cut points on each string. The “single-point”
and “two-point” crossovers are usually employed in practice for their simplicity and
their good effectiveness.

The uniform crossover [3] can be viewed as a multipoint crossover where the
number of cuts is unspecified a priori. Practically, one uses a “template string,” which
is a binary string of the same length as the individuals. A “0” at the nth position of the
template leaves the symbols in the nth position of the two strings unchanged and a
“1” activates an exchange of the corresponding symbols (in Fig. 6.11). The template
is generated at random for each pair of individuals. The values “0” and “1” of the
elements of the template are often drawn with a probability of 0.5.

⇒ ⇒
1 1

1

1 1 10 0 0 0 0 0

00000000 000

0 0 0 0

1 1 1

Choice of a cut
point

Cut and
swap

Resulta b c

Fig. 6.10 “Single-point” crossover of two genotypes of five bits

6 Evolutionary Algorithms 139

1 1

1

0 0 0

0 000

1 01 0 1 Random template string

1

11

0

0

0

0

0 0

0Parent 1

Parent 2

⇒
Offspring 1

Offspring 2

Choice of the
symbols to swap

Resulta b

Fig. 6.11 Uniform crossover

6.5.2 Mutation

Classically, the mutation operator on bit strings modifies at random the symbols of
a genotype, with a low probability in the framework of genetic algorithms, typi-
cally from 0.01 to 0.1 per individual. This probability is equal to the mutation rate.
The most common variants are deterministic mutation and bit-flip mutation. With
“deterministic” mutation, a fixed number of bits chosen at random are reversed for
each mutated individual, i.e., a “1” becomes “0” and vice versa, while with “bit-flip”
mutation, each bit can be reversed independently of the others with a low probability.
If the mutation rate is too high, with a large number of mutated bits per individual,
the evolution of the individuals in the population is equivalent to a random walk in
the search space, and the genetic algorithm loses its effectiveness.

When a bit string represents a vector of integer or real numbers, the positive
effects of mutation are opposed by the difficulty of crossing the Hamming cliffs,
which appear because of the conversion of the bit strings to real-number vectors. For
example, let us consider the function D(x), where

D(x) =
{

256 − x2 if x ≤ 0
0 otherwise

Let us use a string b(x) = {b1(x), . . . , b5(x)} of five bits to represent an individual
x that ranges from −16 to +15, and thus has 32 possible different values. b(x) can
be defined simply as the number x + 16 expressed in base 2. The optimum of D(x)
is obtained for x = 0, which thus corresponds to b(0) = {1, 0, 0, 0, 0}. The value
x = −1, obtained from the string {0, 1, 1, 1, 1}, gives the highest fitness apart from
the maximum: this value will thus be favored by the selection operators. However, it
can be noticed that there is no common bit between {1, 0, 0, 0, 0} and {0, 1, 1, 1, 1}.
This means that there is no other individual with which {0, 1, 1, 1, 1} can be mated
to give {1, 0, 0, 0, 0}. The mutation operator will have to change the five bits of the
genotype {0, 1, 1, 1, 1} simultaneously to give the optimum, because the Hamming
distance2 between the optimum and the individual which has the nearest fitness is
equal to the size of the strings. Hence, we encounter a Hamming cliff here. It is not

2The Hamming distance is the number of different bits between two bit strings of the same length.

140 A. Petrowski and S. Ben Hamida

very likely that we will cross it with a “bit-flip” mutation, and this is impossible with
a “deterministic” mutation unless that mutation flips all the bits of a bit string, a form
which is never used. But the mutation will be able to easily produce the optimum if
there are individuals in the population that differ by only one bit from the optimal
string; here, these individuals are:

String b(x) x D(x)
〈0, 0, 0, 0, 0〉 −16 0
〈1, 1, 0, 0, 0〉 8 0
〈1, 0, 1, 0, 0〉 4 0
〈1, 0, 0, 1, 0〉 2 0
〈1, 0, 0, 0, 1〉 1 0

Unfortunately, all these individuals have null fitness and thus they have very few
chance of “surviving” from one generation to the next.

This tedious phenomenon, which hinders progress towards the optimum, can be
eliminated by choosing a Gray code, which ensures that two successive integers
have binary representations that differ only in one bit. Starting from strings b(x)
that represent integer numbers in base 2, it is easy to obtain a Gray code g(x) =
{g1(x), . . . , gl(x)} by performing, for each bit i, the operation

gi(x) = bi(x) ⊕ bi−1(x)

where the operator ⊕ implements the “exclusive or” operation and b0(x) = 0. Con-
versely, the string of l bits b(x) = {b1(x), . . . , bl(x)} can be obtained from the string
g(x) = {g1(x), . . . , gl(x)} by the operation

bi(x) =
i⊕

j=1

gj(x)

The Gray codes of {0, 1, 1, 1, 1} and {1, 0, 0, 0, 0} are {0, 1, 0, 0, 0} and {1, 1, 0, 0, 0},
respectively. A mutation of the bit g1 is then enough to reach the optimum. A Gray
code is thus desirable from this point of view. Moreover, it modifies the landscape of
the fitness function by reducing the number of local optima created by transcribing
a real or integer vector into a binary string. It should be noted, however, that Ham-
ming cliffs are generally not responsible for dramatic falls in the performance of the
algorithm.

6.6 Real Representation

The real representation allows an evolutionary algorithm to operate on a population
of vectors in a bounded search domain � included in R

n. Let us assume that any

6 Evolutionary Algorithms 141

solution x in a given population is drawn from the search domain according to a
probability distribution characterized by a density p(x), where x is a point in �.
Assume also that this distribution has an expectation

E =
∫

�

xp(x) dx

and a total variance

V =
∫

�

x2p(x) dx − E2

V is also the trace of the covariance matrix of the components of the vectors x.
If λ, the size of the population of the offspring, is large enough, these values are
approached by the empirical expectation

Ê =
∑λ

i=1 xi

λ

and the empirical total variance

V̂ =
∑λ

i=1 x2
i

λ
− Ê2

The empirical variance can be regarded as a measurement of the diversity in the
population. If it is zero, then all the individuals are at the same point in �. If we adopt
a mechanical analogy, Ê is the centroid of the population, where we allot a unit mass
to each individual. It is interesting to evaluate these values after application of the
variation operators.

6.6.1 Crossover

Let us consider two points x and y in the space Rn corresponding to two individuals
selected to generate offspring. After application of the crossover operator, one or
two offspring x′ and y′ are drawn randomly, according to a probability distribution
which depends on x and y.

6.6.1.1 Crossover by Exchange of Components

This is a direct generalization of the binary crossovers and consists in exchanging
some real components of two parents. One can thus obtain all variants of binary
crossover, in particular the “single-point,” “two-point,” and “uniform” crossovers (see
Fig. 6.12). The last variant is also called “discrete recombination” in the terminology
of evolution strategies. This type of crossover modifies neither E nor V .

142 A. Petrowski and S. Ben Hamida

6.6.1.2 BLX-α Crossover

The BLX-α crossover was proposed in [22], α being a parameter of the evolutionary
algorithm. Two variants are widely mentioned in publications related to evolutionary
algorithms. According to the original description of its authors, the first variant
randomly generates offspring on a line segment in the search space R

n passing
through the two parents. We refer to this variant as linear BLX-α crossover. The
second variant randomly generates offspring inside a hyperrectangle defined by the
parents. We refer to this as voluminal BLX-α crossover.

Voluminal BLX-α crossover. This operator generates offspring chosen uniformly
inside a hyperrectangle with sides parallel to the coordinate axes (Fig. 6.13). Let xi

and yi be the components of the two parents x and y, respectively, for 1 ≤ i ≤ n; the
components of an offspring z are defined as

zi = xi + (yi − xi) · U(−α, 1 + α)

where U(−α, 1 + α) is a random number drawn uniformly in the interval [−α,

1 + α].
A voluminal BLX-α crossover does not modify E, but changes the value of V .

Let Vc be the variance of the distribution of the population after crossover:

Vc = (1 + 2α)2 + 3

6
V

x

y

Parents

Offspring

y
x

Fig. 6.12 Uniform crossover; an individual x′ or y′ resulting from the crossover of x and y is
located on a vertex of a hyperrectangle with sides parallel to the coordinate axes such that one
longest diagonal is the segment (x, y)

6 Evolutionary Algorithms 143

Fig. 6.13 BLX-α crossover;
an individual x′ or y′
resulting from the crossover
of x and y is located inside a
hyperrectangle with sides
parallel to the coordinate
axes such that one longest
diagonal passes through x
and y x

y

Parents

Offspring

x´

y´

The variance after crossover decreases if

α <

√
3 − 1

2
≈ 0.366

In this case, it is said that the crossover is contracting, and the iterative application
of the operator alone leads the population to collapse onto its centroid. In particular,
if α = 0, z is located in a hyperrectangle such that one longest diagonal is the line
segment (x, y). In this case, Vc = 2

3 V . After iterative application of this operator alone
for g generations, and for an initial population variance V0, the variance becomes

Vcg =
(

2

3

)g

V0

The variance tends quickly towards 0! It can thus be seen that the risk of premature
convergence is increased with a BLX-0 operator.

If α > (
√

3 − 1)/2, the variance increases if the domain is Rn. In practice, for a
bounded search domain �, the variance is stabilized at a nonnull value. The “borders”
of the search domain can be explored. The possible optima which are there will be
found and retained more easily. A commonly used value is α = 0.5.

Nomura and Shimohara [41] showed that this operator reduces the possible cor-
relations which may exist between the components of the vectors of the population.
Its repeated application makes the coefficients of correlation converge towards zero.

This operator can be seen as a generalization of other crossover operators, such
as the flat crossover [44], which is equivalent to BLX-0.

Linear BLX-α crossover. If x and y are the points corresponding to two individuals
in R

n, an individual z resulting from the linear BLX-α crossover of x and y is chosen
according to a uniform distribution on a line segment passing through x and y:

144 A. Petrowski and S. Ben Hamida

z = x + (y − x) · U(−α, 1 + α)

where U(−α, 1 + α) is a random number drawn uniformly in the interval [−α, 1 +
α]. If I is the length of the line segment [x, y], z is on the segment of length I · (1 + 2α)

centered on the segment [x, y] (Fig. 6.14).
A linear BLX-α crossover does not modify E, but changes the value of V in

a way similar to the voluminal BLX-α crossover. On the other hand, it should be
noted that the possible correlations that may exist between the components of the
individuals of a population do not decrease as a result of the repeated application of
the linear operator [41]. This behavior is completely different from that observed for
the voluminal operator.

As previously, this operator can be seen as a generalization of some other crossover
operators, according to restrictions on the values oα, such as intermediate recombi-
nation for evolution strategies [8] and arithmetic crossover [40], which is equivalent
to BLX-0.

6.6.1.3 Intermediate Recombination

This operator is applied to ρ parents and gives one offspring each time it is invoked.
ρ is a constant parameter between 2 and the population size. An offspring z is the
centroid of the parents xi:

z = 1

ρ

ρ∑
i=1

xi.

x
y

Parents

Offspring

x
y

Fig. 6.14 BLX-α crossover; an individual x′ or y′ resulting from the crossover of x and y is located
on the line defined by x and y, possibly outside the segment [x, y]

6 Evolutionary Algorithms 145

6.6.2 Mutation

Mutation generally consists in the addition of a “small” random value to each com-
ponent of an individual, according to a zero-average distribution, with a variance
possibly decreasing with time. In this way, it is assured that the mutation leaves the
centroid of the population unchanged.

6.6.2.1 Uniform Mutation

The simplest mutation technique adds to an individual x, belonging to a domain �

in R
n, a random variable with a uniform distribution in a hypercube [−a,+a]n.

However, such a mutation does not allow an individual trapped in a local optimum
located on a peak broader than the hypercube to escape from that local optimum. To
avoid this disadvantage, it is preferable to use a distribution with unlimited support.

6.6.2.2 Gaussian Mutation

Gaussian mutation is one of the most widely used types of mutation for the real
representation. The simplest form adds a Gaussian random variable N (0, σ), with
zero-average and standard deviation σ , to each component of a real-valued vector.
The problem is then making a suitable choice of σ . In theory, it is possible to escape
from a local optimum irrespective of the width of the peak where it is located, since
the support of a Gaussian distribution is unlimited, but if σ is too small that might
only happen after far too many attempts. Conversely, if σ is too large, it will be
unlikely that an optimum value will be approached accurately within a reasonable
time. The value of σ therefore needs to be adapted during the evolution: large at the
beginning to quickly explore the search space, and small at the end to accurately
approach the optimum. Some adaptation strategies are described in the following.

6.6.2.3 Gaussian Mutation and the 1/5 Rule

Based on a study on two simple, very different test functions with an elitist evolution
strategy (1 + 1)-ES,3 Rechenberg [9, 46] calculated optimal standard deviations for
each test function that maximized the convergence speed. He observed that for these
optimal values, approximately one fifth of the mutations allow one to reduce the
distance between the individual and the optimum. He deduced the following rule,
termed the “one fifth rule,” for adapting σ : if the rate of successful mutations is larger
than 1/5, increase σ , if it is smaller, reduce σ . The “rate of successful mutations”

3In (1 + 1)-ES: the population is composed of only one parent individual, and this generates only
one offspring; the best of both is preserved for the next generation.

146 A. Petrowski and S. Ben Hamida

Fig. 6.15 Isovalue ellipse
f (x1, x2) = 1/2 when H is
diagonal with h11 = 1/36
and h22 = 1

is the proportion of mutations which make it possible to improve the value of the
fitness of an individual. Schwefel [52] proposed the following rule in practice:

Estimate the rates of successful mutations ps in k mutations
if ps < 0.2 then

σ(g) ← σ(g) · a
else if ps > 0.2 then

σ(g) ← σ(g)/a
else

σ(g) ← σ(g)

Here, 0.85 ≤ a < 1 according to Schwefel’s recommendation; k is equal to the
dimension n of the search space when n > 30, and g is the index of the current
generation. σ should be updated according to the above algorithm every n muta-
tions.

The “one fifth rule” requires that σ should have the same value for all components
of a vector x. In this way, the size of the progression step towards the optimum is the
same in all directions: the mutation is isotropic. However, isotropy does not make
it possible to approach the optimum as quickly as expected when, for example, the
isovalues of the fitness function locally take the shape of “flattened” ellipsoids in
the neighborhood of the optimum (see Fig. 6.15). If the step is well adapted in a
particular direction, it will not be in other directions.

To clarify these considerations with an example, we consider the quadratic perfor-
mance function defined in R

n f (x) = 1
2 (x − c)TH(x − c), where H is a symmetric

matrix. This example is interesting because the expression for f (x) is the second-
order term of a Taylor expansion near the point c for any function that is twice
continuously differentiable, where H is the Hessian matrix of this function at c. f (x)

is minimal, equal to 0, for x = c with H positive definite. Figure 6.15 represents the
isovalue ellipse f (x1, x2) = 1/2 for a function of two variables obtained when H is
diagonal with h11 = 1/36 and h22 = 1.

The condition number κH is defined as the ratio of the largest eigenvalue of H
to the smallest one: κH = λmax/λmin. In the case shown in Fig. 6.15, the matrix H
is already diagonal, and its eigenvalues are h11 and h22. For the H defined above,
the condition number is 36. When the condition number is large compared with 1,

6 Evolutionary Algorithms 147

the matrix is said to be “ill-conditioned”. In real-world applications, the condition
number can be larger than 1010, which means that the ratio of the lengths of the major
axis and the minor axis of an isovalue hyperellipsoid can be larger than 105.

Note that when H is diagonal, the quadratic function f (x) is an additively sep-
arable function: f (x) = f (x1, . . . , xi, . . . , xn) = ∑n

i=1 g(xi). Thus, if H is positive
definite, the global minimum of f (x) can be obtained by searching for the min-
ima of n convex functions fi(xi) = f (c1, . . . , ci−1, xi, ci+1, . . . , cn) with constants
c1, . . . , ci−1, ci+1, . . . , cn arbitrarily chosen. In this case, the optimum of f (x) can
be found efficiently in n successive runs of the (1+1)-ES algorithm with the “1/5
rule” to obtain the optimum for each of variables xi independently of the others. If
H is diagonal, the ratios of the adapted standard deviations σi/σj in a given genera-
tion should ideally be of the order of

√
hjj/

√
hii to reduce the computation time to

the greatest possible extent. However, such an approach to solving ill-conditioned
problems cannot be applied efficiently when the objective function is not separable.

6.6.2.4 Self-adaptive Gaussian Mutation

Schwefel [52] proposed self-adaptive Gaussian mutation to efficiently solve ill-
conditioned problems when the objective function is separable or “almost” separable
in a neighborhood of the optimum. Self-adaptive mutation should be applicable to
a wider range of problems than the “1/5 rule” because that rule was derived from a
study of specific objective functions [9].

To implement this adaptation, an individual is represented as a pair of vectors
(x, σ). Each component σi refers to the corresponding component of x. These com-
ponents σi evolve in a similar way to the variables of the problem under the action
of the evolutionary algorithm [52]. σ is thus likely to undergo mutations. Schwefel
proposed that the pair (x′, σ ′) obtained after mutation should be such that

σ ′
i = σi exp(τ0N + τN (0, 1)) (6.1)

with τ0 ≈ 1√
2n

, τ ≈ 1√
2
√

n

x′
i = xi + N (0, σ ′

i
2
)

where N indicates a Gaussian random variable with average 0 and variance 1, com-
puted for the entire set of n components of σ , and N (0, v) represents a Gaussian
random variable with average 0 and variance v. σ ′

i is thus updated by application of
a lognormal perturbation (Eq. (6.1)).

Self-adaptive Gaussian mutation requires a population size μ of the order of
the dimension of the search space. Beyer and Schwefel [8] recommended that this
mutation should be associated with intermediate recombination (Sect. 6.6.1.3) to
prevent excessive fluctuations of parameters that would degrade the performance of

148 A. Petrowski and S. Ben Hamida

the algorithm. As with the “1/5 rule”, this operator becomes inefficient when the
objective function is ill-conditioned and not separable in the neighborhood of the
optimum.

6.6.2.5 Correlated Gaussian Mutation

The self-adaptive mutation described above works best when the matrix H is diago-
nal. It is inefficient when there are correlations between variables, as in the case of a
fitness function that has the isovalue curve f (x) = 1/2 represented in Fig. 6.16. This
case corresponds to a matrix H = (DR)T (DR), where D is the diagonal matrix of
the square roots of the eigenvalues of H and R is a rotation matrix, with

D =
(

1/6 0
0 1

)
and R =

(
cos θ − sin θ

sin θ cos θ

)
with θ = π

6
(6.2)

The condition number κH = (s22/s11)
2 is then equal to 36. This function f , for which

there are correlations between variables, is not separable.
Correlated mutation is a generalization of the self-adaptive mutation described

above. The mutated vector x′ is obtained from x by the addition of a Gaussian random
vector with zero mean and covariance matrix C:

x′ = x + N (0, C)

The matrix C, which is symmetric positive definite, can always be written as C =
(SR)T(SR), where R is a rotation matrix inRn and S is a diagonal matrix with sii > 0
[48].4 The matrix R can be computed as the product of n(n − 1)/2 elementary rotation
matrices Rkl(αkl):

R =
n−1∏
k=1

n∏
l=k+1

Rkl(αkl)

Fig. 6.16 An isovalue curve
f (x) = 1/2 for
f (x) = 1

2 (x − c)TH(x − c),
obtained for
H = (DR)T (DR), where D
and R are given by Eq. (6.2)

4Possibly with a column permutation of the matrix R and the corresponding diagonal coefficients
in S.

6 Evolutionary Algorithms 149

Here, Rkl(αkl) is the matrix for a rotation by an angle αkl in the plane spanned by the
vectors k and l. Such a matrix can be written as the identity matrix with the exception
of the coefficients rkk = rll = cos(αkl) and rkl = −rlk = − sin(αkl).

Each individual has its own covariance matrix C that allows it to mutate. C is
able to adapt itself through mutations of the information that was used to build it.
An individual is then defined as a triplet (x, σ ,α) where σ is a vector of n standard
deviations, as in self-adaptive mutation, and α is a vector that is a priori composed of
n(n − 1)/2 elementary rotation angles αkl used to build the matrix R. The diagonal
coefficients of the matrix S are sii = σi.

The vector σ evolves under the action of the evolutionary algorithm as described
by Eq. (6.1). The Components αkl undergo mutations according to the following
formula:

α′
kl = αkl + βN (0, 1)

Schwefel suggests setting β to a value close to 0.087 rad, i.e., 5◦.
In practice, the mutated vector x′ is obtained from x according to the following

expression:
x′ = x + R′S′N (0, I)

where R′ and S′ are obtained from R and S, respectively, after mutation of the angles
αkl and standard deviations σi. N (0, I) is a Gaussian random vector with zero mean
and variance 1 for each component i.

This technique of mutation, although it seems powerful, is seldom used because
of the amount of memory used for an individual, and its algorithmic complexity of
the order of n2 matrix products for a problem of n variables for each generation.
Besides, the large number of parameters required for each individual involves a large
population size of the order of n2, where n is the dimension of the search space. The
method loses much efficiency when the dimension n increases. It is hardly possible
to exceed dimension 10 [30].

The difficulties in the use of the correlated mutation method have prompted a
search for new approaches, leading to a major improvement of evolution strategies
known as the covariance matrix adaptation evolution strategy (CMA-ES), presented
in Sect. 6.10.

6.7 Some Discrete Representations for Permutation
Problems

There exist many types of combinatorial optimization problems, and it is not possible
to describe all of them within a restricted space. We will consider here only the
permutation problem, which consist in discovering an order of a list of elements that
maximizes or minimizes a given criterion. The traveling salesman problem can be
considered as an example. Knowing a set of “cities,” as well as the distances between

150 A. Petrowski and S. Ben Hamida

these cities, the traveling salesman must discover the shortest possible path passing
through each city once and only once. This NP-hard problem is classically used
as a benchmark, making it possible to evaluate the effectiveness of an algorithm.
Typically, the problems considered comprise several hundreds of cities.

A solution can be represented as a list of integers, each one associated with a city.
The list contains as many elements as cities, and each city associated with an element
must satisfy the constraint of uniqueness. One has to build individuals that satisfy
the structure of the problem, and possibly to specialize the genetic operators.

6.7.1 Ordinal Representation

It is tempting to consider an individual representing an order as an integer vector,
and to apply crossovers to the individuals by exchanging components similarly to
what is done for binary and real representations (see Sects. 6.5.1 and 6.6.1.1). The
ordinal representation makes it possible to satisfy the constraint of uniqueness with
the use of these standard crossovers. It is based on a reference order, for example
the natural order of the integers. First, a list of the cities O in this reference order
is built, for example O = (123456789) for nine cities numbered from 1–9. Then an
individual is read from left to right. The nth integer read gives the order number in O
of the nth visited city. When a city is visited, it is withdrawn from O. For example,
let us consider the individual 〈437253311〉:
• The first integer read from the individual is 4. The first visited city is thus the

fourth element of the reference list O, i.e., the city 4. This city is withdrawn from
O. One then obtains O1 = (12356789).

• The second integer read is 3. According to O1, the second visited city is 3. This
city is withdrawn from O1 to give O2 = (1256789).

• The third integer read is 7. The third visited city is thus 9, and one obtains O3 =
(125678), which will be used as the reference list for the next step.

We continue in this way until the individual is entirely interpreted. Hence, for this
example, the path is 4 → 3 → 9 → 2 → 8 → 6 → 7 → 1 → 5.

But, experimentally, this representation associated with the standard variation
operators does not give good results. This shows that it is not well adapted to the
problem under consideration, and that the simple satisfaction of the uniqueness con-
straint is not sufficient. Other ways have hence been explored, which enable the
offspring to inherit partially the order of the cities or the relations of adjacency
which exist in their parents.

6 Evolutionary Algorithms 151

6.7.2 Path or Sequence Representation

In this representation, two successive integers in a list correspond to two nodes
adjacent to each other in the path represented by an individual. Each number in a
list must be present once and only once. Useful information lies in the order of these
numbers compared with the others. Many variation operators have been proposed
for this representation. A crossover preserving the order and another preserving the
adjacencies, chosen from the most common alternatives in the literature, are presented
below.

6.7.2.1 Uniform Order-Based Crossover

With uniform order-based crossover, an offspring inherits a combination of the orders
existing in two “parent” sequences. This operator has the advantage of simplicity
and, according to Davis, one of its proposers [17], it shows good effectiveness. The
crossover is done in three stages (Fig. 6.17):

• A binary template is generated at random (Fig. 6.17a).
• Two parents are mated. The “0” and “1” of the binary template define the positions

preserved in the sequences of the parents “1” and “2,” respectively (Fig. 6.17b).
• To generate the offspring “1” and “2,” the non preserved elements of the parents

“1” and “2” are permuted in order to satisfy the order they have in the parents “2”
and “1” respectively (Fig. 6.17c).

6.7.2.2 Crossover by Edge Recombination

With this class of crossover operators, an offspring inherits a combination of the
adjacencies existing in the two parents. This is useful for the nonoriented traveling
salesman problem, because the cost does not depend on the direction of the route
in a cycle, but depends directly on the weights between the adjacent nodes of a
Hamiltonian cycle.

The edge recombination operator was improved by several authors over several
years. The “edge-3” version of Mathias and Whitley [39] will now be presented. Let

Fig. 6.17 Uniform
order-based crossover

1 5

4

2 3 4

5 3 12

1 01 0 1 Random template
string

5

52

4

3

2

1

31

4Parent 1

Parent 2
⇒⇒⇒⇒

Offspring 1

Offspring 2

b Choice of the symbols
to permute

c Result

a

⇓⇓⇓⇓

152 A. Petrowski and S. Ben Hamida

two individuals be selected for mating, for example 〈 b, g, j, k, i, e, a, c, l, h, f, d〉 and
〈 f, c, b, e, k, a, h, i, l, j, g, d〉. The first action builds an “edge table” of adjacencies
(see Table 6.2) such that to each node corresponds a list of adjacent nodes in both
parents: the number of such nodes is from two to four. The adjacencies common to
both parents are marked by a * in the edge table.

At the time of action 2 of the operator, an initial active node is selected at random
and all the references to this node are removed from the table.

Action 3 consists in choosing the edge which leads from the active node to an
adjacent node marked by a * or, failing that, has the shortest list of adjacencies.
If there are several equivalent options, the choice of the next node is carried out
at random. The adjacent node chosen becomes the new active node added in the
“offspring” tour. All the references to this node are removed from the adjacency lists
in the edge table.

Action 4 builds a string, or possibly a complete tour. It consists of the repetition
of action 3 as long as the adjacency list of the active node is nonempty. If the list
is empty, then the initial node is reactivated to start again from the beginning of
the string, but in the reverse direction, until the adjacency list of the active node is
empty again. Then action 4 is concluded. The initial node cannot now be reactivated,
because its adjacency list is empty owing to previous removal of the edges.

If a complete tour has not been generated, another active node is chosen at random,
from among those which do not belong to any partial tour already built by previous
executions of action 4. Then action 4 is initiated again. The application of the operator
can thus be summarized as the sequence of actions 1 and 2 and as many actions 4 as
necessary.

It is hoped that the operator will create few partial tours, and thus few foreign
edges which do not belong to the two parents. The “edge-3” operator is powerful
from this point of view.

Table 6.2 Table of
adjacencies

Nodes Edge list

a c, e, h, k

b d, g, e, c

c l, a, b, f

d b, *f, g

e a, i, k, b

f *d, h, c

g *j, b, d

h f, l, i, a

i e, k, l, h

j k, *g, l

k i, j, a, e

l h, c, j, i

6 Evolutionary Algorithms 153

Let us assume that node a in the example of Table 6.2 has been selected at random
to be the initial active mode. Table 6.3 shows an example of the execution of the
algorithm. The progress of the construction of the Hamiltonian cycle is presented in
the last row. The active nodes are underlined. When an active node is marked with
a superscript (1), this means that the next active node has to be chosen at random
because of the existence of several equivalent possibilities. When it is marked with
a superscript (2), it is at an end of the string: there is no more possible adjacency,
which implies that one needs to move again in the reverse direction by reactivating
the initial node a. It was necessary to apply action 4 only once in this case which
generated a complete tour 〈l, i, h, a, c, f, d, g, j, k, e, b〉. Thus, except for the edge (bl),
all the edges originate from one of the two parents.

6.7.2.3 Mutations of Adjacencies

The “2-opt” mutation is commonly used with the path representation. It is usually
used for the Euclidean traveling salesman problem because of its geometrical proper-
ties. It consists in randomly choosing two positions in a sequence and then reversing
the subsequence delimited by the two positions. Let the sequence be 〈987654321〉,
where the two positions drawn at random are 3 and 8. Then the subsequence located
between positions 3 and 8 is reversed, which gives the new sequence 〈984567321〉.
Figure 6.18 shows the effect of the operator when applied to this sequence with the
path representation. The operator can be generalized by choosing more than two
positions for inversion of subsequences.

Table 6.3 Example of algorithm execution

Stage 1 2 3, 4 5, 6 7, 8, 9 10 11

a c, e, h, k e, h, k e, h, k e, h, k h

b d, g, e, c d, g, e g, e e

c l, b, f l, b, f l, b l, b l l l

d b, *f, g b, *f, g b, g b

e i, k, b i, k, b i, k, b i, k, b i i

f *d, h, c *d, h h h h

g *j, b, d *j, b, d *j, b b

h f, l, i f, l, i l, i l, i l, i l, i l

i e, k, l, h e, k, l, h e, k, l, h e, k, l, h l, h l l

j k, *g, l k, *g, l k, *g, l k, l l l l

k i, j, e i, j, e i, j, e i, e i i

l h, c, j, i h, j, i h, j, i h, i h, i i

Tour: a(1) a, c a, c, f, d(1) a, c, f,
d, g, j(1)

a, c, f,
d, g, j, k, e,
b(2)

h(1), a, c, f,
d, g, j, k, e, b

i, h, a, c, f,
d, g, j, k, e, b

154 A. Petrowski and S. Ben Hamida

Fig. 6.18 An example of a
2-opt mutation

9

8
7 6

5

4

3
21

Before mutation After mutation

9

8
7 6

5

4

3
21

6.7.2.4 Mutations of Permutations

If an individual represents a solution for a scheduling problem, the 2-opt operator
modifies the order of a large number of elements, on average l/2 if l is the size of
a sequence. However, the route direction of a subsequence, which was irrelevant in
the traveling salesman problem, is essential in this new context. Thus, the modifica-
tions which the adjacency mutation applies to a sequence are important. However, a
mutation should be able to apply small perturbations to a solution often, in order to
explore its close neighborhood. This is why other types of mutations have also been
proposed. The simplest one consists in withdrawing an element chosen at random
from a sequence and inserting it into another position. Several operators have been
described in the literature, such as mutation by exchange, where two positions in a
sequence are chosen at random and the elements in these positions are exchanged.
The performance offered by the variants of the mutation operators available depends
very much on the properties of the problem being dealt with.

6.8 Syntax Tree-Based Representation for Genetic
Programming

A dynamic tree-based representation for genetic algorithms was introduced by
Cramer in 1985 [15] in order to evolve sequential subprograms written in a sim-
ple programming language. The evolution engine used was the steady-state genetic
algorithm (SSGA) (Sect. 6.3.6.3), whose task was not to find the optimal values for
a problem, but to discover a computer program that could solve the problem.

John Koza adopted the syntax tree representation in 1992 [35] to define genetic
programming as a new evolutionary algorithm. Its main objective was to evolve
subprograms in the LISP language (Fig. 6.19a). He showed empirically that his
approach allows relevant programs to be discovered for a large number of examples
of applications, including the design of complex objects such as electronic circuits,
with an effectiveness significantly higher than what would chance.

Thanks to Koza’s book would be expected by [35], the application of genetic pro-
gramming has expanded to the solution of many types of problems whose solutions

6 Evolutionary Algorithms 155

can be represented by syntax tree structures, such as linear functions [42] (Fig. 6.19b),
graphs [49, 54], and molecular structures [55].

A syntax tree is composed of a set of leaves, called terminals (T) in genetic
programming, and a set of nodes, called nonterminals (N). The two sets T and N
together form the primitive set of a genetic programming system.

Using genetic programming needs the definition of the two sets of nodes N and
leaves T that define the search space. The components of these two collections
depend on the problem. For example, for linear functions, a solution is a syntax tree
constructed from:

1. A set of nonterminal symbols, which may be arithmetic operators such as
×,−,÷,+, or functions with arguments such as sin and cos.

2. A set of terminal symbols, which can be variables, universal constants, or func-
tions without arguments (rnd(), time(),…).

For genetic programming to work effectively, the primitive set must respect
two important properties: closure and sufficiency [35]. The property of sufficiency
requires that the sets of terminal and nonterminal symbols be able to represent any
solution of the problem. This means that the set of all possible recursive com-
positions of the primitives must represent the search space. For example, the set
AND, OR, NOT , X1, X2, . . . , XN is a sufficient primitive set for Boolean function
induction. The property of closure implies that each node must accept as an argument
any type and value that can be produced by a terminal or nonterminal symbol. This
means that any leaf or subtree can be used as an argument for every node in the tree.

The shape of the individuals in the genetic programming is very different from
those mentioned previously for other representations. The trees must, in particular,
have a mechanism for regulating their size. Otherwise, they will have a tendency
to grow indefinitely over generations, unnecessarily consuming more memory and

(a) (b)

Fig. 6.19 Examples of tree solutions obtained by genetic programming where the search space
is the set of LISP subprograms (a), and where the space explored is the space of linear functions
representing polynomials with two variables (b)

156 A. Petrowski and S. Ben Hamida

computing power. The control mechanism can be implemented simply by giving
some additional parameters to the genetic programming system, such as a maximum
depth value for the trees or a maximum number of nodes. The genetic operators in
the system must be modified to respect these constraints.

6.8.1 Initializing the Population

With the tree-based representation, initializing the population does not follow the
same rules as with the binary and real representations. Each tree is generated in two
steps: first the nodes, and then the leaves. However, the shape of the tree depends on
the initialization approach used. The simplest and earliest three initialization methods
are:

• The Grow method. The generated trees have irregular shapes; in each step, the
selection is done in a uniform manner in the sets of nodes and terminals until
the maximum depth is reached, below which only terminals may be chosen
(Fig. 6.20a).

• The Full method. The trees are balanced and full; for a given node, a terminal is
chosen only when the maximum depth is reached (Fig. 6.20b).

• The Ramped Half and Half method. Since the two previous methods do not offer
a large variety of shapes and sizes of trees, Koza [35] proposed to combine the
Full and Grow methods. In this method, half of the initial population is generated
using Full and half is generated using Grow. The method uses a range of depth
limits, which vary between 2 and the maximum depth. Currently, this technique
is preferred to the two previous methods.

6.8.2 Crossover

The crossover traditionally used with the syntax tree representation is the subtree
crossover. This consists of an exchange of two subtrees from the two individuals to
be crossed, selected a priori from among the more efficient, and therefore potentially
containing interesting subtrees. The crossover point in each parent tree is chosen
randomly. An example of subtree crossover is illustrated in Fig. 6.21.

This general principle of crossover, introduced by Cramer in 1985 [15] can be
refined with different extensions to constrain the size of the generated offspring. In
fact, it is necessary to check the maximum depth for each syntax tree in the new
population, so that the size of the individuals does not become unnecessarily large. If
the crossover points chosen do not respect the limiting size value, then recombination
may not take place. The attitude adopted in this case is a parameter of the crossover.
It will be at least one of the two following choices:

6 Evolutionary Algorithms 157

Fig. 6.20 Construction of a syntax tree with a maximum depth equal to 2, using the Grow method
a and the Full method b

*

+

+ *

-

x0

x1 c1 x0

c2

x0

c3

x1

x1

-

*

*

+

+*

-

x0

x1 c1x0

c2

x0

c3

x1

x1

-

*

Parent 1 Parent 2

Offspring 1 Offspring 2

Fig. 6.21 Example of subtree crossover

• Select a new pair of parents and try to reapply the crossover operator until two
offspring respecting the size constraint are found.

• Choose new crossover points on the two selected parents until the resulting off-
spring satisfy the maximum depth constraint.

158 A. Petrowski and S. Ben Hamida

There are a few other crossover operators that have been proposed for genetic
programming systems, such as context-preserving crossover and size-fair crossover
(see [37] for details).

6.8.3 Mutations

The traditional genetic programming system proposed by Koza [35] does not use
mutation operators. To ensure access to all primitives of the search language (e.g.,
LISP) and ensure genetic diversity, it uses a very large population size, to include a
large quantity of genetic material. Mutation in genetic programming was introduced
for the first time in 1996 by Angeline [4] in order to reduce the population size and
thus the computational cost.

Owing to the complexity of the syntax tree in genetic programming, multiple
mutation operators have been proposed. Some of them are used for local search, but
the majority could be applied for both local and global search. The most commonly
used forms of mutation in genetic programming are:

• Subtree mutation: the operator randomly selects a mutation point (node) in the
tree and substitutes the corresponding subtree with a randomly generated subtree;
(Fig. 6.22).

• Point mutation (known also as cycle mutation): a random node in the tree is replaced
with a different random node drawn from the primitive set having the same arity
(Fig. 6.23).

• Grow mutation: this adds a randomly selected nonterminal primitive at a random
position in the tree and adds terminals if necessary to respect the arity of the new
node (Fig. 6.24).

• Shrink mutation: a randomly chosen subtree is deleted and one of its terminals
takes its place. This is a special case of the subtree mutation that is motivated by
the desire to reduce program size (Fig. 6.25).

In the case where the leaves of the tree can take numerical values (constants),
other mutation operators have been introduced, such as:

• Gaussian mutation, which mutates constants by adding Gaussian random noise
[4].

*

+

+ *

-

x0

x1 c1 x0

c2 c3

x1

x1

Parent Offspring

*

*

-

x0

c2

x1

-
Subtree mutation

Fig. 6.22 Example of subtree mutation

6 Evolutionary Algorithms 159

+

x0

x1 c1

Parent Offspring

+

-x0

c1

Point mutation

x1

*

Fig. 6.23 Example of point mutation

• Optimized constant mutation, which tunes the solution by trying to find the best
values for constants in the tree. This uses a numerical optimization method to reach
the nearest local optimum, such as the hill climber method [51] or partial gradient
ascent [50].

6.8.4 Application to Symbolic Regression

Given a supervised learning database containing a set of N pairs of vectors (xj, yj)

for j ∈ [1, N], symbolic regression consists in discovering a symbolic expression S
that is able to map the input vector xj to the target real value yj. A priori, there is no
constraint on the structure of the expression S being searched for. For a vector xj, the
expression S allows one to compute ŷj = S(xj), whose gap with respect to yj must
be minimized for any j by modifying the structure of S.

John Koza [35] has shown that genetic programming can be used advantageously
to solve symbolic regression problems. Each tree in the population may represent a

-

+

*x0

x1 c1

Parent Offspring

+

*x0

c1

x1 c2

Grow mutation

Fig. 6.24 Example of Grow mutation

*

+

+ *

-

x0

x1 c1 x0

c2

x1

Parent Offspring

*

*

-

x0

c2

x1

Shrink mutation

x0

Fig. 6.25 Example of Shrink mutation

160 A. Petrowski and S. Ben Hamida

mathematical expression. Besides the work of Koza, several studies [11, 28, 34, 38]
have shown the benefit of the application of genetic programming in solving symbolic
regression problems. Multiple applications in different fields have been presented,
for example automatic searching for the structure of filters [43], exploration and
prediction of the loads of helicopters [13], forecasting of the production of dairy cows,
and determination of the functional associations between groups of proteins [25].

Below we present an example of an application in the field of finance to fore-
casting market volatility. For financial volatility forecasting, the input set X is a
historical financial time series of data (X = x1, x2, . . . , xT), and the output vector
Y = y1, y2, . . . , yT is the implied volatility values computed from the observed data.

6.8.4.1 Implied Volatility Forecasting

One challenge posed by financial markets is to correctly forecast the volatility of
financial securities, which is a crucial variable in the trading and risk management
of derivative securities. Traditional parametric methods have had limited success in
estimating and forecasting volatility as they are dependent on restrictive assumptions
and it is difficult to make the necessary estimates. Several machine learning tech-
niques have recently been used to overcome these difficulties [12, 14, 33]. Genetic
programming has often been applied to forecasting financial time series and, in some
recent work for Abdelmalek and Ben Hamida, it was successfully applied to the pre-
diction of implied volatility [1, 29]. We summarize this work in the following and
illustrate the main results.

The data used were daily prices of European S&P500 index call options, from
the Chicago Board Options Exchange (CBOE) for a sample period from January 2,
2003 to August 29, 2003. The S&P500 index options are among the most actively
traded financial derivatives in the world.

Each formula given by genetic programming was evaluated to test whether it
could accurately forecast the output value (the implied volatility) for all entries in
the training set. To assign a fitness measure to a given solution, we computed the
mean squared error (MSE) between the estimated volatility (ŷi) given by the genetic
programming solution and the target volatility (yi) computed from the input data:

MSE = 1

N

1∑
N

(yi − ŷi)
2 (6.3)

where N is the number of entries in the training data sample.
To generate and evolve the tree-based models, the genetic programming needed a

primitive set composed of a terminal set (for the leaves of the tree) and a function set
(for the nodes of the tree). The terminal set included the following input variables:
the call option price divided by the strike price, C/K ; the index price divided by
the strike price, S/K ; and the time to maturity, τ . The function set included basic
mathematical operators and some specific functions that might be useful for implied

6 Evolutionary Algorithms 161

0,000

0,001

0,002

0,003

0,004

0,005

0,006
MSE total

Genetic models

Pr
ed

ic
tio

n
er

ro
r MSE out-of-sample

Fig. 6.26 Performance of the volatility models generated by genetic programming according to
MSE total and MSE out-of-sample for the nine time series samples

volatility models, such as the components of the Black–Scholes model [10]. The
primitive set used in [1] is given in Table 6.4.

The full input sample was sorted by time series and divided chronologically into
nine successive subsamples (S1, S2, . . . , S9) each containing 667 daily observations.
These samples were used simultaneously for training and test steps.

Several runs were performed for each training subsample from the time series set
(S1, S2, . . . , S9). Thus, nine best function models were selected for all subsamples,
denoted (M1S1 · · · M9S9). To assess the internal and external accuracy of the func-
tions obtained, two performance measures were used: the “MSE total,” computed for
the complete sample, and “MSE out-of-sample,” computed for samples external to
the training sample (the eight samples that were not used for learning). Figure 6.26
describes the evolution pattern of the squared errors for these volatility models.

The following is the function M4S4, which had the lowest MSE total:

M4S4

(
C

K
,

S

K
, τ

)
= exp

[(
ln

(
�

(
C

K

))
×

√
τ − 2 × C

K
+ S

K

)
− cos

(
C

K

)]

All of the models obtained were able to fit well not only the training samples but also
the enlarged sample.

Table 6.4 The primitive set used in [1]

Binary functions Addition, subtraction, multiplication, protected division

Unary functions Sine, cosine, protected natural log, exponential function, protected
square root, normal cumulative distribution Black–Scholes component
(Ncfd)

162 A. Petrowski and S. Ben Hamida

Fitness
evaluation

of the μ
offspring

Proportional
selection

Mutation
of the μ
selected
offspring

Crossover
of the μ
selected
offspring

Generational
replacementStop ?

Yes

No

μ
individuals

μ offspring
+

μ parents

Best individual

Fitness
evaluation

of the μ
individuals

Population
initialization

μ
genotypes

Genotype
↓

phenotype
mapping

Genotype
↓

phenotype
mapping

Fig. 6.27 A simple genetic algorithm

The models thus obtained could provide useful information for both speculators
and option hedgers that they could provide to investors to help them protect them-
selves against risk in financial markets. Some simulations of speculation strategies
have been carried out to assess the profits that a speculator could achieve based on
the estimated volatility generated by these genetic models. The results have shown
that genetic models may generate higher yields than conventional models [2].

6.9 The Particular Case of Genetic Algorithms

The simple genetic algorithm follows the outline of an evolutionary algorithm such
as the one presented in Fig. 6.1 with a notable original feature: it implements a
genotype–phenotype transcription that is inspired by natural genetics. This tran-
scription precedes the phase of evaluation the fitness of the individuals. A genotype
is often a binary symbol string. This string is decoded to build a solution of a problem
represented in its natural formalism: this solution is viewed as the phenotype of an
individual. This latter one can then be evaluated to give a fitness value that can be
exploited by the selection operators.

A flowchart of a simple genetic algorithm is presented in Fig. 6.27. It can be
noticed that it implements a proportional selection operator (see Sect. 6.3.3) and
a generational replacement, i.e., the population of the offspring replaces that of
the parents completely. Another classical version uses a steady-state replacement
(Sect. 6.3.6.3). The variation operators work on the genotypes. As these are bit strings,
the operators of crossover and mutation presented in Sect. 6.5 related to the binary
representation are often used. The crossover operator is regarded as the essential
search operator. The mutation operator is usually applied with a small rate, in order
to maintain a minimum degree of diversity in the population. Since the representation

6 Evolutionary Algorithms 163

is based on bit strings, the difficulty is to discover a good coding of the genotype, such
that the variation operators in the space of the bit strings produce viable offspring,
often satisfying the constraints of the problem. This is generally not a trivial job …

Holland, Goldberg, and many other authors have worked on a mathematical for-
malization of genetic algorithms based on a “Schema Theorem” [26], whose utility
is controversial. At first glance, it enables us to justify the choice of a binary repre-
sentation. However, research work using this theorem did not prove in the end to be
very useful for modeling an evolution. Many counterexamples showed that conclu-
sions formulated from considerations deduced from this theorem were debatable, in
particular even the choice of the binary representation.

Genetic algorithms have been subject to many suggestions for modification in
order to improve their performance or to extend their application domain. Thus, bit
strings have been replaced by representations closer to the formalism of the problems
being dealt with, avoiding the debatable question of the design of an effective coding.
For example, research work using “real coded genetic algorithms” uses the real
representations discussed in Sect. 6.6. In addition, proportional selection is often
replaced by other forms of selection. These modifications are sufficiently significant
that the specific features of genetic algorithms compared with the diversity of the
other evolutionary approaches disappear.

6.10 The Covariance Matrix Adaptation Evolution
Strategy

6.10.1 Presentation of Method

The “covariance matrix adaptation evolution strategy” (CMA-ES) [30] was originally
designed to find the global optimum of an objective function in a continuous space
such as Rn with greater efficiency than could be achieved with an evolution strategy
using correlated mutation (Sect. 6.6.2.5). In a similar way, the method performs an
evolution by building a sample of λ solutions in each generation g. These samples
are generated randomly according to the Gaussian distribution N (m(g), C(g)), with
mean vector m(g) and covariance matrix C(g). However, unlike the methods using
mutations, the μ best solutions in this sample are then selected to estimate a new
Gaussian distribution N (m(g + 1), C(g + 1)), which will be then used in the next
generation. There is no more “individual” dependency between “parent” solutions
and “offspring” solutions. The distribution N (m(g + 1), C(g + 1)) is constructed to
approach (hopefully closely enough) the desired optimum. As in the other evolution
strategies (Sect. 6.6.2.4 and following), the CMA-ES algorithms implement a concept
of parameter self-adaptation.

In the CMA-ES approach, three parameters m, σ , and Ĉ are considered to define
the Gaussian distribution N (m, σ 2Ĉ), where σ ∈ R

+ is the step size. This decom-
position of the covariance matrix C into two terms makes it possible to separately

164 A. Petrowski and S. Ben Hamida

adjust the parameters σ and Ĉ according to different criteria in order to speed up
the convergence towards the optimum. The following sections describe the step of
selection of the best solutions generated at random and the adaptation mechanisms
of m, σ , and Ĉ.

6.10.1.1 Fitness Function and Selection

At the beginning of generation g, λ solutions Xi(g) ∈ R
n are generated randomly

according to the Gaussian distribution N (m(g), σ (g)2Ĉ(g)). A rank i is assigned to
solution Xi such that the objective value F(Xi) is better than or equal to F(Xi+1)

for all i. “Better” means “smaller” for a minimization problem and “larger” for a
maximization problem. Solution Xi, for i ∈ {1, . . . , μ}, is associated with fitness
values fi that decrease with index i: ∀i ∈ {1, . . . , μ}, fi > 0, fi ≥ fi+1, with

∑μ

i=1 fi =
1. The values of fi depend only on the rank i and are constant throughout evolution.
The easiest way is to choose fi = 1/μ. More sophisticated fitness functions can
improve the convergence to the optimum.

The selection is deterministic: it keeps the μ best solutions, which are X1(g) to
Xμ(g).

6.10.1.2 Adaptation of m

The value of m(g + 1) for the next generation is the average weighted by the fitness
values fi of the μ selected solutions Xi(g). In this way, m moves from generation to
generation according to the optimization path determined by the sequence of sets of
the best solutions Xi which have been selected. We have

m(g + 1) =
μ∑

i=1

fiXi(g). (6.4)

6.10.1.3 Adaptation of σ

The step size σ(g) is adapted so that successive vectors

δ(g + 1) = m(g + 1) − m(g)

σ (g)

according to g are uncorrelated as much as possible. In fact, if the vectors δ(g) are
strongly correlated (with a correlation coefficient close to 1), that means that σ(g) is
too small because each successive generation leads to progress in the search space
in almost the same direction. Thus, σ(g) should be increased, thereby reducing the
number of evaluations of the objective function for almost the same progression.

6 Evolutionary Algorithms 165

However, if successive steps δ(g) are anticorrelated (with a correlation coefficient
close to −1), this leads to variations of m(g) in almost opposite directions in suc-
cessive generations, involving too slow a progression in the search space. It can be
deduced from this situation that σ(g) is too large.

To decide whether the step size σ(g) is too small or too large, the designers of
the method used the notion of an evolution path pσ (g), which can be calculated as
an average of δ(g) over a few generations. It is then compared with the average pro-
gression allowed by independent Gaussian random vectors drawn from distribution
δ(g). As the draws are independent, they are uncorrelated.

If we define μf = 1/
∑μ

i=1 f 2
i , δ(g + 1) is a random vector drawn from the dis-

tribution N (0, Ĉ/μf). In practice, a vector δ′(g + 1) drawn from the distribution
N (0, I/μf) is calculated as follows:

δ′(g + 1) = Ĉ(g)−1/2δ(g + 1) = BD−1BTδ(g + 1)

where B and D are the matrix of eigenvectors and the corresponding diagonal matrix
of the square roots of the eigenvalues of Ĉ(g), respectively. Thus,

√
μf δ

′(g + 1) is
drawn from the distribution N (0, I). The designers of the method proposed that a
weighted average of pσ (g) and

√
μf δ

′(g + 1) should be calculated recursively to
obtain pσ (g + 1):

pσ (g + 1) = (1 − cσ)pσ (g) + α
√

μf δ
′(g + 1)

where cσ ∈]0, 1[is a parameter of the method. Choosing cσ close to 0 leads to a
smooth but slow adaptation of pσ : the memory effect is important. α is calculated
so that when the step size σ(g) is well adapted, pσ (g) and pσ (g + 1) have the same
distribution N (0, I). Now,

√
μf δ

′(g + 1) is also drawn from the distributionN (0, I).

Therefore, α = √
1 − (1 − cσ)2, so that the covariance matrix of pσ (g + 1) is I. The

following expression for the evolution path pσ (g) for g ≥ 1 is thereby obtained:

{
pσ (g + 1) = (1 − cσ)pσ (g) + √

cσ (2 − cσ)μf BD−1BT m(g+1)−m(g)

σ (g)

pσ (1) = 0
(6.5)

Then, ||pσ (g + 1)|| is “compared” with E||N (0, I)||, which is the expectation of
the norm of the Gaussian random vectors drawn from the distribution N (0, I), to
adapt the value of σ in such a way that it:

• decreases when ||pσ (g + 1)|| is less than E||N (0, I)||,
• increases when ||pσ (g + 1)|| is greater than E||N (0, I)||,
• remains constant when pσ (g + 1) is equal to E||N (0, I)||.
The following expression can perform this adaptation efficiently:

σ(g + 1) = σ(g) exp

(
cσ

dσ

(||pσ (g + 1)||
E||N (0, I)|| − 1

))
(6.6)

166 A. Petrowski and S. Ben Hamida

where dσ is a damping factor, with a value of around 1. The value of σ(0) is problem-
dependent; cσ , dσ , and σ(0) are parameters of the method. A robust strategy for
initialization of these parameters is presented in Sect. 6.10.2.

6.10.1.4 Adaptation of Ĉ

The designers of the method proposed an estimator Cμ(g + 1) for the covariance
matrix C(g + 1) based on the μ best realizations Xi(g) obtained in generation g:

Cμ(g + 1) =
μ∑

i=1

fi(Xi − m(g))(Xi − m(g))T

Note that this estimator uses the weighted average m(g) obtained in the previous
generation instead of m(g + 1). Moreover, the contribution of each term (Xi − m(g))

is weighted by
√

fi. To see the relevance of this estimator intuitively using an example,
we consider the case μ = 1:

C1(g + 1) = f1(X1 − m(g))(X1 − m(g))T

The matrix C1(g + 1) therefore has only one nonzero eigenvalue, for an eigenvector
collinear with (X1 − m(g)). This means that the Gaussian distribution N (m(g + 1),

C1(g + 1)) will generate realizations Xi(g + 1) only on the line whose direction
vector is (X1(g) − m(g)), passing through the point m(g + 1). Now, since X1(g)

is the best solution obtained in the current generation, a heuristic choice of the
direction (X1(g) − m(g)) to find a better solution X1(g + 1) is reasonable. However,
a priori, this direction is not that of the optimum. To ensure a good exploration of the
search space, μ must be large enough, not less than n, so that the covariance matrix
Cμ(g + 1) is positive definite.

Taking into account the step size σ(g), with C(g) = σ(g)2Ĉ(g), the expression
for Ĉμ(g + 1) is

Ĉμ(g + 1) =
μ∑

i=1

fi
Xi − m(g)

σ (g)

(
Xi − m(g)

σ (g)

)T

However, giving a large value to μ also increases the number of evaluations of the
objective function needed to reach the optimum. To reduce the value of μ while
ensuring that the matrix Ĉ(g + 1) remains positive definite, it is possible to use the
matrix Ĉ(g) obtained in the previous generation.

Rank-μ update. The designers of the method proposed that Ĉ(g + 1) should be a
weighted average of the matrices Ĉ(g) and Ĉμ(g + 1), with respective weights 1 − cμ

and cμ, where cμ ∈]0, 1] is a parameter of the method:
The matrix Ĉ(g + 1) is thereby defined by recurrence for g ≥ 1.

6 Evolutionary Algorithms 167

{
Ĉ(g + 1) = (1 − cμ)Ĉ(g) + cμĈμ(g + 1)

Ĉ(1) = I
(6.7)

The identity matrix is chosen as the initial term because it is symmetric positive
definite. By the recurrence relation, Ĉ(g + 1) is a weighted average of the matrices
Ĉμ(i) for i ∈ {1, . . . , g + 1}.

Thus μ can be much smaller than n while keeping the matrices Ĉ(g + 1) positive
definite. If cμ is chosen close to 0, the matrix Ĉ(g + 1) depends strongly on the past
and can accept small values of μ. But the evolution will be slow. If cμ is chosen close
to 1, the matrix Ĉ(g + 1) can evolve quickly, provided μ is large enough to ensure
that the matrix Ĉ remains positive definite, which ultimately increases the number
of evaluations of the objective function that are necessary.

The expression (6.7) is suitable for updating Ĉ(g), but at the cost of an excessive
number of generations, with a value of μ which needs to be chosen large enough.
To reduce the number of evaluations of the objective function needed, an additional
adaptation mechanism for Ĉ(g) has been used.

Rank-one update. This adaptation mechanism for Ĉ consists in generating in every
generation a random vector pc(g + 1) according to the distribution N (0, Ĉ). In
Sect. 6.10.1.3 we saw that δ(g + 1) = (m(g + 1) − m(g))/σ (g) has the distribu-
tion N (0, Ĉ/μf). Similarly to pσ (g + 1), we express pc(g) for g ≥ 1 as an evolution
path: {

pc(g + 1) = (1 − cc)pc(g) + √
cc(2 − cc)μf

m(g+1)−m(g)

σ (g)

pc(1) = 0
(6.8)

The expression for Ĉ(g + 1), which must be of rank n, is expressed as a weighted
average of pc(g + 1)pc(g + 1)T, which has rank 1, and of Ĉ(g), which is of rank n:

{
Ĉ(g + 1) = (1 − c1)Ĉ(g) + c1pc(g + 1)pc(g + 1)T

Ĉ(1) = I
(6.9)

Update of Ĉ. The combination of the expressions for rank-μ update (Eq. (6.7)) and
rank-one update (Eq. (6.9)) gives the complete expression for the updating of Ĉ(g),
updating for g ≥ 1:

{
Ĉ(g + 1) = (1 − c1 − cμ)Ĉ(g) + c1pcpT

c + cμ

∑μ

i=1 fiViVT
i

Ĉ(1) = I
(6.10)

where Vi = (Xi − m(g))/σ (g), and cc, c1, and cμ are parameters of the method. A
robust strategy for initialization of these parameters is presented in Sect. 6.10.2.

168 A. Petrowski and S. Ben Hamida

6.10.2 The CMA-ES Algorithm

Algorithm 6.1 implements the CMA-ES method as proposed in [30]. In every gen-
eration, λ independent (pseudo-)random solutions Xi are generated according to the
distribution N (m, σ 2Ĉ), whose parameters have been determined in the previous
generation. The μ best solutions are sorted and returned by the function Selection
(Algorithm 6.2) in the form of a matrix X with n rows and μ columns. Column i
of X gives the solution Xi. Column sorting is done so that if the objective value
Fi = F(Xi) is better than Fj = F(Xj), then i < j.

Inputs: m, σ, n // n: dimension of search space �

λ,μ, f, μf , cσ , dσ , cc, c1, cμ ← Initialization(n)
pc ← pσ ← 0
Ĉ ← B ← D ← I // I: n × n identity matrix
repeat

X, V ←Selection(λ, m, σ, B, D)
m, δ ←UpdateM(m, μ, X, f, σ)
σ, pσ ←UpdateSigma(σ, pσ , B, D, δ, cσ , dσ , μf)

Ĉ, pc ←UpdateC(Ĉ, pc, pσ , V, f, δ, cc, c1, cμ,μ,μf)

B ←EigenVectors(Ĉ)

D ←EigenValues(Ĉ)1/2

. // D: diagonal matrix of the eigenvalue root squares
until Stopping criterion satisfied

Algorithm 6.1: The CMA-ES algorithm.

for i = 1 λ do
yi ← GaussianRandomDraw(0, I) // yi has distribution N (0, I)
Vi ← BDyi // Vi has distribution N (0, Ĉ) with Ĉ = BD2BT

Xi ← m + σVi // Xi has distribution N (m, σ 2Ĉ)

Fi ← Objective(Xi) // Fi is the objective value associated to Xi

end
X, V ←Sort(X, V, F) // column sorting of Xi and Vi according to Fi
return X, V

Algorithm 6.2: Function Selection(λ, m, σ, B, D).

6 Evolutionary Algorithms 169

From X, the updates of the parameters m, σ , and Ĉ are assigned to the func-
tions UpdateM, UpdateSigma, and UpdateC (Algorithms 6.3, 6.4, and 6.5). These
functions do not require special comment: their algorithms are derived directly from
analytical expressions given in the previous section.

Let B be the matrix whose columns i are eigenvectors bi of Ĉ. Let D be the
diagonal matrix such that dii is the square root of the eigenvalue of Ĉ corresponding
to eigenvector bi. The matrices B and D are computed as, in particular, they facilitate
the independent draws of solutions X according to the distribution N (m, σ 2Ĉ).

m′ ← m
m ← ∑μ

i=1 fiXi
δ ← (m − m′)/σ
return m, δ

Algorithm 6.3: Function UpdateM(m, μ, X, f, σ).

pσ ← (1 − cσ)pσ + √
cσ (2 − cσ)μf B · D−1 · BTδ

σ ← σ exp
(

cσ

dσ

(||pσ ||
E||N (0,I)|| − 1

))
// E||N (0, I)|| ≈ √

n
(

1 − 1
4n + 1

21n2

)
return σ, pσ

Algorithm 6.4: Function UpdateSigma(σ, pσ , B, D, δ, cσ , dσ , μf).

pc ← (1 − cc)pc
if ||pσ || < 1.5

√
n then

pc ← pc + √
cc(2 − cc)μf δ

end
Ĉ ← (1 − c1 − cμ)Ĉ + c1pcpT

c + cμ

∑μ
i=1 fiViVT

i

return Ĉ, pc

Algorithm 6.5: Function UpdateC(Ĉ, pc, pσ , V, f, δ, cc, c1, cμ, μ,μf).

The setting of the algorithm parameters by the function Initialization depends a
priori on the problem to be solved. However, a default initialization, which has proven
to be robust and effective and usable for many problems, was proposed in [30]. It
is implemented by the function DefaultInitialization (Algorithm 6.6). The values
chosen for the parameters λ, μ, f = (f1, . . . , fμ), cσ , dσ , cc, c1, and cμ can be adapted
to the problem to be solve. The proposed values for λ and μ should be considered as
minimum values. Larger values improve the robustness of the algorithm, at the cost,
however, of a greater number of generations.

170 A. Petrowski and S. Ben Hamida

The initial values of m = (m1, . . . , mn) and σ depend on the problem. When
the location of the optimum is approximately known, these initial values should
be determined so that the optimum lies in the range defined by the intervals [mi −
2σ, mi + 2σ] [30] for each coordinate i ∈ {1, . . . , n}.

λ ← 4 + �3 ln n	 // �x	 is the lower integer part of x
μ ← �λ/2	
for i = 1 μ do

fi ← ln(μ+1)−ln i∑μ
j=1 ln(μ+1)−ln j

// f = (f1, . . . , fi, . . . , fμ)

end
μf ← 1/

∑μ
i=1 f 2

i

cσ ← μf +2
n+μf +3

dσ ← 1 + 2 max

(
0,

√
μf −1
n+1 − 1

)
+ cσ

cc ← 4/(n + 4)

ccov ← 2
μf (n+√

2)2 +
(

1 − 1
μf

)
min

(
1,

2μf −1
(n+2)2+μf

)
c1 ← ccov/μf
cμ ← ccov − c1
return λ,μ, f, μf , cσ , dσ , cc, c1, cμ

Algorithm 6.6: Function DefaultInitialization(n).

6.10.3 Some Simulation Results

Like all metaheuristics, the CMA-ES method is designed to solve hard optimization
problems, at least approximately, in a reasonable time. However, to be convincing, the
method must also have acceptable performance on “easier” problems, but of course
without using specific properties of them that facilitate the search for an optimum,
such as convexity or differentiability. This section aims to give an idea of the ability of
CMA-ES to discover the minimum of a set of ill-conditioned, nonseparable quadratic
functions of the form F(X) = (X − c)TH(X − c), where c is the desired optimum
and H is a symmetric positive definite matrix. The isovalue hypersurfaces of F(X)

in R
n are hyperellipsoids (Sect. 6.6.2.5).

6.10.3.1 Parameters of the Quadratic Functions

For each quadratic function F(X) = (X − c)TH(X − c) used in our experiments,
each component of the vector c was a realization of a random variable according to
a Gaussian distribution with mean 0 and standard deviation 10. H was determined
by the expression

H = (SR)T(SR)

6 Evolutionary Algorithms 171

where:

• S is a diagonal matrix that sets the condition number of H. The condition number
is the ratio κH = λmax/λmin of the largest eigenvalue to the smallest eigenvalue of
H. The diagonal elements sii of S are the square roots of the eigenvalues of H. In
the experiments, they were expressed as

sii = κ
(i−1)/(2(n−1))

H

Thus, the smallest coefficient sii was 1, and the highest one was
√

κH.
• R is a rotation matrix, defined as a product of elementary rotation matrices Rkl in the

plane defined by the axes k and l, for all k ∈ {1, . . . , n − 1} and l ∈ {k + 1, . . . , n}
(Sect. 6.6.2.5). For the experiments using nonseparable objective functions, the
angle of each elementary rotation was chosen randomly with a uniform distribution
in the interval [−π, π]. When the objective functions were chosen to be separable,
the rotation matrix R was the identity matrix.

6.10.3.2 Results

An experiment consisted in seeking on optimum with the CMA-ES algorithm for a set
of 30 target quadratic functions in R

n, where n was a given parameter. The quadratic
functions were obtained by randomly generating the vector c and/or the matrix H
as described in Sect. 6.10.3.1. The result of an experiment was a performance curve
expressing the average of the 30 values F(X0) of the objective function as a function
of the number of objective function evaluations performed. X0 was the best individual
in the population for each of the 30 objective functions. As the optimal value was 0,
F(X0) was a measure of the error made by the algorithm. The number of evaluations
of the objective functions was the product of the generation number and λ = 4 +
�3 ln n	, as specified in Algorithm 6.6. A series of experiments provided performance
curves for dimensions n = 2, 5, 10, 20, 50, and100.

The CMA-ES algorithm requires one to set the initial values of m and σ . For all
experiments, m(0) was the n-dimensional zero vector and σ(0) = 1.0.

Three series of experiments were performed: the first for nonseparable, ill-
conditioned quadratic objective functions with κH = 106, the second for separable
ill-conditioned functions with κH = 106, and the third for well-conditioned quadratic
functions with κH = 1 (“sphere functions”).

Nonseparable ill-conditioned functions. The results of this first series of experiments
are shown in Fig. 6.28. Convergence towards the optimum was obtained in all tests,
with an excellent precision of the order of 10−20. This good precision of the results is
a feature often observed for the CMA-ES method. It is due to the efficient adaptation
of both the step size σ and the covariance matrix Ĉ. The required computing power
remains moderate: the number of generations required to reach a given accuracy as
a function of the dimension n of the search space has a complexity a little more than
linear.

172 A. Petrowski and S. Ben Hamida

-20

-15

-10

-5

5

10

10 100 1000 10,000 1,00,000 10
10

10

10

10

1

10

10

6

Evaluation number of F(x) = (x – c)T H (x–c) with x Rn

M
ea

n
va

lu
e

of
 F

(x
0) n =

 2

n =
 5

n =
 10

n =
 20

n =
 50

n = 100

Fig. 6.28 Results of the first series of experiments: average values of F(X0) = (X0-c)TH(X0-c)
as a function of the evaluation number for 30 nonseparable, ill-conditioned objective functions for
dimensions 2, 5, 10, 20, 50, and 100

Separable ill-conditioned functions. In this case, the rotation matrix R was the iden-
tity matrix. Thus, H = S2. The curves obtained for this series of experiments were
indistinguishable from those obtained for the previous series (Fig. 6.28) on nonsepa-
rable functions. The adaptation of the matrix Ĉ performed in the CMA-ES approach
was thus very effective.

Well-conditioned functions. In this series of experiments, the matrix H was chosen
to be proportional to the identity matrix: H = 100 I. Thus, κH = 1. The coefficient
100 was chosen so that F(X0) in the first generation would be of the same order of
magnitude as for in the previous series. Note that when H ∝ I, objective functions
are separable. The results of this series of experiments are shown in Fig. 6.29. This
time, unlike the “ill-conditioned” case, the number of evaluations of F(X) required
to reach a given accuracy as a function of the dimension n of the search space has a
complexity a little less than linear.

Compared with the previous two series of experiments, we note that the number
of evaluations required to obtain a given accuracy requires less computing power
when the quadratic function is well-conditioned. Thus, for dimension 100, 460 000
evaluations of F(X) were needed to reach an accuracy of 10−10 in the ill-conditioned
case with κH = 106, while the well-conditioned “sphere” functions required only
20 000 evaluations to reach the same accuracy, i.e., 23 times less time.

6 Evolutionary Algorithms 173

-20

-15

-10

-5

5

10

10 100 1000 10,000 1,00,000 6

M
ea

n
va

lu
e

of
 F

(x
0)

Evaluation number of F(x) = (x–c)T H (x– c) with x Rn

n =
 2

n = 5
n = 10
n = 20
n = 50
n = 100

10

10

10

10

1

10

10

10

Fig. 6.29 Results of the third series of experiments, in which the objective functions were well-
conditioned: κH = 1

6.11 Conclusion

This chapter has presented a set of principles and algorithmic techniques to imple-
ment the various operators involved in an evolutionary algorithm. Like building
blocks, they can be chosen, configured, and assembled according to the flowchart of
the generic evolutionary algorithm (see Fig. 6.1) in order to solve a given problem
as efficiently as possible. Obviously, specific choices of operators can reconstitute
a genetic algorithm, an evolution strategy, or an evolutionary programming method
such as that designed by the pioneers of evolutionary computation in 1960–70. How-
ever, the references to these original models, which have merged today into one
unifying paradigm, should not disturb the engineer or the researcher when they are
making their choices. Engineers and researchers should instead focus on key issues
such as the choice of a good representation, a fitness function suitable for the prob-
lem to be solved and, finally, the formulation of efficient variation operators for the
chosen representation.

The solution of real-world problems, which are typically multicriteria problems,
must satisfy constraints and, too often, cannot be completely formalized, requires the
implementation of additional mechanisms in evolutionary algorithms. These aspects
are treated in Chaps. 11 and 12 of this book.

http://dx.doi.org/10.1007/978-3-319-45403-0_11
http://dx.doi.org/10.1007/978-3-319-45403-0_12

174 A. Petrowski and S. Ben Hamida

6.12 Glossary

allele: in the framework of genetic algorithms, a variant of a
gene, i.e., the value of a symbol in a specified position of
the genotype.

chromosome: in the framework of genetic algorithms, synonymous with
“genotype.”

crossover: combination of two individuals to form one or two new
individuals.

fitness function: a function giving the value of an individual.
generation: iteration of the basic loop of an evolutionary algorithm.
gene: in the framework of genetic algorithms, an element of a

genotype, i.e., one of the symbols in a symbol string.
genotype: in the framework of genetic algorithms, a symbol string

that generates a phenotype during a decoding phase.
individual: an instance of a solution for a problem being dealt with

by an evolutionary algorithm.
locus: in the framework of genetic algorithms, the position of a

gene in the genotype, i.e., the position of a symbol in a
symbol string.

mutation: random modification of an individual.
phenotype: in the framework of genetic algorithms, an instance of

a solution for the problem being dealt with, expressed
in its natural representation obtained after decoding the
genotype.

population: the set of individuals that evolve simultaneously under
the action of an evolutionary algorithm.

recombination: synonymous with “crossover.”
replacement operator: this determines which individuals of a population will be

replaced by offspring. It thus makes it possible to create
a new population for the next generation.

search operator: synonymous with “variation operator.”
selection operator: this determines how many times a “parent” individual

generates “offspring” individuals.
variation operator: an operator that modifies the structure or parameters of an

individual, such as the crossover and mutation operators.

6 Evolutionary Algorithms 175

6.13 Annotated Bibliography

References [5, 6] An “encyclopedia” of evolutionary computation to which, as
it should be, the most recognized specialists in this field have
contributed. The vision offered by these two volumes is pri-
marily algorithmic.

Reference [20] A relatively recent reference book (reissued in 2010) dedi-
cated to evolutionary computation. It particularly addresses
the important issue of control of the parameter values for the
different operators of an evolutionary algorithm. Some theo-
retical approaches in the field are also discussed.

Reference [26] The first and the most famous book in the world about genetic
algorithms. It was published in 1989, and has not been revised
since then. As a result, a large part of the current knowledge
about genetic algorithms, a field that is evolving very quickly,
is not in this book.

References [35, 36] Two reference books written by the well-known pioneer of
genetic programming. The first volume presents the basic
concepts of the genetic programming as viewed by Koza.
The second volume introduces the concept of “automatically
defined functions.” The largest portion of these books, which
comprise more than seven hundred pages in each volume,
is devoted to the description of examples of applications in
a large variety of domains. These are useful for helping the
reader to realize the potential of genetic programming. There
is also a third volume, published in 1999, which contains a
significant part dedicated to the automated synthesis of analog
electronic circuits.

References

1. Abdelmalek, W., Ben Hamida, S., Abid, F.: Selecting the best forecasting-implied volatility
model using genetic programming. Journal of Applied Mathematics and Decision Sciences
2009 (2009). Article ID 179230

2. Abid, F., Abdelmalek, W., Ben Hamida, S.: Dynamic hedging using generated genetic program-
ming implied volatility models. In: S. Ventura (ed.) Genetic Programming: New Approaches
and Successful Applications, Chap. 7, pp. 141–172. InTech (2012). doi:10.5772/48148

3. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer (1987)
4. Angeline, P.J.: Two self-adaptive crossover operators for genetic programming. In: P.J. Ange-

line, K.E. Kinnear, Jr. (eds.) Advances in Genetic Programming 2, Chap. 5, pp. 89–110. MIT
Press (1996)

5. Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing (2000)

6. Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 2: Advanced Algorithms
and Operators. Institute of Physics Publishing (2000)

http://dx.doi.org/10.5772/48148

176 A. Petrowski and S. Ben Hamida

7. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: J.J. Grefenstette (ed.)
Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 14–21 (1987)

8. Beyer, H., Schwefel, H.: Evolution strategies—a comprehensive introduction. Natural Com-
puting 1 (1), 3–52 (2002)

9. Beyer, H.G.: The Theory of Evolution Strategies, Natural Computing Series. Springer (2001)
10. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political

Economy 81 (3), 637–654 (1973)
11. Cai, W., Pacheco-Vega, A., Sen, M., Yang, K.T.: Heat transfer correlations by symbolic regres-

sion. International Journal of Heat and Mass Transfer 49 (23–24), 4352–4359 (2006). doi:10.
1016/j.ijheatmasstransfer.2006.04.029

12. Chen, Y., Mabu, S., Shimada, K., Hirasawa, K.: A genetic network programming with learning
approach for enhanced stock trading model. Expert Systems with Applications 36(10), 12,537–
12,546 (2009). doi:10.1016/j.eswa.2009.05.054

13. Cheung, C., Valdes, J.J., Li, M.: Use of evolutionary computation techniques for exploration
and prediction of helicopter loads. In: X. Li (ed.) Proceedings of the 2012 IEEE Congress
on Evolutionary Computation, pp. 1130–1137. Brisbane, Australia (2012). doi:10.1109/CEC.
2012.6252905

14. Chidambaran, N.K., Triqueros, J., Lee, C.W.J.: Option pricing via genetic programming. In:
S.H. Chen (ed.) Evolutionary Computation in Economics and Finance. Studies in Fuzziness
and Soft Computing, vol. 100, Chap. 20, pp. 383–398. Physica Verlag (2002)

15. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: In
J. J. Grefenstette (ed.) Proceedings of the 1st International Conference on Genetic Algorithms,
pp. 183–187 (1985)

16. Darwin, C.: On The Origin of Species by Means of Natural Selection or the Preservation of
Favored Races in the Struggle for Life. Murray, London (1859)

17. Davis, L.: Handbook of Genetic Algorithms, p. 80. Van Nostrand Reinhold (1991)
18. De Jong, K.A., Sarma, J.: Generation gaps revisited. In: L.D. Whitley (ed.) Foundations of

Genetic Algorithms 2, pp. 19–28. Morgan Kaufmann (1993)
19. De La Maza, M., Tidor, B.: An analysis of selection procedures with particular attention paid to

proportional and Boltzmann selection. In: S. Forrest (ed.) Proceedings of the 5th International
Conference on Genetic Algorithms, pp. 124–131. Morgan Kaufmann (1993)

20. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer (2003).
21. Eiben, A.E., van Kemenade, C.H.M., Kok, J.N.: Orgy in the computer: Multi-parent reproduc-

tion in genetic algorithms. In: F. Moran, A. Moreno, J. Merelo, P. Chacon (eds.) Proceedings
of the 3rd European Conference on Artificial Life. Lecture Notes in Artificial Intelligence, vol.
929, pp. 934–945. Springer (1995)

22. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: L.D.
Whitley (ed.), pp. 187–202. Morgan Kaufmann (1992)

23. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artifical Intelligence through Simulated Evolution. Wiley
(1966)

24. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Dis-
crete Applied Mathematics 42(2–3), 177–201 (1993)

25. Garcia, B., Aler, R., Ledezma, A., Sanchis, A.: Protein–protein functional association prediction
using genetic programming. In: M. Keijzer, G. Antoniol, C.B. Congdon, K. Deb, B. Doerr,
N. Hansen, J.H. Holmes, G.S. Hornby, D. Howard, J. Kennedy, S. Kumar, F.G. Lobo, J.F.
Miller, J. Moore, F. Neumann, M. Pelikan, J. Pollack, K. Sastry, K. Stanley, A. Stoica, E.G.
Talbi, I. Wegener (eds.) GECCO’08: Proceedings of the 10th Annual Conference on Genetic and
Evolutionary Computation, pp. 347–348. ACM, Atlanta, GA (2008). doi:10.1145/1389095.
1389156

26. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley (1989)

27. Goldberg, D.E., Deb, K.: A comparison of selection schemes used in genetic algorithms. In:
G. Rawlins (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1991)

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.04.029
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.04.029
http://dx.doi.org/10.1016/j.eswa.2009.05.054
http://dx.doi.org/10.1109/CEC.2012.6252905
http://dx.doi.org/10.1109/CEC.2012.6252905
http://dx.doi.org/10.1145/1389095.1389156
http://dx.doi.org/10.1145/1389095.1389156

6 Evolutionary Algorithms 177

28. Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for symbolic
regression. In: D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Green-
wood, T.K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J.J.M. Guervos,
E. Eberbach, B. McKay, A. Channon, A. Tiwari, L.G. Volkert, D. Ashlock, M. Schoenauer
(eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 912–
919. IEEE Press (2005). doi:10.1109/CEC.2005.1554780

29. Hamida, S.B., Abdelmalek, W., Abid, F.: Applying dynamic training-subset selection meth-
ods using genetic programming for forecasting implied volatility. Computational Intelligence
(2014). doi:10.1111/coin.12057

30. Hansen, N.: The CMA evolution strategy: A comparing review. In: J. Lozano, P. Larraaga,
I. Inza, E. Bengoetxea (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness
and Soft Computing, vol. 192, pp. 75–102. Springer (2006). doi:10.1007/3-540-32494-1_4

31. Hartl, D.L., Clark, A.G.: Principles of Population Genetics, 4th edition. Sinauer Associates
(2006)

32. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edition. MIT Press (1992)
33. Kaboudan, M.A.: Genetic programming prediction of stock prices. Computational Economics

16(3), 207–236 (2000). doi:10.1023/A:1008768404046
34. Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable Machines 5(3),

259–269 (2004). doi:10.1023/B:GENP.0000030195.77571.f9
35. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press (1992)
36. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press

(1994)
37. Langdon, W.: Size fair and homologous tree crossovers for tree genetic programming. Genetic

Programming and Evolvable Machines 1(1–2), 95–119 (2000). doi:10.1023/A:1010024515191
38. Lew, T.L., Spencer, A.B., Scarpa, F., Worden, K., Rutherford, A., Hemez, F.: Identification of

response surface models using genetic programming. Mechanical Systems and Signal Process-
ing 20(8), 1819–1831 (2006). doi:10.1016/j.ymssp.2005.12.003

39. Mathias, K., Whitley, D.: Genetic operators, the fitness landscape and the traveling salesman
problem. In: R. Manner, B. Manderick (eds.) Parallel Problem Solving from Nature, 2, pp.
221–230. Elsevier Science (1992)

40. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, revised 3rd
edition. Springer (1996)

41. Nomura, T., Shimohara, K.: An analysis of two-parent recombinations for real-valued chro-
mosomes in an infinite population. Evolutionary Computation 9(3), 283–308 (2001)

42. Nordin, P.: A compiling genetic programming system that directly manipulates the machine
code. In: K.E. Kinnear, Jr. (ed.) Advances in Genetic Programming, Chap. 14, pp. 311–331.
MIT Press (1994)

43. Oakley, H.: Two scientific applications of genetic programming: Stack filters and non-linear
equation fitting to chaotic data. In: K.E. Kinnear, Jr. (ed.) Advances in Genetic Programming,
Chap. 17, pp. 369–389. MIT Press (1994)

44. Radcliffe, N.: Genetic neural networks on MIMD computers. Ph.D. thesis, University of Edin-
burgh (1990)

45. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Estab-
lishment Library Translation (1965)

46. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

47. Rogers, A., Prügel-Bennett, A.: Genetic drift in genetic algorithm selection schemes. IEEE
Transactions on Evolutionary Computation 3(4), 298–303 (1999)

48. Rudolph, G.: On correlated mutations in evolution strategies. In: R. Manner, B. Manderick
(eds.) Parallel Problem Solving from Nature, pp. 105–114. Elsevier (1992)

49. Ryan, C., Collins, J., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an
arbitrary language. In: Proceedings of the First European Workshop on Genetic Programming.
Lecture Notes in Computer Science, vol. 1391, pp. 83–95. Springer-Verlag (1998)

http://dx.doi.org/10.1109/CEC.2005.1554780
http://dx.doi.org/10.1111/coin.12057
http://dx.doi.org/10.1007/3-540-32494-1_4
http://dx.doi.org/10.1023/A:1008768404046
http://dx.doi.org/10.1023/B:GENP.0000030195.77571.f9
http://dx.doi.org/10.1023/A:1010024515191
http://dx.doi.org/10.1016/j.ymssp.2005.12.003

178 A. Petrowski and S. Ben Hamida

50. Schoenauer, M., Lamy, B., Jouve, F.: Identification of mechanical behaviour by genetic
programming. Part II: Energy formulation. Technical report, Ecole Polytechnique, 91128
Palaiseau, France (1995)

51. Schoenauer, M., Sebag, M., Jouve, F., Lamy, B., Maitournam, H.: Evolutionary identification
of macro-mechanical models. In: P.J. Angeline, K.E. Kinnear, Jr. (eds.) Advances in Genetic
Programming 2, Chap. 23, pp. 467–488. MIT Press (1996)

52. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley (1981)
53. Stadler, P.F.: Fitness landscapes. In: M. Lässig, A. Valleriani (eds.) Biological Evolution and

Statistical Physics, pp. 183–204. Springer (2002)
54. Teller, A., Veloso, M.M.: PADO: Learning tree structured algorithms for orchestration into an

object recognition system. Technical Report CMU-CS-95-101, Carnegie-Mellon University,
Pittsburgh, PA (1995)

55. Wasiewicz, P., Mulawka, J.J.: Molecular genetic programming. Soft Computing—A Fusion of
Foundations, Methodologies and Applications 2(5), 106–113 (2001)

56. Wright, S.: The roles of mutation, inbreeding, crossbreeeding and selection in evolution. In:
D.F. Jones (ed.) Proceedings of the Sixth International Congress on Genetics, pp. 356–366
(1932)

Chapter 7
Artificial Ants

Nicolas Monmarché

7.1 Introduction

Ants are social insects with physical and behavioral skills that are still fascinating
to human beings (Greek mythology mentioned them!). This fascination is often
justified by biological studies and observations: the activity of ants is undoubtedly
observable, such as in the huge nests (anthills) that they build, their battles, and their
various diets (their “agriculture” when growing fungi, for instance). As was pointed
out by Luc Passera [20], our liking for anthropomorphic interpretations leads us to
have a globally positive perception of ants, particularly of their activity, which we
guess to be ceaseless. But, sometimes, appearances can be misleading: in a colony,
in particular in those which are populous, a rather small fraction of the ants actually
work. However, thanks to our positive perception of ants and the fact that everyone
has been able to recognize an ant since their childhood, this allows us to easily employ
the ant metaphor to solve combinatorial problems!

Studies conducted by biologists during the 1980s, more precisely those done by
Jean-Louis Deneubourg and colleagues [6, 12], have introduced an “algorithmic”
way of thinking about the behavior of ants. This new point of view has led to a
new formalism for proposed behavioral models, and this has become accessible to
computer simulation. At the same time, computers are starting to be intensively used
to explore complex systems and, consequently, it is now possible to study ants in
silico for their ability to link their nest to various food sources. For instance, in [16],
the inherent parallelism of the distributed decisions of ants was studied, but this was
not yet a question of optimization.

N. Monmarché (B)
Laboratoire d’Informatique (EA6300), Université François Rabelais Tours,
64 Avenue Jean Portalis, 37200 Tours, France
e-mail: nicolas.monmarche@univ-tours.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_7

179

180 N. Monmarché

The link between optimization and simulation of the behavior of ants was made
at the beginning of the 1990s [5].1 From this, numerous studies of combinatorial
optimization based on the exploitation of a food source by ants followed. The goal
of this chapter is to give an outline of these studies and to understand precisely the
underlying mechanisms used in this kind of bioinspired metaheuristics.

Before tackling optimization considerations, we start with more details about the
behavior and characteristics of ants.

7.2 The Collective Intelligence of Ants

7.2.1 Some Striking Facts

The most ancient known ants are more than 100 million years old, and about 12 000
ant species are known at present [20]. This small number of species is a source of
astonishment when compared with the millions of known insect species. However,
this apparent evolutionary underperformance has to be set against the huge number
of ants that we can find in many ecosystems. The total weight of ants on Earth is
probably of the same order of magnitude as the total weight of human beings, and
listening biologists (of course they are also myrmecologists) say “the ants represent
the greatest ecological success on Earth” [20].

Ants can be found in almost every terrestrial ecosystem and, of course, are subject
to the same constraints as other living species: finding food and a place to live, defend-
ing themselves, and reproducing. The striking fact with ants is that they respond to all
these needs through collective behavior. It is noticeable that all ants live in societies,
and this is the main explanation for their ecological success. The collective aspect of
their activities can be observed in the division of labor (building the nest, and brood
care), information sharing (searching for food, and alerts when attacked) and, what
is most fascinating, the fact that the reproductive task is performed by only a few
individuals in the colony (most ants in the nest are sterile).

We could spend a lot of time describing the behaviors of ants that can be related
to an optimization perspective. For instance, the task regulation performed by ants,
i.e., their ability to distribute work without any central supervision, represents an
adaptation mechanism to fluctuations in their environment. This can be considered
as a distributed problem (several tasks need to be performed at the same time but
in different places) which is also dynamic (because needs can evolve with time).
However, in this chapter, we will focus on information sharing by ants, i.e., their
communication skills, and that already represents a wide topic.

1This paper is linked to Marco Dorigo’s Ph.D. thesis [7].

7 Artificial Ants 181

7.2.2 The Chemical Communication of Ants

The most prominent way that ants have of communicating, without exception, is
their ability to employ chemical substances, which are called pheromones. These
pheromones are a mix of hydrocarbons secreted by the ants, which are able to lay
down these substances on their path and this constitutes an appealing trail for other
ants. Pheromones, depending on their composition, have the property of evaporating
over time. Thus, a trail which is not reinforced with new deposits disappear.

Pheromones are used on various occasions and by various species. For instance,
when an alert message is given, pheromones allow the recruitment of large numbers
of ants to defend the nest. Ants use pheromones not only because they can synthesize
thembut also because they can perceive those substances: their antennae are detectors
with a sensitivity beyond the reach of our electronic sensors. Even though ants do
not use a nose to sense pheromones, the volatile nature of these chemical substances
leads us to say that ants can smell the pheromones they produce. These “odors” are
so important that they represent the most prominent way in which ants deal with their
identity, i.e., the individual and colonial identity of each ant is linked to its ability to
synthesize, share, and smell this chemical mix spread over their cuticle.

The particular example that we are studying in this chapter concerns the form of
communication of ants that permits them to set up a mass recruitment. Here, “mass”
means that a large number of individuals are involved in exploiting a food source.
Basically, exploiting a food source consists, for ants, in getting out of the nest and
moving in an environment that is changing, if not dangerous, to reach the location
of the food source. Because of the variety of possible ant diets, the description of
what can be a food source is beyond the scope of this chapter. The important point
to consider is that an ant can capture a small quantity of food. Then the ant brings
this food back to the nest in order to feed the (often) large population which does not
go outside the nest. A mass recruitment is observed when ants lay pheromones on
their way back to the nest. This trail is then perceived by ants which are leaving the
nest, and these ants are oriented towards the food source. Then, by a reinforcement
mechanism linked to the number of ants looking for food, the greater this number
ants looking for food, the more they will be back laying pheromones and the more
attractive the trail will be, and so on. We can understand that whenever the colony
can send new workers to capture food, the indirect communication of ants can lead
to a very efficient method of food gathering.

When the food source disappears (because it has been exhausted or the environ-
ment has changed), ants which fail to find food do not reinforce the trail on their
way back. After a while, the depleted source and the path to it are abandoned, and
another, more attractive source is probably used instead.

The mass recruitment of ants just described can be considered as an interesting
model of logistic optimization. However, we can also observe subtle effects in the
path built by the ants: we can observe that ants are able to optimize the trajectory
between the nest and the food source. This optimization can take place twoways: first,
the trajectories that minimize the total distance are most often favored, and second,
if an obstacle falls onto the path and modifies it, a shortcut will quickly be found.

182 N. Monmarché

Fig. 7.1 Experimental setup
with two bridges between the
nest and the food source. In
this experiment, one of the
two paths is clearly more
interesting according to the
total distance that the ants
have to travel

(a)

(d)

(b)

(c)

Nest Food

This last capability of ants is related to the ability to solve a dynamic problem. In the
remainder of this chapter, however, wewill assume that the environmental conditions
are not modified (the problem is static).

The conditions that allow ants to find the best path have been studied in the
laboratory by Goss et al. [11], by use of an experimental setup with two bridges
connecting, without alternative paths, the nest to the food source provided to the
ants. Figure7.1 shows schematically the experiment, in which it has been observed
that in the great majority of cases, the ants are able to find the shortest way, that
is the path (a)–(d)–(b), and are absent from the path (a)–(c)–(b). This behavior can
be explained by the fact that ants which choose the path through (d) reach the food
quickly. One can make the hypothesis that the ants all move at the same speed and
they always deposit pheromones. At the beginning of the process, ants which are
leaving the nest reach point (a) and do not have any information to decide the best
direction to choose. So, around one half of the flow of ants chooses (d) and the
other half chooses (c). Those which have chosen the shorter path (without knowing
it: we recall that ants are considered here as blind) reach the point (b) earlier and,
consequently, they get food earlier to bring back to the nest. Then, on their way back,
they reach the point (b) and, again, they have to choose between two options. As they
lay down pheromones regularly, it is possible that a small difference, in concentration
is amplified by the number of ants.

In this experiment, we find all the ingredients of a self-organized system

• a positive reinforcement mechanism: pheromones are attractive to ants which, in
turn, lay down pheromones (we speak of an auto-catalytic behavior, i.e., one which
reinforces itself);

• a negative feedbackmechanism: pheromones evaporate, which limits the phenom-
enon and allows a loss of memory or even an exit from a stable state;

• random behavior that causes fluctuations in the states of the system;
• a multiplicity of interactions: the ants are numerous.

7 Artificial Ants 183

A collective intelligence is then observed when spatial or temporal structures emerge
or appear owing to numerous repeated interactions, direct or indirect, between indi-
viduals belonging to the same colony or group. Here, we observe the emergence of
a path used by a majority of the ants.

It is obviously the indirect communication mechanism of pheromones that leads
to the optimization phenomenon. Ant are then able to find the best path, and this can
be translated into combinatorial optimization.

7.3 Modeling the Behavior of Ants

The behavioral analysis work described above can be translated into a behavioral
model which does necessarily not mimic the reality of what might be occurring in
the heads of the ants. But this model can be used to reconstruct the optimization
process with a minimum number of simple rules.

7.3.1 Defining an Artificial Ant

Before modeling the behavior of ants, let us pay attention to the model of one ant,
called an “artificial ant” in the following. We use the definition given in the intro-
duction of [17]:

An artificial ant is an object, virtual or real (for example a software agent or a robot), or
symbolic (as a point in a search space) that has a link, a similarity (i.e., a behavior, a common
feature) with a real ant.

This definition is sufficiently general to cover various models of ants. The important
point is that an artificial ant should not be limited to a system able to mimic food
source exploitation behavior.

7.3.2 Ants on a Graph

In order to describe precisely the ant’s behavior in the environment we are consid-
ering, i.e., the double-bridge experiment, this environment is modeled by a graph
(Fig. 7.2).

The behavioral model can be described as follows:

• Ants leave the node labeled “nest” and choose one of the two possible paths.
• The choice of the edge representing the path is influenced by pheromones on the
two edges: the ant has a higher probability of choosing the edge with the higher
level of pheromones.

184 N. Monmarché

Fig. 7.2 A double bridge
modeled by a graph Nest Food

• Pheromones can bemodeled by real values, which can be considered as pheromone
concentrations on the edges considered.

• The ant goes along the chosen edge while depositing pheromones at each step
along its way.

• Once the food has been reached, the ant returns to the nest and chooses its path
with the same strategy as it used before.

• The pheromones continuously evaporate: the real value that represents the
pheromone concentration decreases.

The bridge example is of course very small (with only two nodes!), but we can
imagine the same movement mechanism on a bigger graph (Fig. 7.3). As several ants
could run in this graph, one can observe that paths with more pheromones could
appear, and so those paths would be used more and more by ants to reach the food
(Fig. 7.4).

Fig. 7.3 Modeling of
possible paths for one ant by
a graph

Nest Food

Fig. 7.4 Ants move on the
graph while they deposit
pheromones on the edges
(the thickness of the lines is
used to represent the
pheromone concentration on
the edge). The higher the
concentration, the more ants
are attracted by the edge

Nest Food

7 Artificial Ants 185

The mechanism that we have just described will now be translated into a meta-
heuristic for a combinatorial optimization.

7.4 Combinatorial Optimization with Ants

The graph structure introduced in the previous section will now be developed. More
precisely, as was done in the initial research work, we shall use a combinatorial
problem as an example which also uses a graph structure, and more precise ant
mechanisms will be introduced. This problem is referred to as the traveling salesman
problem (TSP), and we start this section with a short description of the problem.
Then, the main ant-based algorithms that have been applied to the TSP are detailed.

7.4.1 The Traveling Salesman Problem

The ants’ moves between their nest and the food source, and their return moves
between the food and the nest are similar to the construction of a cycle in a graph. If
we add the constraint that every node must be visited once and only once, then the
work of each ant is similar to the construction of a Hamiltonian cycle. If we consider
the goal of minimizing the total path length, then the construction of Hamiltonian
cycle of minimum length is similar to a very classical combinatorial optimization
problem, namely, the TSP. In this problem, the nodes are cities, the edges are roads
between the cities, and the goal is to find the path of minimum length for a salesman
who needs to visit every city and return home at the end of his journey (i.e., his
starting node). Figure7.5 recalls the formalism of the TSP and how the cost of one
solution is calculated.

Fig. 7.5 TSP formalism

186 N. Monmarché

Fig. 7.6 Graph in which a
solution, i.e., a permutation
of nodes, or a cycle, is
represented. Here the
solution is
(1, 2, 8, 5, 10, 7, 9, 4, 3, 6)

As an example, Fig. 7.6 represents the same graph as seen previously in which a
particular solution is highlighted. We see that the ideas of “nest” and “food” can be
eliminated because the starting and return nodes are not important.

The interesting property of this problem is that it is easy to explain but it becomes
difficult to solve as the number of cities increases: a full enumeration of all possi-
ble solutions would require one to generate and evaluate (n − 1)!/2 permutations.
Figure7.7 shows an example with 198 cities, where one can observe a nonuniform
distribution of cities.

We remark that the problemmay be asymmetric: the edges can be oriented and the
distances may not necessarily be the same in one direction and the return direction.
This new constraint does not change the behavior of the ants, however, since they
are forced to move on the edges in the correct direction.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

d198

Fig. 7.7 Example of a Euclidean TSP instance with 198 cities (d198)

7 Artificial Ants 187

7.4.2 The ACO Metaheuristic

In this section, we present several algorithms inspired by ant behavior to find a
solution to the TSP. The analogy between searching for a cycle of minimum length
and ants optimizing their trajectory between the nest and food is immediate. These
algorithms share the same inspiration and are gathered together under the acronym
ACO, for “ant colony optimization.”

7.4.2.1 Ant System Algorithm

We present the ant system (AS) algorithm, which was the first to be proposed to solve
a combinatorial optimization problemwith artificial ants [5, 9]. This algorithm is not
the best one in this category, but it is convenient for introducing the main principles
found in several ant-based algorithms which make use of digital pheromones.

In comparison with the ant model described previously, several changes have
been made, either for algorithmic reasons or because of the need to build solutions
efficiently:

• The nodes that have been passed through are memorized: the ants must memorize
the partial path already followed in order to avoid nodes that have already been
visited. This memory is not necessary in the original model because when the ants
leave the nest, they are looking for the food, and when they have found the food
they try to reach the nest.

• Pheromones are deposited after the construction of a complete solution: unlike
real ants, which deposit pheromones continuously and independently of the total
length of the path, the artificial ants deposit more pheromones on a short path.

• The speed of the artificial ants is not constant: ants move from one node to the next
in one unit of time, independently of the length of the edge between the two nodes.
This point is easier to implement in the simulation of the ants’ moves because, in
a synchronous mode where every ant is considered in each iteration, every ant is
moved. To compensate for this synchronous simulation, the reinforcement of the
path is then proportional to the quality of the solution. The “move duration” is
reintroduced into the algorithm in this way.

• The artificial ants are not totally blind: relatively quickly, it became obvious that
totally blind ants took a lot of time to find interesting solutions. The notion of
visibility was introduced to take account of distance between nodes. Then, in
addition to the effect of pheromones, the choices of the ants are also influenced
by the distance between two consecutive nodes. This means that artificial ants are
not as blind as the initial model suggested.

Building a solution. Each ant builds a solution incrementally, i.e., a permutation of
the n nodes (or towns). The starting node is chosen randomly because it does not
have a particular role, since a solution is a cycle in the graph. In the example in
Fig. 7.8, the ant has already built a partial path and is about to choose between nodes
4, 6, and 10.

188 N. Monmarché

Fig. 7.8 Graph on which a
partial solution built by one
ant has been drawn:
(1, 2, 8, 5). The ant is
located on node 5 and can
choose between nodes 4, 6,
and 10. Nodes 1 and 8
cannot be considered
because they belong to the
partial solution already built

We may notice that the example shown in Fig. 7.8 is a case in which the building
of the cycle can lead to a dead end. If the ant chooses node 4 or 6, it will not be able
to finish the complete cycle without passing through a node that has already been
visited. The problem arises because this example has deliberately been chosen to be
simple so that it would be readable and, consequently, it contains a small number
of edges. In practice, ant algorithms have been experimented with on graphs which
are complete, i.e., in which every node is connected to every other one by one direct
edge. This property avoids the problem encountered in our example. If the problem
requires that the solution does not contain particular edges, then to avoid incomplete
graphs, it is possible to keep these edges but to give them high values of distance.
Any ants which chose these penalized edges would build a very bad solution.

From a practical point of view, with each edge (i, j) we associate a quantity
of pheromone τi j , and we define the probability that ant k, located on node/city i ,
chooses node/city j as

pk
i j (t) = τi j (t)α × η

β

i j∑
�∈N k

i

τi�(t)
α × η

β

i�

(7.2)

where

• ηi j represents the visibility of the ant;
• α and β are two parameters which are used to tune the relative influence of
pheromones and visibility;

• N k
i is the set of cities which have not yet been visited by ant k (i.e., its memory)

when the ant is located on node/city i .

The numerator contains the product of the quantity of pheromones τi j with the
visibility ηi j , and hence takes these two kind of information into account in the
choice of the ant’s moves. In the case of the TSP, the visibility can be estimated using
the length of the edge (i, j): ηi j = 1/di j . The denominator is used to normalize the
probabilities so that

∑
j∈N k

i
pk

i j (t) = 1.

Updating the pheromones.At the endof the buildingof one cycle, each ant k deposits a
quantity�k

i j of pheromone on all the edges (i, j) that belong to its path. This quantity

7 Artificial Ants 189

is proportional to the quality of the solution built by the ant (and, consequently,
inversely proportional to the length of the complete tour built by the ant)

�k
i j =

{
1/Lk if (i, j) ∈ T k

0 otherwise
(7.3)

where T k is the cycle (also called a tour) built by the ant k, and Lk is its length.
The quantity of pheromone on each edge (i, j) is then updated

τi j (t + 1) ← (1 − ρ)τi j (t) +
m∑

k=1

�k
i j (7.4)

where ρ ∈ [0, 1] is a parameter for the evaporation rate and m is the number of ants.

Complete algorithm. The framework of the algorithm is given in Algorithm 7.1.

Initialization of pheromones (τi j)1≤i, j≤n
for t ← 1 to tmax do

foreach ant k do
Build a cycle T k(t)
Calculate the length Lk(t) of T k(t)

end
foreach edge (i, j) do

Update pheromones τi j (t) with formula (7.4)
end

end
return the best found solution

Algorithm 7.1: Ant system (AS) algorithm.

We have deliberately simplified the presentation of the algorithm to emphasize
its structure. Here are, more precisely, the details of its implementation:

• The pheromone values are stored in a matrix because, in the general case, we
consider a complete graph. The initialization of the pheromones consists in influ-
encing the behavior of the ants as little as possible, at least in the first few iterations.
Then, the pheromones values are used as a collective memory for each ant when
its solution, is being built iteratively.

• The number of iterations is fixed by the parameter tmax. Of course, as is done in
several stochastic population-based metaheuristics for optimization, the stopping
criterion for the main generational loop can be improved. For instance, the number
of iterations can be linked to a performance measure of the results obtained by
the algorithm: the algorithm is stopped when the optimization process does not
progress anymore.

• The building of one solution by an ant, i.e., in the case of the TSP, the building
of one cycle, is done node by node using formula (7.2). The algorithm presented

190 N. Monmarché

Table 7.1 Parameters and corresponding standard values for the ant system algorithm.C represents
an estimate of the cost of one solution and n is the number of nodes in the graph (i.e., more or less
the size of the problem)

Symbol Parameter Values

α Influence of pheromones 1

β Influence of visibility [2; 5]
ρ Evaporation rate 0, 5

τ0 Initial pheromone value m/C

m Number of ants n

here does not explain the details of this building process, but the ant’s work can
be either synchronous or asynchronous with respect of the activity of other ants.
In the synchronous case, each ant takes one step from one node to the next one,
ant after ant. In the asynchronous case, each ant builds its cycle independently of
the work of other ants.

• The cost of one solution, i.e., the length of the cycle, can be calculated from
formula (7.1). Of course, as the goal is to find the shortest tour, the algorithm has
to keep in memory the best solution, not only its cost.

• The pheromone update process consists in keeping and sharing information that
is useful for optimizing the length of the cycle built by the ants. This collective
memory is updated using formulas (7.3) and (7.4).

Choosing the parameters. As with every metaheuristic, the choice of the values of
the parameters of the method is crucial. Intervals of possible valid values are often
obtained after several experiments. For the AS algorithm applied to the TSP, the
standard values are given in Table7.1.

We can notice that the values linked to the size of the problem n are easier to fix.
The initial pheromone value makes use of the value of C , which corresponds to the
cost of one solution obtained by a greedy-like heuristic.

The AS algorithm has been a starting point for several improvements. We will
now present the main ones.

7.4.2.2 Max–Min Ant System

Themax–min ant system (MMAS) [21] has introduced several improvementswhich
have been adopted in other algorithms.

First, pheromone values are bounded so that τi j ∈ [τmin, τmax] (which explains the
algorithm’s name). This allows one to control the difference between preferred edges,
i.e., those which belong to the best solutions found, and less-visited ones. Without
any limits on the pheromone values, the pheromone value of neglected edges can
tend to zero and, consequently, the probability of choosing those edges also tends to
zero for every ant. Finally, edges that are neglected at one moment during the search

7 Artificial Ants 191

process have the risk of never being visited anymore. This is particularly unwelcome,
because this prevents the algorithm from getting out of local minima. The Values of
τmin and τmax guarantee that all edges can be reached by the ants. The tuning of τmin

and τmax can evolve during the iterations of the algorithm. For instance, τmax can be
based on the best solution found so far.

Next, the pheromone update is based on an elitist technique. This mechanism
allows the acceleration of the algorithm’s convergence. The formula (7.4) is simpli-
fied to

τi j (t + 1) ← (1 − ρ)τi j (t) + �+
i j (7.5)

because only the best ant lays down pheromones: �+
i j = 1/L+ if (i, j) belongs to

the path built by the best ant. The best ant since the first iteration of the algorithm or
the best ant among all the ants in the current iteration can be used.

Finally, all the pheromone values are initialized to the value τmax, and, in the case
of stagnation of the search process, the pheromone values are initialized again to this
value to restart the exploration of the whole search space.

Table7.2 gives the main values used for the parameters.
TheMMASalgorithmhas beenwidely developed, for instance by adding various

reinforcement strategies and by adapting it to tackle various problems. Its main point
of interest is its precise use of pheromone values and the way in which they evolve
and influence future iterations of the algorithm more precisely than in what has been
done before.

7.4.2.3 ASrank

The ASrank algorithm [4] introduced a kind of contribution of the best ants to the
pheromones, which is related to the elitist selection by rank found in some other

Table 7.2 Parameters and ranges of value known to be useful for the MMAS algorithm. C
represents an estimate of the cost of one solution and n is the number of vertices in the graph
(i.e., the size of the problem). L++ is the cost of the best solution found from the beginning of the
algorithm, and a is calculated from n

√
0, 05(c − 1)/(1 − n

√
0, 05), where c is the mean number of

choices encountered by the ant in the current building step

Symbol Parameter Values

α Influence of pheromone 1

β Influence of visibility [2; 5]
ρ Evaporation rate 0, 02

τ0 Initial pheromone value 1/ρC

m Number of ants n

τmin Lower bound of pheromone values τmax/a

τmax Higher bound of pheromones values 1/ρL++

192 N. Monmarché

metaheuristics. Thus, the ants are ordered in decreasing order of the lengths Lk of
the paths obtained. The pheromone update takes into account the ranks of the σ best
solutions:

τi j ← (1 − ρ)τi j + σ

L++ +
σ−1∑
k=1

�τ k
i j (7.6)

where L++ represents the length of the best path found since the beginning of the
algorithm, and the contribution of the σ − 1 best ants in the current iteration is
calculated from

�τ k
i j =

{
(σ−k)

Lk if (i, j) ∈ T k

0 otherwise
(7.7)

This algorithm has achieved better results than those obtained with the AS algo-
rithm.

7.4.2.4 Ant Colony System

The ant colony system (ACS) was also initially proposed to solve the TSP [8]. It was
inspired by the same mechanisms as the AS algorithm, but it follows an opposite
direction regarding certain behaviors and also focuses on the goal of combinatorial
efficiency. This variant is one of the best-performing ones and, consequently, it is
often used to tackle new problems. We shall now describe the ACS algorithm, step
by step.

The ants, as in AS, build a cycle in the graph (a Hamiltonian path) iteratively, and
they take their decisions according to pheromones and visibility.

Building one solution. The rule for transitions between vertices introduces a bifurca-
tion between two complementary strategies widely used in stochastic optimization
methods: at each step in the graph, ants can use either an exploration strategy or an
exploitation strategy. Algorithm 7.2 gives details algorithm used to choose the next
city according to this exploration/exploitation principle.

We can observe that the parameter q0 ∈ [0, 1], which represents the probability of
choosing the next vertexwith an exploitation strategy, leads to the choice of the vertex
which maximizes the quantity τi� × η

β

i�. The notion of visibility is similar to that
introduced in the AS algorithm: the distance is used to obtain a value ηi j = 1/d(i, j).
In the case of exploration, the formula (7.9) is very similar to the formula used in
the previous algorithms (formula (7.2)); the only difference is that the parameter
α has disappeared. But α was always set to 1 in those algorithms, and thus this
disappearance is more a simplification.

When the number of vertices is large, particularly at the beginning of the construc-
tion of a solution, we expect that the computation time will be costly if all vertices
need to be considered (which is the case when the graph is complete). This time can

7 Artificial Ants 193

Let:
• ηi j be the visibility of vertex (city) j for the ant located on vertex i ;
• β be a parameter used to tune the influence of visibility;
• N k

i be the set of the cities which have not yet been visited by the ant k, located on
vertex i ;

• q0 ∈ [0, 1] be a parameter used to tune the exploitation/exploration ratio.

q ← a real value, uniformly and randomly in the interval [0, 1]
if q ≤ q0 then /* exploitation */

the city j is chosen as follows:

j = arg max
�∈N k

i

{
τi� × η

β
i�

}
(7.8)

else /* exploration */
city j is chosen according to the probability

pk
i j = τi j × η

β
i j∑

�∈N k
i

τi� × η
β
i�

(7.9)

end

Algorithm 7.2: Building of one solution in ACS.

be reduced if candidate lists of cities are used: for each city/vertex, the ant starts by
considering a list of d cities, chosen nearby. If this preselection fails, the search is
widened to other cities.

Pheromone update. The pheromone update follows the elitism mechanism already
described: only the best ant deposits pheromones on the path it has found:

τi j ← (1 − ρ)τi j + ρ
1

L+ ∀(i, j) ∈ T + (7.10)

We should notice an important point here: edges (i, j) which do not belong to the
path T + do not have an evaporation rate given by τi j ← (1 − ρ)τi j as in previous
algorithms. This represents, in terms of complexity, a particularly interesting point:
in each pheromone update step, only n edges are updated, whereas previously n2

edges were updated.
As a counterpart, evaporation from an edge is applied each time an ant uses the

edge. This is quite a misleading idea, since pheromones usually evaporate when ants
are not using the trail! This pheromone update, called local pheromone update, is
performed in each ant step:

τi j ← (1 − ξ)τi j + ξτ0 (7.11)

194 N. Monmarché

In each step, pheromones evaporate and the ant deposits afixed amount of pheromones
ξτ0. The formula has the effect of narrowing the pheromone level τi j towards its initial
value τ0 each time an ant passes along the edge (i, j). As we can see, pheromones
are used in the opposite way to before: the more ants use an edge, the close the
pheromone value is to τ0.

Consequently, in ACS the attractive role of pheromones is not the only effect
that influences the search: the best solution found increases the pheromone value on
edges on its path but if numerous ants use the same edges, the trail will disappear. Of
course, this is getting very far from real ants’ behavior but, from the point of view, of
optimization this permits one to keep diversity in the solutions, that have been built.
Without this “strong” evaporation mechanism, when a good solution is found, all the
ants are attracted by the edges of this solution, and, after some time, all ants use the
same trail, which is quite useless for exploring a large search space.

Local search. The last distinctive point of ACS is that a local heuristic is used to
improve the solutions built by the ants. This is a widely recognized principle in the
field of metaheuristics: one associates a general search space exploration technique,
ensuring broad coverage of the space,with a technique dedicated to the problemunder
consideration that is capable of exploiting the vicinity of the solutions proposed by
the metaheuristic.

In the case of the application of ACS to the TSP, the classical 2-opt and 3-opt
heuristics have been used. Without giving too much detail about these simple tech-
niques, we can say in summary that they both consist in trying several permutations
of the components of the solutions and keeping those which improve the cost of the
best solution. These techniques allow one to reach a local optimum.

Tuning of parameters. As with the previous methods, there are parameter values that
have given good results in the case of the TSP. Table7.3 gives these values. The
main difference from the other parameter tuning results is the number of ants used
in ACS. This has been is fixed at 10 in ACS, and this is surprising because other ant
methods have linked this parameter to the problem size, but no advantage has been
demonstrated for this in the ACS case.

Table 7.3 Parameters and range of values known to be useful for the ACS algorithm. C represents
an estimate of the cost of one solution and n is the number of vertices in the graph (i.e., the size of
the problem)

Symbol Parameter Values

β Influence of visibility [2; 5]
ρ Evaporation rate 0, 1

τ0 Initial pheromone value 1/nC

m Number of ants 10

ξ Local evaporation 0, 1

q0 Exploitation/exploration ratio 0, 9

7 Artificial Ants 195

Algorithm 7.3 gives the general framework of ACS.

Pheromone initialization: τi j ← τ0 ∀i, j = 1, . . . , n
for t ← 1 to tmax do

foreach ant k do
Build a cycle T k(t) using Algorithm 7.2 and updating pheromones in each
step with formula (7.11)
Compute the cost Lk(t) of T k(t)
Perform a local search to possibly improve Tk(t)

end
Let T + be the best solution found since the beginning of the algorithm
forall edge (i, j) ∈ T + do

Update the pheromones τi j (t) with formula (7.10)
end

end
return the best found solution T +

Algorithm 7.3: Ant colony system (ACS) algorithm.

Results. Table7.4 gives the results obtained with ACS [8] on four classical instances
of the TSP (we find again the d198 instance shown in Fig. 7.7). The results obtained
with ACS are compared with those obtained with the best evolutionary algorithm
known to date (STSP-GA). We can notice that ACS, although it is not better than
the evolutionary algorithm in terms of quality of solutions found, is comparable to it
(only for lin318 does ACS perform as well as STSP-GA). The performance of ACS
decreases with increasing problem size but the computation time remains very much
less for ACS than for STSP-GA.

We have presented only a very few results here; however, these results illustrate
perfectly the reason why several research studies have been conducted with ant
algorithms: in a short time (the first publication was in 1991, and ACSwas published
in 1997), ant-based algorithms for combinatorial optimization became competitive
with algorithms based on ideas from the 1960s which had received much more
development efforts and been used much more in practice.

Table 7.4 Comparison of results between ACS and an evolutionary algorithm on four instances of
the symmetric TSP. The best results are emphasized in bold, the averages were obtained from 10
independent runs, and “duration” represents the mean duration required to obtain the best solution
for each run [8]

Problem ACS+3-opt STSP-GA

Average Duration (s) Average Duration (s)

d198 15781.7 238 157801578015780 253

lin318 420294202942029 537 420294202942029 2054

att532 27718.2 810 27693.727693.727693.7 11780

rat783 8837.9 1280 8807.38807.38807.3 21210

196 N. Monmarché

Startingwith these promising results, numerous studies have been done to improve
these algorithms but also,mainly, to apply them to numerous combinatorial optimiza-
tion problems. The interested reader should find references to explore this diversity
in the annotated bibliography in this chapter.

7.4.3 Convergence of ACO Algorithm

Theoretical studies that allow one to understand the way ant algorithms work with
pheromones are far less numerous than experimental studies tackling various prob-
lems. The stochastic component of these algorithms does not facilitate their analysis,
but we can give some ideas of the theoretical studies and indicate their direction.

One of the first studies [14, 15] in this direction takes into account a special case
of the AS algorithm (called the graph-based ant system), specially modified to obtain
convergence results under the following hypotheses:

1. There is only one optimal solution (denoted byw∗) for the instance of the problem
considered.

2. For each edge (i, j) ∈ w∗, we have ηi j > 0 (the visibility is always positive).
3. If f ∗ = f ∗(m) is the best evaluation found during the iterations 1, . . . , m − 1,

then only paths at least as good as f ∗ receive reinforcement (we find an elitist
strategy here).

Under these conditions, Gutjahr [14, 15] constructed a Markovian process in which
each state is characterized by:

• the set of all pheromone values;
• the set of all paths partially built by the ants in the current iteration;
• the best solution found in all of the previous iterations, f ∗(m).

This led to a theorem: let Pm be the probability that particular ant follows the optimal
path in iteration m, and then the following two assertions are valid:

• for all ε > 0 and with the parameters ρ and β fixed, if we choose a number of ants
N large enough, we have Pm ≥ 1 − ε for all m ≥ m0 (m0 is an integer linked to
ε);

• for all ε > 0 and with the parameters N and β fixed, if we choose an evaporation
factor ρ close enough to 0, we have Pm ≥ 1 − ε for all m ≥ m0 (m0 is again an
integer linked to ε).

This theorem means that if we choose correctly, the value of the evaporation
parameter or the number of ants, then convergence of the algorithm is guaranteed.
However, we do not have an indication of how to choose either one or the other value,
nor of the time the algorithm will take: experimental studies remain indispensable.

Similar results were summarized in [10]. That studywas based on the properties of
the lower bound τmin andwas then adapted to theMMAS andACS algorithms (even
though, in the case of ACS, upper and lower bounds τmin and τmax, for the pheromone

7 Artificial Ants 197

values are not explicitly given). Convergence in terms of value was proved, but the
results do not give information about the time necessary to reach the optimum.

Finally, in [19], upper boundswere given for the time needed to reach the optimum
in the case of the ACO algorithm and particular problems (the minimum-weight
spanning tree problem, for instance).

7.4.4 Comparison with Evolutionary Algorithms

In conjunction with theoretical studies, such as those presented in the previous
section, which allow one to better predict the behavior of stochastic algorithms,
it is interesting to study the similarities to and differences from other stochastic
methods. If we focus our attention on pheromones, which are central in ACO algo-
rithms, we can notice that the data structure of pheromone values updated according
to the activity of ants and used to build new solutions, is very similar to some other
structures introduced in other optimization paradigms. For instance, in [10], we find
a comparison between ACO metaheuristics and Stochastic Gradient Ascent (SGA)
and Cross-Entropy (CE).

We can also make a comparison with some evolutionary algorithms which make
use of a probability distribution. Indeed, we can notice that ants, when they build
their network of pheromones, build a sort of probability distribution, which is used
afterwards to build new solutions. Thus, we can show that the pheromone matrix
plays the same role as the probability distribution that was introduced in the early
evolutionary algorithms based on such a structure, such as PBIL (population-based
incremental learning [2]) and BSC (bit simulated cross-over [23]). Both of these
algorithms were proposed for numerical optimization: the goal is to find a minimum
value for a function f , defined on a subset ofRn with its value inR. The coordinates
of points in the search spaceRn are translated into binary strings (using discretization
on each axis). These algorithms try to find the best distribution for each bit of the
binary string (this is not a good idea for performance, but it is useful for study
of the algorithms). Instead of maintaining a population of solutions (i.e., of binary
strings) as is done in a classical genetic algorithm, a probability distribution is used
to represent the genome, and this distribution evolves with the generations. These
algorithms are thus called estimation distribution evolutionary algorithms.

If we want to compare the ACO algorithms with PBIL and BSC, we need to define
a strategy to manipulate binary strings with pheromones. Figure7.9 shows a graph
framework in which it is possible to generate binary strings.

If we use ACO on this graph, we can define the same algorithmic framework for
ACO, PBIL, and BSC [18], and the two main data structures are:

• A real vector V = (p1, . . . , pm) in which each component pi ∈ [0, 1] represents
the probability of generating a “1”. This vector corresponds to the probability
distribution, or, in another words, for ACO, to the pheromone matrix.

198 N. Monmarché

1 1 1 1

0 0 0 0

1

0

Fig. 7.9 Graph used to generate binary strings. At each vertex, ants have two choices one edge will
generate a “0” and the other a “1”. In the example shown, the ant has built the solution 01000 in
going from left to right in the graph

• A set of solutions P = (s1, . . . , sn), with si ∈ {0, 1}m , which represents a popu-
lation of n binary strings of length m or, for ACO, the set of solutions built by n
ants.

Thus, the three algorithms can be described by the same algorithmic schema, given
in Algorithm 7.4. The generation step builds a sample of the population using the
distribution V . Then, the evaluation consists in computing the value of the function
f to be minimized. Then, the update step (called reinforcement when we are dealing
with pheromones) contains the only difference between the three metaheuristics.
This step, which is not detailed here, deals with the update of the vector V according
to the solutions that have been built. For ACO, we have the same formula as those
used for the pheromone updates presented earlier for the AS and ACS algorithms.

Initialization: V = (p1, . . . , pm) ← (0.5, . . . , 0.5)
while stop condition is not verified do

Generate P = (s1, . . . , sn) according to V
Evaluate f (s1), . . . , f (sn)

Update V according to (s1, . . . , sn) and f (s1), . . . , f (sn)

end

Algorithm 7.4: Common algorithm for ACO, PBIL and BSC.

In order to compare the methods, we can study experimentally the role of the
update formula for V for ACO, BSC, and PBIL. For instance, we can consider the
following function to be minimized:

f (x) = 50 +
5∑

i=1

(
(xi − 1)2 − 10 cos (2π(xi − 1))

)
with xi ∈ [−5.12, 5.11]

(7.12)
Figure7.10 gives the results obtained when the optimization problem consists in
finding a minimum for the function f with Algorithm 7.4 using the four possible
update formulas for V . For each dimension, real values are coded with m = 10 bits.

7 Artificial Ants 199

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

d
F

itn
es

s

Iteration number

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100
C

on
ve

rg
en

ce
 o

f V
Iteration number

BSC
PBIL

AS
ACS

(b)

Fig. 7.10 Evolution with time (i.e., the number of generations, here from 0 to 100) of a the best
solution found and b the quantity of information stored in V (also considered as a pheromonematrix
for AS and ACS) for each of the methods BSC, PBIL, AS, and ACS

We observe that the ant-based algorithms are distinguishable from the others
because their convergence is quicker (Fig. 7.10a), and this is particularly true forACS.
This is probably due to the elitistmethodused to update the pheromonevalues inACS.
The BSC and PBIL algorithms behave similarly to each other: their convergence is
slow, but this allows these twomethods to find a better solution than AS. Figure7.10b
represents the quantity of information in the vector V (i.e., its gap between 1 and 0.5,
which means equiprobability). At the beginning, all components of V are set to 0.5,
which can be interpreted as no stored information. We observe a big difference in the
way pheromone information is acquired, especially for the AS algorithm, for which
the process is slower. This can explain its weaker performance. Of course, these
results are only related to one function and a small number of iterations: it would
be necessary to conduct a wider experimental study to obtain a true comparison of
these four methods.

7.5 Conclusion

This chapter was aimed at giving a brief glimpse of metaheuristics inspired by ants
for combinatorial optimization. Basic algorithms have been presented in the case of
the classical traveling salesman problem, but interested readers will be able to find
various algorithms and problems in the annotated bibliography.

In the context of combinatorial problems tackled with artificial ants, we can
emphasize the case of network routing problems, which constitutes a very inter-
esting use of ant algorithms. These kinds of problems are intrinsically distributed,
and this is also the case for the everyday problems encountered by real ants.

200 N. Monmarché

It is interesting to note that one of the first industrial applications was been devel-
oped in 1998 in the context of aluminum bar manufacturing in Quebec [13]. The
problem addressed in this case was the scheduling of orders for a horizontal cast-
ing machine fed by two holding furnaces. Artificial ants were used to find the best
schedule for the treatment of orders in order to (1) minimize the unused production
capacity due to the different setups, (2) minimize the total lateness of all orders with
respect to their due dates, and (3) minimize a penalty function aimed at grouping
orders to the transported to a same destination, to maximize the use of truck capacity.
The main idea was that each vertex of the graph represented an order and each ant
built a sequence of orders. The Pheromones that were laid down depended on the
quality of the schedule according to the three objectives.

In the context of combinatorial optimization with artificial ants, the solutions
found are not guaranteed to be optimal. Theoretical work and experimental studies
have confirmed that ant algorithms converge towards the optimum, but the key point is
that the parameter values have to be chosed appropriately in the general case and also
adapted to the instance of the problem being considered [22]. Most metaheuristics
are coming up against this question.

7.6 Annotated Bibliography

Reference [3] This book presents several aspects of swarm intelligence and is
not limited to optimization. It is a very good starting point for
studying and learning how to model collective natural systems.

Reference [10] This book presents a very good synthesis of the ACOmetaheuris-
tic for combinatorial optimization. The basic principles of its
application to the TSP are presented, theoretical results are pre-
sented, and an overview of problems tackled up to this date, with
particular reference to network routing, is given.

Reference [1] This multiauthor book widens the notion of indirect communi-
cation (called “stigmergy”) to other collective systems (termites,
particle swarms).

Reference [17] This book presents a recent account of the state of the art of
research work on artificial ants. Combinatorial optimization is
introduced and several detailed examples are given, both in
the field of combinatorial optimization field and various other
domains.

7 Artificial Ants 201

References

1. Abraham, A., Grosan, C., Ramos, V. (eds.): Stigmergic Optimization. Studies in Computational
Intelligence, vol. 31. Springer (2006)

2. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In:
A. Prieditis, S. Russell (eds.) Proceedings of the Twelfth International Conference on Machine
Learning (ICML), pp. 38–46. Morgan Kaufmann, San Mateo, CA (1995)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press, New York (1999)

4. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank based version of the ant system: A compu-
tational study. Central European Journal for Operations Research and Economics 7(1), 25–38
(1999)

5. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: F. Varela,
P. Bourgine (eds.) Proceedings of the First European Conference on Artificial Life (ECAL), pp.
134–142. MIT Press, Cambridge, MA (1991)

6. Deneubourg, J., Goss, S., Pasteels, J., Fresneau, D., Lachaud, J.: Self-organization mechanisms
in ant societies (ii): Learning in foraging and division of labor. In: J. Pasteels, J. Deneubourg
(eds.) From Individual to Collective Behavior in Social Insects. Experientia supplementum,
vol. 54, pp. 177–196. Birkhäuser (1987)

7. Dorigo,M.: Optimization, learning and natural algorithms [in Italian]. Ph.D. thesis, Politecnico
di Milano, Italy (1992)

8. Dorigo, M., Gambardella, L.: Ant colony sytem: A cooperative learning approach to the travel-
ling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997).
ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.16-TEC97.A4.ps.gz

9. Dorigo,M.,Maniezzo,V., Colorni, A.: The ant system:Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B 26(1), 29–41 (1996)

10. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)
11. Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the Argentine ant.

Naturwissenchaften 76, 579–581 (1989)
12. Goss, S., Fresneau, D., Deneubourg, J., Lachaud, J., Valenzuela-Gonzalez, J.: Individual for-

aging in the ant Pachycondyla apicalis. Œcologia 80, 65–69 (1989)
13. Gravel, M., Gagné, C.: Ant colony optimization for manufacturing aluminum bars. In: N.Mon-

marché, F. Guinand, P. Siarry (eds.) Artificial Ants. Wiley-Blackwell (2010)
14. Gutjahr, W.: A graph-based ant system and its convergence. Future Generation Computer

Systems 16(8), 873–888 (2000)
15. Gutjahr,W.: ACO algorithmswith guaranteed convergence to the optimal solution. Information

Processing Letters 82(3), 145–153 (2002)
16. Manderick, B., Moyson, F.: The collective behavior of ants: An example of self-organization

in massive parallelism. In: Proceedings of the AAAI Spring Symposium on Parallel Models of
Intelligence. American Association of Artificial Intelligence, Stanford, CA (1988)

17. Monmarché, N., Guinand, F., Siarry, P. (eds.): Artificial Ants: From Collective Intelligence to
Real Life Optimization and Beyond. ISTE-Wiley (2010)

18. Monmarché, N., Ramat, E., Desbarats, L., Venturini, G.: Probabilistic search with genetic
algorithms and ant colonies. In: A. Wu (ed.) Proceedings of the Optimization by Building and
Using Probabilistic Models workshop, Genetic and Evolutionary Computation Conference,
Las Vegas, pp. 209–211 (2000)

19. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization, Algorithms
and Their Computational Complexity. Natural Computing Series. Springer (2010)

20. Passera, L.: Le monde extraordinaire des fourmis. Fayard (2008)
21. Stützle, T., Hoos, H.: MAX − MIN ant system and local search for the traveling salesman

problem. In:Proceedings of the Fourth International Conference on Evolutionary Computation
(ICEC), pp. 308–313. IEEE Press (1997)

ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.16-TEC97.A4.ps.gz

202 N. Monmarché

22. Stützle, T., López-Ibáñez,M., Pellegrini, P.,Maur,M.,Montes deOca,M.,Birattari,M.,Dorigo,
M.: Parameter adaptation in ant colony optimization. In: Y. Hamadi, E. Monfroy, F. Saubion
(eds.) Autonomous Search, pp. 191–215. Springer, Berlin, Heidelberg (2012). doi:10.1007/
978-3-642-21434-9_8

23. Syswerda, G.: Simulated crossover in genetic algorithms. In: L.Whitley (ed.) Second Workshop
on Foundations of Genetic Algorithms, pp. 239–255.MorganKaufmann, SanMateo,CA (1993)

http://dx.doi.org/10.1007/978-3-642-21434-9_8
http://dx.doi.org/10.1007/978-3-642-21434-9_8

Chapter 8
Particle Swarms

Maurice Clerc

In this chapter, the reader is assumed to have some basic notions about iterative opti-
mization algorithms, in particular what a definition space and a statistical distribution
are. The sections headed “Formalization” can be ignored on first reading.

Preamble

At first, they move at random. Then, each time one of them finds a promising place,
she reports it to some other explorers. Not always at the same time, but step by step,
all of them will be informed sooner or later, and will be able to take advantage of
this information. So, gradually, thanks to this collaboration without exclusion, their
quest is usually successful.

8.1 Unity Is Strength

This was the official motto of the future Netherlands as early as 1550, through the
Latin expression Concordia res parvae crescunt, and was even in fact used by Sallust
circa 40 BC [69]. This saying achieved great popularity in politics and sociology,
but also—and this is what is interesting for us here—in ethology, more precisely, in
the field of the study of animal societies.

In the case of optimization, some methods, particularly genetic algorithms, have
been inspired by biological principles such as selection, cross over and mutation.
However, more recently, some other methods have tried to take advantage of behav-
iors that have been proved to be efficient for the survival and development of

M. Clerc (B)
Independent Consultant, Groisy, France
e-mail: Maurice.Clerc@WriteMe.com

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_8

203

204 M. Clerc

biological populations. From this point of view, particle swarm optimisation (PSO) is
the very first method, dating from 1995, to be based on cooperationwithout selection.

As we can guess from its name, this method makes use of a population of agents,
called “particles,” for the underlying metaphor is that during the search process they
move like physical particles subject to attractive forces. But, more precisely, this
is just a metaphor that guides or intuition (sometimes wrongly), and some other
“ingredients” are needed to design an efficient method.

8.2 Ingredients of PSO

As is often the case in scientific research, after the remarkable conceptual break-
through of the inventors of PSO, James Kennedy and Russel Eberhart [36], the
crucial components of the method were clearly identified only after several years of
experiments and theoretical studies. These components can be clustered into three
classes: objects, relations between objects, and mechanisms applied to the elements
of these two classes. These distinctions may seem a bit arbitrary, but thanks to them
a general, modular presentation is possible, so that each component of the system
can be modified in order to build variants of the algorithm.

8.2.1 Objects

Recall that the problem to be solved comprises a definition space (a set of elements,
which are often points in a multidimensional space of real numbers), and a method
by which a numerical value can be assigned to each element of the definition space.
Often, this is a calculable function, given by a mathematical formula, but it may also
be a mode of an industrial process, or even that process itself.

There are three kinds of objects in the algorithm:

• Explorers are particles that fly over the search space. Each explorer has a position,
and memorizes the value of this position. Often, it also has a “velocity” (in fact,
a movement), which can be seen as an intermediate variable that is manipulated
by the algorithm to calculate the successive positions (see Sect. 8.2.3.3). However,
this is not always the case, and the positionmay also be directly calculated [34]. An
explorer also has some behavioral features—in practice, numerical coefficients,
possibly variables—that are used to compute its movement at each iteration (see
Sect. 8.2.3.3).

• Memorizers are agents that memorize one or several “good” positions found by
the explorers, and also their values. Historically, and still very often, only the last
best position found is memorised. But it may be interesting to save more positions
to evaluate a tendency and adaptively modify the movement strategy.

8 Particle Swarms 205

• Random number generators (RNGs), which are used, in particular, to compute the
movements of the explorers.

Note that it is also sometimes useful to define an evolution space for the explorers,
larger than the definition space. This may seem strange, for the principle of iterative
optimization is to find a solution inside the definition space. However, we will see in
Sect. 8.2.3.5 that this option may be interesting.

The numbers of explorers and memorizers are not necessarily constant. In the
earliest versions of PSO and in the standard versions, this is indeed the case, and they
are user-defined parameters. However, in certain adaptive variants there are strategies
to increase or decrease them during the optimization process (see Sect. 8.2.3).

A memorizer has a position that may vary in the course of time, so it can be seen
as a special kind of particle. A set of particles is called a swarm, so one can speak
of an explorer-swarm and a memory-swarm [13, 42]. Classically there is just one
swarm of each type, but using more may be interesting.

In the first version of PSO, there was just one RNG, and the numbers were gen-
erated according to a uniform distribution in a given interval. Some later variants
make use of at least one other RNG to generate nonuniform distributions (Gauss,
Lévy, etc.). Also, some studies suggest that it is possible to use generators that are
not random, but simply exploit cyclically a short list of predefined numbers. In such
cases the generator is deterministic [15].

8.2.2 Relations

We will see that the memorizers receive information in order to guide their moves
(see Sect. 8.2.3.3). Moreover, one could envisage that memorizers may exchange
information between them. So, it is necessary to define communication links between
all the different kinds of particles. In the most general form of the algorithm, these
links may be as follows:

• dynamic, i.e., they are not necessarily the same in two different time steps;
• probabilistic, i.e., they have a certain probability of transmitting a piece of infor-
mation or not, and this probability may itself be variable.

Nevertheless, in almost all versions of PSO, the number of memorizers is equal to
the number of explorers, and each explorer has just one bidirectional information
link to “its” memorizer. The description is then simplified by saying that there is just
one kind of particle, which could be called “composite,” and which combines the
two functions of exploration and memorization. In all that follows, except when said
otherwise, we will assume that we are considering this particular case. Then, if an
explicit information link exists between a composite particle and another one, the
beginning of the link is taken to be the memory part of the first particle, and the end
of the link the explorer part of the second particle.

To describe the working of the optimizer, it is useful to define is the neighborhood
of a particle (in a given time step): this is the set of particles that have an information

206 M. Clerc

(a) Detailed form (b) Simplified form

Fig. 8.1 Ring topology of explorers and memorizers. In the simplified form, we are assumed to
know that each link is in fact from the memory part of one particle to the explorer part of the other
particle

link with it. The set of all neighborhoods is the topology of the swarm. For example,
if “everybody can inform anybody,” the topology is said to be global. All other
topologies are said to be local. Historically, the first local topology was the ring, as
in the Fig. 8.1b.

Formalization

In a given time step, the set of relationships can be represented by a valuated graph
G (t) = (S (t) , L (t)), where the nodes S are particles and the edges L are infor-
mation links. An edge has three components: its source, its sink, and a probability
value.

In practice, a topology is often represented by an n × n square matrix T , where n
is the swarm size and T (i, j) the probability that the particle i informs the particle
j . In many variants this probability is simply either 0 or 1, and a particle is always
assumed to inform itself. The total number of possible topologies is then 2n2−n .

8.2.3 Mechanisms

8.2.3.1 Management of the Particles

At the very least, there must be a mechanism to create the particles that are needed
to start the algorithm (initialization phase). There may possibly exist some other
mechanisms to create or destroy particles later. Note that in this latter case we are

8 Particle Swarms 207

not anymore completely respecting the initial spirit of PSO (cooperation without
selection), for usually the particles that are destroyed are the “bad” ones.

For the initial creation, the most classical method is to assign to each particle a
random position inside the search space, and, quite often, also a random “velocity.”

Several studies [51, 57] have suggested that it would be interesting to initialize
the position not according to a uniform distribution, but by using a more “regular”
distribution (of low discrepancy, technically speaking). However, some other studies
have shown that the influence of the initial distribution decreases very quickly after
a few iterations and, in practice, the performance of the algorithm is not significantly
improved [54].

8.2.3.2 Management of the Information Links

A cooperation mechanism has to provide three functions for the information links:
creation, deletion, and valuation (assigning a probability). Several variants of PSO
make use of a swarm of constant size and of fixed topology. In such a case, all
information links can be created just once, at the beginning of the process.

However, as can be expected, this method is not very efficient if many different
problems have to be solved. An adaptive topology is then used, which may be based
on mathematical criteria, such as the pseudo-gradient or others [39, 49], or inspired
by social or biological behaviors [5, 8, 16, 32, 33, 68]. In fact, any cooperationmodel
that has been defined in another context can be adapted to PSO. For example, the five
models defined in [52] inspired the ones used in [16]. These are based on reciprocity,
proximity, relatives, reputation, and complete altruism (which is equivalent to the
global topology) (see two examples of topologies on Fig. 8.2)

8.2.3.3 Moves of the Particles

The principle is that each particle is influenced by three tendencies:

• to follow its own velocity;
• to go towards the positions memorized by its neighbors;
• to go towards the best known position.

In practice, there are five steps in the computation and application of particle move-
ments:

• Select, in the neighborhood of the particle, the other particles that will be taken
into account. Quite often only the best one is used, but more or even all may be
taken into account [47].

• For each neighbor taken into account, draw a point “around” its best memorized
position. This is usually done at random, and defines a virtual movement to this
position. Originally, “around” meant in a domain limited by the current position
of the particle and another point a little beyond the selected memorized position
(see Fig. 8.3).

208 M. Clerc

(a) Polyhedron (fixed) (b) Four clusters (fixed structure, variable
assignment of the nodes)

Fig. 8.2 Two examples of topologies. The circles are particles. All links are bidirectional. In b,
the structure is fixed, but the particles are assigned to the nodes according to their values. This is
therefore a semi-dynamical topology

Current
 position

x

p
"Good"
position

Area of positions
 "around" p

Fig. 8.3 Illustration of “around” in the computation of a movement

• Combine all the virtual movements and, partly, the current velocity. This gives the
real movement.

• Apply this movement to the particle.
• If the particle flies outside the search space, a confinement mechanism may also
be applied (see Sect. 8.2.3.5).

Figure8.4 visualizes this process. An RNG is used to define a point that is “near
to” a given one. Typically, when the distribution is not uniform, one make use of a
distribution whose density decreases with distance.

The combination of the virtual movements and the velocity is usually a linear
one. When applied to the current position, this movement gives the new position or,
more precisely, one position from amongst the ones that are possible, because of the
use of the RNG. This set of positions, more or less probable, positions is called the
distribution of the next possible Positions (DNPP).

8 Particle Swarms 209

Current
position

Best found

xi

pi

pg
Best
information

Current velocity

vi

New
position

wvi

x'
At random
near to pi

At random
near to pg

x"

Fig. 8.4 Movement of a particle when just one informer (neighbor) is used, with a linear combi-
nation. The three tendencies are represented by three vectors, which are added

8.2.3.4 Management of the Parameters

The computation of the movement usually makes use of two or three numerical
parameters (see Sect. 8.3.1). In the simplest case these parameters are constant and
user-defined, butmanyvariants havebeenproposed. In themost rudimentary variants,
the parameter values depend only on the number of iterations [1, 31, 59, 75, 77, 79].
More sophisticated variants adapt the values according to the information that is
collected during the process. One area of research is how to define an algorithm that
is as adaptive as possible, so that the user does not have to tune any mechanism [9,
18, 21, 45, 60, 71].

8.2.3.5 Confinement and Constraints

The kind of optimization that we are studing here is always under constraints, for
the solution is in a bounded search space. Usually, for each variable, an interval of
values is given, or a finite list of acceptable values, but constraints may be more
complicated, and given as relations between variables.

When a particle reaches a position that is not acceptable, there are two options:

210 M. Clerc

• Let it fly and do not evaluate the new position. From the point of view of the
particle, it is as if the search space, initially equal to the definition space, has
been extended by a plateau. As the particle is constantly attracted by memorized
positions that are in the definition space, it will come back sooner or later. This
method does not need any parameter, but the convergence may be quite slow.

• Apply a confinement method, where the confinement may be either immediately
complete or progressive.

Most of these methods can be used by any iterative algorithm and are therefore not
presented here. However, some of them are specific to PSO, particularly because they
modify not only the position but also the velocity, an element that does not exist in
all algorithms. The simplest methods stop the particle at the frontier of the definition
space and either the velocity is set to zero or its direction is inverted, sometimes more
or less at random [12, 28].

8.3 Some Versions of PSO

We now have all the elements needed to describe the working of some versions of
PSO. It is, of course, not possible to present all of them. For the interested reader,
several more or less complete reviews have been published (see, for example, [23,
24, 60]). Here, we will just explain in detail the successive versions that can be called
“standard,” for they are very near to the historical version [36].

8.3.1 1998. A Basic Version

The features of this version are the following:

• The size of the swarm is constant, and defined by the user.
• The positions and velocities are initialized at random according to uniform distri-
butions.

• Each particle memorizes the best position it has ever found (at the beginning, this
is of course the same as the initial position).

• The topology is global, i.e., each particle informs all the others (and therefore is
informed by all the others).

• The information that is transmitted is the best position memorized in the neigh-
borhood (which contains the particle itself).

• The movement of a particle is computed independently for each dimension of the
search space, by linearly combining three components: the current velocity, the best
position memorized, and the best position memorized in the neighborhood (which
is the whole swarm here), using confidence coefficients. The coefficient for the
velocity is often called the inertia weight. The other two have equal values, given
by the maximum value of a uniform random variable. If needed, the movement is

8 Particle Swarms 211

bounded, so that it does not exceed a predefined maximum value. Indeed, without
this, the swarm could easily tend to “explode.”

• The stop criterion is either a maximum number of iterations or a minimum value
to be reached (in the case of minimization).

Formalization

Let us suppose we are looking for the global minimum of a function f whose defi-
nition space is E = ∏D

d=1

[
xmin,d, xmax,d

]
:

Elements
Position of a particle i at time t: xi (t) = (

xi,1 (t) , . . . , xi,D (t)
)

Velocity of a particle i at time t: vi (t) = (
vi,1 (t) . . . , xvi,D (t)

)
Best position memorized by the particle
k at time t: pk (t) = (

pk,1 (t) , . . . , pk,D (t)
)

Index of the particle that memorizes the best position
over the whole swarm: g (t)
Parameters
Swarm size n
Maximum movement (absolute value) vmax

Inertia weight: 0 < w < 1
Cognitive confidence coefficient: c1 > 1
Social confidence coefficient: c2 = c1

The usual values are 0.72 for w, and 1.2 for c1 and c2.

Initialization
For each particle and each dimension d
xi,d (0) = U

(
xmin,d, xmax,d

)
(U = uniform distribution)

pi,d (0) = xi,d (0)
vi,d (0) = (

U
(
xmin,d, xmax,d

) − xi,d (0)
)
/2 (for certain variants

we have vi,d (0) = 0)
Index of the best memorized position: g (0)

To simplify the formulae, we will now write g instead of g (t).

Movement
For each particle i and each dimension d
vi,d (t + 1) = wvi,d (t) + c1

(
pi,d (t) − xi,d (t)

) + c2
(

pg,d (t) − xi,d (t)
)

vi,d (t + 1) > vmax ⇒ vi,d (t + 1) = vmax

vi,d (t + 1) < −vmax ⇒ vi,d (t + 1) = −vmax

xi,d (t + 1) = xi,d (t) + vi,d (t)
Confinement
For each particle i and each dimension d
xi,d (t + 1) > xmax,d ⇒ xi,d (t + 1) = xmax,d and vi,d (t + 1) = 0
xi,d (t + 1) < xmin,d ⇒ xi,d (t + 1) = xmin,d and vi,d (t + 1) = 0
Memorization
For each particle i

212 M. Clerc

if xi ∈ E
f (xi (t + 1)) < f (pi (t)) ⇒ pi (t + 1) = xi (t + 1) (else pi (t + 1) = pi (t))
f (pi (t + 1)) < f

(
pg (t)

) ⇒ g = i (else g does not change)
Iteration
As long as no stop criterion is satisfied
Repeat Movement and Memorization

8.3.2 Two Improved “Standard” Versions

The use of the basic version has made some defects evident:

1. Because of the global topology, there is often a premature convergence to a point
that is not even always a local minimum [40].

2. The maximum movement is arbitrarily defined, and modifying its value may
modify the performances.

3. The behavior depends on the system of coordinates.

The last point deserves to be explained, for there are many ways to interpret it [3,
76]. The sensitivity to rotation is due to the fact that the movement is computed
independently for each dimension. However, as the definition space is almost never
a hypersphere centered on the center of rotation, rotating the coordinate system
modifies the landscape of the function in which we are looking for the position of the
minimum. In fact, this position may even not be in the new definition space anymore,
and in that case the new optimal position is therefore another one. In other words,
the rotated problem is not identical to the initial one, and performance comparisons
are then not very meaningful.

After a rotation of the problem, the performance of the optimizer may deteriorate,
but if may also be improved because, in particular, and for quite subtle mathematical
reasons, PSO finds solution points near to an axis or even a diagonal, more easily,
and, a fortiori, near to the center of the coordinate system [12, 50, 72].

Point 1 quickly led to the use of fixed local topologies, such as the ring thatwe have
already seen, and a lot of others.A review can be found in [46].Newones are regularly
proposed, but to solve large classes of problems more efficiently, variable topologies
have been defined. Concerning point 2, several studies have shown that arbitrarily
defining a maximum movement can be avoided by using mathematical relationships
between the confidence coefficients (the concept of constriction). The first of these
relationships was put on line in 1999, used a little later in published papers [7, 22],
and itself published a year afterwards [17]. Some other studies have then simplified
it [74], or generalized it [4, 64]. The point 3 was also taken into account quite
early (2003), but in a completely adaptive variant (swarm size, topology, numerical
parameters) that was significantly different from the basic version.

We present here first a version that modifies the basic version as little as possible
to take points 1 and 2 into account, at least partly, and then a version that copes with
point 3. For this last point, the formulae have to be modified.

8 Particle Swarms 213

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0,3

K=3
K=5
K=10

Number of informers

Pr
ob

ab
ilit

y

Fig. 8.5 SPSO 2007. Probability distribution of the size of the neighborhood of a particle in a
given time step. The parameter K is the number of information links generated by each particle.
The swarm size is 20. The bigger K is, the larger the divergence; sometimes this is beneficial

8.3.2.1 SPSO 2007

Here, the topology is not fixed anymore, but modified after every iteration that has
not improved the best known position. In that case, each particle generates a given
number of links (typically 3, 4, or 5) to particles that are randomly chosen. As a
result, the size of the neighborhood of a particle can take any value between 1 and
the swarm size, but it does so according to a statistical nonuniform distribution (a
bell curve, for which the extreme values are of low probability), as can be seen in
Fig. 8.5. This method was defined in [11]. It was shown later that it could be seen as a
particular case of the “stochastic star” presented in [48], even though in that method
the authors is used, the reverse strategy is used, i.e., the topology is modified only if
the iteration has in fact improved the best position.

The confidence coefficients are not chosen arbitrarily. Depending on the variant,
they are either bounded by a constriction relation [17] or defined directly by a theo-
retical stagnation analysis. In other words, there is just one user-defined value, from
which the other is computed.

Formalization

For the simple form of constriction, the inertia weight w is user-defined, typically
between 0.7 and 0.9, and the other confidence coefficients are derived from:

c1 = c2 = (w + 1)2

2
(8.1)

The usual value of w is 0.72, which gives c1 = c2 = 1.48. Note that the relation
(8.1) is often given by the inverse formula, i.e., w as a function of c1, which is
more complicated. In fact, the theoretical constriction criterion is the inequality
c1 + c2 ≤ (w + 1)2. Given like that, it can easily be extended to variants in which

214 M. Clerc

more than just one informer is taken into account [47]. If there are m such informers,
the movement is computed as follows:

vi,d (t + 1) = wvi,d (t) +
m∑

k=1

ck
(

pα(k),d (t) − xi,d (t)
)

and the criterion becomes

m∑
k=1

ck ≤ (w + 1)2.

When the coefficients are obtained from a stagnation analysis, SPSO 2007 uses
the following values:

⎧⎪⎨
⎪⎩

w = 1

2 ln (2)
� 0.721

c1 = c2 = 1

2
+ ln (2) � 1.193

Note that for the same w value, the coefficients c are smaller than with the con-
striction approach. The search space is explored more slowly, but the risk of not
“seeing” an interesting position is reduced.

8.3.2.2 SPSO 2011

This is similar to SPSO 2007 with respect to the topology and the parameters. The
initialization of the velocity is a little different, to ensure that a particle will not
leave the definition space in the very first iteration. The main difference is that the
movement is not anymore computed dimension by dimension anymore, but directly
as a vector, by using hyperspheres (Fig. 8.6). So, the behavior of the algorithm (the
sequence of successive positions) no longer dependent on the coordinate system.

The complete computation needs several steps, which are described in the “For-
malization” section below. Choosing a point at random in a hypersphere can be done
according to several statistical distributions. It seems that a nonuniform one whose
density is a decreasing function of the distance from the center, may bemore efficient.
For more details, see the source code on Particle Swarm Central [66].

Formalization

Here we give only what is different from SPSO 2007:

If necessary, the search space is normalized
in order to be a hypercube [xmin, xmax]D.
Initialization of the velocity: vi,d (0) =
U

(
xmin − xi,d (0) , xmax − xi,d (0)

)

8 Particle Swarms 215

Current
position

Best found

xi

pi

pg
Best
information

G

x'
At random
in the sphere

Current velocity

vi

Radius r

New
position

wvi

Fig. 8.6 SPSO 2011. Movement computation. G is the center of gravity of the three positions that
are used in the basic version of PSO. A point is drawn at random in a hypersphere of center G and
of radius r , and then moved in parallel with the current velocity, in order to take inertia into account

Movement
For each particle i
Hypersphere center G: if i = g, G =
xi (t)+pi (t)

2 , else G = xi (t)+pi (t)+pg(t)
3

Radius r = ‖xi (t) − G‖
Select a point x ′ at random
in the hypersphere of center G and of radius r
Partly add the velocity xi (t + 1) = x ′ + wv (t)
New velocity vi (t + 1) = xi (t + 1) − xi (t)

8.4 Applications and Variants

It is not the purpose of this chapter to make an inventory of all possible applications.
Lists are regularly published, and these are papers that show how wide and various
are the domains in which PSO has been used [2, 37, 38, 63, 80]. This is due to the
fact that the prerequisites for the method are very simple: as explained in Sect. 8.2.1,
we just need a definition space, and a way to assign a value to any element of this

216 M. Clerc

search space. Nevertheless, of course, it is interesting to design some variants for
more efficiency.

In the simplest varients only the confidence coefficients are modified, for example
by using an inertia weight which is a decreasing function of the number of iterations
[70]. More examples are presented in [24]. Some variants are specifically designed
for a given type of problem, for example multiobjective [67], dynamic [6, 41], or
discrete or even combinatorial problems.

In this last case, some variants define the “movements” (which are permutations or
elements) and their combinations differently [10, 20, 62]. Some others, in contrast,
are aimed at being usable on a large spectrum of problems by using adaptation
mechanisms [19, 27, 30, 78].

For problems that are continuous, discrete or heterogeneous (but not combinato-
rial), the standard versions that we have seen here have been defined to be reference
methods that any other variant must outperform to be interesting. They are in fact
easy to improve. As an example, a simple variant of SPSO2011 is given in Sect. 8.6.2.

8.5 Going Further

In addition to Particle Swarm Central [66], which has already been mentioned, the
interested reader could look with profit at some other sources of information that
are more complete, including numerous papers and books that can be found on the
Internet, particularly those dedicated to specific applications.

The earliest books are still useful for understanding the basic principles:

• Swarm Intelligence [35], by the inventors of the method;
• Particle Swarm Optimization [13], the first book entirely devoted to PSO.

Some later books are these, enriched by numerous theoretical and experimental
studies, are:

• Particle Swarms: The Second Decade [65] (book);
• Particle Swarm Optimization and Intelligence: Advances and Applications [58]
(book);

• Development of efficient particle swarm optimizers and bound handling methods
[55] (thesis);

• “Particle swarm optimization in stationary and dynamic environments” [41] (the-
sis);

• “Particle swarms for constrained optimization” [26] (thesis);
• “Development and testing of a particle swarm optimizer to handle hard uncon-
strained and constrained problems” [29] (thesis);

• Particle Swarm Optimization: Theory, Techniques and Applications [53] (book);
• Handbook of Swarm Intelligence [56] (book).

8 Particle Swarms 217

8.6 Appendix

8.6.1 A Simple Example

The Tripod function is defined on [−100, 100]2 by the following formula:

if x2 < 0 then f (x1, x2) = |x1| + |x2 + 50|
else, if x1 < 0 then f (x1, x2) = 1 + |x1 + 50| + |x2 − 50|
else f (x1, x2) = 2 + |x1 − 50| + |x2 − 50|

It has a global minimum at (0,−50) (value 0), and two local minima, (−50, 50)
of value 1 and (50, 50) of value 2, whose basins of attraction are [−100, 100] ×
[0,−50], [0, 100]2, and [−100, 0] × [0, 100], respectively.

The size of the first basin is twice the size of the other two, so a good algorithm
must have a success rate greater than 50% when the acceptable error is smaller than
0.0001 and the number of points evaluated, greater than 10000. This is not very easy
(see for example the results from SPSO 2007 in the Table8.1).

On this kind of problem, classical PSO has two handicaps. The first one, which
is common to all stochastic methods, is the risk of converging to a local minimum.
The second one, which is more specific, is due to the fact that, roughly speaking, all
velocities tend to zero. If this decrease is too quick, the particles may converge to
any point, as shown in the Fig. 8.7b.

8.6.2 SPSO 2011 with Distance–Fitness Correlation

In the versions that we have seen, the probabilities on the information links are simply
0 or 1, and the links are purely “social” ones, not related to any distance. A particle
may inform another one in the same way, no matter whether it is very far or or very
near. Nevertheless, it may happen that the nearer a particle is near to a good position,
the more its own value improves.

In fact, for any classical iterative algorithm, this property has to be true on average
for the efficiency to be better than the at of a pure random search [14]. Therefore,
it is tempting to take advantage of this kind of information. For example, in [61],
some “distance versus value” ratios were computed for each dimension, and a new
position was built from those of the particles that had the best ratios.

For SPSO 2011, to keep the property that the algorithm does not depend on the
system of coordinates, one can simply evaluate a distance–value correlation around
a good position, and modify accordingly the center and the radius of the hypersphere
that is the support of the DNPP. The idea is that the higher the correlation, the more
interesting it is to focus the search around this good position.

218 M. Clerc

Fig. 8.7 SPSO 2011 on
Tripod. Two trajectories. The

starting point is and the

final point is . Out of 40
particles, only about ten
converge to the solution, as
in (a), the others coverage to
a point that is not even a
local minimum, as in (b)

(a)

(b)

Formalization

Selection of the D particles
(
xα1 , . . . , xαD

)
that are nearest to pg (t).
The values of their positions are

(
fα1 , . . . , fαD

)
Compute the Euclidean distances dα j = ∥∥xα j − pg (t)

∥∥
Compute the averaged correlation coefficient

ρ =
∑D

j=1

(
fα j − f (pg(t))

)
dα j

var(fα1−f(pg(t)),...,fαD−f(pg(t)))var(dα1 ,...,dαD)

8 Particle Swarms 219

Center of the hypersphere, depending on ρ:
if ρ ≥ 0, G (ρ) = G (0) + ρ

(
pg (t) − G (0)

)
, else G (ρ) =

G (0) − ρ (x (t) − G (0)),
where G (0) is the center G as computed in SPSO 2011
Radius of the hypersphere, depending on ρ:
r (ρ) = rmax − ρ+1

2 rmax

where rmax is the radius r as computed in SPSO 2011

In this rudimentary linear formalization, the radius is zero when the correlation is
perfect (ρ = 1). In that case, the particle simply keeps moving in the same direction,
but more slowly.

8.6.3 Comparison of Three Simple Variants

Table8.1 give the success rates (on 13 problems, with 100 runs for each) of the three
algorithms that we have seen, namely SPSO 2007, SPSO 2011, and its variant with
distance–fitness correlation. The details of these problems are not important (the last
six are in [73], except that the last two ones are not rotated). What matters is the
variation of the success rate.

Even though, on average, there is an improvement, this is not always the case for
each problem, taken one by one. In fact, this test bed was constructed precisely to
show that the way the problems are chosen is important (see the discussion in the
Sect. 8.6.4.3). In passing, we can see that these versions of PSO are not suitable for
binary problems (Network) or for very difficult ones (Shifted Rastrigin). That is why
more specific variants are sometimes needed.

8.6.4 About Some Traps

When using PSO, researchers and users can fall into some traps.
In fact, these kinds of pitfalls can occur in many other methods as well. For a

researcher, the deceitfully intuitive character of the method can lead them to take
some particular behavior for granted, when this is not true in reality. A user, who
thinks, on the evidence of a published article, that a particular variant should be
effective in the scenario, described there can be disappointed because the benchmark
used in the article is not representative enough of real problems.

In both cases, the use of pseudo-randomness can lead to surprises because the
various generators are not equivalent. Let us give some examples here.

220 M. Clerc

Table 8.1 Success rates on 13 problems. There is not always an improvement in all cases, but on
average each variant is probably better than the previous one

Space Number of
evaluations
accuracy

SPSO 2007 SPSO 2011 SPSO 2011 +
correlation

1 Tripod [−100, 100]2 10 000 49 79 62

0.0001

2 Network {0, 1}38 5 000 0 0 0

× [0, 20]4 0

3 Step [−100, 100]10 2500 100 99 100

0.0

4 Lennard–Jones
(5 atoms)

[−2, 2]15 635 000
10−6

94 50 100

5 Gear train
(complete)

{12, . . . 60}4 20 000
10−13

8 58 30

6 Perm
(complete)

{−5, . . . , 5}5 10 000
0

14 36 49

7 Compression
spring

{1, . . . , 70} ×
[0, 6, 3] [0, 207, 0,
208, …, 0, 5]

20 000
10−10

35 81 88

8 Shifted sphere [−100, 100]30 200 000
0.0

100 100 100

9 Shifted
Rosenbrock

[−100, 100]10 100 000
0.01

71 50 74

10 Shifted
Rastrigin

[−5, 12, 5, 12]30 300 000
0.01

0 0 0

11 Shifted
Schwefel

[−100, 100]10 100 000
10−5

100 100 100

12 Shifted
Griewank

[−600, 600]10 100 000
0.01

7 39 33

13 Shifted Ackley [−32, 32]10 100 000
10−4

99 100 100

Mean 52.07 60.9 63.02

8 Particle Swarms 221

8.6.4.1 Exploitation and Exploration

Two important features of an iterative algorithm are exploration (of the search space)
and exploitation (around a promising position), sometimes called diversification and
intensification.

We sometimes assert that the balance between the two is crucial for the efficiency
of the algorithm, without verifying this statement with the help of a measurable
definition of these notions. In the context of PSO, this is nevertheless rather easy,
because the promising positions are the best positions stored by the particles.

Thus, it is enough to formalize the expression “around” to define exploitation
and, by complementarity, the exploration. When the algorithm works dimension by
dimension, as in numerous versions, we may use, for example, a hyperparallelepiped
containing the promising position. When the algorithm is independent of the system
of coordinates, we use a hypersphere. We can then calculate a ratio of exploitation
to exploration, follow its evolution, and look to see if there is a correlation between
this ratio and the efficiency.

The important point is that, experimentally, no correlation of this kind seems to
exist, for PSO. The ratio can, evolve in a very unbalanced way and the algorithm can
nevertheless be very effective, and the opposite can also be true. This is because the
optimum can in fact be found in several different ways, such as “in passing” by a
single particle of not insignificant speed, or collectively by a set of particles whose
speeds tend towards zero. There is a trap here for the researcher who, in finalising a
new variant, assumes intuitively, but maybe wrongly, that it is necessary to improve
the balance between exploitation and exploration to be more efficient.

Formalization in the Dimension-by-Dimension Case

For every dimension d, we sort the coordinates of the “good” stored positions p j (t)
in increasing order. We then have

xmin,d ≤ pαd (1),d (t) ≤ · · · ≤ pαd (S),d ≤ xmax,d

By convention,wewrite pαd (0),d = xmin,d and pαd (S+1),d = xmax,d.We then say that
xi (t + 1) is an exploitation point around p j (t) if, for all dimensions d, if αd (k) = j ,
then

p j,d (t) − δ
(

p j,d (t) − pα(k−1),d (t)
) ≤ xi,d (t + 1) ≤ p j,d (t) + δ

(
pα(k+1),d (t) − p j,d (t)

)

where δ is a coefficient smaller than 1/2 (typically 1/3).

8.6.4.2 Success Rate

When random numbers are used, we can calculate an estimate of the success rate
for a given problem by executing the algorithm several times, having defined what
“success”means. Classically, in the case ofminimization, this is a question of finding

222 M. Clerc

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Number of runs

Su
cc

es
s

ra
te

Fig. 8.8 Typical evolution of a success rate with the number of runs. After 30 runs, the estimated
rate is 73%, while the real value is about 61%

a position in the definition space whose value is lower than a predefined threshold.
If we run the algorithm M times and there are m successes, the estimate of the rate
is m/M . But how much can we trust it?

If, for a given problem and a given algorithm we draw a curve of success rate
versus number of runs, very generally it oscillates before it more or less stabilizes,
sometimes after only a lot of runs, as shown in Fig. 8.8. It is thus useful to estimate
statistical distribution and, at least, its mean and standard deviation.

To do this, we can launch 100 runs 100 times (of course, without resetting the
RNG) for example. The 100 rates obtained allow us to draw a curve such as that in
Fig. 8.9. It is not rare that for 30 executions, the standard deviation is at least 10%
and, so that it is lower than 1%, more than 1000 executions are sometimes necessary.

So, for a given problem, if we run Algorithm A 30 times with a success rate of,
let us say, 60%, and then run Algorithm B 30 times with a 55% success rate, it is
risky to conclude from this that A is better than B.

8.6.4.3 The Benchmark

No benchmark can reflect the diversity of real problems. Nevertheless, we can try to
make it representative enough so that if the results of an algorithm are satisfactory
with it, there is a good chance that this is also the case for the end user’s problems.

In this respect, as already indicated, numerous variants of PSO show the inconve-
nient feature that they can find the solution more easily if it has a “special” position,
for example on an axis or a diagonal of the definition, space or, to an even greater
extent, in the center. Such problems are said to be biased [72] and thus must be
banned thus totally in a benchmark.

8 Particle Swarms 223

50 55 60 65 70 75 80
0

0.05

0.1

0.15

0.2

0,25

0.3

Class of success rate

Pr
ob

ab
ilit

y
de

ns
ity

Fig. 8.9 Typical statistical distribution of a success rate. Estimation according to 100 series of 100
runs. Here, the standard deviation remains even greater than 4%

Besides, it is very easy, and even very attractive, to choose a benchmark which
overestimates the capacities of an algorithm. For example, if we consider the algo-
rithms used to obtain the results shown in Table8.1, and if we remove the Problems
4, 9, and 13, we can conclude that SPSO 2011 is always much better than SPSO
2007, which is wrong.

8.6.5 On the Importance of the Generators of Numbers

Almost all versions of PSO are stochastic and presume that their random number
generators are perfect. This is obviously wrong when the RNGs are coded, rather
than being derived from material systems (quantum, for example). For example,
many coded RNGs are cyclic.

Two consequences of this imperfect character must be taken into account. On one
hand, the results of statistical tests which assume independence of the successive runs
must be considered with caution because, once the number of generated numbers is
approximately equal to the half of the length of the cycle, the runs cannot validly be
considered as independent anymore. On the other hand, for the same problem and the
same algorithm, the use of different generators can give results that are themselves
appreciably different, as shown in the Table8.2 and Fig. 8.10.

As Hellekalek [25] writes:

Do not trust simulation results produced by only one (type of) generator, check the results
with widely different generators before taking them. seriously

224 M. Clerc

Table 8.2 Comparison of results given by SPSO 2011 on 13 problems with two RNGs, KISS [43]
and Mersenne-Twister [44]. The success rate is given as a percentage. For certain problems (Gear
Train, Shifted Griewank), the difference is significant

Problem KISS Mersenne Twister

Success rate Mean error Success rate Mean error

Tripod 79 0.146 72 0154

Network
optimization

0 108.7 0 111.8

Step 99 0.01 99 0.01

Lennard–Jones 50 0.168 48 0.189

Gear train 58 1.9 × 10−11 46 2.6 × 10−11

Perm function 36 308.78 29 342.79

Compression
spring

81 0.0033 79 0.0035

Shifted sphere 100 0 100 0

Shifted
Rosenbrocka

50 57.67 46 59.46

Shifted Rastrigin 0 51.2 0 48.7

Schwefel 100 8.63 × 10−6 100 9.81 × 10−6

Shifted Griewank 39 0.0216 32 0.0223

Shifted Ackley 100 8.76 × 10−5 100 8.86 × 10−5

Mean 60.9 % 57.8 %
aFor this problem the mean values are not significant, for over 100 runs, the variance is extremely
large

Fig. 8.10 SPSO 2011. Relative differences of means for 13 problems, over 100 runs, with the
RNGs KISS and Mersenne-Twister

8 Particle Swarms 225

References

1. Al-Sharhan, S., Omran, M.: A parameter-free barebones particle swarm algorithm for unsu-
pervised pattern classification. International Journal of Hybrid Intelligent Systems 9, 135–143
(2012)

2. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in
electric power systems. IEEETranslation onEvolutionaryComputation 13(4), 913–918 (2009).
doi:10.1109/TEVC.2006.880326

3. Auger, A., Hansen, N., Perez Zerpa, J.M., Ros, R., Schoenauer, M.: Empirical comparisons of
several derivative free optimization algorithms. In: Acte du 9me colloque national en calcul
des structures, vol. 1, pp. 481–486. Giens, France (2009). In Practice (2009) Volume: 5526,
Publisher: Springer Berlin Heidelberg, Pages: 3–15

4. VandenBergh, F.:Ananalysis of particle swarmoptimizers. Ph.D. thesis,University of Pretoria,
Pretoria, South Africa (2002)

5. Bird, S., Li, X.: Adaptively choosing niching parameters in a PSO. In: GECCO 2006 - Genetic
and Evolutionary Computation Conference, vol. 1, pp. 3–9 (2006)

6. Blackwell, T.M., Bentley, P.J.: Dynamic search with charged swarms. In: Genetic and Evolu-
tionary Computation Conference, pp. 19–26. Morgan Kaufmann, San Francisco (2002)

7. Carlisle, A., Dozier, G.: An off-the-shelf PSO. In: Workshop on Particle Swarm Optimization,
Purdue School of Engineering and Technology, INPUI, Indianapolis (2001)

8. Carvalho, D.F.de, Bastos-Filho, C.J.A.: Clan particle swarm optimization. International
Journal of Intelligent Computing and Cybernetics 2(2), 197–227 (2009). doi:10.1108/
17563780910959875

9. Clerc, M.: TRIBES—Un exemple d’optimisation par essaim particulaire sans paramètres
de contrôle. In: OEP’03 (Optimisation par Essaim Particulaire), Paris (2003). http://www.
particleswarm.info/oep_2003/

10. Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem.
In: New Optimization Techniques in Engineering, pp. 219–239. Springer, Heidelberg (2004)

11. Clerc, M.: L’optimisation par essaims particulaires. Versions paramétriques et adaptatives.
Hermés Science (2005)

12. Clerc, M.: Confinements and Biases in Particle Swarm Optimisation. Technical report, Open
Archive HAL (2006). https://hal.archives-ouvertes.fr/hal-00122799

13. Clerc, M.: Particle swarm optimization. In: ISTE (International Scientific and Technical Ency-
clopedia) (2006)

14. Clerc, M.: When nearer is better (2007). http://hal.archives-ouvertes.fr/hal-00137320.
15. Clerc, M.: List Based PSO for Real Problems. Technical report, Open Archive HAL (2012).

http://hal.archives-ouvertes.fr/docs/00/76/49/94/PDF/List_Based_PSO.pdf
16. Clerc, M.: Cooperation Mechanisms in Particle Swarm Optimisation, in Nature Inspired Com-

puting: Theory and Industrial Application. CNRS, Centre pour la Communication Scientifique
Directe (CCSD) (2013). http://hal.archives-ouvertes.fr/hal-00868161

17. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a mul-
tidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73
(2002)

18. Cooren, Y., Clerc, M., Siarry, P.: Initialization and displacement of the particles in TRIBES,
a parameter-free particle swarm optimization algorithm. In: C. Cotta, M. Sevaux, K. Srensen
(eds.) Adaptive and Multilevel Metaheuristics, Studies in Computational Intelligence, vol. 136,
pp. 199–219. Springer, Berlin, Heidelberg (2008)

19. Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle
swarm optimization algorithm. Swarm Intelligence 3, 149–178 (2009). doi:10.1007/s11721-
009-0026-8

20. Deroussi, L., Gourgand, M., Kemmoe S., Quilliot, A.: Discrete Particle Swarm Optimization
for the Permutation Flow Shop Problem. Technical report, LIMOS CNRS UMR 6158 (2006)

21. Dos Santos Coelho, L., Alotto, P.: TRIBES optimization algorithm applied to the Loney’s
solenoid. IEEE Transactions on Magnetics 45(3), 1526–1529 (2009)

http://dx.doi.org/10.1109/TEVC.2006.880326
http://dx.doi.org/10.1108/17563780910959875
http://dx.doi.org/10.1108/17563780910959875
http://www.particleswarm.info/oep_2003/
http://www.particleswarm.info/oep_2003/
https://hal.archives-ouvertes.fr/hal-00122799
http://hal.archives-ouvertes.fr/hal-00137320
http://hal.archives-ouvertes.fr/docs/00/76/49/94/PDF/List_Based_PSO.pdf
http://hal.archives-ouvertes.fr/hal-00868161
http://dx.doi.org/10.1007/s11721-009-0026-8
http://dx.doi.org/10.1007/s11721-009-0026-8

226 M. Clerc

22. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm
optimization. In: International Congress on Evolutionary Computation, pp. 84–88. IEEEPress,
Pistacataway, NJ (2000)

23. El-Abd, M.: Cooperative models of particle swarm optimizers. Ph.D. thesis, University of
Waterloo, Ontario, Canada (2008)

24. Eslami, M., Shareef, H., Khajehzadeh, M., Mohamed, A.: A survey of the state of the art in par-
ticle swarm optimization. Research Journal of Applied Sciences, Engineering and Technology
4(9), 1181–1197 (2012)

25. Hellekalek, P.: Good random number generators are (not so) easy to find. Mathematics and
Computers in Simulation, 46, 485–505 (1998)

26. Helwig, S.: Particle swarms for constrained optimization. Ph.D. thesis, Technischen Fakultät
der Universität Erlangen-Nürnberg (2010)

27. Helwig, S., Neumann, F., Wanka, R.: Particle swarm optimization with velocity adaptation.
In: International Conference on Adaptive and Intelligent Systems (ICAIS), Klangenfurt, pp.
146–151. IEEE press (2009).

28. Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded search
spaces. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, pp. 198–
205. IEEE Press (2007)

29. Innocente, M.S.: Development and testing of a particle swarm optimizer to handle hard uncon-
strained and constrained problems. Ph.D. thesis, Swansea University, UK (2010)

30. Ismail, A., Engelbrecht, A.P.: The self-adaptive comprehensive learning particle swarm opti-
mizer. In: M. Dorigo, M. Birattari, C. Blum, A.L. Christensen, A.P. Engelbrecht, R. Gross,
T. Stützle (eds.) Swarm Intelligence, Lecture Notes in Computer Science, vol. 7461, pp. 156–
167. Springer, Berlin, Heidelberg (2012)

31. Iwasaki, N., Yasuda, K., Ueno, G.: Dynamic parameter tuning of particle swarm optimization.
IEEJ Transactions on Electrical and Electronic Engineering 1(4), 353–363 (2006)

32. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive vari-
ant. IEEE Transactions on Syststems, Man and Cybernetics B: Cybernetics 35(6), 1272–1282
(2005)

33. Jordan, J., Helwig, S., Wanka, R.: Social interaction in particle swarm optimization, the ranked
FIPS, and adaptive multi-swarms. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO08), Atlanta, Georgia, pp. 49–56. ACM Press (2008)

34. Kennedy, J.: Bare bones particle swarms. In: IEEE Swarm Intelligence Symposium, pp. 80–87
(2003).

35. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann (2001)
36. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference

on Neural Networks, vol. IV, pp. 1942–1948. IEEE Press, Piscataway, NJ (1995)
37. Kothari, V., Anuradha, J., Shah, S., Mittal, P.: A survey on particle swarm optimization in

feature selection. In: P.V. Krishna, M.R. Babu, E. Ariwa (eds.) Global Trends in Information
Systems and Software Applications. Communications in Computer and Information Science,
vol. 270, pp. 192–201. Springer, Berlin, Heidelberg (2012)

38. Kulkarni, R.V., Venayagamoorthy, G.K.: Particle swarm optimization in wireless-sensor net-
works: A brief survey. IEEE Transaction on Systems Man, Cybernetics Part C 41(2), 262–267
(2011). doi:10.1109/TSMCC.2010.2054080

39. Lane, J., Andries, E., Gain, J.: Particle swarm optimization with spatially meaningful neigh-
bours. In: Proceedings of the 2008 IEEE Swarm Intelligence Symposium, pp. 1–8. IEEE Press,
Piscataway, NJ (2008)

40. Langdon,W.B., Poli, R.: Evolving problems to learn about particle swarm optimizers and other
search algorithms. IEEE Transactions on Evolutionary Computation 11(5), 561–578 (2007)

41. Li, C.: Particle swarm optimization in stationary and dynamic environments. Ph.D. thesis,
University of Leicester, UK (2010)

42. Li, X.: A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio.
In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’07, pp. 78–85. ACM, New York (2007). doi:10.1145/1276958.1276970

http://dx.doi.org/10.1109/TSMCC.2010.2054080
http://dx.doi.org/10.1145/1276958.1276970

8 Particle Swarms 227

43. Marsaglia, G., Zaman, A.: The KISS Generator. Technical report, Deptartment of Statistics,
University of Florida (1993)

44. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation 8(1), 3–30 (1998)

45. Mekni, S., Chaâr, B.F., Ksouri, M.: Flexible job-shop scheduling with TRIBES-PSO approach.
Journal of Computing 3(6), 97–105 (2011)

46. Mendes, R.: Population topologies and their influence in particle swarm performance. Ph.D.
thesis, Universidade do Minho (2004)

47. Mendes, R., Kennedy, J., Neves, J.: Fully informed particle swarm: simpler, maybe better. IEEE
Transactions on Evolutionary Computation 8, 204–210 (2004)

48. Miranda, V., Keko, H., Duque, A.J.: Stochastic star communication topology in evolutionary
particle swarms (EPSO). International Journal of Computational Intelligence Research, 4(2),
105–116 (2008)

49. Mohais, A.: Random dynamic neighbourhood structures in particle swarm optimisation. Ph.D.
thesis, University of the West Indies (2007)

50. Monson, C.K., Seppi, K.D.: Exposing origin-seeking bias in PSO. In:GECCO’05,Washington,
DC, pp. 241–248 (2005)

51. Nguyen, X.H., Nguyen, Q.U., McKay, R.I.: PSOwith randomized low-discrepancy sequences.
In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’07, pp. 173–173. ACM, New York (2007). doi:10.1145/1276958.1276987

52. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563
(2006)

53. Olsson, A.: Particle Swarm Optimization: Theory, Techniques and Applications. Engineering
Tools, Techniques and Tables. Nova Science (2011)

54. Omran, M.G.H., al Sharhan, S., Salman, A., Clerc, M.: Studying the effect of using low-
discrepancy sequences to initialize population-based optimization algorithms. Computational
Optimization and Applications, 56(2), 457–480 (2013). doi:10.1007/s10589-013-9559-2

55. Padhye, N.: Development of efficient particle swarm optimizers and bound handling methods.
Master’s thesis, Indian Institute of Technology, Kanpur 208016, India (2010)

56. Panigrahi, B.K., Shi, Y., Lim, M.H. (eds.): Handbook of Swarm Intelligence: Concepts, Prin-
ciples and Applications. Springer (2011)

57. Pant, M., Thangaraj, R., Grosan, C., Abraham, A.: Improved particle swarm optimization with
low-discrepancy sequences. In: IEEE Congress on Evolutionary Computation, 2008, CEC
2008, (IEEE World Congress on Computational Intelligence), pp. 3011–3018 (2008). doi:10.
1109/CEC.2008.4631204

58. Parsopoulos, K., Vrahatis, M.: Particle swarm optimization and intelligence: advances and
applications. IGI Global (2009)

59. Parsopoulos,K.E.,Vrahatis,M.N.: Parameter selection and adaptation in unified particle swarm
optimization. Mathematical and Computer Modelling 46, 198–213 (2007)

60. Parsopoulos, K.E., Vrahatis, M.N. (eds.): Particle swarm optimization and intelligence:
advances and applications. Information Science Reference, Hershey, NY (2010)

61. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm
optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS ’03)
(2003)

62. Pierobom, J.L., Delgado, M.R., Kaestner, C.A.: Particle swarm optimization applied to task
assignment problem. In: 10th Brazilian Congress on Computational Intelligence (CBIC’ 2011),
Fortaleza, Cear. Brazilian Society of Computational Intelligence (SBIC) (2011)

63. Poli, R.: Analysis of publications on particle swarm optimisation applications. Journal of Arti-
ficial Evolution and Applications, Article ID 685175 (2008)

64. Poli, R.: Dynamics and stability of the sampling distribution of particle swarm optimisers via
moment analysis. Journal of Artificial Evolution and Applications, Article ID 761459 (2008)

65. Poli, R., Kennedy, J., Blackwell, T.: Particle Swarms: The Second Decade. Hindawi (2008)
66. Particle Swarm Central: Home Page. http://www.particleswarm.info

http://dx.doi.org/10.1145/1276958.1276987
http://dx.doi.org/10.1007/s10589-013-9559-2
http://dx.doi.org/10.1109/CEC.2008.4631204
http://dx.doi.org/10.1109/CEC.2008.4631204
http://www.particleswarm.info

228 M. Clerc

67. Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: a survey of the
state-of-the-art. International Journal of Computational Intelligence Research 2(3), 287–308
(2006)

68. Richards, M., Ventura, D.: Dynamic sociometry and population size in particle swarm opti-
mization. pp. 1557–1560. In: Sixth International Conference on Computational Intelligence
and Natural Computing, pp. 1557–1560 (2003)

69. Sallust: La guerre de Jugurtha. Belles Lettres (2002)
70. Shi, Y.H., Eberhart, R.C.: A Modified Particle swarm optimizer. In: International Conference

on Evolutionary Computation, pp. 69–73. IEEE Press, Piscataway, NJ (1998)
71. Souad Larabi, M.S., Ruiz-Gazen, A., Berro, A.: TRIBES : une méthode d’optimisation efficace

pour révéler des optima locaux d’un indice de projection. In: ROADEF (2010)
72. Spears, W.M., Green, D.T., Spears, D.F.: Biases in particle swarm optimization. International

Journal of Swarm Intelligence Research 1(2), 34–57 (2010)
73. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem Defini-

tions and Evaluation Criteria for the CEC 2005 Special Session on Real Parameter Optimiza-
tion. Technical report, Nanyang Technological University, Singapore (2005)

74. Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and parameter
selection (2003)

75. Ueno, G., Yasuda, K., Iwasaki, N.: Robust adaptive particle swarm optimization. In: Systems,
Man and Cybernetics, 2005 IEEE International Conference on, vol. 4, pp. 3915–3920 Vol. 4
(2005). doi:10.1109/ICSMC.2005.1571757

76. Wilke, D.N., Kok, S., Groenwold, A.A.: Comparison of linear and classical velocity update
rules in particle swarm optimization: notes on scale and frame invariance. International Journal
forNumericalMethods in Engineering 70(8), 985–1008 (2007). doi:10.1002/nme.1914. Linear
PSO

77. Xie, X.F., Zhang, W., Yang, Z.L.: Adaptive particle swarm optimization on individual level.
In: International Conference on Signal Processing (ICSP 2002). Beijing, China (2002)

78. Yasuda, K., Yazawa,K.,Motoki,M.: Particle swarmoptimizationwith parameter self-adjusting
mechanism. IEEJ Transactions on Electrical and Electronic Engineering 5(2), 256–257 (2010).
doi:10.1002/tee.20525

79. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.H.: Adaptive particle swarm optimization. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B 39(6), 1362–1381 (2009)

80. Zou, Q., Ji, J., Zhang, S., Shi, M., Luo, Y.: Model predictive control based on particle swarm
optimization of greenhouse climate for saving energy consumption. In: World Automation
Congress (WAC), 2010, pp. 123–128 (2010)

http://dx.doi.org/10.1109/ICSMC.2005.1571757
http://dx.doi.org/10.1002/nme.1914
http://dx.doi.org/10.1002/tee.20525

Chapter 9
Some Other Metaheuristics

Ilhem Boussaïd

9.1 Introduction

In the last thirty years, great interest has been shown in metaheuristics. We can
try to indicate some of the steps that have marked the history of metaheuristics.
One pioneering contribution was the proposal of the simulated annealing method
by Kirkpatrick et al. in 1983 [46]. In 1986, the tabu search method was proposed
by Glover [28], and the artificial immune system was proposed by Farmer et al.
[21]. In 1988, Koza registered his first patent on genetic programming, later pub-
lished in 1992 [48]. In 1989, Goldberg published a well-known book on genetic
algorithms [30]. In 1992, Dorigo completed his Ph.D. thesis, in which he described
his innovative work on ant colony optimization [20]. In 1993, the first algorithm
based on bee colonies was proposed by Walker et al. [98]. Another significant step
was the development of the particle swarm optimization method by Kennedy and
Eberhart in 1995 [44]. In the same year, Hansen et al. proposed CMA-ES (Covari-
ance Matrix Adaptation Evolution Strategy) [35] and [22] proposed the GRASP
method (Greedy Randomized Adaptive Search Procedure). In 1996, Mühlenbein
and Paaß proposed the estimation of distribution algorithm [59]. In 1997, Storn
and Price proposed the differential evolution algorithm [89]. In 2001, Geem et al.,
inspired by the improvisation process of music performers, proposed the harmony
search algorithm [27]. In 2002, Passino introduced an optimization algorithm based
on the social foraging behavior of Escherichia coli bacteria [64]. In 2006, a new
population-based optimization algorithm, called the group search optimizer, which
was based on the producer–scrounger model,1 was proposed by He et al. [40]. In

1Group Search Optimizer is based on the behavior of animals living in groups, where producers
search to find food and scroungers search for joining opportunities.

I. Boussaïd (B)
University of Sciences and Technology Houari Boumediene, El-Alia BP 32,
16111 Bab-Ezzouar, Algiers, Algeria
e-mail: iboussaid@usthb.dz

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_9

229

230 I. Boussaïd

2008, Simon proposed a biogeography-based optimization algorithm [86], which
was strongly influenced by the equilibrium theory of island biogeography [55]. In
2009, Xin-She Yang and Suash Deb proposed cuckoo search [104]. This algorithm
is based on the breeding behavior of some cuckoo species in combination with the
Lévy flight behavior of some birds and fruit flies. In the same year, Rashedi et al. [71]
proposed the gravitational search algorithm based on a simulation of the behavior
of Newton’s gravitational force. In 2010, Yang [103] proposed a new metaheuristic
method, the bat-inspired algorithm, based on the echolocation behavior of bats.

The better-knownmetaheuristics have been presented in the first part of this book.
We present in this chapter a nonexhaustive collection of some other metaheuristics.
The omission of some algorithms does not mean they are not popular, but it is not
possible to include all algorithms. In what follows we present:

• artificial immune systems;
• the differential evolution algorithm;
• the bacterial foraging optimization algorithm;
• biogeography-based optimization;
• cultural algorithms;
• coevolutionary algorithms.

9.2 Artificial Immune Systems

The immune system is a network of cells, tissues, and organs that work together
to protect organisms from pathogens (harmful microorganisms such as bacteria and
viruses) without prior knowledge of their structure. Recent work in immunology
has characterized the immune system as a cognitive network capable of adaptation,
recognition, learning, and memory, as pointed out by Anspach and Varela [3]. The
organization of the immune system into a communication network gives it three
essential properties: (1) a large capacity for information exchange; (2) strong reg-
ulation to maintain a steady state equilibrium in the immune system in order to
achieve an adaptive immune response; and (3) powerful effector functions that are
essential for maintaining the integrity of the immune system. These properties, along
with the highly distributed and self-organizing nature of the immune system offers
rich metaphors for its artificial counterpart. Research into artificial immune systems
(AIS) emerged in the mid 1980s with articles authored by Farmer, Packard, and
Perelson [21]. It attempts to apply principles of the immune system to optimization
and machine learning problems.

Below we present the immune system from the biological viewpoint by introduc-
ing some of the basic principles.

The immune system is often divided into two distinct but interrelated subsys-
tems, namely the innate (or nonspecific) immune system and the adaptive (specific
or acquired) immune system. The innate immune system constitutes the first line
of defense of the host in the early stages of infection. It is so called because the

9 Some Other Metaheuristics 231

body is born with the ability to recognize certain microbes and immediately destroy
them. The innate immune response is mediated primarily by phagocytic cells and
antigen-presenting cells (APCs), such as granulocytes, macrophages, and dendritic
cells (DCs). In order to detect invading pathogens and initiate the innate immune
response, the immune system is equipped with receptors called pattern recognition
receptors. These receptors are activated by pathogen-associated molecular patterns
(PAMPs) present in microbial molecules or by damage-associated molecular pat-
terns (DAMPs) exposed on the surface of, or released by, damaged cells.

In contrast to innate immunity, specific immunity allows a targeted response
against a specific pathogen. The adaptive immune system is organized around two
classes of specialized lymphocytes, more specifically B lymphocytes (or B-cells) and
T lymphocyte (or T-cells). B-cells canmature and differentiate into plasma cells capa-
ble of secreting special Y-shaped proteins called antibodies. Unlike B-cells, which
attack targets indirectly by secreting antibodies, T-cells directly attack the invading
organism; however, they are not able to recognize antigens without the help of other
cells. These cells, known as APCs, process and display the antigen to which the
T-cell is specific. In each case, the B- or T-cell is specific to a particular antigen. The
specificity of binding resides in the antigen receptors on B-cells (the B-cell receptor)
and T-cells (the T-cell receptor). See Fig. 9.1 for an illustration of the recognition of
an antigen by B-cell and T-cell receptors.

Principles drawn from immune systems, including pattern recognition, hypermu-
tation, clonal selection, the danger theory, the theory of immune networks, and many
others, have inspired many researchers in the design of tools to solve complex tasks.
The existing algorithms can be divided into four categories:

Fig. 9.1 Antigen recognition by B-cell and T-cell receptors. An epitope is the part of an antigen
that is recognized by the immune system. There are recognized by specific T-cells, B-cells, and the
antibody produced by B-cells

232 I. Boussaïd

1. Negative selection-based algorithms [24].
2. Artificial immune networks [42].
3. Clonal selection-based algorithms [10].
4. Danger theory-inspired algorithms [2] and dendritic cell algorithms [32].

Readers who wish to obtain more detailed information about AIS algorithms are
recommended to examine [94]. There are several reviews of AIS research [37, 38,
93, 107], and a number of books including [8, 17], covering the field. Themost recent
and most comprehensive survey of AIS is possibly that of Dasgupta et al. [18].

9.2.1 Negative-Selection-Based Algorithms

The key feature of a healthy immune system is its remarkable ability to distinguish
between the body’s own cells, recognized as “self,” and foreign cells, or “nonself.”
Negative selection is the main mechanism in the thymus that eliminates self-reactive
cells, i.e., T-cells whose receptors recognize and bind with self antigens presented in
the thymus. Thus, only T-cells that do not bind to self-proteins are allowed to leave
the thymus. These mature T-cells then circulate throughout the body, performing
immunological functions and protecting the body against foreign antigens.

The negative selection algorithm is based on the principles of self–nonself dis-
crimination in the immune system and was initially introduced by Forrest et al. in
1994 [24] to detect data manipulation caused by a virus in a computer system. The
starting point of this algorithm is the production of a set of self strings, (S), that
define the normal state of the system. The task is then to generate a set of detectors,
(D), that only bind/recognize the complement of (S). These detectors can then be
applied to new data in order to classify them as being self or nonself. This negative
selection algorithm is summarized in Algorithm 9.1.

input : Sseen = set of seen known self elements

output: D = set of generated detectors

repeat
Randomly generate potential detectors and place them in a set (P)

Determine the affinity of each member of (P) with each member of the self set (Sseen)

if At least one element in (S) recognizes a detector in (P) according to a recognition
threshold then

The detector is rejected

else
The detector is added to the set of available detectors (D)

end

until stopping criteria have been met

Algorithm 9.1: Generic negative selection algorithm.

9 Some Other Metaheuristics 233

A diverse family of negative selection algorithms has been developed and has been
used extensively in anomaly detection. A survey of negative selection algorithms
was published in [43]. Some other researchers have proposed negative selection
algorithms, which can be found in [18, 94].

9.2.2 Clonal Selection-Based Algorithms

The clonal selection theory postulates that a vast repertoire of different B-cells, each
encoding antibodies with a predetermined shape and specificity, is generated prior to
any exposure to an antigen. Exposure to an antigen then results in the proliferation, or
clonal expansion, of only those B-cells with antibody receptors capable of reacting
with part of the antigen. However, any clone of activated B-cells with antigen recep-
tors specific to molecules of the organism’s own body (self-reactive receptors) is
eliminated. Here, the affinity maturation of the B-cells takes place. During prolifera-
tion, a hypermutation mechanism becomes activated, which diversifies the repertoire
of the B-cells. The antigen ensures that only those B-cells with high-affinity recep-
tors are selected to differentiate into plasma cells and memory cells. Memory B-cells
are developed to generate a more effective immune response to antigens that have
previously been encountered. Figure9.2 illustrates the principle of clonal selection.

Many algorithms have been inspired by the adaptive immune mechanisms of B-
cells [18]. The general algorithm, named CLONALG [10], is based on the principles
of clonal selection and affinity maturation. One generation of cells in this algorithm
includes the initiation of candidate solutions, selection, cloning, mutation, reselec-
tion, and population replacement; these processes are somewhat similar to what
happens in evolutionary algorithms. When applied to pattern matching, CLONALG
produces a set of memory antibodies, (M), that match the members in a set (S) of
patterns considered to be antigens. Algorithm 9.2 outlines the working of CLON-
ALG.

Fig. 9.2 Principles of clonal
selection and affinity
maturation

234 I. Boussaïd

Many other clonal selection-based algorithms have been introduced in the litera-
ture and have been applied to a wide range of optimization and clustering problems
[38]. A summary of the basic features of these algorithms, their areas of application,
and their hybridization was published in [97].

input : (S) = set of patterns to be recognized, n number of worst elements to be selected for
removal

output: (M) = set of memory detectors capable of classifying unseen patterns

Create an initial random set of antibodies (A)

forall the patterns in (S) do
Determine the affinity with each antibody in (A)

Generate clones of a subset of the antibodies in (A) with the highest affinity. The number
of clones of an antibody is proportional to its affinity

Mutate attributes of these clones in a manner inversely proportional to its affinity

Add these clones to the set (A), and place a copy of the highest-affinity antibodies in (A)
into the memory set (M)

Replace the n lowest-affinity antibodies in (A) with new randomly generated antibodies

end

Algorithm 9.2: Generic clonal selection algorithm.

9.2.3 Artificial Immune Networks

The immune network theory (Fig. 9.3), as originally proposed by Jerne [42], states
that the immune system is a network in which antibodies, B-cells, and T-cells recog-
nize not only things that are foreign to the body but also each other, creating a struc-
turally and functionally plastic network of cells that adapts dynamically to stimuli
over time. It is thus the interactions between cells that give rise to the emergence of
complex phenomena such as memory and other functionalities such as tolerance and
reactivity [36].

The paper by Farmer et al. [21] is considered to be a pioneering work and has
inspired a variety of immune network algorithms. One algorithm that has received
much attention is aiNet, first developed by de Castro and Von Zuben for the task of
data clustering [19] and then specialized into a series of algorithms for optimization
and data mining in a variety of domains over the following years [9, 12]. aiNet is a
simple extension of CLONALG but exploits interactions between B-cells according
to the immune network theory. The aiNet algorithm is illustrated in Algorithm 9.3.
A review of several different artificial immune network models is presented in the
paper by Galeano et al. [25]. Some other existing immune network models can be
found in [18].

9 Some Other Metaheuristics 235

Fig. 9.3 The immune
network theory. The
recognition of an antigen by
an antibody or cell receptor
leads to network activation,
whereas the recognition of
an idiotope by the antibody
results in network
suppression. The antibody
Ab2 is considered as the
internal illustration of the
external antigen Ag, since
Ab1 is able of recognizing
the antigen and Ab2 also

inputs : (S) = set of patterns to be recognized, nt = network affinity threshold, ct = clonal
pool threshold, h = number of highest-affinity clones, a = number of new antibodies
to be introduced

output: (N) = set of memory detectors capable of classifying unseen patterns

Create an initial random set of network antibodies (N)

repeat
forall the patterns in (S) do

Determine the affinity with each antibody in (N)

Generate clones of a subset of the antibodies in (N) with the highest affinity. The
number of clones of an antibody is proportional to its affinity

Mutate attributes of these clones in a manner inversely proportional to its affinity, and
place the number h of highest-affinity clones into a clonal memory set (C)

Eliminate all members of (C) whose affinity with the antigen is less than a predefined
threshold ct

Determine the affinity amongst all the antibodies in (C) and eliminate those
antibodies whose affinity with each other is less than the prespecified threshold ct

Incorporate the remaining clones in (C) into (N)

end

Determine the affinity between each pair of antibodies in (N) and eliminate all antibodies
whose affinity is less than a prespecified threshold nt

Introduce a number a of new randomly generated antibodies into (N)

until stopping condition has been met

Algorithm 9.3: Generic immune network algorithm.

9.2.4 Danger-Theory-Inspired Algorithms

The danger theory was first proposed by Polly Matzinger in 1994 [56]. This theory
attempts to explain the nature andworkings of an immune response in a way different

236 I. Boussaïd

from the widely held self–nonself viewpoint. According to the self–nonself theory,
an organism does not trigger an immune response against its own constituents (self),
whereas it triggers an immune response against all foreign (nonself) elements. The
danger theory does not deny the existence of self–nonself discrimination, but rather
states that self constituents can trigger an immune response if they are dangerous
(e.g., cellular stress and some autografts), and nonself constituents can be tolerated
if they are not dangerous (e.g., a fetus or commensal bacteria).

The dangermodel suggests that the immune response is due to the emission,within
the organism, of danger signals. Damaged or dying cells releaseDAMPs,which serve
as endogenous danger signals that alert the innate immune system to stress, unsched-
uled cell death, and microbial invasion. In contrast, PAMPs provide exogenous sig-
nals that alert the immune system to the presence of pathogenic bacteria or viruses.

Danger-theory-inspired algorithms are still in their infancy. The first paper that
proposed an application of the danger theory was published in 2002 by Aickelin and
Cayzer [2]. In 2003, Aickelin et al. proposed the Danger Project [1], an interdisci-
plinary project which aims at understanding from an immunological perspective the
mechanisms of intrusion detection in the human immune system and applying these
findings to AIS with a view to improving applications to computer security (see, for
example, [33, 45]). Secker et al. [83] explored the relevance of the danger theory to
the application domain of web mining. In [106], a novel immune algorithm inspired
by danger theory was proposed for solving two-class classification problems online.

9.2.5 Dendritic Cell Algorithms

Dendritic cells (DCs) are immune cells that form part of themammalian immune sys-
tem. Their main function is to process antigen material and present it on their surface
to other cells of the immune system, thus functioning as antigen-presenting cells and
regulators of the adaptive immune system through the production of immunoregu-
latory cytokines (immune messenger proteins). DCs are responsible for some of the
initial pathogenic recognition processes, by sampling the environment and differen-
tiating depending on the concentration of signals or the perceived misbehavior in
host tissue cells.

The maturation of immature DCs is regulated in response to various safety and
danger signals. DCs can combine these signals with bacterial signatures (or PAMPs)
to generate different output concentrations of costimulatory molecules, semimature
cytokines, and mature cytokines.

The dendritic cell algorithm (DCA) is based on an abstraction of the functionality
of biological DCs. It was first conceptualized and developed by Greensmith et al.
[32] (see Algorithm 9.4), who introduced the notion of danger signals, safety signals,
and PAMPs, which all contribute to the context of a data signal at any given time.

As stated in [31], most of the studies in which the DCA has been applied have
been related to computer security, but there are also applications to wireless sensor
networks, robotics, and scheduling of processes.

9 Some Other Metaheuristics 237

inputs : S = set of data items to be labelled safe or dangerous

output: L = set of data items labelled safe or dangerous

Create an initial population of dendritic cells (DCs), D

Create a set to contain migrated DCs, M

forall the data items in S do
Create a set of DCs randomly sampled from D, P

forall the DCs in P do
Add data items to collected list of DCs

Update danger, PAMP, and safe signal concentrations

Update concentrations of output cytokines

Migrate dendritic cell from D to M and create a new DC in D if concentration of
costimulatory molecules is above a threshold

end

end

forall the DCs in M do
Set DC to be semimature if output concentration of semimature cytokines is greater than
mature cytokines, otherwise set as mature

end

forall the data items in S do
Calculate number of times data item is presented by a mature DC and a semimature DC

Label data item as safe if presented by more semimature DCs than mature DCs,
otherwise label it as dangerous

Add data item to labelled set M
end

Algorithm 9.4: Generic dendritic cell algorithm.

Over the last few years, important investigations have focused on the proposal
of theoretical frameworks for the design of AIS [8]; theoretical investigations into
existing AIS can be found in [26, 95]. Other newly developed models have recently
been reported in the literature, for example, the humoral immune response and pattern
recognition receptor models. The interested reader is referred to [18] for a detailed
discussion of these models.

9.3 Differential Evolution

The differential evolution (DE) algorithm is one of the most popular algorithms for
continuous global optimization problems. It was proposed by Storn and Price in
the 1990s [89] in order to solve the Chebyshev polynomial fitting problem and has
proven to be a very reliable optimization strategy for many different tasks.

As in any evolutionary algorithm, a population of candidate solutions for the
optimization task to be solved is arbitrarily initialized. DE uses N D-dimensional

238 I. Boussaïd

real-valued vectors Xi,g = Xi,1,g, Xi,2,g, . . . , Xi,D,g , where g denotes the current
generation and N the number of individuals in the population. In each generation of
the evolution process, new individuals are created by applying reproduction operators
(crossover and mutation). The fitness of the resulting solutions is evaluated, and
each individual Xi,g (the target individual) of the population competes against a
new individual Ui,g (the trial individual) to determine which one will be maintained
into the next generation (g + 1). The trial individual is created by recombining the
target individual with another individual Vi,g created by mutation (called the mutant
individual). Different variants of DE have been suggested by Price et al. [70] and
are conventionally named DE/x/y/z, where DE stands for differential evolution; x
represents a string that denotes the base vector, i.e., the vector being perturbed,
which may be rand (a randomly selected population vector) or best (the best vector
in the population with respect to fitness value); y is the number of difference vectors
considered for perturbation of the base vector x; and z denotes the crossover scheme,
which may be binomial or exponential. A description of the DE algorithm is outlined
in Algorithm 9.5.

input : N = population size, f = objective function, F = constant of differentiation, C R =
crossover control parameter.

output: Xopt, which minimizes f

Initialization: Initialize the whole vector population randomly

Set the generation counter/g = 0

Evaluate the fitness of each vector in the population

repeat
for i = 1 to N do

Mutation: Compute a mutant vector Vi,g . A target vector Xi,g is mutated using a
difference vector (obtained as a weighted difference between the selected individuals)

Xi,g ⇒ Vi,g = Vi,1,g, Vi,2,g, ..., Vi,D,g

Crossover: Create a trial vector Ui,g by the crossover of Vi,g and Xi,g

end

for i = 1 to N do
Evaluate the trial vector Ui,g

Selection: Replace the population vector Xi,g by its corresponding trial vector Ui,g if
the fitness of the trial vector is better than that of its population vector:

if f (Ui,g) < f (Xi,g) then
Xi,g+1 ← Ui,g

end

end

g = g + 1

until the stopping criterion is satisfied

return the best found solution Xopt

Algorithm 9.5: Differential evolution (DE).

9 Some Other Metaheuristics 239

9.3.1 Mutation Schemes

For each target individual Xi,g in the current generation, its associated mutant indi-
vidual Vi,g is obtained through the differential mutation operation. The mutation
strategies most often used in the DE algorithm are listed below [70]:

DE/rand/1. This mutation scheme involves three distinct randomly selected individ-
uals in the population. Only one weighted difference vector is used to perturb a
randomly selected vector. The scaling factor F controls the amplification of the
differential evolution:

Vi,g = Xr1,g + F(Xr2,g − Xr3,g) (9.1)

DE/rand/2. In this mutation scheme, to create Vi,g for each i th member Xi,g , a total
of five other distinct vectors (say the r1, r2, r3, r4, and r5th vectors) are chosen in
a random way from the current population:

Vi,g = Xr1,g + F(Xr2,g − Xr3,g) + F(Xr4,g − Xr5,g) (9.2)

DE/best/1. Here the vector to be perturbed is the best vector Xbest,g of the current
population, and the perturbation is done by using a single difference vector:

Vi,g = Xbest,g + F(Xr1,g − Xr2,g) (9.3)

DE/best/2. In this mutation scheme, the mutant vector is formed by using two dif-
ference vectors, chosen at random, as shown below:

Vi,g = Xbest,g + F(Xr1,g − Xr2,g) + F(Xr3,g − Xr4,g) (9.4)

DE/current-to-best/1. The mutant vector is created using any two randomly selected
members of the population as well as the best vector in the current generation:

Vi,g = Xi,g + F(Xbest,g − Xi,g) + F(Xr1,g − Xr2,g) (9.5)

DE/rand-to best/2. The mutant vector is created using the best solution in the pop-
ulation and a total of five randomly selected members of the population:

Vi,g = Xr1,g + F(Xbest,g − Xi,g) + F(Xr2,g − Xr3,g) + F(Xr4,g − Xr5,g) (9.6)

DE/current-to-rand/1. The mutant vector is determined by the following formula:

Vi,g = Xi,g + K (Xr1,g − Xi,g) + F ′(Xr2,g − Xr3,g) (9.7)

240 I. Boussaïd

where K is the combination coefficient, chosenwith a uniform randomdistribution
from [0, 1], and F ′ = K F . For this special mutation, the mutated solution does
not undergo a crossover operation.

DE/rand/1/either-or. This mutation scheme is formulated as

Vi,g =
{

Xr1,g + F(Xr2,g − Xr3,g) if U (0, 1) < PF

Xr3,g + K (Xr1,g + Xr2,g − 2Xr3,g) otherwise
(9.8)

For a given value of F , K = 0.5(F + 1) [70]. As in DE/current-to-rand/1, when
this mutation scheme is applied, it is not followed by a crossover.

The indices r1, r2, r3, r4, r5 are randomly chosen from [1, N] and should all be
different from the running index i ; F ∈ [0, 1] is a real constant scaling factor in the
range [0, 2], usually less than 1, which controls the amplification of the difference
between two individuals so as to avoid stagnation of the search process; and Xbest,g

is the vector with the best fitness value in the population in generation g.
Figure9.4 illustrates the distribution of mutant vectors in the search space. The

mutation schemes presented above may be classified according to the location of the
vectors generated as follows [100]:

• Schemes where the vector which has the best performance (Xbest,g) is used as a
base vector, such as DE/best/1 and DE/best/2. These schemes tend to generate
descendants around the best individuals.

• Schemes using a random vector as a base vector, such as DE/rand/1, DE/rand/2,
and DE/rand-to-best/2. The mutant vectors can potentially be generated anywhere
in the vicinity of the population.

• Schemes using the current solution as a base vector, such as DE/current-to-rand/1
and DE/current-to-best/1, which can be considered as an intermediate between the
two categories above, since the mutant vectors are generated in the vicinity of the
current solution.

• Schemes involving the best solution without using it as a base vector. These
schemes consider the direction of the best individual without restricting the area
explored to its immediate vicinity.

9.3.2 Crossover

Based on the mutant vector, a trial vector Ui,g is constructed through a crossover
operation which combines components from the i th population vector Xi,g and its
corresponding mutant vector Vi,g . Two types of crossover operators are widely used
in DE, binomial (or uniform) and exponential ones. Comparative studies of the role
of crossover in differential evolution have been presented in [49, 105].

9 Some Other Metaheuristics 241

Fig. 9.4 Mutation schemes [100]

242 I. Boussaïd

In the basic version, DE employs a binomial crossover defined using the following
rule:

Ui, j,g =
{

Vi, j,g if(rand(0, 1) ≤ C R) or (j = jrand)
Xi, j,g otherwise

(9.9)

The crossover factorC R is taken randomly from the interval [0, 1] and represents the
probability of creating parameters for trial vectors from a mutant vector; the index
jrand is a randomly chosen integer in the range [1, N], and is responsible for ensuring
that the trial vector Ui,g , containing at least one parameter from the mutant vector
Vi,g , does not duplicate Xi,g; rand(0, 1) is a uniform random number in the range
[0, 1]; and j = 1, 2, . . . , D.

The exponential crossover is a two-point crossover where the first cut point is
selected randomly from 1, . . . , D and copied from the mutant vector to the corre-
sponding trial parameter, so that the trial vector will be different from the target
vector Xi,g with which it will be compared. The second cut point is determined such
that L consecutive components (counted in a circular manner) are taken from the
mutant vector Vi,g . The value of L is determined randomly by comparing C R with a
uniformly distributed number jrand between 0 and 1 that is generated anew for each
parameter. As long as jrand ≤ C R, parameters continue to be taken from the mutant
vector, but the first time that jrand > C R, the current and all remaining parameters
are taken from the target vector [70].

In both the binomial crossover and the exponential crossover, the crossover rate
parameter C R determines the distance between the generated trial vector Ui,g and
the reference vector Xi,g . Small values of C R, close to zero, result in very small
exploratory moves, aligned with a small number of axes of the search space, while
large values of C R enable a wider range of exploration of the search space [58].

The main advantage of differential evolution consists in its small number of con-
trol parameters. It has only three input parameters controlling the search process,
namely the population size N ; the constant of differentiation F , which controls the
amplification of the differential variation; and the crossover control parameter C R.
In the original version of DE, the control parameters were kept fixed during the opti-
mization process. It is not obvious how to define a priori which parameter settings
should be used, as this task is problem-specific. Therefore, some researchers (see,
for example [7, 51, 92]) have developed various strategies to make the setting of the
parameters self-adaptive according to a learning experience.

DE is currently one of the most popular heuristics for solving single-objective
optimization problems in continuous search spaces. Owing to this success, its use
has been extended to other types of problems, such as multiobjective optimization
[57]. However, DE has certain flaws, such as slow convergence and stagnation of
the population. Several modified versions of DE are available in the literature for
improving the performance of the basic DE. One class of such algorithms includes

9 Some Other Metaheuristics 243

hybridized versions, where DE is combined with some other algorithm to produce a
new algorithm. For a more detailed description of many of the existing variants and
major application areas of DE, readers should refer to [11, 16, 60].

9.4 Bacterial Foraging Optimization Algorithm

The bacterial foraging optimization algorithm (BFOA), introduced by Passino in
2002 [64], is a relatively new paradigm for solving optimization problems. It is
inspired by the social foraging behavior of the Escherichia coli (E. coli) bacteria
present in human intestines.

For many organisms, the survival-critical activity of foraging involves aggrega-
tions of organisms into groups and trying to find and consume nutrients in a manner
that maximizes the energy obtained from nutrient sources per unit time spent forag-
ing, while at the same time minimizing the exposure to risks from predators [65]. A
particularly interesting group of types of social foraging behavior has been demon-
strated for several motile species of bacteria, including E. coli. During foraging,
individual bacteria move by taking small steps to acquire nutrients and avoid dan-
ger. Their motion is determined by the rotation mode of the flagellar filaments that
help these bacteria to move, so that they move in alternating periods of runs (rela-
tively long intervals during which the bacteria swim smoothly in a straight line) and
tumbles (short intervals during which the bacteria change direction to start another
smooth run). This alternation between the twomodes is called chemotaxis. Figure9.5
illustrates the principle.

Fig. 9.5 Chemotaxis of E. coli. When the flagella rotate counterclockwise, they cause a swimming
motion, and when they rotate clockwise, they cause tumbling

244 I. Boussaïd

Bacteria may respond directly to local physical cues, such as the concentration
of nutrients or the distribution of some chemicals (which may be laid down by other
individuals). In the absence of a stimulus (i.e., no attractant or repellent is present, or
else there is a constant, uniform concentration, so that they move no gradient), an E.
coli bacterium swims in a random walk by alternating runs and tumbles. In the pres-
ence of a concentration gradient of an attractant (food sources such as sugars or amino
acids), the bacteria are able to bias their random walk by changing their tumbling
frequency.Whenmoving toward an increasing attractant concentration or decreasing
repellent concentration, the bacteria tumble less frequently, thereby increasing the
lengths of their runs in the direction of increasing attractant concentration. As the
concentration of the attractant decreases, the tendency to tumble is enhanced.

To facilitate the migration of bacteria on viscous substrates, such as semisolid
agar surfaces, E. coli cells arrange themselves in a traveling ring and move over
the surface in a coordinated manner called swarming motility. This is in contrast to
swimming motility, which represents the motility of individual cells in an aqueous
environment [6]. After a bacterium has collected a sufficient amount of nutrients, it
can reproduce itself and divide into two. The population of bacteria can also suffer a
process of elimination, through the appearance of a noxious substance, or disperse,
through the action of another substance, generating the effects of elimination and
dispersion.

Based on these biological concepts, the BFOA is formulated on the basis of
the following steps: chemotaxis, swarming, reproduction, and elimination–dispersal.
The general procedure of the BFO algorithm is outlined in Algorithm 8.6.

9.4.1 Chemotaxis

Chemotaxis is the process by which bacteria direct their movements according to
certain chemicals in their environment. This is important for allowing bacteria to find
food by climbing up nutrient hills and at the same time avoid noxious substances.
The sensors they use are receptor proteins, which are very sensitive and possess high
gain. That is, a small change in the concentration of nutrients can cause a significant
change in behavior [52].

Suppose that we want to find the minimum of J (θ), where θ ∈ R
D is the posi-

tion of a bacterium in a D-dimensional space and the cost function J (θ) is an
attractant–repellent profile (i.e., it represents where nutrients and noxious substances
are located). Then J (θ) ≤ 0 represents a nutrient-rich environment, J (θ) = 0 repre-
sents a neutral medium, and J (θ) > 0 represents the presence of noxious substances.

Let θ i (j, k, l) represent the ith bacterium in the jth chemotactic, kth reproductive,
and lth elimination–dispersal step. The position of the bacterium in the (j+1)th

9 Some Other Metaheuristics 245

chemotactic step is calculated in terms of the position in the previous chemotactic
step and the step size C(i) (termed the run length unit) applied in a random direction
φ (i):

θ i (j + 1, k, l) = θ i (j, k, l) + C(i)φ(i) (9.10)

The function φ(i) is a unit length random direction to describe tumbling and
is given by

φ(i) = �(i)√
�T (i)�(i)

(9.11)

where �(i) ∈ R
D is a randomly generated vector with elements in the interval

[−1, 1]. The cost of each position is determined by the following equation:

J (i, j, k, l) = J (i, j, k, l) + Jcc
(
θ, θ i (j, k, l)

)
(9.12)

It can be noticed in Eq. (9.12) that the cost of any particular position J (i, j, k, l) is
also affected by attractive and repulsive forces between the bacteria in the population,
given by Jcc (see Eq. (9.13)). If the cost of the location of the ith bacterium in the
(j+1)th chemotactic step, denoted by J (i, j + 1, k, l), is better (lower) than that for
the position θ i (j, k, l) in the jth step, then the bacteriumwill take another chemotactic
step of sizeC(i) in the same direction, up to amaximumnumber of permissible steps,
denoted by Ns .

9.4.2 Swarming

Swarming is a particular type of motility that is promoted by flagella and allows
bacteria to move rapidly over and between surfaces and in viscous environments.
Under certain conditions, cells of chemotactic strains of E. coli excrete an attractant,
aggregate in response to gradients of that attractant, and form patterns of varying cell
density. Central to this self-organization into swarm rings is chemotaxis. The cell-
to-cell signaling in an E. coli swarm may be represented by the following function:

Jcc(θ, θ i (j, k, l)) = ∑s
i=1

[
−dattractant exp

(
−wattractant

∑D
m=1

(
θm − θ i

m

)2)]

+∑s
i=1

[
hrepellent exp

(
−wrepellent

∑D
m=1

(
θm − θ i

m

)2)] (9.13)

246 I. Boussaïd

where θ = [θ1, θ2, . . . , θD]T is a point in the D-dimensional search space,
Jcc

(
θ, θ i (j, k, l)

)
is to be added to the actual objective function, and dattractant,

wattractant, hrepellent, andwrepellent are coefficients which determine the depth and width
of the attractant and the height and width of the repellent. These four parameters
need to be chosen judiciously for any given problem. θ i

m is the mth dimension of the
position of the ith bacterium θ i in the population of the S bacteria.

9.4.3 Reproduction

After Nc chemotaxis steps (steps comprising the movement of each bacterium and
determination of the cost of each position), the bacteria enter into the reproductive
step. Suppose there are Nre reproduction steps. For reproduction, the population
is sorted in order of ascending accumulated cost Jhealth (higher cost means lower
health):

Jhealth(i) =
Nc+1∑
j=1

J (i, j, k, l) (9.14)

The least healthy bacteria will die; these are the bacteria that could not gather enough
nutrients during the chemotactic steps, and they are replaced by the same number of
healthy ones, and thus the population size remains constant. The healthiest bacteria
(those having sufficient nutrients and yielding lower values of the fitness function)
split asexually into two bacteria and are placed in the same location.

9.4.4 Elimination and Dispersal

Changes in the environment can influence the proliferation and distribution of bac-
teria. So, when a local environmental change occurs, either gradually (e.g., via con-
sumption of nutrients) or suddenly for some other reason (e.g., a significant local
rise in temperature), all the bacteria in a region may die or disperse into some new
part of the environment. This dispersal has the effect of destroying all the previous
chemotactic processes. However, it may have a good impact too, since dispersal may
place bacteria in a nutrient-rich region.

Let Ned be the number of elimination–dispersal events and, for each elimination–
dispersal event, let each bacterium in the population be subjected to elimination–
dispersal with a probability Ped, in such a way that, at the end of the process, the
number of bacteria in the population remains constant (if a bacterium is eliminated,
another one is dispersed to a random location).

9 Some Other Metaheuristics 247

Initialize parameters: D, S, Nc, Ns, Nre, Ned, Ped, C(i), θ i (i = 1, 2, . . . , S)

while terminating condition is not reached do
Elimination-dispersal loop

for l = 1, . . . , Ned do
Reproduction loop

for k = 1, . . . , Nre do
Chemotaxis loop

for j = 1, . . . , Nc do
foreach bacterium i = 1, . . . , S do

Compute fitness function J (i, j, k, l) using Eq. (9.12)

Jlast = J (i, j, k, l)

Tumble: Generate a random vector �(i) ∈ R
D

Move: Compute the position of the bacterium θ i (j + 1, k, l) in (j+1)th
chemotactic step using Eq. (9.10)

Compute fitness function J (i, j + 1, k, l) using Eq. (9.12)

Swim: m = 0 //m: counter for swim length

while m < Ns do
m = m + 1

if J (i, j + 1, k, l) < Jlast then
Jlast = J (i, j + 1, k, l)

Move: Compute the position of the bacterium θ i (j + 1, k, l) in
(j+1)th chemotactic step using Eq. (9.10)

Compute fitness function J (i, j + 1, k, l) using Eq. (9.12)

else
m = Ns

end

end

end

end

for i = 1, . . . , S do
Reproduction:Jhealth(i) = ∑Nc+1

j=1 J (i, j, k, l)

end

Sort bacteria in order of ascending Jhealth. The least healthy bacteria die and the
other, healthier bacteria each split into two bacteria, which are placed in the same
location

end

for i = 1, . . . , S do
Elimination–dispersal: Eliminate and disperse the ith bacterium, with probability
Ped

end

end

end

Algorithm 9.6: BFO algorithm.

248 I. Boussaïd

In [15], Das et al. discussed some variations on the original BFOA algorithm, and
hybridizations of BFOA with other optimization techniques. They also provided an
account of most of the significant applications of BFOA. However, experimentation
with complex optimization problems reveals that the original BFOA algorithm pos-
sesses poor convergence behavior compared with other nature-inspired algorithms,
such as genetic algorithms and particle swarm optimization, and its performance also
decreases heavily with increasing dimensionality of the search space.

9.5 Biogeography-Based Optimization (BBO)

The various species of plants and animals are not uniformly distributed over the
globe’s surface: each one occupies a region or a habitat of its own. The current
geographic distribution of organisms is influenced by internal factors specific to the
organisms (such as their capacity for propagation and their ecological amplitude)
and by external factors related to their environment (such as predation, disease, and
competition for resources such as food and water). Biogeography is the study of
this spatial distribution of species in geographic space, and its causes. The theory of
biogeography grew out of the work of Wallace [99] and Darwin [14] in the past and
that of McArthur and Wilson [55] more recently.

Strongly influenced by the equilibrium theory of island2 biogeography [55], Dan
Simon developed the biogeography-based optimization (BBO) algorithm [86]. The
basic premise of this theory is that the rate of change of the number of species on
an island depends critically on the balance between the immigration of new species
onto the island and the extinction of established species. Figure9.6 shows the basic
idea of the equilibrium condition.

The BBO algorithm operates upon a population of individuals called islands (or
habitats). Each habitat represents a possible solution for the problem at hand, and
each feature of the habitat is called a suitability index variable (SIV). A quantitative
performance index, called the habitat suitability index (HSI), is used as a measure
of how good a solution is; this is analogous to the fitness in other population-based
optimization algorithms. The greater the total number of species in the habitat, which
corresponds to a high HSI, the better the solution it contains.

According toMacArthur andWilson’s theory of island biogeography, the number
of species present on an island is determined by a balance between the rate at which
new species arrive and the rate at which old species become extinct on the island. In
BBO, each individual has its own immigration rate λ and emigration (or extinction)

2The term “island” is used descriptively rather than literally here. That is, an island is not just a
segment of land surrounded bywater, but any habitat that is geographically isolated from other habi-
tats, including lakes and mountaintops. The theory of island biogeography has also been extended
to peninsulas, bays, and other only partially isolated areas.

9 Some Other Metaheuristics 249

Fig. 9.6 The equilibrium
model of the species present
on a single island. The
equilibrium number of
species is reached at the
point of intersection between
the rate of immigration and
the rate of extinction [55]

rate μ. These parameters are affected by the number of species S in a habitat and are
used to share information probabilistically between habitats. Habitats with smaller
populations are more vulnerable to extinction (i.e., the immigration rate is high). But
as more species inhabit the habitat, the immigration rate reduces and the emigration
rate increases. In BBO, good solutions (i.e., habitats with many species) tend to share
their features with poor solutions (i.e., habitats with few species), and poor solutions
accept a lot of new features from good solutions. The maximum immigration rate
I occurs when the habitat is empty and decreases as more species are added; the
maximum emigration rate E occurs when all possible species, with a number Smax

are present on the island. The immigration and emigration rates when there are S
species in the habitat vary linearlywith the species number according to the following
equation:

λS = I
(
1 − S

Smax

)
μS = E

(
S

Smax

) . (9.15)

For the sake of simplicity, the original BBO considered a linear migration model
(Fig. 9.7) where the immigration rate λS and the emigration rate μS are linear func-
tions of the number of species S in the habitat, but different mathematical models
of biogeography that include more complex variables are presented in [55]. There
are in fact other important factors which influence migration rates between habitats,
including the distance to the nearest neighboring habitat, the size of the habitat, cli-
mate (temperature and precipitation), plant and animal diversity, and human activity.
These factors make immigration and emigration curves complicated, unlike those
described in the original BBO paper [86]. To study the influence of different migra-
tion models on the performance of BBO, Haiping Ma [54] explored the behavior of

250 I. Boussaïd

Fig. 9.7 Relationship
between species count,
immigration rate, and
emigration rate SII

I

SS

s

S

SS

E

Eμ

λ

six different migration models and investigates the performance on 23 benchmark
functions with a wide range of dimensions and diverse complexities. The experi-
mental results clearly showed that different migration models resulted in significant
changes in performance, andBBOmigrationmodelswhichwere closer to nature (that
is, nonlinear) were significantly better than linearmodels formost of the benchmarks.

We now consider the probability PS that the habitat contains exactly S species.
The number of species will change from time t to time (t + �t) as follows:

PS(t + �t) = PS(t)(1 − λS�t − μS�t) + PS−1λS−1�t + PS+1μS+1�t (9.16)

which states that the number of species in the habitat in one time step is based on the
current total number of species in the habitat, the number of new immigrants, and
the number of species that leave during that time period. We assume here that �t is
small enough that the probability of more than one immigration or emigration can be
ignored. In order to have S species at time (t + �t), one of the following conditions
must hold:

• Therewere S species at time t , and no immigration or emigration occurred between
t and (t + �t).

• One species immigrated into a habitat already occupied by (S − 1) species at time
t .

• One species emigrated from a habitat occupied by (S + 1) species at time t .

The limit of Eq. (9.16) as �t → 0 is given by the following equation:

ṖS =
⎧⎨
⎩

−(λS + μS)PS + μS+1PS+1 if S = 0
−(λS + μS)PS + λS−1PS−1 + μS+1PS+1 if 1 ≤ S ≤ Smax − 1
−(λS + μS)PS + λS−1PS−1 if S = Smax

(9.17)

9 Some Other Metaheuristics 251

Fig. 9.8 The migration
process in BBO

The system of Eq. (9.17) can be written as a matrix equation in the form

⎡
⎢⎢⎢⎢⎢⎢⎣

Ṗ0

Ṗ1
...
...

Ṗn

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− (λ0 + μ0) μ1 0 . . . 0

λ0 − (λ1 + μ1) μ2 . . .
...

...
. . .

. . .
. . .

...
...

. . . λn−2 − (λn−1 + μn−1) μn

0 . . . 0 λn−1 − (λn + μn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

P0

P1
...
...

Pn

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.18)
For brevity of notation, we write simply n = Smax.

The BBO algorithm is described overall in Algorithm 8.7. The two basic operators
that govern the working of BBO are migration and mutation. Migration is used to
modify existing islands bymixing featureswithin the population,where rand(0, 1) is
a uniformly distributed random number in the interval [0, 1] and Xi, j is the j th SIV of
the solutionXi . The migration strategy in BBO is similar to the global recombination
approach in evolutionary strategies [4], in which many parents can contribute to a
single offspring. The main difference is that recombination is used to in evolutionary
strategies create new solutions, while in BBO migration is used to change existing
solutions (Fig. 9.8).

A habitat’s HSI can change suddenly owing to apparently random events (unusu-
ally large flotsam arriving from a neighboring habitat, disease, natural catastrophes,
etc.). BBO models this phenomenon as SIV mutation, and uses species count prob-
abilities to determine mutation rates. The species count probability PS indicates the
likelihood that a given solution S is expected a priori to exist as a solution for the
given problem. In this context, it should be remarked that very high-HSI solutions
and very low-HSI solutions are both equally improbable. Medium-HSI solutions
are relatively probable. If a given solution has a low probability, then it is likely to
mutate to some other solution. Conversely, a solution with a high probability is less
likely to mutate. Mutation is used to enhance the diversity of the population, thereby
preventing the search from stagnating. If a habitat S is selected for execution of the
mutation operation, then a chosen variable (SIV) is randomly modified based on its
associated probability PS . The mutation rate m(S) is inversely proportional to the
probability PS of the solution:

252 I. Boussaïd

m(S) = mmax

(
1 − PS

Pmax

)
(9.19)

where mmax is a user-defined parameter, and Pmax = max
S

PS , S = 1, …, Smax.

input : N = populationsize, f = objective function, I = maximum immigration rate, E =
maximum emigration rate.

output: Xopt which minimizes f

Initialize a set of solutions (habitats) to a problem

while termination condition not met do
Evaluate the fitness (HSI) for each solution

Compute the number of species S, λ, and μ for each solution (see Eq. (9.15))

Migration: modify habitats based on λ and μ

for i = 1 to N do
Use λi to decide probabilistically whether to immigrate to Xi

if rand(0, 1) < λi then
for j = 1 to N do

Select the emigrating island X j with probability ∝ μ j

if rand(0, 1) < μ j then
Replace a randomly selected decision variable (SIV) of Xi with its
corresponding variable in X j

end

end

end

end

Mutation:

Probabilistically perform mutation based on the mutation probability given in Eq. (9.19)

Elitism:

Implement elitism to retain the best solutions in the population from one generation to
the next

end

return the best solution found Xopt

Algorithm 9.7: Biogeography-based optimization (BBO) algorithm.

TheBBOalgorithmhas demonstrated goodperformanceonvarious unconstrained
and constrained benchmark functions. It has also been applied to real-world opti-
mization problems, including sensor selection, economic load dispatch problems,
satellite image classification, and power system optimization. The website http://
embeddedlab.csuohio.edu/BBO/ is dedicated to BBO and related material.

http://embeddedlab.csuohio.edu/BBO/
http://embeddedlab.csuohio.edu/BBO/

9 Some Other Metaheuristics 253

9.6 Cultural Algorithms

The term culture was first introduced by the anthropologist Edward B. Taylor in his
book Primitive Culture [96]. Taylor offered a broad definition, stating that culture is
“that complex whole which includes knowledge, belief, art, morals, law, custom, and
any other capabilities and habits acquired by man as a member of society.” Cultural
algorithms (CAs), introduced by Robert G. Reynolds, are a class of computational
models derived from observing the cultural evolution process in nature [74].

The term cultural evolution has been used more recently to refer to the idea that
the processes that produce cultural stability and change are analogous in important
respects to those of biological evolution. In this view, just as biological evolution is
characterized by changing frequencies of genes in populations over time as a result of
such processes as natural selection, so cultural evolution refers to the changing distri-
butions of cultural attributes in populations, which are likewise affected by processes
such as natural selection but also by others that have no analogue in genetic evolution.
Using this idea, Reynolds developed a computational model in which cultural evolu-
tion is seen as an inheritance process that operates at both a microevolutionary level,
in terms of transmission of genetic material between individuals in a population, and
a macroevolutionary level, in terms of knowledge acquired based upon individual
experiences. A fundamental part of the macroevolutionary level is Renfrew’s notion
of an individual’s mental mappa, a cognitive map or worldview, which is based on
experience of the external world and shapes the individual’s interactions with it [72].
Individual mappas can be merged and modified to form group mappas in order to
direct the future actions of a group and its individuals.

CAs consist of three components:

1. A population space, at the microevolutionary level, that maintains a set of indi-
viduals to be evolved and the mechanisms for its evaluation, reproduction, and
modification. In the population space, any evolutionary algorithms canbe adopted,
and evolutionary operators are defined with the aim of obtaining a set of possible
solutions to the problem.

2. A belief space, at the macroevolutionary level, that represents the knowledge
that has been acquired by the population during the evolutionary process. The
main principle is to preserve beliefs that are socially accepted and to discard
unacceptable beliefs. There are at least five basic categories of cultural knowledge
that are important in the belief space of any cultural evolution model: situational,
normative, topographic or spatial, historical or temporal, and domain knowledge
[76].

3. A communications protocol, including an acceptance and influence phase, is used
to determine the interaction between the population and the beliefs.

The basic framework of a CA is shown in Algorithm 8.8. In each generation, indi-
viduals in the population space are first evaluated using an evaluation or performance
function (Evaluate()). An acceptance function (Accept()) is then used to determine
which of the individuals in the current population will be able to contribute their

254 I. Boussaïd

knowledge to the belief space. Experiences of those selected individuals are then
added to the contents of the belief space via the function Update(). The function
Generate() includes the influence of the knowledge in the belief space, through the
Influence() function, on the generation of offspring. The Influence function acts in
such a way that the individuals resulting from the application of the variation opera-
tors (i.e., recombination and mutation) tend to approach a desirable behavior while
staying away from undesirable behaviors. Such desirable and undesirable behaviors
are defined in terms of the information stored in the belief space. The two functions
Accept() and Influence() constitute the communication link between the population
space and the belief space. This supports the idea of dual inheritance in that the
population and the belief space are updated in each time step based upon feedback
from each other. Finally, in the replacement phase, a selection function (Select()) is
applied to the current and the new populations. The CA repeats this process for each
generation until the prespecified termination condition is met.

Set the generation counter g = 0

Initialize the population (POP(g))

Initialize belief space (Beliefs(g))

repeat
Evaluate population: Evaluate (POP(g))

Update(Beliefs(g), Accept(POP(g)))

Generate(POP(g), Influence(Beliefs(g)))

g = g + 1

Select(POP(g) from POP(g − 1))

until a termination condition is achieved

Algorithm 9.8: Cultural algorithm.

As such, cultural algorithms are based on hybrid evolutionary systems that inte-
grate evolutionary search and symbolic reasoning [90]. They are particularly useful
for problems whose solutions require extensive domain knowledge (e.g., constrained
optimization problems [13]) and dynamic environments [82]. The performance CAs
has been studied using benchmark optimization problems [75], aswell as applied suc-
cessfully in a number of diverse application areas, such as modeling the evolution of
agriculture [73], the job shop scheduling problem [79], reengineering of large-scale
semantic networks [81], combinatorial optimization problems [62], multiobjective
optimization problems [77], and agent-basedmodeling systems [78]. Recently, many
optimization methods have been combined with CAs, such as evolutionary program-
ming [13], particle swarm optimization [50], differential evolution algorithms [5],
genetic algorithms [102], and local search [61]. Adaptations of CAs have also been
proposed (see, for example, [34] for multipopulation CAs).

9 Some Other Metaheuristics 255

9.7 Coevolutionary Algorithms

When organisms that are ecologically intimate — for example, predators and prey,
hosts and parasites, or insects and the flowers that they pollinate — influence each
other’s evolution, we say that coevolution is occurring. The biological coevolution
encountered in many natural processes has been an inspiration for coevolutionary
algorithms (CoEAs), where two or more populations of individuals, each adapting
to changes in the other, constantly interact and coevolve simultaneously, in contrast
to traditional single-population evolutionary algorithms.

Significant research into CoEAs began in the early 1990s with the seminal work
of Hillis [41] on sorting networks. Unlike conventional evolutionary algorithms, in
which individuals are evaluated independently of one another through an absolute
fitness measure, the fitness of individuals in CoEAs is subjective, in the sense that it
is a function of the interactions of the individual with other individuals.

Many variants of CoEAs have been implemented since the beginning of the 1990s.
These variants fall into two categories: competitive coevolution and cooperative
coevolution. In the case of the competitive approaches, the different populations
compete into solve the global problem and individuals are rewarded at the expense
of those with which they interact. In the case of the cooperative approaches, however,
the various isolated populations are coevolved to solve the problem cooperatively;
therefore, individuals are rewarded when they work well with other individuals and
punished when they perform poorly together.

Competitive coevolution is usually used to simulate the behavior of competing
forces in nature, such as that of predators and prey, where there is a strong evolution-
ary pressure for prey to defend themselves better as future generations of predators
develop better attacking strategies. Competitive coevolution can lead to an arms race,
in which the two populations have opposing interests and the success of one popula-
tion depends on the failure of the other. The idea is that continued minor adaptations
in some individuals will force competitive adaptations in others, and these reciprocal
forces will drive the algorithm to generate individuals with ever-increasing perfor-
mance. The fitness of individuals is evaluated through competition with other indi-
viduals in the population. In other words, fitness signifies only the relative strengths
of solutions; an increased fitness for one solution leads to a decreased fitness for
another. This inverse interaction of fitnesses will increase the capabilities of each
population until the global optimal solution is attained [88]. Competitive coevolu-
tionary models are especially suitable for problem domains where it is difficult to
explicitly formulate an objective fitness function. The classic example of competitive
coevolution, given in [41], coevolved a population of sorting networks against a pop-
ulation of test cases. Competitive coevolution has since been successfully applied to
game-playing strategies [66, 80], evolving better pattern recognizers [47], coevolv-
ing complex behaviors of agents [87], coevolutionary interactions between neural
networks and their training data [63], etc.

256 I. Boussaïd

Cooperative coevolution is inspired by the ecological relationship of symbiosis,
where different species live together in a mutually beneficial relationship. A general
framework for cooperative coevolutionary algorithms was introduced by Potter and
De Jong [69] in 1994 for evolving solutions in the form of coadapted subcomponents.
Potter and De Jong’s model is usually applied in situations where a complex prob-
lem can be decomposed into a collection of easier subproblems.3 Each subproblem
is assigned to a population such that the individuals in a given population represent
potential components of a larger solution. Evolution of these populations occurs
almost simultaneously, but in isolation form one another, the populations interact
only when the fitness is obtained. Such a process can be static, in the sense that the
divisions between the separate components are decided a priori and never altered,
or dynamic, in the sense that populations of components may be added or removed
as a run progresses [101]. This model has been analyzed from the perspective of
evolutionary dynamics in [53, 101]. Cooperative CoEAs have had success in adver-
sarial domains (see for example [68] and [91]). The influence of the design decisions
on the performance of CoEA has been studied in [67]. Some variants of coopera-
tive CoEAs have been proposed, such as coevolutionary particle swarms [39] and
coevolutionary differential evolution [84]. A combination of competitive and coop-
erative mechanisms has been proposed by Goh and Tan [29] to solve multiobjective
optimization problems in a dynamic environment.

Furthermore, both styles of coevolution (i.e., competitive and cooperative) can
use multiple, reproductively isolated populations; both can use similar patterns of
interpopulation interaction, similar diversity maintenance schemes, and so on. Aside
from the novel problem decomposition scheme of cooperative coevolution, the most
salient difference between cooperative and competitive coevolution resides primarily
in the game-theoretic properties of the domains in which these algorithms are applied
[23].

9.8 Conclusion

Awide range ofmetaheuristic algorithms have emerged over the last thirty years, and
many new variants are continually being proposed. We have presented a description
of a collection of optimization approaches in this chapter. Some of them are inspired
by natural processes such as evolution and others by the behavior of biological
systems. There are also other well-established optimization algorithms that we have
not addressed in this chapter, including harmony search, the group search optimizer,
cuckoo search, the gravitational search algorithm and the bat-inspired algorithm.
Readers interested in these modern techniques can refer to more advanced literature.

3The decomposition of the problem consists in determining an appropriate number of subcompo-
nents and the role each will play. The mechanism for dividing the optimization problem f into
n subproblems and treating them almost independently of one another depends strongly on the
properties of the function f .

9 Some Other Metaheuristics 257

9.9 Annotated Bibliography

Reference [8] This book provides an introduction to artificial immune systems that is accessi-
ble to all. It gives a clear definition of anAIS, sets out the foundations (including
the basic algorithms), and analyzes how the immune system relates to other bio-
logical systems and processes. No prior knowledge of immunology is required
— all essential basic information is covered in the introductory chapters.

Reference [17] This book provides an overview of AIS and their applications.
Reference [70] This book deals with the differential evolution method. The authors claim that

this book is designed to be easy to understand and simple to use, and they have
in fact achieved their goal. The book is enjoyable to read, and is fully illustrated
with figures and pseudocode. This book is primarily addressed to engineers. In
addition, those interested in evolutionary algorithms should certainly find this
book both interesting and useful.

Reference [85] This book discusses the theory, history, mathematics, and programming of
evolutionary optimization algorithms. Featured algorithms include differential
evolution, biogeography-based optimization, cultural algorithms, and many
others.

Reference [101] This thesis offers a detailed analysis of cooperative coevolutionary algorithms.

References

1. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., Mcleod, J.: Danger theory: The link between
AIS and IDS? In: J. Timmis, P. Bentley, E. Hart (eds.) Artificial Immune Systems, Lecture
Notes in Computer Science, pp. 147–155. Springer (2003)

2. Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems. In:
Proceedings of the 1st International Conference on Artificial Immune Systems, pp. 141–148
(2002)

3. Anspach, M., Varela, F.: Le systme immunitaire : un soi cognitif autonome. In: D. Andler
(ed.) Introduction aux sciences cognitives, p. 514. Gallimard, Paris (1992)

4. Bäck, T.:Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press (1996)

5. Becerra, R.L., Coello, C.A.C.: A cultural algorithm with differential evolution to solve con-
strained optimization problems. In: IBERAMIA, pp. 881–890 (2004)

6. Brenner, M.P., Levitov, L.S., Budrene, E.O.: Physical mechanisms for chemotactic pattern
formation by bacteria. Biophysical Journal 74(4), 1677–1693 (1998)

7. Brest, J., Maucec, M.: Self-adaptive differential evolution algorithm using population size
reduction and three strategies. Soft Computing: A Fusion of Foundations, Methodologies and
Applications 15(11), 2157–2174 (2011)

8. de Castro, L.N.: Artificial Immune Systems: A New Computational Intelligence Approach.
Springer, London (2002)

9. de Castro, L.N., Von Zuben, F.J.: aiNet: An artificial immune network for data analysis. In:
H.A. Abbass, R.A. Sarker, C.S. Newton (eds.) Data Mining: A Heuristic Approach, Chap. 12,
pp. 231–259. Idea Group (2001)

10. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection prin-
ciple. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

258 I. Boussaïd

11. Chakraborty, U.: Advances in Differential Evolution, 1st edn. Springer (2008)
12. Coelho, G.P., Zuben, F.V.: omni-aiNet: An immune-inspired approach for omni optimization.

In: Proceedings of the 5th International Conference on Artificial Immune Systems, pp. 294–
308. Springer (2006)

13. Coello Coello, C.A., Becerra, R.L.: Adding knowledge and efficient data structures to evo-
lutionary programming: A cultural algorithm for constrained optimization. In: GECCO, pp.
201–209 (2002)

14. Darwin, C.: Origin of Species. Gramercy, New York (1995)
15. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm:

Theoretical foundations, analysis, and applications. In:A.Abraham,A.E.Hassanien, P. Siarry,
A. Engelbrecht (eds.) Foundations of Computational Intelligence. Studies in Computational
Intelligence, vol. 3, pp. 23–55. Springer, Berlin, Heidelberg (2009)

16. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art. IEEE Trans-
actions on Evolutionary Computation 15(1), 4–31 (2011)

17. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, New York (1998)
18. Dasgupta, D., Yu, S., Nino, F.: Recent advances in artificial immune systems: Models and

applications. Applied Soft Computing 11(2), 1574–1587 (2011)
19. de Castro, L.N., Zuben, F.J.V.: An evolutionary immune network for data clustering. In:

Proceedings of the 6th Brazilian Symposium on Neural Networks, pp. 84–89. IEEE Computer
Society Press (2000)

20. Dorigo, M.: Optimization, learning and natural Algorithms. Ph.D. thesis, Politecnico di
Milano, Italy (1992)

21. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine
learning. Phys. D 2(1–3), 187–204 (1986)

22. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set cov-
ering problem. Operations Research Letters 8(2), 67–71 (1989)

23. Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Brandeis Univer-
sity, Waltham, MA (2004). AAI3127125

24. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer.
In: Proceedings of the Symposium on Research in Security and Privacy, pp. 202–212 (1994)

25. Galeano, J.C., Veloza-Suan, A., González, F.A.: A comparative analysis of artificial immune
network models. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Com-
putation, GECCO ’05, pp. 361–368. ACM, New York (2005)

26. Garrett, S.M.: How do we evaluate artificial immune systems? Evolutionary Computation
13(2), 145–177 (2005)

27. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony
search. Simulation 76(2), 60–68 (2001)

28. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers
and Operations Research 13(5), 533–549 (1986)

29. Goh,C.K., Tan,K.C.:A competitive–cooperative coevolutionary paradigm for dynamicmulti-
objective optimization. IEEE Transactions on Evolutionary Computation 13, 103–127 (2009)

30. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn.
Studies in Computational Intelligence. Addison-Wesley Longman (1989)

31. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: P.J. Bentley,
D. Lee, S. Jung (eds.), Artificial Immune Systems. LNCS, vol. 5132, pp. 291–302. Springer
(2008)

32. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-
inspired algorithm for anomaly detection. In: C. Jacob, M. Pilat, P. Bentley, J. Timmis (eds.),
Artificial Immune Systems, LNCS, vol. 3627, pp. 153–167. Springer (2005)

33. Greensmith, J., Aickelin, U., Twycross, J.: Detecting danger: Applying a novel immunological
concept to intrusion detection systems. In: Proceedings of the 6th International Conference
on Adaptive Computing in Design and Manufacture (ACDM2004), Bristol, UK (2004)

34. Guo, Y., Cheng, J., Cao, Y., Lin, Y.: A novel multi-population cultural algorithm adopting
knowledge migration. Soft Computing 15, 897–905 (2011)

9 Some Other Metaheuristics 259

35. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. In: Proceedings of the
6th International Conference on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, San
Francisco (1995)

36. Hart, E., Bersini, H., Santos, F.: Structure versus function: A topological perspective on
immune networks. Natural Computing 9, 603–624 (2010)

37. Hart, E., McEwan, C., Timmis, J., Hone, A.: Advances in artificial immune systems. Evolu-
tionary Intelligence 4(2), 67–68 (2011)

38. Hart, E., Timmis, J.: Application areas of AIS: The past, the present and the future. Applied
Soft Computing 8(1), 191–201 (2008)

39. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained
engineering design problems. Engineering Applications of Artificial Intelligence 20, 89–99
(2007)

40. He, S., Wu, Q., Saunders, J.: A novel group search optimizer inspired by animal behavioural
ecology. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation, pp. 16–21,
Vancouver (2006)

41. Hillis,W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D 42, 228–234 (1990)

42. Jerne,N.K.:Towards a network theoryof the immune system.Annals of Immunology125C(1–
2), 373–389 (1973)

43. Ji, Z., Dasgupta, D.: Revisiting negative selection algorithms. Evolutionary Computation
15(2), 223–251 (2007)

44. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948 (1995)

45. Kim, J., Greensmith, J., Twycross, J., Aickelin, U.: Malicious code execution detection and
response immune system inspired by the danger theory. CoRR abs/1003.4142 (2010)

46. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

47. Kowaliw, T.,Kharma,N.N., Jensen, C.,Moghnieh,H.,Yao, J.: Using competitive co-evolution
to evolve better pattern recognisers. International Journal of Computational Intelligence and
Applications 5(3), 305–320 (2005)

48. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems), 1st edn. MIT Press (1992)

49. Lin, C., Qing, A., Feng, Q.: A comparative study of crossover in differential evolution. Journal
of Heuristics 17(6), 675–703 (2011). doi:10.1007/s10732-010-9151-1

50. Lin, C.J., Chen, C.H., Lin, C.T.: A hybrid of cooperative particle swarm optimization and
cultural algorithm for neural fuzzynetworks and its prediction applications. IEEETransactions
on Systems, Man, and Cybernetics, Part C 39, 55–68 (2009)

51. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing 9,
448–462 (2005)

52. Liu, Y., Passino, K.: Biomimicry of social foraging bacteria for distributed optimization:
Models, principles, and emergent behaviors. Journal ofOptimization Theory andApplications
115, 603–628 (2002)

53. Luke, S., Wiegand, P.R.: When coevolutionary algorithms exhibit evolutionary dynamics. In:
A.M. Barry (ed.) GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic
and Evolutionary Computation Conference, pp. 236–241. AAAI, New York (2002)

54. Ma, H.: An analysis of the equilibrium of migration models for biogeography-based opti-
mization. Information Sciences 180(18), 3444–3464 (2010)

55. MacArthur, R., Wilson, E.: The Theory of Biogeography. Princeton University Press, Prince-
ton, NJ (1967)

56. Matzinger, P.: Tolerance, danger, and the extended family. Annual Review of Immunology
12, 991–1045 (1994)

57. Mezura-Montes, E., Reyes-Sierra, M., Coello Coello, C.: Multi-objective optimization using
differential evolution: A survey of the state-of-the-art. In: U. Chakraborty (ed.) Advances in

http://dx.doi.org/10.1007/s10732-010-9151-1

260 I. Boussaïd

Differential Evolution. Studies inComputational Intelligence, vol. 143, pp. 173–196. Springer,
Berlin (2008)

58. Montgomery, J., Chen, S.: An analysis of the operation of differential evolution at high and
low crossover rates. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8
(2010). doi:10.1109/CEC.2010.5586128

59. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions. I.
Binary parameters. In: Proceedings of the 4th International Conference on Parallel Problem
Solving from Nature, PPSN IV, pp. 178–187. Springer, London (1996)

60. Neri, F., Tirronen, V.: Recent advances in differential evolution: A survey and experimental
analysis. Artificial Intelligence Review 33, 61–106 (2010)

61. Nguyen, T., Yao,X.:Hybridizing cultural algorithms and local search. In: E. Corchado,H.Yin,
V. Botti, C. Fyfe (eds.) Intelligent Data Engineering and Automated Learning, IDEAL 2006.
Lecture Notes in Computer Science, vol. 4224, pp. 586–594. Springer, Berlin, (2006)

62. Ochoa, A., Ponce, J., Hernández, A., Li, L.: Resolution of a combinatorial problem using
cultural algorithms. JCP 4(8), 738–741 (2009)

63. Paredis, J.: Steps towards co-evolutionary classification neural networks. In: R.A. Brooks,
P. Maes (eds.) Proceedings of the Fourth International Workshop on the Synthesis and Sim-
ulation of Living Systems (Artificial Life IV), pp. 102–108. Cambridge, MA (1994). http://
www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html

64. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems Magazine 22(3), 52–67 (2002). doi:10.1109/MCS.2002.1004010

65. Passino, K.M.: Bacterial foraging optimization. International Journal of Swarm Intelligence
Research 1(1), 1–16 (2010)

66. Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy.
Machine Learning 32, 225–240 (1998)

67. Popovici, E., De Jong, K.: The effects of interaction frequency on the optimization perfor-
mance of cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’06, pp. 353–360. ACM, New York (2006)

68. Potter,M.A., De Jong, K.A.: Cooperative coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

69. Potter, M.A., Jong, K.A.D.: A cooperative coevolutionary approach to function optimization.
In: Proceedings of the International Conference on Evolutionary Computation, Third Con-
ference on Parallel Problem Solving from Nature, PPSN III, pp. 249–257. Springer, London,
(1994)

70. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to
Global Optimization. Natural Computing Series. Springer, Berlin (2005)

71. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A gravitational search algorithm.
Information Sciences 179(13), 2232–2248 (2009). doi:10.1016/j.ins.2009.03.004

72. Renfrew, A.: Dynamic modeling in archaeology: what, when, and where? In: Dynamical
Modeling and the Study of Change in Archaelogy (1994)

73. Reynolds, R.G.: An adaptive computer model of plan collection and early agriculture in the
eastern valley of Oaxaca. In: G. Naquitz (ed.) Archaic Foraging and Early Agriculture in
Oaxaca, Mexico, pp. 439–500 (1986)

74. Reynolds, R.G.: An introduction to cultural algorithms. In: A.V. Sebalk, L.J. Fogel (eds.)
Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139.
World Scientific, River Edge, NJ (1994)

75. Reynolds, R.G.: Cultural algorithms: Theory and applications. In: D. Corne, M. Dorigo,
F. Glover (eds.) New Ideas in Optimization, pp. 367–378. McGraw-Hill, Maidenhead, UK
(1999)

76. Reynolds, R.G., Kohler, T.A., Kobti, Z.: The effects of generalized reciprocal exchange on
the resilience of social networks: An example from the prehispanic Mesa Verde region. Com-
putational and Mathematical Organization Theory 9, 227–254 (2003)

77. Reynolds, R.G., Liu, D.: Multi-objective cultural algorithms. In: IEEE Congress on Evolu-
tionary Computation, pp. 1233–1241 (2011)

http://dx.doi.org/10.1109/CEC.2010.5586128
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1016/j.ins.2009.03.004

9 Some Other Metaheuristics 261

78. Reynolds, R.G., Peng, B., Ali, M.Z.: The role of culture in the emergence of decision-making
roles: An example using cultural algorithms. Complexity 13(3), 27–42 (2008)

79. Rivera, D.C., Becerra, R.L., Coello Coello Carlos, A.: Cultural algorithms, an alternative
heuristic to solve the job shop scheduling problem. Engineering Optimization 39(1), 69–85
(2007)

80. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary Compu-
tation 5, 1–29 (1997)

81. Rychtyckyj, N., Reynolds, R.G.: Using cultural algorithms to re-engineer large-scale semantic
networks. International Journal of Software Engineering and Knowledge Engineering 15(4),
665–694 (2005)

82. Saleem, S.M.: Knowledge-based solution to dynamic optimization problems using cultural
algorithms. Ph.D. thesis, Wayne State University, Detroit, MI (2001)

83. Secker, A., Freitas, A., Timmis, J.: A danger theory inspired approach to web mining. In:
J. Timmis, P. Bentley, E. Hart (eds.) Artificial Immune Systems. Lecture Notes in Computer
Science, vol. 2787, pp. 156–167. Springer, Berlin, Heidelberg (2003). doi:10.1007/978-3-
540-45192-1_16

84. Shi, Y.J., Teng, H.F., Li, Z.Q.: Cooperative co-evolutionary differential evolution for function
optimization. In: L. Wang, K. Chen, Y. Ong (eds.) Advances in Natural Computation, Lecture
Notes in Computer Science, vol. 3611, pp. 428–428. Springer, Berlin, (2005)

85. Simon, D.: Evolutionary Optimization Algorithms: Biologically-Inspired and Population-
Based Approaches to Computer Intelligence. p. 624. Wiley (2013)

86. Simon, D.: Biogeography-based optimization. IEEE Transactions on Evolutionary Compu-
tation 12(6), 702–713 (2008)

87. Sims,K.: Evolving 3Dmorphology and behavior by competition.Artificial Life 1(4), 353–372
(1994)

88. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexifi-
cation. Journal of Artificial Intelligence Research 21(1), 63–100 (2004)

89. Storn, R.M., Price, K.V.: Differential evolution: A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

90. Talbi, E.G.:Metaheuristics: From Design to Implementation, 1st edn.Wiley-Blackwell (2009)
91. Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for

multiobjective optimization. IEEE Transactions on Evolutionary Computation 10(5), 527–
549 (2006)

92. Teng, N., Teo, J., Hijazi, M., Hanafi, A.: Self-adaptive population sizing for a tune-free
differential evolution. Soft Computing 13, 709–724 (2009)

93. Timmis, J., Andrews, P., Hart, E.: On artificial immune systems and swarm intelligence.
Swarm Intelligence 4(4), 247–273 (2010)

94. Timmis, J., Andrews, P., Owens, N., Clark, E.: An interdisciplinary perspective on artificial
immune systems. Evolutionary Intelligence 1(1), 5–26 (2008)

95. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems.
Theoretical Computer Science 403(1), 11–32 (2008)

96. Tylor, E.B.: Primitive Culture, vol. 2, 7th edition. Brentano’s, New York (1924)
97. Ulutas, B.H., Kulturel-Konak, S.: A review of clonal selection algorithm and its applications.

Artificial Intelligence Review 36(2), 117–138 (2011)
98. Walker, A., Hallam, J., Willshaw, D.: Bee-havior in a mobile robot: The construction of

a self-organized cognitive map and its use in robot navigation within a complex, natural
environment. In: Proceedings of ICNN’93, International Conference on Neural Networks,
vol. III, pp. 1451–1456. IEEE Press, Piscataway, NJ (1993)

99. Wallace, A.R.: The Geographical Distribution of Animals (two volumes). Adamant Media
Corporation, Boston, MA (2005)

100. Weber, M.: Parallel global optimization, structuring populations in differential evolution.
Ph.D. thesis, University of Jyvskyl (2010)

101. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George
Mason University, Fairfax, VA (2004). AAI3108645

http://dx.doi.org/10.1007/978-3-540-45192-1_16
http://dx.doi.org/10.1007/978-3-540-45192-1_16

262 I. Boussaïd

102. Wu, C., Zhang, N., Jiang, J., Yang, J., Liang, Y.: Improved bacterial foraging algorithms and
their applications to job shop scheduling problems. In: Proceedings of the 8th International
Conference on Adaptive and Natural Computing Algorithms, Part I, ICANNGA ’07, pp. 562–
569. Springer, Berlin, Heidelberg (2007)

103. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: J.R. González, D.A. Pelta,
C. Cruz, G. Terrazas, N. Krasnogor (eds.) Nature Inspired Cooperative Strategies for Opti-
mization (NICSO 2010), vol. 284, Chap. 6, pp. 65–74. Springer, Berlin Heidelberg (2010)

104. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biolog-
ically Inspired Computing (NaBIC 2009), Coimbatore, India, IEEE Conference Publications,
pp. 210–214. IEEE Press, Piscataway, NJ (2009)

105. Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms.
Applied Soft Computing 9(3), 1126–1138 (2009). doi:10.1016/j.asoc.2009.02.012

106. Zhang, C., Yi, Z.: A danger theory inspired artificial immune algorithm for on-
line supervised two-class classification problem. Neurocomputing 73(7–9), 1244–1255
(2010). doi:10.1016/j.neucom.2010.01.005. http://www.sciencedirect.com/science/article/
pii/S0925231210000573

107. Zheng, J., Chen, Y., Zhang, W.: A survey of artificial immune applications. Artificial Intelli-
gence Review 34, 19–34 (2010)

http://dx.doi.org/10.1016/j.asoc.2009.02.012
http://dx.doi.org/10.1016/j.neucom.2010.01.005
http://www.sciencedirect.com/science/article/pii/S0925231210000573
http://www.sciencedirect.com/science/article/pii/S0925231210000573

Chapter 10
Nature Inspires New Algorithms

Sébastien Aupetit and Mohamed Slimane

Nature modeling is a leading trend in optimization methods. While genetic algo-
rithms, ant-based methods, and particle swarm optimization are well-known exam-
ples, there is a continuous emergence of new algorithms inspired by nature. In this
chapter, we give a short overview of the most recent promising new algorithms.

For brevity, we adopt the following notation in this chapter. Except when explicitly
stated otherwise, the search space S is continuous, has a dimension D, and is a
Cartesian product of ranges [li ; ui], that is to say S = ×D

i=1[li ; ui]. The objective
function to be minimized is f : S �→ R. If a generated candidate solution is not in
S, we suppose there is some algorithm able to take the candidate back into S. This
can be done by cropping or any other suitable process. U(X) represents a function
that returns an uniformly distributed random element from the set X . R(X ∼ Y)

has the same role, but the probability distribution is governed by Y instead of being
uniform. To avoid dealing with implementation details and for readability of the
algorithms, we assume that for a solution x ∈ S, the value f (x) is computed only
once and memorized for future use without any additional computing cost.

S. Aupetit (B) · M. Slimane
Laboratoire Informatique (EA6300), Université François Rabelais Tours,
64 Avenue Jean Portalis, 37200 Tours, France
e-mail: aupetit@univ-tours.fr

M. Slimane
e-mail: slimane@univ-tours.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_10

263

264 S. Aupetit and M. Slimane

10.1 Bees

There exist many optimization algorithms inspired by the behavior of bees [23]. Mat-
ing and foraging are the main behaviors exploited. Mating has led to the honeybee
mating optimization (HBMO) method [17] and its numerous variants and improve-
ments. The foraging behavior of bees has given birth to many algorithms, such as
BeeHive [39], BeeAdHoc [40], Virtual Bee [43], and ABC [21]. The last is the one
attracting most attention from researchers [23]. In the following, we describe the
artificial bee colony (ABC) algorithm introduced by Karaboga [21].

10.1.1 Honeybee Foraging

Honeybees are social insects that live in a colony represented by a hive. In the colony,
there are three kinds of bees: the queen, the drones, and the workers. The queen is
the only fertile female bee in the hive and her only role is to ensure the survival
of the colony by giving birth to bees in the hive. The drones are male bees, whose
only role is to fertilize the queen during her mating flight. The workers are sexually
undeveloped females and have equipment such as brood food glands, scent glands,
wax glands, and pollen baskets. This equipment allows them to accomplish tasks
such as cleaning the hive, feeding the brood, caring for the queen, guarding the hive,
handling incoming nectar, and foraging for food (nectar, pollen, etc.).

Foraging relies on four components: food sources (nectar or pollen), scout bees,
onlooker bees, and employed bees.

Food sources are evaluated by the bees using many criteria, such as distance from
the hive, the availability of the food, and the case of extraction. Whatever criteria are
used, they can be summarized as the “interest” of the food source for the hive. To
ensure the survival of the hive, it is necessary to reduce the energy cost of the activity
of the bees. To do so, the colony constantly adapts, and focuses its foraging efforts
on food sources with the most interest (Fig. 10.1).

An employed bee has the task of exploiting food sources, by bringing back nectar
or pollen to the hive. Back at the hive, it deposits its harvest and goes to a part of
the hive commonly referred to as the dance floor (Fig. 10.2). This area contains
chemicals [36] which attract the bees currently not exploiting any food source. Once
on the dance floor, an employed bee which has found or exploited an interesting
food source (or flower field) practices a round dance or a tail-wagging dance to
give information to other bees about the flower field. This dance allows the bee to
communicate the location (direction and distance) and the composition of the food
source (through odor or nectar exchange). Onlooker bees interested in a food source
use this information to exploit the food source. This recruitment allows the colony to
minimize the energy cost of its foraging. If an employed bee comes back to the hive
and has found that a food source does not have interest anymore, it does not dance on
the dance floor. Either it becomes an onlooker bee and observes other bees’ dances,

10 Nature Inspires New Algorithms 265

Interest of food source
based on many criteria

Food source

Fig. 10.1 Exploitation and evaluation of the interest of flower fields by bees

Fig. 10.2 Two employed bees dancing while being watched by many onlooker bees

or it becomes a scout bee and leaves the hive to discover a new food source. If this
scout bee finds an interesting food source, it comes back to the hive as an employed
bee and can decide whether or not it is interesting to dance. In a typical hive, about
5–10 % of the bees are scout bees [21].

The self-organizing and emergent properties of the foraging behavior of the bees
originate mainly from the following properties:

266 S. Aupetit and M. Slimane

• The more interesting a food source is, the more onlooker bees are recruited on the
dance floor. This allows the colony to constantly adapt and focus its efforts on the
best food sources.

• When a food source dries up or becomes less interesting, onlooker bees are no
longer recruited and employed bees eventually abandon it. The colony replaces
the food source with better ones.

• Scout bees ensure the regular discovery of new food sources. The bees can spread
over many food sources, increasing the robustness of food provisioning.

• The bee dance allows bees to share information and to ensure recruitment based
on the interest of the food sources.

10.1.2 Classical ABC Implementation

In the artificial bee colony (ABC) algorithm, the food sources are zones in the solution
space S, usually represented as locations in S. Exploiting a food source consists in
evaluating the interest of a location in its neighborhood. The colony is constituted
of three kinds of bees: scout, onlooker, and employed bees. A scout bee becomes
an employed bee when it chooses a food source. An employed bee becomes a scout
bee when it abandons its food source. Let N be the number of food sources that
can be exploited simultaneously by the hive, Nemployed the number of employed bees,
Nonlooker the number of onlooker bees, and Nscout the number of scout bees. The main
steps of the ABC algorithm are summarized in Algorithm 10.1.

Nemployed food sources are chosen
while the stop criterion is not met do

Employed bees go out of the hive to exploit food sources
Onlooker bees go out of the hive and split based on the interest of food sources to exploit
them
Employed bees eventually abandon some food sources
Scout bees eventually search for new food sources

end

Algorithm 10.1: The main steps of the artificial bee colony (ABC) algorithm.

We denote by S = {s1, . . . , s|S|} the locations of the food sources and by q : S →
R

+ the function measuring the interest (or quality) of a food source. To avoid dealing
with implementation details and for readability of the detailed algorithms, we assume
that for a solution x ∈ S, the value q(x) is computed only once and memorized for
future use without any additional computing cost. Finally, we denote by s∗ the best
solution (or food source location) found by the algorithm. In the following, we detail
the each step of ABC.

10 Nature Inspires New Algorithms 267

10.1.2.1 Initial Choice of the Food Sources

By default, and without incorporating supplementary knowledge about the opti-
mization problem, the initial choice of the food sources is the result of a uniform
random sampling of the search space. For each food source, a failure counter (ei)
is maintained. Its value is set to 0 initially and when a better solution is found for
the food source. Its value is increased when no improvement can be made by the
exploitation of the food source. The initial choice of the food sources is described
by Algorithm 10.2.

for i = 1 to |S| do
si ← U(S)

ei ← 0
s∗ ← arg min

s∈S f (s)

Algorithm 10.2: Initial choice of food sources.

10.1.2.2 Employed Bees Leave the Hive to Exploit Food Sources

Exploiting a food source requires the choice of a new solution in the neighborhood
of the food source (si). In classical ABC, the new solution to be explored, vi =
(vi,1, . . . , vi,D)′ is obtained by mutating one coordinate of the location of the food
source. The mutation is conducted according to the formula

vi,k = si,k + U([−1 : 1]) ∗ (si,k − sn,k)

where si is the food source, sn is another food source for the hive, randomly chosen,
and k is the mutated coordinate, which is chosen randomly. Algorithm 10.3 details
the process.

for i = 1 to |S| do
sn ← U(S − {si }) /* Choose the influencing food source */
k ← U(�1 : D�) /* Choose the modified coordinate */
vi ← si
vi,k ← si,k + U([−1 : 1]) ∗ (si,k − sn,k) /* Mutate the solution */

Algorithm 10.3: Computation of new food sources.

If the interest q(f (vi)) of the new solution vi is higher than the interest q(f (si))

of the food source si , then si is replaced by vi in the memory of the employed bee
and the counter associated with the food source is reset to 0. In the other case, the

268 S. Aupetit and M. Slimane

new solution is less interesting, so the counter is increased by 1. The update of the
food sources by employed bees is given in Algorithm 10.4.

for i = 1 to |S| do
if f (vi) < f (si) then /* The new solution is more interesting */

si ← vi
ei ← 0
if f (vi) < f (s∗) then /* The best solution is improved */

s∗ ← vi

else
ei ← ei + 1 /* The new solution is worse */

Algorithm 10.4: New, more interesting food sources are memorized, and others
are forgotten.

10.1.2.3 Onlooker Bees Leave the Hive

Onlooker bees choose a food source based on their observation of the dance floor
and then based on the interest of the food sources. In ABC, this principle translates
into as a spreading of the onlookers over the food sources following the probability
distribution P derived from the interest of those sources. There exist many ways to
define this distribution. In classical ABC, the interest function q of a food source s
is defined by

q(f (s)) =
{

1
1+ f (s) if f (s) ≥ 0

1 + | f (s)| otherwise

such that q(f (s)) increases as f (s) decreases. The probability for an onlooker to
choose the food source si is pi , such that

pi = q(f (si))∑
s∈S

q(f (s))
.

Each onlooker chooses a food source following P and exploits the food source as
an employed bee: a solution in the neighborhood is chosen, and the food source
and its counter are updated. Finally, the best ever food source found is memorized.
Implementation details are given in Algorithm 10.5.

10 Nature Inspires New Algorithms 269

/* Compute the probabilities from interests */
for i = 1 to |S| do

pi ← q(f (si))∑
s∈S

q(f (s))

/* Onlookers exploit the food sources */
for i = 1 to Nonlooker do

xi ← R(�1 : |S|� ∼ P) /* sxi is the food source chosen */
/* by the bee according to P */

sn ← U(S − {sxi }) /* Choose the influencing food source */
k ← U(�1 : D�) /* Choose the modified coordinate */
wi ← sxi

wi,k ← sxi ,k + U([−1 : 1]) ∗ (sxi ,k − sn,k) /* Mutate the solution */

/* Update the food sources and their counters */
for i = 1 to Nonlooker do

if f (wi) < f (sxi) then /* The new solution is more interesting */
exi ← 0
sxi ← wi
if f (wi) < f (s∗) then /* The best solution is improved */

s∗ ← wi

else /* The new solution is worse */
exi ← exi + 1

Algorithm 10.5: Exploitation of food sources by onlookers.

10.1.2.4 Dried-Up Food Sources are Abandoned and Scout Bees Work
to Replace Them

In classical ABC, only a few employed bees are allowed to abandon a food source.
For this purpose, the counter of the food source is checked. If its value is greater
than or equal to a specified constant eMax, then the bee becomes a scout. Each scout
chooses a new food source in the search space and becomes an employed bee. After
this step, the hive again has all its food sources. In classical ABC, there is at most
Nscout = 1 scout bee. Implementation details are given in Algorithm 10.6.

10.1.3 Parameterization and Evolution of the Classical ABC
Algorithm

In classical ABC, the whole algorithm requires very few parameters. The number of
food sources is the number of employed bees, which constitutes half of the colony.
We have

Nemployed = Nonlooker = N
2

.

270 S. Aupetit and M. Slimane

n ← 0 /* The number of scout bees transformed into employed
bees */

C ← {
i ∈ �1 : |S|�∣∣ei >= eMax

}
/* The candidate to be abandoned */

while n < Nonlooker and C
= ∅ do
i ← arg max

j∈C {e j } /* One of the most dried-up food sources */

si ← U(S) /* Choose a new food source */
if f (si) < f (s∗) then /* The best solution is improved */

s∗ ← si

C ← {
i ∈ 1.. |S| ∣∣ei >= eMax

}
n ← n + 1

Algorithm 10.6: Dried-up food sources are abandoned and scout bees work to
replace them.

Usually, only one food source can be abandoned in an iteration, and then Nscout = 1.
In experiments presented in [22], a maximum value eMax of the failure counter of a
food source equal to DN /2 was found to give good results. The last parameter of
ABC is the stop criterion. Usually, it is expressed as a maximum number of iterations.

Since its introduction, ABC has attracted a lot of interest and has been applied in
many domains. In short, it has been shown that ABC performs as well as and some-
times better than many popular metaheuristics while requiring fewer settings. ABC
was created to solve continuous problems, but many variants have been proposed
for discrete, combinatorial, and multiobjective problems. Many improvements and
hybridization with other metaheuristics have allowed researchers to consider ABC
as one of the best optimization algorithms of the present moment. The architecture
of ABC is also well suited to parallelization and therefore to the solution of large
problems. For more details of ABC and a wider review of the ABC universe, we
recommend the reader to read [23] and follow http://mf.erciyes.edu.tr/abc/. Algo-
rithm 10.7 shows the complete ABC algorithm.

10.2 In Search of the Perfect Harmony

Music has been part of human civilization from the beginning. Throughout this
time, humanity has sought to create perfect melodies. Usually, many musicians are
required to play notes simultaneously in order to create an aesthetically pleasing
chord or harmony. The search for such a harmony is done progressively by adjusting
the notes until an aesthetic harmony is found. During the process, the musicians
memorize the best harmonies and reuse them to make adjustments and to improvise
new harmonies.

To improvise, musicians usually behave as follows. The choice of a new chord
is dependent on the instrument (and on the musician). The first way to improvise
consists in randomly choosing a note from a scale. The second possibility considers

http://mf.erciyes.edu.tr/abc/

10 Nature Inspires New Algorithms 271

for i = 1 to |S| do
si ← U(S)

ei ← 0
s∗ ← arg min

s∈S
f (s)

while the stop criterion is not met do
for i = 1 to |S| do

sn ← U(S − {si }) /* Choose the influencing food source */
k ← U(�1 : D�) /* Choose the modified coordinate */
vi ← si

vi,k ← si,k + U([−1 : 1]) ∗ (si,k − sn,k) /* Mutate the solution */

for i = 1 to |S| do
if f (vi) < f (si) then /* The new solution is more interesting */

si ← vi

ei ← 0
if f (vi) < f (s∗) then /* The best solution is improved */

s∗ ← vi

else
ei ← ei + 1 /* The new solution is worse */

/* Compute the probabilities from interests */
for i = 1 to |S| do

pi ← q(f (si))∑
s∈S

q(f (s))

/* Onlookers exploit the food sources */
for i = 1 to Nonlooker do

xi ← R(�1 : |S|� ∼ P) /* sxi is the food source chosen */
/* by the bee according to P */

sn ← U(S − {sxi }) /* Choose the influencing food source */
k ← U(�1 : D�) /* Choose the modified coordinate */
wi ← sxi

wi,k ← sxi ,k + U([−1 : 1]) ∗ (sxi ,k − sn,k) /* Mutate the solution */

/* Update the food sources and their counters */
for i = 1 to Nonlooker do

if f (wi) < f (sxi) then /* The new solution is more interesting */
exi ← 0
sxi ← wi

if f (wi) < f (s∗) then /* The best solution is improved */
s∗ ← wi

else /* The new solution is worse */
exi ← exi + 1

n ← 0 /* The number of scout bees transformed into employed bees
*/
C ← {

i ∈ �1 : |S|�∣∣ei >= eMax
}

/* The candidates to be abandoned */
while n < Nonlooker and C
= ∅ do

i ← arg max
j∈C {e j } /* One of the most dried-up food sources */

si ← U(S) /* Choose a new food source */
if f (si) < f (s∗) then /* The best solution is improved */

s∗ ← si

C ← {
i ∈ 1.. |S| ∣∣ei >= eMax

}
n ← n + 1

Algorithm 10.7: The artificial bee colony (ABC) algorithm.

272 S. Aupetit and M. Slimane

15/20

1st memory

11/20

2nd memory

9/20

3rd memory

14/20

Improvisation

Chosen from the memory

Chosen from the memory
and augmented tonality

Chosen randomly from the scale

Replace the worst memorized
improvised harmony

Fig. 10.3 Improvisation in harmony search

the notes played on that instrument in the more aesthetic memorized harmonies: a
note is chosen, and a modification of the tonality is possibly applied. The resulting
new chord is played and compared with the most aesthetic memorized harmonies.
The process is repeated until the musicians are satisfied with the harmonies (see
Fig. 10.3).

Harmony search [16], introduced by Geem et al., was derived from the iterative
search for an aesthetic harmony described above. The solution vector represents the
notes of the chord, and the objective function is used as an aesthetic measurement.
By searching for a harmony with the best aesthetic value, the algorithm searches
for a solution which minimizes the objective function. The main principles of the
harmony search algorithm are described in Algorithm 10.8.

Initialize the memories
while the stop criterion is not met do

Improvise a new harmony
if the new harmony is more aesthetic than the worst memorized
harmony then

Replace the worst memorized harmony with the new harmony

Algorithm 10.8: The harmony search algorithm.

10 Nature Inspires New Algorithms 273

10.2.1 Memory Initialization

A fixed set of slots is used for memorizing the best harmonies. Let M =
{m1, . . . , m|M|} be the memory slots and their values. In the classical implemen-
tation, the memory slots are initialized through a sampling of the search space as
described in Algorithm 10.9.

for i = 1 to |M| do
mi ← U(S)

s∗ = arg min
m∈M f (m)

Algorithm 10.9: Initialization of memory slots.

10.2.2 Improvisation of a New Harmony

The exploration and exploitation capabilities of harmony search lie in the improvisa-
tion process. To improvise a new harmony, the memory may or may not be exploited.
The improvisation is applied instrument by instrument, that is to say, coordinate by
coordinate of the solution. The exploitation of the memory is applied with a proba-
bility of τmemory ∈]0 : 1[. Otherwise, the search space is explored.

The exploitation process consists in choosing a note from the memorized aes-
thetic harmonies. For instrument j (dimension j), a note is chosen randomly and
uniformly from the set of the notes of the instrument for the best-memorized har-
monies

{
m1, j , m2, j , . . . , m|M|, j

}
. The more a value is represented in the memorized

harmonies, the greater the probability of choosing it is. The chosen value is modified
with a probability τtonality ∈]0 : 1[. The modification consists in adding a uniformly
generated random value from the range [−β : β], where β > 0. In the literature, β

is referred as the bandwidth or fret width, and controls the mutation applied to the
improvisation process. When the memory is not used, the note is uniformly cho-
sen from the scale, that is to say, in [l j : u j], to ensure exploration of the search
space. Table 10.1 summarizes the three possible outcomes of improvisation for an
instrument, and their respective probabilities of occurring.

Many choices have been proposed for τtonality and β. When the search space
is discrete, β is usually set to 1. When S is symbolic, the tonality adjustment is
considered as an increase or a decrease in the tonality. For example, with musical
notes, a tonality adjustment for E could be D or F. When S is continuous, many
formulas have been devised and are still regularly being devised [2].

In the original definition of the harmony search algorithm by Geem et al. [16],
τmemory, τtonality, and β are fixed at the start of the algorithm. This setting was rapidly
replaced by more elaborate strategies. The best-known strategy is that of the improved

274 S. Aupetit and M. Slimane

Table 10.1 The three cases of improvisation for coordinate j , and their respective probabilities of
occurring

Improvisation outcome Probability

mU(�1:|M|�), j τmemory ∗ (1 − τtonality)

mU(�1:|M|�), j + U([−β : +β]) τmemory ∗ τtonality

U([l j : u j]) 1 − τmemory

harmony search (IHS) algorithm [27]. In IHS, the probability of tonality adjustment
is increased over time from τmin

tonality to τmax
tonality while the fret width is decreased expo-

nentially from βmax to βmin. Denoting the improvisation step by t ∈ �0 : TMax�, we
have

τtonality(t) = τmin
tonality + τmax

tonality − τmin
tonality

TMax
t

and

β(t) = βmax

(
βmin

βmax

)t/TMax

As stated earlier, if the solution obtained is not in the search space, it is taken back
to S using any valid way, such as cropping of the values.

The improvisation of a new harmony is summarized in Algorithm 10.10.

for j = 1 to D do
if U([0 : 1]) ≤ τmemory then

i ← U(�1 : |M|�) /* A memory slot is chosen as source */
if U([0 : 1]) ≤ τtonality then

v j ← mi, j + U([−β : β]) /* Tonality is adjusted */
else

v j ← mi, j /* Only the memory is exploited */

else
v j ← U([l j : u j]) /* A note is chosen from the scale */

Algorithm 10.10: Improvisation of a new harmony.

10.2.3 Updating of the Memory Slots

In the classical harmony search, the memory update process consists in replacing the
least aesthetic harmony in the memory if and only if the new improvised harmony is

10 Nature Inspires New Algorithms 275

more aesthetic. If the improvisation produces a less aesthetic harmony, it is ignored.
Many other alternative strategies have been considered for the memory update, such
as forbidding duplicate harmonies or maintaining a minimum diversity among the
values of a dimension. The memory update process in the classical harmony search
is given in Algorithm 10.11.

w ← arg max
m∈M f (m) /* The least aesthetic memorized harmony */

if f (v) < f (w) then
w ← v /* Replace the least aesthetic memorized harmony */
if f (v) < f (s∗) then /* The best solution is improved */

s∗ ← v

Algorithm 10.11: Updating of the memory slots.

10.2.4 Parameterization and Evolution of the Classical
Algorithm

The parameter settings are dependent on the optimization problem. However, exper-
iments conducted over the years have shown some tendencies. Usually, the memory
size is 30, but the use of a size of 100 can easily be found for some problems. τmemory

must have a high value, between 0.70 and 0.98, to allow proper exploitation of the
memory. A value of 0.9 seems to be common. The fret width takes values lower than
0.5, with a mean of 0.3. β is dependent on the problem but is of the order of 1–10 %
of the amplitude of the values (u j − l j for a continuous range). Recent studies such
as [12, 18, 41] have tried to devise self-adapting parameters for the optimization
problem.

Harmony search has been hybridized with many other metaheuristics. More details
can be found in [2, 14, 15]. The reader can also find a broader source of information
about harmony search at http://www.hydroteq.com.1 The complete harmony search
algorithm is given in Algorithm 10.12.

10.3 The Echolocation Behavior of Microbats

Bats are mammals in the order Chiroptera. They are the only mammals that are able to
fly and to sustain flight like birds. The Bats are the second largest order of mammals,
with more than a thousand species. The order is usually divided into two parts: the
megabats and the microbats. Unlike the megabats, the microbats are small and use

1Alternative link: https://sites.google.com/a/hydroteq.com/www/.

http://www.hydroteq.com
https://sites.google.com/a/hydroteq.com/www/

276 S. Aupetit and M. Slimane

for i = 1 to |M| do
mi ← U(S)

s∗ ← arg min
m∈M f (m)

while the stop criterion is not met do
for j = 1 to D do

if U([0 : 1]) ≤ τmemory then
i ← U(�1 : |M|�) /* A memory slot is chosen as source */
if U([0 : 1]) ≤ τtonality then

v j ← mi, j + U([−β : β]) /* Tonality is adjusted */
else

v j ← mi, j /* Only the memory is exploited */

else
v j ← U([l j : u j]) /* A note is chosen from the scale */

τtonality ← τmin
tonality + τmax

tonality−τmin
tonality

TMax
t /* IHS parameter update */

β ← βmax
(

βmin

βmax

)t/TMax
/* IHS parameter update */

w ← arg max
m∈M f (m) /* The least aesthetic memorized harmony */

if f (v) < f (w) then
w ← v /* Replace the least aesthetic memorized harmony */
if f (v) < f (s∗) then /* The best solution is improved */

s∗ ← v

Algorithm 10.12: The harmony search algorithm with the parameter update
process of IHS.

echolocation. Besides being sighted, most echolocating microbats are insectivores
and only use echolocation to hunt at night.

The echolocation capabilities of bats are due to a mutated gene, named Prestin,
that allows the ears to perceive ultrasound. When a microbat emits ultrasound from
its mouth and nose, the waves are reflected by obstacles and detected by the ears
(Fig. 10.4). Using ultrasound, the microbat reconstitutes a 3D model of its environ-
ment. While moving, most bats modulate this ultrasound according to their move-
ment, the hunting strategy that they are following, and the distance from their prey.
The modulation consists in varying the loudness, frequency, and rhythm of the bursts
of ultrasound in order to adjust the precision of the echolocation as needed. The hunt-
ing behavior of echolocating microbats led to the definition of the bat algorithm by
Yang [46].

The bat algorithm is based on the hypothesis that only echolocation is required to
hunt prey, and to perceive distances and the environment. It supposes that microbats
move by flying. The solutions in the search space S are locations in the environment.
The bat algorithm considers a colony of N microbats. At each time t , microbat
i is located at xi ∈ S and has a velocity vi . During a move, each microbat emits
ultrasound with a loudness Li ∈ [Lmin : Lmax] at a frequency fi ∈ [fmin : fmax]. The
ultrasound is emitted in bursts with a pulse rate τi ∈ [0 : 1]. When the prey is near

10 Nature Inspires New Algorithms 277

Fig. 10.4 Ultrasound emitted by a microbat reflected from a prey organism

the bat, the pulse rate is high (τi increases) and the loudness is low (Li decreases). In
the opposite case, when the prey is far away, the pulse rate is low and the loudness is
high in order to be able to see further. The main steps of the bat algorithm are given
in Algorithm 10.13.

Initialize the position and velocity of the bats
Initialize the properties governing the emission of ultrasound by
the bats
while the stop criterion is not met do

Move the bats
Update the properties governing the emission of ultrasound by
the bats
Update the best ever known solution

Algorithm 10.13: Main steps of the bat algorithm.

10.3.1 Initialization Step

At initialization, the bats are usually spread uniformly over the search space. The
initial velocity is zero. In most implementations, the loudness is bounded by [0 : 1],
that is to say, Lmin = 0 and Lmax = 1. Usually, the initial loudness Li has a value
around 0.5. In this case, the bat moves in a random direction half the time (see
Sect. 10.3.2). Many other initial values can be used, such as random values for Li

or τi , or values more suited to specific features of the problem. The details of the
initialization step are given in Algorithm 10.14, where f : S �−→ R is the objective
function to be minimized and s∗ is the best solution known.

278 S. Aupetit and M. Slimane

τmax ← 0.5
for i = 1 to N do

xi ← U(S)

vi ← 0
τi ← τmax
Li ← 0.5

s∗ ← min
i=1..N

f (xi)

Algorithm 10.14: Initialization step for the bat algorithm.

10.3.2 Moves of the Bats

The moves of a bat obey some simple rules: either it continues moving in the same
direction or it changes direction.

In the first case, similar principles to those in particle swarm optimization are
used. The new velocity vector is obtained by adding the current velocity and an
external velocity vector. In the classical bat algorithm, the external velocity vector
is computed as the multiplication of the frequency fi and the direction between the
current location and the location of the best solution ever found. The frequency,
uniformly generated in the range [fmin : fmax], controls the speed of movement. To
move the bat, the new velocity is added to the position. This movement exploits
current knowledge to explore the search space.

In the second case, the new position depends on the position of another bat,
randomly chosen. The position is perturbed in proportion to the mean value of the
loudness of the ultrasound emitted by all bats. This behavior allows one to explore
the search space.

The pulse rate governs the choice between the two strategies. The higher the pulse
rate is, the more the bat exploits its current velocity and the knowledge about the
best solution ever found. The lower the pulse rate is, the more random moves are
allowed. This rate plays a similar role to the temperature in simulated annealing by
controlling the balance between exploitation of knowledge and exploration of the
search space. The move step of the algorithm is summarized in Algorithm 10.15.

for i = 1 to N do
if U([0 : 1]) > τi then /* Change direction */

k ← U(�1 : N �)

xi ← xk + 1
N ∗

(
N∑
j=1

L j

)
∗ U([−1 : 1]D)

else /* Keep direction */
fi ← U([fmin : fmax])
vi ← vi + (xi − s∗) ∗ fi
xi ← xi + vi

Algorithm 10.15: Moves of the bats.

10 Nature Inspires New Algorithms 279

10.3.3 Update of the Emission Properties of the Ultrasound

When the position is better than the best solution ever known, the emission properties
are updated with a probability Li . In this case, the loudness is reduced by a factor
α ∈]0 : 1[and the pulse rate τi is increased according to τmax(1 − e−γ t), where t
is the iteration number and γ ∈]0 : 1[is usually a constant. A progressive decrease
in Li leads to a decrease in the probability of τi being increased. An increase in τi

diminishes the frequency of random moves, thereby increasing exploitation at the
expense of exploration. The parameters α and γ are classically fixed at 0.9. These
parameters control the convergence of the bat algorithm like the cooling factor in
simulated annealing. The update process for the emission properties is given in
Algorithm 10.16.

for i = 1 to N do
if f (xi) < f (s∗) then /* The best solution is improved */

s∗ ← xi
if U([0 : 1]) < Li then

Li ← α ∗ Li
τi ← τmax(1 − e−γ t)

Algorithm 10.16: Update of the emission properties of the ultrasound.

10.3.4 Evolution of the Algorithm

The bat algorithm is quite recent. During the creation of the algorithm, Yang [46]
tried to include best practices derived from many metaheuristics. Using specific
parameters, the bat algorithm can be reduced to a simple form of particle swarm
optimization or to a harmony search. In [46], Yang suggested that the bat algorithm
was probably better than the others considered in that paper (ABC and harmony
search).

Recently, the method has attracted attention and has led to many suggestions for
improvement. In [10], the Doppler effect was incorporated to the moves. In [6], some
new ideas, similar to those used in (μ + μ)-ES, were considered for the selection of
new positions and the update of the emission properties. In [38], mutation mecha-
nisms were added. In [32], the algorithm was adapted to binary search spaces. The
study in [13] took constraints into account using penalty functions. Finally, in [25],
a random walk of the chaotic Lévy flight type was added. These multiple improve-
ments are only an extract of what has been proposed, and the reader can be sure that
many others are to come. The complete bat algorithm is given in Algorithm 10.17.

280 S. Aupetit and M. Slimane

τmax ← 0.5
for i = 1 to N do

xi ← U(S)

vi ← 0
τi ← τmax
Li ← 0.5

s∗ ← min
i=1..N

f (xi)

while the stop criterion is not met do
for i = 1 to N do

if U([0 : 1]) > τi then /* Change direction */
k ← U(�1 : N �)

xi ← xk + 1
N ∗

(
N∑
j=1

L j

)
∗ U([−1 : 1]D)

else /* Keep direction */
fi ← U([fmin : fmax])
vi ← vi + (xi − s∗) ∗ fi
xi ← xi + vi

for i = 1 to N do
if f (xi) < f (s∗) then /* The best solution is improved */

s∗ ← xi
if U([0 : 1]) < Li then

Li ← α ∗ Li
τi ← τmax(1 − e−γ t)

Algorithm 10.17: The bat algorithm.

10.4 Nature Continues to Inspire New Algorithms

The algorithms based on bees, music improvisation, and bats are only three examples
of nature-inspired metaheuristics. Based on physical properties or social behavior,
from the tiniest bacteria to larger organisms such as the cuckoo, there exist many
other metaheuristics. In the following, we give the reader some insights and starting
points for studying them.

10.4.1 Bacterial Foraging Optimization

The foraging and movement behavior of bacteria led to the bacterial foraging opti-
mization (BFO/BFOA) algorithm [9, 26, 31]. In this algorithm, the bacteria move
in a solution space, and both the objective function and proximity to other bacteria
are considered. Through successive moves, deaths, and births, by spreading of new
bacteria, the population of bacteria searches for optima of the objective function.

10 Nature Inspires New Algorithms 281

10.4.2 Slime Mold Optimization

Dictyostelium discoideum, usually referred as slime mold, is a species of soil-living
amoeba belonging to the phylum Mycetozoa. The primary diet of slime mold consists
of bacteria and yeasts. Although it is unicellular, the amoeba is able to behave as a
multicellular organism by the aggregation of many amoebas in order to survive. The
behavior of these “social” amoebas inspired the slime mold optimization algorithm
[3, 29, 30].

10.4.3 Fireflies and Glowworms

Fireflies and glowworms are insects in the order Coleoptera, more precisely from the
Lampyridae family. These insects have the ability to emit light. The light is produced
in the abdomen through a type of chemical reaction called bioluminescence from
molecules of luciferin produced by the insect. While the insects’ light can be used
for attracting prey, it is mainly used for mate selection. Blinking of the light is used to
attract a mate. Two algorithms are directly derived from the blinking phenomenon:
the firefly algorithm and the glowworm swarm optimization algorithm.

The firefly algorithm was introduced by Yang [44, 45]. This algorithm considers
many fireflies moving in the search space. Each firefly emits a blinking light whose
intensity depends on the quality of the solution (the objective function). In each
iteration, the fireflies perceive the blinking of the other fireflies. When the intensity of
a remote firefly is stronger than its own intensity, an insect moves toward the remote
insect. The velocity of the movement depends on the distance and the intensity.
The process is repeated as needed. Although it is based on different principles, this
algorithm is quite similar to a particular form of particle swarm optimisation.

Glowworm swarm optimization was defined by Krishnanand and Ghose [24,
42]. As in the firefly algorithm, the intensity of the emitted light depends directly
on the quality of the position (the objective function). Each glowworm sees only
the glowworms in its neighborhood and is attracted by a stronger light. There are
three steps in each iteration of the algorithm: the light intensities are updated, the
glowworms move, and the radius of the neighborhoods is updated. The update of
the intensities consists in increasing or decreasing the intensity based on the quality
of the solution. To move a glowworm, another glowworm in the neighborhood is
chosen using a probability law depending on the difference in the light intensities of
the glowworms. The first glowworm is then moved toward the second (chosen) one.
Finally, the radius of the neighborhood is updated so that the number of glowworms
in the neighborhood loosely matches a required value. The process is repeated as
needed.

282 S. Aupetit and M. Slimane

10.4.4 Termites

Although less known, termites have been used to solve network problems. The result-
ing algorithms are quite similar to ant algorithms such as ACO [1, 20, 28, 34, 35,
48].

10.4.5 Roach Infestation

Roach infestation served as a model for the roach infestation optimization algo-
rithm [19].

10.4.6 Mosquitoes

In [11], the hunting behavior of mosquitoes inspired the mosquito host-seeking algo-
rithm to solve the traveling salesman problem.

10.4.7 Wasps

Some specific features of wasps led to the wasp swarm optimization algorithm [7,
8, 33, 37].

10.4.8 Spiders

Social spiders have been used for region detection in images [5] and for security in
wireless networks [4].

10.4.9 Cuckoo Search

The social behavior of animals such as the cuckoo (a bird of the Cuculidae family)
has also inspired algorithms. Cuckoos are brood parasites, relying on other species to
raise their young. The other bird species can have two reactions: either they discover
the trick and destroy the cuckoo eggs, or they are oblivious to the trick. To increase the
survival of the young, a cuckoo seeks to lay its eggs in nests where the survival rate
is higher. This brood-parasitizing strategy led to the cuckoo search algorithm [47].

10 Nature Inspires New Algorithms 283

10.5 Conclusion

Throughout this chapter, we have tried to provide a short overview of algorithms
inspired by nature by considering either physical or biological behavior. We saw that
this inspiration can come from the tiniest organisms such as bacteria to complex
organisms birds. Many algorithms have been created. Some have been successful,
some less. Although this chapter is a very incomplete list of nature-inspired algo-
rithms for optimization, we can be sure that inspiration has been, is, and will be
fruitful for a long, time to come.

10.6 Annotated Bibliography

Reference [23] This article is a relatively comprehensive overview of optimization
algorithms derived from the behavior of bees.

Reference [21] This article by Karaboga establishes the foundations of the artificial
bee colony algorithm.

Reference [16] This article introduces the fundamental principles behind the har-
monic search algorithm.

Reference [46] This article by Yang describes the principles of echolocation of bats
and their use in the associated optimization algorithm.

References

1. Ajith, A., Crina, G., Vitorino, R., Martin, R., Stephen, W.: Termite: A swarm intelligent routing
algorithm for mobilewireless ad-hoc networks. In: J. Kacprzyk (ed.) Stigmergic Optimization,
vol. 31, pp. 155–184. Springer, Berlin, Heidelberg (2006). http://www.springerlink.com/index/
10.1007/978-3-540-34690-6_7

2. Alia, O.M., Mandava, R.: The variants of the harmony search algorithm: An overview. Artificial
Intelligence Review 36(1), 49–68 (2011). doi:10.1007/s10462-010-9201-y

3. Becker, M., Wegener, M.: An optimization algorithm similar to the search of food of the slime
mold Dictyostelium Discoideum. In: IRAST International Congress on Computer Applications
and Computational Science (CACS 2010), pp. 874–877 (2010)

4. Benahmed, K., Merabti, M., Haffaf, H.: Inspired social spider behavior for secure wireless
sensor networks. International Journal of Mobile Computing and Multimedia Communications
4(4), 1–10 (2012). doi:10.4018/jmcmc.2012100101

5. Bourjot, C., Chevrier, V., Thomas, V.: A new swarm mechanism based on social spiders
colonies: From web weaving to region detection. Web Intelligence and Agent Systems 1(1),
47–64 (2003). http://dl.acm.org/citation.cfm?id=965057.965061

6. Carbas, S., Hasancebi, O.: Optimum design of steel space frames via bat inspired algorithm. In:
10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL (2013)

http://www.springerlink.com/index/10.1007/978-3-540-34690-6_7
http://www.springerlink.com/index/10.1007/978-3-540-34690-6_7
http://dx.doi.org/10.1007/s10462-010-9201-y
http://dx.doi.org/10.4018/jmcmc.2012100101
http://dl.acm.org/citation.cfm?id=965057.965061

284 S. Aupetit and M. Slimane

7. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Technical
Report CMU-RI-TR-01-39, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
(2001)

8. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Autonomous
Agents and Multi-Agent Systems 8(3), 237–266 (2004). doi:10.1023/B:AGNT.0000018807.
12771.60

9. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: The-
oretical foundations, analysis, and applications. In: J. Kacprzyk, A. Abraham, A.E. Hassanien,
P. Siarry, A. Engelbrecht (eds.) Foundations of Computational Intelligence, vol. 3. Studies in
Computational Intelligence, vol. 203, pp. 23–55. Springer, Berlin, Heidelberg (2009). http://
www.springerlink.com/index/10.1007/978-3-642-01085-9_2

10. Faritha Banu, A., Chandrasekar, C.: An optimized approach of modified BAT algorithm to
record deduplication. International Journal of Computer Applications 62(1), 10–15 (2013).
doi:10.5120/10043-4627. http://research.ijcaonline.org/volume62/number1/pxc3884627.pdf

11. Feng, X., Lau, F.C.M., Gao, D.: A new bio-inspired approach to the traveling salesman problem.
In: O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo,
S. Sahni, X.S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, J. Zhou (eds.) Complex
Sciences, vol. 5, pp. 1310–1321. Springer, Berlin, Heidelberg (2009). http://www.springerlink.
com/index/10.1007/978-3-642-02469-6_12

12. Fourie, J., Green, R., Geem, Z.W.: Generalised adaptive harmony search: A comparative analy-
sis of modern harmony search. Journal of Applied Mathematics 2013, 1–13 (2013). doi:10.
1155/2013/380985. http://www.hindawi.com/journals/jam/2013/380985/

13. Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained opti-
mization tasks. Neural Computing and Applications 22(6), 1239–1255 (2012). doi:10.1007/
s00521-012-1028-9

14. Geem, Z.W.: Recent Advances in Harmony Search Algorithm. Studies in Computational Intel-
ligence, vol. 270. Springer, Berlin (2010)

15. Geem, Z.W.: State-of-the-art in the structure of harmony search algorithm. In: Z.W. Geem
(ed.) Recent Advances in Harmony Search Algorithm. Studies in Computational Inatelligence,
vol. 270, pp. 1–10. Springer, Berlin, Heidelberg (2010). http://www.springerlink.com/index/
10.1007/978-3-642-04317-8_1

16. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: Harmony
search. Simulation 76(2), 60–68 (2001). doi:10.1177/003754970107600201

17. Haddad, O.B., Afshar, A., Mario, M.A.: Honey-bees mating optimization (HBMO) algorithm:
A new heuristic approach for water resources optimization. Water Resources Management
20(5), 661–680 (2006). doi:10.1007/s11269-005-9001-3

18. Hasanebi, O., Erdal, F., Saka, M.P.: Adaptive harmony search method for structural optimiza-
tion. Journal of Structural Engineering 136(4), 419–431 (2010). doi:10.1061/(ASCE)ST.1943-
541X.0000128

19. Havens, T.C., Spain, C.J., Salmon, N.G., Keller, J.M.: Roach infestation optimization. In:
Swarm Intelligence Symposium 2008 (SIS 2008), St. Louis, MO, pp. 1–7. IEEE (2008). doi:10.
1109/SIS.2008.4668317

20. Hedayatzadeh, R., Akhavan Salmassi, F., Keshtgari, M., Akbari, R., Ziarati, K.: Termite
colony optimization: A novel approach for optimizing continuous problems. In: 18th Iranian
Conference on Electrical Engineering (ICEE), pp. 553–558. IEEE (2010). doi:10.1109/
IRANIANCEE.2010.5507009

21. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report
TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, Kayseri,
Turkey (2005)

22. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Applied Math-
ematics and Computation 214(1), 108–132 (2009). doi:10.1016/j.amc.2009.03.090. http://
linkinghub.elsevier.com/retrieve/pii/S0096300309002860

23. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: Artificial bee
colony (ABC) algorithm and applications. Artificial Intelligence Review 42(1), 21–57 (2012).
doi:10.1007/s10462-012-9328-0

http://dx.doi.org/10.1023/B:AGNT.0000018807.12771.60
http://dx.doi.org/10.1023/B:AGNT.0000018807.12771.60
http://www.springerlink.com/index/10.1007/978-3-642-01085-9_2
http://www.springerlink.com/index/10.1007/978-3-642-01085-9_2
http://dx.doi.org/10.5120/10043-4627
http://research.ijcaonline.org/volume62/number1/pxc3884627.pdf
http://www.springerlink.com/index/10.1007/978-3-642-02469-6_12
http://www.springerlink.com/index/10.1007/978-3-642-02469-6_12
http://dx.doi.org/10.1155/2013/380985
http://dx.doi.org/10.1155/2013/380985
http://www.hindawi.com/journals/jam/2013/380985/
http://dx.doi.org/10.1007/s00521-012-1028-9
http://dx.doi.org/10.1007/s00521-012-1028-9
http://www.springerlink.com/index/10.1007/978-3-642-04317-8_1
http://www.springerlink.com/index/10.1007/978-3-642-04317-8_1
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s11269-005-9001-3
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000128
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000128
http://dx.doi.org/10.1109/SIS.2008.4668317
http://dx.doi.org/10.1109/SIS.2008.4668317
http://dx.doi.org/10.1109/IRANIANCEE.2010.5507009
http://dx.doi.org/10.1109/IRANIANCEE.2010.5507009
http://dx.doi.org/10.1016/j.amc.2009.03.090
http://linkinghub.elsevier.com/retrieve/pii/S0096300309002860
http://linkinghub.elsevier.com/retrieve/pii/S0096300309002860
http://dx.doi.org/10.1007/s10462-012-9328-0

10 Nature Inspires New Algorithms 285

24. Krishnanand, K., Ghose, D.: Detection of multiple source locations using a glowworm metaphor
with applications to collective robotics. In: Proceedings of IEEE Swarm Intelligence Symposium
2005 (SIS 2005), pp. 84–91. IEEE (2005). doi:10.1109/SIS.2005.1501606

25. Lin, J.H., Chou, C.W., Yang, C.H., Tsai, H.L.: A chaotic Levy flight bat algorithm for parameter
estimation in nonlinear dynamic biological systems. Journal of Computer and Information 2(2),
56–63 (2012). www.AcademyPublish.org

26. Liu, Y., Passino, K.: Biomimicry of social foraging bacteria for distributed optimization: Mod-
els, principles, and emergent behaviors. Journal of Optimization Theory and Applications
115(3), 603–628 (2002). doi:10.1023/A:1021207331209

27. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algo-
rithm for solving optimization problems. Applied Mathematics and Computation 188(2),
1567–1579 (2007). doi:10.1016/j.amc.2006.11.033. http://linkinghub.elsevier.com/retrieve/
pii/S0096300306015098

28. Martin, H.R.: Termite: A swarm intelligent routing algorithm for mobile wireless ad-hoc net-
works. Ph.D. thesis, Faculty of the Graduate School of Cornell University (2005)

29. Monismith, D.R.: The uses of the slime mold lifecycle as a model for numerical optimization.
Ph.D. thesis, Oklahoma State University (2008)

30. Monismith, D.R., Mayfield, B.E.: Slime mold as a model for numerical optimization. In: Swarm
Intelligence Symposium 2008 (SIS 2008), St. Louis, MO, pp. 1–8. IEEE (2008). doi:10.1109/
SIS.2008.4668295

31. Muller, S., Marchetto, J., Airaghi, S., Kournoutsakos, P.: Optimization based on bacterial
chemotaxis. IEEE Transactions on Evolutionary Computation 6(1), 16–29 (2002). doi:10.1109/
4235.985689

32. Nakamura, R.Y.M., Pereira, L.A.M., Costa, K.A., Rodrigues, D., Papa, J.P., Yang, X.S.: BBA:
A binary bat algorithm for feature selection. In: 25th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI 2012), pp. 291–297. IEEE (2012). doi:10.1109/SIBGRAPI.
2012.47

33. Pinto, P.C., Runkler, T.A., Sousa, J.M.C.: Wasp swarm algorithm for dynamic MAX-SAT
problems. In: B. Beliczynski, A. Dzielinski, M. Iwanowski, B. Ribeiro (eds.) Adaptive and
Natural Computing Algorithms. LNCS, vol. 4431, pp. 350–357. Springer, Berlin, Heidelberg
(2007). http://www.springerlink.com/index/10.1007/978-3-540-71618-1_39

34. Roth, M.: A framework and model for soft routing: The markovian termite and other curious
creatures. In: M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli, T. Stützle
(eds.) Ant Colony Optimization and Swarm Intelligence. LNCS, vol. 4150, pp. 13–24. Springer,
Berlin, Heidelberg (2006). http://www.springerlink.com/index/10.1007/11839088_2

35. Sharvani, G.S., Ananth, A.G., Rangaswamy, T.M.: Ant colony optimization based modified
termite algorithm (MTA) with efficient stagnation avoidance strategy for MANETs. Interna-
tional Journal on Applications of Graph Theory in wireless Ad Hoc Networks and Sensor Net-
works 4(2/3), 39–50 (2012). doi:10.5121/jgraphoc.2012.4204. http://www.airccse.org/journal/
graphhoc/papers/4312jgraph04.pdf

36. Tautz, J.: L’tonnante abeille. De Boeck, Brussels (2009)
37. Theraulaz, G., Goss, S., Gervet, J., Deneubourg, J.L.: Task differentiation in Polistes wasp

colonies: A model for self-organizing groups of robots. In: J.-A. Meyer, S.W. Wilson From
Animals to Animats: Proceedings of the First International Conference on Simulation of Adap-
tive Behavior, pp. 346–355. MIT Press, Cambridge, MA (1990). http://dl.acm.org/citation.
cfm?id=116517.116556

38. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A bat algorithm with mutation for UCAV path
planning. Scientific World Journal 2012, 1–15 (2012). doi:10.1100/2012/418946. http://www.
hindawi.com/journals/tswj/2012/418946/

39. Wedde, H.F., Farooq, M., Zhang, Y.: BeeHive: An efficient fault-tolerant routing algorithm
inspired by honey bee behavior. In: M. Dorigo, M. Birattari, C. Blum, L.M. Gambardella,
F. Mondada, T. Stützle (eds.) Ant Colony Optimization and Swarm Intelligence. Lecture Notes
in Computer Science, vol. 3172, pp. 83–94. Springer, Berlin, Heidelberg (2004). http://www.
springerlink.com/index/10.1007/978-3-540-28646-2_8

http://dx.doi.org/10.1109/SIS.2005.1501606
www.AcademyPublish.org
http://dx.doi.org/10.1023/A:1021207331209
http://dx.doi.org/10.1016/j.amc.2006.11.033
http://linkinghub.elsevier.com/retrieve/pii/S0096300306015098
http://linkinghub.elsevier.com/retrieve/pii/S0096300306015098
http://dx.doi.org/10.1109/SIS.2008.4668295
http://dx.doi.org/10.1109/SIS.2008.4668295
http://dx.doi.org/10.1109/4235.985689
http://dx.doi.org/10.1109/4235.985689
http://dx.doi.org/10.1109/SIBGRAPI.2012.47
http://dx.doi.org/10.1109/SIBGRAPI.2012.47
http://www.springerlink.com/index/10.1007/978-3-540-71618-1_39
http://www.springerlink.com/index/10.1007/11839088_2
http://dx.doi.org/10.5121/jgraphoc.2012.4204
http://www.airccse.org/journal/graphhoc/papers/4312jgraph04.pdf
http://www.airccse.org/journal/graphhoc/papers/4312jgraph04.pdf
http://dl.acm.org/citation.cfm?id=116517.116556
http://dl.acm.org/citation.cfm?id=116517.116556
http://dx.doi.org/10.1100/2012/418946
http://www.hindawi.com/journals/tswj/2012/418946/
http://www.hindawi.com/journals/tswj/2012/418946/
http://www.springerlink.com/index/10.1007/978-3-540-28646-2_8
http://www.springerlink.com/index/10.1007/978-3-540-28646-2_8

286 S. Aupetit and M. Slimane

40. Wedde, H.F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J., Jeruschkat, R.:
BeeAdHoc: An energy efficient routing algorithm for mobile ad hoc networks inspired by bee
behavior. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation,
GECCO’05, pp. 153–160. ACM, New York (2005). doi:10.1145/1068009.1068034

41. Worasucheep, C.: A harmony search with adaptive pitch adjustment for continuous optimiza-
tion. International Journal of Hybrid Information Technology 4(4), 13–24 (2011)

42. Wu, B., Qian, C., Ni, W., Fan, S.: The improvement of glowworm swarm optimiza-
tion for continuous optimization problems. Expert Systems with Applications 39(7),
6335–6342 (2012). doi:10.1016/j.eswa.2011.12.017. http://linkinghub.elsevier.com/retrieve/
pii/S0957417411016885

43. Yang, X.S.: Engineering optimizations via nature-inspired virtual bee algorithms. In: J. Mira,
J.R. Alvarez (eds.) Artificial Intelligence and Knowledge Engineering Applications: A Bioin-
spired Approach: First International Work-Conference on the Interplay Between Natural and
Artificial Computation, IWINAC’05, Part II, pp. 317–323. Springer, Berlin, Heidelberg (2005).
doi:10.1007/11499305_33

44. Yang, X.S.: Firefly algorithm, Lévy flights and global optimization. In: M. Bramer, R. Ellis,
M. Petridis (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218.
Springer, London (2010). http://www.springerlink.com/index/10.1007/978-1-84882-983-1_
15

45. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome, UK
(2010)

46. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: J. Kacprzyk, J.R. González,
D.A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor (eds.) Nature Inspired Cooperative Strategies
for Optimization (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74.
Springer, Berlin, Heidelberg (2010). http://www.springerlink.com/index/10.1007/978-3-642-
12538-6_6

47. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Bio-
logically Inspired Computing 2009 (NaBIC 2009), pp. 210–214. IEEE (2009). doi:10.1109/
NABIC.2009.5393690

48. Zungeru, A.M., Ang, L.M., Seng, K.P.: Performance of termite-hill routing algorithm on sink
mobility in wireless sensor networks. In: Y. Tan, Y. Shi, Z. Ji (eds.) Advances in Swarm
Intelligence. Lecture Notes in Computer Science, vol. 7332, pp. 334–343. Springer, Berlin,
Heidelberg (2012). http://www.springerlink.com/index/10.1007/978-3-642-31020-1_39

http://dx.doi.org/10.1145/1068009.1068034
http://dx.doi.org/10.1016/j.eswa.2011.12.017
http://linkinghub.elsevier.com/retrieve/pii/S0957417411016885
http://linkinghub.elsevier.com/retrieve/pii/S0957417411016885
http://dx.doi.org/10.1007/11499305_33
http://www.springerlink.com/index/10.1007/978-1-84882-983-1_15
http://www.springerlink.com/index/10.1007/978-1-84882-983-1_15
http://www.springerlink.com/index/10.1007/978-3-642-12538-6_6
http://www.springerlink.com/index/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://www.springerlink.com/index/10.1007/978-3-642-31020-1_39

Chapter 11
Extensions of Evolutionary Algorithms
to Multimodal and Multiobjective
Optimization

Alain Petrowski

11.1 Introduction

Real world problems can seldom be fully formalized. Many decisions depend on the
image that a company desires to project, the policy it wants to adopt vis-à-vis its
customers and its competitors, its economic or legal environment, etc. Its decisions
regarding the design of a new product, its manufacture, and its launch depend on
dialogue and negotiations with several players. All of these factors make it difficult
to formalize such decision problems with the aim of solving them by means of a
computer.

In the context of optimization, a problem can have several optimal solutions of
equivalent value. This occurs when the objective function of an optimization prob-
lem is multimodal, i.e., when it has several solutions which are global optima. This
also occurs in the field of multiobjective optimization, which consists in optimiz-
ing simultaneously several objectives, leading generally to making compromises
between them.

Theoretically, one solution is enough. However, when factors that have not been
formalized, i.e., have not been integrated into the constraints or objective functions
of a problem, this is not adequate. It is therefore valuable to have a representative
sample of the diversity of equivalent-value solutions so that a decision maker can
choose the one that seems best.

This chapter is therefore devoted to the presentation of extensions of evolutionary
algorithms to address multimodal and multiobjective problems.

A. Petrowski (B)
Telecom SudParis, 91000 Evry, France
e-mail: Alain.Petrowski@telecom-sudparis.eu

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_11

287

288 A. Petrowski

11.2 Multimodal Optimization

11.2.1 The Problem

Multimodal optimization consists in locating multiple global optima, and possibly
the best local optima, of an objective function. Evolutionary algorithms are good
candidates for achieving this task because they handle a population of solutions that
can be distributed among various optima. We should note that there are methods
to search for several optima, such as sequential niching [2], which do not require
a population-based algorithm to succeed, but they show quite poor performance.
This is why this section is entirely devoted to evolutionary methods. However, if
a multimodal objective function is subjected to a standard evolutionary algorithm,
experiments show that the population is stabilized on only one of the maxima of
the fitness function (see Fig. 11.1a), and this is not necessarily a global maximum.
For example, consider a function with two peaks of equal maximum value. An
initial population is built in which the individuals are evenly located, around the
two optima. After a few generations, the balance will be broken because of genetic
drift, until the population is mainly localized around a single peak. The problem
of multimodal optimization could be correctly solved if a mechanism that could
stabilize subpopulations located on the highest peaks of the fitness function. This
is speciation, which makes it possible to classify the individuals of a population
into different subpopulations, and niching, which stabilizes subpopulations within
ecological niches containing the optima of the objective function. There are several
methods of speciation and niching. The most common and the most effective ones
are described below.

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

y

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

objective

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

y

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

objective

Fig. 11.1 a Selection without sharing: the individuals converge towards only one of the optima. b
Selection with sharing: the individuals converge towards several optima

11 Extensions of Evolutionary Algorithms to Multimodal … 289

11.2.2 Niching with the Sharing Method

The concept of “sharing of limited resources within an ecological niche”, suggested
by Holland [16], constitutes one of the most effective approaches to creating and
maintaining stable subpopulations around the peaks of the objective function with
an evolutionary algorithm. The concept of an ecological niche originates from the
study of population dynamics. It was formalized by Hutchinson in 1957 [19], who
defined it as a hypervolume in an n-dimensional space, each dimension representing
a living condition (e.g., quantity of food, temperature, or the size of the vital domain).
An ecological niche cannot be occupied by several species simultaneously. This is
the empirical principle of competitive exclusion. The resources within a niche being
limited, the size of the population that occupies it stabilizes.

In 1987, Goldberg and Richardson [15] proposed an adaptation of this concept
for genetic algorithms, which can be generalized to any evolutionary algorithm.
The technique is known under the name of the sharing method. It is essential that
a concept of dissimilarity between individuals be introduced. For example, if the
individuals are bit strings, the Hamming distance may be appropriate. If they are
vectors in R

n , the Euclidean distance is a priori a good choice. The value of the
dissimilarity is the criterion for deciding whether two individuals belong to the same
niche or not. The method consists in attributing a shared fitness to each individual,
which is equal to its raw fitness divided by a quantity that increases with the number
of individuals resembling it. The shared fitness can be viewed as representing a
quantity of a resource available to each individual in a niche. The selection is ideally
proportional, so that the number of offspring of an individual is proportional to its
shared fitness, although the method has also been employed with other selection
models. Thus, for the same raw fitness, an isolated individual will definitely have
more offspring than an individual that has many neighbors in the same niche. At
equilibrium, the number of individuals located on each peak becomes proportional,
to a first approximation, to the fitness associated with that peak. This appears to give
rise to a stable subpopulation in each niche. The shared fitness of an individual i can
be expressed as

f̃ (i) = f (i)∑μ

j=1 sh(d(i, j))

where sh is of the form

sh(d) =
{

1 −
(

d
σs

)α

if d < σs

0 otherwise

Here, sh is the sharing function; d(i, j) is the distance between the individuals i and
j , which depends on the representation chosen; σs is the niche radius, or dissimilarity
threshold; α is the “sharpness” parameter; and μ is the population size.

Let us assume that α is chosen very large, tending towards infinity; then (d/σs)
α

tends towards 0 and sh(d) is 1 if d < σs, or otherwise equal to 0. Then

290 A. Petrowski

∑μ

j=1 sh (d(i, j)) is the number of individuals located within a ball of radius σs

centered on the individual i . The shared fitness is thus, in this case, the raw fitness
of the individual i divided by the number of its neighbors. This type of niching per-
forms well on condition that the distances between the peaks are less than the niche
radius σs. However, for a given optimization problem, barring a few rare cases, the
distances between the peaks are not known a priori. Then, if the radius is selected to
be too large, all optima cannot be discovered by the individuals of the population. An
imperfect solution to this problem consists in defining niches as balls with a fuzzy
boundary. Thus, the individuals j for which the distances to the individual i are close
to σs have a weaker contribution to the value of sh(d(i, j)) than the others. In this way,
if unfortunately the niche (already presumably centered on a peak) contains another
peak close to its boundary, it will be less probable that the latter peak will perturb
the persistence of the presence of individuals on the central peak. The “sharpness”
of the niche boundaries is controlled by the parameter α, which is assigned a default
value of 1.

Now, let us consider the case where the radius σs is selected to be too small
compared with the distances between the peaks. There will then be several niches for
each peak. In theory, this presents no difficulty but in practice it implies putting many
more individuals in the niches than necessary, and thus it will require a population
size larger than necessary. This will cause wastage of computational resources. If
the population is not of sufficient size, it is very much possible that all the global
optima of the problem will not be discovered. Hence an accurate estimation of σs is
of prime importance. For this reason, we shall present some suggestions for ways to
come close to this objective.

Figures 11.1 shows the distributions of the individuals on the peaks of a multi-
modal function defined in R

2 after convergence of an evolutionary algorithm, with
and without sharing of the fitness function. The individuals are projected on to a
plane at the height of the optimum, parallel to the x and y axes, so that they are more
visible.

11.2.2.1 Genetic Drift and the Sharing Method

Let us assume that the individuals are distributed over all the global peaks of the fit-
ness function after a sufficient number of generations. Let N be the population size
and let p be the number of peaks; each peak will be occupied by a subpopulation of
approximately N/p individuals. Assume also that the fitnesses of all the individuals
are close to the fitness value for the global optima. When an equilibrium situation
is reached, the subpopulations for the next generation will have approximately the
same size. Consequently, each individual is expected to have a number of offspring
close to unity. In this case, the effective number of offspring of an individual that
is obtained by employing a stochastic selection technique can be zero, with a non-
negligible probability. Even with a sampling technique of minimal variance such as
SUS selection, an individual can have zero or one effective offspring if the expected
number of offspring is slightly lower than unity. Hence, there is a possibility, which

11 Extensions of Evolutionary Algorithms to Multimodal … 291

becomes more significant for a small population, that a subpopulation covering a
peak may disappear because of stochastic fluctuations. To reduce this possibility to
an acceptable level, it is necessary to allot to each peak a high number of individuals,
so that the sharing method requires a priori large population sizes.

11.2.2.2 Advantages and Difficulties of the Application of the Method

The basic sharing method possesses excellent stability if the population size is large
enough to counter genetic drift. With the help of variation operators capable of ensur-
ing good diversity, the distribution of the population after some generations does not
depend on the initial population. The main difficulty of this method lies in the appro-
priate choice of the niche radius σs. Another drawback relates to the algorithmic
complexity, which is given by O(μ2), where μ is the population size. As the method
requires large population sizes, this can be seriously disadvantageous except when
the calculation of the fitness function is very long. The basic sharing method is not
compatible with elitism. Lastly, it is well suited to being used with a proportional
selection technique. Various authors have proposed solutions to overcome these dis-
advantages. The long history of the sharing method and its effectiveness in terms of
the maintenance of diversity make it, even today, the best known and the most often
used niching technique.

11.2.3 Niching with the Deterministic Crowding Method

The first method of nitching by crowding was presented by De Jong in 1975 [7].
Like the sharing method, it utilizes a value of distance, or at least of dissimilarity,
between individuals, but it operates at the level of the replacement operator. De Jong
suggested that for each generation, the number of offspring should be of the order of
ten times less than the number of parents. A higher value decreases the effectiveness
of the method. A lower value would favor genetic drift too much. All the offspring
find themselves in the population of the parents for the next generation, and hence
the parents that they replace have to be chosen. The replacement operator selects
a parent that must “die” for the offspring that resembles it closest. Nevertheless,
the similarity comparisons are not systematic, and an offspring is compared only
with one small sample of CF parents randomly drawn from the population. CF is the
crowding factor. De Jong showed, for some test functions, that a value of CF fixed
at two or three gives interesting results. Hence the individuals tend to be distributed
among the various peaks of the fitness function, thus preserving preexisting diversity
in the population.

However, the method makes frequent replacement errors due to the low value of
CF, which is prejudicial to the niche effect. But a high value of CF produces too strong
a reduction of the selection pressure. Indeed, the parents which are replaced, being
similar to the offspring, have almost the same fitnesses if the function is continuous.

292 A. Petrowski

Their replacement thus improves the fitnesses within the population very little. In
contrast, the selection pressure is stronger if efficient offspring replace less efficient
parents, i.e., if errors in replacement are made, which implies that CF must be small.

In 1992, Mahfoud [23] proposed the deterministic crowding method as a major
improvement over the method of De Jong. The main idea is that a pair of offspring
e1 and e2, obtained after crossover and mutation, enters into competition only with
its two parents, p1 and p2. There are two possibilities for replacement:

(a) e1 replaces p1 and e2 replaces p2;
(b) e1 replaces p2 and e2 replaces p1.

The choice (a) is selected if the sum of dissimilarities d(p1, e1) + d(p2, e2) is less
than d(p1, e2) + d(p2, e1); otherwise, the choice (b) is made. Lastly, the replacement
of a parent by an offspring is effective only if the parent is less efficient than the
offspring. This can be described as a deterministic tournament. This implies that the
method is elitist, because if the best individual is in the population of the parents and
not in that of the offspring, it will not be able to disappear from the population in the
next generation.

11.2.3.1 Advantages and Difficulties of the Application of the Method

Deterministic crowding does not require the determination of appropriate parameter
values that depend on the problem, such as a niche radius. In fact, only the population
size is significant and is chosen according to a very simple criterion: the larger the
number of optima to be found, the larger the population. The number of calculations
of distances to be carried out is of the order of the population size, which is lower by an
order of magnitude compared with the sharing method. Deterministic crowding is a
replacement operator that favors the best individuals. Thus, selection for reproduction
may be absent, i.e., reduced to its simplest expression: a parent always produces only
one offspring, irrespective of its fitness. In this case, the selection operators involve
only computational dependencies between pairs of offspring and their parents. Thus
parallelization of the method is both simple and efficient. All these qualities are
interesting, but deterministic crowding does not reduce genetic drift significantly
compared with an algorithm without niching. From this point of view, this method is
less powerful than the sharing method. This implies that, if the peaks are occupied by
individuals for a certain number of generations, the population will finally converge
towards only one optimum. This disadvantage often leads us to the conclusion that
methods with low genetic drift are preferred, even if their use is less simple.

11.2.4 The Clearing Procedure

The clearing procedure was proposed in 1996 by Petrowski [26]. This is based
on limited resource sharing within ecological niches, according to the principle

11 Extensions of Evolutionary Algorithms to Multimodal … 293

suggested by Holland, with the particularity that the distribution of resources is
not equitable among the individuals. Thus the clearing procedure typically assigns
all the resources of a niche to the best individual, referred to as the dominant individ-
ual. The other individuals in the same niche will not have anything. This means that
only the dominant individual will be able to reproduce to generate a subpopulation
for the next generation. The algorithm thus determines the subpopulations in which
the dominant individuals are identified. The simplest method consists in choosing a
distance d that is significant for the problem and to represent the niches with balls of
radius σc centered on the dominants. The value of σc must be lower than the distance
between two optima of the fitness function, so that they can be distinguished to main-
tain individuals on all of them. Thus the problem now consists in discovering all the
dominant individuals in a population. The population is initially sorted according to
decreasing fitness. A step of the algorithm is implemented in three phases to produce
a niche:

1. The first individual in the population is the best individual. This individual is
obviously a dominant individual.

2. The distances of all the individuals from the dominant one are computed. The
individuals located at a distance closer than σc belong to a niche centered on
the dominant individual. Hence, they are dominated and thus their fitnesses are
assigned to zero.

3. The dominant and dominated individuals are virtually withdrawn from the popu-
lation. The procedure is then reapplied, starting from step 1, to the new reduced
population.

The operator has as many steps as the algorithm finds dominant individuals.
These preserve the fitness which they obtained before the application of niching.
The operator is applied just before application of proportional selection.

11.2.4.1 Elitism and Genetic Drift

The clearing procedure lends itself easily to implementing an elitist strategy: it suf-
fices to preserve the dominant individuals from the better subpopulations to inject
them into the population for the next generation. If the number of optima to be dis-
covered is known a priori, the same number of dominant individuals is preserved. In
the opposite case, one simple strategy, among others, consists in preserving in the
population the dominant individuals whose fitness is better than the average fitness of
the individuals in the population before clearing. Nevertheless, it is necessary to take
precautions so that the number of individuals preserved is not too large compared
with the population size.

If the dominant individuals have located the optima of the function in a given
generation, elitism will maintain them indefinitely on the peaks. This algorithm is
perfectly stable, unlike the methods discussed before. Genetic drift does not have a
detrimental effect in this context! This enables us to reduce the required population
sizes compared with other methods.

294 A. Petrowski

11.2.4.2 Niche Radius

Initially, the estimation of the niche radius σc follows the same rules as for the sharing
method. Theoretically, it should be lower than the minimum distance between all the
global optima considered in pairs, so that all of them will be discovered. However,
the choice of too large a niche radius does not have the same effects as in the sharing
method, where this situation leads to instabilities with an increased genetic drift. If
this occurs in the clearing procedure, certain optima will be ignored by the algorithm,
without disturbing its convergence towards those which have been located. Hence,
the criterion for determination of the radius can be different. Indeed, the user of
a multimodal optimization algorithm does not need to know all the global optima,
which is impossible when there is an infinite number of them in a continuous domain,
but only a representative sample of the diversity of these optima. Locating the global
optima corresponding to instances of almost identical solutions will not be very
useful. On the other hand, it is more interesting to determine instances of optimal
solutions distant from each other in the search space. Thus, the determination of
σc depends more on the minimum distance between the desired optimal solutions,
a piece of information independent of the fitness function, than on the minimum
distance between the optima, which depends strongly on the fitness and is generally
unknown. If, however, a knowledge of all the global optima is required, there are
techniques which enable estimation of the niche radius by estimating the width of
the peaks. It is also possible to build niches which are not balls, with the help of an
explicit speciation (see Sect. 11.2.5).

11.2.4.3 Advantages and Difficulties of Application of the Method

The principal quality of the method lies in its great resistance to the loss of diversity
by genetic drift, especially in its elitist version [28]. Therefore it can work with
relatively modest population sizes, which results in reduced computing time. The
niche radius is a parameter which can be defined independently of the landscape of
the fitness function, unlike the case for sharing method, and instead according to the
desired diversity of the multiple solutions.

The clearing procedure requires about O(cμ) distance calculations, where c is the
number of niches and μ the population size. This number is less than in the sharing
method, but higher than in the deterministic crowding method.

If it is found during the process of evolution that the number of dominant indi-
viduals is of the same order of magnitude as the population size, this indicates that:

• Either the population size is insufficient to discover the optima using the sampling
step fixed by the niche radius.

• Or this step is too small, compared with the computational resources assigned to
the solution of the problem. It is then preferable to increase the niche radius, so
that the optima found are distributed as widely as possible in the entire search
space.

11 Extensions of Evolutionary Algorithms to Multimodal … 295

The method performs unsatisfactorily with the condition of restricted mating using
a restriction radius less than or equal to the niche radius (see Chap. 6, Sect. 6.4.2). In
that case, crossover will be useless, because it will be applied only to similar indi-
viduals: the selected individuals, which are clones of the same dominant individual.
To overcome this problem, there are at least two solutions. One solution is to carry
out mutation at a high rate before the crossover, in order to restore diversity within
each niche. The other is to increase the restriction radius. In the latter case, the effect
of exploration due to the crossover becomes more significant. Indeed, it may be that
between two dominant individuals around two peaks there are located some areas of
interest that the crossover is likely to explore. But this can also generate a high rate
of lethal crossovers, reducing the convergence speed of the algorithm.

11.2.5 Speciation

The main task of speciation is to identify the existing niches in a search space. So
far, in our discussions, only one species can occupy a niche; it is then assumed that
the individuals of a population that occupy it belong to a species or a subpopula-
tion. Once determined by speciation, a subpopulation can be used in several ways.
For example, it can be stabilized around a peak by employing a niching technique.
Restricted mating can also be practiced inside subpopulations, which, in addition to
the improvement due to the reduction in the number of lethal crossovers, conforms
to the biological metaphor, which requires that two individuals of different species
cannot mate and procreate.

The balls used in the techniques of niching described above can be viewed as
niches created by an implicit speciation. The sharing method and the clearing pro-
cedure also perform satisfactorily if the niches are provided to them by the explicit,
prior application of a speciation method. For that purpose, such a method must pro-
vide a partition of the population S = {S1, S2, . . . , Sc,} into c subpopulations Si . It
is then easy to apply, for example:

• niching by the sharing method, by defining the shared fitness as

f̃ (i) = f (i)

card(S j)
, ∀i ∈ S j

for all subpopulations S j ;
• niching by the clearing procedure, by preserving the fitness of the best individual

of any subpopulation S j and forcing the fitnesses of other individuals to zero;
• restricted mating, which operates only between the individuals of any subpopula-

tion S j .

Moreover, an explicit speciation technique is compatible with elitism: since the
individuals of a subpopulation are clearly identified, it is possible to preserve the best
one from each subpopulation in a generation for the next generation.

http://dx.doi.org/10.1007/978-3-319-45403-0_6

296 A. Petrowski

11.2.5.1 Label-Based Speciation

In 1994, Spears proposed [30] a simple speciation technique using tag-bits, where
an integer number belonging to a set T = {T1, T2, . . . , Tc} is associated with each
individual in a population. The value of the label Ti signifies the subpopulation Si

to which all the individuals labeled by Ti belong; c is the maximum number of sub-
populations which can exist in the population. The method was so named because
originally Spears had proposed his method within the framework of genetic algo-
rithms, and the labels were represented by bit strings. During the construction of the
initial population, the labels attached to each individual are drawn randomly from the
set T. During evolution, the labels can mutate, by selecting randomly a new value in
T. Mutation corresponds in this case to a migration from one subpopulation towards
another. After some generations, the subpopulations are placed on the peaks of the
fitness function because of the selective pressure. However, there is no guarantee that
each peak containing a global optimum will be occupied by one and only one sub-
population. Some of them can be forgotten, while others can be occupied by several
subpopulations. Hence the method is not a reliable one. It is quoted here because it
is well known in the world of evolutionary computation.

11.2.5.2 Island Model

The island model is also a classical concept in the field of evolutionary computation.
This model evolves several subpopulations Si through a series of epochs. During
each epoch, the subpopulations evolve independently of each other, over a given
number of generations Gi . At the end of each epoch, the individuals move between
the subpopulations during a phase of migration, followed by a possible phase of
assimilation. The latter phase is employed to carry out operations of integration of
the migrants into their host subpopulations, for example by stabilizing the sizes of the
subpopulations. This iterative procedure continues until a user-defined termination
criterion for the algorithm is satisfied. The migration does not take place arbitrarily,
but according to a relation of neighborhood defined between the subpopulations. The
proportion of migrating individuals is determined by migration rates chosen by the
user.

Originally, this model was developed as a model for parallelization of a
genetic algorithm. This enables it to be efficiently implemented in a distributed-
memory multiprocessor computer, where each processing unit deals with a
subpopulation [5]. It can be noticed that, logically, this process is similar to label-
based speciation, with the mutation of the labels constrained by the neighborhood
relations. Label mutation takes place only at the end of each epoch. Like label-based
speciation, this method is lacking in reliability for the distribution of the subpopula-
tions on the peaks of the fitness function. However, the fact that the subpopulations
evolve independently during each epoch, offers the advantage of a more accentuated
local search for optima.

11 Extensions of Evolutionary Algorithms to Multimodal … 297

11.2.5.3 Speciation by Clustering

During evolution, the individuals of a population tend to gather in the areas of the
search space showing high fitness under the action of the selection pressure. These
areas are good candidates for containing global optima. The application of a classical
clustering method (e.g., the K-means algorithm or the LBG algorithm) partitions the
search space as many areas as the number of accumulations of individuals that are
detected. Each detected area corresponds to niche, and the individuals located there
constitute a subpopulation [35]. The method is reliable with large population sizes
because a niche can be identified only if it contains a large enough cluster. This num-
ber can be significantly reduced if the speciation algorithm exploits the fitness values
of the individuals in each area, in order to recognize better the existence of possible
peaks in those regions [27]. It is interesting to combine clustering-based speciation
with an island model, in order to profit from the advantages of both methods: a reli-
able global search for the highest peaks, which occurs during the migration phases
(exploration) and an improved local search for the optima (exploitation) during the
epochs [3].

11.3 Multiobjective Optimization

Multiobjective or multicriteria optimization concerns the case of the simultaneous
presence of several objectives, or criteria, often contradictory with each other. Let
f(x) be a vector of c objectives associated with an instance of a solution x of a
multiobjective optimization problem. Each of its components fi (x) is equal to the
value of the i th objective for solution x. Without loss of generality, we will consider
in the following sections the case where all the objectives of a problem have to be
minimized. When a problem does not conform to this condition, it is enough to
change the signs of those objectives which must be maximized.

11.3.1 Problem Formalization

11.3.1.1 Pareto Dominance

Let us consider two vectors of objectives v and u. If all the components of v are less
than or equal to the components of u, with at least one strictly lower component,
then the vector v corresponds to a better solution than u. In this case, it is said that v

dominates u in the Pareto sense. In a more formal way, can be written as v
P
< u:

v
P
< u ⇐⇒ ∀i ∈ {1, . . . , c}, vi ≤ ui and (∃ j ∈ {1, . . . , c}, v j < u j)

298 A. Petrowski

Figure 11.2 represents the relations of domination between six objective vectors in
a two-dimensional space. c is dominated by a, b, and e. d is dominated by e. f is
dominated by b, d, and e.

11.3.1.2 Pareto Optimum

The set of the objective vectors which cannot be dominated constitutes the optimal
values of the problem in the Pareto sense. These vectors belong to the Pareto front,
or trade-off surface, denoted by P:

P = {f(x)|x ∈ �, �y ∈ �, f(y)
P
< f(x)}

The Pareto-optimal set X∗ is defined as the set of the solutions in the search space
� whose objective vectors belong to the Pareto front:

X∗ = {x ∈ �|f(x) ∈ P}

11.3.1.3 Multiobjective Optimization Algorithms

Multiobjective optimization consists in building the Pareto-optimal set X∗. However,
X∗ can contain an infinite number of solutions if the search space is continuous. Even
if � is finite, X∗ must not be too large if a decision maker is to be able to exploit it
effectively. Thus, it is expected that a multiobjective optimization algorithm should
produce a set of nondominated solutions, not too large, such that they are as close as
possible to the Pareto front, covering it as evenly and as completely as possible [8].

Fig. 11.2 Domination in the
Pareto sense in an objective
space of dimension 2

a

b

e

c

d

f

Objective 1

O
bj

ec
tiv

e
2

11 Extensions of Evolutionary Algorithms to Multimodal … 299

11.3.2 The Quality Indicators

There is a wide choice of multiobjective optimization algorithms, each with its pre-
ferred areas of application, which are rarely well characterized. Additionally, these
algorithms often use parameters whose values can strongly influence the quality of
the results, while their values are hard to estimate to best achieve the goals of the
user. Too often, practitioners have no other way to select the best approach than com-
paring the results provided by several algorithms and parameter sets. It is therefore
important that they have quality indicators to facilitate performance analysis of the
approaches tested.

Many quality indicators have been proposed for multiobjective optimization
[21, 41]. Three commonly used indicators are described below. The first two of
them are described because they are mentioned in Sect. 11.3.5.3. The third indicator
is described because of its good properties, although it requires high computational
power.

11.3.2.1 The Generational Distance

This metric [32] gives the distance between the Pareto front and a set of n nondom-
inated solutions. The expression for it is

Dp = (
∑n

i=1 di
p)1/p

n

where di is the distance between the objective vector associated with solution i and
the closest point to the Pareto front, and p is a constant, usually chosen equal to 2.
p = 1 is also often used.

This metric has the advantage of a relatively low computational cost. However,
the difficulty in using it is that, in most real-world problems, the Pareto front is not
known in advance. In this case, if a lower approximation (for minimization of the
objectives) is available, it may replace the Pareto front. Then, obviously, the value
of Dp is no longer significant in itself, but it allows one to compare the results given
by several optimizers. Another drawback of this metric is that it does not take into
account the quality of the coverage of the Pareto front by the nondominated solutions
obtained after a mutiobjective optimization.

11.3.2.2 The “Two-Set Coverage Metric”, or “C-Metric”

This metric was proposed in [37]. Let A and B be two sets of objective vectors, and
let C be a function of A and B to the interval [0, 1]:

300 A. Petrowski

Elements of A
Elements of B

Objective 1

O
bj

ec
tiv

e
2

Fig. 11.3 C(A, B) = 7/8, C(B, A) = 0: according to the C-metric, A should be better than B. When
sets A and B have cardinalities that are too different and/or are not evenly distributed, the C-metric
can give unreliable results

C(A, B) = |{b ∈ B|∃a ∈ A, a
P
< b ∨ a = b}|

|B|
This is the fraction of elements of B that are dominated by one or more elements
of A. If C(A, B) = 1, this means that all elements of B are dominated by those of
A. In this case, C(B, A) = 0 when A contains only nondominated vectors. If A and
B contain only Pareto front elements with a
= b,∀a ∈ A,∀b ∈ B, then C(A, B) =
C(B, A) = 0. Usually, there is no simple relation between C(A, B) and C(B, A).
Thus, a comparison of the qualities of two sets of nondominated objective vectors A
and B with metric C requires one to calculate C(A, B) and C(B, A). We could say that
A is better than B if C(A, B) > C(B, A). The metric is more reliable when C(A, B)

or C(B, A) is close to one.
An advantage of this indicator is that it does not require a knowledge of the Pareto

front P . It also has a low computational cost and is not affected by differences in
orders of magnitude between the objectives. This indicator gives results consistent
with intuition when the sets A and B have similar cardinalities and if their distribution
is even. When this is not the case, the indicator can be misleading (Fig. 11.3). In
addition, care must be taken not to consider the relation “is better than” in the sense of
the C-metric as an order relation. Indeed, there may be configurations where, for three
sets A, B, and C; C(A, B) < C(B, A), C(B, C) < C(C, B), and C(A, C) > C(C, A).
This means that C would be better than B, B would be better than A and A would
be better than C, which is inconsistent with the transitivity of an order relation
[21, 41].

11 Extensions of Evolutionary Algorithms to Multimodal … 301

Objective 1

O
bj

ec
tiv

e
2

ρ

a1

a2
a3

a4

a5 a6

Fig. 11.4 The hypervolume for a two-objective minimization problem v(A, ρ) with A =
{a1, . . . , a6} is represented by the gray area

11.3.2.3 The Measure of the Hypervolume, or “S-Metric”

Let ρ = (ρ1, . . . , ρc) be a reference point in the objective space and let a =
(a1, . . . , ac) be an element of a set A of nondominated objective vectors. ai ≤ ρi

is required when the objectives are to be minimized. ρ and a allow one to define a
hyperrectangle whose edges are parallel to the coordinate axes of the objective space.
The expression for its hypervolume is v(a, ρ) = ∏c

i=1(ρi − ai).
The set A and point ρ define a hypervolume v(A, ρ) in the objective space by

the union of the hyperrectangles associated with the elements of A (Fig. 11.4). ρ is
chosen so that each of its coordinates is an upper bound of the coordinates of all
points of A (for minimization of the objectives). The measure of the hypervolume
v(A, ρ) is a good comparison indicator for nondominated sets because it is strictly
monotonic according to the Pareto dominance relation [21]. Namely, if any element
of a set B is dominated by at least one element of A, then hypervolume v(B, ρ) is
less than the hypervolume v(A, ρ). So far, the indicator v(A, ρ) is the only one that
has this monotonicit property, which explains the interest being shown in it.

The maximum hypervolume is obtained when A is the Pareto front. This indicator
is more significant than the “generational distance” or the C-metric. Indeed, a value
of v(A, ρ) near the maximum indicates that the nondominated vectors of a set A are
close to the Pareto front, with a good-quality distribution.

The main drawback of this metric lies in its exponential computational overhead
in the number of objectives. The reference point ρ must also be appropriately chosen.
There are several approaches to calculating hypervolumes; [13] is one of the recent
references in this field.

302 A. Petrowski

11.3.3 Multiobjective Evolutionary Algorithms

Unquestionably, the most employed class of metaheuristics for multiobjective opti-
mization is that of evolutionary algorithms. Indeed, they are well suited for simultane-
ous searching for a collection of optimal solutions, because they deal with populations
of solution instances.

The evolutionary approach requires a priori the implementation of an archive of
the nondominated solutions discovered during a complete evolution. In fact, there is
no guarantee that at the end of the evolution, the solutions that have approached the
Pareto-optimal set best will have been preserved in the population. Thus, at the end
of each generation, the population is copied into the archive, and then the dominated
individuals are eliminated from the archive. However, the management of an archive
could be useless for multiobjective optimization algorithms that implement a form
of elitism.

Two types of evolutionary approaches are widely considered in the literature:

• Methods using a Pareto ranking to evaluate the fitness function.
• Aggregation (or scalarization) methods that transform a multiobjective optimiza-

tion problem into a collection of single-objective problems. The resolution of each
single-objective problem then gives a point for the Pareto front.

Some methods that are among the most currently used or are representative of the
different types of approaches, or are milestones in the field, are described in the
following sections.

11.3.4 Methods Using a Pareto Ranking

These methods were the first to show their efficiency in producing an even coverage
of a Pareto front. The individuals of a population correspond to instances of solutions
in the search space. An objective vector is evaluated and assigned to each of them.
Then, each individual is given a scalar fitness value, computed from the objective
vectors, such that the nondominated individuals will be selected more often than the
others.

The even coverage of the Pareto front, or at least, its nearest nondominated set of
solutions found, is obtained by using a mechanism for the preservation of diversity
in the population, which may be a speciation/niching method (Sect. 11.2).

Dimensionality of the objective space. There is a difficulty in applying techniques
based on Pareto dominance, related to the dimensionality of the objective space. The
more objectives there are to optimize, the larger the Pareto front is, and the less likely
it is that individuals will be dominated by others. In this case, if a maximum fitness
is assigned to the nondominated individuals in order to favor their reproduction,
then many individuals will have that fitness. This situation generates a low selection
pressure, and thus slow convergence of the algorithm. Consequently, strategies using

11 Extensions of Evolutionary Algorithms to Multimodal … 303

Pareto dominance have to take this problem into account. Currently, the “Pareto
ranking” approach makes it difficult to go beyond problems involving four objectives.

History of Pareto ranking methods. An initial approach of “Pareto ranking” was
proposed by Goldberg in his well-known book [14]. However, he did not describe
any concrete implementation of the algorithm, and obviously did not present any
performance results. The idea, however, inspired many researchers in the following
years. It gave birth to the first generation of multiobjective methods using a Pareto
ranking, such as the MOGA (1993), NPGA (1994), and NSGA (1994) algorithms.
These are presented below.

In the 2000s, these approaches were improved by the introduction of elitism, either
by selection or by using a secondary population, which gave birth to a second gener-
ation of multiobjective methods. The algorithms NSGA-II (which is an improvement
of the NSGA method), SPEA, and SPEA2 are presented below because they are in
widespread use. Several other approaches of the same generation have been published
such as PAES (Pareto archived evolution strategy) [22], MOMGA (Multiobjective
messy genetic algorithm) [33], and its extension MOMGA-II [42].

11.3.4.1 Goldberg’s Pareto Ranking

Calculation of the individual fitnesses. In the original proposal of Goldberg, the calcu-
lation is based on the ranking of the individuals according to the domination relation
between the solutions which they represent. First of all, rank 1 is assigned to the non-
dominated individuals in the complete population: they belong to the nondominated
front. These individuals are then fictitiously withdrawn from the population, and the
new nondominated individuals are determined, that are assigned rank 2. It can be
said that they belong to the rank-2 dominated front. One can proceed in this manner
until all the individuals have been ranked. The fitness value of each individual is then
calculated using a decreasing function of the rank of each individual in a way similar
to the technique described in Sect. 6.3.3.5, keeping in mind to the need assign to each
equally placed individual the same fitness.

Niching. Goldberg chose the sharing method (Sect. 11.2.2), possibly reinforced by
restricted mating (Sect. 6.4.2). Goldberg did not specify whether the niching should
be implemented in the search space or the objective space.

11.3.4.2 The “Multiple Objective Genetic Algorithm” (MOGA) Method

Fonseca and Fleming proposed the MOGA algorithm in 1993 [12], based on the
approach suggested by Goldberg. When the fitnesses are evaluated, each individual
is assigned a rank equal to the number of individuals that dominate it. Then a selec-
tion according to the rank is applied, in accordance with the ideas of Goldberg. The
niching is carried out in the objective space, which allows an even distribution of
the nondominated individuals in the population in the objective space, but not in the

http://dx.doi.org/10.1007/978-3-319-45403-0_6
http://dx.doi.org/10.1007/978-3-319-45403-0_6

304 A. Petrowski

search space. This choice does not permit one to perform multimodal and multiob-
jective optimization at the same time. The niche radius σs should be calculated so
that the distribution of μ individuals of the population is even over the whole Pareto
front. Fonseca and Fleming proposed a method to estimate its value [12].

11.3.4.3 The “Niched Pareto Genetic Algorithm” Method

In Pareto ranking methods, the selection according to rank can be done by a tourna-
ment selection between ranked individuals. In 1994, Horn et al. [17] proposed the
“niched pareto genetic algorithm” (NPGA) method, in which the tournaments are
performed directly according to the relations of dominance, thus avoiding a compu-
tationally expensive preliminary ranking of the entire population. Applying a simple
binary tournament (Sect. 6.3.4.2) is not satisfactory because of the low selection pres-
sure in this context. To increase it, Horn et al. proposed an unusual type of binary
tournament: the Pareto domination tournament.

Let two individuals x and y be drawn randomly from the population to take part in
a tournament. Those are compared with a comparison sample γ , which is also drawn
at random and contains tdom individuals. The winner of the tournament is x if it is not
dominated by at least one individual of γ and if y is dominated. The winner is y in
the opposite case. If x and y are in the same situation, either both dominated or both
nondominated, the winner of the tournament is the one with the fewest neighbors
within a ball of radius σs in the objective space. This last operation has the effect of
implementing a form of niching, with the aim of reducing the genetic drift which
would be induced by the choice of a winner at random. A significant genetic drift
would be harmful to an even distribution of nondominated individuals.

The parameters tdom and σs are chosen by the user; tdom is an adjustment parameter
for the selection pressure. Horn et al. noticed in some case studies that if tdom was
too low, less than one percent of the population, there were too many dominated
solutions and the solutions close to the Pareto-optimal set had less chance of being
found. If it was larger than 20 %, premature convergences was frequent, owing to
too high a selection pressure. A value of about 10 % was suitable for distributing
the individuals near the Pareto front evenly. The parameter σs proves to be relatively
robust. An estimate of its value is given in [12, 17].

The NPGA method has low computational complexity. It was one of the most
used methods in the years following its publication. It was superseded by the elitist
approaches proposed by various authors in the 2000s.

11.3.4.4 The “Non Dominated Sorting Genetic Algorithm” Method

The “non dominated sorting genetic algorithm” method was presented in 1994 by
Srinivas and Deb [31] and was inspired directly by the idea of Goldberg. It uses the
same Pareto ranking. On the other hand, it carries out niching in a way different from
MOGA. Instead, the sharing method is applied, front by front, in the search space

http://dx.doi.org/10.1007/978-3-319-45403-0_6

11 Extensions of Evolutionary Algorithms to Multimodal … 305

with a sharpness parameter α equal to 2. The niche radius has to be estimated by the
user of the algorithm, which can be difficult.

The computational complexity of the Pareto ranking used by NSGA is high. To
determine whether a solution is dominated or not, it needs to be compared, objective
by objective, with all other solutions. Thus, the process takes μc comparisons of
objectives, where μ is the size of the population and c is the number of objectives.
So, μ2c comparisons are required to discover all the nondominated solutions of rank
1 in the population. The search to obtain nondominated individuals must be repeated
for each domination rank. There are at most μ ranks in the population, which requires
in the worst case O(μ3c) comparisons to sort all the individuals according to their
domination rank. This involves a need for high computing power in the case of large
population sizes.

11.3.4.5 NSGA-II

The NSGA-II method [10] was introduced in 2002 as an improvement of NSGA in
the following respects:

• the algorithmic complexity is reduced to O(μ2c);
• the sharing method is replaced by a niching technique without parameters;
• it implements elitism (Sect. 6.3.6.4) to accelerate the convergence of the algorithm.

Reducing the algorithmic complexity of the Pareto ranking. The Pareto ranking is
decomposed into two phases in NSGA-II: an initialization phase followed by a rank
assignment phase. During the initialization phase, described in Algorithm 10.1, the
following items are associated with each individual i of the population P:

• a domination counter αi , giving the number of individuals that dominate i ;
• the set of individuals Si dominated by i .

The individuals for which αi is zero constitute the set of all nondominated individuals
of rank 1, denoted by F1. The constructions of Si and computations of αi for all
individuals require μ2c comparisons.

The rank assignment phase (Algorithm 10.2) for all the individuals of the popula-
tion follows the initialization phase. Assuming that setFr of the rank r nondominated
individuals has been built, it is possible to determine the rank r + 1 nondominated
individuals as follows: for any individual i belonging to Fr , the counters α j of the
individuals j dominated by i are decremented. The individuals j for which α j = 0
constitute the set Fr+1. The complexity of this algorithm is also O(μ2c). The fitness
value of an individual is given by its rank, which the evolutionary algorithm tends to
minimize.

Niching. The niching method uses a type of binary tournament selection (Sect. 6.3.4)
specific to NSGA-II referred to as crowded tournament” selection. This tournament
is designed to favor the selection of individuals with the same nondomination rank
in sparsely populated areas in either the objective space or the search space �,

http://dx.doi.org/10.1007/978-3-319-45403-0_6
http://dx.doi.org/10.1007/978-3-319-45403-0_6

306 A. Petrowski

F1 ← ∅
for each individual i ∈ P do

Si ← ∅
αi ← 0
for each individual j ∈ P do

if i
P
< j then
Si ← Si ∪ { j}

end

else if j
P
< i then

αi ← αi + 1
end

end
if αi = 0 then

F1 ← F1 ∪ {i}
ri ← 1 ; // ri: nondomination rank of i

end
end

Algorithm 11.1: Pareto ranking in NSGA-II: initialization.

r ← 1
while Fr
= ∅ do

Fr+1 ← ∅
for each individual i ∈ Fr do

for each individual j ∈ Si do
α j ← α j − 1
if α j = 0 then

Fr+1 ← Fr+1 ∪ { j}
r j ← r + 1

end
end

end
r ← r + 1

end

Algorithm 11.2: Pareto ranking in NSGA-II: rank assignment.

depending on the user’s choice. The explanations in the following lines are related
to the objective space. The adaptation to the search space is direct.

The crowded tournament method is based on a crowded-comparison operator,
denoted by ≺n . A crowding distance di is associated with each individual i . This
represents an estimate of the distance between i and its neighbors in the space of the
objectives. Let ri be the nondomination rank of individual i . The crowded-comparison
operator is defined as follows:

i ≺n j ⇐⇒ ri < r j or (ri = r j and di > d j)

A crowded tournament between two individuals i and j selects i if i ≺n j .

11 Extensions of Evolutionary Algorithms to Multimodal … 307

f1 (i) f1(i)

i

f1
min

Hyper-rectangle defined by the
rank-2 individuals closest to i

Rank-2 non-dominated individuals

Other individuals

f1
maxf1 (i)

- +

f2 (i)

f2(i)

f2
min

f2
max

f2 (i)

-

+

Fig. 11.5 Calculation of the crowding distance in a two-dimensional space of objectives for an

individual i of rank 2: di =
(f +

1 (i)− f −
1 (i))

(f max
1 − f min

1)
+ (f +

2 (i)− f −
2 (i))

(f max
2 − f min

2)

The designers of the method proposed that the crowding distance di should be
calculated as follows. Let fm(i) be the value of objective m for individual i of Fr

with a given value of r . We define:

• f max
m : the maximum of objective m in the population.

• f min
m : the minimum of objective m in the population.

• f +
m (i): the closest value to fm(i) in Fr such that f +

m (i) ≥ fm(i). For extreme
individuals i where fm(i) is maximum in Fr , f +

m (i) is set equal to ∞ for one
of them and f +

m (i) = fm(i) for the others, if any. This is useful for ensuring that
extreme individuals can be selected with a sufficiently high probability to explore
their neighborhoods with the variation operators (mutation and crossover).

• f −
m (i): the closest value to fm(i) in Fr such that f −

m (i) ≤ fm(i). For extreme
individuals i where fm(i) is minimum in Fr , f −

m (i) is set equal to −∞ for one of
them and f −

m (i) = fm(i) for the others, if any.

The crowding distance di is expressed as

di =
c∑

m=1

f +
m (i) − f −

m (i)

f max
m − f min

m

Figure 11.5 shows an example of a calculation of the crowding distance for an indi-
vidual i in a two-dimensional space of objectives.

Algorithm 10.3 describes the computation of di for the subpopulation Fr of non-
dominated individuals i with rank r . It allows one to deduce the computational

308 A. Petrowski

complexity of the crowding-distance calculation which is O(cμ log μ). This calcu-
lation follows the assignment of a rank to each individual with complexity equal to
O(μ2c). Consequently, the overall complexity of these two operations is O(μ2c).

l ← |Fr | // l is the number of nondominated individuals of rank r
for each individual i ∈ Fr do

di ← 0
end
for each objective m do

T ← tri(Fr , m) // T is an array of individuals of Fr sorted according to objective m
dT[1] ← dT[l] ← ∞
for k = 2 l − 1 do

dT[k] ← dT[k] + (fm(T[k + 1]) − fm(T[k − 1]))/(f max
m − f min

m)

end
end

Algorithm 11.3: Computation of crowding distances di for any individual i of
Fr .

Elitism. For a generation g > 0, the new generation is obtained by creating a pop-
ulation of children Qg from the population Pg by applying in sequence the crowded
tournament selection, crossover, and mutation operators (Fig. 11.6). The size of Qg

was chosen by the designers of the method to be equal to that of Pg , i.e., μ. The Pareto
ranking described above is applied to the union of Qg and Pg , which allows one to
compute the nondomination ranks ri of the individuals and to generate subpopula-
tions Fr . Parents and children participate in the same ranking, which implements
elitism.

Environmental selection operator. The population Pg+1 built by the environmental
selection operator is initially composed of the individuals in the subpopulations
F1 to Fk , where k is the greatest integer such that the sum of the sizes of these
subpopulations is less than or equal to μ. To complete Pg+1 to μ individuals, the
individuals inFk+1 are sorted with the comparison operator ≺n and the best solutions
are inserted into the population Pg+1 until it contains μ individuals.

The initial population. The initial population P0 is generated by a problem-dependent
method if available, or else by construction of random individuals. Pareto ranking
is then applied to P0 to calculate the initial fitness values of its individuals. This
is different from what is done for the other generations, for which this ranking is
applied to the union of Pg and Qg .

The generational loop. Figure 11.6 depicts the generational loop of NSGA-II. The
two steps of the calculation of the composite fitness (ri , di) for individual i are
highlighted.

In conclusion. The NSGA-II method is recognized as being highly effective. Today,
it is one of the reference methods for multiobjective evolutionary optimization.

11 Extensions of Evolutionary Algorithms to Multimodal … 309

Crossover
of the selected

individuals

Mutation
of

offspring

Evaluation
of di

on P U Q
Environmental

selection

Parental
selection:

crowded
tournament

Stop ?

Yes

No
Population P:
initialization

of
individuals

 offspring
+

 parents
individuals

 individuals

individuals

Non dominated individuals

Pareto
ranking

on P U Q:
evaluation

of ri

P: parent population

Q: offspring population

K selected
individuals

+
 parents

 offspring
+

 parents

Pareto
ranking on P:

evaluation
of ri

Evaluation
of di on P μ μ

μ

μ

μ

μ μ

μ

μ

μ

Fig. 11.6 The generational loop of NSGA-II

11.3.4.6 The “Strength Pareto Evolutionary Algorithm” (SPEA)
Method

This method was presented in 1999 by Zitzler and Thiele [40]. Its originality lies
in the utilization of the archive of nondominated solutions during the evolution of a
population. It aims to intensify the search for new nondominated solutions, and thus to
approach the Pareto front better by implementing a form of elitism (Sect. 11.2.4.1).
Moreover, the authors of the method proposed a new niching technique without
parameters, specifically dedicated to multiobjective optimization.

Only the operator for evaluation of the fitness of the individuals is specific to SPEA.
Binary tournaments with replacement within the population are used to implement
the parental selection operator. The fitness fi of individual i is defined so that it is
minimized. Thus, when two individuals i and j participate in a binary tournament,
i is selected for reproduction if fi < f j .

Calculation of the fitnesses of the individuals. In each generation, the fitnesses of the
individuals in population P and the archive P′ are determined in the following way:

Stage 1. The fitness fi of any individual i in P′ is equal to its strength si :

fi = si and si = αi

μ + 1

where αi is the number of solutions dominated by i in the population P, and
μ is the size of P; si necessarily lies between 0 and 1.

Stage 2. The fitness f j of any individual j in P is equal to the sum of the strengths
of the individuals in P′ that dominate it, added to unity:

310 A. Petrowski

Objective 1

O
bj

ec
tiv

e
2

2/11

7/11

4/11

13/11

18/11

18/11

18/11 18/11

18/11

24/11 =
1 + 2/11 + 7/11 + 4/11

22/11

15/11 15/11

Individual in P
Individual in P’

Fig. 11.7 Example of calculation of the fitness of the solutions in P and P’ in the SPEA method

f j =
⎛
⎜⎝1 +

∑
i,i

p
< j

si

⎞
⎟⎠

f j is thus greater than or equal to 1, and consequently larger than the fitnesses
of the solutions in P′.

Thus, an individual is less likely to be selected when many individuals in P′ dominates
it. Figure 11.7 illustrates the calculation of the fitness with the help of an example.

The jump in performance that SPEA provided compared with the best methods
used before 1999 is mainly due to the elitism generated by the use of the archive P′.

11.3.4.7 The “Strength Pareto Evolutionary Algorithm 2” (SPEA2)
Method

The “strength pareto evolutionary algorithm 2” method [39] was proposed in 2001
to improve SPEA in the following respects:

• The computation of individual fitnesses was modified to better guide the search
towards the Pareto optimum by reducing the number of individuals with the same
fitness value. In particular, the fitness values computed with SPEA2 take account
of the local population densities in the objective space.

• The environmental selection operator was modified to better explore the neigh-
borhood of the extreme points of the Pareto front, whereas the clustering operator
used in the first version had the effect of removing these points.

Let P′ be the parent population in a given generation and let P be the child
population generated by the application in sequence of the operators of parental
selection, crossover, and mutation to P′. In the terminology of SPEA2, P′ is also
referred to as the archive that holds the “best” nondominated individuals obtained

11 Extensions of Evolutionary Algorithms to Multimodal … 311

during an evolution from the first generation. The meaning of “best” will be specified
in the following paragraphs.

Fitness computation and niching. The calculation of the fitness values of the indi-
viduals in the population P′ ∪ P is performed in two steps. The first step gives a
raw fitness value to each individual from the Pareto dominance relations between the
individuals. The second step estimates the population density in the vicinity of each
individual, which is added to its raw fitness to give its effective fitness value.

The computation of the raw fitnesses requires the determination of the strength si

associated with each individual i . This strength is the number of individuals domi-
nated by i :

si = card({ j | j ∈ P′ ∪ P and i
p
< j})

The raw fitness bi of each individual i is obtained by summing the strengths of the
individuals j that dominate it:

bi =
∑

j∈P′∪P, j
p
<i

s j

Figure 11.8 shows an example of the calculation of the strengths and raw fitnesses
in the context of minimizing two objectives. The nondominated individuals have
a raw fitness equal to 0. Conversely, individuals that are dominated by many other
individuals have a high raw fitness value. This method of computation of bi performs
a form of niching. If there are regions of the objective space where the population
is dense, the dominated individuals in these regions have high bi values. These
individuals then have little chance of being selected for reproduction. Conversely, if
there is one individual dominated by a single nondominated individual in a region, its
raw fitness will be bi = 1, giving it more chance of being selected for reproduction.
The computational complexity of calculating bi for all individuals in the population
is O((α)2), where α = μ + λ, with λ, being the size of offspring population P, and
μ, being size of the population P′ of the parents.

However, especially when the number of objectives is large, it is possible that
there may be few dominated individuals in the population. Most individuals would
then have a fitness bi = 0 and the search for the Pareto optimum would become
almost a simple search at random. To avoid this phenomenon, a local density di of
the population is estimated in the vicinity of each individual i according to an adapted
version of the method of the kth closest neighbor used in statistics [29]:

di = 1

δk
i + 2

where δk
i is the distance of individual i from its kth closest neighbor. di is thus between

0 and 0.5. The usual value distances k = �√λ + μ�, is chosen. The computation of
di requires calculation of the distances from each individual i to all the others. δk

i

312 A. Petrowski

Non dominated individual
Dominated individual

(0)

(0)
(1)

(2)

(1)

(1)

(5)

(3)

(9)

(1)
(1)

(0)

(0)

0

5
5

17

21
17

12
9

0

9
9

11

9

Objective 1

O
bj

ec
tiv

e
2

Raw
fitness bi Strength si

Fig. 11.8 An example of the assignment of raw fitness values bi to individuals with SPEA2 for a
two-objective minimization problem

is obtained after the sorting of these distances. The computational complexity of
calculating di is O(α2 log(α)), with α = λ + μ.

Finally, the fitness value of individual i is

fi = bi + di

Environmental selection operator. In generation g, this operator selects μ individuals
in P′

g ∪ P, whose size is λ + μ, to build the population P′
g+1 for the next generation.

The α nondominated individuals in P′
g ∪ P constitute a subpopulation Q. There are

three cases:

• If μ = α, P′
g+1 = Q.

• If μ > α, Q must be completed by μ − α dominated individuals to constitute the
population P′

g+1. For this purpose, the dominated individuals in P′
g ∪ P are sorted

according to increasing fitness. The first μ − α sorted individuals are added to Q
to constitute P′

g+1.
• If μ < α, α − μ individuals in Q must be removed from among those located in

the most crowded regions of the objective space to constitute P′
g+1. The method

is iterative. In each step, an individual is removed from Q. If there is only one
individual i that has the shortest distance δ1

i to its first nearest neighbor, it is
removed from Q. If several individuals i have the same minimum values of δ1

i to
δk−1

i , with only one for which δk
i is minimal, this individual is removed from Q.

If there are several individuals that have the same minimum values of δk
i for all k,

one of them is removed from Q. This happens especially when individuals have
identical objective vectors. Formally, an individual i is chosen to be removed if
i �d j,∀ j ∈ Q, with

11 Extensions of Evolutionary Algorithms to Multimodal … 313

Individual of P'g+1

Individual removed from Q

Objective 1

O
bj

ec
tiv

e
2

1st individual
removed from Q

2nd individual
removed from Q 3rd individual

removed from Q

4th individual
removed from Q

Fig. 11.9 Environmental selection operator: an example of construction of a population P′
g+1 of

five individuals from a population Q of nine individuals

i �d j ⇔ ∀ 0 < k < α : δk
i = δk

j or

∃ 0 < k < α :
[
(∀ 0 < l < k : δl

i = δl
j) and δk

i < δk
j

]

Fig. 11.9 illustrates this process with an example.

The computational complexity of the environmental selection operator is
O(α2 log(α)) an average, with α = λ + μ.

The generational loop. Figure 11.10 depicts the generational loop of SPEA2. The
two stages of the computation of the fitnesses fi of individuals i from the raw fitnesses
bi and densities di are highlighted.

In conclusion. The SPEA2 method is recognized for its efficiency. It is, with
NSGA-II, one of the reference methods for evolutionary multiobjective optimiza-
tion. The complexity of one generation is larger for SPEA2 than for NSGA-II, but the
solutions obtained with SPEA2 are often more evenly distributed on the nondom-
inated front. The computation times required by NSGA-II and SPEA2 have been
compared on a set of standard test problems, (e.g., [9]). They results are summarized
on pp. 95–100.

314 A. Petrowski

Crossover
of the selected

individuals

Mutation
of the λ
offspring

Evaluation
of di on P U P’
computation of

fi = bi + di

Environmental
selection

Parental
selection:

tournaments

Stop ?

Yes

No
Population P’:
initialization

of
 individuals

λ offspring
+

 parents
individuals

 individuals

individuals

Non dominated individuals

Evaluation
of bi on
P U P’

P’ : parent population
(archive)

P: offspring population

K selected
individuals

+
 parents

λ offspring
+

 parents

Evaluation
of di on P’

computation of
fi = bi + di

Evaluation
of bi on P’

μ

μ
μ

μ

μ
μ

μ

Fig. 11.10 The generational loop of SPEA2

11.3.5 Scalarization Methods

11.3.5.1 Scalarization of the Objectives

A simple method to obtain a nondominated solution, widely used in the field of
multicriteria decision problems, consists in aggregating all the criteria, or objectives
fi (x), Into a single criterion using a weighted summation. Thus, the problem is
transformed by calculating an aggregation function of the objectives G1(x|w) to be
minimized, where:

G1(x|w) =
c∑

i=1

wi fi (x)

For each weight vector w = (wi) with wi > 0 and
∑c

i=1 wi = 1, there exists a Pareto-
optimal solution. However, this linear approach does not allow one to obtain the
Pareto-optimal solutions located on the concave parts of the Pareto front for the
objectives a minimization problem, whatever the weight values. Indeed, such solu-
tions cannot minimize a weighted sum of objectives (Fig. 11.11).

To prevent concave parts of the Pareto front being excluded from the search, the
minimization of a weighted sum can be replaced by the minimization of the weighted
Chebyshev distance G∞(x|w, ρ) between the objective vector f(x) and a reference
point ρ, where

G∞(x|w, ρ) = c
max
i=1

wi | fi (x) − ρi |

11 Extensions of Evolutionary Algorithms to Multimodal … 315

c1 + c2 = 4
3
1

3
2

a

b1

b2

Gray area: solutions dominated
by the Pareto front

c1

c2

2

8

Isovalue line:

Fig. 11.11 Scalarization of the objectives by the weighted sum method: the minimum of G1(x|w)

is 4 when w = (2/3, 1/3) for the objective vector a = (2, 8). The points on the Pareto front located
between b1 and b2 cannot minimize G1(x|w) for all w

 = (2, 1)

Gray area:
solutions dominated
by the Pareto front

a

b1 b2

Isovalue line (2):
max |

max |

c1 2|, |c2 1| =

Isovalue line (1):
max |c1 2|, |c2 1| =

c1

c2

2
5

3
5

1
4

3
4

21
8

27
10

12.5

4.5

(

(

)

)

Fig. 11.12 Scalarization of the objectives with the Chebyshev distance from a reference point: the
minimum of G∞(x|w, ρ) is 21/8 for w = (1/4, 3/4) and ρ = (2, 1) for the objective vector a =
(12.5, 4.5). The segment]b1, b2] represents the dominated vectors that are optimal for G∞(x|w, ρ)

with w = (2/5, 3/5)

Here, ρ is often chosen as the ideal point for which each coordinate ρi is the minimum
of fi (x) regardless of the other criteria. Now, all the points of the Pareto front are
reachable, provided that appropriate values are given to the weights wi . However, it
is possible that dominated solutions may also minimize such a distance, as shown in
Fig. 11.12.

316 A. Petrowski

The weighted Chebyshev distance is a special case of the distances associated
with L p-norms. It is thus possible to define other aggregation functions

G p(x|w, ρ) = p

√√√√ c∑
i=1

(wi (fi (x) − ρi))
p (11.1)

with ρi ≤ fi (x),∀i ∈ {1, . . . , c}. The most common values of p are:

• p = 1: the Manhattan distance, the minimization of which is equivalent to mini-
mizing a weighted sum (in the case of minimization problems);

• p = 2: the Euclidean distance,
• p = ∞: the Chebyshev distance.

The “scalarization” or “aggregation” methods presented above are simple and
widely used. Despite the limitations of weighted sum methods on possible concave
parts of a Pareto front, these methods can have better convergence properties towards
the Pareto front than the Chebyshev distance method when the Pareto front is con-
vex. There are also other scalarization methods, such as the boundary intersection
approaches [6, 24].

To obtain several solutions approaching the Pareto-optimal set, the naive way
would be to choose different weight vectors as many times as desired and to restart the
optimization algorithm for each of them. However, such a method requires excessive
computing power.

11.3.5.2 The “Steady-State ε-MOEA” Method

The Pareto ranking methods presented above use quite complex algorithms for fit-
ness computation and diversity preservation. But they have the advantage of finding
good-quality nondominated solutions, close to the Pareto-optimal set. The ε-MOEA
method, as presented by its authors [9], aims to quickly find a set of nondominated
solutions whose objective vectors are representative of the Pareto front. It is based
on the notion of ε-domination combined with a scalarization (or aggregation) of the
objectives.

ε − dominance. For a minimization problem, an identification vector B(f) =
(B1(f1), . . . , Bc(fc) is associated with an objective vector f = (f1, . . . , fc), such
that

Bi (fi) =
⌊

fi − mi

εi

⌋
(11.2)

where mi is a lower bound of the values of the objective fi , and εi is the tolerance is
associated with objective i . This is a parameter of the method.

Definition. Let f, g ∈ R
c be two objective vectors; then f ε-dominates g, denoted

f
ε
< g, if and only if

11 Extensions of Evolutionary Algorithms to Multimodal … 317

B1

B2

f1

f2

0 1 2 3

1

2

4 5 6 7 8 9 10 11 12

3

4

ε1

ε2

m1

m2

Best solutions (in A and P)
Other solutions (in P)

a

Gray area:
ε-dominated solutions

B(a) = B(c)

c

Fig. 11.13 ε-dominance between boxes, and preference relation in a box

B(f)
p
< B(g)

Each vector B defines a box in the space of objectives as a hyperrectangle that is the
Cartesian product of the intervals [Biεi + mi , (Bi + 1)εi + mi [for i ∈ {1, . . . , c}.
Figure 11.13 represents the boxes defined by the vectors B as a grid in a plane
generated by two objectives, and the regions ε-dominated by the set of the non-ε-
dominated solutions. In this figure, a and c are associated with the same identification
vector, B(a) = B(c) = (3, 2).

The algorithm. The method uses two populations A and P evolving simultane-
ously. The population P contains the dominated and nondominated solutions obtained
according to the diagram for a steady-state evolutionary algorithm (see Sect. 6.3.6.3)
in which only one offspring is generated in each generation. The selection operators
are specific, also involving the population A.

Population A is an archive containing only the best solutions that are not
ε-dominated and have been found since the beginning of an evolution. In addition,
each box for A can contain a maximum of only one solution: the one that minimizes
an aggregation function of the objectives. This is the niching mechanism of the
ε-MOEA algorithm. A is initialized according to Algorithm 10.5, taking each solu-
tion in the initial population P as the argument c of the procedure.

Figure 11.14 summarizes the ε-MOEA algorithm. It can be noticed that the
parental selections in A and P do not depend on one another and thus can be performed
in parallel. The situation is the same for environmental selections. The parental selec-
tion in P is a domination tournament described by Algorithm 10.4. It gives a solution
r. The parental selection in A consists in randomly choosing a solution a. a and r are
then crossed and mutated to give a solution c. The environmental selections which

http://dx.doi.org/10.1007/978-3-319-45403-0_6

318 A. Petrowski

Crossover:
c X(a, r)

Mutation
of c

Evaluation
of c

a (A)

Stop ?

Yes

No

Population P:

Initialization
of solutions

Evaluation
of solutions

1
offspring

solutions
in P

Non dominated solutions

r domTourn(P)

Insertion of c
 in A

Insertion of c
in P

Initialization of
archive A with the
non ε-dominated

solutions of P

Parental
selection in P :

Parental
selection in A :

Replacement:

Replacement:

(A): random draw of a
solution in A

μ

μ

μ

Fig. 11.14 The generational loop of the steady-state ε-MOEA algorithm

follow the application of the variation operators aim to include c in A and P when
that is beneficial. These selection processes are detailed below.

p ← U(P) // U(P): equiprobable drawing of a solution from P
q ← U(P)

p f ← f(p) // f: multiobjective function
q f ← f(q)

if p f
p
< q f then

r ← p
end

else if q f
p
< p f then

r ← q
end
else

r ← U(p, q) // equiprobable drawing of p or q
end
return r

Algorithm 11.4: Function domTourn(P).

Replacement in archive A. Algorithm 10.5 describes the replacement operator for the
archive A. This algorithm aims firstly to ensure that at any time this archive contains
only solutions that are non-ε-dominated. Thus, if a solution c obtained after mutation
is ε-dominated by one solution in A at least, then c is rejected.

Moreover, the replacement operator for the archive introduces a preference func-
tion between solutions in the same box so as to keep only one of them. The preference
function is an aggregation function of the objectives.

11 Extensions of Evolutionary Algorithms to Multimodal … 319

The authors of the method proposed using G2(x|w, ρ) (Eq. (11.1)) with w =
(1, . . . , 1) = (1) and ρ = B(x). If the insertion of a solution c leads to there being two
non-ε-dominated solutions in a box defined by the identification vector B(a) = B(c),
then only the solution that minimizes G2(x|(1), B) is preserved (Algorithm 10.5).

This case is shown in Fig. 11.13, p. 31, for points a and c. According to the
figure, the Euclidean distance G2(a|(1), B(a)) between a and B(a) is less than
G2(c|(1), B(c)). Therefore, a is preserved in the archive, and c is rejected.

Replacement in population P. This operator has no particular specificity. It only
needs to promote good solutions, keeping a constant size of P. The authors of the
method proposed the algorithm 10.6. If the solution c is not dominated by a solution
in P, it is inserted into the population. In this case, c preferably replaces one of the
individuals in P that it dominates. If it does not dominate any individual, it replaces
an individual in P, randomly chosen.

c f ← f(c)
cε ← (c f − m)./ε // “./”: component-by-component division
Bc ← �cε� // according to equation (11.2)
rejected ← False
foreach a ∈ A do

a f ← f(a)

aε ← (a f − m)./ε

Ba ← �aε�
if Bc

p
< Ba then

A ← A \ {a}
end
if Bc = Ba then

if G2(cε|(1), Bc) < G2(aε|(1), Bc) then
A ← A \ {a} // G2(x|w, ρ): equation (11.1)

end
else

rejected ← True
end

end

if Ba
p
< Bc then

rejected ← True
end

end
if not rejected then

A ← A ∪ {c}
end

Algorithm 11.5: Subroutine replacementArchive(A, c).

Performance. Deb et al. [9] have performed comparisons between ε-MOEA, SPEA2,
and NSGA-II for five two-objective test functions ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT6 proposed in 2000 by Zitler, Deb and Thiele [38] and five three-objective test
functions DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTLZ5 proposed in 2002 by Deb,

320 A. Petrowski

c f ← f(c)
rejected ← False
D ← ∅ // D: set of the solutions dominated by c
foreach p ∈ P do

p f ← f(p)

if c f
p
< p f then

D ← D ∪ {p}
end

if p f
p
< c f then

rejected ← True
end

end
if not rejected then

if D
= ∅ then
r ← U(D) // equiprobable drawing of an element of D

end
else

r ← U(P)

end
P ← P \ {r}
P ← P ∪ {c}

end

Algorithm 11.6: Subroutine replacementPopulation(P, c).

Thiele, Laumanns, and Zitler [11]. For each test configuration, five evolutions with
different initial populations were carried out. The results presented were averages of
the results obtained for each test configuration.

The approximation to the Pareto front was satisfactory for all test functions and
all methods, except for DTLZ4, for which the Pareto front was not approached in
50 % of the evolutions, whatever the method used, whether ε-MOEA, SPEA2, or
NSGA-II.

The significant advantage that was found for ε-MOEA lies in the low computation
times compared with the other two methods. According to [9], ε-MOEA was on
average:

• 16 times faster than NSGA-II and 390 times faster than SPEA2 for the functions
ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6;

• 13 times faster than NSGA-II and 640 times faster than SPEA2 for the functions
DTLZ1, DTLZ2, DTLZ3, DTLZ4, and DTLZ5.

However, the essential advantage of ε-MOEA lies in its efficiency in solving
problems with four objectives or more. Wagner et al. [34] have compared the qual-
ities of the Pareto front approximations for ε-MOEA, SPEA2, and NSGA-II, on
the functions DTLZ1, and DTLZ2, for three to six objectives. Two quality metrics
(Sect. 11.3.2) were used, including the hypervolume measure (Sect. 11.3.2.3). For

11 Extensions of Evolutionary Algorithms to Multimodal … 321

these two metrics, the advantage of ε-MOEA is obvious beyond four objectives,
both of the other methods being unable to approach the Pareto front.

Conclusion. ε-MOEA has proved to be an interesting approach, firstly because it
obtains good approximations to the Pareto front, even for a relatively large number of
objectives, and secondly because of its computation speed, compared with NSGA-II
and SPEA2. This is due to the implementation of two effective mechanisms:

• one to preserve diversity (niching), by the distribution of the solutions in boxes
forming a hypergrid;

• another to scalarize the objectives within each box.

However, the method is sensitive to the choice of the tolerance vector ε, which is of
critical importance to the quality of results.

11.3.5.3 MOEA/D: A Multiobjective Evolutionary Algorithm Based
on Decomposition

The MOEA/D method [36] was chosen to be described in this chapter rather than oth-
ers using a similar approach [20, 25] because of its simplicity and its good efficiency.
It uses an approach to the multiobjective optimization problem of decomposition into
a set of μ mono-objective subproblemsPi , obtained by scalarization of the objectives.
The subproblems are solved simultaneously and give for each of them an objective
vector moving to the Pareto front. In this presentation, the weighted Chebyshev dis-
tance is chosen as the aggregation function. So, every subproblem Pi is a search for
x∗

i ∈ � that minimizes the objective function

G∞(xi |wi , ρ) = c
max
j=1

wi j | f j (xi) − ρ j |

where wi j and ρ j are given, and c is the number of objectives. The method uses a
set of weight vectors W = {w1, . . . , wμ}. These vectors remain constant during the
search for the Pareto optimum. They are the ones that preserve the diversity of the
solutions on the Pareto front, if they are properly chosen.

MOEA/D is justified under the assumption that if the weights wk and wl are neigh-
bors, then the optimal solutions x∗

k and x∗
l are also neighbors. This is not always true,

especially when the Pareto front is discontinuous. If this hypothesis about neighbor-
hoods is not true, the convergence towards the Pareto front is found to be degraded.

Let P be a population of solutions with size μ. In a given generation, MOEA/D
ensures that the solution xi in P is the best that has been found for the vector wi from
the first generation. Algorithm 10.7 summarizes the MOEA/D approach.

Initialization. The weight vectors wi are built so that they are uniformly distributed
in the weight space. The method requires one to consider the ω nearest neighbors
of each wi . To memorize the neighborhood relations, a set Vi with cardinality ω is
built during the initialization for each wi . Vi contains the indices in W of the nearest

322 A. Petrowski

Input: μ, ω

Output: P

Initialize W = {w1, . . . , wμ}
Initialize Vi of size ω,∀i ∈ {1, ..., μ}
Initialize P = {x1, . . . , xμ}
Initialize ρ

// Generational loop
repeat

for i = 1 μ do
Reproduction: random selection of two indices k ∈ Vi and l ∈ Vi

y ← crossover(xk , xl)

y ← mutation(y)

y ← improvement(y)

// Reference point ρ adjustment
for j = 1 c do

if ρ j > f j (y) then
ρ j ← f j (y)

end
end

// Environmental elitist selection
for each index j ∈ Vi do

if G∞(y|w j , ρ) < G∞(x j |w j , ρ) then
x j ← y

end
end

end
until stopping criteria satisfied

Algorithm 11.7: A simple version of the MOEA/D algorithm using the
Chebyshev distance.

neighbors of wi , in the sense of the Euclidean distance; ω is a parameter that adjusts
the capacities for exploration/exploitation of the algorithm. If it is too small, the search
for the optimum of each subproblem is essentially local, reducing the probability of
finding a global optimum. If it is too large, the solutions obtained after applying the
variation operators are often poor, noticeably slowing down the convergence. The
search for a suitable value for ω is a priori empirical. The experiments described by
the authors of the method used values of ω between 10 and 20 for population sizes
μ ranging from 100 to 500.

The population of solutions P is preferably intialized through a problem-dependent
heuristic, if there exists one. Otherwise, the solutions xi are generated randomly. A
first estimate of the reference point ρ is computed using a method specific to the
problem.

The generational loop. This is repeated until satisfaction of a stopping criterion
defined as required by the user. During a generation and for each subproblem Pi ,
two indices k and l are randomly selected in Vi . The two corresponding solutions xk

11 Extensions of Evolutionary Algorithms to Multimodal … 323

and xl give a new solution y after applying the variation operators of crossover and
mutation. Since xk and xl are the best solutions found so far during the evolution for
neighboring weight vectors wk and wl , there is a relatively high probability that y
is also of good quality for wi and its nearest neighbors, if xk and xl are neighbors
according to the hypothesis of continuity outlined above.

The operator of improvement that transforms the solution y obtained after
crossover and mutation is optional. In the case of constrained optimization, it uses a
problem-dependent heuristic that repairs unfeasible solutions to transform them into
feasible solutions (see Sect. 12.4.1). Moreover, the improvement operator can also
implement a heuristic local optimization, again specific to the problem, if it is useful
for improving the convergence to the Pareto front.

The coordinates of the reference point must then be adjusted if some coordinates of
f(y) are lower than those of the current reference point, for a problem of minimization
of the objectives.

At the end of each generation, the environmental selection operator is applied to
the subproblems Pi . It replaces x j in the population P with y provided that y is better
than x j , according to the aggregation function G∞(x|w j , ρ), for all j ∈ Vi . It is an
elitist operator.

11.3.5.4 Comparisons Between MOEA/D and NSGA-II.

Algorithmic complexity. The complexity of a generation is given by the environmental
selection operator, which is O(μωc), where c is the number of objectives; ω is
less than μ. This complexity is lower than that of NSGA-II, which is O(μ2c). The
experiments that have been performed [36] show that MOEA/D spends 1.7–8.5 times
less computing time than NSGA-II.

Experimental comparisons. Zhang and Li [36] have performed comparisons
between MOEA/D and NSGA-II for five test problems with the two-objective func-
tions ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 mentioned Sect. 11.3.5.2 and two test
problems with the three-objective functions DTLZ1 and DTLZ2. The comparison
metrics chosen were the generational distance and the C-metric (Sect. 11.3.2). The
performance in the ZDT1 test was measured for population sizes μ = 100 and
μ = 20. In the other tests, μ was 100 in the case of ZDT2 to ZDT6, and 300
for DTLZ1 and DTLZ2.

In the case μ = 20, MOEA/D proved to be efficient, with a good approximation
to the Pareto front, whereas NSGA-II failed. With the ZDT1 to ZDT6 tests and
μ = 100, both NSGA-II and MOEA/D provided a good approximation to the Pareto
front, with a slight advantage to NSGA-II in 4 out of 10 tests. MOEA/D proved
significantly better than NSGA-II for DTLZ1 and DTLZ2 functions with the C-
metric. The authors of the study did not present results for problems involving more
than four objectives, although it is for such functions that MOEA/D should really
show its qualities. Table 11.1 summarizes the results reported.

http://dx.doi.org/10.1007/978-3-319-45403-0_12

324 A. Petrowski

Table 11.1 Scores of MOEA/D versus NSGA-II in 30 independent evolutions for each test problem,
according to [36]. “4/5” in column 3, for example, means that MOEA/D is better than NSGA-II for
4 test problems out of 5. c is the number of objectives

Test problems μ Score of MOEA/D versus NSGA-II according to

C-metric Generational distance

ZDT1 (c = 2) 20 1/1 1/1

ZDTx (c = 2) 100 4/5 2/5

DTLZx (c = 3) 300 2/2 2/2

MOEA/D also provides a gain in computing time compared with NSGA-II, espe-
cially for the problems DTLZ1 and DTLZ2, though this is less important than the
gain observed for ε-MOEA (Sect. 11.3.5.2).

11.3.5.5 Scalarization Methods: Conclusion

The main advantage of scalarization methods lies in their ability to show good
performance for problems involving many objectives (more than four) as long as
they incorporate an effective diversity preservation mechanism. This advantage of
algorithms based on scalarization of the objectives has been confirmed in [34] for
the MSOPS method [18].

11.4 Conclusion

In this chapter, we have presented some possible answers to some highly important
questions raised by modern optimization problems: how to obtain several diverse
solutions, but of equivalent value, to facilitate taking finer decisions according to
additional possible criteria which cannot be formalized?

Multiobjective evolutionary optimization is a rich field in which innovation is
constantly occurring. Methods and approaches recognized to date for their effective-
ness or their specific qualities have been presented. Those based on a Pareto ranking
have shown their ability to find good-quality approximations to a Pareto front in
reasonable computing times, as long as the size of the objective space is less than
or equal to four. Although the methods based on scalarization of the objectives were
disappointing in the past when applied to solving problems with few objectives, they
can now show performance comparable to or even better than the Pareto ranking
methods, especially for problems involving many objectives.

Other approaches are also the subject of active research, always with the aim of
effectively addressing problems with many objectives. These include, for example,
methods based on the use of quality indicators as a fitness function to be optimized,
such as the hypervolume measure (Sect. 11.3.2.3) [1].

11 Extensions of Evolutionary Algorithms to Multimodal … 325

11.5 Annotated Bibliography

Reference [8] The first reference book in the field of multiobjective optimization
evolutionary algorithms.

Reference [4] This book of more than 800 pages is another, more recent reference
book in the field of multiobjective evolutionary optimization. It con-
tains, in particular, thorough discussions and examples of applica-
tions. Many approaches to solving multiobjective problems with
other metaheuristics are also presented. The book also addresses
the problem of multicriteria decision making that follows multi-
objective optimization to choose the best nondominated solutions
from the perspective of the decision maker.

References

1. Bader, J., Zitzler, E.: Hype: An algorithm for fast hypervolume-based many-objective opti-
mization. Evolutionary Computation 19(1), 45–76 (2011)

2. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function
optimization. Evolutionary Computation 1(2), 101–125 (1993)

3. Bessaou, M., Petrowski, A., Siarry, P.: Island model cooperating with speciation for multimodal
optimization. In: H.P. Schwefel, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.
Merelo (eds.) Parallel Problem Solving from Nature, PPSN VI, 6th International Conference,
Paris. Springer (2000)

4. Coello Coello, C.A., Lamont, G.B., Von Veldhuizen, D.A.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, New York (2006)

5. Cohoon, J.P., Hedge, S.U., Martin, W.N., Richards, D.: Punctuated equilibria: A parallel genetic
algorithm. In: J.J. Grefenstette (ed.) Genetic Algorithms and Their Applications: Proceedings of
the second International Conference on Genetic Algorithms, pp. 148–154. Lawrence Erlbaum
Associates, Hillsdale, NJ (1987)

6. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating Pareto
optimal points in multicriteria optimization problems. SIAM Journal of Optimization 8(3),
631–657 (1998)

7. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. doctoral
dissertation, University of Michigan (1975)

8. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons
(2001)

9. Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm for finding
well-spread Pareto-optimal solutions. Technical Report KanGAL 2003002, Indian Institute of
Technology Kanpur (2003)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002).
doi:10.1109/4235.996017

11. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test prob-
lems. In: Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 825–830 (2002)

12. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation,
discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic
Algorithms, pp. 416–423. Morgan Kaufmann (1993)

http://dx.doi.org/10.1109/4235.996017

326 A. Petrowski

13. Fonseca, C.M., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep algorithm for
the hypervolume indicator. In: IEEE Congress on Evolutionary Computation (2006). doi:10.
1109/CEC.2006.1688440

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley (1989)

15. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function opti-
mization. In: J. Grefenstette (ed.) Proceedings of the 2nd International Conference on Genetic
Algorithms, pp. 41–49. Erlbaum, Hillsdale, NJ (1987)

16. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press (1992)
17. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective

optimization. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp.
82–87. IEEE Press, Piscataway, NJ (1994)

18. Hughes, E.J.: Evolutionary many-objective optimisation: Many once or one many? In: Congress
on Evolutionary Computation’05, pp. 222–227 (2005)

19. Hutchinson, G.E.: Concluding remarks, population studies: Animal ecology and demography.
In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 22, pp. 415–427 (1957)

20. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its applica-
tion to flowshop scheduling. IEEE Transcations on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 28(3), 392–403 (1998)

21. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Evolutionary Com-
putation, 2002, CEC ’02, Proceedings of the 2002 Congress, vol. 1, pp. 711–716 (2002)

22. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000). doi:10.1162/
106365600568167

23. Mahfoud, S.W.: Crowding and preselection revisited. In: R. Manner, B. Manderick (eds.)
Proceedings of Parallel Problem Solving from Nature, pp. 27–36. Elsevier (1992)

24. Messac, A., Ismail-Yahaya, A., Mattson, C.: The normalized normal constraint method for
generating the Pareto frontier. Structural and Multidisciplinary Optimization 25(2), 86–98
(2003)

25. Paquete, L., Stiitzle, T.: A two-phase local search for the biobjective traveling salesman prob-
lem. In: C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele, K. Deb Evolutionary Multi-Criterion
Optimization. Lecture Notes in Computer Science, vol. 2632, pp. 479–493. Springer (2003)

26. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: IEEE 3rd
International Conference on Evolutionary Computation (ICEC’96), pp. 798–803 (1996)

27. Petrowski, A., Girod Genet, M.: A classification tree for speciation. In: Congress on Evolu-
tionary Computation (CEC99), pp. 204–211. IEEE Press, Piscataway, NJ (1999)

28. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Transactions
on Evolutionary Computation 2(3), 97–106 (1998)

29. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London (1986)

30. Spears, W.M.: Simple subpopulation schemes. In: Proceedings of the Conference on Evolu-
tionary Programming, pp. 296–307. World Scientific (1994)

31. Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic
algorithms. Evolutionary Computation 2(3), 221–248 (1994)

32. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analyses, and
new innovations. Ph.D. thesis, Wright Patterson AFB, OH (1999). AAI9928483

33. van Veldhuizen, D.A., Lamont, G.B.: Multiobjective optimization with messy genetic algo-
rithms. In: SAC (1)’00, pp. 470–476 (2000)

34. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in
many-objective optimization. In: Proceedings of the 4th International Conference on Evo-
lutionary Multi-Criterion Optimization, EMO’07, pp. 742–756. Springer, Berlin, Heidelberg
(2007)

http://dx.doi.org/10.1109/CEC.2006.1688440
http://dx.doi.org/10.1109/CEC.2006.1688440
http://dx.doi.org/10.1162/106365600568167
http://dx.doi.org/10.1162/106365600568167

11 Extensions of Evolutionary Algorithms to Multimodal … 327

35. Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using cluster methods in
multimodal function optimization. In: R.F. Albrecht, C.R. Reeves, N.C. Steele (eds.) Proceed-
ings of the International Conference on Artificial Neural Nets and Genetic Algorithms, pp.
450–457. Springer (1993)

36. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

37. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications.
Ph.D. thesis, ETH Zurich, Switzerland (1999)

38. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empir-
ical results. Evolutionary Computation 8(2), 173–195 (2000)

39. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation,
and Control, pp. 95–100. CIMNE, Barcelona (2002)

40. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and
the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271
(1999)

41. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evo-
lutionary Computation 7(2), 117–132 (2003)

42. Zydallis, J.B., van Veldhuizen, D.A., Lamont, G.B.: A statistical comparison of multiobjective
evolutionary algorithms including the MOMGA-II. In: E. Zitzler, L. Thiele, K. Deb, C.A.
Coello Coello, D. Corne (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in
Computer Science,vol. 1993, pp. 226–240 (2001)

Chapter 12
Extension of Evolutionary Algorithms
to Constrained Optimization

Sana Ben Hamida

12.1 Introduction

Optimization problems from the industrial world must often respect a number of
constraints. These are expressed as a set of relationships that the variables of the
objective function must satisfy. These relationships are usually presented as equalities
and inequalities that may be very hard to deal with. The general nonlinear parameter
optimization problem is then defined as

optimize f (x), x = (x1, . . . , xn) ∈ F ⊆ S ⊆ R
n,

subject to

{
gi (x) ≤ 0 for i = 1, . . . , q (inequality constraints)
h j (x) = 0 for j = q + 1, . . . , m (equality constraints)

Here, F is the feasible region where f, gi , and h j are real-valued functions on R
n,S

is the search space, q is the number of inequality constraints, and m − q is the number
of equality constraints (in both cases, constraints may be linear or nonlinear). In all
that follows, we consider only minimization problems. A maximization problem can
be transformed to a minimization problem by inverting the objective function f (x).

The search space S ⊆ R
n is defined by the lower and upper bounds of the solution

vectors,
l(i) ≤ xi ≤ u(i) for 1 ≤ i ≤ n.

The satisfaction of the set of constraints g j , (j = 1, . . . , q), h j , (j = q +
1, . . . , m) defines the feasible region F . Any solution belonging to F is a

S. Ben Hamida (B)
Université Paris Ouest, 92000 Nanterre, France
e-mail: sbenhami@u-paris10.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_12

329

330 S. Ben Hamida

Fig. 12.1 A search space S
and its feasible and
unfeasible parts

Feasible space F

Unfeasible space U

Search space S

feasible solution, otherwise it is unfeasible. The search for a feasible optimum solu-
tion is all the more difficult when the size of the feasible space is small and/or its
shape is complex (for example, F is a set of dispersed small areas as in Fig. 12.1).

The ratio |F |/|S| can be used as a measure of difficulty for the problem [25]. The
search for the optimum is often easier when it is inside the feasible region than when
it is on its boundary. The latter case arises when one (or several) constraint(s) of the
problem is (are) active at the optimum solution. This is often the case for real-world
problems. Thus, constrained optimization problems require an exhaustive search of
the feasible domain [12, 25].

There is not a standard evolutionary method to determine the global optimum of
a constrained problem. The main question is: how to deal with unfeasible solutions?
Two strategies have been devised in reply to this question. The first considers only
feasible individuals, and therefore the objective function is computed only in the
feasible domain. The second considers all individuals in the search space, but requires
a special evaluation function for unfeasible individuals.

The choice of the right strategy depends on the nature of the problem: for example,
whether the objective function is defined in the unfeasible domain or not.

A multitude of methods have been proposed using the two strategies, which can
be classified into the following categories:

• penalty methods;
• methods based on the assumption of superiority of feasible individuals;
• methods based on the search for feasible solutions;
• methods based on preserving the feasibility of solutions;
• methods based on multiobjective optimization techniques;
• hybrid methods.

The papers [6, 20, 25] present comprehensive surveys of constraint-handling
techniques for evolutionary algorithms published at different times (1996, 2002, and
2011, respectively). In this chapter, we present the basics and some reference methods
for each category.

12 Extension of Evolutionary Algorithms to Constrained Optimization 331

12.2 Penalization

Most constraint-handling methods are based on the concept of penalty functions,
which penalize unfeasible solutions by adding a positive quantity to the objective
function f (when the goal is to minimize f), in order to decrease the quality of
such unfeasible individuals. The initial constrained problem is then converted into
an unconstrained problem as follows:

minimize f (x) + p(x)

p(x)

{= 0 if x ∈ F
> 0 otherwise

(12.1)

where p(x) is the penalty function.
The design of the penalty function p(x) is the main source of difficulty in penalty

methods. Several techniques using different approaches and different heuristics have
been proposed. The most popular approaches use measures of the constraint viola-
tions

p(x) = F

⎛
⎝ m∑

j=1

α jv
β

j (x)

⎞
⎠ (12.2)

where F is an increasing function; the positive real numbers α j , j = 1, . . . , m, are
called the penalty coefficients; β is a parameter (often equal to 2); and v j (x) is the
j th constraint violation (distance from the feasible region) defined as follows:

v j (x) =
{

max (0, g j (x)) for 1 ≤ j ≤ q (inequality constraints)
|h j (x)| for q + 1 ≤ j ≤ m (equality constraints)

(12.3)

The sum of the constraint violations v j (x) gives an estimate of the total violation of
the solution x, defined by

V (x) =
m∑

j=1

v j (x)

Using the constraint violation measure in the penalty function helps to distinguish
the unfeasible individuals. Those which have a high violation measure are penalized
more than those with low violation, which can guide the search towards the feasible
space.

However, this measure is generally insufficient for choosing the penalty function,
especially if the difference between the values of the objective function and the vio-
lation measures is very high (e.g. with an objective function on the order of 105 and a
violation measure on the order of 10−1). Penalty coefficients are then used to adjust
the quantity to be added to the objective function. The main difficulty is to determine
the appropriate value for each coefficient. If the penalty is too high or too low, then the
problem might become very difficult for an evolutionary algorithm. With low values

332 S. Ben Hamida

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

f(x) + p max(0, x – 3.5)

f(x)

Unfeasible spaceFeasible space
x < 3.5

Low penalty coefficient

x

f(
x)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

High penalty coefficient

Feasible space
x < 3.5

Unfeasible space

f(x)

f(x) + p max(0, x – 3.5)

x

f(
x)

(a) α = 0 .1 (b) α = 1 .7

Fig. 12.2 Curves of the objective function f (x) = 0.5 sin(x) + 5 and the fitness function f (x) +
α max(0, x − 3.5), with α = 0.1 (a) and α = 1.7 (b)

of penalty coefficients, the algorithm may produce many more unfeasible solutions
than feasible solutions and then a lot of search time will be spent on exploring the
unfeasible region. Otherwise, a large penalty discourages exploration of the unfea-
sible region and may increase the risk of premature convergence, especially if F is
not convex or is disjoint.

In order to investigate the effect of the penalty coefficient on the performance of
genetic algorithms, let us take a simple example. We consider the following problem:

minimize f (x) = 0.5 sin(x) + 5, with 0 ≤ x ≤ 10

The problem is subject to a very simple single constraint: x ≤ 3.5. The optimum for
this problem is x∗ = 3.5. The penalty function is defined as follows:

p(x) = α max(0, x − 3.5)

Despite the simplicity of the problem, an evolutionary algorithm may fail to solve it
if the value of α is not suitable. Figure 12.2a shows the curve of the objective function
f (x) and that of the evaluation function (fitness) f (x) + p(x) in the unfeasible
region, with α = 0.1. Clearly, the minimum of the evaluation function is x∗ = 4.5,
which is an unfeasible solution. Thus, a penalty factor equal to 0.1 is too low to
guarantee the feasibility of the solutions returned.

To overcome this problem, it is necessary to use a higher penalty coefficient.
On the other hand, a very large value results in a sudden rejection of all unfeasible
solutions in the population from the beginning of the evolution. In this case, the
penalization may forbid any shortcuts across the unfeasible region and restrict the
search to some parts of the feasible domain, which may lead to the failure of the
method.

Figure 12.2b shows the curves of f (x) and of f (x) + p(x) in the unfeasible area,
with α = 1.7. The slope of the curve of the fitness function for x ≤ 3.5 is very high,
which induces weak production of solutions located in this part of the search space.

12 Extension of Evolutionary Algorithms to Constrained Optimization 333

Since the optimum is on the boundary, the algorithm will have some difficulty
in generating accurate solutions close to its position. In this case, there is always
more chance of locating the optimum when the surrounding areas of the boundary
are explored from both sides than from one side only.

Otherwise, if the feasible space F is nonconvex or disjoint, the presence of unfea-
sible solutions in the population improves the exploration capacity of the algorithm
by spreading the population throughout the different parts of F .

The choice of the penalization method must take into account the topological
properties of the feasible space, the number of active constraints at the optimum, the
ratio between the sizes of F and S, and the types of the objective function and the
constraints.

We distinguish four approaches to defining the penalty function: the static
approach, the dynamic approach, the adaptive approach, and the self-adaptive
approach. In the static approach, the penalty coefficients are parameters of the algo-
rithm and their values are constant during the evolution. In the other approaches,
their values are modified during the evolution, according to a predefined pattern in
the dynamic approach, and depending on the historical and/or current status of the
population in the adaptive and self-adaptive approaches.

The dynamic penalty function is generally an increasing function of the generation
number in order to ensure the feasibility of the solutions at the end of the evolution,
but the modification scheme is not simple to define and depends on the problem.
The adaptive and self-adaptive methods modify the penalty coefficients according
to some information extracted from the population, essentially the feasibility of the
best solution or of a certain proportion of the population, and the distance from the
feasible region.

12.2.1 “Death Penalty” Method

This is a quite simple method that just rejects unfeasible solutions from the population
[1]. Although it does not need a penalty function, because the rejection takes place
in the selection step, it can be viewed as a penalty method with an infinite penalty:

p(x) = +∞

The quality of the results given by this method depends strongly on:

• the ratio |F |/|S|, where |F | is the size ofF ; note that the method cannot be applied
when F has a null measure;

• the initialization scheme, which may cause instability of the method and increase
the dispersal of the solutions returned since the search direction during evolution
depends essentially on the starting population.

For these reasons, the “death penalty” method often has a very low performance.

334 S. Ben Hamida

12.2.2 Static Penalty Methods

The static penalty methods use user-defined values for the penalty coefficients α j .
The choice of values for these coefficients may be problematic because of the risks
of overpenalization or underpenalization discussed above. In an attempt to avoid
this risk, Homaifar et al. proposed in 1994 [13] a sophisticated method that defines
a family of violation intervals for each constraint and then, for each interval, an
appropriate penalty coefficient is defined. The method can be summarized in the
following steps:

• For each constraint, create a number (l) of violation levels.
• For each constraint and for each violation level, define a penalty coefficient αi j (i =

1, 2, . . . , l, j = 1, 2, . . . , m).
• The coefficients with the largest values are allocated to the highest violation levels.
• The initial population is generated randomly without taking into account the fea-

sibility of the individuals.
• The population is evolved; each individual is evaluated with the following formula:

eval(x) = f (x) +
m∑

j=1

αi jv
2
j (x)

The main drawback of this method is the number of parameters to be defined
before the evolution. For m constraints, the method requires a total of m(2l + 1)

parameters, where l is the number of violation levels defined for each constraint.
This large number of parameters makes the quality of the results highly dependent
on the values chosen.

12.2.3 Dynamic Penalty Methods

With the dynamic strategy, the values of the penalty coefficients are modified during
the evolution according to a user-defined schedule—usually one in which they are
increased—in order to ensure the generation of feasible individuals in the end.

Joines and Houk [14] proposed to evolve the penalties as follows:

p(x) = (C × t)δ
m∑

j=1

v
β

j (x),

where t is the current generation and C, δ, and β are constant values, which are
parameters of the method. A good choice of these parameters reported by Joines and
Houck [14] is C = 0.5, δ = β = 2.

12 Extension of Evolutionary Algorithms to Constrained Optimization 335

This method requires much fewer parameters than methods based on static penal-
ties, and gives better results thanks to the increasing selection pressure on the unfea-
sible solutions due to the term (C × t)δ in the penalty function. However, the factor
(C × t)δ often increases very quickly, and the pressure becomes too strong. This
affects the exploration process and reduces the chance of avoiding possible local
optima.

Another approach based on dynamic penalties was proposed by Michalewicz and
Attia [21] for their system GENOCOP II. GENOCOP II is the second version of the
system GENOCOP (“GEnetic algorithm for Numerical Optimization of COnstrained
Problems”). The latter had the handicap of being able to handle only linear constraints
(see Sect. 12.5.1).

The algorithm begins by first distinguishing linear constraints LC and nonlinear
constraints NC . It then builds an initial population, which has to satisfy the set LC .
The feasibility of the population according to this set is maintained during the evo-
lution thanks to some special operators in the GENOCOP system (see Sect. 12.5.1),
which transform a feasible solution into an other feasible one.

To take the nonlinear constraints into account, Michalewicz and Attia were
inspired by the cooling strategy of simulated annealing to define a penalization func-
tion

p(x, τ) = 1

2τ

m∑
j=1

v j
2(x)

where τ is the temperature of the system, which is a parameter of the algorithm. τ

is decreased every generation according to a “cooling” scheme defined beforehand.
Its goal is to increase the pressure on unfeasible individuals during the evolution.
The algorithm stops when τ reaches a minimum temperature τ f , which is also a
parameter of the algorithm.

Experiments done by Michalewicz and Attia [21] showed that their algorithm
may converge in a few iterations with a good choice of the “cooling” scheme, but it
may give unsatisfactory results with other schemes.

12.2.4 Adaptive Penalty Methods

The main idea of the methods based on adaptive penalties is to introduce into the
penalization function a component dependent on the state of the search process in
a given generation. Thus, the weight of the penalty is adapted in every iteration,
and it can be increased or decreased according to the quality of the solutions in
the population. Numerous methods in this category have been proposed. Three are
presented in this chapter: the methods of Hadj-Alouane and Bean [11], Smith and
Tate [39], and Ben Hamida and Schoenauer [2, 3].

336 S. Ben Hamida

12.2.4.1 Method of Hadj-Alouane and Bean, 1992

With this method, the weight of the penalty depends on the quality of the best solution
found in generation t . The penalty function is defined as follows:

p(x) = α(t)
m∑

j=1

v2
j (x)

where α(t) is updated in each generation t as follows:

α(t + 1) =
⎧⎨
⎩

(1/β1) · α(t) if xb ∈ F over the last k generations
β2 · α(t) if xb ∈ (S − F) over the last k generations
α(t) else

where xb is the best solution in the current population, and β1, β2 > 1 (with β1 �= β2

to avoid cycles). In other words, this method decreases the value of the component
α(t + 1) in generation t + 1 if all the best solutions over the last k generations were
feasible, and increases its value in the opposite case (i.e., if all the best solutions
were unfeasible). On the other hand, if during these k generations some of the best
solutions were feasible and, at the same time, others were unfeasible, α(t + 1) keeps
the same value as α(t).

The aim of Hadj-Alouane and Bean was to increase the penalties only if they
posed a problem for the search process; otherwise, they were reduced. However, the
strategy of adaptation is based only on the state of the best individual over the last k
generations. It does not consider the general state of the population.

12.2.4.2 Method of Smith and Tate, 1993

The adaptive penalty function proposed by Smith and Tate incorporates, as in the
previous method, a component indicating the state of evolution of the search process,
as well as a component indicating the degree of violation of the constraints. The first
component depends on the quality of the best solution found during the evolution
(up to the current iteration t). The second component is determined by the distance
from the best unfeasible solutions to the feasible region. The purpose of this function
is to expand the search space by introducing interesting unfeasible solutions (close to
the feasible domain), which may facilitate the process of search when the optimum
is located on the boundary of F .

The penalty function is defined as follows:

p(x) = (Ffeas(t) − Fall(t))
m∑

j=1

(v j (x)/q j (t))
k

12 Extension of Evolutionary Algorithms to Constrained Optimization 337

where Fall(t) is the value of the objective function (without penalty) of the best
solution found during the evolution (up to the current generation t), Ffeas(t) is the
evaluation of the best feasible solution found over the evolution, q j (t) is an estimate
of the feasibility expansion threshold for each constraint, and k is a constant which
allows adjustment of the “severity” of the penalty function.

Note that the thresholds q j (t) are dynamic; they are adjusted during the search
process. For example, it is possible to define q j (t) = q j (0)/(1 + β j · T) where q j (0)

is the maximum threshold and β j is a parameter to be set manually. However, Smith
and Tate recommend that the technique for adjusting q j (t) should be changed accord-
ing to the nature of the problem.

As in the method of Hadj-Alouane and Bean, the penalty function does not con-
sider the general state of the population. Only the performance of the best feasible
and unfeasible solutions is considered. Besides, this method has a further difficulty
due to the choices that have to be made in the adjustment of the components q j (t).

12.2.4.3 Method of Ben Hamida and Schoenauer, 2000

Ben Hamida and Schoenauer [2] proposed the Adaptive Segregational Constraint
Handling Evolutionary Algorithm (ASCHEA). The main idea of ASCHEA is to
enhance the exploration around the boundaries of F by maintaining both feasible
and unfeasible individuals in the population. In order to achieve this goal, ASCHEA
relies on three main ingredients:

1. A population-based adaptive penalty function that uses global information about
the population to adjust the penalty coefficients:

p(x) = α(t)
m∑

j=1

v j (x) (12.4)

where v j (x) j = 1, . . . , m are the constraint violation measures (Eq. (12.3)).
Increasing the value of the penalty coefficient α(t) in Eq. (12.4) clearly favors
feasible individuals in subsequent selections, while decreasing it favors unfea-
sible individuals. Hence, in order to try to maintain a given proportion τtarget of
feasible individuals, ASCHEA adopts the following strategy:

if (τt > τtarget) α(t + 1)(x) = α(t)/ f act
else α(t + 1)(x) = α(t) ∗ f act

(12.5)

where τt denotes the proportion of feasible individuals in the current population
and f act > 1 is a user-defined parameter.

2. A constraint-driven recombination, where in some cases feasible individuals can
only mate with unfeasible individuals. It is known that, in many real-world prob-
lems, the constrained optimum lies on the boundary of the feasible domain (e.g.,
when one is minimizing some cost with technological constraints). In order to both

338 S. Ben Hamida

achieve better exploration of the boundary region and attract unfeasible individ-
uals more rapidly toward feasible regions, ASCHEA uses a selection/seduction
mechanism, which chooses the mates of feasible individuals to be unfeasible.
However, to allow also the exploration of the feasible region, this mechanism is
only applied when too few feasible individuals are present in the population

if (0 < τt < τtarget) and (x1) is feasible

select (x2) among unfeasible individuals only

else select (x2) according to fitness only

3. A segregational selection that distinguishes between feasible and unfeasible indi-
viduals. This starts by selecting without replacement feasible individuals, based
on their fitness, until τselect ∗ μ individuals have been selected (τselect is a user-
defined proportion and μ is the population size), or no more feasible individuals
are available. The population is then filled using standard deterministic selection
on the remaining individuals, based on the current penalized fitness. So, only a
proportion τselect of feasible individuals is considered superior to all unfeasible
points.

The difficulty of satisfying constraints differs from one constraint to another,
particularly in the case of active constraints. To adapt the search process to the
difficulty of constraints and so ensure better exploration around the boundaries, Ben
Hamida and Schoenauer proposed an improved version of ASCHEA [3], where each
constraint is handled independently. Hence, the adaptive penalty α(t) is extended to
several penalty coefficients α j (t), one for each constraint j :

p(x) =
m∑

j=1

α j (t)v j (x)

Each coefficient is adapted, as for a single penalty (Eq. (12.5)), according to τt (j),
which is the proportion of individuals satisfying the constraint. The idea is to have
individuals on both sides (feasible and unfeasible) of the corresponding boundary.

Another component was introduced in the improved version of ASCHEA [3] to
allow it to handle the equality constraints better. This component transforms the
equalities h j (x) = 0 into two inequality constraints −ε j (t) ≤ h j (x) ≤ ε j (t), where
the value of ε j is adjusted during the evolution. The objective is to start with a large
feasible domain to enhance the process of exploration of the search space, and then to
reduce it progressively in order to bring it as close as possible to the real domain with
null measure at the end of the evolution, as illustrated in Fig. 12.3. In each generation
t , unfeasible solutions are then pushed to the new feasible space Fh j (t + 1) thanks
to the penalization and selection/seduction strategies of ASCHEA.

At the end of evolution, ε j (t) takes very small values close to 0, which means that
the equality constraint is satisfied numerically.

12 Extension of Evolutionary Algorithms to Constrained Optimization 339

ε (t)
ε (t)

−ε (t)
−ε (t)

ε (t)

−ε

ε = 0
h h h

Reduction
Reduction

Fig. 12.3 Progressive reduction of the feasible domain Fh j during evolution corresponding to an
equality constraint h j , using adaptive adjustment of ε j in each generation t

Thanks to its components, ASCHEA has a great capacity for exploration and
exploitation of the best feasible and unfeasible solutions, especially at the end of the
evolution. It has given good results for several benchmarks, but remains costly in
term of the number of evaluations.

12.2.5 Self-adaptive Penalty Methods

The main characteristic of the methods based on self-adaptive penalties is that they do
not require additional parameters. In fact, the penalties are adapted solely on the basis
of information from the population. Two classes of methods in this category have been
proposed: those that consider the state of the population for several generations, such
as the method of Coello [5], which was the first technique published in this category,
and those that consider only the state of the population in the current generation, such
as the methods of Farmani and Wright (2003) [9] and of Tessema and Yen (2006)
[41]. Below, we present a method in each class.

12.2.5.1 Method of Coello, 1999

This is based on the principle of coevolution, where the population of penalties coe-
volves with the population of solutions. The population of solutions P1 is evaluated
according to the following formula:

eval(x) = f (x) −
⎛
⎝α1 ×

m∑
j=1

v j (x)

⎞
⎠ + α2 × θ(x))

where
∑m

j=1 v j (x) is the sum of the measures of the constraint violations by the
solution x, θ(x) is the number of constraints violated by x, and α1 and α2 are two
penalty coefficients.

A population P2 of vectors of penalty coefficients A j = (α1, α2) is maintained
and coevolves in parallel with the population of solutions P1. Each vector A j of
P2 is used to evaluate all individuals of P1 for a given number of generations, after

340 S. Ben Hamida

which the fitness of the corresponding vector A j is computed by using the following
formula:

ϕ(A j) =
N∑

i=1

eval(xi)

Nf
+ Nf

where ϕ(A j) is the average fitness of A j , and N and Nf are the size of the population
P1 and the number of feasible solutions in it, respectively. The best performance
corresponds to the vectors A j that allow one to generate more feasible solutions and
solutions closer to the optimum.

The genetic operators are applied to the population P2 after the fitnesses of all
vectors A j have been computed. Thus, the penalty coefficients are adjusted automat-
ically according to the information provided by the evolution of the population of
solutions P1.

The major disadvantage of this method is its cost due to the large number of
evaluations.

12.2.5.2 Method of Tessema and Yen, 2006

The SAPF (self-adaptive penalty function) method of Tessema and Yen [41] is based
using on the distribution of the current population in the search space for the adjust-
ment of the penalties. The algorithm of the SAPF method can be summarized in the
following four steps:

1. Normalize the values of f (x) for all solutions in the population according to the
following formula:

f̃ (x) = f (x) − minx f (x)

maxx f (x) − minx f (x)

where minx f (x) and maxx f (x) correspond to the fitness without penalty of the
best and the worst solution, respectively, in the population.

2. Normalize the measures of constraint violations v(x) for all the solutions in such
a way that ṽ(x) ∈ [0.1].

3. For each solution x, compute the distance d(x) as follows:

d(x) =
{

ṽ(x) if all solutions are unfeasible√
f̃ (x)2 + ṽ(x)2 otherwise

4. Evaluate the solutions with the following formula:

eval(x) = d(x) + (1 − rt)α1(x) + rtα2(x)

where rt is the proportion of feasibility of the population in generation t defined
by the ratio of the number of feasible solutions to the size of the population, and
α1 and α2 are two penalty functions defined as follows:

12 Extension of Evolutionary Algorithms to Constrained Optimization 341

α1(x) =
{

0 if rt = 0
ṽ(x) otherwise

α2(x) =
{

0 if x is feasible
f̃ (x) otherwise

The steps described above allow the SAPF method to automatically adapt the
penalties according to the distribution of the population in the search space while
taking into account:

• the proportion of feasible solutions;
• the values of the objective function f (x);
• the distances of unfeasible solutions from the feasible space F .

This technique has given good results for several test cases [41]. However, it has
low performance when the feasible region is too small or has a null measure, since the
algorithm focuses more on the search for feasible solutions than on the optimization
of the objective function.

12.2.6 Segregated Genetic Algorithm (SGGA)

The SGGA was proposed by Le-Riche et al. in 1995 [16] as a different approach
to handling constraints by penalization that uses two different penalty functions at
the same time. The first penalty applies weak penalties, while the second applies
strong penalties. The aim is to overcome the problem of penalties that are too high
or too low, discussed in the first part of Sect. 12.2. SGGA creates two groups of
individuals from the population that coexist and cooperate. Each group is evaluated
using one of the two penalty coefficients defined as parameters of the algorithm. The
two groups are segregated during the selection step, where the individuals are sorted
into a list using one of the two penalties. However, the variation operators are applied
to a single ranked population that combines the two groups. The new population is
made by selecting the best solutions from both lists. Two advantages result from this
strategy:

1. The search space is explored by two different trajectories, one for each group.
Also, thanks to hybridization of the two groups, the population can avoid local
optima.

2. In constrained optimization problems, the global optimum is often on the bound-
ary between the feasible and unfeasible areas. The hybridization between the
two groups favors exploration of the boundaries and the global optimum is thus
localized quite easily.

This algorithm has been tested [22] and has shown better performance than the
static penalty method. However, the quality of the results remains sensitive to the
choice of the penalty coefficients.

342 S. Ben Hamida

12.3 Superiority of Feasible Solutions

The approach of the superiority of the feasible individuals is based on the following
heuristic rule: “any feasible solution is better than any unfeasible solution.” This
property is not guaranteed in the case of the penalty methods discussed above. The
first method to use this heuristic rule was that of Powell and Skolnick published in
1993 [28]; then there was the method of stochastic ranking of Runarsson and Yao
[31]; but the simplest to implement is that of Deb, published in 2000 [8].

12.3.1 Method of Powel and Skolnick

The method of Powell and Skolnick also uses penalty functions, but in a different way.
The purpose is to map the fitness of all unfeasible solutions into the interval (1,+∞)

and the fitness of all feasible solutions into the interval [−∞, 1) (for a minimization
problem). To evaluate unfeasible solutions, in addition to the constraint violation
measures, it uses the evaluation of feasible solutions as follows:

p(x) = r
m∑

j=1

v j (x) + θ(t, x)

where r is a constant parameter of the algorithm.
The component θ(t, x) is a function of the state of the population in the current

generation t , and it has a great influence on the assessment of unfeasible individuals.
It is defined by

θ(t, x) =
{

0 if x ∈ F
max {0, δ} otherwise

with

δ = max
y∈F

{ f (y)} − min
y∈(S−F)

⎧⎨
⎩ f (y) + r

m∑
j=1

v j (y)

⎫⎬
⎭

With this additional heuristic, the performance of the unfeasible solutions depends
on that of the feasible solutions: the best fitness of an unfeasible solution cannot be
better than the worst fitness of any feasible solution (maxx∈F { f (x)}).

This method requires the choice of a single parameter, r . The use of a small value
allows the algorithm to explore the unfeasible region in parallel with the feasible
domain, but if r is large, few unfeasible individuals survive in the population. Other-
wise, the success of the method depends also on the topology of the feasible search
space. Experimental results published in [24] indicate that for problems where F is
too small, the method may fail.

12 Extension of Evolutionary Algorithms to Constrained Optimization 343

12.3.2 Deb’s Method

The method proposed by Deb [8] avoids the computation of the objective function
in the unfeasible region. The proposed approach is based on the idea that in a con-
strained search, any individual must comply first with the constraints and then with
the objective function. It uses a binary tournament selection, where two solutions are
compared according to the following criteria:

1. Every feasible solution is better than every unfeasible solution.
2. From among two feasible solutions, the one with the best fitness is selected.
3. From among two unfeasible solutions, the one with the smallest violation measure

is selected.

The evaluation of unfeasible solutions does not use penalty coefficients, but is
instead based on constraint violation measures and the fitness of the feasible solutions:

eval(x) =
{

f (x) if x ∈ F
fmax + ∑m

j=1 v j (x) otherwise

where fmax is the value of the objective function for the worst feasible solution in the
population. To maintain diversity in the feasible domain, the method uses a niching
technique applied during the selection step.

This method has the advantage of not requiring additional parameters. In addition,
it does not compute the objective function in the unfeasible region. However, as with
the previous method, it may fail if the ratio |F |/|S| is too small.

12.3.3 Stochastic Ranking

Proposed by Runarsson and Yao in 2000 [31], this method introduces a new approach
to creating a balance between the objective function and the penalty function, based
on a stochastic ranking of the individuals, as described below.

If we assume that the solutions are evaluated using Eq. (12.1), then the penalty
function is defined as follows:

p(x) = rt .

m∑
j=1

v j (x) = rtθ(x)

where rt is the penalty coefficient and θ(x) is the violation measure.
To compare two adjacent solutions xi and xi+1, the authors of the method intro-

duced the concept of the critical penalty coefficient,

r̃i = f (xi+1) − f (xi)

θ(xi) − θ(xi+1)
for θ(xi) �= θ(xi+1)

344 S. Ben Hamida

For a given choice of rt > 0, three types of comparisons are possible:

1. Comparison dominated by the objective function:
f (xi) ≤ f (xi+1), θ(xi) ≥ θ(xi+1), and 0 < rt < r̃i .

2. Comparison dominated by the penalty function:
f (xi)≥ f (xi+1), θ(xi)< θ(xi+1), and 0 < r̃i < rt .

3. Nondominated comparison:
f (xi) < f (xi+1), θ(xi) < θ(xi+1), and r̃i < 0.

If r t and r t are the largest and smallest critical penalty coefficients, respectively,
calculated from the adjacent individuals sorted according to the objective function,
then it is necessary that r t < rt < r t so that the penalization is efficient. If rt < r t ,
then all the comparisons are based only on the objective function: this is the case of
underpenalization. On the other hand, if rt > r t , then all the comparisons are based
only on the penalty function: this is the case of overpenalization.

Finding a good strategy to adjust rt in each generation, while avoiding overpe-
nalization and underpenalization, is itself an optimization problem.

To overcome this difficulty, Runarsson and Yao proposed a stochastic ranking.
They defined a probability Pf to decide whether to use the objective function or the
penalty function for the comparison. Thus, two adjacent individuals xi and xi+1, at
least one of which is unfeasible, have a probability Pf of being compared according to
their values of the objective function, and a probability (1 − Pf) of being compared
according to their constraint violation measures. If both individuals are feasible,
Pf = 1.

This method was tested for a set on benchmark numerical problems. The best
results were obtained with Pf = 0.45 [31].

Stochastic ranking has been developed further in [30] by using surrogate models
for fitness approximations in order to reduce the total number of function evaluations
needed during a search. The author of [30] found that the improved version provided
the most competitive performance on a set of benchmark problems.

The simplicity of stochastic ranking has made it suitable for use in different
domains. It has provided robust results for several different problems and bench-
marks [17].

12.4 Searching for Feasible Solutions

The main goal of the methods in this category is to bring individuals into the feasible
space F . These methods can be divided into two subcategories: repairing unfeasible
individuals and sampling the feasible space. A method is presented below for each
subcategory.

12 Extension of Evolutionary Algorithms to Constrained Optimization 345

12.4.1 Repair Methods: GENOCOP III

This is the third version of the GENOCOP system, proposed by Michalewicz and
Nazhiyath in 1995 [24]. It is based on the idea of repairing unfeasible solutions
(to make them feasible), and also uses some concepts of coevolution. This method
incorporates the original GENOCOP system (described in Sect. 12.5.1) and extends
it with an additional module that coevolves two separate populations. The first popu-
lation, Ps includes points that satisfy the linear constraints of the problem, and these
are called the search points. The feasibility of the points within Ps (with respect to
the linear constraints) is maintained thanks to the special operators of the GENO-
COP system (see Sect. 12.5.1). The second population, Pr includes points that satisfy
all constraints of the problem (linear and nonlinear), and these are called reference
points. The reference points ri of Pr, being feasible, are evaluated directly with the
objective function (eval(r) = f (r)). However, the search points Ps, that are not
feasible are repaired before they are evaluated. The repair process is described in
Algorithm 12.1.

Let s ∈ Ps be a search point.
If s ∈ F, then eval(s) ← f (s),
else (s /∈ F),

repeat

select a reference point r in Pr
draw a random number a in the interval [0, 1]
z ← a.s + (1 − a).r

while (z is unfeasible)

eval(s) ← eval(z) ← f (z)
replace s with z in Ps with a probability Q
if f (z) < f (r),
then replace r with z in Pr

Algorithm 12.1: Repair process in GENOCOP III

A search point s is replaced by a point z in the population Ps with a replacement
probability Q. It should also be noted that there is an asymmetry between the evolu-
tions of the two populations Ps and Pr: the application of the reproduction operator
and the selection procedure to the population Ps is done in each generation, whereas
it is only done every k generations for the population Pr, where k is a parameter of
the method.

346 S. Ben Hamida

The coevolution strategy for the two populations is given by the main procedure
of the GENOCOP III system, presented in Algorithm 12.2.

t ← 0
initialize Ps(t), Pr(t)
evaluate Ps(t), Pr(t)
while (not stop condition) do

t ← t + 1
select Ps(t) from Ps(t − 1)

Reproduction of Ps(t)
evaluate Ps(t)
if t mod k = 0 then

reproduction of Pr(t)
select Pr(t) from Pr(t − 1)

evaluate Pr(t)

end while

End

Algorithm 12.2: GENOCOP III algorithm

Note that the reproduction is done before the selection in the evolution process
of Pr , owing to the low probability of generating a feasible offspring. Thus, the
offspring are created first, and then the best feasible individuals among the parents
and the offspring are selected to form the new population.

The advantages of GENOCOP III are that it does not evaluate the objective func-
tion in the unfeasible space and that it always returns a feasible solution. By contrast,
the algorithm has great difficulty in creating the population of reference points if
the ratio |F |/|S| is very small. In particular, if the feasible region is not convex
and if the population Pr has been initialized in a single component of F , then the
system will encounter difficulties in generating new feasible individuals in the other
components of F .

12.4.2 Behavioral Memory

This method was proposed by Schoenauer and Xanthakis in 1993 [36]. It is based
on the concept of behavioral memory of the population: “the population contains
not only information on the strict optimum, but also information on its behavior
in the past.”

The main purpose of this method is to sample the feasible space by processing
the various constraints of the problem one by one and in a particular order. The
algorithm begins with a random population. Then, for each constraint, it evolves
the individuals until a certain percentage of the population becomes feasible for the

12 Extension of Evolutionary Algorithms to Constrained Optimization 347

constraint under consideration, while continuing to respect the previous constraints.
There are q + 1 steps for q constraints to be satisfied. The population obtained at the
end of each step is used as a starting point for the evolution for the next constraint. A
linear order for processing the constraints must be defined. For the first q steps, the
fitness in step i is a function M(gi (x)) that is maximal when the constraint gi (x) ≤ 0
is satisfied. Individuals that do not satisfy the constraints g1 to gi−1 are eliminated
from the population by assigning them a null fitness.

The objective function is optimized in the last step using the death penalty method
(see Sect. 12.2.1) for unfeasible points. In this step, the population may be located
in a very small area of the search space, owing to the sequential processing of the
constraints. This problem can be solved by using a niching procedure (see Sect. 11.2)
to maintain diversity in each step.

This method has the advantage of avoiding evaluation of the objective function in
the unfeasible region, but it can fail if the feasible domain is very small or disjointed.
In addition, the sampling procedure requires the choice of a linear order for the
treatment of the constraints of the problem. This choice greatly influences the quality
of the results.

12.5 Preserving the Feasibility of Solutions

All the methods in this category have a common goal, which is to maintain the
feasibility of the population. They use specific reproduction operators to generate
feasible offspring from feasible parents (closed operators on F).

12.5.1 GENOCOP System

The first version of GENOCOP (“GEnetic algorithm for Numerical Optimization of
COnstrained Problems”) was proposed in 1991 by Michalewicz and Janikow [23].

The system deals only with problems subject to linear constraints. It begins by
eliminating the equality constraints by the elimination of a number of variables of the
problem, which are replaced by linear combinations of the remaining variables. The
inequality constraints are then reformulated by replacing the eliminated variables by
these linear combinations. The remaining constraints, being linear, form a convex
feasible space. Thus, it is quite easy to define closed operators that maintain the
feasibility of the solutions.

For example, the arithmetic crossover of two feasible points x and y produces
an offspring z = ax + (1 − a)y, where a = U[0, 1] is a random number drawn uni-
formly in [0, 1]. It is then guaranteed that z, in a convex domain, is always feasible.

Another crossover operator was added to GENOCOP, called heuristic crossover.
This operator generates a child z from parents x and y, selected such that the fitness
f (y) is better than f (x), by applying the following rule:

http://dx.doi.org/10.1007/978-3-319-45403-0_11

348 S. Ben Hamida

z = r · (y − x) + x where r = U[0, 1]

For the mutation operation, GENOCOP proceeds in two steps. It first determines
the current domain dom(xi) for each component xi of a solution vector x , which is
a function of the linear constraints and the remaining values of the solution vector
x . The new value of xi is then taken from this domain.

This method has given good results for problems with a convex feasible space.
However, it can be relatively expensive, as the heuristic crossover and uniform
crossover may require several iterations before generating a feasible offspring.

12.5.2 Searching on the Boundary of the Feasible Region

In many cases, in constrained optimization problems, some constraints are active at
the optimum. Thus the optimum is located on the boundary of the feasible space
F . Michalewicz and Schoenauer proposed an original approach which allows effec-
tive exploration of the boundary of the feasible region [33–35]. They introduced an
evolutionary algorithm which starts from an initial population of points randomly
selected on the boundary of F . These solutions are then evolved while keeping their
feasibility thanks to a set of “closed” genetic operators on F .

The boundary is assumed to be a regular surface S of dimension n − 1 in the
space R

n . The operators used must be able to generate any point on the surface S
(Fig. 12.4) and must respect the following conditions:

1. The crossover must be able to build the points in the neighborhood of both parents.
2. The mutation must be ergodic and must respect the principle of strong causality:

a small change in the solution should cause a small change in the corresponding
fitness.

Schoenauer and Michalewicz proposed several closed operators whose applica-
tion depends on the type of surface of the boundary F , such as specialized crossover
and mutation operators for spherical and hyperboloidal surfaces [33, 34].

A

B

Possible location
of the offspring of
A and B

Fig. 12.4 Crossover operator on a surface

12 Extension of Evolutionary Algorithms to Constrained Optimization 349

Fig. 12.5 Example of
projection of points between
the cube [−1, 1]n and the
feasible space F
(two-dimensional case)

We can cite as an example the curve-based operators: given a curve joining two
different points on the surface, a crossover operator can be defined by choosing one
or two offspring on that curve (Fig. 12.4). We can also mention operators based on
geodesic curves and plane operators based on curves resulting from the intersection
of the surface S with two-dimensional planes.

This class of method has the advantage that it does not need to deal with unfea-
sible solutions, but it has the great disadvantage of being able to solve only those
problems whose optimum is on the boundary of the feasible region. In addition,
many difficulties may be encountered in the design of the genetic operators, which
are specific to the problem to be solved.

12.5.3 “Homomorphous Mapping”

Proposed in 1999 by Koziel and Michalewicz [15], this method uses a set of decoders
to transform a constrained problem into an unconstrained one. It evolves a population
of encoded individuals, where each of them corresponds to a solution in the real
search space. The following conditions must be satisfied to handle constraints with
decoders:

1. For each solution s ∈ F , there exists an encoded solution d.
2. Each encoded solution d corresponds to a feasible solution s.
3. All solutions in F must be represented by the same number of codes.
4. The encoding/decoding procedure T must not be too complex and should be fast

in terms of computing time.
5. A small change in the encoded solution should generate a small change in the

corresponding real solution.

“Homomorphous mapping” is a technique of encoding/decoding between any
feasible search space F and an n-dimensional unit cube [−1, 1]n (Fig. 12.5). The
encoded solution y0 ∈ [−1, 1]n for a point x0 ∈ F is obtained by a projection between
the half-segment defined by the point y0 and the center of the cube O, and the
half-segment defined by the point x0 and the reference point r0 ∈ F . Thus, the
encoded point y0 ∈ F corresponding to x0 is defined by y0 = (x0 − r0) · τ , where
τ = (||yM ||/||xM − r0||) · yM is determined by a dichotomous search procedure.

This technique can only be applied for convex feasible spaces F , but a generaliza-
tion has been proposed for the case of a nonconvex space by introducing an additional

350 S. Ben Hamida

encoding/decoding step. However, this generalization of the encoding technique may
not respect the fifth condition for the validity of a decoder based on strong causality.
The applicability of the method is therefore very limited.

12.6 Multiobjective Methods

The multiobjective approach relies on the idea of transforming the given constraints
into additional objective functions to be minimized. Although the measure of vio-
lation of each constraint v j (j = 1, . . . , m) can be handled as a separate objective
in addition to the objective function f , the common approach considers the sum
of the constraint violations as a second objective. Hence, the problem becomes a
biobjective optimization problem. A second approach consists in transforming the
constrained problem into an unconstrained multiobjective problem where the orig-
inal objective function and each constraint are treated as separate objectives. The
methods of the second approach can also be classified into subcategories: (1) those
that use non-Pareto concepts (mainly based on multiple populations) and (2) those
that use Pareto concepts (ranking and dominance) as selection criteria [7].

The first multiobjective method for constrained optimization was introduced by
Parmee and Purchase in 1994 [27] for the optimization of gas turbine design with
a heavily constrained search space. These authors used the multiobjective method
proposed by Schaffer [32], called the “vector evaluated genetic algorithm” (VEGA),
in which the aim is not to find the optimal solutions, but to search for feasible points
to create a set of regions of F for a local search. The objective function is then
optimized separately by a genetic algorithm using some special operators in order
to help the algorithm to remain in the feasible region. This method was complex to
implement, but the idea has inspired several researchers and has given birth to a large
generation of multiobjective methods for handling constraints such as the method of
Surry et al. (1995) [40], the method of Camponogara and Talukdar (1997) [4], the
method of Ray et al. [29], the method of Coello (2002) [7], and the IDEA algorithm
of Singh et al. (2008) [38].

In this chapter, three methods are presented from among those that we consider
simple to implement.

12.6.1 Method of Surry et al.

The method proposed by Surry et al. in 1995 [40], called COMOGA (“Constrained
Optimization by Multi-Objective Genetic Algorithms”), handles constraints as crite-
ria of a multiobjective problem and simultaneously optimizes the objective function
as an unconstrained optimization problem. To do this, all members of the search
space S are labeled with some measure of their Pareto ranking R based on the con-
straint violations v j (counting the number of individuals dominated by each solution).

12 Extension of Evolutionary Algorithms to Constrained Optimization 351

Then, each solution is evaluated by both the Pareto rank and the value of the objective
function f :

IR(x) = (R(v1,...,vm)(x), f (x))

The Pareto ranking is defined using the same sorting technique as in MOGA, proposed
by Fonseca and Fleming in 1993 [10].

The environmental selection for the next generation proceeds in two steps. First,
pcost × N individuals are selected using a binary tournament selection based on
the fitness f . Then, the rest of the individuals ((1 − pcost) × N) are selected linear
according to their ranks R. To avoid convergence to an unfeasible solution, the value
of pcost is adapted dynamically according to the proportion of unfeasible solutions
in the population, compared with a reference rate τ . The scheme of this method can
be summarized in the following steps:

1. Compute the constraint violation measures v j for all solutions.
2. Compute Pareto ranks R for all solutions using the violation measures v j .
3. Compute the fitness f .
4. Select a proportion pcost of solutions using f , and the rest in proportion to R.
5. Apply the crossover and mutation operators.
6. Adjust pcost: if the proportion of feasible individuals is less than the reference

rate τ , decrease pcost: pcost ← (1 − ε)pcost. Otherwise, increase pcost: pcost ←
1 − (1 − pcost)(1 − ε), where 0 < ε
 1.

The method was successfully applied to design a gas network (dealing with the
provision and pipe type) [40], and it gave good results. However, it did not give the
same degree of accuracy for other benchmark problems.

12.6.2 Method of Camponogara and Talukdar

Camponogara and Talukdar [4] suggested handling the problem of constrained opti-
mization as a two-objective optimization problem. The first objective is the objective
function f of the initial problem, and the second objective is an aggregation of the
constraint violations:

	(x) =
m∑

j=1

(v j (x));

where v j (x) is obtained from the formula (12.3).
Once the problem has thus been redefined, a set of nondominated solutions is

built. These solutions define a new direction of search d that tends to minimize all
the objectives; d = (xi − x j)/(|xi − x j |), where xi ∈ Si and x j ∈ Sj , and Si and Sj

are Pareto sets. A line search is then applied in the direction of search defined by d
in order to create a better solution y which dominates xi and x j .

352 S. Ben Hamida

This technique is simple to implement but it has some difficulties in preserving
population diversity. Additionally, the use of a line search within a genetic algorithm
adds some extra computational cost.

12.6.3 IDEA Method of Singh et al.

Singh et al. proposed the method IDEA, (“Infeasibility Driven Evolutionary Algo-
rithm”) method in 2008 [38]. Its idea is not only to consider the constraints as
objectives but also to maintain the best unfeasible solutions in the population to try
to approach the optimum from both the feasible and the unfeasible sides of the search
space. IDEA transforms then the constrained problem into a biobjective optimization
problem as follows:

Minimize

{
f (x)

	(x) = ∑m
j=1(R j (x))

IDEA assigns to each solution x in the population m ranks R j (x), corresponding
to the m constraints of the problem, based on the violation measures v j . For each
constraint j , rank 0 corresponds to the solutions respecting this constraint, rank 1
corresponds to the solutions having the minimum violation measure, and the remain-
ing solutions have ascending ranks according to the violation measure. 	(x) is then
the sum of the ranks R j assigned to the solution x. The Pareto rank is then used by
the genetic operators in the same way as in the NSGA-II method.

In the replacement step, a proportion λ of the new population is selected from the
the set of solutions with 	(x) > 1. The goal is to keep the best unfeasible solutions
during evolution.

Thanks to this additional component, IDEA has a better convergence ability than
the other methods in the same category. The method showed high performance and
fast convergence when applied by Singh et al. [37] to a problem of dynamic opti-
mization.

12.7 Hybrid Methods

The general goal of the methods in this category is to separate the individuals from
the constraints, which are handled using other heuristics or approaches while the
objective function continues to be solved with an evolutionary algorithm. There are
two ways to accomplish this separation. The first one is to handle the constraints by a
deterministic procedure for numerical optimization combined with the evolutionary
algorithm. In the second approach, the evolutionary algorithm creates this separation
by including a different evolutionary approach to handle constraints.

12 Extension of Evolutionary Algorithms to Constrained Optimization 353

For the first approach, we can cite as an example the method of Myung and
Kim [26], which extend the evolutionary algorithm with Lagrange multipliers. As
an example of the second approach, we can consider the method of Leguizamon
and Coello-Coello [18], which uses ant colonies to explore the boundaries of the
feasible domain. Several methods using the same approach have been published
during the last decade. A more detailed description can be found in the book by
Mezura-Montes [19].

12.8 Conclusion

This chapter has presented a set of approaches to handling constraints in an optimiza-
tion problem using evolutionary algorithms. The basic ideas of these approaches vary
from a simple penalization function to hybrid methods. The choice of an appropriate
technique depends on several criteria, mainly related to the nature of the problem.
Several questions need to be asked in this context, such as:

• Is the objective function defined in the infeasible domain? If it is not, several tech-
niques cannot be applied, such as a large proportion of the penalization methods.

• Are there some active constraints at the optimum? If there are no active constraints
at the optimum, none of the methods based on a search at the boundaries of the
feasible region can be chosen.

• What are the types of constraints? For example, if at least one of the constraints
is a nonlinear inequality, the methods which handle only linear constraints are
excluded, such as the GENOCOP system.

• Is the ratio between the feasible space and the search space too small? If the
problem has equality constraints or the ratio |F |/|S| is too small, it is preferable
to avoid certain methods that have demonstrated weak performance for this case,
such as some approaches based on the superiority of the feasible solutions.

Some other criteria should also be considered in relation to the choice of method,
such as the effectiveness demonstrated in the solution of benchmark problems. The
performance of some approaches has been proved in several comparative studies,
which can be an arguement for the choice of the corresponding technique. However,
the effectiveness of a method is often dominated by two other selection criteria,
which are the complexity and the difficulty of implementation.

In conclusion, there is not a general approach to handling constraints in evolution-
ary algorithms that is able to deal with any type of problem. This subject continues
to be the focus of several research projects in the field.

354 S. Ben Hamida

12.9 Annotated Bibliography

Reference [19] This book is a collection of articles about recent research on
handling constraints in evolutionary algorithms. It covers mainly
multiobjective methods, the hybrid method, constrained optimiza-
tion by immune systems, and differential evolution, as well as other
recent studies and real applications in this field.

Reference [42] Yu and Gen’s book has a special chapter on constrained optimiza-
tion that presents and discusses some approaches to constraint han-
dling, such as penalty functions and feasibility maintenance.

References

1. Back, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proceedings
of the Fourth International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann
(1991)

2. Ben-Hamida, S., Schoenauer, M.: An adaptive algorithm for constrained optimization prob-
lems. In: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo, H.P. Schwefel
(eds.) Proceedings of 6th Parallel Problem Solving From Nature (PPSN VI), Paris. Lecture
Notes in Computer Science, vol. 1917 pp. 529–538. Springer, Heidelberg (2000)

3. Ben-Hamida, S., Schoenauer, M.: ASCHEA: New results using adaptive segregational
constraint handling. In: Proceedings of the Congress on Evolutionary Computation 2002
(CEC’2002), vol. 1, pp. 884–889. IEEE Press, Piscataway, NJ (2002)

4. Camponogara, E., Talukdar, S.N.: A genetic algorithm for constrained and multiobjective opti-
mization (1997)

5. Coello, C.A.C.: Self-adaptive penalties for GA-based optimization. In: Proceedings of the
Congress on Evolutionary Computation 1999 (CEC’99), vol. 1, pp. 573–580. IEEE Press,
Piscataway, NJ (1999)

6. Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with evolution-
ary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and
Engineering 191(11–12), 1245–1287 (2002)

7. Coello, C.A.C., Mezura-Montes, E.: Handling constraints in genetic algorithms using
dominance-based tournaments. In: I. Parmee (ed.) Proceedings of the Fifth International Con-
ference on Adaptive Computing in Design and Manufacture (ACDM’2002), Exeter, Devon,
UK, vol. 5, pp. 273–284. Springer (2002)

8. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods
in Applied Mechanics and Engineering 186(2/4), 311–338 (2000)

9. Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained optimization. IEEE
Transactions on Evolutionary Computation 7(5), 445–455 (2003)

10. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective opti-
mization. Evolutionary Computation 3, 1–16 (1995)

11. Hadj-Alouane, A.B., Bean, J.C.: A genetic algorithm for the multiple-choice integer program.
Operations Research 45, 92–101 (1997)

12. Hamida, S.B., Petrowski, A.: The need for improving the exploration operators for constrained
optimization problems. In: Proceedings of the Congress on Evolutionary Computation 2000
(CEC’2000), vol. 2, pp. 1176–1183. IEEE Press, Piscataway, NJ (2000)

12 Extension of Evolutionary Algorithms to Constrained Optimization 355

13. Homaifar, A., Lai, S.H.Y., Qi, X.: Constrained optimization via genetic algorithms. Simulation
62(4), 242–254 (1994)

14. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear con-
strained optimization problems with GAs. In: D. Fogel (ed.) Proceedings of the first IEEE
Conference on Evolutionary Computation, pp. 579–584. IEEE Press, Orlando, FL (1994)

15. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and con-
strained parameter optimization. Evolutionary Computation 7(1), 19–44 (1999)

16. Le-Riche, R.G., Knopf-Lenoir, C., Haftka, R.T.: A segregated genetic algorithm for constrained
structural optimization. In: L.J. Eshelman (ed.) Proceedings of the Sixth International Con-
ference on Genetic Algorithms (ICGA-95), Pittsburgh, pp. 558–565. Morgan Kaufmann, San
Mateo, CA (1995)

17. Leguizamón, G., Coello, C.A.C.: A boundary search based ACO algorithm coupled with
stochastic ranking. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2007, 25–28 September 2007, Singapore, pp. 165–172 (2007). doi:10.1109/CEC.2007.
4424468

18. Leguizamón, G., Coello-Coello, C.: A boundary search based aco algorithm coupled with
stochastic ranking. In: 2007 IEEE Congress on Evolutionary Computation (CEC’2007), pp.
165–172. IEEE Press (2007)

19. Mezura-Montes, E. (ed.): Constraint-Handling in Evolutionary Optimization. Springer, Berlin
(2009)

20. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical opti-
mization: Past, present and future. Swarm and Evolutionary Computation 1(4), 173–194 (2011)

21. Michalewicz, Z., Attia, N.F.: Evolutionary optimization of constrained problems. In: Proceed-
ings of the 3rd Annual Conference on Evolutionary Programming, pp. 98–108. World Scientific
(1994)

22. Michalewicz, Z., Dasgupta, D., Riche, R.L., Schoenauer, M.: Evolutionary algorithms for
constrained engineering problems. Computers & Industrial Engineering Journal 30(4), 851–
870 (1996)

23. Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In: R.K. Belew,
L.B. booker (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms
(ICGA-91), San Diego, pp. 151–157. Morgan Kaufmann, San Mateo, CA (1991)

24. Michalewicz, Z., Nazhiyath, G.: Genocop III: A co-evolutionary algorithm for numerical opti-
mization with nonlinear constraints. In: D.B. Fogel (ed.) Proceedings of the Second IEEE Inter-
national Conference on Evolutionary Computation, pp. 647–651. IEEE Press, Piscataway, NJ
(1995)

25. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter opti-
mization problems. Evolutionary Computation 4(1), 1–32 (1996)

26. Myung, H., Kim, J.H.: Hybrid interior-lagrangian penalty based evolutionary optimization.
In: V. Porto, N. Saravanan, D. Waagen, A. Eiben (eds.) Proceedings of the 7th International
Conference on Evolutionary Programming (EP98), San Diego. Lecture Notes in Computer
Science, vol. 1447, pp. 85–94. Springer, Heidelberg (1998)

27. Parmee, I.C., Purchase, G.: The development of a directed genetic search technique for heavily
constrained design spaces. In: I.C. Parmee (ed.) Adaptive Computing in Engineering Design
and Control-’94, Plymoth, UK, pp. 97–102 (1994)

28. Powell, D., Skolnick, M.M.: Using genetic algorithms in engineering design optimization with
non-linear constraints. In: S. Forrest (ed.) Proceedings of the Fifth International Conference on
Genetic Algorithms (ICGA-93), University of Illinois, pp. 424–431, Morgan Kaufmann, San
Mateo, CA (1993)

29. Ray, T., Kang, T., Chye, S.K.: An evolutionary algorithm for constrained optimization. In:
Genetic and Evolutionary Computation Conference, pp. 771–777 (2000)

30. Runarsson, T.: Approximate evolution strategy using stochastic ranking. In: G.G. Yen, S.M.
Lucas, G. Fogel, G. Kendall, R. Salomon, B.T. Zhang, C.A.C. Coello, T.P. Runarsson (eds.)
Proceedings of the 2006 IEEE Congress on Evolutionary Computation,Vancouver, pp. 745–
752. IEEE Press, Piscataway, NJ (2006)

http://dx.doi.org/10.1109/CEC.2007.4424468
http://dx.doi.org/10.1109/CEC.2007.4424468

356 S. Ben Hamida

31. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation 4(3), 284–294 (2000)

32. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In:
International Conference on Genetic Algorithms, pp. 93–100 (1985)

33. Schoenauer, M., Michalewicz, Z.: Evolutionary computation at the edge of feasibility. In: H.M.
Voigt, W. Ebeling, I. Rechenberg, H.P. Schwefel (eds.) Proceedings of the Fourth Conference
on Parallel Problem Solving from Nature (PPSN IV), pp. 245–254. Springer, Heidelberg (1996)

34. Schoenauer, M., Michalewicz, Z.: Boundary operators for constrained parameter optimization
problems. In: T. Bäck (ed.) Proceedings of the Seventh International Conference on Genetic
Algorithms (ICGA-97), pp. 322–329. Morgan Kaufmann, San Francisco, CA (1997)

35. Schoenauer, M., Michalewicz, Z.: Sphere operators and their applicability for constrained
optimization problems. In: V. Porto, N. Saravanan, D. Waagen, A. Eiben (eds.) Proceedings of
the 7th International Conference on Evolutionary Programming (EP98), San Diego. Lecture
Notes in Computer Science, vol. 1447 pp. 241–250. Springer, Heidelberg (1998).

36. Schoenauer, M., Xanthakis, S.: Constrained GA optimization. In: S. Forrest (ed.) Proceedings
of the Fifth International Conference on Genetic Algorithms (ICGA-93), University of Illinois
pp. 573–580, Morgan Kauffman, San Mateo, CA (1993)

37. Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility driven
evolutionary algorithm (idea) on constrained dynamic single objective optimization problems.
In: 2009 IEEE Congress on Evolutionary Computation (CEC’2009), Trondheim, pp. 3127–
3134. IEEE Press, Piscataway, NJ (2009)

38. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility driven evolutionary algorithm (IDEA)
for engineering design optimization. In: Australasian Conference on Artificial Intelligence, pp.
104–115 (2008)

39. Smith, A.E., Tate, D.M.: Genetic optimization using a penalty function. In: S. Forrest (ed.) Pro-
ceedings of the Fifth International Conference on Genetic Algorithms (ICGA-93), University
of Illinois pp. 499–503. Morgan Kaufmann, San Mateo, CA (1993)

40. Surry, P.D., Radcliffe, N.J., Boyd, I.D.: A multi-objective approach to constrained optimisation
of gas supply networks: The COMOGA Method. In: T.C. Fogarty (ed.) Evolutionary Comput-
ing. AISB Workshop, Sheffield, U.K, Selected Papers. Lecture Notes in Computer Science, vol.
993 pp. 166–180. Springer (1995).

41. Tessema, B., Yen, G.G.: A self adaptative penalty function based algorithm for constrained
optimization. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), Vancouver,
pp. 950–957. IEEE (2006)

42. Yu, X., Gen, M. (eds.): Introduction to Evolutionary Algorithms. Springer, London (2010)

Chapter 13
Methodology

Eric Taillard

13.1 Introduction

We will certainly disappoint those readers who have been patient enough to read
the present book up to here and who would know which metaheuristic they should
try first for solving a problem under their consideration. Indeed, this question is a
perfectly legitimate one, but we must confess that it is not possible to recommend
one specific technique or another. It has been seen that the weak theoretical results
known about metaheuristics are of almost no use in practice. In fact, in a sense, these
theorems state that to ensure that the optimum is correctly determined, it is required
to examine a number of solutions that is greater than the total number of solutions
of the problem. In other words, they recommend (trivially!) that one should use an
exact method if the optimum needs to be determined absolutely correctly. However,
the present chapter will make an attempt to draw up some guidelines for developing
a heuristic method based on the metaprinciples discussed earlier.

At the methodological level, it is of prime importance to use an adequate model
for solving the problem. The first question to ask is whether to treat the problem as
an optimization, a classification, or a multicriteria problem. The choice of the right
model is essentially intuitive, but a few general principles must be followed. The
first one is divide and conquer. The first part of this chapter treats decomposition
techniques, either the decomposition of a complex problem into a series of simpler
subproblems or the decomposition of a large-size problem into smaller subproblems.

Once themodel has been chosen, the first natural attempt is to try to derive rules for
building a solutionof adequate quality. Thismeans evaluatingwhether greedy choices
appear to be adequate. If this is the case, a GRASP-based implementation can be
recommended, especially for someonewho is only starting towork inmetaheuristics.
Other building methods, such as artificial ant colonies are more difficult to tune. If a

E. Taillard (B)
HEIG-VD, Route de Cheseaux 1, CP, 1401 Yverdon-les-Bains, Switzerland
e-mail: eric.taillard@heig-vd.ch

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_13

357

358 E. Taillard

greedy buildingmethod seems too hard to implement, the alternative choice is to start
with a local search. Simulated annealing and tabu search can be recommended, as
well as variable neighborhood search, because these methods have a limited number
of parameters and are easy to tune.

When local searches focus too rapidly on bad-quality local optima, they must
be hybridized with a learning level, in the spirit of what is called adaptive memory
programming. One of the simplest of these adaptive memory methods is certainly
GRASP with path relinking (GRASP-PR).

Finally, the design of an algorithm based on metaheuristic principles requires one
to tune parameters and to make choices from among various algorithmic options.
The second part of this chapter presents a few techniques for comparing iterative
heuristics.

Following the same principles as we adopted in the chapter on tabu search, this
illustration will be presented with the help of a particular optimization problem.
The vehicle routing problem has been chosen for this specific purpose. In order to
make the illustration as clear as possible, we limit ourselves to the simplest version
of the problem, known as the capacitated vehicle routing problem (CVRP) in the
literature, and to one of its subproblems, the traveling salesman problem, as well as
an extension, the location–routing problem.

13.1.1 Academic Vehicle Routing Problem

Anacademic problem,which is a simplification of practical vehicle routing problems,
can be described as follows.Anunlimited set of vehicles, each one capable of carrying
a volume V of goods, is required to deliver n orders to customers, starting from
a unique depot, in such a way that the total distance traveled by the vehicles is
minimized. Each order (or, as is commonly said, customer) i has a volume vi (i =
1, . . . , n). The direct distances di j between customers i and j (i, j = 0, . . . , n), are
known, with 0 representing the depot. The vehicles execute tours Tk (k = 1, 2, . . .)
that start from and finish at the depot. A variant of the problem imposes the additional
constraint that the lengths of the tours must be bounded from above by a given
value L . Figure13.1 illustrates the shape of a solution obtained for a Euclidean
problem instance considered in the literature [3], with 75 customers (marked by
circles, whose area is proportional to the volume ordered) and a depot (marked by a
black disk, whose area is proportional to the volume of the vehicles).

A solution of this problem can be viewed as a partition of the set of customers into
a number of ordered subsets, the order defining the sequence in which each vehicle
has to visit the customers constituting a tour. The vehicle routing problem has the
traveling salesman problem as a subproblem; if one knows the set of customers
to be serviced by a given tour, one has to find the tour of shortest length, which
is a traveling salesman problem. The VRP is a subproblem of the location–routing

13 Methodology 359

Fig. 13.1 Best solution
known for a small academic
vehicle routing problem with
75 customers. It has not yet
been proved that this
solution is an optimal one

problem, where the position of the depot must be chosen (opening a depot has a given
cost) and, simultaneously, finding vehicle tours. This means choosing the starting
depot for each tour.

13.2 Decomposition Methods

13.2.1 Chain of Decomposition

The first reflex one has when facing a complex problem is to decompose it into a
series of simpler subproblems. In the case of the location–routing problem, the first
attempt may be to find clusters of customers that are close each other so that the
sum of their delivery volumes is not greater than the capacity of a vehicle. Once
these clusters have been determined, for instance by solving a p-median problem
with capacity, an optimal tour visiting all customers in a cluster can be found. If the
possible positions of the depots are not given, the median of each cluster can define
these positions. Finally, the depot-opening costs are limited by connecting several
tours to the same depot.

This technique is illustrated in Fig. 13.2 for a set of customers located in the islands
of Corsica and Sardinia.

For a given problem, the decomposition into a series of subproblems may vary.
For instance, for the location–routing problem, instead of having successively
p-median −→ traveling salesman −→ depot location, an alternative would be to
solve a p-median problem with a number p of centers equal to the final number of
depots and to solve a complete VRP for each cluster of customers assigned to the
same depot-center.

360 E. Taillard

(a) (b)

Fig. 13.2 Decomposition of a location–routing problem into a series of simpler problems. First, a
p-median problem is solved to identify the groups of customers that would be logical to assign to
a vehicle tour. Then, the depot-opening costs are limited by connecting several tours to the same
depot

A third possibility that has been proposed by some other authors for the location–
routing problem is to solve a traveling salesman problem on the whole set of cus-
tomers and then to decompose this large tour into subpaths whose volume is com-
patible with the capacity of the vehicles. The depot positioning is finally chosen by
solving a p-median problem.

Naturally, this technique of decomposition into a series of subproblems is a heuris-
tic one. It is not necessarily efficient for every problem instance and requires good
intuition from the designer to estimate the characteristics of good solutions.

13.2.2 Decomposition into Subproblems of Smaller Size

When solving large-size problem instances, a natural tendency is to proceed by
decomposing the problem into independent subproblems. These subproblems can
thenbe solvedby employing an appropriate procedure. In thisway, large-size problem

13 Methodology 361

instances can be approached efficiently, since the global complexity of the method
grows very slowly, typically as O(n) or O(nlog(n)), where n is the problem size.

However, implementing an a priori decomposition of a problem may induce low-
quality solutions, since the subproblemswill havebeen createdmoreor less arbitrarily
without considering the structure of the solutions. It is not easy to decompose a prob-
lem conveniently without having an intuition about the structure of good solutions.
The idea behind POPMUSIC is to locally optimize parts of a solution a posteriori,
once a global solution is known.

These local optimization procedures can be repeated until a local optimum—
relative to a very special neighborhood—is obtained. POPMUSIC is an acronym
for Partial Optimization Metaheuristic Under Special Intensification Conditions
[23]. Several authors have proposed techniques that are slightly different from
POPMUSIC. These techniques are sometimes less general and have been given dif-
ferent names such as LOPT (Local OPTimizations [20]), LNS (Large Scale Neigh-
borhood [16]), shuffle, MIMAUSA [11], VNDS [10], and hybrid branch & bound
tabu search.

More recently, severalmatheuristicmethods sharing several similaritieswithPOP-
MUSIC have been proposed. The advantage of the latter technique is that it has a
single parameter that defines the size of the subproblems to be solved. Consequently,
if a method is available that is able to solve efficiently subproblems up to a given
size, a good value for the unique POPMUSIC parameter is easy to find.

For many combinatorial optimization problems, a solution S can be represented
by a set of parts s1, . . . , sp. For the vehicle routing problem, a part can be a tour, for
example. The relations existing between each pair of parts may vary. For instance,
two tours containing customers that are close to each other will have a stronger
interaction than tours located in opposite directions relative to the depot.

The central idea of POPMUSIC is to build a subproblem with a seed part, si , and
a given number r < p of parts si1 , . . . , sir which are specially related to the seed part
si . These r parts build a subproblem Ri , smaller than the initial problem, that can be
solved by an ad hoc procedure. If each improvement in subproblem Ri implies an
improvement of the complete solution, then the framework for a local search can be
defined. This local search is relative to a neighborhood that consists in optimizing
subproblems. So, by storing a set O of those parts that have been used as seeds for
building a subproblem and are unable to improve the complete solution, the search
can be stopped as soon as all p parts constituting the complete solution have been
contained in O . So, a special local search has been designed. This local search is
parameterized by r , the number of parts constituting a subproblem. The method can
be described as follows:

POPMUSIC(r)

1. Input: Solution S composed of parts s1, . . . , sp

2. Set O = ∅
3. While O �= {s1, . . . , sp} repeat

362 E. Taillard

a. Select si /∈ O
b. Create subproblem Ri composed of the r parts si1, . . . , sir that are the most

related to si

c. Optimize Ri

d. If Ri has been improved, set O ← O\{si1 , . . . , sir }, update S (as well as the
set of parts).
Else, set O ← O ∪ {si }

This technique corresponds exactly to an improving method which, starting from
an initial solution, stops as soon as a local optimum, relative to a very large neighbor-
hood, is obtained. Hence, the method was named LOPT (local optimizations) in [20]
and LNS (large neighborhood search) in [16].

In fact, the structure of the neighborhood so built contains all solutions s ′ that
differ from s only by subproblem Ri , i = 1, . . . , p. This means that the size of the
neighborhood is defined by the number of solutions contained in the subproblems.
This number is naturally very large and grows exponentially with the parameter r
(the subproblem created for r = p is the whole problem).

13.2.2.1 Parts

When a POPMUSIC-based intensification scheme is desired to be implemented, the
first requirement is to define the meaning of a part of a solution. For vehicle routing
problems, a tour (i.e., the set of orders delivered by the same vehicle) is perfectly
convenient for defining a part. This approach was used in [14, 15, 17]. It is also
possible to consider each customer as a part. This approach was used in [16]. If the
problem instances are large enough and contain a relatively large number of tours,
then considering a tour as a part has the advantage that the subproblems so defined
are also vehicle routing problems. They can be solved completely independently.

13.2.2.2 Seed Part

The second point not precisely specified in the pseudocode of POPMUSIC is the
way the seed part is selected. The simplest policy can be to systematically choose
it at random. In the case of parallel optimization of subproblems, the seed parts can
advantageously be chosen so that, as far as possible, the interactions between the
subproblems are minimized.

13 Methodology 363

13.2.2.3 Relations Between Parts

The definition of the relations between different parts is the third point that has to
be discussed in the framework of POPMUSIC. Sometimes this relation is naturally
defined. For example, if the parts are chosen as the customers of a vehicle routing
problem, the distance between customers is a natural measure of the relation between
parts. If the parts are defined as the tours of a vehicle routing problem, the notion
of proximity is not so easy to define. In [15, 17], where Euclidean problems were
treated, the proximity is measured by the center of gravity of the tours. The quantity
ordered by each client is interpreted as a mass. Figure13.3 illustrates the principle of
the creation of a subproblem from a seed tour. Alvim and Taillard [1] have proposed
a more general measure for the distance between tours by considering the minimum
distance separating two customers belonging to different tours.

Fig. 13.3 Example of the definition of a subproblem for a vehicle routing problem. The seed part
(tour) is drawn with a thick line, the tours most related to the seed tour by normal lines, and the
tours that are not considered in the optimization of a subproblem by dashed lines. The routes from
or to the depot are not drawn, so that the figure is not overloaded

364 E. Taillard

13.2.2.4 Optimization Procedure

Finally, the fourth point not specified in the POPMUSIC framework is the procedure
used for optimizing subproblems. In [15, 17], this procedure is a relatively basic tabu
search. Shaw [16] uses an exact method based on constraint programming, making
the whole method a matheuristic.

13.2.2.5 Complexity of POPMUSIC

An essential aspect when one is facing a large-size problem is the algorithmic com-
plexity of the method. It is not practically possible to use an O(n2) algorithm when
the number of entities in the problem is higher than 100000 or an O(n3) algorithm
if the size is higher than one thousand. Empirically, POPMUSIC repeats steps 3a
to 3d a number of times that grows quasi-linearly with the problem size. The step
requiring the most computational effort is the subproblem optimization (step 3c). For
a fixed value of the parameter r , each of these optimizations takes a computational
time that can be considered as constant. This means that steps 3a, 3b, and 3d can be
performed globally in quasi-linear time if appropriate data structures are used.

Themain difficultywith aPOPMUSICapproach is in building an initial solution of
adequate qualitywith a computational effort lower than O(n2). AlvimandTaillard [1]
proposed a technique based on solving a kind of p-median problemwith capacities to
generate in O(n3/2) an acceptable solution to a location–routing problem. Figure13.4
illustrates the evolution of the computational time as a function of the problem size
for the main steps of POPMUSIC. The subproblems defined in this reference are
multidepot VRPs that are solved by a basic tabu search. In this figure, we see that
building an initial solution has a higher complexity than the subproblemoptimization,
even if the computational effort needed for building an initial solution to an instance
with 2 million customers is still moderate.

13.3 Problem Modeling

A key element for successfully solving a problem is to use an adequate model.
First of all, the set S of feasible solutions must be defined. It may happen that the
shape of this set is very complicated; i.e., without the definition of a very large
neighborhood, it is impossible to generate all feasible solutions or, more precisely, it
is not possible to reach an optimal solution starting from any feasible solution. In this
case, to avoid the definition of an unmanageably large neighborhood (and therefore
making the computational effort required to perform one iteration of local search

13 Methodology 365

Fig. 13.4 Empirical complexity of POPMUSIC for a location–routing problem. The time for build-
ing the initial solution grows faster than the time needed for optimizing subproblems, which seems
to be quasi-linear but which remains preponderant for instances with less than 2 million customers

prohibitive), the set of feasible solutions is extended, while penalizing solutions
that violate constraints of the initial problem. Therefore, the problem is modified as
follows:

min
s∈Sextended

f (s) + p(s)

where S ⊂ Sextended, p(s) = 0 for s ∈ S, and p(s) > 0 if s /∈ S. This penalization
technique, inspired by Lagrangian relaxation, is very useful in applications where
finding a feasible solution is already difficult. For example, this is the case for school
timetables, where the variety of constraints is impressive. Such a model is mandatory
as soon as we have a min max objective, i.e., when we are searching for the minimum
of a maximum, for instance if the longest tour of a VRP must be minimized.

In the CVRP, the number of vehicles can be chosen a priori and solutions where
some customers are not delivered to can be accepted with some penalty. In this way,
creating a feasible (but not operational) solution is a trivial job. The value of the
penalty for not delivering an order can simply be the cost of a return trip between
the depot and the customer.

The penalties can be modified during the search: If, during previous iterations, a
constraint was systematically violated, then the penalty associated with the violation
of that constraint can be increased. Conversely, if a constraint has never been violated,
then the penalty associated with that constraint can be decreased. This technique has
been used in the context of the CVRP [7]. This technique is very suitable if only
one constraint is relaxed. If several constraints are simultaneously introduced into
the objective, then it may happen that only nonfeasible solutions are visited. This is
due to the fact that the different penalties associated with different constraints could

366 E. Taillard

vary in opposite phase in such a way that at least one constraint is always violated,
the violated constraint changing during the search.

It is not always easy to model a problem, especially when the (natural) objective
is to minimize a maximum. The choice of the function to minimize and the penalty
function can be difficult. These functions must take a number of different values
that is as large as possible over their domain of definition, in such a way that the
search can be directed efficiently. How can the choice of a suitable move be made
when a large number of solutions with the same cost exist in the neighborhood? To
answer this issue, the penalty function may be chosen, for instance, by measuring
the importance of the constraint violations rather just by counting the number of
constraints violated. The goal of the penalties is to smooth the objective function to
limit the number of local optima.

This last remark assumes a priori that a local search will be used. However,
evolutionary algorithms and artificial ant methods do not relate to local searches, at
least in their most elementary versions. But now, almost all efficient implementations
inspired by these metaheuristics embed a local search, at least a simple improving
method. A noticeable exception is the biased random-key genetic algorithms, where
advanced population management seems to be sufficient. So, metaheuristics seem to
be evolving toward a common framework that can be described by the higher level
adaptive memory programming (AMP) template.

13.4 Population Management and Adaptive Memory
Programming

A minute observation of recent implementations of evolutionary algorithms, scatter
search, and artificial ant colonies reveals that all these techniques seem to be evolving
toward the adaptive memory programming template [18, 22]. This framework is the
following:

Adaptive Memory Programming

1. Initialize memory
2. Repeat, until a termination criterion is satisfied:

a. Build a new solution with the help of the memory
b. Improve the solution with a local search
c. Update the memory with information carried by the new solution

Now, let us justify why various metaheuristics follow the same framework.

13 Methodology 367

13.4.1 Evolutionary or Memetic Algorithms

In the case of evolutionary algorithms, the population of solutions can be considered
as a form of memory. Indeed, some characteristics of the solutions—hopefully the
best ones—are transmitted and improved, from one generation to the next. Recent
implementations of evolutionary algorithms have replaced the “random mutation”
metaphor by a more elaborate operator.

Instead of performing several local, randommodifications to the solution obtained
after the crossover operation, a search for a local optimum is initiated. Naturally,
a more elaborate search can be executed, for example a tabu search or simulated
annealing. In the literature, this type of method is called a “hybrid genetic algorithm”
or “memetic algorithm” [12].

Another key element of memetic algorithms is an “intelligent” management of
the population. A small population implies rapid convergence of a genetic algorithm.
This is both an advantage—little effort is spent on generating bad-quality solutions—
and a disadvantage—the solutions so obtained are not so good. To combine the
advantages of a small and a large population, the idea is to divide the population into
islands that evolve independently for a while. Periodically, one or more individuals
among the best of an island migrate toward another island. This brings fresh blood
to the population of the islands and avoids or strongly delays the convergence of the
global population.

13.4.2 Scatter Search

Scatter search is almost as old as genetic algorithms, as the technique was originally
proposed, completely independently, in 1977 [8].However, the technique only started
to gain prominence among academic communities by the endof the 1990s. In contrary
to evolutionary algorithms, simulated annealing, and tabu search, this method has
been used very little in the industrial world so far. Scatter search can be viewed as
an evolutionary algorithm with the following specific characteristics:

1. Binary vectors are replaced by integer vectors.
2. The selection operator for reproductionmay selectmore than twoparent solutions.
3. The crossover operator is replaced by a convex or nonconvex linear combination.
4. The mutation operator is replaced by a repair operator that projects the newly

created solution into the feasible solution space.

These characteristics may also be considered as generalizations of evolutionary
algorithms which have been proposed and exploited later by various authors, espe-
cially [13]:

1. The use of crossover operators is different from the exchange of bits or subchains,
2. A local search is applied to improve the quality of solutions produced by the

crossover operator,

368 E. Taillard

3. More than two parents are used to create a child,
4. The population is partitioned with the help of classification methods instead of

an elementary survival operator.

In scatter search, the production of new individuals from solutions in the popula-
tion is a generalization of the crossover in evolutionary algorithms. In “pure” genetic
algorithms, solutions of a problem are only considered in the form of a fixed-length
chain of bits. For many problems, it is not natural to code a solution using a binary
vector and, depending on the coding scheme chosen, a genetic algorithm may pro-
duce results of varying quality. In the initial versions of genetic algorithms, the main
point was to choose an appropriate coding scheme, the other operators belonging to a
standard set. In contrast, in scatter search a natural coding of solutions is advocated,
implying the design of “crossover” operators (the generation of new solutions from
those in the populations) strongly dependent on the problem to be solved.

Since crossover operators on naturally represented solutions do not necessarily
lead to a feasible solution, repairing or improving operators must be designed. In
scatter search, the population is managed by maintaining a reference set composed
on the one hand of a few of the best solutions found by the search (elite solutions)
and on the other hand of a few solutions that are as diverse as possible (scattered in
the solution space). The template for scatter search is as follows:

1. Generate an initial population of solutions that are as scattered as possible. The
solutions are not necessarily feasible, but they are repaired and improved with an
appropriate operator.

2. While the population changes, repeat

a. Select from the population a reference set composed of a few elite solutions
and a few solutions as different as possible from the elite ones.

b. Generate all possible subsets (withmore than one solution) from the reference
set.

c. Combine all solutions in each subset into a tentative solution and
repair/improve this tentative solution.

d. Add all the new solutions to the reference set, which then constitutes the new
population for the next step.

13.4.3 Ant Colonies

In the spirit of adaptivememory programming, the trails of pheromone in ant colonies
can be considered as a form of memory. This memory is utilized to build new solu-
tions, following specific rules for simulated ants or, expressed in other terms, by
following a magic formula, a belief in the precepts of the designers of ant colony
optimization. Initially, the process did not embed a local search. However, simula-
tion experiments very soon revealed that the quality of the process was more efficient
when a local search was incorporated. Unfortunately, the designer of ant colonies

13 Methodology 369

used to hide this component in the pseudocode of the metaheuristic in the form of a
“daemon action,” which might consist, potentially, of anything!

13.4.4 Vocabulary Building

Vocabulary building is a concept introduced in [9] in the context of tabu search, but
the principles of this concept have certainly been used, under different names, by
different authors. Vocabulary building can be conceived as a special type of GRASP
or as an ant colonyworkingwith amemory called a dictionary.Here, instead of storing
complete solutions in the memory, only fragments (or words) are memorized. These
words are employed to build a vocabulary.Anewsolution (i.e., a sentence) is obtained
by combining different fragments. In the context of the vehicle routing problem, a
fragment—or a part of a solution, following the terminology of POPMUSIC—can be
defined as a tour. Then the following procedure can be applied to build a new solution
s, where M is a set of tours, each tour T being composed of a set of customers:

Building a New Solution

1. s = ∅
2. Repeat, while M �= ∅:

a. Choose T ∈ M
b. Set s ← s ∪ T
c. Set M ← M\T ′ ∀T ′ ∈ M such that T ′ ∩ T �= ∅

3. If the solution s does not contain all customers, then complete it.
4. Improve the solution with a local search.

Thus, the idea is to build a solution by successively choosing tours belonging to
a set of memorized tours. The chosen tours must not contain those customers which
are already contained in the partially built solution.

In the case of vehicle routing problems, this technique was first applied in [15].
It succeeded in obtaining several best solutions of instances of benchmark problems
in the literature. This method shows significant performance, particularly for the
following reason: an elementary tabu search, embedded within the framework of
POPMUSIC, is capable of finding a few of the tours in the best solutions known
very rapidly. This is illustrated in Fig. 13.5. Therefore, a lot of computational effort
can be spared by collecting already existing tours without having to build them from
scratch.

13.4.5 Path Relinking

Path relinking [9] is another technique that works with a population of solutions, and
was also proposed by Glover in the context of tabu search. The initial idea is to store

370 E. Taillard

Fig. 13.5 An example of the utility of creating words (=tours) in vocabulary building. On the left,
one of the best solutions known for a CVRP instance. On the right, a few of the tours found within
a few seconds with a POPMUSIC-based search

a set of good solutions visited during a tabu search. All of the solutions are linked
together by a path corresponding to the successive neighboring solutions visited by
the tabu search. Path relinking tries to connect pairs of selected solutions by using
another path, hoping that better-quality solutions are met with along this new path.
An iteration of scatter search can be described as follows:

1. Select two solutions s1 and s2 from among those memorized
2. Repeat, while s1 �= s2

a. Consider all neighboring solutions of s1 that allow one to get closer to s2
b. Retain the best neighboring solution; it becomes s1

Variants of this template exist: it is also possible to try a path going from s2 to s1
or to simultaneously modify s1 and s2 and to stop at an intermediate solution.

Hence, there can be infinite number of possibilities for extending a technique. A
bottom-up methodology seems relatively logical to follow. In fact, the addition of a
level that increases the complexity of a method is not very difficult to implement.
For example, modifying an improving method that will terminate at the first local
optimum to transform it into a simulated annealing method takes only a few minutes
to code, if the first version was developed without implementing any algebraic or
software optimization. Nowadays, users even have several libraries at their disposal
that allow them to embed a basic method into a more complex framework (see, for
example, [2, 24], related to simplifying parallel implementations).

However, it is much more problematic to find suitable parameters (e.g., annealing
scheme, type and duration of tabu conditions, penalty factors, intensification and
diversification mechanisms in a tabu search, coding scheme, crossover operators,
population size in an evolutionary algorithm,…). In order to find good parameters

13 Methodology 371

without performing elaborate numerical experiments, it is important to make use of
statistical tests, sometimes relatively specific. This leads us directly to a point that
has been quite neglected in the metaheuristics literature: the comparison of iterative
heuristics.

13.5 Comparison of Heuristics

The implementation of a heuristic method for solving a complicated combinatorial
problem necessitates that the designer considers several choices. Some of them may
be relatively easy to justify, but others, such as the numerical tuning of parameters or
the choice of a neighborhood,maybemuchmore hazardous.When theory or intuition
cannot support the researcher’s choice, the researcher must justify their decision with
the help of numerical experiments. However, it is all too often observed that these
choices are not supported by scientific considerations. The present section discusses
a few techniques for comparing improving heuristic techniques.

13.5.1 Comparing Proportions

The first question that needs to be clarified concerns the comparison of the success
rates of two methods A and B. Practically, experiments are conducted as follows:
Method A is run na times and succeeds in solving the problem a times. Similarly,
method B is executed nb times and succeeds in solving the problem b times. So, the
following question arises: is a success rate of a/na significantly higher than a success
rate of b/nb? A researcher who is a perfectionist will carry out a large number of
experiments and work with a sufficiently large number of runs to conduct a standard
statistical test based on the central limit theorem. Conversely, a less careful researcher
will not conduct the 15 or 20 runs theoretically needed to validate their choice from
among several options, but will assume, for instance, that if A has 5 positive results
over 5 runs, it will certainly be better than B which has only 1 positive run over 4. Is
the above conclusion correct or not? A nonparametric statistical test [21] shows that
a success rate of 5/5 is significantly higher—with a confidence level of 95%—than
a success rate of 1/4. The contents of Table13.1, which were originally presented
in [21], provide, for a confidence level of 95%, the pairs (a, b) for which a success
rate greater than or equal to a/na is significantly better than a success rate less than
or equal to b/nb.

This table can be particularly useful for finding good parameters for a technique,
both quickly and in a rigorous manner. A suitable procedure is to fix two different
parameter sets (thus defining two different methods A and B) and to compare the
results obtained with both methods. In order to make proper use of Table13.1, it is
required to define what a success is (for instance, the fact that the optimal solution
or a solution of a given quality has been found for a given problem instance) and,

372 E. Taillard

Table 13.1 Pairs (a, b) for which a success rate ≥ a/na is significantly higher than a success rate
≤ b/nb, for a confidence level of 95%

nb na

2 3 4 5 6 7 8 9 10

2 — (3,0) (4,0) (5,0) (5,0) (6,0) (7,0) (7,0) (8,0)

3 (2,0) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (6,0) (6,0)

(5,1) (6,1) (7,1) (8,1) (8,1) (9,1)

4 (2,0) (3,1) (3,0) (3,0) (4,0) (4,0) (5,0) (5,0) (5,0)

(4,1) (5,1) (5,1) (6,1) (7,1) (7,1) (8,1)

(6,2) (7,2) (8,2) (9,2) (10,2)

5 (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0) (5,0)

(3,1) (4,2) (4,1) (5,1) (5,1) (6,1) (6,1) (7,1)

(5,2) (6,2) (7,2) (7,2) (8,2) (9,2)

(8,3) (9,3) (10,3)

6 (2,1) (2,0) (2,0) (3,0) (3,0) (3,0) (4,0) (4,0) (4,0)

(3,2) (3,1) (4,1) (4,1) (5,1) (5,1) (6,1) (6,1)

(4,2) (5,3) (5,2) (6,2) (7,2) (7,2) (8,2)

(6,3) (7,3) (8,3) (9,3) (9,3)

(10,4)

7 (2,1) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0) (4,0)

(3,2) (3,1) (4,2) (4,1) (4,1) (5,1) (5,1) (6,1)

(4,3) (5,3) (5,2) (6,3) (6,2) (7,2) (7,2)

(6,4) (7,4) (7,3) (8,3) (9,3)

(8,4) (9,4) (10,4)

8 (2,1) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (4,0)

(3,3) (3,1) (3,1) (4,1) (4,1) (5,1) (5,1) (5,1)

(4,3) (4,2) (5,3) (5,2) (6,2) (6,2) (7,2)

(5,4) (6,4) (6,3) (7,3) (7,3) (8,3)

(7,5) (8,5) (8,4) (9,4)

(9,5) (10,5)

9 (2,2) (2,1) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0) (3,0)

(3,3) (3,2) (3,1) (4,2) (4,1) (4,1) (5,1) (5,1)

(3,2) (4,3) (5,3) (5,2) (5,2) (6,2) (6,2)

(5,5) (6,5) (6,4) (6,3) (7,3) (7,3)

(7,5) (7,4) (8,4) (8,4)

(8,6) (9,6) (9,5)

(10,6)

10 (2,2) (2,1) (2,0) (2,0) (2,0) (3,0) (3,0) (3,0) (3,0)

(3,4) (3,2) (3,1) (3,1) (4,1) (4,1) (4,1) (5,1)

(4,5) (4,3) (4,2) (5,3) (5,2) (5,2) (6,2)

(5,5) (5,4) (6,4) (6,3) (6,3) (7,3)

(6,6) (7,6) (7,5) (7,4) (8,4)

(8,6) (8,5) (9,5)

(9,7) (10,7)

13 Methodology 373

naturally, it is assumed that the runs are conducted independently of each other. The
test works with a given problem instance and nondeterministic methods A and B
(such as simulated annealing) or with problem instances randomly chosen from a set
(for example, randomly generated instances of a given size). An online version of
this statistical test is available at http://mistic.heig-vd.ch/taillard/qualopt/.

13.5.2 Comparing Iterative Optimization Methods

13.5.2.1 Computational Effort for a Given Target

When optimization techniques are robust enough to achieve a given goal with a high
success rate, one can compare the computational effort needed to reach this target. A
diagramused in the literature gives the cumulative probability of reaching the target as
a function of the number of iterations performed by themethod. The target is typically
the best solution known for a problem instance. This instance is solved many times
by every method. Multiple solutions of the same instance have a meaning only if the
method embeds a random component, such as a simulated annealing, a GRASP, or a
tabu search method starting with a random solution. Another possibility is to choose
a set of problem instances with given characteristics (such as the problem size) that
are randomly generated. This allows the comparison of deterministic methods.

A time-to-target diagram is given in Fig. 13.6. This figure provides the probability
of obtaining the best solution known for a quadratic assignment problem (QAP) for
tabu searches using different tabu list sizes and various diversification parameters.

This comparison technique is sometimes criticized: the target cannot be fixed by
a heuristic method itself. Indeed, the best solution or the optimum must be found by
another method. Therefore, it is hard to speak about the success rate, since the target
to be reached is not clear. More precisely, the processes we are interested in have two
objectives: in addition to optimizing the solution quality, we want to minimize the
computational effort. This last objective can be chosen freely by the user, for instance
by changing the number of iterations of a tabu search, by changing the number of
generations of an evolutionary algorithm, or by changing the number of solutions
built by an ant system. Moreover, these methods are often nondeterministic. Two
runs on the same problem instance generally produce different solutions. The next
subsubsection focuses on techniques for comparing the quality of solutions obtained
as a function of the computational effort for nondeterministic iterative methods.

13.5.2.2 Comparing the Quality of Iterative Searches

Traditionally, the measure of quality of a method is the average value of the solutions
it produces. The computational burden is measured in terms of CPU time consumed
in seconds. However, neither of these measures is satisfactory. If the computational
burden is fixed for two nondeterministic methods A and B, and if it is desired to

http://mistic.heig-vd.ch/taillard/qualopt/

374 E. Taillard

Fig. 13.6 Time-to-target diagram for parameter tuning. This figure is based on the number of
iterations needed by a tabu search starting with a random solution to get the best solution to the
QAP instance tai40b. Two different tabu durations were evaluated (n and 2n) and four different
values for the diversification mechanism (forcing a move that was not performed during a number
of iterations to be a multiple of 2.5, 3, 5, and 10 times the neighborhood size)

rigorously compare the quality of the solutions produced by these methods, both
methods must be executed several times and a statistical test comparing the two
methods must be conducted. Unfortunately, the distribution function of the quality
of the solutions produced by a method is unknown and generally not Gaussian.
Therefore it is not possible to use a standard statistical test unless large samples are
available. Thismeans that the numerical experimentsmust be repeated a large number
of times—practically, this may correspond to many hundreds of times, contrary to
the common belief that a sample size of 20 or 30 is large enough.

If quality can be measured by somemethod other than the average solution values
obtained, interesting comparisons can be performed with very few runs. One of
these nonparametric methods consists in ranking the set of all solutions obtained
with methodsA and B and computing the sum of the ranks obtained by one method.
If this sum is lower than some value—which depends on the level of significance,
which can be found in numerical tables—then one cannot exclude the possibility that
a run of this method has a probability significantly higher than 1/2 of obtaining a
better solution than a run of the other method. In the literature [4], this test is known
as the Mann–Whitney test.

13 Methodology 375

Another statistical technique that is easy to undertake but that requires higher
computational effort is the bootstrap technique. This allows one to calculate various
reliable statistics with relatively small samples, typically a few dozen runs.

Let us suppose that an optimization algorithm has been run n times and the solu-
tion quality observed is x = (x1, x2, . . . , xn). The observations are assumed to be
independent, with finite variance, but without making hypotheses about the distri-
bution function, for instance its symmetry. Indeed, the solution values obtained by
nondeterministic metaheuristics are not symmetrical, just because it is impossible to
get values beyond the optimum. Moreover, researchers favor a small number of runs
so that they can observe what happens for long runs. Under these circumstances,
what is needed is a confidence interval for the statistics s(x), such as the average or
the median. This information can be obtained by resampling the observations a large
number of times as follows:

• Generate B vectors xb(b = 1, . . . , B) of size n by choosing each component
randomly, uniformly, and with replacement from among the observed values
(x1, . . . , xn).

• Compute the value of the wanted statistics s(x1), . . . , s(xB) for the B vectors
generated and order them by increasing value.

• It can be considered that s(x) has a probability 1 − 2α of belonging to the interval
[s1, s2] by taking the s1 = 100 · α and s2 = 100 · (1 − α) percentiles of the ordered
values s(xb).

Practically, one can choose B = 2000, α = 2.5%, s1 = 50, and s2 = 1950. This
technique is very simple and is suitable for metaheuristics practitioners who are
familiar with simulation. Note that this technique does not necessarily produce either
the smallest interval or an interval centred on the chosen statistics. The reader can
find more elaborate techniques in the books [5, 6].

Naturally, if iterativemethods are to be compared using such a test, the testmust be
repeated each timewith a fixed computational effort. In practice, asmentioned before,
the computation timeon agiven computer is used tomeasure the computational effort.
This is a relativemeasure as it depends on the hardware used, the operating system, the
programming language, the compiler, etc. To make a more rigorous comparison, an
absolutemeasure of the computational burdenmust be used. Typically, the evaluation
of the neighboring solutions is the most demanding part of a metaheuristic-based
method, such as simulated annealing, tabu search, evolutionary algorithms, or ant
colony methods (provided that the latter two techniques are hybridized with a local
search). Thus, it is often possible to express the computational burden not in seconds
but in iteration numbers and to specify the theoretical complexity of one iteration.
For instance, one iteration of the tabu search proposed in reference 13 of chap. 3 for
the QAP has a complexity of O(n2). By making the code of their method available
in the public domain, everyone can now express the computation burden of their
own method for a given problem example in terms of the equivalent number of tabu
search iterations. So, there is no necessity to provide a reference to a computation
time relative to a given machine—which will very soon become obsolete.

http://dx.doi.org/10.1007/978-3-319-45403-0_3

376 E. Taillard

Even if it is possible to use a general software package such as OpenOffice Calc
to producing a diagram like that in Fig. 13.6, the work for the programmer of an
iterative heuristic could be crippling. The STAMP software [19], available online on
the site http://mistic.heig-vd.ch/taillard/qualopt, allows one to generate both types of
diagrams respecting good practice. The first diagram that STAMP offers provides the
average (or the median) of the solutions obtained as a function of the computational
effort, expressed both as an absolute measure (number of iterations) and a relative
measure (seconds). The chosen statistic is given with a confidence interval estimated
by a bootstrap technique. An example of such a diagram is given in Fig. 13.7.

Finally, by concentrating on the information that is really needed—is method A
significantly better than method B?—the STAMP software allows one to generate a
second type of diagram, which provides the probability that a given method is better
than another as a function of the computational effort. By using this type of diagram,
the area needed for drawing the the essential information is reduced by a large
proportion. So, it is possible to draw many probability diagrams on the same figure,
for example to comparemanymethodswith each other for the same problem instance
or to compare two methods solving different problem instances. This possibility is

Fig. 13.7 Comparison of three tabu search variants for the QAP instance tai40b. The average
solution values obtained by these variants are given as a function of the computational effort,
measured in terms of both tabu iterations and time on a given machine. The average values are
bounded by their 95% confidence interval. This shows that between 1000 and 10000 iterations, the
difference observed between the two variants with tabu list type 1 could be fortuitous, and does not
show that one of the variants is truly better than the other

http://mistic.heig-vd.ch/taillard/qualopt

13 Methodology 377

Fig. 13.8 Comparison of three tabu search variants onQAP instance tai40b. Each diagram provides
the probability that a method is better (or worse) than another as a function of the computational
effort. At a glance, we can see that between 1000 and 10000 iterations the variant List 1, diversifi-
cation 2,5 is significantly better (at 99% confidence level) than the variant List 2, diversification 5,
while between 20000 and 100000 iterations, the reverse is true

illustrated in Fig. 13.8, where three tabu search variants are compared pairwise when
they are run on a QAP instance in the literature.

At a glance, these diagrams provides much more information than a traditional
numerical table. The main advantages are that they present comparisons for a con-
tinuum of computational effort and provide exactly the information wanted (is this
method better than another?)

13.6 Conclusion

It is sincerely hoped that this chapter will guide researchers who are engaged in the
design of a heuristic based on the techniques presented in the previous chapters. We
are well aware of the fact that every practical problem will be a specific case and that
our advice sometimes may not be judicious. For example, for the traveling salesman
problem, one of the best heuristic methods available at present is a simple improving
method, which is based on the appropriate neighborhood. For the p-median problem,
one of the best methods is based on a POPMUSIC method that does not embed other
metaheuristic principles such as tabu search or simulated annealing. Finally, we
should mention that evolutionary algorithms and scatter search implementations do
not necessarily embed ejection chains, partial optimization, or other metaheuristic
principles.

However, in our opinion, researchers should be more careful concerning the
methodology for comparing iterative heuristics. Indeed, in the literature, tables that
formally contain no reliable information are too often presented, and their authors

378 E. Taillard

draw conclusions that are not supported by the experiments performed. This is why
we hope that the last part of this chapter, where a comparison of improving heuristics
is presented, will lead to research topics that will gain increasing importance in the
near future.

References

1. Alvim, A.C.F., Taillard, É.D.: POPMUSIC for the world location-routing problem. EURO
Journal on Transportation and Logistics 2(3), 231–254 (2013). URL http://mistic.heig-vd.ch/
taillard/articles.dir/AlvimTaillard2013.pdf

2. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of parallel
and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

3. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: N. Christofides,
A. Mingozzi, P. Toth, C. Sandi (eds.) Combinatorial Optimization, pp. 315–338. Wiley (1979)

4. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, Weinheim (1999)
5. Davison, A.C., Hinkley, D.: Bootstrap Methods and Their Application, 5th edn. Cambridge

University Press (2003)
6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall (1993)
7. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem.

Management Science 40, 1276–1290 (1994)
8. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sciences

8(1), 156–166 (1977)
9. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
10. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: S. Voß,

S. Martello, I.H. Osman, C. Roucairol (eds.) Meta-heuristics: Advances and Trends in Local
Search Paradigms for Optimization, pp. 422–458. Kluwer, Dordrecht (1999)

11. Mautor, T., Michelon, P.: MIMAUSA: A new hybrid method combining exact solution and
local search. In: 2nd International Conference on Metaheuristics, Sophia-Antipolis, France,
p. 15 (1997)

12. Moscato, P.: Memetic algorithms: A short introduction. In: D. Corne, F. Glover, M. Dorigo
(eds.) New Ideas in Optimisation, pp. 219–235. McGraw-Hill, London (1999)

13. Mühlenbein, H., Gorges-Schleuter, M., Krämer, O.: Evolution algorithms in combinatorial
optimization. Parallel Computing 7, 65–88 (1988)

14. Rochat, Y., Semet, F.: A tabu search approach for delivering pet food and flour in Switzerland.
Journal of the Operational Research Society 45, 1233–1246 (1994)

15. Rochat, Y., Taillard, E.D.: Probabilistic diversification and intensification in local search for
vehicle routing. Journal of Heuristics 1(1), 147–167 (1995)

16. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing
problems. Technical report, ILOG S.A., Gentilly, France (1998)

17. Taillard, E.D.: Parallel iterative search methods for vehicle routing problems. Networks 23,
661–673 (1993)

18. Taillard, E.D.: Programmation à mémoire adaptative et algorithmes pseudo-gloutons : nou-
velles perspectives pour les méta-heuristiques. Thèse d’habilitation à diriger des recherches,
Université de Versailles, France (1998)

19. Taillard,E.D.: Principes d’implémentationdesméta-heuristiques. In: J. Teghem,M.Pirlot (eds.)
Optimisation approchée en recherche opérationnelle, pp. 57–79. Lavoisier, Paris (2002).

20. Taillard, E.D.: Heuristic methods for large centroid clustering problems. Journal of Heuristics
9(1), 51–73 (2003)

21. Taillard, E.D.: A statistical test for comparing success rates. In: Metaheuristic International
Conference MIC’03, Kyoto, Japan (2003)

http://mistic.heig-vd.ch/taillard/articles.dir/AlvimTaillard2013.pdf
http://mistic.heig-vd.ch/taillard/articles.dir/AlvimTaillard2013.pdf

13 Methodology 379

22. Taillard,E.D.,Gambardella, L.M.,Gendreau,M., Potvin, J.Y.:Adaptivememoryprogramming:
A unified view of meta-heuristics. European Journal of Operational Research 135(1), 1–16
(1998)

23. Taillard, E.D., Voß, S.: POPMUSIC—partial optimization meta-heuristic under special inten-
sification conditions. In: C. Ribeiro, P. Hansen (eds.) Essays and Surveys in Metaheuristics,
pp. 613–629. Kluwer, Dordrecht (2002)

24. Voß, S., Woodruff, D.L.: Optimization Software Class Libraries. OR/CS Interfaces Series.
Kluwer, Dordrecht (2002)

Chapter 14
Optimization of Logistics Systems Using
Metaheuristic-Based Hybridization
Techniques

Laurent Deroussi, Nathalie Grangeon and Sylvie Norre

In the postwar years, the development of operaftional research provided companies
with tools to deal with their logistical problems in a quantitative way. For a long
time, these problems were split into unrelated subproblems, each subproblem often
being tackled separately. This is mainly due to the fact that the subproblems con-
sidered, such as the localization problem, planning problem, scheduling problem,
and transportation problem, are generally NP-hard problems and their computa-
tional complexity remains a significant issue for many researchers. Nevertheless, in
an increasingly competitive industrial environment, companies continue to have a
strong demand for decision aid tools to provide a global view of their organization.

The aim of this chapter is to present the challenges of providing such a view,
to understand the consequences in terms of logistics system modeling, and to say
something about new optimization techniques.

This chapter is organized as follows.The first part describes logistics systems
in general and supply chains in particular. In this part, the concepts of horizon-
tal and vertical synchronization are developed to allow a comprehensive vision of
supply chains. We also show that metaheuristic-based hybridization techniques are
very relevant to the characteristics of logistics systems.The second part is devoted
to hybridization techniques of metaheuristics with optimization methods and meta-
heuristics with evaluation models. In the last part, we present some issues related to
synchronization, as well as some hybridization methods proposed in the literature.

L. Deroussi (B) · N. Grangeon · S. Norre
Laboratoire LIMOS, IUT d’Allier, Avenue Aristide Briand CS 82235,
03101 Montlucon Cedex, France
e-mail: laurent.deroussi@univ-bpclermont.fr

N. Grangeon
e-mail: nathalie.grangeon@univ-bpclermont.fr

S. Norre
e-mail: sylvie.norre@univ-bpclermont.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_14

381

382 L. Deroussi et al.

14.1 Logistics Systems

14.1.1 Definitions and General Considerations

According to Ganeshan and Harrison [17] a supply chain “is a network of facilities
and distribution options that performs the functions of procurement of materials,
transformation of these materials into intermediate and finished products, and the
distribution of these finished products to customers.” This definition, chosen from
among many others, defines a supply chain as a network of physical entities (sites,
organizations, or actors) crossed by physical flows, information flows, and finan-
cial flows. It integrates a set of activities from raw material procurement to final
consumption.

In this chapter, we use the term “logistics system” to refer to as any set of physical
entities interconnected by a logistics network, in which both material and nonmate-
rial flows may occur. So, a logistics system can represent both a global supply chain
and a part of it (by focusing, for instance, on entities in the same organization or on a
site). Internal logistics represents the set of flows passing through the network. Pro-
curement logistics (or inbound logistics) includes inflows (from component suppliers
in any tier), whereas distribution logistics (or outbound logistics) includes outflows
(customers, wholesalers, retailers, end consumers). Figure14.1 presents an example
of a supply chain.

Forrester’s work on systems dynamics highlighted the fact that the efficiency of
an organization arises from the coordination of its components [15]. The concept of
supply chain management was proposed by Oliver and Webber in 1982 [34].

A very large number of definitions of supply chain management have been
presented in Wolf [49]. Of these, we shall use the one proposed by Simchi-Levi
et al. [42], which describes supply chain management as a set of approaches used to
integrate effectively the actors taking part in the manufacturing process (suppliers,

Fig. 14.1 Asupply chain.MRP,material requirement planning;DRP, distribution resource planning

14 Optimization of Logistics Systems Using Metaheuristic-Based … 383

plants, warehouses, stores, …) so as to manufacture and dispatch goods in the right
quantity, in the right place, and at the right time, with the objective of minimizing a
set of costs while ensuring quality of service.

14.1.2 Integrated View of Supply Chain

Optimizing a single component of a logistics system may have a positive or negative
impact on the global performance of the system. Thus, it is important to consider the
system as a whole by integrating inbound and outbound logistics. There are several
types of integration:

Functional. The smooth running of a logistics system implies the coordination
of many activities (facility location, logistics network design, transportation of
goods, warehouse management, inventory management, production logistics,
product design and product life cycle, the information system, procurement logis-
tics, distribution logistics,…). TheMRP (material requirement planning) concept,
also called “net requirements calculation,” was born in the 1970s from the need to
synchronize the quantities of raw materials and semifinished products in order to
satisfy demands expressed by consumers.We speak of synchronization of physical
flows [35].

Temporal. Wight [48] proposed the MRPII (manufacturing resources planning)
as a development of MRP, taking capacities (procurement, production, storage,
distribution, financial) into account. This approach is based on the definition of
a hierarchical structure with five levels, each of them working on a temporal
horizon with its own level of data precision. These levels are strategic planning,
sales and operations planning (S&OP), the master production schedule (MPS),
net requirements calculation, and shop floor control (SFC).

Geographical. Originally, MRPII was a monosite approach. However, current
logistics systems are mostly multisite, which implies making decisions in terms
of facility location, transportation of goods (procurement, production, and distri-
bution), lead times, …. Thomas and Lamouri considered the concept of supply
chain management as an extension of the MRPII approach [46].

Kouvelis et al. defined coordination as any action or approach that leads the actors
in a logistics system to act in a way that improved the running of the system as a
whole [20]. The coordination of the various actors constitutes a great challenge for
operational research, whether in a centralized view (actors are grouped together in
the same organization, which takes decisions for the whole group) or in a decentral-
ized view (each actor is empowered with respect to decision-making). Schmidt and
Wilhelm [41]describe logistics network models which may address each of the three
decision levels, namely strategic, tactical, and operational [41]. The strategic level
(long-term) covers decisions about logistics network design and, in particular, the
facility location problem (FLP). The tactical level (mid-term) describes flow man-
agement policies, including for instance, lot-sizing problems. The operational level

384 L. Deroussi et al.

Fig. 14.2 Problems linked to supply chain planning [28]. ATP, available-to-promise

(short-term) concerns control of the supply chain and covers scheduling problems
(flow-shop problem, job-shop problem, …). Schmidt and Wilhelm conclude that
each level interacts with the others and that an approach unifying the three levels
was necessary to design and manage a competitive logistics network.

Lemoine [23] defined the concepts of horizontal and vertical synchronization,
which gather together the two previous examples. Horizontal synchronization
addresses the difficulties of synchronization between the entities of a supply chain
(for instance, a plan for a production site may be not feasible because of procure-
ment constraints). Vertical synchronization consists in planning decisions in time.
The levels of the MRPII approach are recomputed at various frequencies, and this
may induce desynchronization between them. It is not certain that a modification
made at a given level will be consistent with the other levels.

Figure14.2 details the problems linked to supply chain planning and shows the
need for concepts of synchronization to achieve better flow coordination.

14.1.3 Difficulties of Performance Optimization
in a Supply Chain

The process of adopting a global view of a logistics system and integrating syn-
chronization constraints allows one to optimize its performance and make it more
competitive. Some difficulties have to be overcome, however. These difficulties are
linked to:

14 Optimization of Logistics Systems Using Metaheuristic-Based … 385

Model design. A logistics system is hard to model; actors, entities, activities, and
interactions between entities must be defined.Management rules may be complex
or hard to establish. Knowledge and data gathering may be a long and difficult
task.

Algorithmic complexity. Most of the classical models, regardless the decision
level, are NP-hard problems. We have mentioned only a few of them, but it
becomes necessary to combine them when one aims to achieve horizontal or
vertical synchronization.

Size of systems studied. The large size of logistics systems (in terms of number of
actors, products, …) often makes them hard to solve.

Consideration of uncertainties. A high decision level results in greater uncertain-
ties. The tactical level concerns a relatively long time horizon, generally from two
to five years. For such a horizon, there may be major uncertainties concerning
demand or the economic environment. It is important that a system can be adapted
and remain efficient when facing uncertainties. Snyder [43] presented a review
of the state of the art in the consideration of uncertainities in facility location
problems.

Model precision. A logistics systemcontains a hugequantity of data. It is necessary
to aggregate the data according to the decision level considered and the objectives.
For instance, S&OP works on product families, whereas MPS considers only
products.

Competitiveness evaluation. The performance criteria are generally costs (trans-
port, storage, production, …) and consumer service ratings. Apart from the fact
that they may be difficult to evaluate, they are often conflicting.

Risk management. This includes machine breakdown at an operational level, man-
agement of the maintenance of production units, and the study of the reactivity
of the system to natural disasters.

14.1.4 Decision Support System

The performance of a logistics system is measured as its ability to manage flows
passing through it, whether they are physical, informational, or financial. One of the
keys is data sharing between actors in the system. Each actor must be able to read,
at any time, all the information they need to take the best possible decisions. This
is one of the major role of the information system, which is increasingly gathering
data using tools such as ERP (enterprise resource planning). If these tools allow
one to manage information flows, however, they are often difficult to use to take
decisions. This is the very issue of business intelligence (BI), defined by Krmac [21]
as the set of tools that helps an enterprise to better understand, analyze, explore,
and forecast what happens in the enterprise and its environment. Figure14.3 shows
the interactions between these tools. ETL (extract-transport-load) tools allow one to
extract data frommany sources and format them (validation, filtering, transformation,

386 L. Deroussi et al.

Fig. 14.3 Decision support system [21]

aggregation) and store them in a data warehouse. These data are then available to be
used by analysis and decision aid tools such as those presented in this chapter.

14.1.5 Reason for Interest in Metaheuristics

We have pointed out some difficulties that have to be overcome to optimize a logis-
tics system. A whole supply chain is composed of a complex network of sites and
organizations that have interconnected activities but aim at various and contradictory
objectives. Lourenço [24] has pointed out the major role that metaheuristics can play
in decision aid tools for supply chains. Metaheuristics have good qualities for solv-
ing the very complex problems that arise in supply chain management. The elements
outlined were the following:

• These methods are generally simple, easy to implement, and robust and have
already proven successful in hard optimization problems.

• Their modular nature leads to short implementation andmaintenance times, which
give them advantages compared with other techniques for industrial applications.

• They are able to manipulate a large amount of data, rather than aggregating data
or simplifying a model to obtain a solvable problem but with only a partial repre-
sentation of reality.

• They are able to manage uncertainties, by building many scenarios rather than
offering an exact solution to a model with estimates of many data items.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 387

A global problem could be considered as composed of many subproblems, each
one being an NP-hard problem, in order to optimize one or more performance indi-
cators in the presence of uncertainties in the data. But, at the present time, there is no
model that can tackle the whole complexity of a logistics system. Instead, decision
aid tools are generally developed with a precise purpose and an appropriate vision
of the system (choice of horizon, data precision, one or more performance criterion,
…), by making simplifying assumptions. However, it seems essential to ensure the
consistency of proposed solutions, whether for other actors or for other time scales.

14.2 Hybridization Techniques

There is no doubt that metaheuristics can play an important role in the integration of
the complexity of logistics systems but it is equally clear that metaheuristics alone are
not sufficient. That is why we wish to highlight metaheuristic-based hybridization
techniques in this section.

14.2.1 Generalities

Optimization methods allow one to optimize the running of a system while mini-
mizing (or maximizing) one or more performance criteria. Methods for combinato-
rial optimization problems are usually split into two categories: exact methods and
approximate methods. Exact methods can provide optimal solutions and prove their
optimality. They include techniques from integer linear programming (ILP) such as
branch-and-bound, branch-and-cut, and Lagrangian relaxation. Approximate meth-
ods are used whenever an optimal solution cannot be obtained (because of the size of
the instance, the impossibility of modeling the problem by a linear model, the time
allocated for solving it, ...). Among the approximate methods, we findmetaheuristics
based mostly on local searches. Optimization methods are well suited for tackling
the algorithmic complexity of the systems studied.

In some cases, the performance criterion for the system is not easy to compute. It
is then necessary to run a performance evaluationmodel (a deterministic or stochastic
simulation model, or a markovian model). For these systems, Norre [33] defined the
notion of functional and structural complexity. Norre also introduced the notion of
dual complexity (Fig. 14.4) and proposed a combination of an optimization method
and a performance evaluationmodel to solve problems linked to this dual complexity.
In the following, a “method” will represent either an optimization method or an
evaluation model.

In the previous section, we have shown that the logistics systems we want to study
are characterized by two elements:

388 L. Deroussi et al.

Fig. 14.4 Dual complexity

• On one hand, a wish to support an integrated view as part of horizontal or ver-
tical synchronization, which may lead one to consider the logistics system as a
combination of many optimization problems.

• On the other hand, the aim of improving the competitiveness of the system. The
performance must be evaluated by taking into account sometimes contradictory
criteria in the presence of uncertainties.

The techniques for hybridization between a metaheuristic and another method,
whether an optimization or performance evaluation method, can be organized into
three categories:

Sequential linking. (A→B) (Fig. 14.5).MethodA andmethod B are used sequen-
tially. Method A solves a part of the problem (for instance for a given subset of
variables). The other part of the problem is solved bymethod B. A classical exam-
ple is the use of an optimization method to determine a feasible solution to the
problem, and then a metaheuristic for optimizing this solution.

Sequential and iterative linking. (A � B) (Fig. 14.6). Method A and method B
are used in a sequential and iterative way. The result of method B is an input to
method A, which allows one to iterate the solution process.

Hierarchical linking. (A ↓ B) (Fig. 14.7). The methods are used according a
“master–slave” scheme. For instance, method A may build one or more solu-
tions, which are evaluated or optimized by method B.

These three techniques may be combined to obtain more elaborate hybridiza-
tion methods. For instance, (A → ((B ↓ C) � D)) means that a hierarchical link-
ing between methods B and C follows method A and is sequentially linked with
method D.

In this section, we consider two types of metaheuristic-based hybridization meth-
ods: metaheuristic/optimization-method hybridization, which is well suited when
a problem can be decomposed into subproblems, and metaheuristic/performance-
evaluation-method hybridization, which is useful when performance criteria are hard
to evaluate.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 389

Fig. 14.5 Principle of sequential linking of two methods

Fig. 14.6 Principle of sequential and iterative linking of two methods

Fig. 14.7 Principle of hierarchical linking two methods

390 L. Deroussi et al.

14.2.2 Metaheuristic/Optimization-Method Hybridization

Blum et al. [6] have noted that an increasing number of published metaheuristics
are not strictly in agreement with the paradigm of a single traditional metaheuristic.
Instead, they combine algorithmic elements which come from optimization meth-
ods from domains other than those of metaheuristics. Such approaches are defined
by Blum et al. as hybrid metaheuristics. Hybrid metaheuristics appeared nearly two
decades ago. Since then, they have proved their efficiency in solving hard optimiza-
tion problems. We first present hybridization between two metaheuristics before
talking about hybridization with another optimization method.

The metaheuristic/metaheuristic hybridization technique consists in combining
two metaheuristics. The aim is to design a win–win method. A good example is a
hybridization (Pop↓ Ind) between a population algorithm (for instance, an evolution-
ary algorithm or a particle swarm optimization) and an individual-based method (for
instance, a local search, simulated annealing, or a tabu search). Such a hybridization
takes advantage of the exploratory nature of the population algorithm and the ability
of an individual-basedmethod to intensify the search in a promising area of the search
space. Many examples of such hybridization exists in the literature, most of them
combine a metaheuristic with a local search (Meta ↓ LS). The hybridization (genetic
algorithm ↓ LS) is a technique often used in the literature and is known as memetic
algorithms [29] or genetic local search [27]. The hybridization (simulated annealing
↓ LS) is known as C-L-O (chained local optimization) [25] or SALO (simulated
annealing local optimization) [10] and is part of the set of iterated local searches
[24] in which an acceptance criterion follows the simulated annealing process. Talbi
[45] proposed a taxonomy of hybrid methods based essentially on the degree of
encapsulation of one technique in another and the degree of parallelization.

In recent years, many approaches have combined a metaheuristic with another
optimizationmethod. Several classifications have been proposed in the literature [11,
19, 37]. For example, Dumitrescu and Stützle [11] split hybridization techniques into
five categories:

• those which use exact methods to explore large-size neighboring systems into a
local search algorithm;

• those which run several replications of a local search algorithm and exploit the
information contained in good-quality solutions to define a subproblem with a
reduced size which can be solved by a exact method;

• those which exploit bounds in greedy algorithms;
• those which guide a local search with information obtained by relaxing an ILP
model;

• those which solve exactly some specific subproblems with a hybrid metaheuristic.

Fernandes and Lourenço presented a mapping of hybrid methods according to the
problems considered [13].Amongproblems about logistics systems,many references
concern logistics network design (p-median problem), vehicle-routing problems (the
travelling salesman problem (TSP) and the vehicle routing problem (VRP)), planning

14 Optimization of Logistics Systems Using Metaheuristic-Based … 391

problems (the lot-sizing problem), and scheduling problems (the flow-shop and job-
shop problems, etc.).

Constraint programming (CP) is a programming paradigm in which relations
between variables are stated in the form of constraints. The search is based on con-
straint propagation, which reduces the set of possible values for the variables. Unlike
metaheuristics, CP is known to be an efficient technique for decision problems but
not for optimization problems. Hybridization of these two techniques is a good idea
when one aims to profit from their respective advantages. Two strategies are possi-
ble, according to the optimization method driving the hybrid method. The first is a
metaheuristic in which constraint programming is used as an efficient tool to explore
a large neighborhood. The second is a tree search algorithm in which a metaheuristic
is used to improve nodes or to explore neighboring paths. The article [14] and the
book [47] are two suggestions for introductory reading on the subject. This hybrid
technique has been successfully used on vehicle routing problems [8] and scheduling
problems [5].

14.2.3 Metaheuristic/Performance-Evaluation-Method
Hybridization

Performance evaluation models take into account the functional and structural com-
plexity of logistics systems. Their use is particularly suitable when:

• Defined performance indicators cannot be computed by simple analytical functions
as complex rules define the running of the system. It is then necessary to simulate
the running of the system to evaluate its performance.

• Some data are described by distribution functions and it is necessary to run the
model many times to know its robustness.

In this part, we will focus our discussion on simulation models. The terms “opti-
mization by simulation” and “joint simulation/optimization approach” are often used
in the literature. Optimization components based on evolutionary algorithms, scatter
search, simulated annealing, and tabu search are included into? discrete event sim-
ulation software, as can be seen in [2, 16]. The aim of the resulting hybridization
technique (simulation model ↓ optimization method) is that the optimization method
provides solutions that are evaluated by the discrete event simulation software. Fu
[16] discussed other types of links existing between optimization methods and simu-
lation models. In the context of supply chain management, many studies have shown
an interest in hybridization. Abo-Hamad and Arisha gave a recent review of the state
of the art [1]. Figure14.8, taken from that article shows the interactions between the
optimization components and the simulation model. The Simulation model allows
one to manage uncertainties and system complexity.

392 L. Deroussi et al.

Fig. 14.8 Example of optimization/simulation-model hybridization for a supply chain [1]

Fig. 14.9 Example of metaheuristic/simulation model hybridization for a decentralized supply
chain [26]

Mele et al. [26] used this hybrid technique to a supply chain with a decentralized
approach. Each actor of the chain was represented by an agent and all the agents
were integrated into a simulation model. The model was combined (Fig. 14.9) with
a genetic algorithm for the optimization part. More recently, a similar approach has
been proposed by Nikolopoulou and Ierapetritou [32] with ILP.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 393

14.3 Application to Supply Chain Management

14.3.1 Preamble

We have emphasized the importance of considering a logistics system as a whole.
Griffis et al. [18] noted that being able to take into account many problems simul-
taneously is one of the major interesting features of metaheuristics for the study of
logistics systems study (Griffis et al. use the term “hybrid problems”). These authors
gave the following examples:

• The location routing problem consists in opening a subset of depots, assigning
customers to them, and determining vehicle routes to minimize a total cost includ-
ing the cost of open depots, the fixed costs of the vehicles used, and the total cost
of the routes.

• The inventory routing problem consists in the distribution of a single product froma
single facility to a set of customers over a given planning horizon. Each customer
consumes the product at a given rate and has the capability to maintain a local
inventory of the product up to a (maximum value) maximum.

• The vehicle routing problem is concerned with determining the optimal set of
routes for a fleet of vehicles to deliver to a given set of customers.

• The multilevel logistics network design problem relates to the establishment of
supply, warehousing, and distribution infrastructure. It encapsulates procurement,
value-added, and postponement activities and inventory control policies.

The three first problems define a vertical synchronizationwith two decision levels:
one about the logistics network design (choice of site location, choice of supply,
delivery frequency) and the other about the route design. Joint problem solving allows
one to obtain better results than solving the problems separately. The last example
defines a horizontal synchronization between the activities of the supply chain.Griffis
et al. considered this problem as a hybrid problemmade up of a combination of many
networkdesignproblems, one for each level (choice of production location and choice
of distribution infrastructure, for instance).

In addition, many other combinations of problems are interesting to study in
the context of supply chain management. Among them, we mention the following
examples of horizontal synchronization:

• tactical planning: for the study of multisite lot-sizing problems;
• multisite scheduling: which takes into account product transport between sites;
• end product distribution: transportation sharing.

Examples of vertical synchronization include:

• tactical planning: synchronization between sales and operations planning and pro-
duction planning;

• scheduling: synchronization between predictive and reactive scheduling (offline
and online scheduling).

394 L. Deroussi et al.

–

Fig. 14.10 Problems and synchronization types chosen for discussion

The methods implemented to solve these problems are generally based on a
decomposition into basic problems. An optimization method is associated with each
basic problem. We have the three categories defined in the previous section:

• Sequential linking. This technique can be used for a vertical synchronization prob-
lem where decisions taken at a high level may have an impact on lower level. The
solution obtained by the first method is an input to the second method.

• Sequential and iterative linking.The previous scheme is iterated.Data are transmit-
ted by the second method to the first one, restarting the process. In this technique,
the methods are considered at the same level. The difficulty of this approach is to
define the data transmitted from one method to the other.

• Hierarchical linking. In contrast to iterative methods, this combination induces
a master slave relationship between the methods. During its execution, the first
method calls the second method to solve a subproblem.

The combinations of problems is a first step in allowing an integrated view of a
supply chain, in order to take decisions. For this reason, we shall highlight some of
them (production planning, the location routing problem, the lot-sizing problem and
the flexible production system) and present for each of them some metaheuristic-
based hybrid methods proposed in the literature. Figure14.10 shows the types of
synchronization associated with each problem.

14.3.2 Production/Distribution Planning

Suon et al. [44] covered an international two-echelon production/distribution prob-
lem. This is a strategic planning problem which aims to define the movement of
goods within a logistics network from tier-1 suppliers to the end customers.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 395

The aim is to plan themanufacture of product types (total numberN). The logistics
network considered is composed of production zones (total number P Z), sales zones
(total number SZ), and distribution links (total number DL) between the production
and sales zones. We set ok,u = 1 if distribution link k, k = 1, DL , begins at produc-
tion zone u, u = 1, P Z , and we set dk,v = 1 if distribution link k, k = 1, DL , ends
at sales zone v, v = 1, SZ .

Each sales zone forecasts its requirements by type of product (f di,v for type of
product i, i = 1, N , and sales zone v, v = 1, SZ). Many production technologies
(total number PT) available in the production zones are required to manufacture
one type of product. A production zone may not offer all production technologies,
and it may not manufacture certain products. Some production zones may be used
for several types of products, whereas others may be dedicated to only one type
of product. xci,t is the ratio between the number of a product of type i, i = 1, N ,
and that of the reference product for production technology t, t = 1, PT . Each
production technology t, t = 1, PT , for u, u = 1, P Z , has a minimum production
capacity cap_mint,u , which represents the breakeven point of the installed industrial
equipment, and it has a maximum production capacity cap_maxt,u .

The problem is to determine the quantity of each type of product manufactured
in each production zone and the delivery method to the sales zones, showing the
quantity assigned to each distribution link.

The objective is to minimize the global delivery costs of the supply chain for
all product types and distribution links. sci,u represents the supply charge for the
bill of material for a type of product i, i = 1, N , manufactured by production zone
u, u = 1, P Z . f ct,u and vct,u) represent the fixed and variable charge respectively,
for production technology t, t = 1, PT , and production zone u, u = 1, P Z ; tci,k

and dri,k are the unit transportation charge and duty rate, respectively, for type of
product i, i = 1, N , and distribution link k, k = 1, DL .

The variables are:

Pi,u the number of products of type i, i = 1, N , manufactured by production
zone u, u = 1, P Z ;

Yi,k the number of products of type i, i = 1, N , assigned to distribution link
k, k = 1, DL;

mci,u the unit manufacturing cost for a product of type i, i = 1, N , and pro-
duction zone u, u = 1, P Z ;

dci,k the unit delivery cost for a product of type i, i = 1, N , and distribution
link k, k = 1, P Z .

The problem is

min z =
N∑

i=1

∑
k∈DL

Yi,k .dci,k (14.1)

396 L. Deroussi et al.

under the following constraints:

∑
k∈DL

dk,v.Yi,k = f di,v, ∀i ∈ N , ∀v ∈ SZ (14.2)

∑
i∈N

xci,t .Pi,u ≤ cap_maxt,u, ∀t ∈ PT, ∀u ∈ P Z (14.3)

∑
i∈N

xci,t .Pi,u ≥ cap_mint,u, ∀t ∈ PT, ∀u ∈ P Z (14.4)

∑
k∈DL

ok,u .Yi,k = Pi,u, ∀i ∈ N ,∀u ∈ P Z (14.5)

mci,u =
∑

t∈PT/
xci,t >0

⎛
⎜⎜⎜⎜⎜⎝

f ct,u∑
i ′∈N/

xci ′ ,t >0

Pi ′,u
+ xci,t .vct,u

⎞
⎟⎟⎟⎟⎟⎠

∀i ∈ N ,∀u ∈ P Z (14.6)

dci,k = tci,k + dri,k .

(∑
u∈P Z

ok,u .(sci,u + mci,u)

)
∀i ∈ N , ∀k ∈ DL (14.7)

Pi,u ≥ 0, ∀i ∈ N , ∀u ∈ P Z (14.8)

Yi,k ≥ 0, ∀i ∈ N , ∀k ∈ DL (14.9)

The constraint (14.2) concerns the forecast demand.The constraint (14.5) specifies
that no storage is allowed in either zone; all manufactured goods must be delivered.
The constraints (14.3) and (14.4) concern production technology capacities. The con-
straint (14.6) computes the unit manufacturing cost. The constraint (14.7) computes
the unit delivery cost. The manufactured and delivered quantities are nonnegative
according to the constraints (14.8) and (14.9).

The problem is modeled by linear constraints and a nonlinear objective function.
The nonlinearity is due to the fixed manufacturing costs, economies of scale, and
duty costs. Moreover, this objective function is nonconvex (as was proven by a
counterexample).

To tackle the nonlinearity, the problem was decomposed into two subproblems:
the first one concerns the determination of the quantity to be manufactured in each
production zone, and the second deals with distribution of the quantities determined
to the sales zones. This decomposition comes from the fact that the second model
is a classical transportation problem which can be modeled as a linear model. A
hybrid metaheuristic was proposed (Fig. 14.11), with an iterated local search for the
manufactured quantities (Pi,u) and a linear program for solving the transportation
model. The proposed method can be denoted (ILS � LP).

14 Optimization of Logistics Systems Using Metaheuristic-Based … 397

Fig. 14.11 Hybrid metaheuristic proposed in [44]

14.3.3 Location–Routing Problem

This synchronization problem is one of the oldest and most studied problems. The
location–routing problem combines two NP-hard problems: The facility location
problem (FLP) and the vehicle routing problem (VRP). The aim is to determine
facility locations from among many potential locations, to assign customers to an
open facility, and to solve a vehicle routing problem. The objective is to minimize a
set of costs, i.e., the facility-opening costs, vehicle costs, and travel costs.

Let V = I ∪ J be a set of vertices, where I denotes the set of potential depot
nodes and J the set of customers to be delivered to. A capacity Wi and an operating
cost Oi are associated with each depot i ∈ I . Each customer j ∈ J has a demand d j .
The travel cost for edge (i, j) is denoted by ci, j . K denotes a set of available vehicles
with capacity Q. F is a fixed cost per vehicle used.

The variables are the following:

yi = 1 if depot i ∈ I is opened, 0 otherwise;
fi, j = 1 if depot i ∈ I delivers to customer j ∈ J , 0 otherwise;
xi, j,k = 1 if edge (i, j) ∈ V 2 is traversed by vehicle k ∈ K .

The problem is

min z =
∑
i∈I

Oi yi +
∑
i∈V

∑
j∈V

∑
k∈K

ci, j xi, j,k +
∑
i∈I

∑
j∈J

∑
k∈K

Fxi, j,k (14.10)

under the following constraints:

∑
k∈K

∑
i∈V

xi, j,k = 1, ∀ j ∈ J (14.11)

398 L. Deroussi et al.

∑
j∈J

∑
i∈V

d j xi, j,k ≤ Q, ∀k ∈ K (14.12)

∑
j∈V

xi, j,k −
∑
j∈V

x j,i,k = 0, ∀k ∈ K ,∀i ∈ V (14.13)

∑
i∈I

∑
j∈J

xi, j,k ≤ 1, ∀k ∈ K (14.14)

∑
i∈S

∑
j∈S

xi, j,k ≤ |S| − 1, ∀S ⊂ J,∀k ∈ K (14.15)

∑
u∈J

xi,u,k +
∑

u∈V \ j

xu, j,k ≤ 1 + fi, j , ∀i ∈ I,∀ j ∈ J,∀k ∈ K (14.16)

∑
j∈J

d j fi, j ≤ Wi yi , ∀i ∈ I (14.17)

xi, j,k = {0, 1}, ∀i ∈ V,∀ j ∈ V,∀k ∈ K (14.18)

yi = {0, 1}, ∀i ∈ V (14.19)

fi, j = {0, 1}, ∀i ∈ V,∀ j ∈ V (14.20)

The objective defined in Eq. (14.10) is tominimize a sum of three terms: operating
costs, travel costs, and vehicle costs. The constraint (14.11) guarantees that every
customer belongs to one and only one route and that each customer has only one
predecessor in that route. Capacity constraints are satisfied through the inequalities
(14.12) and (14.17). The constraints (14.13) and (14.14) ensure the continuity of each
route and a return to the depot of origin. The constraint (14.15) is a subtour elimination
constraint. The constraint (14.16) specifies that a customer can be assigned to a depot
only if a route linking them is opened. Finally, the constraints (14.18) to (14.20) state
the Boolean nature of the decision variables.

This model is based on a CPLP (capacitated plant location problem) model and a
VRPmodel. The CPLP is amonoperiod location problem. Once defined, the network
structure cannot change over time. Further work will combine a multiperiod model
with the VRP.

Nagy and Salhi [30] have reviewed the state of the art for the LRP. These authors
indicate that for the specific problems for which exact methods are efficient, most
of the proposed methods are hybrid methods based on decomposition into two sub-
problems, namely the FLP and VRP.

Prins et al. [36] proposed a two-phase iterative method. The principle of this
method is to alternate between a depot location phase and a routing phase, exchanging
information about the most promising edges. In the first phase, the routes and their
customers are aggregated into supercustomers, leading to a facility location problem,
which is then solved by Lagrangian relaxation of the assignment constraints. In
the second phase, the routes obtained from the resulting multidepot vehicle routing
problem are improved using a granular tabu search heuristic. At the end of each
global iteration, information about the edges most often used is recorded to be used
in the next phases. This method can be denoted (LR) � ((TS)↓(LS)).

14 Optimization of Logistics Systems Using Metaheuristic-Based … 399

Boccia et al. [7] tackled a two-echelon LRP. The first echelon was composed
of large-capacity depots, generally far from the customers, and the second eche-
lon contained satellite locations of less capacity. The problem was split into two
monoechelon LRPs, each being split into two subproblems: a capacitated facility
location problem and a multidepot VRP. These authors proposed a tabu search com-
bining an iterative approach for the monoechelon problems and a hierarchical one
for each of the subproblems ((TS)↓(TS)) � ((TS)↓(TS)).

14.3.4 Multiplant Multiproduct Capacitated Lot-Sizing
Problem

Considering a medium-term horizon (from 6 to 18months), lot-sizing problems are
aimed at determining quantities of products to be manufactured, with the objective of
minimizing costs (production, setup, and inventory holding) while satisfying a given
demand for each period. The setup costs are generally an estimate of the productivity
loss due to a changeover in production, whichmay require adjustment of a production
line. Capacity constraints ensure that, for each period, the production capacity is not
exceeded. There are many production sites. The following model includes many
product types in order to consider a bill of materials and calculate net requirements.

We give the mathematical model proposed by Sambasivan and Yahya [40]. The
data are the following.

M denotes the set of production sites, N the set of product types, and T the set of
periods. di, j,t represents the demand for product i and site j in period t . Pj,t is the
production capacity of site j during period t . Mi, j,t , Vi, j,t , and Hi, j,t represent the
production costs, setup costs, and inventory holding costs, respectively, for product
i and site j during period t . r j,k,t is the unitary transportation cost from site j to site
k. ui, j represents the production rate, and si, j the lead time for product i and site j .

The decision variables are:

xi, j,t quantity of product i ∈ I manufactured by site j ∈ M during period t ∈ T ;
Ii, j,t quantity of product i ∈ N holded by site j ∈ M during period t ∈ T ;
wi, j,k,t quantity of product i ∈ N transported from j ∈ M to k ∈ M during period

t ∈ T ;
zi, j,t =1 if there is a production setup for product i ∈ N and site j ∈ M during

period t ∈ T , 0 otherwise.

The problem is

minz =
∑
i∈N

∑
j∈M

∑
t∈T

⎛
⎝Mi, j,t xi, j,t + Vi, j,t zi, j,t + Hi, j,t Ii, j,t +

∑
k∈M\{ j}

r j,k,twi, j,k,t

⎞
⎠

(14.21)

400 L. Deroussi et al.

under the following constraints:

Ii, j,t = Ii, j,t−1 + xi, j,t

−
∑

k∈M\{ j}
wi, j,k,t +

∑
l∈M\{ j}

wi,l, j,t − di, j , ∀i ∈ N ,∀ j ∈ M,∀t ∈ T (14.22)

xi, j,t ≤
⎛
⎝∑

j∈M

∑
b = t T di, j,b

⎞
⎠ zi, j,t , ∀i ∈ N ,∀ j ∈ M,∀t ∈ T (14.23)

∑
i∈N

(
xi, j,t

ui, j
+ si, j zi, j,t

)
≤ Pj,t , ∀ j ∈ M,∀t ∈ T (14.24)

xi, j,t ≥ 0, Ii, j,t ≥ 0, ∀i ∈ N ,∀ j ∈ M,∀t ∈ T (14.25)

wi, j,k,t ≥ 0, ∀i ∈ N ,∀ j ∈ M,∀k ∈ M\{ j} (14.26)

zi, j,t ∈ {0, 1}, ∀i ∈ N ,∀ j ∈ M,∀t ∈ T (14.27)

The objective function encodes the goal of the optimization, which is the mini-
mization of the total cost, i.e., the production, setup, inventory, and transfer costs.
The constraint (14.22) refers to the inventory balance for the quantity of item i during
period t at plant j. The constraint (14.23) ensures that if item i is produced at plant j
in period t then the setup of the plant has to be considered. The constraints (14.24)
ensures that the available capacity is not exceeded. Finally, the constraints (14.25)
to (14.27) impose the nonnegativity of the variables x , I , and w, and ensure that the
variables z are binary.

Nascimento et al. [31] proposed a hybridization of GRASP and Path-relinking
((GRASP) � (PR)). GRASP [12] is a multistart metaheuristic similar to an iterated
local search. GRASP typically consists of iterations made up of successive con-
structions of a greedy randomized solution and subsequent iterative improvements
of it through a local search. Initially, path-relinking has been proposed for use with
tabu search but has been successfully hybridized with genetic algorithms [38] and
GRASP [39]. This technique is a way of exploring trajectories between elite solu-
tions. The fundamental idea behind this method is that good solutions to a problem
should share some characteristics. The hybridization consists in keeping a memory
of the set of elite solutions and building new solutions by connecting elite solutions
to those generated by GRASP.

For this kind of problem, there have been many studies using techniques such as
Lagrangian relaxation (for production capacities and costs) or constraint program-
ming. Metaheuristics have been used less because it is not easy to define neighboring
systems for lot-sizing problem. Increasing or decreasing even slightly the quantity
produced by a site during a period may impact upstream and downstream periods.
An example of a neighboring system was detailed by Lemoine [23]. New types
of hybridization between a metaheuristic and constraint programming seem to be
promising ideas for that kind of problem.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 401

14.3.5 Flexible Manufacturing System

This section presents a study of a logistics system reduced to a single production
site: a flexible manufacturing system (FMS). In a supply chain, an FMS is used to
manufacture products. An FMS is a fully automated system with production cells
(referred to as machines) interconnected by a transportation system. The most com-
monly used transportation systems are automated guided vehicles. FMSs are known
to be expensive and hard to manage, but they are flexible, which means that they
can be adapted to fluctuations in demand. There is a huge literature about FMSs. We
recommend [22] as a first read.

One of the advantage of FMSs is that they include problems similar to those found
in multisite logistics systems. The facility layout problem concerns the layout of
production cells in a workshop so as to minimize the physical flows. Other problems
concern transportation system design, the layout of loading/unloading spots fleet
sizing, offline scheduling (vehicles use a predefined route), and online scheduling
(vehicles determine their route in real time). These problems are generally tackled
separately because of their difficulty.

Deroussi and Gourgand studied vertical synchronization between a layout prob-
lem and a scheduling problem in an FMS [9]. This study was done in a context of
workshop reorganization (tactical level) inwhich production zones and transportation
network were not modified. Only permutations of machines inside production zones
were possible. The problem considered can be modeled as a quadratic assignment
problem.

The problem was modeled as a job-shop scheduling problem. Here, M denotes
the set of machines and L the set of production zones (as the objective is to assign
the machines to the production zones, we clearly have |L| = |M |). O is the set of
tasks, and oi, j ∈ O is the i th task in the j th job. For each job, a fictitious task at the
beginning of the routing corresponds to the input of the job into the workshop. O+ is
the set of all tasks (real and fictitious). The machine type required by task oi, j ∈ O
is denoted μi, j , and τm,μi, j ∈ {0, 1} is a compatibility matrix for the machines and
machine types. Finally, tl1,l2 is the matrix of transport times between zones l1 and l2.

The decision variables are:

xm,l = 1 if machine m ∈ M is assigned to zone l ∈ L , 0 otherwise;
yoi, j ,l = 1 if operation oi, j ∈ O+ is assigned to zone l ∈ L , 0 otherwise.

The problem is

min z =
∑

oi, j ∈O

∑
l1∈L

∑
l2∈L

tl1,l2 yo j,i−1,l1 yoi, j ,l2 (14.28)

under the following constraints:

402 L. Deroussi et al.

∑
m∈M

xl,m = 1, ∀l ∈ L (14.29)

∑
l∈L

xl,m = 1, ∀m ∈ M (14.30)

∑
l∈L

yo ji ,l = 1, ∀oi, j ∈ O+ (14.31)

yoi, j ,l ≤
∑
m∈M

τm,μi, j xm,l ∀oi, j ∈ O+,∀l ∈ L (14.32)

xm,l ∈ {0, 1}, ∀m ∈ M,∀l ∈ L (14.33)

yoi, j ,l ∈ {0, 1}, ∀oi, j ∈ O+,∀l ∈ L (14.34)

The objective function minimizes the sum of transportation times (14.28). The
constraints (14.29) and (14.30) ensure a bijection between the set ofmachines and the
set of zones. The constraint (14.31) assigns a production zone to each task, whereas
the constraint (14.32) guarantees that each task is assigned to a compatible machine.

This model does not allow loaded-vehicle transports to be taken into account. Yet
[3, 4] underlined that empty-vehicle transports are as expensive as loaded-vehicle
transports and it is important to consider them. One difficulty is that empty-vehicle
transports are dependent on the transport sequence and are difficult to estimate except
in specific cases. Deroussi and Gourgand [9] therefore proposed a hybrid meta-
heuristic taking transportation times into account. The first step consists in solving
exactly the quadratic assignment problempresented above. The second step takes into
account empty transportation times by using an approach similar to GRASP. Solu-
tions are built using an ant colony optimization paradigm. The assignment obtained
during the first step allows one to define probabilities to build new assignments. New
assignments are evaluated by solving a job-shop problem with transport (with a joint
schedule of production means and transport). The technique used was an iterated
local search combined with a discrete event simulation model. The results show that
even for small size instances (five production zones) the assignment obtained in the
first step can be improved by more than 50%. The proposed method can be denoted
((ILP) → ((ACO)↓(ILS � simul))).

14.4 Conclusion

Logistics systems in general and supply chains in particular are complex systems
composed of many actors, each of them with its own concerns, but they must collab-
orate if one is to have a system as efficient as possible. In this chapter, we have shown
the complexity that becomes apparent in the study of such systems, and suggested
ways in which these issues can be resolved. In doing so, we have given reasons why
metaheuristics are of interest to researchers. Indeed, these optimizationmethods offer
tools to answer many specific features of logistics systems.

14 Optimization of Logistics Systems Using Metaheuristic-Based … 403

We have also explained how horizontal and vertical synchronization are relevant.
For these kinds of problem, hybridization techniques are often obvious solutions.We
have introduced the notions of sequential linking, iterative linking, and hierarchical
linking for combining a metaheuristic with another optimization method or a per-
formance evaluation model. Although the importance of synchronization in logistics
system has been recognized for a long time by many researchers, the research field is
wide open. Following the emergence of problems in fields such as inverse logistics,
green logistics, and risk management, logistics systems now include new activities,
new management rules, and new performance indicators, thereby enhancing further
studies.

Let us hope that scientific research will remain very active in this domain during
the coming years.

References

1. Abo-Hamad, W., Arisha, A.: Simulation–optimisation methods in supply chain applications:
A review. Irish Journal of Management 1, 95–124 (2010)

2. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation optimization.
In: Proceedings of the 2003 Winter, Simulation Conference, vol. 1, pp. 71–78 (2003)

3. Asef-Vaziri, A., Laporte, G., Ortiz, R.: Exact and heuristic procedures for the material handling
circular flow path design problem. European Journal of Operational Research 176, 707–726
(2007)

4. Asef-Vaziri, A., Hall, N.G., George, R.: The significance of deterministic empty vehicle trips in
the design of a unidirectional loop flow path. Computers&Operations Research 35, 1546–1561
(2008)

5. Beck, J.C., Feng, T.K., Watson, J.P.: Combining constraint programming and local search for
job-shop scheduling. INFORMS Journal on Computing 23(1), 1–14 (2011)

6. Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial optimiza-
tion: a survey. Applied Soft Computing 11, 4135–4151 (2011)

7. Boccia, M., Crainic, T.G., Sforza, A., Sterle, C.: A metaheuristic for a two echelon location-
routing problem. In: P. Festa, Experimental Algorithms. Lecture Notes in Computer Science,
vol. 6049, pp. 288–301. Springer, Berlin, Heidelberg (2010)

8. De Backer, B., Furnon, V., Shaw, P., Kilby, P., Prosser, P.: Solving vehicle routing problems
using constraint programming and metaheuristics. Journal of Heuristics 6(4), 501–523 (2000)

9. Deroussi, L., Gourgand, M.: A scheduling approach for the design of flexible manufacturing
systems. In P. Siarry (ed.) Heuristics: Theory and Applications, pp. 161–222. Nova (2013)

10. Desai, R., Patil, R.: Salo: Combining simulated annealing and local optimization for efficient
global optimization. In: Proceedings of the 9th Florida AI Research Symposium (FLAIRS-’96),
pp. 233–237 (1996)

11. Dumitrescu, I., Stützle, T.: Combinations of local search and exact algorithms. In: EvoWork-
shops, pp. 211–223 (2003)

12. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters 8, 67–71 (1989)

13. Fernandes, S., Lourenço, H.: Hybrids combining local search heuristics with exact algorithms.
In:V Congreso Espanol sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, pp.
269–274 (2007)

14. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. International
Series in Operations Research and Management Science 57, 369–404 (2003)

15. Forrester, J.: Industrial Dynamics. Technical report, MIT Press, Cambridge, MA (1961)

404 L. Deroussi et al.

16. Fu, M.C.: Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing
14(3), 192–215 (2002)

17. Ganeshan, R., Harrison, T.: An Introduction to Supply Chain Management. Technical report,
Penn State University, Department of Management Science and Information System Opera-
tions. Prentice Hall (1995)

18. Griffis, S., Bell, J., Closs, D.:Metaheuristics in logistics and supply chainmanagement. Journal
of Business Logistics 33, 90–106 (2012)

19. Jourdan, L., Basseur, M., Talbi, E.G.: Hybridizing exact methods and metaheuristics: A tax-
onomy. European Journal of Operational Research 199(3), 620–629 (2009)

20. Kouvelis, P., Chambers, C., Wang, H.: Supply chain management research and production
and operations management: Review, trends, and opportunities. Production and Operations
Management 15(3), 449–469 (2006)

21. Krmac, E.V.: Intelligent value chain networks: Business intelligence and other ICT tools and
technologies. In: S. Renko (ed.) Supply Chain Management: New Perspectives. InTech (2011)

22. Le-Anh, T.: Intelligent control of vehicle-based internal transport systems. Ph.D. thesis, Eras-
mus University, Rotterdam, The Netherlands (2005)

23. Lemoine, D.: Modèles génériques et méthodes de résolution pour la planification tactique
mono-site et multi-site. Ph.D. thesis, Blaise Pascal University, France (2008)

24. Lourenço, H.: Supply chain management: An opportunity for metaheuristics. Technical report,
Pompeu Fabra University, Barcelona (2001)

25. Martin, O., Otto, S.: Combining simulated annealing with local search heuristics. Annals of
Operations Research 63, 57–75 (1996)

26. Mele, F.D., Espuna, A., Puigjaner, L.: Supply chain management through a combined
simulation–optimisation approach. Computer Aided Chemical Engineering 20, 1405–1410
(2005)

27. Merz, P., Friesleben, B.: Genetic local search for the TSP: New results. In: Proceedings of the
1997 IEEE International Conference on Evolutionary Computation, Indianapolis, pp. 159–164.
IEEE Press (1997)

28. Meyr, H., Wagner, M., Rohde, J.: Structure of advanced planning systems. In: H. Stadtler, C.
Kilger (eds.) Supply Chain Management and Advanced Planning - Concepts, Models, Software
and Case Studies. Springer, Berlin (2002)

29. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms. In: Caltech Concurrent Computation Program, C3P Report, vol. 826
(1989)

30. Nagy, G., Salhi, S.: Location-routing: Issues, models and methods. European Journal of Oper-
ational Research 177, 649–672 (2007)

31. Nascimento, M.C., Resende, M.G., Toledo, F.: GRASP heuristic with path-relinking for the
multi-plant capacitated lot sizing problem. European Journal of Operational Research 200(3),
747–754 (2010)

32. Nikolopoulou, A., Ierapetritou, M.G.: Hybrid simulation based optimization approach for sup-
ply chain management. Computers & Chemical Engineering (2012)

33. Norre, S.: Heuristique et métaheuristiques pour la résolution de problèmes d’optimisation
combinatoire dans les systèmes de production. Ph.D. thesis, Blaise Pascal University, France
(2005)

34. Oliver, R., Webber, M.D.: Supply-chain management: Logistics catches up with strategy. Out-
look 5, 42–47 (1982)

35. Orlicki, J.: Material Requirements Planning. McGraw-Hill, London (1975)
36. Prins, C., Prodhon, C., Ruiz, A., Soriano, P., Calvo, R.W.: Solving the capacitated location-

routing problem by a cooperative Lagrangean relaxation-granular tabu search heuristic. Trans-
portation Science 41(4), 470–483 (2007)

37. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial
optimization: A survey and classification. In: J. Mira, J.R. Álvarez (eds.) Artificial Intelligence
and Knowledge Engineering Applications: A Bioinspired. Lecture Notes in Computer Science,
vol. 3562, pp. 41–53. Springer, Berlin, Heidelberg (2005)

14 Optimization of Logistics Systems Using Metaheuristic-Based … 405

38. Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking, and the flowshop sequencing
problem. Evolutionary Computation 6(1), 45–60 (1998)

39. Resende, M., Ribeiro, C.: GRASP with path-relinking: Recent advances and applications. In:
T. Ibaraki, K. Nonobe, M. Yagiura (eds.) Metaheuristics: Progress as Real Problem Solvers.
Operations Research/Computer Science Interfaces Series, pp. 29–63. Springer (2005)

40. Sambasivan, M., Yahya, S.: A Lagrangean-based heuristic for multi-plant, multi-item, multi-
period capacitated lot-sizing problems with inter-plant transfers. Computers & Operations
Research 32(3), 537–555 (2005)

41. Schmidt, G., Wilhelm, W.: Strategic, tactical and operational decisions in multi-national logis-
tics networks: A review and discussion of modeling issues. International Journal of Production
Research 38(7), 1501–1523 (2000)

42. Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E.: Designing and Managing the Supply Chain;
Concepts, Strategies and Case Studies. Irwin/McGraw-Hill (2000)

43. Snyder, S.: Facility location under uncertainty: A review. IIE Transactions 38(7), 537–554
(2006)

44. Suon, M., Grangeon, N., Norre, S., Gourguechon, O.: A hybrid metaheuristic for a strategic
supply chain planning problem with procurement–production–distribution activities and econ-
omy of scale. In: 3rd International Conference on Information Systems, Logistics and Supply
Chain: Creating Value Through Green Supply Chains ILS 2010, Casablanca, Morocco, April
14–16 2010 (2010)

45. Talbi, E.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8, 541–564 (2002)
46. Thomas, A., Lamouri, S.: Flux poussés: MRP et DRP. Techniques de l’ingénieur

AGL1(AG5110), 1–12 (2000)
47. Van Hentenryck, M., Michel, L.: Constraint-Based Local Search. MIT Press (2009)
48. Wight, O.: Manufacturing Resource Planing: MRP II. Oliver Wight (1984)
49. Wolf, J.: The Nature of Supply Chain Management Research. Springer Science (2008)

Chapter 15
Metaheuristics for Vehicle Routing Problems

Caroline Prodhon and Christian Prins

15.1 Introduction

The basic problem of vehicle routing is a classical operations research problem,
known to be NP-hard [64] and called the vehicle routing problem (VRP) or capaci-
tated VRP (CVRP). It consists in determining a least-cost set of routes from a depot
for a fleet of capacitated vehicles in order to meet the demands of a set of customers.
Figure15.1 depicts a typical example of a solution to this problem.

The theoretical research on the applications related to the CVRP and its variants
make them one of the most studied classes of combinatorial optimization problems.
Dantzig and Ramser [26] introduced the CVRP in 1959 under the name of the truck
dispatching problem, to model a real problem of distribution of gasoline to service
stations. Since this seminal work, the body of models and solution methods related
to the CVRP and its extensions has experienced strong growth. For instance, in 2009
Eksioglu et al. [31] established a typology based on more than one thousand articles.
Today, a search on Google Scholar with the keywords “vehicle routing problem”
returns more than 13,000 references. Industrial applications have not been neglected:
a survey of commercial VRP software [92] revealed 22 products, widely spread
across various industries. An article by Laporte [60] summarized the impressive
achievements of fifty years of research.

Despite this abundant activity, the current exact methods have been limited to
problems with 100 customers [4]. They recently reached 200 customers [93], but
real cases can involve up to 1,000 clients. Metaheuristics are the methods of choice

C. Prodhon (B) · C. Prins
ICD-LOSI, UMR CNRS 6281, Université de Technologie de Troyes,
12 Rue Marie Curie, CS 42060, 10004 Troyes Cedex, France
e-mail: caroline.prodhon@utt.fr

C. Prins
e-mail: christian.prins@utt.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_15

407

408 C. Prodhon and C. Prins

Fig. 15.1 A typical CVRP
solution Depot

Clients
Routes

for dealing with realistic cases, and it can even be said that vehicle routing problems
constitute a successful application area for this class of algorithms.

This chapter defines, in Sect. 15.2, the basic vehicle routing problem and recalls
its main variants. Section15.3 presents some constructive heuristics and stresses the
importance of some concepts of local search that are widely used in routing prob-
lems. Section15.4 describes representative applications of the main metaheuristics
to vehicle routing. Section15.5 details an approach based on splitting giant tours,
which results in efficient algorithms for various routing problems. An example of
an application of this technique is given in Sect. 15.6. Finally, Sect. 15.7 closes the
chapter.

15.2 Vehicle Routing Problems

15.2.1 Basic Version

The basic CVRP is defined in general, on a complete undirected graph G = (V, E).
The set of nodes V is composed of a depot (node 0), where a fleet of identical vehicles
of capacityQ is based, and n customerswith requests qi for a product, i = 1, 2, . . . , n.
Each edge [i, j] in the set E represents an optimal path between nodes i and j in the
real road network. Its cost cij, often a distance or travel time, is precomputed. The aim
is to determine a set of routes of minimum total cost visiting every customer exactly
once. A route is a cycle starting and ending at the depot, performed by one vehicle,
and whose total load does not exceed Q. Depending on the authors, the number of
vehicles can be fixed or free, a service time si is sometimes defined for each client,
and the routes can be limited by a maximum distance or travel time L.

The CVRP is NP-hard because the single-route case (when the total demand fits
one vehicle, i.e.,

∑n
i=1 qi ≤ Q) is the traveling salesman problem (TSP), which is

known to be NP-hard in the strong sense. In fact, it is particularly hard because it
combines a bin packing problem (the assignment of customers to vehicles) and a
sequencing problem (the TSP) for each vehicle. Several classical formulations as
integer linear programs are available [43, 130]. The challenge in these models is to
avoid the formation of subtours, i.e., cycles which do not include the depot.

15 Metaheuristics for Vehicle Routing Problems 409

The following model is probably the simplest one. The depot becomes two nodes
0 and n + 1, used to begin and end each route, and each edge [i, j] is replaced by
two opposite arcs (i, j) and (j, i). The binary variable xk

ij is equal to 1 if arc (i, j) is
traversed by vehicle k:

min
∑

k

∑
(i,j)

cij · xk
ij (15.1)

∑
j �=i

∑
k

xk
ij = 1 ∀i �= 0, n + 1 (15.2)

∑
j �=i

xk
ji =

∑
j �=i

xk
ij ∀i �= 0, n + 1 ∀k (15.3)

∑
i �=0,n+1

∑
j �=i

qi · xk
ij ≤ Q ∀k (15.4)

tk
i + si + cij ≤ tk

j + M(1 − xk
ij) ∀i (15.5)

xk
ij ∈ {0, 1} ∀(i, j) ∀k (15.6)

tk
i ≥ 0 ∀i ∀k (15.7)

The objective function (15.1), to be minimized, is the total cost of the routes.
The constraint (15.2) guarantees that each customer is served, while the constraint
(15.3) ensures route continuity: the same vehicle arrives at a customer and leaves it.
Vehicle capacity is respected through the constraint (15.4). The variable tk

i denotes
the start of service of vehicle k at customer i. In Eq. (15.5), this variable serves to
prevent subtours: if vehicle k traverses arc (i, j) (xk

ij = 1), the term containing the
large positive constant M is zero and the constraint means that the start of service at
j can occur only once i has been served and the vehicle has moved from i to j. If arc
(i, j) is not used by the vehicle, the constraint holds trivially.

The CVRP belongs to the family of node routing problems, in which tasks are
associated with nodes of a network. There exist also arc routing problems, in which
tasks must be performed on arcs or edges, such as in municipal refuse collection,
where garbagemust be picked up in every street. The problemequivalent to theCVRP
in arc routing is called the CARP (capacitated arc routing problem): its definition is
similar, except that a demand qij is now defined for each network edge, for example
an amount of waste to be collected. Recent surveys of arc routing problems can be
found in [21, 61].

15.2.2 Variants of the Classical Vehicle Routing Problem

Although the CVRP still attracts researchers [53, 76, 86], many variants are now
being investigated. First, additional attributes or constraints may affect customers:

410 C. Prodhon and C. Prins

• The vehicle routing problem with time windows (VRPTW), in which customers
can only be served within a given time interval [ei, li], [38, 50, 63, 131, 136].

• In pickup and delivery problems (PDPs), the goal is to execute a set of requests
for transportation (i+, i−) from a pickup node i+ to a delivery node i−, in contrast
to the CVRP where all goods are distributed from the depot [27, 42, 109, 116,
140, 141]. The dial-a-ride problem (DARP) denotes a PDP dedicated to passenger
transportation, with time windows and service quality criteria, as in on-demand
transportation systems [91, 118].

• The team orienteering problem (TOP) is inspired by routing problems for repair
technicians, where serving a customer induces a profit. The aim is to determine a
set of trips that maximizes the total profit collected, subject to a given time limit
which hinders serving all customers [58, 70, 71].

• In problems with split deliveries (the split-delivery VRP, SDVRP), each customer
can be visited several times to receive its request, which can lead to solutions using
fewer vehicles [8].

Complications related to vehicles are very common in practice, as shown by the
three following examples:

• The heterogeneous fleet VRP (HFVRP) considers several vehicle types, each type
being defined by the number of vehicles available, a fixed utilization cost, and a
cost per distance or time unit [14, 29, 85, 122].

• Truck and trailer routing problems (TTRPs) involve complex routes, where each
truck can temporarily drop its trailer at a customer to reach other customers that
cannot be accessed with a complete vehicle [72, 137].

• Problems involving vehicles with compartments, for example refrigerated or at
room temperature (the multicompartment VRP, MC-VRP) [32].

Among other extensions, we have to mention some related to the type of network
considered, the structure of the routes, the planning horizon, and the optimization
criteria:

• The routes can originate from different depots in themultidepot VRP (MDVRP) [2,
56]. In the two-echelon VRP (VRP-2E), primary routes deliver to satellite depots
from amain depot, and then secondary routes serve customers from these satellites
[47, 52].

• In theopen VRP (OVRP),met in some car rental contracts, vehicles are not required
to return to the depot after having completed their service [68, 73].

• Periodic vehicle routing problems (PVRPs) are defined on a multiperiod horizon
in which each customer must be visited according to a given frequency, as in waste
collection [15, 139].

• In the cumulative CVRP (CCVRP), which arises in disaster logistics, the cost of a
route is the sum of arrival times at visited nodes, which corresponds to the average
rescue time after division by the number of stops. Computing the cost variations
when a solution is modified is not trivial [87].

15 Metaheuristics for Vehicle Routing Problems 411

Finally, one can combine strategic, tactical, or operational decisions, and even
merge a routing problemwith another optimization problem. For instance, the routes
must replenish customer stocks in the inventory routing problem (IRP) [74, 96]. The
integrated production–distribution problem (IPDP) adds one production site to an
IRP, which requires synchronization between a production planning problem and
a VRP [13]. In the location-routing problem (LRP), the depots must be selected
from among potential sites and the routes designed from open depots [20, 88, 103,
127]. Building routes while determining a feasible loading induces difficult problems
(VRP with two/three-dimensional loading constraints—2L-VRP and 3L-VRP) [12,
30, 65, 66, 114].

We can go even further, by combining the above problems. For example, the
periodic location-routing problem generalizes the LRP to a multiperiod planning
horizon [1, 107]. This aggregation results in increasingly general problems, called
rich vehicle routing problems [45]. In 2007, Hasle and Kloster [46] presented several
rich vehicle routing problems emerging in industrial applications.

In summary, a large family of problems with a common structure exists beyond
the CVRP. The challenges faced by metaheuristics are to produce results of good
quality in an acceptable computation time, but these metaheuristics must also be easy
to code and maintain, have few parameters, and be easily adaptable to the diversity
of constraints encountered in real applications [25, 134].

15.3 Basic Heuristics and Local Search Procedures

The basic heuristics and local search procedures are important components of meta-
heuristics for vehicle routing problems that deserve a specific section. Then, basic
heuristics are required to provide initial solutions quickly, while the local search
procedures bring intensification.

15.3.1 Basic Heuristics

Basic heuristics are still widely used in commercial VRP software to quickly find
feasible solutions of good quality. A review can be found in the paper by Laporte
and Semet [62], who distinguish between constructive and two-phase methods.

The simplest constructive heuristic is the one called the nearest-neighbor heuris-
tic: starting from the depot, a route is progressively extended by visiting the nearest
unrouted customer, from among those compatible with the residual capacity of the
vehicle. When no more customers can be added, the vehicle comes back to the depot
and a new route is initialized. Other constructive methods such as the Clarke and
Wright algorithm [19] rely on route mergers. In the initial solution, each customer
is visited by one dedicated route. Then, the heuristic evaluates the possible mergers
(concatenations) of two routes and executes the one with the largest saving. Insertion

412 C. Prodhon and C. Prins

heuristics, such as the method proposed byMole and Jameson [82], are also popular;
these build a solution using successive insertions of customers, guided by weighted
insertion costs.

The idea of the two-phase methods is to reduce the problem to a TSP. Cluster-
first, route-second methods begin by creating groups of customers (clusters) whose
total demand fits the vehicle capacity, and then solve a TSP for each cluster. Gillett
and Miller’s heuristic [41] is a good example, where clusters are defined as angular
sectors centered on the depot. Fisher and Jaikumar’smethod [35] solves a generalized
assignment problem in the clustering phase. The petal heuristic [5] builds a large
number of routes and then solves a set partitioning problem to extract a subset of
routes visiting each customer exactly once.

Conversely, route-first, cluster-second heuristics [7, 101] relax the vehicle capac-
ity constraints to solve a TSP. The route obtained, covering all customers, is often
called a giant tour. This is transformed into a VRP solution by a splitting procedure
that cuts the giant tour into capacity-feasible routes.

15.3.2 Local Search

15.3.2.1 Classical Moves

An improvement procedure, or local search, starts from one initial solution s (often
obtained by a constructive heuristic) and considers a subset N(s) of solutions close to
s in terms of structure, called the neighborhood of s. This neighborhood is inspected
to find a better solution, s′. The strategy can be to look for the best improvement
or to stop searching the neighborhood at the first improvement. Once s′ has been
detected, it becomes the incumbent solution and the process is repeated. In this way,
the input solution is progressively improved until a local optimum is reached for the
neighborhood considered.

In practice, N(s) is implicitly defined by a transformation s → s′ called a move,
instead of being generated in extenso. The simplest moves have been defined for the
TSP, and they can be applied to each route in the CVRP. For instance, one customer
can be removed and then reinserted at a different position (node relocation), or the
positions of two customers can be swapped (node exchange). The neighborhoods
defined by these two moves can be browsed in O(n2). The k-opt moves [69], which
are more efficient, remove k edges from a route and reconnect the subsequences
obtained with k other edges. Since all possible moves are tested in O(nk) for n
customers, the 2-opt and 3-opt moves are often used to keep the complexity low.

Or [89] proposed the Or-opt move, which relocates a string of 1 to λ consecu-
tive customers, while Osman [90] introduced the λ-interchange, which exchanges
two strings that have at most λ customers each (the two strings may have differ-
ent lengths). As these two neighborhoods can be searched in O(λn2) and O(λ2n2),
respectively, λ = 3 is often selected to limit running times. λ-interchanges are partic-
ularly interesting: if one of the strings can be empty and if each string can be reversed

15 Metaheuristics for Vehicle Routing Problems 413

during the reinsertion, these moves include node relocations, node exchanges, and
2-opt and Or-opt moves as particular cases.

Figure15.2 depicts the 2-opt and λ-interchange moves. The key point is that one
is able to evaluate the cost variation in constant time for each move. Thus, the 2-opt
move on one route replaces arcs (u, x) and (v, y) by (u, v) and (x, y), inducing a cost
variation � = cuv + cxy − cux − cvy, which is computable in O(1).

15.3.2.2 Feasibility Tests

All the moves described above can be generalized to two routes, but it becomes more
difficult to evaluate their feasibility or cost variation in O(1). For instance, consider
the 2-opt move applied to two routes T1 and T2 in Fig. 15.2. In this version, called
2-opt*, arcs (u, x) and (v, y) are replaced by (u, y) and (v, x) (there exists also a
variant where the arcs are replaced by (u, v) and (x, y)). The neighborhood sizes are
in O(n2) for the two versions. Let C(T , i, j) and W (T , i, j) be the cost and the load,
respectively, for a route T between two nodes i and j (inclusive), and let C(T) and
W (T) be the total cost and the total load for the route. After the move, the capacity
constraints must still be satisfied for each route:

W (T1, 0, u) + W (T2) − W (T2, 0, v) ≤ Q (15.8)

W (T2, 0, v) + W (T1) − W (T1, 0, u) ≤ Q (15.9)

u

v

y

x

depot

u x y v

ba f g

u x y v

ba f g

2-opt move on one route

Osman’s λ -interchange move

u

v

y

x

depot

u

v

y

x

depot

T1

T2a
b f

g

u

v

y

x

depot

a
b f

g

2-opt* move on two routes

Fig. 15.2 Examples of 2-opt and λ-interchange moves

414 C. Prodhon and C. Prins

If an additional constraint on the maximum length L of a route must be satisfied
(the driver’s maximum working time, for example), it is also necessary to check the
conditions

C(T1, 0, u) + cuy + C(T2) − C(T2, 0, y) ≤ L (15.10)

C(T2, 0, v) + cvx + C(T1) − C(T1, 0, x) ≤ L (15.11)

If W and C are calculated for each move by browsing the routes using O(n)

loops, the whole neighborhood is searched in O(n3) instead of O(n2). A way to
perform feasibility tests in O(1) is to precalculate interesting values. For the 2-opt*
move, each route T in the input solution can be scanned to calculate W (T , 0, u) and
C(T , 0, u) for each node u. After these precomputations, which cost O(n) in total,
the neighborhood can be searched in O(n2), since each feasibility test can now be
done in O(1). If an improving move is found and applied to the incumbent solution,
W and C need to be updated only for the two modified routes, which can be done in
O(n).

Time windows constitute another frequent complication factor. For instance, in
the VRP with time windows (VRPTW), inserting a customer into a route delays
subsequent visits, which may violate the time windows. Once again, it is possible
to check feasibility with a loop in O(n), but can we reach O(1)? Kindervater and
Savelsbergh [55] proposed to precompute the maximum delay (push forward) that
is allowed at each node without violating any time windows.

To understand how this is done, consider a route T = (T1, T2, . . . , Tr). If [ek, lk]
denotes the time window for the start of service at customer Tk , tk the arrival time at
this customer, and sk its service time, the customer must be serviced before the end of
its time window (tk + sk ≤ lk), but it is possible to arrive before the beginning of the
window (tk < ek) andwait.Hence, themaximumdelay for the last customerTr isSr =
lr − sr − tr , and, for k = r − 1, r − 2, . . . , 1, we have Sk = min(Sk+1, lk − sk − tk).
The delays for thewhole set of customers can be computed inO(n) at the beginning of
the local search,which allows feasibility tests inO(1) for variousmoves. For instance,
inserting one customer i between nodes Tk−1 and Tk delays the start of service at Tk

by θ = CTk−1,Ti + si + CTi,Tk − CTk−1,Tk , which is allowed only if θ ≤ Sk . The upper
part of Fig. 15.3 gives an example with three customers: we obtain S1 = 2 for the
first customer.

15.3.2.3 General Approach of Vidal et al.

Vidal et al. [135] have proposed an even more general approach to handling precom-
putations for what they call timing problems: given a set of tasks, a set of constraints
to be satisfied, and an optimization criterion, how does one determine the optimal
starting times and how does one reoptimize them quickly when the sequence is mod-
ified? These problems are widespread in scheduling and vehicle routing problems.
Vidal et al. noticed that all these moves can be expressed as concatenations of task

15 Metaheuristics for Vehicle Routing Problems 415

Time

Client T1

S1 = min(4,2) = 2
Client T2

S2 = min(2,5) = 2
Client T3

S3 = min(7,5) = 5
client T4

S4 = 5

100 10780 8860 7050 59

Waiting time

t 1 = 52 t 2 = 66 t 3 = 78 t 4 = 94

0

3

52 10

2

11 11

Depot Depot

3 1

12

time

depot

0

10

site T1

10

5

site T2

18

7

site T3

27

depot

9

39

Example of trip to visit 3 sites affected by a disaster in the cumulative VRP (CCVRP):
The cost of the trip is the sum of arrival times at the sites 10 + 18 + 27 = 55 (average rescue time 55/3)

3 2 3

Example of trip with 4 clients in the VRP with time windows (VRPTW):
calculation of possible delay Sk to arrive at client k without violating time windows afterwards

90

Fig. 15.3 Complications in the VRPTW and CCVRP (see text)

sequences. For each criterion Z used during the local search, they proposed to pre-
calculate Z(σ) for any sequence of nodes σ contained in the routes of the incumbent
solution, using two main operators:

• an initialization operator that evaluates Z(σ) if σ contains a single node;
• an operator that computes Z when two sequences σ and τ are concatenated
(σ ⊕ τ).

In practice, a matrix Z is prepared, in which Zij gives the value associated with the
sequence delimited by nodes i and j (inclusive), if that sequence exists in a route. A
route is coded by a list of nodes, beginning and finishing at the depot. Each node i is
examined and, for each given i, each node j located after i. The initialization operator
allows one to evaluate Zii, and then the second operator is called to provide the value
of Zij for each node j, until the end of the route. In most cases, the two operators can
be implemented in O(1), so the matrix Z can be precalculated in O(n2).

This approachwill now be illustrated by two examples, the CVRP and theCCVRP
already introduced in Sect. 15.2.2. The length (number of nodes) of a sequence σ is
denoted |σ |, σi is the node at the ith position, and σi,j represents the subsequence
from nodes σi to σj (inclusive).

In the simple case of the CVRP, the total demand Q(σ) and the duration D(σ)

for each sequence σ within the routes is evaluated. If σ contains a single node i, the
initialization operator sets Q(σ) = qi and D(σ) = 0. For two sequences σ and τ , the
concatenation operator defines Q(σ ⊕ τ) = Q(σ) + Q(τ) and D(σ ⊕ τ) = D(σ) +
c(σ|σ |, τ1) + D(τ). Using this information, it becomes easy to check the capacity and
maximum-duration constraints for any move. For example, if a string of customers

416 C. Prodhon and C. Prins

τ is inserted after σi in a route σ , the new route sequence is σ1,i ⊕ τ ⊕ σi+1,|σ | and
its load and duration can be derived in O(1) from the precomputed values.

Now, consider the CCVRP as a more complicated example. The cost of a route is
the sum of the arrival times at the customers, as depicted in the lower part of Fig. 15.3,
and the cost of the return to the depot is ignored. Silva et al. [120] have shown that
in the single-route case, called the cumulative TSP or minimum latency problem, the
ad hoc quantities to be precalculated are:

• D(σ), the total duration of visiting the nodes of σ , starting from σ1;
• C(σ), the cost (sum of arrival times) assuming a departure at time 0;
• W (σ), the extra cost if the departure is delayed by one unit of time.

From these quantities, the total duration and the cost of any sequence generated
during a move of the local search can be deduced:

• if |σ | = 1, then D(σ) = C(σ) = 0, and W (σ) = 1 for a customer and 0 for the
depot;

• D(σ ⊕ τ) = D(σ) + c(σ|σ |, τ1) + D(τ);
• C(σ ⊕ τ) = C(σ) + W (τ) × [D(σ) + c(σ|σ |, τ1)] + C(τ)

• W (σ ⊕ τ) = W (σ) + W (τ).

15.3.2.4 Very Constrained Problems

Very constrained problems, with tight time windows for instance, raise difficulties:
the initial heuristics can fail to find a feasible solution and the local search may
waste time on testing unfeasible moves. In the first case, a randomized constructive
heuristic can be called several times until a feasible solution is returned. The second
case can be improved by choosing ad hoc moves. For instance, a 2-opt move in one
route reverses a subsequence of customers and has a high probability of violating
time windows, in contrast to node relocation or exchange moves.

Another trick [24] consists in relaxing complicating constraints and adding a
penalization for their violation to the objective function. By doing so, new paths
between feasible solutions are created in the solution space, but searching this
extended space may require more time.

Consider for instance a VRPTW solution S with p routes T1, T2, . . . , Tp, a vehicle
of capacity Q, a time window [ei, li] and a service time si for each customer i. The
arrival time at customer i is ti, and the load of route Tk is Wk . A possible penalized
objective function adds the violations of vehicle capacity and time windows to the
true solution cost C(S) (the total cost of traversed arcs) as follows:

CP(S) = C(S) +
n∑

i=1

α · max(0, ti + si − li)
2 +

p∑
k=1

β · max(0, Wk − Q)2 (15.12)

The value of using squared expressions is that they accept small violations more
easily than large ones; the coefficients α and β are used to change the relative weights

15 Metaheuristics for Vehicle Routing Problems 417

of the two types of violation. At the end of the local search, a solution with CP(S) =
C(S)will be fully feasible. In fact, a solution may be acceptable even if there are still
small violations. For instance, in waste collection, trucks have a compactor and the
vehicle capacity can be slightly exceeded, while in distribution, many customers will
tolerate small delays (soft time windows) when they are not too frequent. However,
to be fair, local search, even with penalization, is not well suited to very constrained
problems: constraint programming is certainly more effective.

15.3.2.5 Acceleration Techniques

For large-scale problems, even a neighborhood search in O(n2) can take too much
time. Several techniques exist to reduce the computational time.A simple one consists
in evaluating a restricted number K of randomly selected moves. This number can
be fixed or proportional to the neighborhood size; for instance, K = √|N(s)|.

Lists of neighbors are also frequently used. For a given node i, its list of neighbors
LN(i) contains the n − 1 nodes j �= i, sorted in increasing order of the costs cij. The
lists of neighbors for all nodes can be precomputed in O(n2 log n) at the beginning
of the local search. A threshold θ is selected, for instance n/10 or

√
n, and then the

only moves evaluated for each node i are the ones which add one arc (i, j) such that
j belongs to the first θ nodes of LN(i).

To illustrate the concept, consider a 2-opt move in one of the routes shown in
Fig. 15.2, which adds an arc (u, x). In a fast implementation, a main loop inspects
each node u while an inner loop tests each node x from among the first θ nodes of
LN(u). The choice of these two nodes is enough to define the move, since v and y
are the successors of u and x, respectively, in the route.

The idea behind the restricted list of neighbors is that the presence of expensive
arcs is unlikely in good solutions.Nevertheless, counterexamples can easily be found.
Therefore, it is prudent to vary θ dynamically and even to try θ = n − 1 from time
to time, to browse the neighborhood completely.

Vertex marking was introduced under the name of don’t look bits by Bentley in 2-
opt moves for the TSP [9]. The principle is as follows: If none of the moves involving
one given node is able to improve the incumbent solution, this node can be ignored in
the subsequent iterations. Each node can bemarked or unmarked. At the beginning of
the search, they are all marked and are stored in an active list L. Then, each marked
node x is inspected in the order of the list, to evaluate all moves involving edges
incident to x. If these moves are unfruitful, x is unmarked and removed from L.
Otherwise, all nodes concerned in the move (the extremities of inserted and removed
edges) are marked and appended to L, unless they are already in the list. The local
search ends when the list is empty. Compared with a traditional local search, which
scans the whole neighborhood in each iteration, this version is faster since L contains
only the nodes involved in recent successful moves. The other nodes are forgotten
until an improving move involving incident edges is discovered. Muyldermans [83]
described in detail an efficient implementation of a local search procedure for the
CARP, which combines edge marking and lists of neighbors.

418 C. Prodhon and C. Prins

Finally, Irnich et al. [51] have proposed an approach called sequential search to
accelerate the local search for the CVRP. The main idea relies on the decomposition
of each move into partial moves, most of them being pruned by computing bounds
on partial gains. Combined with lists of neighbors, this technique is very powerful,
but its implementation is not trivial, since an ad hoc decomposition must be found
for each move. Moreover, the approach becomes complicated when constraints such
as time windows are added.

15.3.2.6 Complex Moves

The literature contains local searches based on very elaborate moves, such as the
GENIUS method [39], cyclic transfers [126], and ejection chains [110, 111]. An
example of an ejection chain is an attempt to move a customer to another route. If
the capacity of the target route is violated, one of its customers can be ejected into
a third route, etc. Obviously, the number of successive ejections must be limited to
avoid excessive running times.

Large-neighborhood search (LNS) considers neighborhoods whose cardinality
is not polynomial in n, while avoiding a complete exploration. The moves can be
decomposed into elementary actions and an improving sequence of actions deter-
mined by computing a least-cost path in an auxiliary graph [33]. Another approach
[119] consists in partially destroying the solution and then repairing it (ruin and recre-
ate moves). In the CVRP for instance, k customers can be removed randomly and
reinserted into the routes to minimize cost variation [94]. Funke et al. [37] reviewed
the state of the art for most local search operators for vehicle routing problems and
proposed a unified representation that can handle many complex constraints, includ-
ing resource constraints.

15.4 Metaheuristics

The local search heuristics for routing problems have evolved into metaheuristics,
which encompass various techniques to escape from local optima and achieve bet-
ter results in reasonable computation times compared with exact algorithms. We
now present these methods, distinguishing two classical categories: path methods,
which determine a sequence of solutions tracing a path in the solution space, and
population or agent-based methods, operating on a set of solutions. Vehicle routing
problems being extremely combinatorial, all truly effective metaheuristics include
local search procedures. The exceptions are simulated annealing, basic versions of
genetic algorithms, ant colony optimization, and particle swarm techniques.

15 Metaheuristics for Vehicle Routing Problems 419

15.4.1 Path Methods

Simulated annealing is now little used for routing problems, although it was one of
the first metaheuristics published for the CVRP, with an article from 1993 in which
Osman introducedλ-interchangemoves [90]. From time to time, effective implemen-
tations can be found, such as those of Lin and Yu [70, 71] for the team orienteering
problem and that of Lin et al. [72] the TTRP with time windows. Deterministic vari-
ants of simulated annealing have been more successful: Li et al. [67] have proposed a
record-to-record travel method for the CVRP. This method is well suited to parallel
implementations [44].

Variable neighborhood search (VNS) and its easier variant variable neighbor-
hood descent (VND) are fast, compact, and simple metaheuristics which explore
successive neighborhoods with growing cardinalities. The idea behind them is that
a local optimum for one neighborhood is not necessarily a local optimum for the
others. VNS and VND are often used to replace a classical local search in another
metaheuristic. Iterated local search methods integrating a VND have been proposed
for the CVRP [17] and the CARP with split deliveries [8]. Effective VNSs are avail-
able, for example, for the open VRP [36], the multidepot VRP [56], the inventory
routing problem [74, 96], and the CARP [48, 95]. These methods are outperformed
by more sophisticated metaheuristics but, owing to their speed, they are often the
only candidates for large problems [57].

Like the above metaheuristics, the greedy randomized adaptive search procedure
(GRASP) [34] is not very efficient on routing problems. The reason probably derives
from its independent iterations, which generate a solution using a randomized greedy
heuristic and improve it via a local search. Although Marinakis has proposed a basic
GRASP for theCVRP [76], themost efficient versions embed additional components.
The path relinking technique has been employed in a GRASP for the LRP [105],
the two-echelon LRP [88], and the CARP [132], while Qu and Bard [109] used a
large-neighborhood search as an improvement procedure in a GRASP for a pickup
and delivery problem.

Iterated local search (ILS) [75] and guided local search (GLS) [54] are very effec-
tive metaheuristics for vehicle routing problems. They generate a sequence of local
optima by alternating a local search and a perturbation. ILS directly perturbs the solu-
tion, while GLS perturbs the edge costs so that a local optimum is no longer optimal
with the modified costs. Two excellent examples are an ILS for the heterogeneous
fleet VRP [122] and a GLS for the CARP [11].

In the 1990s, tabu search methods were the most effective metaheuristics for
vehicle routing problems. Vehicle capacity and time windows were often relaxed to
allow one to minimize a penalized objective function, as in Sect. 15.3.2.4. Successful
versions are available for many problems, including the CVRP [6, 111, 129], the
VRPTW [24], the HFVRP [14], and the CVRP and HFVRP with two-dimensional
loading [65, 66]. Although these algorithms often involve classical moves, Rego and
Roucairol [111] implemented ejection chains,while Toth and Vigo [129] designed a
granular tabu search (GTS), in which the moves are restricted to a small fraction of
the edges (the cheapest ones), which is dynamically adjusted during the algorithm.

420 C. Prodhon and C. Prins

Pisinger and Röpke [94] developed an effective metaheuristic able to solve sev-
eral vehicle routing problems, such as the CVRP and PDP. This based on the ruin
and recreate moves described in Sect. 15.3.2.6. Their adaptive large-neighborhood
search (ALNS) includes several partial destruction and repair operators, implemented
as heuristics. In each iteration, a randomly selected pair of operators is applied to the
current solution, using probabilities updated by a learning process. This approach
is conceptually simple but the codes can be long, since ten heuristics are typically
employed. Successful ALNS metaheuristics have been published recently for the
VRP-2E and the LRP [47], the real-time VRPTW [50], and the DARP [91].

Path relinking builds a path in the solution space between two existing solutions
A and B. To do so, the first solution is gradually transformed into the second, for
example by performing elementary modifications like the moves in a local search.
In practice, the intermediate solutions are of poor quality and must be improved by
calling a local search. This technique, rarely used alone, is mainly used to reinforce
another metaheuristic such as GRASP [105] or tabu search [49].

There exist transitional forms between path methods and population-based meta-
heuristics. For example, a tabu search can be reinforced using an adaptive memory
which records fragments of solutions to perform periodic intensifications [68, 113,
123, 124]. One can also maintain a pool of high-quality solutions in a GRASP and
apply periodic stages of path relinking, as implemented by Villegas et al. for the
TTRP [137]. Souffriau et al. even designed a metaheuristic for the TOP completely
based on path relinking [121].

Another transitional form is evolutionary local search (ELS) [138]. This is actually
an ILS, where each iteration generates p child solutions by applying a perturbation
operator and a local search procedure to the current solution. This solution is replaced
with the best child in the case of an improvement. ILS corresponds to the particular
case p = 1. In our opinion, ELS is not a true population-based method, since the
set of children is not retained. We describe in Sect. 15.6 a family of recent and very
effective ELSs, which relaxes vehicle capacity, constraints, generates TSP tours, and
applies a splitting procedure to convert these tours into feasible solutions for the
original problem [29, 30, 99].

15.4.2 Population or Agent-Based Methods

Wedistinguish between the so-called evolutionary or true populationmethods, where
new solutions are generated by combining solutions stored in a population, and agent-
based methods (ant colony and particle swarm optimization), in which search agents
are guided by a cooperation mechanism.

Genetic algorithms (GAs) appeared a short time after the first metaheuristics for
vehicle routing (simulated annealing and tabu search), but with mixed performance,
except for the VRPTW [97, 125]. The author of [125], employed chromosomes rep-
resenting complete solutions, for instance lists of customers in successive routes,
separated by copies of the depot node. Crossovers based on this encoding, such as

15 Metaheuristics for Vehicle Routing Problems 421

RBX [97], can produce children in which some routes violate vehicle capacity. The
problem is easily solved by relocating customers on other routes, but the genetic
transmission of good patterns from parents to children is degraded. Another expla-
nation for these not entirely satisfactory results was the lack of a local search.

Good results were obtained on the CVRP from 2003 onwards via memetic algo-
rithms (MAs), a family of genetic algorithm complemented by a local search applied
with a certain probability to the offspring. Berger and Barkaoui [10] opened the way
but still employed complete solutions as chromosomes. The problem of capacity
violations was bypassed by Baker and Ayechew [3]. Here, each chromosome defines
a partition of customers into clusters. It is decoded by solving a TSP for each cluster,
using a constructive heuristic followed by a local searchwith 2-opt and λ-interchange
moves. Prins [98] took the route-first cluster-second option, relaxing the capacity of
vehicles in order to use chromosomes without route delimiters, similar to those used
for the TSP. Prins called these chromosomes giant tours. A procedure named Split,
described in Sect. 15.5, derives an optimal (subject to the sequence) solution to the
CVRP from each chromosome. One advantage is that classical crossovers designed
for TSP such as LOX and OX can be reused.

The MA proposed by Prins was the first to outperform tabu search methods. Then
other effective memetic algorithms based on giant tours were designed for various
vehicle routing problems, including the CARP [59], the multiperiod LRP [108],
the multicompartment VRP [32], a production–distribution problem [13], and the
cumulative CVRP [87]. Nagata and Bräysy [84] proposed the first effective MA
without giant tours for the CVRP, using a sophisticated crossover operator called
edge assembly crossover [84]. Some more recent MAs have been designed to solve
several rich problems [133, 134, 136]. The latter reference describes the current best
metaheuristic for 20 VRP variants.

Evolutionary strategies (ESs) make the population evolve by mutation and local
search without combining solutions by crossover. This method, which recalls evo-
lutionary local search, was applied by Mester and Bräysy to the VRPTW [79].
These same authors then developed a more powerful metaheuristic, which alter-
nated between a GLS and an ES, for instances of the CVRP and VRPTW with more
than 1000 customers [80].

Scatter search (SS) is an evolutionary method that is seldom used; it works with a
small population combining high-quality solutions and diversified solutions relative
to those solutions. In each iteration, a recombination operator, similar to the crossover
of GAs but often deterministic, is systematically applied to each pair of parents
and the resulting solutions are improved using local search. This metaheuristic is
aggressive but often displays substantial computational times. A few good examples
exist for the VRPTW [115], the multiperiod CARP [18], and the PDPwith stochastic
travel times [141].

Memetic algorithms with population management (MA|PM) are the missing link
between memetic algorithms and scatter search. These are incremental memetic
algorithms based on a distance measure d(s, e) in the solution space between any
two solutions s and e. The distance froma child e to the current populationP is defined
as D(P, e) = min{d(s, e) | s ∈ P}. After the local search, this child is accepted into

422 C. Prodhon and C. Prins

the population if D(P, e) ≤ �, where � is a fixed or dynamically varying threshold
controlling the diversity. Prins [100] and Prins et al. [106] showed that population
management improves memetic algorithms significantly for the heterogeneous fleet
VRP and the CARP, respectively.

Ant colony optimization (ACO) iswell adapted to problemswhere the construction
of a solution is equivalent to finding a path in a graph. For routing problems, an ant
can for example build successive routes by selecting successive arcs, using a nearest-
neighbor heuristic biased by pheromone deposits. Reimann et al. [112] had the good
idea to use ants to build routes by successive insertions, starting from loops on the
depot. Their algorithm, enhanced by a local search, gives very good results on the
CVRP. Santos et al. [117] developed another ACO algorithmwith local search, which
is one of the two current best metaheuristics for the CARP.

Particle swarm optimization (PSO) has only recently been applied to vehicle
routing, and only hybrid versions have proved so far to be competitive with other
metaheuristics. Chen et al. [16] proposed a PSO algorithm for the CVRP that assigns
customers to vehicles, the routes being derived by a simulated annealing step applied
to each vehicle. Marinakis and Marinaki [78] achieved better results but at the cost
of a complex hybridization, combining PSO, GRASP, and path relinking. Two PSO
algorithms have been developed for the CVRP with stochastic demands [77, 81].

15.4.3 Evolution of the Field, and Trends

A large number of metaheuristics are now available to solve various vehicle routing
problems. Major trends emerge when reading the surveys published periodically on
the subject. The most efficient algorithms until the early 2000s were tabu search
methods. Cordeau and Laporte [23] identified ten of the most effective tabu search
methods in 2002. In 2005, a study by Cordeau et al. [22] detected a turning point: the
nine best metaheuristics still included three tabu search methods [24, 124, 129], but
there were already three evolutionary algorithms [10, 79, 106] and one ant colony
algorithm [112]. In 2008, a review by Gendreau et al. [40] confirmed this tendency.
Currently, the most successful metaheuristic frameworks for the majority of routing
problems are evolutionary local search, memetic algorithms, and adaptive large-
neighborhood search.

Another direction is the development of hybrid methods. In fact, the best meta-
heuristics already combine several components. For example, the best evolutionary
algorithms for the CVRP are memetic algorithms and ELS, which all include a local
search procedure [84, 106, 133]. This local search is sometimes replaced by a VND,
a VNS, or an LNS to enhance intensification.

Hybridization does not forbid one to combine ametaheuristic and an exactmethod,
which gives a matheuristic. A common technique is to generate a large number of
good routes with a metaheuristic and then to solve a set, covering problem whose
columns correspond to these routes (see, e.g., [15] for the PVRP). The cooperative
method of Prins et al. for the LRP [103] alternates cyclically between the solution of

15 Metaheuristics for Vehicle Routing Problems 423

a facility location subproblem, via Lagrangian relaxation, and a granular tabu search
that optimizes the routes from selected depots. Labadie et al. [58] relax the TOP with
time windows to solve an assignment problem via linear programming and used
reduced costs to guide a granular VNS.

Parallel metaheuristics started to spread, at least in the academic world, with the
multiplication of multicore PCs, powerful graphics cards (GPUs), and grid comput-
ing. Recently, this has led to a revival of tabu search methods because they are well
suited to this kind of implementation [25, 53].

Nevertheless, many effective metaheuristics can still handle only a single routing
problem. This lack of genericity is an obstacle to their incorporation into commercial
software. The study of methods capable of solving several variants with a unique
algorithm is still little developed. Such methods include the universal tabu search
algorithmUTSAofCordeau et al. [24], the large-neighborhood search of Pisinger and
Röpke [94], the hybrid GA proposed by Vidal et al. [133] for the CVRP, theMDVRP,
and the PVRP, and another GA by the same authors for various problems with time
windows [136]. Recently, Vidal et al. [134] designed a more general algorithm,
UHGS (unified hybrid genetic search), that is at least as good as the best published
metaheuristics on 29 VRP variants.

15.5 The Split Approach

15.5.1 Principle and Advantages

As stated in Sect. 15.3.1, one possible constructive heuristic to solve vehicle routing
problems consists in building a giant tour covering all customers, coded as a sequence
of nodes, and then splitting this tour to get routes respecting vehicle capacity [7].
Less intuitive than the opposite cluster-first route-second approach [41], this route-
first cluster-second principle was considered as a curiosity for a long time, before its
integration into efficient metaheuristics [59, 98].

Since then, this technique has become very popular and can be found in more
than 70 metaheuristics for a wide variety of routing problems; see [102] for a recent
survey. Figure15.4 illustrates its principle.

This approach has the following advantages:

• As observed by Beasley [7], the second phase (cluster) is equivalent to the com-
putation of a shortest path in an auxiliary graph, as shown in the sequel.

• When the method is used in a metaheuristic, the smaller search space of giant tours
is explored in the first phase (route), instead of the space of VRP solutions.

• The partition into routes can be done optimally, subject to the order defined by the
giant tour. Conversely, one can show that there exists at least one “optimal” giant
tour, i.e., one that yields an optimal solution to the original routing problem after
splitting. Hence, the original problem can be solved without loss of information
by searching the space of giant tours.

424 C. Prodhon and C. Prins

Depot
Clients
Routes

a) Set of nodes (clients and depot)of

b) Giant tour on the set of nodes c) Splitting of the giant tour into routes
 with respect to the vehicle capacities

Fig. 15.4 Illustration of the route-first cluster-second approach

• The construction of the giant tour can cope, at least partially, withmany constraints
concerning customers (precedence, time windows, …), while the splitting phase
can deal with constraints related to vehicles (capacity, working time, assignment
to depots, …), giving a very flexible framework for solving rich vehicle routing
problems.

• Finally, the Split approach leads to state-of-the-art solution methods, competing
with the best metaheuristics published.

Most metaheuristics based on the route-first cluster-second paradigm consist in
alternating between an indirect representation of solutions to the routing problem
at hand, the genotype (the giant tour), and a complete representation, the phenotype
(the set of routes). The genotype defines a route in which capacity constraints are
relaxed, corresponding to a Hamiltonian cycle on the set of nodes (customers and
depot). The main structure of the metaheuristic (GRASP, GA,…) searches the space
of genotypes. The splitting procedure is used to decode the genotypes and evaluate the
associated phenotypes. Intensification can easily be done by calling a local search.
The alternation is generally completed by concatenating the trips of the resulting
solutions and removing the depot nodes, which gives a new giant tour.

15 Metaheuristics for Vehicle Routing Problems 425

15.5.2 Split Algorithm

Starting from a giant tour defined as a sequence T = (T1, T2, . . . , Tn) of n customers,
the Split algorithm begins by building an auxiliary graph H = (X, U). X is a set
containing n + 1 nodes, numbered from 0 to n. The arcset U contains one arc (i −
1, j) for each subsequence of customers (Ti, Ti+1, . . . , Tj) which can be visited by a
vehicle, i.e.,

∑j
k=i q(Tk) ≤ Q. This arc is weighted by the cost of the corresponding

route cost(i, j) = c(0, Ti) + ∑j−1
k=i(c(Tk, Tk+1)) + c(Tj, 0), where c(i, j) denotes the

cost of arc (i, j) (distanceor time).Theoptimal splitting is thenobtainedby computing
a shortest path from node 0 to node n in H.

Figure15.5 illustrates this principle using a small example with six customers.
The giant tour considered is T = (a, b, c, d, e, f). The values in parentheses indicate
the demands. The associated auxiliary graph is given for this tour, assuming a vehicle
capacity Q = 15. For instance, the arc ab represents a route visiting customers a and
b, with load 12 and cost 10. The arc abc is not included, because the total demand
of these three customers (16) exceeds the vehicle capacity. The arcs of the shortest
path (thick lines) correspond to the trips in the optimal splitting, represented on the
right: three routes with a cost of 27.

The shortest path in the auxiliary graph can be calculated using Bellman’s algo-
rithm for directed acyclic graphs. Algorithm 15.1 shows the compact version, called
Split by Prins [98], in which the auxiliary graph is not generated explicitly. Two
nested loops examine each subsequence (Ti, Ti+1, . . . , Tj) of customers and calcu-
late its total demand (load) and the cost of the corresponding route (cost). If the
load exceeds the capacity of a vehicle, the subsequence is rejected. Otherwise, for

Depot
Clients
Routes

(a) Giant tour on the nodes

(b) Shortest path on the auxiliary graph (c) Optimal splitting in to routes

a (5)

b (7)

c (4)

d (2)

e (8) f (3)

a (5)

b (7)

c (4)

d (2)

e (8) f (2)

ab(12):10

a(5):6 b(7):10 c(4):7 d(2):5 e(8):7 f(2):2

0 6 10 17 20

cd(6):10

de(10):9

def(10):10

ef(10):8

26 27

Value of the
shortest path on

each node (label):

Fig. 15.5 Illustration of the Split algorithm

426 C. Prodhon and C. Prins

each node i, let Vi denote a label storing the cost of the shortest paths from node
0 to node i in H (see Fig. 15.5). The associated arc (i − 1, j) is implicitly created
and the label Vj of node j is immediately updated if it can be improved, i.e., when
Vi−1 + cost(i, j) < Vj. At the end, the cost of the best possible CVRP solution for
the given giant tour is given by the label of the last node, Vn.

V0 ← 0; P0 ← 0
for i ← 1 to n do

Vi ← ∞
end
for i ← 1 to n do

j ← i; load ← 0
repeat

load ← load + q(Tj)

if i = j then
cost ← c(0, Ti) + s(Ti) + c(Ti, 0)

else
cost ← cost − c(T(j−1), 0) + c(T(j−1), Tj) + s(Tj) + c(Tj, 0)

end
if load ≤ Q and Vi−1 + cost < Vj then

Vj ← Vi−1 + cost
Pj ← i − 1

end
j ← j + 1

until j > n or load > Q;
end

Algorithm 15.1: Split algorithm

In Algorithm 15.1, a vector P is introduced to store the predecessor of each node
j on the shortest path from 0 to j. This provides a quick and easy way to extract the
CVRP solution S; see Algorithm 15.2. In this small procedure, S is encoded as a list
of routes, and each route as a list of customers.

S ← ∅; j ← n
repeat

route ← ∅
for k ← Pj + 1 to j do

add customer Tk at the end of list route
end
add list route at the beginning of list S
j ← Pj

until j = 0;

Algorithm 15.2: Algorithm to extract the solution after Split

Note that Split evaluates each subsequence in O(1), since load and cost are
updated when j is incremented, instead of recomputing them completely using a

15 Metaheuristics for Vehicle Routing Problems 427

loop from i to j. Hence, the complexity is proportional to the number of arcs in H
(the number of feasible subsequences), i.e., O(n2) in the worst case. If, owing to
vehicle capacity the average number of customers per route b is smaller than n, then
the number of arcs in H and the complexity become O(nb). Therefore, Split is very
fast in practice and can be called frequently in a metaheuristic.

15.5.3 Integration into Heuristics and Metaheuristics

The simplest utilization of Split is in constructive heuristics. For instance, any exact
or heuristic algorithm for the TSP can be recycled to build a giant tour which is then
cut by Split to give routes. Such heuristics can be randomized to generate several
giant tours, split them, and finally return the best solution obtained [101].

Split can be included inmetaheuristics, where themetaheuristic explores the space
of giant tours and Split is called to evaluate each tour. Themost basic implementation
is probably a GRASP: for instance, a greedy randomized heuristic samples the set
of giant tours, each tour is decoded by Split, and the resulting solution is improved
by a local search. Powerful memetic algorithms have also been developed. Here,
chromosomes are encoded as giant tours, crossovers generate new giant tours, but
the fitness calculation is done by applying Split and a local search procedure to the
offspring [59, 87, 104, 106]. Various constraints can be added [101].

Another option is to alternate between the two search spaces. Starting from a giant
tour T , Split is applied to obtain a complete solution S, which is then improved by
a local search. If a giant tour T ′ is built by concatenating the lists of customers in S
and discarding the depot nodes used as delimiters, it will differ from T provided at
least one improving move has been executed during the local search. Hence, a new
call to Split results in a new solution S′ at least as good as S, and a simple repetition
of this cycle already gives good results. Figure15.6 illustrates this principle.

The implementation of this alternation in a metaheuristic leads to very powerful
methods for various vehicle routing problems. As an example, the following section
presents the GRASP×ELS method of Prins [99].

15.6 Example of a Metaheuristic Using the Split Approach

15.6.1 General Principle of GRASP×ELS

The method described here is a hybrid between two metaheuristics: a GRASP and
an evolutionary local search. The principles of these two metaheuristics were pre-
sented in Sect. 15.4.1. Recall that a GRASP samples the local optima of the problem.
Each iteration builds a solution, using a greedy randomized heuristic GRH, and then
improves it by calling a local search procedure LS. Randomization is often based

428 C. Prodhon and C. Prins

Depot
Clients
Routes

(a) Initial giant tour (b) Splitting of the giant tour into routes (c) Local search on the complete solution
 (cost = 550) (cost = 510)

(…)

(d) New giant tour (e) Splitting of the new giant tour (f) Local search on the complete solution
 (cost = 500) (cost = 490)

Fig. 15.6 Alternation between giant tours, complete solution, and local search

on a restricted candidate list (RCL). In each iteration of GRH, the α best decisions
are placed in the RCL and one is chosen at random. If α = 1, GRH becomes deter-
ministic. If all possible decisions are possible in the RCL, the heuristic reduces to
a kind of random walk and yields low-quality solutions. Usually α ∈ {2, 3} leads to
solutions combining quality and diversity.

GRASP can be hybridized with a variety of techniques such as path relinking.
Its successive solutions are independent (there is no memory), and it is worthwhile
to explore the search space between them. The hybridization described here is done
with an ELS.

As alreadymentioned, ELS generalizes ILS by generating in each iteration several
child solutions instead of a single one. It requires three components: a constructive
heuristic CH, an improvement procedure LS, and a randomized perturbation pro-
cedure RP. An initial solution S is built by CH and improved by LS. Then, each
iteration generates a given number nc of child solutions by taking a copy of S and
applying RP and LS. The incumbent solution is replaced by the best child if there is
an improvement.

One advantage of this hybridization is that it strengthens the improvement phase
of GRASP by replacing the local search by an ELS. Compared with an isolated ELS,
another advantage is that the GRASP superstructure feeds the successive ELSs with
diversified solutions.

15.6.2 Application to the Capacitated Vehicle Routing
Problem

The key point for the effectiveness of the method when applied to the CVRP is
combining the hybrid GRASP×ELS method and a cyclic alternation between giant

15 Metaheuristics for Vehicle Routing Problems 429

tours and CVRP solutions, as described in Sect. 15.5. The GRASP begins each itera-
tion by building one giant tour using the simple nearest-neighbor heuristic described
in Sect. 15.3.1. This heuristic is easily randomized by selecting possible candidates
from an RCL. For a giant tour temporarily ending at customer i, the RCL may con-
tain, for instance, the two or three unrouted customers closest to i. The resulting giant
tour is transformed by the Split algorithm into a CVRP solution S, which is in turn
improved by a local search. The routes of S are concatenated to give a new giant tour
T . The pair (S, T) is finally given to the ELS.

Each of the nc child solutions is obtained by applying to a copy T ′ of T a mutation
operator which exchanges the positions of two randomly selected customers. In fact,
the operator can perform p exchanges and p can be adjusted to control diversifica-
tion. Initially, and after each improvement of the current best solution, p is set to a

Depot
Clients
Routes

(…)

(…)

Building a giant tour by the randomized nearest-
neighbor heuristic

Transformation into a
complete solution by Split

Local search on the
complete solution

1st phase of ELS:
Concatenation of

routes

2nd phase of ELS:
Mutations to

obtain children

1st phase of GRASP:
Generation of a solution by

a randomized greedy
heuristic

2nd phase of GRASP:
Improvement by local

search—here replaced by
ELS

GRASP iteration:
storing of the best

solution encountered

3rd phase of ELS:
Local search on

children

Transformation into a
complete solution by Split

Transformation into a complete
solution by Split

Local search on the complete
solution

Local search on the complete
solution

ELS iteration:
Return the best

solution
encountered

Fig. 15.7 Illustration of GRASP × ELS

430 C. Prodhon and C. Prins

minimum value pmin = 1. After each ELS iteration without improvement the incum-
bent solution, p is incremented but without exceeding a maximum value pmax, for
instance 3. The perturbed giant tour is converted by Split into a CVRP solution and
improved by local search. The local search used involves classical moves, including
2-opt, Or-opt, and λ-interchange. These moves are applied to each route and each
pair of routes.

Once the nc children have been generated, the best one S′ is compared with the
parent solution S. If the latter has been improved on, S is replaced by S′ (S ← S′)
and the routes of S are concatenated to yield a new giant tour T , which provides the
pair (S, T) for the next iteration of ELS. Figure15.7 summarizes the method.

15.7 Conclusion

This chapter has shown that metaheuristics have been quite successful on vehicle
routing problems. As with many other NP-hard optimization problems, the basic
versions of the classic metaheuristics have been completely overtaken. The trend is
to use increasingly hybridized algorithms, all including an improvement procedure.
Parallel implementations and the exact solution of subproblems via metaheuristics
can be used to reinforce this artillery. One negative aspect is the proliferation ofmeta-
heuristics for very similar variants of the same vehicle routing problem. Although
a general problem solver does not yet exist in the field of vehicle routing, a few
recent metaheuristics are able to deal with rich problems which contain many clas-
sical academic problems as particular cases. Such methods rely on flexible solution
encodings and local search procedures that are able to handlemany constraints simul-
taneously, but also on software engineering techniques such as the design of generic
and reusable components.

15.8 Annotated Bibliography

We recommend the following references as good entry points to the rich literature
on vehicle routing problems:

Reference [21] This annotated bibliography is the latest on arc routing problems
such as those found in waste collection.

Reference [24] This article is a good example of a generic tabu search, able to
handle several routing problems with a single code.

Reference [28] The GRASP×ELS method based on giant tours described in
Sect. 15.6 is generalized in this article to address the location–
routing problem and heterogeneous fleet vehicle routing problems.

Reference [43] This book provides a good overview of the field of vehicle routing
problems, with exact methods, heuristics, and case studies.

15 Metaheuristics for Vehicle Routing Problems 431

Reference [45] This special issue of theCentral European Journal of Operational
Research contains a selection of articles on “rich vehicle routing
problems” and introduces this term for the first time.

Reference [46] This comprehensive survey helps one to make the transition
between academic vehicle routing problems and those encoun-
tered in industrial applications (large-scale problems in particu-
lar).

Reference [60] This article is of interest because it highlights the main steps and
key publications in the research on vehicle routing problems, from
the first constructive heuristic published in 1964 until 2009.

Reference [62] Although it is not dedicated to metaheuristics, this article
describes very well various constructive heuristics that are still
widely used in commercial software and to initialize metaheuris-
tics. These algorithms are based on simple principles that we
recommend one should discover before reading more complex
references on metaheuristics.

Reference [98] This article presents an efficient, simple to understand memetic
algorithm for the CVRP, based on chromosomes encoded as giant
tours and the Split approach.

Reference [128] This summary book on routing problems is older than [43] but is
still useful and complementary. A recent second edition has been
completely rewritten to reflect recent developments [130].

Reference [134] In the spirit of Cordeau et al. [24], this publication describes a
hybrid genetic algorithm able to solve multiple versions of the
VRP.

References

1. Albareda-Sambola, M., Fernández, E., Nickel, S.: Multiperiod location-routing with decou-
pled time scales. European Journal of Operational Research 217(2), 248–258 (2012)

2. Aras, N., Aksen, D., Tekin, M.T.: Selective multi-depot vehicle routing problem with pricing.
Transportation Research, Part C: Emerging Technologies 19(5), 866–884 (2011)

3. Baker, B., Ayechew, M.: A genetic algorithm for the vehicle routing problem. Computers &
Operations Research 30, 787–800 (2003)

4. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle routing prob-
lembased on the set partitioning formulationwith additional cuts.Mathematical Programming
115, 351–385 (2008)

5. Balinski, M., Quandt, R.: On an integer program for a delivery program. Operations Research
12, 300–304 (1964)

6. Barbarasoglu, G., Ozgur, D.: A tabu search algorithm for the vehicle routing problem. Com-
puters & Operations Research 26, 255–279 (1999)

7. Beasley, J.: Route-first cluster-secondmethods for vehicle routing.Omega 11, 403–408 (1983)
8. Belenguer, J., Benavent, E., Labadi, N., Prins, C., Reghioui, M.: Lower and upper bounds

for the split delivery capacitated arc routing problem. Transportation Science 44(2), 206–220
(2010)

9. Bentley, J.L.: Fast algorithms for geometric tsp. ORSA Journal on Computing 4, 387–411
(1992)

432 C. Prodhon and C. Prins

10. Berger, J., Barkaoui, M.: A new hybrid genetic algorithm for the capacitated vehicle routing
problem. Journal of the Operational Research Society 54, 1254–1262 (2003)

11. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search
heuristic for the capacitated arc routing problem. European Journal of Operational Research
147, 629–643 (2003)

12. Bortfeldt, A.: A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints. Computers&Operations Research 39(9), 2248–2257 (2012)

13. Boudia, M., Prins, C., Ould-Louly, A.: A memetic algorithm with dynamic population man-
agement for an integrated production–distribution problem. European Journal of Operational
Research 195, 703–715 (2009)

14. Brandão, J.: A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem.
Computers & Operations Research 38(1), 140–151 (2011)

15. Cacchiani, V., Hemmelmayr, V., Tricoire, F.: A set-covering based heuristic algorithm for the
periodic vehicle routing problem. Discrete Applied Mathematics (forthcoming) (2013)

16. Chen, A.L., Yang, G.K.,Wu, Z.M.: Hybrid discrete particle swarm optimization algorithm for
capacitated vehicle routing problem. Journal of Zhejiang University Science A 7(4), 607–614
(2006)

17. Chen, P., Huang, H., Dong, X.: Iterated variable neighborhood descent algorithm for the
capacitated vehicle routing problem. Expert SystemswithApplications 37, 1620–1627 (2010)

18. Chu, F., Labadi, N., Prins, C.: A scatter search for the periodic capacitated arc routing problem.
European Journal of Operational Research 169, 586–605 (2006)

19. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research 12, 568–581 (1964)

20. Contardo, C., Hemmelmayr, V., Crainic, T.G.: Lower and upper bounds for the two-echelon
capacitated location-routing problem. Computers & Operations Research 39(12), 3185–3199
(2012)

21. Corberan, A., Prins, C.: Recent results on arc routing problems: an annotated bibliography.
Networks 56(1), 50–69 (2010)

22. Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.: New heuristics for the
vehicle routing problem. In: A. Langevin, D. Riopel (eds.) Logistics Systems - Design and
Optimization, pp. 279–298. Springer (2005)

23. Cordeau, J.F., Laporte, G.: Tabu search heuristics for the vehicle routing problem. Technical
Report G-2002-15, GERAD (2002)

24. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing
problemswith timewindows. Journal of theOperational Research Society 52, 928–936 (2001)

25. Cordeau, J.F., Maischberger, M.: A parallel iterated tabu search heuristic for vehicle routing
problems. Computers & Operations Research 39(9), 2033–2050 (2012)

26. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management Science 6(1), 80–
91 (1959)

27. D’Souza, C., Omkar, S., Senthilnath, J.: Pickup and delivery problem using metaheuristics
techniques. Expert Systems with Applications 39(1), 328–334 (2012)

28. Duhamel, C., Lacomme, P., Prodhon, C.: Efficient frameworks for greedy split and new depth
first search split procedures for routing problems. Computers & Operations Research 38(4),
723–739 (2011)

29. Duhamel, C., Lacomme, P., Prodhon, C.: A hybrid evolutionary local search with depth first
search split procedure for the heterogeneous vehicle routing problems. Engineering Applica-
tions of Artificial Intelligence 25(2), 345–358 (2012)

30. Duhamel, C., Lacomme, P., Quilliot, A., Toussaint, H.: Amulti-start evolutionary local search
for the two-dimensional loading capacitated vehicle routing problem. Computers & Opera-
tions Research 38(3), 617–640 (2011)

31. Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: A taxonomic review.
Computers & Industrial Engineering 57(4), 1472–1483 (2009)

32. El Fallahi, A., Prins, C., Wolfler-Calvo, R.: A memetic algorithm and a tabu search for the
multi-compartment vehicle routing problem. Computers &Operations Research 35(5), 1725–
1741 (2008)

15 Metaheuristics for Vehicle Routing Problems 433

33. Ergun, Ö., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out of
smaller ones by compounding moves. Journal of Heuristics 12(1-2), 115–140 (2006)

34. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters 8, 67–71 (1989)

35. Fisher, M., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks
11, 109–124 (1981)

36. Fleszar, K., Osman, I., Indi, K.: A variable neighborhood search algorithm for the open vehicle
routing problem. European Journal of Operational Research 195, 803–809 (2009)

37. Funke, B., Grünert, T., Irnich, S.: Local search for vehicle routing and scheduling problems:
review and conceptual integration. Journal of Heuristics 11, 267–306 (2005)

38. Garcia-Najera, A., Bullinaria, J.A.: An improved multi-objective evolutionary algorithm for
the vehicle routing problem with time windows. Computers & Operations Research 38(1),
287–300 (2011)

39. Gendreau, M., Hertz, A., Laporte, G.: New insertion and post-optimization procedures for
the traveling salesman problem. Operations Research 40, 1086–1094 (1992)

40. Gendreau, M., Potvin, J.Y., Bräysy, O., Hasle, G., Løkketangen, A.: Metaheuristics for
the vehicle routing problem and its extensions: A categorized bibliography. In: B. Golden,
S. Raghavan, E. Wasil (eds.) The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, pp. 143–170. Springer (2008)

41. Gillett, B., Miller, L.: A heuristic algorithm for the vehicle dispatch problem. Operation
Research 22, 340–349 (1974)

42. Goksal, F.P., Karaoglan, I., Altiparmak, F.: A hybrid discrete particle swarm optimization
for vehicle routing problem with simultaneous pickup and delivery. Computers & Industrial
Engineering 65(1), 39–53 (2013)

43. Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem, Latest Advances
and New Challenges. Springer, New York (2008)

44. Groër, C., Golden, B., Wasil, E.: A parallel algorithm for the vehicle routing problem.
INFORMS Journal on Computing 23, 315–330 (2011)

45. Hartl, R.F., Hasle, G., Janssens, G.K.: Special issue on rich vehicle routing problems. Central
European Journal of Operations Research 14(2), 103–104 (2006)

46. Hasle, G., Kloster, O.: Industrial vehicle routing. In: G. Hasle, K.A. Lie, E. Quak (eds.) Geo-
metric Modelling, Numerical Simulation, and Optimization, pp. 397–435. Springer, Berlin,
Heidelberg (2007)

47. Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Computers &
Operations Research 39(12), 3215–3228 (2012)

48. Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undirected capaci-
tated arc routing problem. Transportation science 35(4), 425–434 (2001)

49. Ho, S., Gendreau, M.: Path relinking for the vehicle routing problem. Journal of Heuristics
12, 55–72 (2006)

50. Hong, L.: An improved LNS algorithm for real-time vehicle routing problem with time win-
dows. Computers & Operations Research 39(2), 151–163 (2012)

51. Irnich, S., Funke, B., Grünert, T.: Sequential search and its application to vehicle-routing
problems. Computers & Operations Research 33, 2405–2429 (2006)

52. Jepsen, M., Spoorendonk, S., Ropke, S.: A branch-and-cut algorithm for the symmetric two-
echelon capacitated vehicle routing problem. Transportation Science 47(1), 23–37 (2013)

53. Jin, J., Crainic, T.G., Løkketangen, A.: A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. European Journal of Operational Research 222(3),
441–451 (2012)

54. Kilby, P., Prosser, P., Shaw, P.: Guided local search for the vehicle routing problem. In:
S. Voss, S. Martello, I. Osman, C. Roucairol (eds.) Metaheuristics: Advances and Trends in
Local Search Paradigms for Optimization, pp. 473–486. Kluwer (1999)

55. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge exchanges. In:
E.H.L. Aarts, J.K. Lenstra (eds.) Local Search in Combinatorial Optimization, pp. 337–360.
John Wiley & Sons (1997)

434 C. Prodhon and C. Prins

56. Kuo, Y., Wang, C.C.: A variable neighborhood search for the multi-depot vehicle routing
problem with loading cost. Expert Systems with Applications 39(8), 6949–6954 (2012)

57. Kytöjoki, J., Nuortio, T., Bräysy, O., Gendreau,M.: An efficient variable neighborhood search
heuristic for very large scale vehicle routing problems. Computers & Operations Research
34(9), 2743–2757 (2007)

58. Labadie, N., Mansini, R., Melechovskỳ, J., Wolfler Calvo, R.: The team orienteering problem
with time windows: An LP-based granular variable neighborhood search. European Journal
of Operational Research 220(1), 15–27 (2012)

59. Lacomme, P., Prins, C., Ramdane-Chérif,W.: Competitivememetic algorithms for arc routing
problems. Annals of Operations Research 131, 159–185 (2004)

60. Laporte, G.: Fifty years of vehicle routing. Transportation Science 43(4), 408–416 (2009)
61. Laporte, G., Corberan, A.: Arc Routing Problems–Methods and Applications. Society for

Industrial and Applied Mathematics, Philadelphia, PA (2014)
62. Laporte, G., Semet, F.: Classical heuristics for the capacitated VRP. In: P. Toth, D. Vigo (eds.)

The Vehicle Routing Problem, pp. 109–128. Society for Industrial and Applied Mathematics,
Philadelphia, PA (2001)

63. Lei,H., Laporte,G.,Guo,B.: The capacitated vehicle routingproblemwith stochastic demands
and time windows. Computers & Operations Research 38(12), 1775–1783 (2011)

64. Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks
11(2), 221–227 (1981)

65. Leung, S.C., Zhang, Z., Zhang, D., Hua, X., Lim,M.K.: Ameta-heuristic algorithm for hetero-
geneous fleet vehicle routing problems with two-dimensional loading constraints. European
Journal of Operational Research 225(2), 199–210 (2013)

66. Leung, S.C., Zhou, X., Zhang, D., Zheng, J.: Extended guided tabu search and a new packing
algorithm for the two-dimensional loading vehicle routing problem. Computers &Operations
Research 38(1), 205–215 (2011)

67. Li, F., Golden, B., Wasil, E.: Very large scale vehicle routing: New problems, algorithms, and
results. Computers & Operations Research 32(5), 1165–1179 (2005)

68. Li, X., Leung, S.C., Tian, P.: A multistart adaptive memory-based tabu search algorithm for
the heterogeneous fixed fleet open vehicle routing problem. Expert Systemswith Applications
39(1), 365–374 (2012)

69. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman problem.
Operations Research 21, 498–516 (1973)

70. Lin, S.W.: Solving the team orienteering problem using effectivemulti-start simulated anneal-
ing. Applied Soft Computing 13(2), 1064–1073 (2013)

71. Lin, S.W., Yu, V.F.: A simulated annealing heuristic for the team orienteering problem with
time windows. European Journal of Operational Research 217(1), 94–107 (2012)

72. Lin, S.W., Yu, V.F., Lu, C.C.: A simulated annealing heuristic for the truck and trailer routing
problemwith timewindows. Expert SystemswithApplications 38(12), 15,244–15,252 (2011)

73. Liu, R., Jiang, Z.: The close–Dopen mixed vehicle routing problem. European Journal of
Operational Research 220(2), 349–360 (2012)

74. Liu, S.C., Chen, A.Z.: Variable neighborhood search for the inventory routing and scheduling
problem in a supply chain. Expert Systems with Applications 39(4), 4149–4159 (2012)

75. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: M. Gendreau, J. Potvin
(eds.) Handbook of metaheuristics, 2nd edn, International Series in Operations Research and
Management Science, Vol. 146, pp. 363–397. Springer (2010)

76. Marinakis, Y.: Multiple phase neighborhood search-GRASP for the capacitated vehicle rout-
ing problem. Expert Systems with Applications 39(8), 6807–6815 (2012)

77. Marinakis, Y., Iordanidou, G.R., Marinaki, M.: Particle swarm optimization for the vehicle
routing problem with stochastic demands. Applied Soft Computing 13(4), 1693–1704 (2013)

78. Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm
for the probabilistic traveling salesman problem. Computers & Operations Research 37(3),
432–442 (2010)

15 Metaheuristics for Vehicle Routing Problems 435

79. Mester, D., Bräysy, O.: Active guided evolution strategies for large scale vehicle routing
problems with time windows. Computers & Operations Research 32, 1593–1614 (2005)

80. Mester, D., Bräysy, O.: Active-guided evolution strategies for large-scale capacitated vehicle
routing problems. Computers & Operations Research 34(10), 2964–2975 (2007)

81. Moghaddam, B.F., Ruiz, R., Sadjadi, S.J.: Vehicle routing problem with uncertain demands:
An advanced particle swarm algorithm. Computers & Industrial Engineering 62(1), 306–317
(2012)

82. Mole, R.H., Jameson, S.R.: A sequential route-building algorithm employing a generalized
savings criterion. Operational Research Quarterly 27, 503–511 (1976)

83. Muyldermans, L.: Routing, districting and location for arc traversal problems. Ph.D. disser-
tation, Catholic University of Leuven, Belgium (2003)

84. Nagata, Y., Bräysy, O.: Edge assembly-based memetic algorithm for the capacitated vehicle
routing problem. Networks 54, 205–215 (2009)

85. Naji-Azimi, Z., Salari, M.: A complementary tool to enhance the effectiveness of existing
methods for heterogeneous fixed fleet vehicle routing problem. Applied Mathematical Mod-
elling 37(6), 4316–4324 (2013)

86. Nazif, H., Lee, L.S.: Optimised crossover genetic algorithm for capacitated vehicle routing
problem. Applied Mathematical Modelling 36(5), 2110–2117 (2012)

87. Ngueveu, S., Prins, C., Wolfler Calvo, R.: An effective memetic algorithm for the cumula-
tive capacitated vehicle routing problem. Computers & Operations Research 37, 1877–1885
(2010)

88. Nguyen, V.P., Prins, C., Prodhon, C.: Solving the two-echelon location routing problem by a
GRASP reinforced by a learning process and path relinking. European Journal of Operational
Research 216(1), 113–126 (2012)

89. Or, I.: Traveling salesman-type combinatorial optimization problems and their relation to the
logistics of regional blood banking. Ph.D. dissertation, Northwestern University, Evanston,
IL (1976)

90. Osman, I.:Metastrategy simulated annealing and tabu search algorithms for the vehicle routing
problem. Annals of Operations Research 41, 421–451 (1993)

91. Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood search for the
dial-a-ride problem. Computers & Operations Research 40(1), 490–497 (2013)

92. Partyka, J., Hall, R.: On the road to connectivity. OR/MS Today 37(1), 42–49 (2010)
93. Pecin, D., Poggi, M., Pessoa, A., Uchoa, E.: Improved branch-and-cut-and-price for capaci-

tated vehicle routing. Operations Research (forthcoming)
94. Pisinger, D., Röpke, S.: A general heuristic for vehicle routing problems. Computers & Oper-

ations Research 34, 2403–2435 (2007)
95. Polacek, M., Doerner, K., Hartl, R., Maniezzo, V.: A variable neighborhood search for the

capacitated arc routing problem with intermediate facilities. Journal of Heuristics 14(5), 405–
423 (2008)

96. Popović, D., Vidović, M., Radivojević, G.: Variable neighborhood search heuristic for the
inventory routing problem in fuel delivery. Expert Systems with Applications 39(18), 13,390–
13,398 (2012)

97. Potvin, J.Y., Bengio, S.: The vehicle routing problem with time windows. Part II: Genetic
search. INFORMS Journal on Computing 8, 165–172 (1996)

98. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research 31, 1985–2002 (2004)

99. Prins, C.: A GRASP × evolutionary local search hybrid for the vehicle routing problem. In:
F. Pereira, J. Tavares (eds.) Bio-Inspired Algorithms for the Vehicle Routing Problem. Studies
in Computational Intelligence, vol. 161, pp. 35–53. Springer, Berlin, Heidelberg (2009)

100. Prins, C.: Two memetic algorithms for heterogeneous fleet vehicle routing problems. Engi-
neering Applications of Artificial Intelligence 22, 916–928 (2009)

101. Prins, C., Labadie, N., Reghioui, M.: Tour splitting algorithms for vehicle routing problems.
International Journal of Production Research 47, 507–535 (2009)

436 C. Prodhon and C. Prins

102. Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle routing
problems: A review. Transportation Research, Part C 40, 179–200 (2014)

103. Prins, C., Prodhon, C., Ruiz, A., Soriano, P., Wolfler Calvo, R.: Solving the capacitated
location-routing problemby a cooperativeLagrangean relaxation–granular tabu search heuris-
tic. Transportation Science 41(4), 470–483 (2007)

104. Prins, C., Prodhon, C., Wolfler Calvo, R.: A memetic algorithm with population management
(MA | PM) for the capacitated location-routing problem. In: J. Gottlicd, G.R. Raidl (eds.)Evo-
lutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science,
vil. 3906, pp. 183–194. Springer (2006)

105. Prins, C., Prodhon, C., Wolfler Calvo, R.: Solving the capacitated location-routing problem
by a GRASP complemented by a learning process and a path relinking. 4OR 4(3), 221–238
(2006)

106. Prins, C., Sevaux, M., Sörensen, K.: A genetic algorithm with population management
(GA | PM) for the CARP. In: Tristan V (5th Triennal Symposium on Transportation Analysis).
Le Gosier, Guadeloupe (2004)

107. Prodhon, C.: A hybrid evolutionary algorithm for the periodic location-routing problem.
European Journal of Operational Research 210(2), 204–212 (2011)

108. Prodhon, C., Prins, C.: A memetic algorithm with population management (MA | PM) for the
periodic location-routing problem. In: C. Blum, M.J.B. Aguilera, A. Roli, M. Sampels (eds.)
Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 114, pp. 43–57. Springer
(2008)

109. Qu, Y., Bard, J.F.: A GRASPwith adaptive large neighborhood search for pickup and delivery
problems with transshipment. Computers & Operations Research 39(10), 2439–2456 (2012)

110. Rego, C.: A subpath ejection method for the vehicle routing problem. Management Science
44(10), 1447–1459 (1998)

111. Rego, C., Roucairol, C.: A parallel tabu search algorithm using ejection chains for the vehicle
routing problem. In: I.H. Osman, J.P. Kelly (eds.) Meta-Heuristics: Theory and Applications,
pp. 661–675. Kluwer, Boston (1996)

112. Reimann, M., Doerner, K., Hartl, R.: D-ants: Savings based ants divide and conquer the
vehicle routing problem. Computers & Operations Research 31(4), 563–591 (2004)

113. Rochat, Y., Taillard, E.: Probabilistic diversification and intensification in local search for
vehicle routing. Journal of Heuristics 1(1), 147–167 (1995)

114. Ruan, Q., Zhang, Z., Miao, L., Shen, H.: A hybrid approach for the vehicle routing problem
with three-dimensional loading constraints. Computers & Operations Research 40(6), 1579–
1589 (2013)

115. Russell, R., Chiang, W.: Scatter search for the vehicle routing problem with time windows.
European Journal of Operational Research 169, 606–622 (2006)

116. Sahin, M., Cavuslar, G., Oncan, T., Sahin, G., Aksu, D.: An efficient heuristic for the multi-
vehicle one-to-one pickup and delivery problem with split loads. Transportation Research
Part C: Emerging Technologies 27, 169–188 (2013)

117. Santos, L., Coutinho-Rodrigues, J., Current, J.: An improved ant colony optimisation based
algorithm for the capacitated arc routing problem. Transportation Research Part B: Method-
ological 44(2), 246–266 (2010)

118. Schilde, M., Doerner, K., Hartl, R.: Metaheuristics for the dynamic stochastic dial-a-ride
problem with expected return transports. Computers & Operations Research 38(12), 1719–
1730 (2011)

119. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization
results using the ruin and recreate principle. Journal of Computational Physics 159(2), 139–
171 (2000)

120. Silva, M., Subramanian, A., Vidal, T., Ochi, L.: A simple and effective metaheuristic for the
minimum latency problem. European Journal of Operational Research 221, 513–520 (2012)

121. Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: A path relinking
approach for the teamorienteering problem.Computers&OperationsResearch 37(11), 1853–
1859 (2010)

15 Metaheuristics for Vehicle Routing Problems 437

122. Subramanian, A., Penna, P.H.V., Uchoa, E., Ochi, L.S.: A hybrid algorithm for the hetero-
geneous fleet vehicle routing problem. European Journal of Operational Research 221(2),
285–295 (2012)

123. Tarantilis, C.: Solving the vehicle routing problem with adaptive memory programming
methodology. Computers & Operations Research 32(9), 2309–2327 (2005)

124. Tarantilis, C., Kiranoudis, C.: Bone route: An adaptive memory-based method for effective
fleet management. Annals of Operations Research 115, 227–241 (2002)

125. Thangiah, S.: Vehicle routing with time windows using genetic algorithms. In: L. Chambers
(ed.) Application Handbook of Genetic Algorithms: New Frontiers, pp. 253–277. CRC Press
(1995)

126. Thompson, P., Psaraftis,H.: Cyclic transfer algorithms formultivehicle routing and scheduling
problems. Operations Research 41, 935–946 (1993)

127. Ting, C.J., Chen, C.H.: A multiple ant colony optimization algorithm for the capacitated loca-
tion routing problem. International Journal of Production Economics 141(1), 34–44 (2013)

128. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, Philadelphia, PA (2001)

129. Toth, P., Vigo, D.: The granular tabu search (and its application to the vehicle routing prob-
lems). INFORMS Journal on Computing 15(4), 333–346 (2003)

130. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods and Applications, 2nd edn. SIAM,
Philadelphia (2014)

131. Ursani, Z., Essam, D., Cornforth, D., Stocker, R.: Localized genetic algorithm for vehicle
routing problem with time windows. Applied Soft Computing 11(8), 5375–5390 (2011)

132. Usberti, F., França, P., França, A.: GRASPwith evolutionary path-relinking for the capacitated
arc routing problem. Computers & Operations Research (forthcoming) (2011)

133. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm
for multidepot and periodic vehicle routing problems. Operations Research 60(3), 611–624
(2012)

134. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-
attribute vehicle routing problems. Technical Report of 2013-22, CIRRELT,Montréal, Canada
(2012)

135. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: Timing problems and algorithms: time
decisions for sequences of activities. Networks 65(2), 102–128 (2015)

136. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows. Com-
puters & Operations Research 40(1), 475–489 (2013)

137. Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L., Velasco, N.: A GRASP with evolution-
ary path relinking for the truck and trailer routing problem. Computers&Operations Research
38(9), 1319–1334 (2011)

138. Wolf, S., Merz, P.: Evolutionary local search for the super-peer selection problem and the
p-hub median problem. In: T. Bartz-Beielstein, M. Blesa Aguilera, C. Blum, B. Naujoks,
A. Roli, G. Rudolph, M. Sampels (eds.) Hybrid Metaheuristics, Lecture Notes in Computer
Science, vol. 4771, pp. 1–15. Springer (2007)

139. Yu, B., Yang, Z.Z.: An ant colony optimization model: The period vehicle routing problem
with time windows. Transportation Research Part E: Logistics and Transportation Review
47(2), 166–181 (2011)

140. Zachariadis, E.E., Kiranoudis, C.T.: A local search metaheuristic algorithm for the vehicle
routing problemwith simultaneous pick-ups and deliveries. Expert SystemswithApplications
38(3), 2717–2726 (2011)

141. Zhang, T., Chaovalitwongse, W., Zhang, Y.: Scatter search for the stochastic travel-time vehi-
cle routing problem with simultaneous pick-ups and deliveries. Computers & Operations
Research 39(10), 2277–2290 (2012)

Chapter 16
Applications to Air Traffic Management

Nicolas Durand, David Gianazza, Jean-Baptiste Gotteland,
Charlie Vanaret and Jean-Marc Alliot

16.1 Introduction

Air traffic management (ATM) is an endless source of challenging optimization
problems. Before discussing applications of metaheuristics to these problems, let us
describe an ATM system in a few words, so that readers who are not familiar with such
systems can understand the problems being addressed in this chapter. Between the
moment passengers board an aircraft and the moment they arrive at their destination,
a flight goes through several phases: pushback at the gate, taxiing between the gate
and the runway threshold, takeoff and initial climb following a Standard instrument
departure (SID) procedure, cruise, final descent following a standard terminal arrival
route (STAR), landing on the runway, and taxiing to the gate. During each phase, the
flight is handled by several air traffic control organizations: airport ground control,
approach and terminal control, and en-route control. These control organizations
provide services that ensure safe and efficient conduct of flights, from departure to
arrival.

These services are provided by human operators. In order to share the tasks among
several operators, the airspace is divided into several airspace sectors, each monitored
by one or two air traffic controllers. Within this sectorized airspace, aircraft fly on a
network of predefined routes, occasionally deviating from their route when instructed

N. Durand (B) · D. Gianazza · J.-B. Gotteland · C. Vanaret
Laboratoire MAIAA (Ecole Nationale de l’Aviation Civile), Toulouse, France
e-mail: durand@recherche.enac.fr

D. Gianazza
e-mail: gianazza@recherche.enac.fr

J.-B. Gotteland
e-mail: gottelan@recherche.enac.fr

J.-M. Alliot
Institut de Recherche en Informatique de Toulouse, Toulouse, France
e-mail: alliot@irit.fr

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_16

439

440 N. Durand et al.

so by a controller, in order to avoid collisions with other aircraft. The design of the
route network and sector boundaries must satisfy contradicting objectives: each flight
should follow the most direct route from origin to destination; however, the overall
traffic must be organized so as to be manageable by human controllers. The latter
objective requires, for example, that each sector contains only a relatively small
number of crossing points between routes, so that controllers can have a clear mental
picture of the traffic of which they are in charge. In addition, there should be enough
room around each crossing point to allow for lateral maneuvering of conflicting
aircraft. As we shall see in this chapter, airspace sectorization and route network
design are themselves challenging optimization problems that can be formulated
and addressed in many different ways.

The smooth and efficient operation of an ATM system relies on an efficient orga-
nization of the system that is subject to many constraints. Large portions of airspace
are the responsibility of various managerial units (air traffic control centers). The air
traffic controllers working in these centers are trained and qualified to work in spe-
cific geographic areas. Consequently, airspace sectors are grouped by qualification
zones, also called functional airspace blocks in this chapter. The staff operating a
given functional airspace block follow a duty roster where several teams relays with
each other to provide air navigation services to airspace users 24 hours a day, 7 days
a week, all year long. In a control room, a controllers’ working position can han-
dle one or several airspace sectors belonging to the same functional airspace block.
Several questions arise concerning the optimization of the ATM system regarding
these organizational and operational issues. At the strategic level, how can the func-
tional airspace blocks be optimized in order to balance the workload and minimize
coordination? In daily operations, how does one allocate sectors to controllers’ work-
ing positions in order to optimally balance the workload among the open working
positions, while preventing overloads?

It is not always possible to avoid overloads only by reassigning airspace sectors to
different working positions. One must sometimes enforce traffic regulation measures,
for example, by rerouting some flights, or by allocating takeoff slots to departing
flights. These measures smooth the traffic demand, so that it does not exceed the
capacity of the ATM system to handle this traffic. The resulting slot allocation and
flight rerouting problems are challenging constrained optimization problems of large
size that must be addressed on a continental scale.

The core of the air traffic controllers’ activity is to facilitate the flow of traffic
through the sectors that they are responsible for, while avoiding collisions between
aircraft. To satisfy this essential safety constraint, they must resolve conflicts between
trajectories. Such conflicts may occur at any time during a flight, during taxiing,
takeoff, climb, cruise, descent, or landing. The underlying constrained optimization
problem is to minimize the deviations from the nominal trajectories while main-
taining horizontal and vertical separations between conflicting aircraft. Conflicts
related to runway occupancy can only be resolved by optimizing the landing and
takeoff sequences. When aircraft are taxiing, conflict resolution can be achieved by
choosing different paths or by making aircraft wait on some taxiways. An additional
constraint may then occur: some flights must respect their takeoff slots. For airborne

16 Applications to Air Traffic Management 441

aircraft, the air traffic controller can order pilots to make different types of maneu-
vers: horizontal deviations, vertical maneuvers, a modified rate of climb or descent,
or speed adjustments.

In this quick description of an ATM system, several optimization problems have
been introduced. These problems are complex and not always easy to formulate
explicitly for the actors, in the system, for several reasons. First, all these problems
are related to one another, and ideally they should all be answered at once. For exam-
ple, one can avoid airspace congestion by smoothing the traffic (e.g., by delaying
departing flights), but one can also address this by dynamically reassigning airspace
sectors to working positions or by addressing both problems simultaneously. This
gives us three different formulations for the same general problem (airspace conges-
tion). Second, ATM relies on complex systems involving many actors from different
domains, operating with different temporal horizons. Airlines, air navigation service
providers, and airports conduct different activities in the short, medium, and long
term. Finally, these activities are subject to many uncertainties: predicting an aircraft
trajectory is difficult because of errors generated by uncertainties in the weather,
the pilot’s intentions, and aircraft parameters. Before departure, missing luggage or
passengers can generate unexpected delays in takeoffs. Dealing with uncertainties
requires complex models that must be robust and reactive.

Modeling ATM problems is a difficult task in this context: if the model is too sim-
ple, it cannot handle realistic hypotheses; if it is too complex, it becomes impossible
to optimize. Furthermore, when problems are correctly modeled, they are often hard
to solve by exact methods, because of their huge size.

For all these reasons, metaheuristics are generally good candidates for answering
many ATM optimization problems. We will see with some examples that they can
sometimes be less efficient than exact methods, and with some other examples that
they are the best methods known.

In this chapter, we present several examples of applications grouped by theme:
route network optimization, airspace optimization, takeoff slot allocation, airport
traffic optimization, and en-route conflict resolution. For each example, we give
details of the model chosen, explain the complexity of the problem, describe the
metaheuristics used, and present alternative methods when they exist.

16.2 Air Route Network Optimization

The air route network, as it exists today, is the result of successive modifications
that have been made over time, taking into account some geographic and technical
constraints. In the recent past, every air route was defined as a sequence of segments
starting and ending at waypoints, which had to be located at the geographic coordi-
nates of ground-based radionavigation aids. This is not the case anymore, as modern
navigation systems can handle waypoints located almost anywhere. However, there

442 N. Durand et al.

remain other constraints on the positioning of the nodes of the network.1 Typically,
the crossing point of two intersecting routes should not be too close to a sector bound-
ary, so that there is enough room for lateral maneuvers in the vicinity of this crossing
point.

The continuous increase in overall traffic since the beginning of commercial avi-
ation has often led people to rethink and redesign the route network, on a local or
global scale, and even to propose new concepts for the operation of air routes and
airspace sectors. An example of such a new concept, which has been proposed several
times for air traffic but has not been implemented yet, is to define 3D routes dedicated
to the most important traffic flows. This concept is similar to that of highways for
ground traffic that accommodate flows of car traffic between large cities.

Optimizing the air route network is a problem that can be formulated and addressed
in several ways. Let us list a few of them:

• Node and edge positioning. The route network can be seen as a planar graph in
dimension 2 in which the edges must not cross.

• Node positioning only. Starting from an initial network (e.g., a regular grid), one
can move the nodes in order to optimize a given criterion related to the routing of
the traffic flow, while maintaining the planar property of the graph.

• Optimal positioning of 2D routes for the largest traffic flows.
• In dimension 3, optimal placement of separated “3D tubes” for the largest origin–

destination flows.

16.2.1 Optimal Positioning of Nodes and Edges Using
Geometric Algorithms

In current operations, air traffic controllers resolve conflicts occurring within the
airspace volumes (sectors) of which they are in charge. The airways followed by
aircraft must take this sectorization constraint into account: crossing points should
not be near sector boundaries, and there must be enough space around each crossing
point to allow for lateral maneuvers. In addition, the network must be designed so
as to minimize trajectory lengthening when compared with the direct routes. Ideally,
large traffic flows should be deviated less from their direct routes than small flows.

The horizontal projection of an air route network can be seen as a planar graph
whose nodes are the intersections between the routes, and whose edges are route
segments between crossing points. The objective, when building such a network, is
to position the nodes and edges so as to satisfy a constraint on the distances between
nodes while minimizing the trajectory lengthenings for aircraft flying on the network.

The method to address this problem that we are now going to present is not a
metaheuristic. It consists in applying first a clustering method to the crossing points

1The waypoints are considered here as the nodes of the air route network. Note that a dual repre-
sentation, where route segments are nodes and waypoints are edges, is also possible.

16 Applications to Air Traffic Management 443

between direct routes, and then a geometric triangulation algorithm to build route
segments joining the barycenters of the clusters. This method was introduced by
Mehadhebi [72] (see also [42], (in French) for the application of a similar method).
It is not aimed at finding a global optimum for the positioning problem. However,
the method can build a network satisfying the node separation constraint, and the
solutions are of good quality, by construction, because the method is applied to an
initial situation where the routes are direct, from origin to destination. As such, this
method could be used as a baseline in future work for trying to apply metaheuristics
to the node and edge positioning problem. This is why it is worth mentioning here.

The aim of the clustering method is to position the nodes of the network taking
account of the traffic demand, so that they satisfy a minimum separation distance
between nodes. For this purpose, the crossing points between direct routes are first
computed, using for example a sweep line geometric algorithm. Then, the crossing
points are clustered according to proximity criteria, so that the barycenters of the
clusters are at least a distance d1 apart, and the points that are closer to a barycenter
than a distance d2 belong to the corresponding cluster. Typically, a variant of the
k-means method can be used to compute the clusters. In computing the barycenter,
weights related to the traffic flows passing through the crossing points can be used.
Such a weighting of the crossing points avoids moving crossing points with heavy
traffic too much. Figures 16.1 and 16.2 illustrate this clustering process applied to
French airspace.

Once the network nodes have been computed, the edges are positioned so that
they do not cross (otherwise the graph would not be planar), using a geometric
triangulation method. Figures 16.3 and 16.4 show the results obtained by applying

-1e+06

-800000

-600000

-400000

-200000

0

200000

400000

-1e+06 -800000 -600000 -400000 -200000 0 200000 400000 600000

Direct routes
Crossing points

Fig. 16.1 Crossing points of direct routes with traffic flows above 10 flights per day

444 N. Durand et al.

-1e+06

-800000

-600000

-400000

-200000

0

200000

400000

-1e+06 -800000 -600000 -400000 -200000 0 200000 400000 600000

Airports and entry/exit points
Crossing points

Clusters' barycenters

Fig. 16.2 Clustering process applied to crossing points

-1e+06

-800000

-600000

-400000

-200000

0

200000

400000

-1e+06 -800000 -600000 -400000 -200000 0 200000 400000 600000

Cluster' centers
Voronoi: diagram

Fig. 16.3 Voronoi diagram of the barycenters of the clusters

the S. Fortune algorithm [39] to the barycenters of the clusters of crossing points.
This algorithm computes both a Delaunay triangulation of the set of points and its
dual graph, a Voronoi diagram.

Each polygonal cell of the Voronoi diagram is such that the points inside that
cell are closer to the barycenter of the cell (i.e., a network node) than to any other
barycenter. This interesting side effect of this geometric method allows us to associate

16 Applications to Air Traffic Management 445

-1e+06

-800000

-600000

-400000

-200000

0

200000

400000

-1e+06 -800000 -600000 -400000 -200000 0 200000 400000 600000

Delaunay triangulation
Voronoi: diagram

Fig. 16.4 Delaunay triangulation of the barycenters of the clusters

a cell of airspace with each node of the network. The area of this cell gives an
indication of how much room is available in the vicinity of the node for the lateral
maneuvers of conflicting aircraft.

In [72], Mehadhebi used the areas of the cells to measure the density of conflicts
when building a network, in order to avoid excessive densities in a given airspace. For
each crossing point, the density was obtained by computing the ratio of a number
quantifying the conflicts2 at that crossing point and the area of the Voronoi cell
associated with the crossing point. In a dense area, moving the crossing points further
apart has the effect of increasing the cell areas, thus decreasing the density. The
optimization method used by Mehadhebi was not described in detail in [72], but it
seems to be an iterative method that locally smooths the density in congested areas.

Once the full network (nodes and edges) has been defined, the flights have to
choose a path in this network, from the departure airport to the destination airport.
These paths must take into account a constraint on the angle between successive
route segments: for any route to be actually flown by an aircraft, the angle between
successive segments must not be too acute. This constraint was handled differently
in [72], where it was satisfied as best as possible in the clustering phase, and in [42],
where it was examined afterwards, when searching for the shortest path in the network
for each flight.

2This quantification of conflicts can be done, for example, using the number of conflicts at the
crossing point weighted by the difficulty of each conflict.

446 N. Durand et al.

16.2.2 Node Positioning with Fixed Topology, Using a
Simulated Annealing or Particle Swarm Optimization
Algorithm

In [81], Riviere focused on a different problem, where the network topology has
already been fixed, and where only the node positioning problem is addressed. Start-
ing from an initial regular grid over the European airspace, he used simulated anneal-
ing [65] to modify this grid, minimizing the sum of trajectory lengthenings between
origin and destination (Fig. 16.5). This optimization process takes account of a min-
imum distance that must be maintained between crossing points.

The evaluation of the trajectory-lengthening criterion requires the computation
of the shortest paths in the network between all origin–destination pairs. This was
done using the Floyd–Warshall algorithm, taking account of a constraint on the angle
between two successive route segments: this angle should not exceed 90◦.

As the objective function being minimized requires the computation of the shortest
paths in the network, the gradient of the objective function cannot be computed
and gradient descent methods cannot be used. One must instead use derivative-free
methods, and metaheuristics such as the simulated annealing method used in [81] or
the particle swarm optimization method used in [16] (which will be described later
on) are a good option.

Starting from an initial point, the simulated annealing algorithm explores the
search space by randomly choosing another point in the neighborhood of the current
point. The move is accepted if the new point improves the objective function. It can
also be accepted if it does not, with a probability that decreases with the number of
iterations (according to the annealing scheme). In the route network design problem,
a point in the search space is a route network, and a local move in the neighborhood
of the current point is a random change in this network.

In more recent work [16], Cai et al. used an approach similar to that of Riviere [81],
but for the Chinese airspace and with a formulation as a multiobjective optimization

Fig. 16.5 Air route network found by simulated annealing (right), starting from an initial regular
grid (left)

16 Applications to Air Traffic Management 447

problem. Two criteria were minimized in this work. The first was related to the
trajectory lengthenings, as in [81]. The second one, taken from [83], was the sum
over all crossing points of the average number of potential conflicts per unit of time.

The metaheuristic used in [16] was a hybrid method combining a variant of particle
swarm optimization (CLPSO; “Comprehensive Learning Particle Swarm Optimiza-
tion,” introduced in [69]) and an ad hoc method relying on local moves of the crossing
points to improve the optimized criteria.

In its canonical version, the particle swarm optimization algorithm iteratively
moves a population of particles, characterized by their positions and velocities, in
the search space, memorizing the best positions found by each particle. Each particle
is moved in the direction of its velocity vector. After each move, the speed vector
is updated, combining several directions, namely, the current velocity vector (i.e.,
the inertia of the particle), the direction to the best position found by the particle,
and the direction to the best position found by the whole swarm (or a subset of the
population). The CLPSO variant uses all the best positions found by the particles to
update the velocity vector, in order to avoid premature convergence toward a local
minima.

The hybrid algorithm proposed in [16] is similar to CLPSO, except that a local
optimization is performed after updating the particles’ positions and velocities. For
each particle (i.e., an air route network), the local optimization tries to move each
node so as to improve the chosen criteria, considering the relative positions of the
nodes and the traffic flows on the edges connected to each node.

Cai et al. compared their hybrid method with the simulated annealing proposed
by Riviere [81], applied to the Chinese airspace. The simulated annealing approach
minimized only one of the two criteria chosen by the authors, so the comparison of
the Pareto fronts was naturally to the advantage of the multi-objective particle swarm
optimization algorithm.

The results were also compared with the current route network in China, showing
significant improvements. The method proposed by Cai et al. is being integrated into
a program used to modify the air route network in China.

16.2.3 Defining 2D Corridors with a Clustering Method
and a Genetic Algorithm

Xue and Kopardekar [91] proposed a method for positioning a limited number of
2D routes (or “corridors”) to accommodate the largest flows over the territory of the
United States. The aim was not to build a network for all of the traffic, but only for
the large flows. How these corridors would be handled, concerning for example the
entry and exit procedures and how to resolve conflicts at the crossing points of these
corridors, was not detailed in the publication. The work focused on how to position
these corridors, considering proximity criteria for the origin–destination flows.

There are many ways to specify an air traffic flow, for example by choosing an
origin and a destination, or by considering the flow through a given sector, through

448 N. Durand et al.

a specific airspace sector boundary, or over a waypoint, etc. In their publication,
Xue and Kopardekar considered aircraft trajectories as great circles on the Earth’s
surface, and a flow was defined as a group of such great circles that are close to one
another.

To cluster these great circles according to a proximity criterion, Xue and
Kopardekar transformed the direct trajectories from departure to arrival into a set
of points in a dual space, using a Hough transform. In this dual space, each trajec-
tory was represented by a pair (ρ, θ), where ρ is the shortest distance between the
trajectory and a reference point, and θ is the angle between a reference direction
and the line perpendicular to the trajectory passing through the reference point. Xue
and Kopardekar then used a basic clustering technique, of a kind usually applied in
image processing, to aggregate the trajectories. By placing a grid with a step size
(�ρ,�θ) over the set of dual points, they simply counted the number of points in
each cell and determined the cells of highest density.

This method allowed them to find groups of trajectories that were geographically
close to one another. In the dual representation of the largest flows, the points in the
cells with the highest densities were replaced by a single corridor (a point in the dual
space). As a first approximation, they took the barycenter of the points (trajectories
in the initial space).

One drawback of this representation in the dual space is that the arrival and
departure points in the original space are lost in the transformation. One cannot
directly measure the trajectory lengthening in the dual space for aircraft flying in the
corridors computed by this method. The additional distance flown by the aircraft is
a very important cost criterion for airline operators.

A genetic algorithm [54, 74] was then used to refine the approximate solution
found by the above method. This algorithm iterated on a population of individu-
als, following a Darwinian process of selection (according to a fitness criterion),
crossover, and mutation. An individual here was a set of barycenters (representing
corridors in the initial space). This was encoded as a collection of coordinates (ρ, θ)

in the dual space. The initial population was built from the approximate solution
found by the first method. The fitness criterion was the sum of the trajectory length-
enings in the initial space, for all flights flying in the corridors.

With 200 elements in the population, 200 generations, a crossover probability of
0.8, and a mutation probability of 0.2, the proportion of flights flying in the corridors
with no more than a 5 % trajectory lengthening increased from 31 % for the initial
solution to 44 % for the best solution found by the genetic algorithm.

16.2.4 Building Separate 3D Tubes Using an Evolutionary
Algorithm and an A∗ Algorithm

In the studies we have presented so far on the optimization of the air route network,
there was no attempt to avoid intersecting routes (or corridors) while building the
network. Crossing points were actually part of the planar graph representation that

16 Applications to Air Traffic Management 449

was used in the geometric methods [42, 72], where defining the nodes and edges of
such a planar graph was the objective, as well as in the metaheuristic approaches [16,
81], where the aim was to position the network nodes, starting from an initial reg-
ular grid. The optimal positioning of 2D corridors in [91] also allowed corridors to
intersect.

For the network structure actually to be beneficial in decreasing the number of
conflicts between aircraft flying through it, one must introduce a vertical segregation
of traffic flows. This vertical segregation can be introduced locally at the crossing
points, or by considering origin–destination flows, or for each flight, depending on
the direction of the route it follows. Graph coloration methods, which will not be
described here, can be used to assign different flight levels to crossing flows [8,
67]. However, such methods only consider cruising flights. Descending or climbing
aircraft are not taken into account.

Another approach, proposed by Gianazza et al. [42, 43, 49–51] is to build sep-
arate 3D tubes for the largest origin–destination flows. A 3D tube, as illustrated in
Fig. 16.6, is a volume computed from the envelope of the minimum and maximum
climb or descent profiles of all aircraft flying in the tube. Vertical and horizontal
distance buffers are added to this envelope to take account of the standard vertical
and horizontal separations.

The idea is that aircraft flying in such 3D tubes would be sequenced at the departure
point and would ensure self-separation from other aircraft in the same tube. They
would have priority over the rest of the traffic. The 3D tubes would be built so as not
to intersect, thus ensuring there would be no conflicts between flights in the main
traffic flows.

The aim is to assign one 3D tube to each flow of sufficient importance. A flow
is defined here by two points (origin, destination) and a cruising flight level (the
requested flight level, denoted by RFL). A variant of the k-means method is used to
cluster the flights into origin–destination–RFL flows. As a consequence, there might
be several flows for a given origin–destination pair, corresponding to several cruising
flight levels.

The 3D tubes must be as short as possible. The tubes assigned to different origin–
destination pairs must not intersect. For tubes having the same origin and destination
with different cruising flight levels, the initial climb and final descent are common
to them (and considered as the same tube for these phases). The possible lateral and
vertical deviations of a 3D tube, which might be introduced to avoid other 3D tubes,
are shown in Fig. 16.7. A 3D tube associated with an origin–destination–RFL flow

Fig. 16.6 Example of a 3D
tube, with only one cruising
flight level

450 N. Durand et al.

Arrival
airport

Departure
airport

Right deviation

Left deviation
CFL2

CFL1 CFL3

d3d2d1=0

Default vertical profileRFL

Vertical profile

Fig. 16.7 Possible lateral and vertical deviations

is completely defined by a discrete choice from among several options for the 2D
route, and by a sequence of pairs (dk, CFLk), where dk is the distance along the route
at which a vertical deviation toward the flight level CFLk begins. (CFL stands for
“cleared flight level.”)

This constrained optimization problem is highly combinatorial. To solve it,
Gianazza et al. used an evolutionary algorithm hybridized with an A∗ algorithm. The
evolutionary algorithm iterates on a population of elements where each individual is
a full network of 3D tubes, applying selection, crossover, and mutation operators to
this population of networks. The fitness of an individual is assessed by computing
a triangular matrix C, where the diagonal elements i are the costs of the deviations
of 3D tube number i from the most direct trajectory (the direct route between origin
and destination, at requested flight level). These diagonal elements are the costs to be
minimized. The nondiagonal elements contain the constraint violations. An element
(i, j) of the matrix C, with i < j, contains the number of intersections of 3D tubes
i and j. Denoting the number of constraint violations for tube i, by f (i), the fitness
criterion F is expressed as follows:

F =
{

1 + n
1+∑

i Cii
if

∑
i f (i) = 0

1∑
i f (i) if

∑
i f (i) > 0

The fitness criterion to be maximized by the evolutionary algorithm is less than 1
when intersections of 3D tubes remain, and greater than 1 when all 3D tubes are sep-
arated. In the latter case, the fitness increases when the lateral or vertical deviation
decreases. This raw fitness is scaled, using a sigma truncation scaling. A cluster-
ized sharing operator is then applied, which modifies the fitness landscape so as to
avoid premature convergence toward local optima. An elitist strategy is employed,
preserving the best element of each cluster in the population when its fitness is close
enough to the fitness of the best element. Apart from the best elements, the pool of
parents is selected using the principle of stochastic remainder without replacement.
The crossover and mutation operators are applied according to chosen probabilities.

The crossover operator is similar to the one proposed by Durand et al. [31, 35]. This
operator is specifically designed for partially separable objective functions. It remains

16 Applications to Air Traffic Management 451

efficient when large problems are being addressed, as shown in [28]. This specific
crossover operator requires one to define a local fitness for each gene (here a 3D tube)
of each individual (here a full network) in the population. The local fitness chosen
here is fk = −f (k), the negative of the number of constraint violations for flow k. The
crossover itself is either a standard barycentric crossover (with probability 2

3 in [43])
or a deterministic crossover (with probability 1

3). In the deterministic crossover, the
first descendant inherits gene k of parent p1 and the second inherits gene k of parent
p2 when fk(p1) = fk(p2). When the local fitnesses differ, both descendants inherit the
best gene.

The mutation is where the hybridization with the A∗ algorithm takes place. A gene
(3D tube) is selected for mutation, preferentially, one picks a tube with a bad local
fitness if F < 1 (when there remain constraint violations) or with a high deviation
cost if F ≥ 1 (when all tubes are separated). The mutation operator replaces the
chosen tube with a new one, computed using an A∗ algorithm. If no solution is found
by the A∗ algorithm, one of the parameters defining the chosen tube is randomly
modified: the route choice, entry or exit flight levels, if any, or one of the cruising
flight levels. For these last parameters, we have a choice (with equiprobability) from
among several possibilities: add a new cruising flight level, remove an existing flight
level, or modify one by changing the associated distance dj or the level value CFLj.
As the A∗ algorithm is relatively costly in computation time, it can be replaced (with
a chosen probability) by a greedy method.

In [43], the two variants of the hybrid evolutionary algorithm (with A∗ in the muta-
tion, or with A∗ and a greedy method) were compared with nonhybrid evolutionary
algorithms (the canonical algorithm, with or without a bias in the selection for the
mutated elements, or with the crossover operator for partially separated problems).
The comparison was done on two test cases, one with 10 3D tubes and the other
with 40 tubes. The results were improved when the hybrid method and the specific
operators, were used. Figure 16.8 shows the evolution of the fitness criterion of the
best element in the population for the two test cases where the origin and destination
were located on a circle. The algorithm was run with 350 elements in the population,
with a crossover probability of 0.6 and a mutation probability of 0.05.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120 140

Generation number

Fi
tn

es
s

of
 b

es
t e

le
m

en
t

Standard GA
GA with biased mutation

GA with adapted crossover
Hybrid GA-ASTAR

Hybrid GA-ASTAR-Greedy 0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

GA with adapted crossover
Hybrid GA-ASTAR

Hybrid GA-ASTAR-GreedyFi
tn

es
s

of
 b

es
t e

le
m

en
t

Generation number

Fig. 16.8 Comparison of different algorithms on test cases with 10 3D tubes (left) and 40 tubes
(right) (GA, genetic algorithm.)

452 N. Durand et al.

Fig. 16.9 Solution by an A∗
algorithm, on a test case with
10 3D tubes

-400-300-200-100 0 100 200 300 400
-400

-300
-200

-100
 0

 100
 200

 300
 400

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

ft

NM
NM

ft

The hybrid evolutionary algorithm was also compared with a standalone A∗ algo-
rithm. In this case, the standalone A∗ algorithm was applied successively to each
3D tube, building a new 3D tube that avoided the previous ones. The drawbacks of
this approach are first that it does not aim to find a global optimum, and second that
the solution found depends on the order in which we compute the tubes. Figure 16.9
shows a solution found by the A∗ algorithm alone for the problem with 10 tubes. The
fitness criterion F of this solution is 1.1674, which is less than the results found by
the variants of the evolutionary algorithm, for which the average value over 10 runs
was always above 1.19. For the problem with 40 tubes, the A∗ algorithm was not
able to find solutions satisfying the separation constraints.

To conclude on the construction of 3D tubes for the main traffic flows, the results
presented in [43] show that using a metaheuristic to address this problem gives good
results, and even better results when this metaheuristic is hybridized with an exact
best-first tree-search method such as the A∗ algorithm. The results of application of
this hybrid method to real traffic over France and Europe [42] confirm these results,
but they also show the limits of the concept. Building 65 separate 3D tubes over
Europe, for flows with more than 20 flights per day, captured only 6 % of the overall
traffic. This is due to the fact that the flows are built by considering departure and
arrival airports. To improve the concept, one needs first to clusterize airports that are
geographically close, as was done in [85], and then define 3D tubes between these
clusters.

16.3 Airspace Optimization

In the previous section, we presented several approaches to building a route network,
or independent “tubes,” for the principal flows. In Sect. 16.2.1, the modeling of the
partitioning of airspace into sectors with Voronoï cells for which a density criterion
can be calculated was briefy described. This could be a way to build simultaneously
a route network and partitioning of an airspace into sectors.

In this section, we suppose that the route network has been defined, and we focus
on three problems related to the definition and management of airspace sectors. In the
first problem, we want to define the sector edges so that we minimize different criteria
such as the workload due to the coordination of flights crossing sector boundaries

16 Applications to Air Traffic Management 453

or the workload related to trajectory monitoring and conflict resolution within the
sector boundaries.

In the second problem, elementary sectors have been defined, and we want to
optimize the functional airspace blocks3 in order to balance the traffic between blocks
and limit the flows between the blocks.

In the third problem, we try to dynamically optimize the daily management of an
airspace block: the problem is to group sectors in order to balance the controllers’
workload, to avoid overloads and respect various operational constraints.

In the following sections, we give some examples of solutions using metaheuristics
for these three problems.

16.3.1 Airspace Sectorization

The control sectors have evolved as traffic has increased, but they are still manually
defined by human experts, mostly air traffic controllers. It is worth asking whether
the partition of airspace into sectors is optimal regarding the evolution of traffic. The
problem is difficult, because the model must be able to take into account various
shapes of sectors, but remain simple enough to be solved. Delahaye presented a
simple model for sectors in the horizontal plane in his Ph.D. thesis [20] (see also [21,
22]) (he did not consider the vertical dimension). In this model, n control sectors are
characterized by n centers of a Voronoi diagram representing the limits of the sectors
(see Fig. 16.10).

The main advantage of this model is that a sector is defined by a single point.
However, different sets of points can define the same Voronoi diagram. This is the case
for the example in Fig. 16.10, where the triplets (C0, C1, C2) and (C′

0, C′
1, C′

2) define
the same sectorization. This is also the case for the triplets (C1, C2, C0), (C2, C0, C1)

and for every permutation of the triplet (C0, C1, C2) which gives the same result.
Another issue with this model is that it only produces convex sectors, whereas real
sectors are not always convex. Delahaye optimized the airspace sectorization with a
classical evolutionary algorithm as described in [54, 58]:

• A vector of reals represents the coordinates of the class centers used to build the
Voronoi diagram.

• The optimized criteria take into account the coordination workload (the number of
aircraft flying from one sector to another), the monitoring workload (the number
of aircraft inside the sector), and the resolution workload (the number of pairwise
conflicts inside a sector). The objective function is aimed at balancing these three
criteria while respecting constraints such as:

3A functional airspace block is a set of sectors in which several teams of controllers are qualified.
Airspace blocks are independently managed by these different teams, which work in relays with
one another. Several sectors in the same airspace block can be merged and controlled by the same
pair of controllers. However, two sectors from different airspace blocks cannot be merged.

454 N. Durand et al.

Fig. 16.10 Sector modeled
by class centers

– the time spent by an aircraft in a sector should be longer than some minimum
time;

– the routes followed by aircraft should not cross too close to the border of the
sector.

An analytical expression that summarizes all these criteria is not possible; only a
simulation can measure the quality of a sectorization. Metaheuristics are a good
option in such a case because the objective function can be seen as a black box.

• The crossover operator identifies the class centers closest to both parents (which
is a minimization problem) and applies a classical arithmetic crossover operation
on these pairs.

• The mutation operator randomly moves one or several class centers in a defined
neighborhood.

After his Ph.D. thesis, Delahaye proposed improved models in order to handle
nonconvex sectors [26]. He also added the vertical dimension to his model in order
to make it more realistic [24, 25]. Kicinger and Yousef [64] also proposed an evolu-
tionary algorithm combined with an elementary cell aggregation heuristic in order to
partition the airspace into sectors. Xue [90] introduced an approach using a Voronoi
diagram optimized with an evolutionary algorithm, applied to the American airspace.
In 2009, Zelinski [92] compared three methods for defining sectors, one based on
traffic flow aggregation, another based on Voronoi diagrams optimized with evolu-
tionary algorithms, and a third one using integer linear programming. Experiments
showed the advantages and drawbacks of each method, but none really outperformed
the others.

16.3.2 Definition of Functional Airspace Blocks

In Europe, the airspace structure follows the national borders of the different states.
Nowadays, more than 60 control centers cover the airspace of around 40 member

16 Applications to Air Traffic Management 455

Fig. 16.11 Graph model for an airspace partition

Fig. 16.12 Three functional blocks and the corresponding sectors

states of the European Organization for the Safety of Air Navigation (Eurocontrol).
In the context of FABEC,4 the problem is to reorganize the control centers in order
to simplify the global structure. Among the numerous criteria that Eurocontrol has
defined, three are quantifiable and could lead to a better balance of the distribution
of centers:

• airspace blocks must minimize flows on their borders;
• important flows must take place inside the blocks;
• traffic must be balanced between different airspace blocks.

In his Ph.D. thesis, Bichot [11] modeled the problem as a graph partitioning
problem. Here, the vertices of the graph are the sectors, and the edges are the flows
connecting the sectors. The edge weights are the mean numbers of aircraft in the
flows connecting the sectors.

Figure 16.11 shows a graph modeling a five-sector problem. Figure 16.12 shows
a partition of the airspace into three functional blocks and the associated graph.

The minimization criterion chosen by Bichot was a normalized cut ratio criterion
corresponding to the sum of the flows entering or exiting the functional blocks divided
by the sum of the internal flows. He added a balance constraint: the weight of a block
must not exceed k times the mean weight of every block. After showing the problem
was NP-complete [12], Bichot tested several different classical algorithms on real

4Functional Airspace Block Central Europe.

456 N. Durand et al.

recorded data (several months of European traffic), and compared them with two
metaheuristics and also established with an innovative metaheuristic named “fusion–
fission.”

16.3.2.1 Simulated Annealing Algorithm

A simulated annealing algorithm requires a starting point. Bichot used a random
configuration based on a percolation algorithm to build the starting point. He sup-
posed that the graph was known, as well as the vertices and edges. The number of
blocks was also fixed. A percolation algorithm simulates the movement of fluids
through porous materials. Bichot defined as many sources of fluid as the desired
number of functional blocks. Each source of fluid was a sector that was the kernel
of the functional airspace block to which all other sectors were progressively linked.
A detailed explanation of the algorithm is given in [12]. With this starting point,
Bichot used a standard simulated annealing algorithm: in every step, a sector was
randomly chosen in a functional airspace block and linked to another airspace block.
The algorithm was divided into two phases. During the first phase of the algorithm,
the control temperature was still high and the chosen sector was linked to a block
with a low cut ratio. During the second phase, the control temperature was lower, and
the chosen sector was linked to a neighboring block. The temperature adjustment
and the time at which the algorithm switched to the second phase seem to have been
chosen empirically.

16.3.2.2 Ant Colony Algorithm

In order to apply ant colony optimization to the functional airspace block partitioning
problem, Bichot introduced a model in which one ant colony represented one block.
Each block was the territory of one colony. The different colonies competed to
get sectors and deposit their pheromones. More concretely, a sector belonged to the
colony that had the largest amount of pheromones on it. After each ant movement, the
value of the new state was calculated. If the ant movement decreased the criterion, the
new partition was accepted, otherwise the partition was accepted with a probability
following a rule similar to the simulated annealing method. This approach, like the
previous one, requires one to adjust many parameters.

16.3.2.3 A Fusion–Fission Method

In his Ph.D. thesis [11], Bichot introduced a heuristic called “fusion–fission,” by
analogy with nuclear fusion and fission. For the fusion part, the idea is to merge
two functional airspace blocks sharing the largest amount of traffic (as shown in
Fig. 16.13). For the fission part, the principle is to divide the largest airspace block

16 Applications to Air Traffic Management 457

Fig. 16.13 Fusion of two blocks

Fig. 16.14 Fission of the largest functional airspace block

into two blocks (see Fig. 16.14). Bichot refined his method by allowing some sectors
to move from one block to another according to the cut ratio minimization criterion.

In [12], Bichot et al. showed that this last approach seemed more efficient and
easier to apply than the simulated annealing and ant colony approaches. He also
compared fusion–fission with classical graph-partitioning methods.

16.3.2.4 Comparison of Fusion–Fission and Classical-Graph
Partitioning Methods

Bichot and Durand [13] compared two classical graph-partitioning algorithms (the
Scotch and Graclus algorithms) with the fusion–fission approach and showed that
the latter was more efficient than the Scotch and Graclus algorithms, but also much
more time-consuming. Table 16.1 compares the normalized cut criterion, the balance
between block sizes, and the maximum number of sectors per functional airspace
block for the three algorithms. It also gives the values of the criteria for the existing
partition of French airspace.

Figures 16.15 and 16.16 show the existing and optimized functional blocks for
two flight levels (16 000 and 36 000 feet). The optimized partition divides the French
airspace into only five blocks, instead of six for the existing partition. This result
could provide an argument in favor of a partition with more blocks in the lower
airspace and fewer blocks in the higher airspace.

Table 16.1 Partitions of french airspace

Algorithm Ncut Balance Max number of sectors

Fusion–Fission 1.09 1.14 26

Scotch 1.18 1.20 30

Graclus 1.28 1.52 38

Existing partition 1.64 1.50 31

458 N. Durand et al.

Fig. 16.15 Existing French functional airspace blocks (left, 16 000 feet; right, 36 000 feet)

Fig. 16.16 Optimized French functional airspace blocks (left, 16 000 feet; right, 36 000 feet)

16.3.3 Prediction of ATC Sector Openings

We have seen in Sect. 16.3.1 how to define the airspace sector boundaries, given
the air routes and traffic flows. In Sect. 16.3.2, we have seen how to group these
airspace sectors into functional blocks, each placed under the responsibility of an air
traffic control center. Operations such as sectorization and the definition of functional
airspace blocks are in fact a strategic redesign of the whole airspace, which should
be done well in advance before daily operations take place.

In this section, we focus on real-time or pretactical operations, assuming that
the airspace sector geometry is fixed and that sectors have already been allocated
to functional airspace blocks, as the result of a strategic design of the airspace. We
consider a set of airspace sectors belonging to an air traffic control center (or a
functional airspace block). In the daily operations of a control room, airspace sectors

16 Applications to Air Traffic Management 459

are dynamically assigned to air traffic controllers’ working positions. The group of
airspace sectors assigned to a working position is called an air traffic control (ATC)
sector.

Figures 16.17 and 16.18 illustrate the partitioning of an airspace into ATC sectors
using a toy example with five airspace sectors, denoted by numbers, and a list of
acceptable groups denoted by letters.

The partitioning may change several times during the day, depending on the work-
load perceived by the controllers. Figure 16.19 shows a few other possible partitions
that could be used instead of the partition presented in Fig. 16.17. Some operational
constraints must also be taken into account: the duty roster, the maximum number of
working positions that can be opened, and the list of possible groups that can actually
be operated as ATC sectors (as already illustrated in Fig. 16.18).

List of acceptable groups:

a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Fig. 16.17 A toy example of airspace sectors belonging to the same functional block

1
5

2

4

3

Airspace sectors Controllers' working positions
in the control room

Fig. 16.18 Assignment of airspace sectors to controllers’ working positions

460 N. Durand et al.

Fig. 16.19 Other possible partitions of the airspace

The primary objective of this dynamic partitioning of the set of elementary
airspace sectors into ATC sectors is to avoid overloads, as these may threaten the
overall safety of the flights controlled in the ATC sectors affected. When an ATC
sector becomes overloaded, some of its airspace sectors are transferred to another
working position (a new one, or one that is already open but underloaded) when this
is possible. When such reassignments are not possible, one must enforce traffic reg-
ulation measures such as delaying departing flights or rerouting aircraft. Overloads
must be anticipated with enough look-ahead time, so that regulation measures can be
taken early enough. A secondary objective, which might sometimes come into con-
tradiction with the primary objective of avoiding overloads, is to be as cost-efficient
as possible by opening as few ATC sectors as possible and by avoiding under-loads.

Currently, this reassignment of airspace sectors to controllers’ working positions
is quite efficient for the purpose of sharing workload among ATC sectors in real time.
However, we still lack prediction tools that would allow control room managers and
flow management operators to anticipate how workload and airspace partitioning
could evolve in the next few hours. Such tools require two things: a reliable estimation
of the future workload in any given ATC sector, and an algorithm that can compute
an optimal partition of the airspace into ATC sectors according to the predicted
workload.

16.3.3.1 Difficulty of the Problem and Possible Approaches

The problem of optimal partitioning of airspace is highly combinatorial: the total
number of candidate partitions is equal to the Bell number. However, taking opera-
tional constraints into account, such as restricting oneself to a list of acceptable groups
of airspace sectors, reduces the number of sector combinations to be explored.

For relatively small and sufficiently constrained problem instances, exact tree-
search methods that exhaustively explore (or discard) all possible partitions of the
airspace into ATC sectors might be tractable. For larger instances, where the func-
tional airspace block considered is made up of a large number of airspace sectors, or

16 Applications to Air Traffic Management 461

for less constrained problems with a larger number of acceptable sector groups, such
methods are likely to be unsuccessful. In such cases, an optimal or nearly optimal
partition can be searched for using a metaheuristic.

16.3.3.2 Using a Genetic Algorithm

In [47, 48], Gianazza and Alliot used a genetic algorithm [54, 74] to build an optimal
partition of the airspace into ATC sectors. This metaheuristic approach was compared
with two tree-search methods (a depth-first branch and bound search and a best-first
search) on airspace sectors belonging to the five French en-route control centers.

In this approach, each element of the population is a sector configuration, i.e., a
partition of the set of airspace sectors for the chosen control center. In each iteration,
the genetic algorithm selects a pool of parents. Randomly chosen parents are then
recombined, using crossing and mutation operators. The resulting offspring is added
to the new population, which is completed by randomly picking individuals from
the pool of parents. This completion is done so that the fittest individuals have a
greater chance of being chosen. Several refinements exist for the selection, crossing,
and mutation operations, with for example the application of scaling and sharing
operators to the raw fitness. A description of these refinements can be found in
Chap. 3 of [38].

In [47, 48], the mutation of an individual (a sector configuration) was done by
first picking at random one ATC sector and one of its neighbors. The volume of
airspace made up of the two chosen ATC sectors was then repartitioned. This partial
reconfiguration of the sectors was also random, with the constraint that the result
should not contain more than three ATC sectors. The new ATC sectors then replaced
the two initial sectors in the mutated individual.

The crossover operator removed some ATC sectors from each of the two par-
ents and tried to form a new partition from each amputated partition, using ATC
sectors from the other parent. This did not usually result in a complete partition of
the airspace. A full partition was obtained by randomly choosing control sectors
compatible with the incomplete partition.

The fitness criterion depended on the following factors, in decreasing order of
priority: excessive overloads, the number of working positions (i.e., the number
of ATC sectors in the configuration), excessive underloads, and small overloads
or underloads. For any ATC sector, the workload was assessed by considering the
difference between the flow of incoming traffic and a threshold value, called the sector
capacity. The capacity values were the ones that were actually used in operations at
the time. Once computed, the raw fitness criterion was modified using clusterized
sharing and sigma truncation (see [54], or [38] p. 59), so as to leave a chance even for
the least fit individuals to reproduce, thus allowing a better exploration of the search
space. For the sharing operator, a difficulty arises in defining a distance criterion
between partitions of the set of airspace sectors. A pseudo-distance between two
partitions, similar to the Hamming distance, was specifically designed for this sharing
operator. The only difference from the Hamming distance was that the sequence of

462 N. Durand et al.

symbols (ATC sectors) that were compared—counting the differences between the
two partitions—need not have the same length.

An elitist strategy was applied in order to preserve the best individuals of the
old population when building a new one. The new population was made of the
fittest elements of the previous population, of the mutated individuals, and of the
offspring resulting from the crossover operator. Both the mutation and the crossover
operator were applied to individuals randomly chosen from a pool of parents, with
probabilities Pc (crossover) and Pm (mutation). The population was then completed
according to the stochastic remainder without replacement mechanism (see [38]), so
as to attain the same fixed size as the previous population.

This approach using genetic algorithms was compared, using real instances, with
two tree-search methods. Other authors have used constraint programming on a sim-
ilar problem. We shall now briefly present these exact approaches that exhaustively
explore the search space of possible airspace partitions.

16.3.3.3 Tree-Search Methods, Constraint Programming

Two tree-search strategies were presented in [47, 48]. One is a depth-first search,
illustrated in Fig. 16.20, using our toy example with five airspace sectors. The other
is a best-first search inspired by an A∗ algorithm that develops first the nodes that
have the best estimate of the total cost for the path from the root to a leaf of the tree.

In his Ph.D. thesis [6], Barnier successfully applied constraint programming meth-
ods to a similar problem of airspace partitioning (although not with the same capac-
ity values). The partitioning problem was formalized as a constraint satisfaction

1

6

?

?

?

5

4

2

3

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})({1},{s,d}) ({2,3,4},{})

({1,2,3},{e}) ({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2},{s,a})({1,2},{e})

({1},{s,d,e})

({1,2,3,4,5},{e}) ({1,2,3,4},{}) ({5},{s})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a})

({1,4},{}) ({2,3},{a})

({1,5},{d}) ({2,3},{a}) ({4},{s})

,{3}},{

}){,{})) }})) d})}) (

}){,{})

Valid groups of sectors:
a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Best_conf = ({e})

Best_val = Eval_conf({e})
Best_val = Eval_conf({d},{a},{4})
Best_conf = ({d},{a},{4})
if Eval_conf({d},{a},{4}) > Best_val then

then cut this branch
if Eval(node) < Best_val

otherwise continue the search

and so on...

Fig. 16.20 Search for an optimal partition by a depth-first tree-search algorithm

16 Applications to Air Traffic Management 463

problem. The solution of this problem also relied on a tree-search method (back-
tracking) that iteratively reduced the domain of each variable.

All these tree-search methods were tested on real instances, using the airspace
sectors of the five French air traffic control centers. The results showed that, on these
real instances of relatively small size, when taking into account some operational
constraints such as a list of restrictions concerning the valid groups of sectors, the
global optimum could be reached in a very short time (a few seconds at most, with
a 1.8 GHz Pentium IV).

In [47, 48], the depth-first and best-first strategies were compared with the genetic
algorithm presented in Sect. 16.3.3.2. With 220 elements in the population, evolving
over 300 generations, and with a crossover probability of 0.6 and a mutation proba-
bility of 0.2, the genetic algorithm found the global optimum in nearly all cases. The
computation times were, however, much longer (several minutes).

16.3.3.4 A Neural Network for Workload Prediction

In [6, 47, 48], the chosen variables (input traffic flow) and the ATC sector capacities,
which were the values actually used in operations at the time, did not provide a
reliable estimate of the air traffic controllers’ workload. Further studies [44, 52,
53] by Gianazza and Guittet were aimed at selecting more relevant indicators, from
among the multitude of ATC complexity metrics proposed in the literature, to better
explain the controller workload.

In these studies the dependent variables that were chosen to represent the actual
workload were related to the status of the ATC sector. Considering past sector open-
ings, the following observations can be used to assess the workload in any given
sector:

• when the sector is “collapsed” (merged) with other sectors to form a larger sector,
we can assume that this is due to a low workload;

• when the sector is “opened” (i.e., actually operated on a controllers’ working
position), we can assume a normal workload;

• when the sector is “split” into several smaller sectors, this reflects an excessive
workload in the initial sector.

The basic assumption is that this observed sector status (“collapsed,” “opened,” or
“split”) is statistically related to the actual workload perceived by the controllers.

A neural network was used to compute a triple (p1, p2, p3) representing the prob-
abilities for a sector to be in the above states. The network inputs were the ATC
complexity indicators computed from aircraft trajectories, and metrics of the sector
geometry (the sector volume). The neural network was first trained on a set of exam-
ples, based on recorded traffic and historical data on sector openings from the five
French air traffic control centers.

Training a neural network consists in adjusting the weights assigned to the net-
work connections so as to minimize the error in the output when compared with
the desired output in the examples. This requires the use of an optimization method

464 N. Durand et al.

operating in the space of the weights. The first methods that were designed to train
multilayer perceptrons relied on the gradient of the error to search iteratively for the
optimal weight vector. In these methods, starting from an initial point in the space
of the weights, every step consists in computing a new iterate from the current one,
following a descent direction based on the error gradient. Subject to several condi-
tions on the objective function, these descent method converge to a local minimum.
Such methods require the computation of the error gradient, which can be done effi-
ciently using backpropagation of the error in the network [14]. More recently, several
metaheuristics have also been proposed, either to optimize the network topology or
to tune the weights: genetic algorithms [68], particle swarm optimization [57], ant
colonies [15], differential evolution [84], etc.

The results presented in [44, 52, 53] on the prediction of ATC controllers’ work-
load were obtained using a quasi-Newton method (specifically, BFGS) to train the
network. Some preliminary results using particle swarm optimization and differential
evolution showed fairly similar results.

In [45, 46], the depth-first tree-search algorithm that computed optimal airspace
partitions (see Sect. 16.3.3.3) was combined with the neural network for workload
prediction in order to provide realistic predictions of ATC sector openings. This
prediction of the workload and airspace partitioning is illustrated in Fig. 16.21.

An initial evaluation of this research approach was done by comparing the number
of working positions computed by these algorithms with the number of positions that
were actually open on the same day. In Fig. 16.22, the two dotted lines representing
these quantities are quite close. The continuous line above the dotted lines shows the
total traffic in the ATC center, and is given here only as an indication of the evolution
of traffic during the day.

16.3.3.5 Conclusions About the Prediction of Sector Openings

We have seen that the difficulty of the problem of partitioning an airspace into
ATC sectors assigned to controllers’ working positions, which is in essence highly

Fig. 16.21 Prediction of
workload and airspace
partitioning

16 Applications to Air Traffic Management 465

0

5

10

15

20

0 200 400 600 800 1000 1200 1400
-20

0

20

40

60

80

100

Real
T raffic

Computed

Time (minutes)

N
um

be
r o

f w
or

ki
ng

 p
os

iti
on

s

N
um

be
r o

f a
irc

ra
ft

Fig. 16.22 Computed versus actual number of controllers’ working positions

combinatorial, is reduced when operational constraints are taken into account, such
as by restricting the number of ways to group airspace sectors to an existing list
of valid ATC sectors. We have also seen that a realistic prediction of ATC sector
configurations requires a reliable workload prediction model.

Metaheuristics can be useful for both of these problems (airspace partitioning and
workload prediction). For large instances that cannot be addressed by exact tree-
search methods, metaheuristics are often the only option: they rely on a random
walk in the search space, guided by a heuristic that introduces a bias toward good
solutions. Metaheuristics can also be used to tune the weights of a neural network
for predicting the air traffic controllers’ workload.

In conclusion, it must be noticed that in this specific example based on real
instances of airspace sectors and ATC sectors from the French airspace, metaheuris-
tics are not the fastest and most efficient methods. For such instances of relatively
small size, optimal partitions can be obtained in a short time using exact tree-search
methods.

However, exact methods can become impracticable for larger instances with more
airspace sectors or more ATC sectors. In such cases, using a metaheuristic can be a
good alternative for finding optimal or near-optimal partitions of ATC sectors.

16.4 Departure Slot Optimization

In order to prevent saturation of controlled airspace in Europe, departure slots are
sometimes imposed on aircraft. A departure slot is a 15 min time window during
which an aircraft must takeoff. The Network Manager Operations Centre (NMOC),

466 N. Durand et al.

formerly called the CFMU,5 tries to optimize the delays that aircraft, are subjected
to. This optimization problem has been studied by several research teams around the
world, using different models and algorithms. In the United States, delays are mainly
due to congestion at the arrival airport: instead of making an aircraft stack before
landing, it is better to delay its departure. This generates two types of problems.
In Europe, which aircraft should be delayed, and for how long, in order to respect
control sector capacities? In the United States, which aircraft should be delayed, and
for how long, in order to prevent them from stacking at their destination?

The first approaches to dealing with these problems mainly used integer linear
programming [71, 76]. Similar approaches were used by Bertsimas and Patterson
[10] at the end of the 1990s and by Bertsimas et al. [9] in 2008.

The first article introducing the use of evolutionary algorithms to optimize takeoff
slots was written by Delahaye and Odoni [23]. At first, Delahaye used a simple toy
problem in which the route and takeoff time were optimized. Later, Oussedik et
al. [77–79] adapted this approach to real traffic data. Cheng et al. [17] solved a small
example with a genetic algorithm. In 2007, Tandale and menon [87] used a genetic
algorithm on the FACET6 simulator developed by NASA7 in order to solve problems
in which sector capacities were respected. They compared their algorithm with an
exhaustive method using an example dealing with two airports, and generalized their
approach to a problem involving 10 airports.

In 2000, Barnier and Brisset [7] gave a more accurate definition of a sector capacity
and used a constraint programming approach in order to optimize slots. Once again,
comparing methods is challenging because research teams do not share data. In his
Ph.D. thesis, Allignol [2] resolved conflicts by modifying takeoff slots. An initial
calculation was done to detect all potential conflicting trajectories. This calculation
generated constraints on the takeoff times for aircraft pairs: the difference between
the takeoff times for aircraft pairs should not belong to some time interval.

Two approaches are being used to solve the problem. The first one is based on
constraint programming, and the second on an evolutionary algorithm. In the con-
straint programming approach, the problem is to find an instantiation for every delay
that resolves every conflict, and to minimize the total delay. In the evolutionary algo-
rithm, approach, separation constraints are taken into account in the fitness function.
Numerical results on real French data [29] show that constraint programming gen-
erally gives better results and is faster than evolutionary algorithms, but the latter
penalize fewer aircraft with a larger mean delay. Su et al. [86] adapted a cooperative
coevolution approach to Chinese data. Unfortunately, it is impossible to compare
results on different data sets.

5Central Flow Management Unit.
6Future ATM Concepts Evaluation Tool.
7National Aeronautics and Space Administration.

16 Applications to Air Traffic Management 467

16.5 Airport Traffic Optimization

Many optimization problems can be formulated in the field of airport traffic man-
agement: indeed, airports have to be highly reactive to many kinds of events, that
may be more or less usual (delays to passengers and flights, meteorological phenom-
ena, equipment failures, surface congestion, terrorism risks, etc.), which makes their
traffic difficult to predict. For these reasons, the various stakeholders often need to
adapt their planning and operations in real time. All the decisions that are taken in
this way can induce various positive or negative effects in the global situation of the
airport, and result in very variable operating costs.

In this domain, the problems of gate assignment, scheduling of aircraft on the
runway, strategic surface routing, and, more generally, the development of decision
support tools that can help operations planning are major concerns for all airport
services (Fig. 16.23).

16.5.1 Gate Assignment

Assigning gates (and stands) to aircraft appears to be the first important step in
the planning process at an airport. It involves many operational aspects, such as
constraints related to each gate and all the connections between flights.

Hu and Paolo [59] modeled the problem with a global minimization criterion,
defined by a balance between three measures: the waiting times of aircraft on the
aprons, the walking distances, of passengers, and the baggage transport distances.

1000m0

Fig. 16.23 Simulation of traffic at Roissy-Charles-De-Gaulle airport

468 N. Durand et al.

The variables must assign not only a parking spot to each aircraft but also the order
in which each aircraft will access the gate. For these reasons, these authors compared
different possible encodings for solving the problem with a genetic algorithm. They
showed that a binary encoding, which seemed at first to be more complex than other
possibilities, associated with a specific uniform crossover, made the genetic algorithm
more efficient.

16.5.2 Scheduling the Aircraft on the Runway

Runways are often seen as the main bottlenecks in an airport, because some important
separation times (over one minute) are needed between movements, in order to keep
a following aircraft free from the wake vortex turbulence of the previous aircraft.
These separation times depend on the type of movement (takeoff or landing) and on
the categories of the two aircraft (the heavier an aircraft is, the stronger its vortex is,
but the less it is penalized by the vortex of the previous aircraft). Thus, the separation
time after an aircraft A depends not only on A but also on the following aircraft B, as
illustrated in Fig. 16.24. This makes the problem less symmetrical than many other
classical scheduling problems.

In [62], Hu and Di Paolo focused on the optimization of an arrival sequence, and
compared the efficiency of two different encodings for a genetic algorithm:

• The first one, rather intuitive, was integer based and consisted of a rank assigned
to each arrival in the sequence.

• The second one was based on a binary matrix, specifying all of the Boolean priority
relationships between each pair of arrivals.

The second encoding, associated with a uniform crossover (which makes each child
inherit a specific part of the priority relationships of its parents) gave the best results,
especially by avoiding premature convergence toward local optima. This kind of

Fig. 16.24 Scheduling of
aircraft on the runway

t

t

16 Applications to Air Traffic Management 469

encoding maintains some promising subsequences across several generations, while
still favoring a good exploration of all the possible sequences.

Hu and Di Paolo confirmed the efficiency of this kind of encoding for the genetic
algorithm by extending it to a problem of arrivals that have to be distributed over
several runways [63]: here, the arrivals have to be scheduled on each runway, but
they also have to be assigned to one of the available runways. In [61], these authors
improved their results further with a new ripple spreading genetic algorithm: in this
model, each chromosome encodes an epicenter point in a two-dimensional artificial
space, and a method to project each aircraft into this space (depending on its wake vor-
tex category and its soonest landing time). The ripple spreading procedure is a simple
algorithm that assigns a runway to each aircraft and defines the sequence on each
runway from the set of points in the artificial space (by sorting each point by increas-
ing distance from the epicenter). Thus, each chromosome is reduced to five numbers
(x, y, δ1, δ2, δ3), where (x, y) are the coordinates of the epicenter and (δ1, δ2, δ3) are
the coefficients defining the projection in the artificial space. A big advantage of this
method is that the size of the chromosomes does not depend anymore on the number
of aircraft, but only on the number of parameters used to characterize them.

Particle swarm methods can also be used to optimize the departure flow of aircraft
that have to be scheduled on a runway and can use different routes to access that
runway [40, 66]: in this model, each departure route is seen as a first-in-first-out
queue (aircraft using the same route cannot change their order). The problem is to
find the gate departure times and the takeoff times that minimize the time spent in
offloading all of the traffic (while maintaining separation constraints between taxiing
aircraft). Using an evolution function based on an oscillating equation of second order
(inherited from control theory) [66], or by controlling the evolution with a simulated
annealing method [40], the authors of those publications improved the convergence
of the particle swarm, while avoiding local optima.

In Europe, departure scheduling appears to be more complex, because some of the
departures are also constrained by a takeoff slot assigned by the European Network
Manager Operations Centre (because these flights fly through overloaded airspace).
For these constrained departures, a specific takeoff time is specified, and the corre-
sponding flight can only takeoff five minutes before or ten minutes after the given
time. In his Ph.D. thesis [18], Deau provided a global formulation for the aircraft
scheduling problem on a mixed runway (on which both landing and takeoff may be
scheduled), where some of the departures are constrained by a specific takeoff slot:
the variables are the takeoff and landing times, and the minimization criterion is a
balance between the deviations from the constrained slots (for the constrained depar-
tures) and the delays (of the other flights). By taking advantage of some particular
properties of the problem (symmetries, equivalences, between aircraft, and detection
of suboptimal scheduling as illustrated in Fig. 16.25), this author produced a branch
and bound algorithm that found and proved an optimal solution in a few seconds, for
a large sample of problems involving more than 50 aircraft.

Applying the same scheduling algorithm to shifting periods in a whole day of
traffic at Roissy-CDG airport [19], Deau et al. found a global schedule for all move-
ments, on all runways, compliant with all the constrained takeoff slots, that generated

470 N. Durand et al.

Fig. 16.25 Detection of a
suboptimal scheduling

a global delay that appeared to be half of that measured from a complete simulation
of the same traffic. These results show that the runways are not the only source of
delay at an airport such as Roissy-CDG, and that the traffic also needs to be optimized
during taxiing.

16.5.3 Surface Routing Optimization

Airport studies often ignore the problem of taxiing aircraft, although this step causes
serious issues to airport controllers and can generate important delays (especially
in the stand area, where aircraft have to maneuver or be maneuvered at low speed,
without the possibility of overtaking other aircraft).

The first detailed study concerning airport surface routing optimization was pro-
vided in [80]: the authors of that study modeled the taxiways of the airport as an
oriented graph connecting the stands to the runways (and conversely). Classical path
enumeration algorithms were used to compute a set of alternative routes for each
aircraft. The routing problem was then formulated as the choice of the routes asso-
ciated with some optional holding points, in such a way that a minimum distance
is ensured between each aircraft pair in each time step, while minimizing a global
criterion based on the total delay (due to route lengthening and waiting times). To
solve this very combinatorial problem, the authors compared two strategies:

• The first strategy consists in simplifying the problem by attaching priority levels
to the aircraft: a total order allows the aircraft to be sorted and to be considered one
after the other. Each aircraft is assigned a trajectory (a route and some optional
holding points) in the given order. Thus, the nth aircraft has to avoid the n − 1
previous ones, once their trajectories have been fixed. The problem is thus split
into a succession of best-path searches with avoidance of obstacles, which can be
performed very quickly by a simple A* algorithm.

16 Applications to Air Traffic Management 471

Fig. 16.26 Encoding in
genetic algorithm for the
aircraft routing problem

Route

Aircraft

Holding position

Holding time

Fig. 16.27 Trajectory
prediction with speed
uncertainties

• The second strategy is based on a genetic algorithm that deals with the whole prob-
lem, without presuming any priority levels of aircraft: each chromosome describes
a route and a holding position (associated with a holding time) for each aircraft
(see Fig. 16.26). More efficient mutation and crossover operators can be defined
with this kind of encoding, taking advantage of some partial fitnesses (one per
aircraft) that allow the parts of the chromosomes that are the least promising to be
changed more often.

Measured by simulation of some actual traffic at Roissy-CDG airport, the genetic
algorithm appeared more efficient, as it reduced the mean aircraft delay by one minute
(from 4 min), compared with the strategy based on priority levels.

In his Ph.D. thesis [55], Gotteland developed and refined this study:

• Aircraft trajectories where we predicted with a given rate of uncertainty in their
speeds (see Fig. 16.27), and conflicts were detected between all the possible posi-
tions of each aircraft.

• The criterion to be minimized measured the deviations from the takeoff slots
assigned to the constrained departures.

• Conflicts caused by arrivals crossing the departure runway after landing were also
considered.

With this formulation, the problem is a mix between the aircraft routing problem,
the management of the arrivals that have to cross the departure runway, and the
scheduling of departures on the runway. A new genetic algorithm was introduced,
in the form of a hybridization of the two previous routing strategies (priority levels
and genetic algorithm):

• Each chromosome described a route and a priority level (or rank) for each aircraft
(see Fig. 16.28).

472 N. Durand et al.

Fig. 16.28 Encoding in
hybrid genetic algorithm for
the routing problem

Aircraft

Route Rank

• To evaluate such a chromosome, the aircraft were considered one after the other
(by increasing rank), and were assigned their specified route. For each aircraft,
a branch and bound algorithm (which appeared more efficient than the previous
A* algorithm once the choice of the route had been made) was run to find the
corresponding best trajectory, avoiding the ones already computed.

The efficiency of this hybrid genetic algorithm was compared with the two pre-
vious strategies, using the same simulator with an actual sample of traffic at Roissy-
CDG airport. The delays due to surface conflicts were decreased by more than one
minute from 5 min during heavy periods, and the assigned takeoff slots were all
respected (in the 15 min tolerance time window) and better scheduled (more than
80 % happened at less than one minute from the specified time).

Dealing with the aircraft routing problem at Madrid-Barajas airport, García et al.
[41], combined a deterministic flow management algorithm with a genetic algorithm
to assign a route and a beginning time to each movement (a landing time for arrivals
and an off-block time for departures).

In [82], for simpler, fictional airport (with fewer taxiways and fewer movements),
Roling and Visser succeeded in modeling and globally solving the airport surface
traffic planning problem, using mixed integer linear programming (where the vari-
ables described the times at which each aircraft traveled on each portion of taxiway).
They obtained a route assignment process associated with some specific aircraft
holding positions that globally minimized the taxi times.

16.5.4 Global Airport Traffic Planning

In the more global framework of traffic planning at busy airports, several different
concepts or systems are often studied:

• Arrival management (AMAN) includes all the predictions that can be made about
the arrival flow, taking into account the constraints of the approach sectors (which
are sometimes shared by different airports), in order to evaluate aircraft landing
times with the best possible accuracy.

• Departure management (DMAN) starts with the prediction of the takeoff
sequences, taking into account the departure times targeted by the airlines, poten-
tial constraints on takeoff slots, and the separation times needed on the runways.
By considering the taxi-out times of aircraft and the takeoff sequences, it is also
possible to delay some off-block times for departures, in order to make them hold

16 Applications to Air Traffic Management 473

at the gate (with engines off) rather than in a queue for the runway (with engines
on).

• Surface management (SMAN) deals with the routing of aircraft at the airport
(taking into account all the AMAN and DMAN information): the goal is to assign
strategic routes that are compliant with the predicted landing or takeoff times of
aircraft, while keeping the ground traffic situation as fluent as possible.

Deau et al. [19], pointed out the obvious dependency problems that arise in these
predictive systems: the delay of an arrival can affect the time of its subsequent
departure, and decisions made while handling taxiing aircraft can quickly result
in situations where the takeoff sequences must be updated (as the off-block and
landing times must also be, when the runway is shared by both types of movements).
Moreover, the uncertainties that exist in the speed of aircraft during taxiing (which can
easily reach 50 % of their average speed on each taxiway portion) make the ground
traffic situation hard to predict (the possible positions of an aircraft 5 min later extend
over one kilometer). Thus, the predictions of the different systems cannot share the
same magnitude: it is over 30 min for the AMAN–DMAN system, but under 10 min
for the SMAN. Deau et al. proposed an iterative process that would allow coordination
between the different systems, in which some optimal takeoff and landing sequences
are computed, taking into account the current positions of the aircraft (with a runway
time window T WR of 30 min). These sequences are then used to resolve the ground
conflicts more efficiently (with a surface time window T WS of 5 min), as illustrated
in Fig. 16.29.

By carrying out fast simulations of some actual traffic at Roissy-CDG, Deau
et al. measured how the mean delay of aircraft could be decreased, first by the
optimization of runway sequences, and then by the use of a hybrid genetic algorithm
(rather than a sequential method using fixed priority levels) to solve ground conflicts
(see Fig. 16.30).

Fig. 16.29 Coordination of AMAN–DMAN and SMAN systems

474 N. Durand et al.

Fig. 16.30 Mean delay of aircraft in Roissy-CDG simulations (FIFO, first-in first-out; GA, genetic
algorithm)

Still on the topic of integrating different predictive systems, the management of
the capacity of several neighboring airports has also been studied: Hu et al. [60],
considered a set of airports made up of one main airport surrounded by other satellite
airports, between which arrivals could be exchanged. The capacity of each airport
varied, owing to meteorological conditions, its configuration (the runways used and
the distribution of arrivals and departures on each runway), and its traffic composition
(aircraft types). The problem was modeled as follows:

• The variables described the airports’ successive configurations on one hand and
the assignment of airports to arriving aircraft on the other hand.

• The minimization criterion was formulated as a balance between the size of the
various aircraft queues (for arrival and for departure, at each airport) and the
number of airport changes (compared with the initial airport assignments).

Hu et al. showed that a genetic algorithm could find some efficient solutions to the
problem for a one-day traffic sample, using successive resolutions of the situations
(for shifting periods of the day).

16.6 Aircraft Conflict Resolution

An air traffic controller is charged with the task of separating aircraft in order to
prevent conflicts.8

Alliot et al. [5] first introduced, in 1993, a conflict resolution method using a
genetic algorithm. The model was very simple: time was discretized in 16 steps
of 40 seconds each. Each aircraft could, in each of the 16 time steps, either go
straight, turn right, or turn left, with a 30◦ heading change. Each maneuver was

8Two aircraft are conflicting if the horizontal distance between them is less than 5 nautical miles
and the vertical distance is less than 1000 feet.

16 Applications to Air Traffic Management 475

encoded with two bits (00 and 01 = go straight; 10 = turn right; 11 = turn left).
Each trajectory was encoded with 32 bits. For a two-aircraft problem, 64 bits were
necessary. Results obtained with the genetic algorithm were compared with an A*
algorithm and a simulated annealing method. The genetic algorithm showed good
efficiency on simple examples.

In his Ph.D. thesis, Durand [27] modeled the problem differently: the maneuvers
were not encoded as bit strings but as reals and quantitative values: each aircraft
could execute at most one maneuver starting at time t0 and ending at time t1. This
could be a heading change of 10, 20, or 30◦ to the right or to the left of the initial
heading. An n-aircraft conflict was thus encoded by 3n variables. Durand and Alliot
defined a crossover operator adapted to partially separable problems [32]: from two
parents, two children are built using the “best” characteristics of their parents. Fig-
ures 16.31 and 16.32 detail the principle of this operator for a seven-aircraft conflict.
The objective of the operator is to copy from each parent the part that resolves the
largest number of conflicts.

Thanks to this operator, an evolutionary algorithm was able to resolve large con-
flicts involving up to 30 aircraft in a very short time (less than a minute). Durand and
Alliot tested the method on a fast time simulator using real traffic data and showed
that they could resolve every conflict, even with important uncertainty margins on
the trajectory predictions [4, 30, 33, 36].

Granger et al. [56] adapted the previous results to direct routes by modeling
existing routes. Akker et al. [1] used a free-route approach. Malaek et al. [70] used
a model close to Durand’s approach and took the impact of wind into account. A
genetic algorithm was used to coordinate continuous aircraft maneuvers.

Fig. 16.31 Aircraft cluster;
structure of the two parents

Con ict

E

C

D

GA

B
H

A1

C1

B1
H1

G1

D1
E1

C2

B2

A2

D2

H2

G2

E2

Parent 1

Parent 2

Resolved conflict

Unresolved conflict

476 N. Durand et al.

Fig. 16.32 Adapted
crossover operator A1

C1

B1
H1

G1

D1
E1

C2

B2

A2

D2

H2

G2

E2

Parent 1

Parent 2

Resolved conflict

Unresolved conflict

A1

B1
H1

G1

C2

D2
E2

Parent 1

Parent 2

?
?

Resolved conflict

Unresolved conflict

16.6.1 Ant Colony Optimization Approach

Other metaheuristics have been tested on the conflict resolution problem. Durand
and Alliot [32] introduced an ant colony optimization algorithm to resolve complex
conflicts. Here, in every generation, each aircraft is represented by an ant. Ants
which have been able to reach their destination without creating any conflict with
other ants deposit pheromones according to the shortness of the path found. The other
ants do not deposit pheromones. For difficult problems, the separation constraints
between aircraft can be relaxed: ants deposit pheromones even if they do not respect
constraints. The amount of pheromone is inversely proportional to the number of
conflicts generated. This idea was used by Meng and Qi [73] with a naive formulation.

16.6.2 Free-Flight Approaches

Evolutionary algorithms have been used in distributed approaches. In the United
States, Mondoloni et al. [75] and Vivona et al. [89] introduced free-flight models for
optimizing coordinated trajectories.

16 Applications to Air Traffic Management 477

Free-flight models were also used in the reactive approach introduced by Durand
et al. [34, 37]. This approach uses a neural network for each aircraft in order to avoid
intrusive aircraft. The parameters of the neural network parameters are optimized by
an evolutionary algorithm for a set of conflicts representing different configurations.

Figure 16.33 shows the data used as an input for the neural network, and its
structure. Figure 16.34 gives examples of the conflicts used to optimize the weights
of the neural network. The fitness function used in the evolutionary algorithm takes
into account the fact that conflicts are resolved and that trajectories generate little

Destination

Aircraft 1

Aircraft 2

β

γ

d /dtλ

λ

α

1

Heading change

1

Fig. 16.33 Inputs for aircraft 1; structure of the neural network

20°

120°

60°

150°

2 1

1

2

3

1

2

3

4
4

1

2

Fig. 16.34 Learning examples

478 N. Durand et al.

Fig. 16.35 Solution
comparison: top local
method; bottom, neural
network

delay. Figure 16.35 compares maneuvers obtained with the neural network (bottom)
and a classical optimization tool (top).

16.6.3 A Framework for Comparing Different Approaches

It is very challenging to compare results obtained by different teams when reading
articles on conflict resolution methods. Research teams generally use different data,
they do not offer free access to the data they use, and they are often experts in one
optimization method only.

16 Applications to Air Traffic Management 479

Fig. 16.36 Trajectory prediction with uncertainty

Recent studies have tried to answer this issue by offering benchmarks that can
be downloaded to test different algorithms. Vanaret et al. [88] compared three meta-
heuristics on the conflict resolution problem: a differential evolution method, an
evolutionary algorithm, and a particle swarm optimization approach. These authors
showed that, most of the time, differential evolution was as efficient as the evolu-
tionary algorithm and sometimes even better, and always better than particle swarm
optimization in many examples.

In [3], Allignol et al. proposed a benchmark that can easily be used by anyone
by accessing it on the link http://clusters.recherche.enac.fr. It does not require any
knowledge of air traffic control. The benchmark contains 120 different scenarios of
conflicts involving n aircraft (n varying from 5 to 20) and three levels of uncertainties
εlow, εmedium and εhigh. Uncertainties in speeds and also in headings and turning points
are considered. Future positions of aircraft are represented by convex hulls, the sizes
of which evolve with time (see Fig. 16.36). In each scenario, aircraft can choose from
among m = 151 different trajectories.

In the benchmark, one file contains a description of the trajectory of each aircraft
maneuver and another file describes the four dimensional conflict matrix. For each
aircraft–maneuver pair (i, k) and aircraft–maneuver pair (j, l), the matrix returns 1
if there is a conflict, and 0 otherwise. The file also gives the cost of each maneuver.
The model is completely separated from the problem to be solved. The problem
can thus be solved with constraint programming methods as well as evolutionary
algorithms. Results (Table 16.2) show that the approach is often more efficient when
the problems are not too large, and it has the great advantage that it can prove the
optimality of the solution, or prove that no solution can be found.

http://clusters.recherche.enac.fr

480 N. Durand et al.

Table 16.2 Mean cost of the best solutions for different conflict sizes and different levels of
uncertainties. Conflicts for which optimality was not proven are shaded. The cells with only one
number for both CP (constraint programming) and EA (evolutionary algorithm) correspond to
instances for which both algorithms reached the optimum

16.7 Conclusion

In this chapter, we have presented many applications of metaheuristics to air traffic
management problems. We have focused on the different possible models that have
been explored, and detailed the solution methods that were used.

When it was possible, we have tried to compare the different methods used. More
particularly, some problems could be solved with exact methods as well as with
metaheuristics, and in those cases we have given some elements of a comparison.
The complexity of the problems, their connection with external problems, their huge
size, and the uncertainties that are involved, make these problems very challenging
and exciting to deal with, but they also limit the possibility of a rigorous scientific
approach in which one compares many different methods on series of freely acces-
sible benchmarks. As a consequence, it is not easy to find exhaustive comparisons
of methods on problems, that are reproducible by other research teams with publicly
available data. However, a few benchmarks have been put online recently.

For some problems, we have shown that it was possible to use exact optimization
methods, especially on highly constrained problems such as allocation of sectors to
teams of controllers. On other problems, such as the creation of a route network,
geometrical methods can give good solutions, even if they do not optimize the solu-
tion.

In many cases, however, metaheuristics are the most efficient existing methods,
sometimes the only applicable methods to deal with difficult combinatorial problems
for which the criteria to be optimized require one to run a simulation. Metaheuris-
tics are useful tools and sometimes are necessary to tackle air traffic management
problems. They allow us to model problems in a realistic way instead of using a
simplified mathematical model that is often unable to handle realistic constraints.

16 Applications to Air Traffic Management 481

References

1. van den Akker, J., Van Kemenade, C., Kok, J.: Evolutionary 3D-Air Traffic Flow Management.
Citeseer (1998)

2. Allignol, C.: Planification de trajectoires pour l’optimisation du trafic aérien. Ph.D. thesis,
INPT (2011)

3. Allignol, C., Barnier, N., Durand, N., Alliot, J.M.: A new framework for solving en-route
conflicts. In: 10th USA/Europe Air Traffic Management Research and Development Seminar
(2013)

4. Alliot, J., Bosc, J., Durand, N., Maugis, L.: CATS: A complete air traffic simulator. In: 16th
DASC (1997)

5. Alliot, J.M., Gruber, H., Schoenauer, M.: Genetic algorithms for solving ATC conflicts. In:
Proceedings of the Ninth Conference on Artificial Intelligence Application. IEEE (1992)

6. Barnier, N.: Application de la programmation par contraintes à des problèmes de gestion du
trafic aérien. Ph.D. thesis, INPT (2002)

7. Barnier, N., Brisset, P.: Slot allocation in air traffic flow management. In: PACLP’2000 (2000)
8. Barnier, N., Brisset, P.: Graph coloring for air traffic flow management. In: CPAIOR’02: Fourth

International Workshop on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimisation Problems, Le Croisic, France, pp. 133–147 (2002)

9. Bertsimas, D., Lulli, G., Odoni, A.: The air traffic flow management problem: An integer
optimization approach. In: IPCO, pp. 34–46 (2008)

10. Bertsimas, D., Patterson, S.S.: The air traffic flow management problem with enroute capacities.
Operations Research 46, 406–420 (1998)

11. Bichot, C.E.: Élaboration d’une nouvelle métaheuristique pour le partitionnement de graphe :
la méthode de fusion-fission. Application au découpage de l’espace aérien. Ph.D. thesis, INPT
(2007)

12. Bichot, C.E., Alliot, J.M., Durand, N., Brisset, P.: Optimisation par fusion et fission. Application
au problème du découpage aérien européen. Journal Européen des Systèmes Automatisés 38(9–
10), 1141–1173 (2004)

13. Bichot, C.E., Durand, N.: A tool to design functional airspace blocks. In: 7th USA/Europe Air
Traffic Management Research and Development Seminar (2007)

14. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1996)
15. Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization: An

application to pattern classification. In: Fifth International Conference on Hybrid Intelligent
Systems (2005)

16. Cai, K., Zhang, J., Zhou, C., Cao, X., Tang, K.: Using computational intelligence for large
scale air route networks design. Applied Soft Computing 12(9), 2790–2800 (2012)

17. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search techniques. In:
1999 IEEE International Conference on Control Applications, Hawaii, August 22–27 (1999)

18. Deau, R.: Optimisation des séquences de pistes et du trafic au sol sur les grands aéroports.
Ph.D. thesis, INPT (2010)

19. Deau, R., Gotteland, J.B., Durand, N.: Airport surface management and runways scheduling.
In: 8th USA/Europe Air Traffic Management Research and Development Seminar (2009)

20. Delahaye, D.: Optimisation de la sectorisation de l’espace aérien par algorithmes génétiques.
Ph.D. thesis, ENSAE (1995)

21. Delahaye, D., Alliot, J.M., Schoenauer, M., Farges, J.L.: Genetic algorithms for partitioning
airspace. In: Proceedings of the Tenth Conference on Artificial Intelligence Application. IEEE
(1994)

22. Delahaye, D., Alliot, J.M., Schoenauer, M., Farges, J.L.: Genetic algorithms for automatic
regroupment of air traffic control sectors. In: Evolutionary Programming 95 (1995)

23. Delahaye, D., Odoni, A.: Airspace congestion smoothing by stochastic optimization. In: Evo-
lutionary Programming 97 (1997)

482 N. Durand et al.

24. Delahaye, D., Puechmorel, S.: 3D airspace sectoring by evolutionary computation: Real-world
applications. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’06, pp. 1637–1644. ACM, New York (2006). doi:10.1145/1143997.
1144267. URL http://doi.acm.org/10.1145/1143997.1144267

25. Delahaye, D., Puechmorel, S.: 3D airspace design by evolutionary computation. In: Digital
Avionics Systems Conference, 2008. DASC 2008, pp. 3.B.6-1–3.B.6-13. IEEE (2008). doi:10.
1109/DASC.2008.4702803

26. Delahaye, D., Schoenauer, M., Alliot, J.M.: Airspace sectoring by evolutionary computation.
In: IEEE International Congress on Evolutionary Computation (1998)

27. Durand, N.: Optimisation de trajectoires pour la résolution de conflits en route. Ph.D. thesis,
ENSEEIHT, Institut National Polytechnique de Toulouse (1996)

28. Durand, N.: Algorithmes Génétiques et autres méthodes d’optimisationappliqués ‘a la gestion
de trafic aérien. Institut National Polytechnique de Toulouse (2004). Thse d’habilitation

29. Durand, N., Allignol, C., Barnier, N.: A ground holding model for aircraft deconfliction. In:
29th DASC (2010)

30. Durand, N., Alliot, J.M.: Optimal resolution of en route conflicts. In: Séminaire Europe/USA,
Saclay, June 1997 (1997)

31. Durand, N., Alliot, J.M.: Genetic crossover operator for partially separable functions. In: Pro-
ceedings of the Third Annual Genetic Programming Conference (1998)

32. Durand, N., Alliot, J.M.: Ant colony optimization for air traffic conflict resolution. In: 8th
USA/Europe Air Traffic Management Research and Development Seminar (2009)

33. Durand, N., Alliot, J.M., Chansou, O.: An optimizing conflict solver for ATC. Air Traffic
Control (ATC) Quarterly (1995)

34. Durand, N., Alliot, J.M., Medioni, F.: Neural nets trained by genetic algorithms for collision
avoidance. In: Applied Artificial Intelligence, Vol. 13, Number 3 (2000)

35. Durand, N., Alliot, J.M., Noailles, J.: Algorithmes genetiques: un croisement pour les problemes
partiellement separables. In: Proceedings of the Journees Evolution Artificielle Francophones.
EAF (1994)

36. Durand, N., Alliot, J.M., Noailles, J.: Automatic aircraft conflict resolution using genetic algo-
rithms. In: Proceedings of the Symposium on Applied Computing, Philadelphia. ACM (1996)

37. Durand, N., Alliot, J.M., Noailles, J.: Collision avoidance using neural networks learned by
genetic algorithms. In: Ninth International Conference on Industrial & Engineering (IEA-AEI
96), Nagoya, Japan (1996)

38. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer (2003)
39. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Computing in Euclidean Geom-

etry (1995)
40. Fu, A., Lei, X., Xiao, X.: The aircraft departure scheduling based on particle swarm opti-

mization combined with seamulated annealing algorithm. In: 2008 IEEE World Congress on
Computational Intelligence, Hong Kong, June 1–6 (2008)

41. García, J., Berlanga, A., Molina, J.M., Casar, J.R.: Optimization of airport ground operations
integrating genetic and dynamic flow management algorithms. AI Communications 18(2),
143–164 (2005)

42. Gianazza, D.: Optimisation des flux de trafic aérien. Ph.D. thesis, INPT (2004)
43. Gianazza, D.: Algorithme évolutionnaire et a* pour la séparation en 3d des flux de trafic aérien.

Journal Européen des Systèmes Automatisés, 38(9), 10/2004, Special Issue “Métaheuristiques
pour l’optimisation difficile” (2005)

44. Gianazza, D.: Smoothed traffic complexity metrics for airspace configuration schedules. In:
Proceedings of the 3rd International Conference on Research in Air Transportation. ICRAT
(2008)

45. Gianazza, D.: Forecasting workload and airspace configuration with neural networks and tree
search methods. Submitted to Artificial Intelligence Journal (2010)

46. Gianazza, D., Allignol, C., Saporito, N.: An efficient airspace configuration forecast. In: Pro-
ceedings of the 8th USA/Europe Air Traffic Management R & D Seminar (2009)

http://dx.doi.org/10.1145/1143997.1144267
http://dx.doi.org/10.1145/1143997.1144267
http://doi.acm.org/10.1145/1143997.1144267
http://dx.doi.org/10.1109/DASC.2008.4702803
http://dx.doi.org/10.1109/DASC.2008.4702803

16 Applications to Air Traffic Management 483

47. Gianazza, D., Alliot, J.M.: Optimal combinations of air traffic control sectors using classical
and stochastic methods. In: 2002 International Conference on Artificial Intelligence, IC-AI’02,
Las Vegas (2002)

48. Gianazza, D., Alliot, J.M.: Optimization of air traffic control sector configurations using tree
search methods and genetic algorithms. In: Digital Avionics Systems Conference 2002 (2002)

49. Gianazza, D., Durand, N.: Separating air traffic flows by allocating 3D-trajectories. In: 23rd
DASC (2004)

50. Gianazza, D., Durand, N.: Assessment of the 3D-separation of air traffic flows. In: 6th
USA/Europe Seminar on Air Traffic Management Research and Development (2005)

51. Gianazza, D., Durand, N., Archambault, N.: Allocating 3D trajectories to air traffic flows using
a* and genetic algorithms. In: CIMCA04 (2004)

52. Gianazza, D., Guittet, K.: Evaluation of air traffic complexity metrics using neural networks
and sector status. In: Proceedings of the 2nd International Conference on Research in Air
Transportation. ICRAT (2006)

53. Gianazza, D., Guittet, K.: Selection and evaluation of air traffic complexity metrics. In: Pro-
ceedings of the 25th Digital Avionics Systems Conference, DASC (2006)

54. Goldberg, D.: Genetic Algorithms. Addison-Wesley (1989)
55. Gotteland, J.B.: Optimisation du trafic au sol sur les grands aéroports. Ph.D. thesis, INPT

(2004)
56. Granger, G., Durand, N., Alliot, J.M.: Optimal resolution of en route conflicts. In: ATM 2001

(2001)
57. Gudise, V., Venayagamoorthy, G.: Comparison of particle swarm optimization and backprop-

agation as training algorithms for neural networks. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium (2003)

58. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)
59. Hu, X., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for the multi-

objective airport gate assignment problem. In: IEEE Congress on Evolutionary Computation,
2007, CEC 2007, pp. 55–62 (2007). doi:10.1109/CEC.2007.4424454

60. Hu, X.B., Chen, W.H., Di Paolo, E.: Multiairport capacity management: Genetic algorithm
with receding horizon. IEEE Transactions on Intelligent Transportation Systems 8(2), 254–
263 (2007)

61. Hu, X.B., Di Paolo, E.: A ripple-spreading genetic algorithm for the aircraft sequencing prob-
lem. Evolutionary Computation 19(1), 77–106 (2011)

62. Hu, X.B., Di Paolo, E.: Binary-representation-based genetic algorithm for aircraft arrival
sequencing and scheduling. IEEE Transactions on Intelligent Transportation Systems 9(2),
301–310 (2008). doi:10.1109/TITS.2008.922884

63. Hu, X.B., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for air traffic
control. Comput. Computers and Operations Research 36(1), 245–259 (2009). doi:10.1016/j.
cor.2007.09.005. URL http://dx.doi.org/10.1016/j.cor.2007.09.005

64. Kicinger, R., Yousefi, A.: Heuristic method for 3D airspace partitioning: Genetic algorithm
and agent-based approach. AIAA Paper 7058 (2009)

65. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

66. Lei, X., Fu, A., Shi, Z.: The aircraft departure scheduling based on second-order oscillating
particle swarm optimization algorithm. In: 2008 IEEE World Congress on Computational
Intelligence, Hong Kong, June 1–6 (2008)

67. Letrouit, V.: Optimisation du réseau des routes aériennes en Europe. Ph.D. thesis, Institut
National Polytechnique de Grenoble (1998)

68. Leung, F., Lam, H., Ling, S., Tam, P.: Tuning of the structure and parameters of a neural network
using an improved genetic algorithm. IEEE Transactions on Neural Networks 14(1), 79–88
(2003)

69. Liang, J., Qin, A., Suganthan, P., Baskar, S.: Comprehensive learning particle swarm opti-
mizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary
Computation 10(3), 281–295 (2006)

http://dx.doi.org/10.1109/CEC.2007.4424454
http://dx.doi.org/10.1109/TITS.2008.922884
http://dx.doi.org/10.1016/j.cor.2007.09.005
http://dx.doi.org/10.1016/j.cor.2007.09.005
http://dx.doi.org/10.1016/j.cor.2007.09.005

484 N. Durand et al.

70. Malaek, S.M., Alaeddini, A., Gerren, D.S.: Optimal maneuvers for aircraft conflict resolution
based on efficient genetic webs. IEEE Transactions on Aerospace and Electronic Systems
47(4), 2457–2472 (2011)

71. Maugis, L.: Mathematical programming for the air traffic flow management problem with
en-route capacities. In: XVI World Conference of the International Federation of Operational
Research Societies (1996)

72. Mehadhebi, K.: A methodology for the design of a route network. In: Proceedings of the Third
Air Traffic Management R & D Seminar, ATM-2000, Naples. Eurocontrol & FAA (2000)

73. Meng, G., Qi, F.: Flight conflict resolution for civil aviation based on ant colony optimization.
In: Fifth International Symposium on Computational Intelligence and Design (2012)

74. Michalewicz, Z.: Genetic algorithms + Data Structures = Evolution Programs. Springer (1992)
75. Mondoloni, S., Conway, S., D, P.: An airborne conflict resolution approach using a genetic

algorithm (2001)
76. Odoni, A.: The flow management problem in air traffic control. In: Flow Control of Congested

Network, pp. 269–288 (1987)
77. Oussedik, S.: Application de l’évolution artificielle aux problèmes de congestion du trafic

aérien. Ph.D. thesis, Ecole Polytechnique (2000)
78. Oussedik, S., Delahaye, D.: Reduction of air traffic congestion by genetic algorithms. In:

Parallel Problem Soving from Nature (PPSN98) (1998)
79. Oussedik, S., Delahaye, D., Schoenauer, M.: Dynamic air traffic planning by genetic algorithms.

In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 2 (1999).
doi:10.1109/CEC.1999.782547

80. Pesic, B., Durand, N., Alliot, J.M.: Aircraft ground traffic optimisation using a genetic algo-
rithm. In: GECCO 2001 (2001)

81. Riviere, T.: Redesign of the European route network for sector-less. In: 23rd DASC (2004)
82. Roling, P., Visser, H.G.: Optimal airport surface traffic planning using mixed-integer linera

programming. International Journal of Aerospace Engineering (2008)
83. Siddiquee, M.: Mathematical aids in air route network design. In: IEEE Conference on Decision

and Control, 12th Symposium on Adaptive Processes (1973)
84. Slowik, A., Bialko, M.: Training of artificial neural networks using differential evolution algo-

rithm. In: Conference on Human System Interactions (2008)
85. Sridhar, B., Grabbe, S., Sheth, K., Bilimoria, K.: Initial study of tube networks for flexible

airspace utilization. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference
and Exhibition, Keystone, CO (2006)

86. Su, J., Zhang, X., Guan, X.: 4D-trajectory conflict resolution using cooperative coevolution.
In: Proceedings of the 2012 International Conference on Information Technology and Software
Engineering (2012)

87. Tandale, M., Menon, P.: Genetic algorithm based ground delay program computations for
sector density control. In: AIAA Guidance Navigation and Control Conference, Hilton Head,
SC, 20–23 August (2007)

88. Vanaret, C., Gianazza, D., Durand, N., Gotteland, J.B.: Benchmarking conflict resolution algo-
rithms. In: 5th International Conference on Research in Air Transportation (ICRAT 2012),
May 22–25, 2012, University of California, Berkeley (2012)

89. Vivona, R.A., Karr, D.A., Roscoe, D.A.: Pattern-based genetic algorithm for airborne conflict
resolution. In: AIAA Guidance Navigation Control Conference Exibition (2006)

90. Xue, M.: Airspace sector redesign based on Voronoi diagrams. Journal of Aerospace Conputing,
Information and Communication 6(12), 624–634 (2009)

91. Xue, M., Kopardekar, P.: High-capacity tube network design using the Hough transform. Journal
of Guidance, Control, and Dynamics 32(3), 788–795 (2009)

92. Zelinski, S.: A comparison of algorithm generated sectorization. In: 8th USA/Europe Air Traffic
Management Research and Development Seminar (2009)

http://dx.doi.org/10.1109/CEC.1999.782547

Index

A
Acceptance rule, 22, 25, 39
Adaptive memory programming, 366, 368
Aggregation of objectives, 314
Allele, 122
Annealing, 6

simulated, 6, 56
simulated logarithmic curve, 36

Artificial bee colony, 266
Artificial immune system, 230

artificial immune network, 234
clonal selection, 233
danger theory, 235
dendritic cell algorithms, 236
negative selection, 232

ASCHEA, 337
Aspiration, 51, 71, 74
Asynchronous, 29
AutoGraphiX, 86

B
Bacterial foraging optimization algorithm

(BFO), 243, 280
chemotaxis, 244
dispersal, 246
elimination, 246
reproduction, 246
swarming, 245

Bat algorithm, 275
Bat-inspired algorithm, 230
Bee, 264
Behavioral memory, 346
Biased, 222
Biogeography-based optimization (BBO),

248
migration, 251

Boundary operators, 348

C
Candidate list, 60
Capacitated vehicle routing problem, 358
Change between temperature stages, 39
1-change move, 107, 108
Chebyshev distance, 314
Clearing procedure, 292
Clonal selection, 233
Clusters, 297
CMA-ES, 149, 163

algorithm, 168
Coevolutionary algorithms, 255
Combinatorial explosion, 2
Comparison

heuristics, 371
multiple, 377
optimization methods, 373
STAMP software, 376
success rates, 371

Competitive exclusion, 289
Compromise surface, 14
Condition number, 146
Confidence coefficient, 210
Configuration space, 24
Confinement, 209
Constraint programming, 364
Constraints, 1

constraint violation, 331
equalities, 329
feasible region, 330
inequalities, 329

Construction phase, 100, 102
Convergence, 23

of tabu search, 75
premature, 122

Cooperation mechanism, 207
Correlated mutation, 148
Covariance, 163
Covariance matrix, 163

© Springer International Publishing Switzerland 2016
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0

485

486 Index

Coverage metric, 299
Crossover, 118, 135

arithmetic, 144
BLX-α, 142
contracting, 143
flat, 143
lethal, 135
linear BLX-α, 143
operator, 367
rate, 135
voluminal BLX-α, 142

Crowded comparison, 306
Crowded tournament, 305
Crowding distance, 306
Cuckoo search, 230, 282
Cultural algorithms, 253
Cycle, 56, 63, 65, 67
Cycling, 52

D
Danger theory, 235
Darwinist operator, 117
Decentralization, 13
Decision variables, 4
Decomposition into subproblems, 359, 360
Decrease of temperature, 22, 39, 44
Definition space, 204
Dendritic cell, 236
Descent, 78, 79, 90, 95
Deterministic crowding, 291, 292
Differential evolution (DE), 237

crossover, 240
mutation schemes, 239

Distance
Chebyshev, 314
crowding, 306
Manhattan, 316

Distributed problems, 13
Distribution of the next possible positions

(DNPP), 208, 217
Diversification, 9, 52, 221
Dominance

in Pareto sense, 297
ε-, 316

Dynamic optimization, 3

E
Ecological niche, 288, 289
Ejection chains, 61
Elitism, 131, 293, 309
Energy, 6
Entropy, 45

Environmental selection, 130
Evolutionary computation, 116
Evolution path, 165
Evolution space, 205
Evolution strategies, 116, 145, 163
Exploitation, 221, 322
Exploration, 221, 322
Explorers, 204
Exponential scaling, 127
Extensions, 3
ε-MOEA, 316
ε-domination, 316

F
Firefly algorithm, 281
Fitness function, 118, 132
Flexibility, 13
Fractal properties, 24

G
Generational distance, 299
Generational replacement, 130
Generations, 117
Genetic algorithm, 116, 137, 162
Genetic drift, 122, 290, 293
GENOCOP, 347
GENOCOP III, 345
Genotype, 137, 162
Glowworm swarm optimization, 281
Graph, 86
GRASP method, 99
Gravitational search algorithm (GSA), 230
Gray code, 140
Group search optimizer (GSO), 229

H
Hamming cliffs, 139
Harmony search, 270
Heuristic, 2
Heuristic function, 100, 103
Homomorphous mapping, 349
Hybrid method, 14

I
Ideal point, 315
Ill-conditioned, 147
Image processing, 37
Improvement phase, 100, 104
Inertia weight, 210
Information link, 207
Intensification, 9, 52, 221

Index 487

Island model, 296
Iterative improvement, 4

K
k-means algorithm, 93

L
Landscape

energy, 5
fitness, 134

Layout of circuits, 32
Linear scaling, 126
Local search, 55, 78, 79, 90, 95, 122, 361
Lognormal perturbation, 147

M
Manhattan distance, 316
Markov chain, 22

homogeneous, 41
inhomogeneous, 47

Markovian field, 37
Matheuristic, 364
Memorizer, 204
Memory

adaptive programming, 366
long-term, 9, 52, 72, 74
population, 367
short-term, 9, 52, 63, 65
trails, 368
type, 68

Method
descent, 4
classical, 4
crowding, 291
decomposition, 359
hybrid, 3, 14
kangaroo, 38
roulette, 124
sharing, 289
stochastic universal sampling, 124

Metric coverage, 299
Migration, 296
Minimal coupling of points, 32
MOEA (ε-), 316
MOEA/D, 321
MOGA, 303
Mosquito host-seeking algorithm, 282
Move, 56

aspired, 71
candidate, 60
evaluation, 58, 60

forced, 74
inverse, 65
inversion, 58
penalized, 72
prohibition, 65
reverse, 68
transposition, 58

Movement, 4
Multimodal, 3, 15, 288
Multiobjective methods, 350

COMOGA, 350
IDEA, 352

Multiobjective optimization, 3, 14, 297
Multistart, 81
Mutation, 118, 136, 139, 145

bit-flip, 139
deterministic, 139
Gaussian, 145
operator, 367
self-Adaptive, 147
uniform, 145

Mutation rate, 136

N
Negative selection, 232
Neighborhood, 55, 56, 79, 87, 90, 205

complex, 61
evaluation, 58
Lin–Kernighan, 61
on a permutation, 55, 57

Niching, 288
sequential, 288

NPGA, 304
NSGA, 304
NSGA-II, 305

O
Objectives

aggregation, 314
scalarization, 314

Operator
crossover, 118, 135
Darwinist, 117
mutation, 118, 136, 367
recombination, 118
replacement, 117, 130
search, 118
selection, 117, 120
variation, 118, 133

Optimization
difficulty of, 1

488 Index

global, 2
multimodal, 288
multiobjective, 297

P
Parallel implementation, 3
Parallelism intrinsic, 13
Parallelization, 15, 27
Parameter calibration, 65
Parameter tuning, 67, 68, 73, 371
Pareto front, 298
Pareto optimal, 14
Pareto-optimal set, 298
Particle swarm central, 216
Particle swarm optimisation (PSO), 204
Partitioning of graph, 32
Path relinking, 75, 369
Penalization, 331

adaptive penalty, 335
death penalty, 333
dynamic penalty, 334
self-adaptive penalty, 339
static penalty, 334

Penalty, 72, 365
Perturbation, 83, 92, 94, 96
Phenotype, 137, 162
Pheromone, 12, 181
Point ideal, 315
POPMUSIC, 360, 362, 363, 369

optimization procedure, 364
parameter, 361

Population, 117
management, 367

Problem
decomposition, 360
location–routing, 359
modeling, 364
on permutations, 57
permutation, 149
quadratic assignment, 53
traveling salesman, 53, 149

Program of annealing, 26
Programming

evolutionary, 116
linear, 15

Q
Quadratic assignment, 32, 66

and tabu search, 74
definition, 53
example, 54, 69

neighborhood, 59
Quality

indicators, 299
metrics, 299

Quenching, 6

R
Radius

niche, 289, 294
of restriction, 136

Random number generator, 205
Raw fitness, 311
Recombination, 118

intermediate, 144
Replacement, 117, 130

elitist, 131
generational, 130
steady-state, 131

Representation, 118, 133
binary, 137
ordinal, 150
paths, 151
real, 140
sequence, 151
tree-based, 154

Restricted candidate list, 100
Ring, 206
Roach infestation optimization, 282
Robustness, 13
Roulette wheel selection method, 124
Rule of 1/5, 145
RWS method, 124

S
SAFP method, 340
Scalarization of objectives, 314
Scatter search, 367
Selection

intensity, 122
operator, 117, 120, 367
pressure, 121, 125
proportional, 122–124
rank-based, 128
tournament, 129
truncation, 130

Self-organization, 13
Separable (objective function), 147
Set covering problem, 101
Sexual reproduction, 118
SGGA, 341
Shared fitness, 289

Index 489

Slime mold optimization, 281
Social insects, 179
Social spiders, 282
SPEA, 309
SPEA2, 310
Speciation, 288, 295

by clustering, 297
island model, 296
label-based, 296

Specific heat , 46
Spin glass, 5
SPSO 2007, 213
SPSO 2011, 214
STAMP, 376
Statistical test

bootstrap, 375
by comparing proportions, 371
done by Taillard, 372
Mann–Whitney, 374

Stigmergy, 12
Stochastic method, 2
Stochastic ranking, 343
Strategic oscillations, 53
Strict tabu list, 107, 108
Subpopulation, 288, 295
SUS method, 124
Swarm, 205
Symbolic regression, 159

T
Tabu condition duration, 65, 73
Tabu list, 9, 63, 64

basic, 51
hash table, 63
length, 65

random, 67, 69
size, 66
type, 68

Tabu move, 66, 67
Tabu search, 54, 75, 107
Tag-bits, 296
Takeover time, 121
Temperature, 6

initial, 39
Termite colony optimization, 282
Topology, 206
Tournament, 129

crowded, 305
deterministic, 129
Pareto domination, 304
stochastic, 129

Trade-off surface, 298
Traveling salesman problem, 2, 30, 149

U
Ultrametricity, 24

V
Variable neighborhood search, 53
Variables, 14
Variations, 118
Vehicle routing, 358, 363
Vocabulary building, 75, 369

W
Wasp swarm optimization, 282
Weighted summation of objectives, 314

	Contents
	Contributors
	1 Introduction
	1.1 ``Hard'' Optimization
	1.2 Source of the Effectiveness of Metaheuristics
	1.2.1 Trapping of a ``Classical'' Iterative Algorithm in a Local Minimum
	1.2.2 Capability of Metaheuristics to Extract Themselves from a Local Minimum

	1.3 Principles of the Most Widely Used Metaheuristics
	1.3.1 Simulated Annealing
	1.3.2 The Tabu Search Method
	1.3.3 Genetic Algorithms and Evolutionary Algorithms
	1.3.4 Ant Colony Algorithms
	1.3.5 Other Metaheuristics

	1.4 Extensions of Metaheuristics
	1.4.1 Adaptation for Problems with Continuous Variables
	1.4.2 Multiobjective Optimization
	1.4.3 Hybrid Methods
	1.4.4 Multimodal Optimization
	1.4.5 Parallelization

	1.5 Place of Metaheuristics in a Classification of Optimization Methods
	1.6 Applications of Metaheuristics
	1.7 An Open Question: The Choice of a Metaheuristic
	1.8 Outline of the Book
	References

	2 Simulated Annealing
	2.1 Introduction
	2.2 Presentation of the Method
	2.2.1 Analogy Between an Optimization Problem and Some Physical Phenomena
	2.2.2 Real Annealing and Simulated Annealing
	2.2.3 Simulated Annealing Algorithm

	2.3 Theoretical Approaches
	2.3.1 Theoretical Convergence of Simulated Annealing
	2.3.2 Configuration Space
	2.3.3 Rules of Acceptance
	2.3.4 Program of Annealing

	2.4 Parallelization of the Simulated Annealing Algorithm
	2.5 Some Applications
	2.5.1 Benchmark Problems of Combinatorial Optimization
	2.5.2 Layout of Electronic Circuits
	2.5.3 Search for an Equivalent Schema in Electronics
	2.5.4 Practical Applications in Various Fields

	2.6 Advantages and Disadvantages of the Method
	2.7 Simple Practical Suggestions for Beginners
	2.8 Modeling of Simulated Annealing Through the Markov Chain Formalism
	2.8.1 Asymptotic Behavior of Homogeneous Markov Chains
	2.8.2 Choice of Annealing Parameters
	2.8.3 Modeling of the Simulated Annealing Algorithm by Inhomogeneous Markov Chains

	2.9 Annotated Bibliography
	References

	3 Tabu Search
	3.1 Introduction
	3.2 The Quadratic Assignment Problem
	3.2.1 Example

	3.3 Basic Tabu Search
	3.3.1 Neighborhood
	3.3.2 Moves and Neighborhoods
	3.3.3 Neighborhood Evaluation
	3.3.4 Neighborhood Limitation: Candidate List
	3.3.5 Neighborhood Extension: Ejection Chains

	3.4 Short-Term Memory
	3.4.1 Hash Table
	3.4.2 Tabu List
	3.4.3 Duration of Tabu Conditions
	3.4.4 Aspiration Conditions

	3.5 Long-Term Memory
	3.5.1 Frequency-Based Memory
	3.5.2 Forced Moves

	3.6 Convergence of Tabu Search
	3.7 Conclusion
	3.8 Annotated Bibliography
	References

	4 Variable Neighborhood Search
	4.1 Introduction
	4.2 Description of the Algorithm
	4.2.1 Local Search
	4.2.2 Diversification of the Search
	4.2.3 The Variable Neighborhood Search

	4.3 Illustration and Extensions
	4.3.1 Finding Extremal Graphs with VNS
	4.3.2 Improving the k-Means Algorithm
	4.3.3 Using VNS for Continuous Optimization Problems

	4.4 Conclusion
	4.5 Annotated Bibliography
	References

	5 A Two-Phase Iterative Search Procedure: The GRASP Method
	5.1 Introduction
	5.2 General Principle Behind the Method
	5.3 Set Covering Problem
	5.4 An Initial Algorithm
	5.4.1 Constructive Phase
	5.4.2 Improvement Phase

	5.5 Benchmark
	5.6 Experiments with greedy(α)+descent
	5.7 Local Tabu Search
	5.7.1 The Search Space
	5.7.2 Evaluation of a Configuration
	5.7.3 Managing the Tabu List
	5.7.4 Neighborhood
	5.7.5 The Tabu Algorithm

	5.8 Experiments with greedy(α)+descent+Tabu
	5.9 Experiments with greedy(1)+Tabu
	5.10 Conclusion
	5.11 Annotated Bibliography
	References

	6 Evolutionary Algorithms
	6.1 From Genetics to Engineering
	6.1.1 Genetic Algorithms or Evolutionary Algorithms?

	6.2 The Generic Evolutionary Algorithm
	6.2.1 Selection Operators
	6.2.2 Variation Operators
	6.2.3 The Generational Loop
	6.2.4 Solving a Simple Problem

	6.3 Selection Operators
	6.3.1 Selection Pressure
	6.3.2 Genetic Drift
	6.3.3 Proportional Selection
	6.3.4 Tournament Selection
	6.3.5 Truncation Selection
	6.3.6 Environmental Selection
	6.3.7 Fitness Function

	6.4 Variation Operators and Representation
	6.4.1 Generalities About the Variation Operators
	6.4.2 Crossover
	6.4.3 Mutation

	6.5 Binary Representation
	6.5.1 Crossover
	6.5.2 Mutation

	6.6 Real Representation
	6.6.1 Crossover
	6.6.2 Mutation

	6.7 Some Discrete Representations for Permutation Problems
	6.7.1 Ordinal Representation
	6.7.2 Path or Sequence Representation

	6.8 Syntax Tree-Based Representation for Genetic Programming
	6.8.1 Initializing the Population
	6.8.2 Crossover
	6.8.3 Mutations
	6.8.4 Application to Symbolic Regression

	6.9 The Particular Case of Genetic Algorithms
	6.10 The Covariance Matrix Adaptation Evolution Strategy
	6.10.1 Presentation of Method
	6.10.2 The CMA-ES Algorithm
	6.10.3 Some Simulation Results

	6.11 Conclusion
	6.12 Glossary
	6.13 Annotated Bibliography
	References

	7 Artificial Ants
	7.1 Introduction
	7.2 The Collective Intelligence of Ants
	7.2.1 Some Striking Facts
	7.2.2 The Chemical Communication of Ants

	7.3 Modeling the Behavior of Ants
	7.3.1 Defining an Artificial Ant
	7.3.2 Ants on a Graph

	7.4 Combinatorial Optimization with Ants
	7.4.1 The Traveling Salesman Problem
	7.4.2 The ACO Metaheuristic
	7.4.3 Convergence of ACO Algorithm
	7.4.4 Comparison with Evolutionary Algorithms

	7.5 Conclusion
	7.6 Annotated Bibliography
	References

	8 Particle Swarms
	8.1 Unity Is Strength
	8.2 Ingredients of PSO
	8.2.1 Objects
	8.2.2 Relations
	8.2.3 Mechanisms

	8.3 Some Versions of PSO
	8.3.1 1998. A Basic Version
	8.3.2 Two Improved ``Standard'' Versions

	8.4 Applications and Variants
	8.5 Going Further
	8.6 Appendix
	8.6.1 A Simple Example
	8.6.2 SPSO 2011 with Distance--Fitness Correlation
	8.6.3 Comparison of Three Simple Variants
	8.6.4 About Some Traps
	8.6.5 On the Importance of the Generators of Numbers

	References

	9 Some Other Metaheuristics
	9.1 Introduction
	9.2 Artificial Immune Systems
	9.2.1 Negative-Selection-Based Algorithms
	9.2.2 Clonal Selection-Based Algorithms
	9.2.3 Artificial Immune Networks
	9.2.4 Danger-Theory-Inspired Algorithms
	9.2.5 Dendritic Cell Algorithms

	9.3 Differential Evolution
	9.3.1 Mutation Schemes
	9.3.2 Crossover

	9.4 Bacterial Foraging Optimization Algorithm
	9.4.1 Chemotaxis
	9.4.2 Swarming
	9.4.3 Reproduction
	9.4.4 Elimination and Dispersal

	9.5 Biogeography-Based Optimization (BBO)
	9.6 Cultural Algorithms
	9.7 Coevolutionary Algorithms
	9.8 Conclusion
	9.9 Annotated Bibliography
	References

	10 Nature Inspires New Algorithms
	10.1 Bees
	10.1.1 Honeybee Foraging
	10.1.2 Classical ABC Implementation
	10.1.3 Parameterization and Evolution of the Classical ABC Algorithm

	10.2 In Search of the Perfect Harmony
	10.2.1 Memory Initialization
	10.2.2 Improvisation of a New Harmony
	10.2.3 Updating of the Memory Slots
	10.2.4 Parameterization and Evolution of the Classical Algorithm

	10.3 The Echolocation Behavior of Microbats
	10.3.1 Initialization Step
	10.3.2 Moves of the Bats
	10.3.3 Update of the Emission Properties of the Ultrasound
	10.3.4 Evolution of the Algorithm

	10.4 Nature Continues to Inspire New Algorithms
	10.4.1 Bacterial Foraging Optimization
	10.4.2 Slime Mold Optimization
	10.4.3 Fireflies and Glowworms
	10.4.4 Termites
	10.4.5 Roach Infestation
	10.4.6 Mosquitoes
	10.4.7 Wasps
	10.4.8 Spiders
	10.4.9 Cuckoo Search

	10.5 Conclusion
	10.6 Annotated Bibliography
	References

	11 Extensions of Evolutionary Algorithms to Multimodal and Multiobjective Optimization
	11.1 Introduction
	11.2 Multimodal Optimization
	11.2.1 The Problem
	11.2.2 Niching with the Sharing Method
	11.2.3 Niching with the Deterministic Crowding Method
	11.2.4 The Clearing Procedure
	11.2.5 Speciation

	11.3 Multiobjective Optimization
	11.3.1 Problem Formalization
	11.3.2 The Quality Indicators
	11.3.3 Multiobjective Evolutionary Algorithms
	11.3.4 Methods Using a Pareto Ranking
	11.3.5 Scalarization Methods

	11.4 Conclusion
	11.5 Annotated Bibliography
	References

	12 Extension of Evolutionary Algorithms to Constrained Optimization
	12.1 Introduction
	12.2 Penalization
	12.2.1 ``Death Penalty'' Method
	12.2.2 Static Penalty Methods
	12.2.3 Dynamic Penalty Methods
	12.2.4 Adaptive Penalty Methods
	12.2.5 Self-adaptive Penalty Methods
	12.2.6 Segregated Genetic Algorithm (SGGA)

	12.3 Superiority of Feasible Solutions
	12.3.1 Method of Powel and Skolnick
	12.3.2 Deb's Method
	12.3.3 Stochastic Ranking

	12.4 Searching for Feasible Solutions
	12.4.1 Repair Methods: GENOCOP III
	12.4.2 Behavioral Memory

	12.5 Preserving the Feasibility of Solutions
	12.5.1 GENOCOP System
	12.5.2 Searching on the Boundary of the Feasible Region
	12.5.3 ``Homomorphous Mapping''

	12.6 Multiobjective Methods
	12.6.1 Method of Surry et al.
	12.6.2 Method of Camponogara and Talukdar
	12.6.3 IDEA Method of Singh et al.

	12.7 Hybrid Methods
	12.8 Conclusion
	12.9 Annotated Bibliography
	References

	13 Methodology
	13.1 Introduction
	13.1.1 Academic Vehicle Routing Problem

	13.2 Decomposition Methods
	13.2.1 Chain of Decomposition
	13.2.2 Decomposition into Subproblems of Smaller Size

	13.3 Problem Modeling
	13.4 Population Management and Adaptive Memory Programming
	13.4.1 Evolutionary or Memetic Algorithms
	13.4.2 Scatter Search
	13.4.3 Ant Colonies
	13.4.4 Vocabulary Building
	13.4.5 Path Relinking

	13.5 Comparison of Heuristics
	13.5.1 Comparing Proportions
	13.5.2 Comparing Iterative Optimization Methods

	13.6 Conclusion
	References

	14 Optimization of Logistics Systems Using Metaheuristic-Based Hybridization Techniques
	14.1 Logistics Systems
	14.1.1 Definitions and General Considerations
	14.1.2 Integrated View of Supply Chain
	14.1.3 Difficulties of Performance Optimization in a Supply Chain
	14.1.4 Decision Support System
	14.1.5 Reason for Interest in Metaheuristics

	14.2 Hybridization Techniques
	14.2.1 Generalities
	14.2.2 Metaheuristic/Optimization-Method Hybridization
	14.2.3 Metaheuristic/Performance-Evaluation-Method Hybridization

	14.3 Application to Supply Chain Management
	14.3.1 Preamble
	14.3.2 Production/Distribution Planning
	14.3.3 Location--Routing Problem
	14.3.4 Multiplant Multiproduct Capacitated Lot-Sizing Problem
	14.3.5 Flexible Manufacturing System

	14.4 Conclusion
	References

	15 Metaheuristics for Vehicle Routing Problems
	15.1 Introduction
	15.2 Vehicle Routing Problems
	15.2.1 Basic Version
	15.2.2 Variants of the Classical Vehicle Routing Problem

	15.3 Basic Heuristics and Local Search Procedures
	15.3.1 Basic Heuristics
	15.3.2 Local Search

	15.4 Metaheuristics
	15.4.1 Path Methods
	15.4.2 Population or Agent-Based Methods
	15.4.3 Evolution of the Field, and Trends

	15.5 The Split Approach
	15.5.1 Principle and Advantages
	15.5.2 Split Algorithm
	15.5.3 Integration into Heuristics and Metaheuristics

	15.6 Example of a Metaheuristic Using the Split Approach
	15.6.1 General Principle of GRASPtimesELS
	15.6.2 Application to the Capacitated Vehicle Routing Problem

	15.7 Conclusion
	15.8 Annotated Bibliography
	References

	16 Applications to Air Traffic Management
	16.1 Introduction
	16.2 Air Route Network Optimization
	16.2.1 Optimal Positioning of Nodes and Edges Using Geometric Algorithms
	16.2.2 Node Positioning with Fixed Topology, Using a Simulated Annealing or Particle Swarm Optimization Algorithm
	16.2.3 Defining 2D Corridors with a Clustering Method and a Genetic Algorithm
	16.2.4 Building Separate 3D Tubes Using an Evolutionary Algorithm and an A* Algorithm

	16.3 Airspace Optimization
	16.3.1 Airspace Sectorization
	16.3.2 Definition of Functional Airspace Blocks
	16.3.3 Prediction of ATC Sector Openings

	16.4 Departure Slot Optimization
	16.5 Airport Traffic Optimization
	16.5.1 Gate Assignment
	16.5.2 Scheduling the Aircraft on the Runway
	16.5.3 Surface Routing Optimization
	16.5.4 Global Airport Traffic Planning

	16.6 Aircraft Conflict Resolution
	16.6.1 Ant Colony Optimization Approach
	16.6.2 Free-Flight Approaches
	16.6.3 A Framework for Comparing Different Approaches

	16.7 Conclusion
	References

	Index

