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Advancing Techniques and Insights 
in Circulating Tumor Cell (CTC) Research

Bee Luan Khoo*, Parthiv Kant Chaudhuri*, Chwee Teck Lim, 
and Majid Ebrahimi Warkiani

1  �Introduction

Cancer is a major cause of mortality worldwide, with a disease burden estimated to 
grow over the coming decades. Circulating tumor cells (CTCs) are rare cancer cells 
released from the primary or metastatic tumors and transported though the periph-
eral circulatory system to their specific secondary locations. The presence of CTCs 
in a cancer patient’s blood has been used as a prognostic biomarker, with lower 
CTC count correlating with greater overall survival [1]. In spite of its clinical poten-
tial, the isolation and detection of CTCs has been a challenging task due to its rare 
presence amongst other blood cells (as low as 1–10 CTCs per billions of blood 
cells) and variability in terms of both morphological and biochemical markers. 
Recent developments of microfluidics technology have paved the way for better 
isolation and characterization of CTCs due to several advantages such as lower 
sample volume, higher sensitivity and throughput and lesser production cost [2, 3]. 
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In this chapter, various CTC isolation devices are classified under two major catego-
ries: microfluidics and conventional macro-scale devices, as illustrated in Fig. 1. We 
will be discussing both label-free methods and antibody-dependent methods for 
CTC isolation, and will provide discussion and future perspectives on the advan-
tages and drawbacks of both these techniques on potential clinical applications. 
Advancement in these technologies for CTCs and associated components, such as 
exosomes, led to an unraveling of tumor variation, ranging histology, molecular, 
proteomic and functional heterogeneity, which will be discussed in the subsequent 
sections.

CTCs are heterogeneous in terms of the morphology and surface expression of 
various biomarkers. Therefore, it is an uphill task to isolate these rare cells from 
clinical samples in the presence of billions of other hematologic cells. Recent tech-
nological advancements observed that CTCs differ from blood cells in various bio-
physical properties (such as size, adhesion and stiffness) and cell surface receptor 
expressions (such as Epithelial cell adhesion molecule (EpCAM) and Cytokeratin 
(CK)) [4, 5]. Current microfluidics techniques and conventional methods can target 
such distinct properties of the CTCs and achieve high isolation efficiency and 
throughput along with greater cell viability for downstream single-cell analysis.

Fig. 1  Schematic classifications of various circulating tumor cell (CTC) isolation technologies. 
CTC isolation platforms can be classified into two major classes: microfluidics and conventional 
macro scale devices. The microfluidic devices can be further sub-divided into label-free (microfil-
tration, deterministic lateral displacement (DLD) devices and inertial microfluidics), antibody-
based (anti-EpCAM coated channels, affinity-based magnetic beads and adhesion-based 
techniques) and hybrid techniques (combining DLD with magnetophoresis or anti-EpCAM coated 
channels) that uses the advantages of both label-free and antibody-based methods. Macro scale 
techniques can also be further classified into label-free (density gradient centrifugation and micro 
filtration membranes) and antibody-based (CellSearch system, MagSweeper system) platforms
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2  �Microfluidics Devices

Over the past decade, microfluidics technologies have been extensively utilized for 
study of human disease such as cancer. Microfluidic systems normally leverage on 
the disparities in the intrinsic properties of the different cell populations (i.e., size, 
deformability, surface charge, density, etc.) to achieve separations. Isolation and 
characterization of CTCs using microfluidic systems has been a flourishing area of 
research which can be broadly categorized to label-free and antibody-based 
approaches (see Fig. 1).

2.1  �Label-Free Technologies

Differences in the biophysical properties between the CTCs and blood cells, such as 
size, deformability, magnetic susceptibility and electrical behaviors have been 
exploited to develop label-free sorting of CTCs. The key advantages of this method 
compared to the antibody-based devices are the collection of a complete pool of 
CTC population consisting of both EpCAM positive and negative cells and greater 
compatibility to a wide range of assays that require viable unlabeled cells. Size and 
deformability-based sorting of CTCs can be achieved by using microfiltration 
devices and a membrane pore size of around 8 μm has been proved optimal for 
CTCs capturing [6]. The size of the CTCs varies between 6 and 30 μm and is usu-
ally greater than normal hematologic cells [7]. 3D membrane micro filter consisting 
of two-layers of membrane has been developed with the upper membrane pore size 
diameter of 9 μm and the pores are aligned centrally to the smaller pores (8 μm) on 
the basal layer [8]. When blood samples are passed through the device, the CTCs 
are captured in the upper membrane while other blood cells pass through the gap 
between the two membranes. This device has an isolation efficiency of 86 % and 
processing throughput of 3.75 ml/min. Recently, a novel design of the 3D mem-
brane micro filter is introduced with 5 times greater upper membrane pore diameter 
than that of the lower membrane pores (8 μm) [9]. The CTCs are captured between 
the gap of the two membranes and the cell can be analyzed by separating the two 
membranes. Isolation efficiency ranging from 78 to 83 % can be obtained using this 
device with higher cell viability (greater than 70 %). In order to mitigate the pres-
sure buildup problem during membrane filtration, cross-flow conformation in paral-
lel direction to the filtration membrane was introduced [10]. Membrane microfilters 
developed using this principle can obtain a capture efficiency of 98 % for MCF-7 
cells spiked into blood samples. In another interesting study, weir-shaped structures 
are used as barrier across the filtration chip to trap most of the CTCs while the blood 
cells can pass through the narrow opening at the upper portion of the barrier [11]. 
This device has an isolation efficiency of >95 % and processing speed of 20 ml/h. 
Microfiltration devices can also be integrated with conical shaped holes to achieve 
highly efficient cell capture (96 %) at 0.2 ml/min processing rate, as illustrated in 
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Fig. 2a [10]. Clearbridge Biomedics has commercialized a microfluidics device, the 
CTChip® with an array of crescent-shaped structures composed of three closely 
spaced micropillars that can trap the CTCs from clinical samples with high through-
put and without channel clogging from the cell debris [15, 16]. This device can 
isolate single and double CTCs and the viable cells can be retrieved and cultured by 
reversing the flow direction. ISET® (Rarecells, Paris, France) and ScreenCell® are 
two commercialized systems for sized-based isolation of CTCs that provide 

Fig. 2  Diagrammatic representation of CTC isolation devices. (a) Integration of microfiltration 
with conical holes for size-based capturing of CTCs. The sample is processed through inlet 1 and 
it passes through the filter and subsequently gets collected by constant pulling from a syringe pump 
at outlet 2 (top right). Representation of the microfluidics platform processing clinical samples 
(middle right). Image of 9 mm diameter micro-filter (bottom right). Scanning electron micrograph 
(SEM) of conical holes (scale 40 μm). Reproduced with permission from [10]. (b) Representation 
of multiplexed spiral biochip with two inlets for clinical samples and sheath fluid respectively. The 
CTCs are sorted due to the action of inertial lift and Dean drag forces and are segregated towards 
the inner wall of the microfluidics channel (A–A) whereas the WBCs and platelets are concen-
trated towards the outer wall (B–B). Reproduced with permission from [12]. (c) Working principle 
of Thermoresponsive NanoVelcro substrate for capturing CTCs with biotinylated anti-EpCAM 
antibodies at 37  °C and subsequent release of the captured CTCs at 4  °C due to temperature-
dependent conformational changes of the polymer brushes that changes the availability of anti-
EpCAM antibodies on the surface. Reproduced with permission from [13]. (d) Schematic of the 
working principle of Gilupi nanodetector system for capturing CTCs from the in-vivo environ-
ment. The gold-plated medical steel wire is coated with hydrogel (indicated in brown) and func-
tionalized with anti-EpCAM antibodies (indicated in red) and is inserted into the patient vein to 
capture EpCAM positive CTCs. Reproduced with permission from [14] (Color figure online)
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cost-effective and high-throughput enrichment of fixed and viable CTCs respec-
tively [17, 18]. The major advantages of the microfiltration devices are its simple 
design and its ability to obtain the CTCs from the whole blood in a single pass while 
maintaining its cellular integrity for detection and further downstream analysis. 
Although size based enrichment of CTCs provides a high-throughput, label-free 
technique, it has some drawbacks; such as the cells are subjected to high mechanical 
stress that can alter their normal function [19] and there is a size overlap between 
the CTCs and leukocytes that can increase the probability of isolating more con-
taminating cells [20].

Dielectrophoresis (DEP) phenomena have also been used for CTC isolation 
based on the differential motion of the cells when exposed to a non-uniform electric 
field. Cells can exhibit attractive and repulsive behaviors depending on their size 
and dielectric polarizability under a non-uniform electric field [21]. Compared to 
normal cells, CTCs have greater surface area and higher capacitance per unit area 
that provides them a unique dielectric property and thereby affecting their motion in 
presence of an electric field. Contactless DEP (cDEP) is developed with greater 
sensitivity and eliminating the drawbacks of traditional DEP such as high cost, air 
bubble production, electrode delamination and culture contamination [22]. This 
device reports an isolation efficiency of 64.5 % for carcinoma cells from concen-
trated RBC solution. ApoCell laboratories have commercialized ApoStream device 
in 2010 and validation study using breast cancer cells spiked into clinical sample 
has observed an isolation efficiency of 86.6 % with higher viability (97.6 %) [23]. 
The main advantage of DEP devices is that the effect of therapeutic agents could be 
determined by monitoring the differences in the frequency responses of the cells 
under the action of various chemotherapeutic agents.

Deterministic lateral displacement (DLD) is another label-free method used for 
sorting CTCs in microfluidic devices. A novel DLD platform with 58 μm triangular 
micropost and 42 μm gap is used to capture CTCs at high efficiency (>85 %) and 
throughput (10 ml/min) [24]. Inertial microfluidics is also used for isolating CTCs 
by combining inertial lift forces and pinched flow dynamics to focus particles in 
their preferential equilibrium position along a microfluidic channel. Inertial micro-
fluidics can be combined with microvortex particle capturing to isolate CTCs in a 
high-throughput, clogging free manner [25]. Apart from straight channels, spiral 
microfluidics can be used to achieve inertial sorting by combining inertial and Dean 
drag forces. Our group developed a spiral microfluidics chip with rectangular cross 
section to isolate CTCs (varying from 5 to 88 CTCs/ml of blood) from 20 metastatic 
lung cancer patients [26]. Strong inertial lift forces focus the bigger CTCs towards 
the inner wall while the smaller hematologic cells move towards the outer wall. Due 
to greater channel dimensions (500 μm width and 160 μm height) and increased 
flow rate (3 ml/h), clogging of the microchannels by the cell debris is also mitigated, 
thereby increasing the performance and sensitivity of the device. More recently, we 
further developed our spiral microfluidics chip with trapezoidal cross-section that 
can separate the CTCs from metastatic breast and lung cancer clinical samples in an 
ultra-high throughput manner (7.5 ml within 8 min) [27]. Our group subsequently 
developed multiplexed spiral microfluidics chip for ultra-high throughput sorting of 
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viable clinical CTC (12–1275 CTCs/ml for breast cancer patients and 10–1535 CTCs/
ml for lung cancer patients) for further downstream single-cell characterization 
such as fluorescence in-situ hybridization (FISH) and proteomics analysis, as repre-
sented in Fig. 2b [12]. In another study, contraction-expansion array microfluidic 
channels is used to enrich cancer cells spiked into blood suspension with 99.5 % 
efficiency [28]. In negative selection methods, the CTCs are untouched; however 
the RBCs are lysed and the WBCs are magnetically removed using specific markers 
such as CD45, CD61 [29].

2.2  �Antibody Based Technologies

Antibody mediated CTC isolation techniques are dependent on the specific binding 
of the cell surface receptors with the antibody bound matrix. The matrix could be of 
mainly two types, such as magnetic beads or functionalized microfluidics channel. 
The two commonly used markers for CTC isolation and detection are EpCAM and 
different subtype of CK. However, due to the occurrence of epithelial to mesenchy-
mal transition (EMT), all CTCs do not express these markers and therefore these 
techniques fail to collect some subpopulations of the CTCs [30, 31]. CTCs can be 
selectively labeled with antibody-tagged magnetic microbeads (diameter: 0.5–5 μm) 
or nanoparticles (diameter: 50–250 nm) and sorted in a non-uniform magnetic field, 
whereby the labeled CTCs migrate to a region of higher magnetic field and get 
trapped with an isolation efficiency of 86 % [32, 33]. A straight microchannel with 
many square indentation on its sidewalls can be used to pull and trap the EpCAM 
tagged CTCs towards the sidewalls under the influence of an external magnetic field 
[34]. Fluxion Biosciences have commercialized a microfluidics device, IsoFlux™, 
which can trap magnetically labeled CTCs when passed through a microchannel 
with uniform magnetic field. Other promising strategies to further develop the 
enrichment of EpCAM-positive CTCs in a highly sensitive and efficient manner 
includes 3D nanostructured substrate or nano “Fly Paper” Technology [35] and a 
Velcro-like microfluidics platform with isolation efficiency ranging from 40 to 
70 %, as depicted in Fig. 2c [13].

Adhesion-based CTC isolation techniques depend on the binding affinity of 
CTCs to a surface whose biochemical (using antibody coated surface) and structural 
properties (using nano topographical features) can be modified to favor suitable 
adhesion. This technique can be performed either in static [36] or dynamic flow 
modes [37], while the later one is more sensitive due to the greater interaction 
between the cells and the surface and prevention of non-specific adhesion due to 
fluid shear forces. Using 3D structures such as microposts inside a microfluidics 
channel (the CTC-Chip), the effective surface area can be enhanced and the colli-
sion frequency between the cell and the EpCAM functionalized surface can be 
increased [38]. The CTC-Chip has recovery rate of 60 % and the recovery efficiency 
does not depend on the different expression of EpCAM by the CTCs due to the 
greater collision frequency. Geometrically enhanced differential immunocapture 
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(GEDI) chip is developed to further increase the effective collision frequency 
between the CTCs and the antibody-coated microstructure to enhance the isolation 
efficiency (~90 %) [37]. In another study, herringbone-chip was discovered with 
anti-EpCAM coated herringbones structures to increase the collision between the 
CTCs and antibody functionalized PDMS channels [39]. This device has an isola-
tion efficiency of 91.8 % with 95 % cell viability. Recently, geometrically enhanced 
mixing (GEM) chip is introduced with a further improved herringbone micromixers 
to enhance the throughput and isolation purity in antibody-dependent devices [40]. 
CTCs are detected using this device in 17 out of the 18 pancreatic cancer patients 
studied and the CTC number correlates with the tumor size in three advanced stage 
patients during the period of the treatment. Adhesion-based CTC isolation tech-
niques using micropost arrays has been commercialized by OnQChip™ (On-Q-ity, 
MA, USA) and the CEE™ chip (Biocept Laboratories, CA, USA). Graphene oxide 
sheets can be functionalized with anti-EpCAM antibodies and adsorbed on gold 
patterned substrates for efficient and sensitive enrichment of CTCs [41]. The 
increased surface area and biocompatibility of graphene oxide enables greater load-
ing capacity of anti-EpCAM antibodies on its surface and the isolated cells can be 
cultured on the gold substrates for further downstream characterization such as 
RT-PCR and drug testing.

Different techniques can be combined to create a better hybrid platform for 
effective enrichment of CTCs with higher throughput. The CTC-iChip uses both 
antigen dependent (magnetophoresis) and independent (DLD with inertial focus-
ing) strategies to isolate CTCs with greater sensitive (0.5 CTCs per ml) from clini-
cal samples with lower CTC numbers [42]. Another study combined DLD with 
EpCAM functionalized isolation chambers to enrich CTCs with greater efficiency 
(90 %) and throughput (9.6 ml/min) [43]. CTCs are initially sorted from other blood 
cells in the DLD compartment comprising of triangular microposts and subse-
quently they are captured in an EpCAM functionalized chambers with fishbone 
conformation to enhance the isolation capacity.

3  �Conventional Macro Scale Devices

3.1  �Label-Free Technologies

Density gradient centrifugation is a label-free technique using centrifugal forces 
for sorting cells from blood based on the difference in their sedimentation coeffi-
cient. When a clinical sample is subjected to density gradient centrifugation, the 
denser RBC and neutrophils settles at the base of the tube whereas the CTCs, 
plasma and mononucleated cells are collected above the buffy coat. In another 
study using silicon-blending oil as a floatation media, cancer cells are identified in 
53 % and 33 % of gastrointestinal tract cancer and breast cancer patients respec-
tively [44]. OncoQuick centrifugation system has been developed with a porous 
membrane within the centrifugation tube to prevent the mixing of the separation 
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media with the clinical sample before centrifugation. This system has a greater 
CTC isolation efficiency compared to the Ficoll density gradient centrifugation 
[45]. OncoQuick has been used for the enrichment of CTCs from metastatic breast 
cancer patients and it can successfully detect CTCs in 69.2 % of the clinical sam-
ples [46]. RBCs and WBCs can be cross-linked to form rosettes using a cocktail of 
antibodies and RosetteSep™ (STEMCELL Tech., BC, Canada) commercialized 
this technique. On application of centrifugal forces these rosettes can be efficiently 
separated from the CTCs due to their greater densities [47]. In another study, the 
use of sieve material as a filter with pore size of 4.5 μm could separate 100 % of the 
HeLa cells spiked into blood and detect cancer cells in 19 out of the 50 cancer 
patient specimen [48].

3.2  �Antibody Based Technologies

Notable achievement in the isolation techniques of CTCs has been accomplished 
by the introduction of FDA (Food and Drug Administration)–approved method, the 
CellSearch system (Veridex) [49, 50]. CellSearch system consists of a semi-
automated platform for capturing EpCAM positive CTCs using immunomagnetic 
cell sorting and the cells are subsequently identified by antibody staining of various 
subtypes of cytokeratins. This system was validated for CTC detection in meta-
static breast cancer patients and it was reported that CTC assessment could provide 
critical prognostic information such as overall survival and progression-free sur-
vival [51–53]. However, CellSearch system can only successfully isolate EpCAM 
positive sub-population of the CTCs and the isolated CTCs are permanently labeled 
with antibodies that limit their downstream characterization. Illumina Inc. (CA, 
USA) commercialized MagSweeper system, which consists of a robotic arm with a 
magnetic rod that continuously shifts the region of high magnetic field within a 
multiwell plate [54]. The speed and trajectory of the rod movement has been stan-
dardized to favor the adsorption of EpCAM-labeled CTCs on the rod and prevents 
non-specific adsorption by other non-target cells. This system can perform at a high 
throughput (9 ml/h) and higher isolation efficiency (~81 %). Flow cytometry tech-
nologies such as fluorescence-activated cell sorting (FACS) can be utilized to 
simultaneously detect several fluorescently labeled antibodies and thereby increas-
ing CTC isolation purity [55]. However, this technique can not provide greater 
sensitivity for CTC isolation due to the varied expression pattern of different anti-
gens on the CTCs depending on the types and stages of cancer [56]. Anti-EpCAM 
coated detachable microbeads can be used to enlarge the size of the CTCs before 
passaging the whole blood sample through the microfiltration device (8 μm pore 
size) [57]. Leukocytes and other blood cells can pass through the filter while the 
larger CTCs remain trapped on the filter membrane. This device reports a capture 
efficiency of 89 % and isolated 1–31 CTCs/ml of clinical samples. CTCs can also 
be isolated directly from the in vivo environment using the Gilupi nanodetector® 

B.L. Khoo et al.



79

system, as shown in Fig. 2D [14]. The nanodetector is coated with anti-EpCAM 
antibodies and inserted in the peripheral arm vein for 30 min to collect larger num-
ber of CTCs.

4  �Characterization of Cancer Cell Heterogeneity

Tumors demonstrate huge heterogeneity in morphology, immuno-phenotype, and 
genotype [58]. Novel therapeutic approaches for BRAF mutant cutaneous mela-
noma [59] and ALK rearranged NSCLC [60], in the recent decades have been 
unable to increase the survival of patients with advanced stage cancer. This is largely 
attributed to tumor heterogeneity and the rise of drug tolerant or resistant subtypes 
under the influence of ineffective drug therapy [61]. Similarly, CTCs have been 
found to demonstrate a similar range of heterogeneity across multiple parameters, 
including morphology, histology and proteomics (Fig. 3).

4.1  �Histology and Morphology

Observations of tumor histology are often correlated with disease severity [65], and 
have been found to exhibit strong correlations to genotype [66]. Generally, malig-
nant cancer cells are identified as cells with a round or oval nucleus, and a high 
nuclear to cytoplasmic (N/C) ratio [67]. However, cancer subtypes display distinct 
morphology variations, such as the established case of small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC) [68].

Recent analysis with specific cancer subpopulations [62, 69, 70], such as dissemi-
nated tumor cells (DTCs) and CTCs revealed extensive intertumor histological varia-
tion (within the same tumor type among individuals) [71]. CTCs are derived from the 
blood samples of cancer patients and selectively isolated by targeting protein expres-
sion [49], negative selection [29], physical properties [26, 42], or by means of expan-
sion [8, 63, 72]. CTCs can be isolated on a routine basis via a non-invasive process 
of blood withdrawal [73], allowing monitoring of therapy-associated changes in pro-
tein expression, a process which could illuminate the mechanisms that facilitate drug 
resistance development. Proteomics profiling of CTCs has revealed some of the 
extent of heterogeneity present. Results suggest the role of multiple pathways, such 
as the process of EMT transition [74], which is involved in the metastatic cascade 
[75, 76]. CTC size and other physical parameters may also vary significantly [77], 
which limits the sensitivity of CTC enrichment devices. These variations can be 
observed within the cells obtained from tumors of the same patient. Upcoming high 
throughput spectral imaging techniques will allow rapid processing of single-cell 
images, providing dynamic insights to cancer cell morphological changes under 
stimulus or drug exposure (see Fig. 3a) [78, 79].
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4.2  �Proteomics and Genetic Profiling

Although some histology aspects of cancer cells correspond to genotype, intertu-
mor variation in protein expression has been identified in tumors classified under 
similar subtypes [80]. Depending on the microenvironment [81], as well as tissue 
organization and composition [82], cancer cells may be exposed to varying stimulus 
which induces different rates of oncogene or tumor suppressor gene expressions. 

Fig. 3  Varied manifestation of CTC heterogeneity. (a) Pleomorphism of CTC morphology 
obtained from the same patient demonstrated with immunofluorescence staining (left) and 
Papanicolau stain (right) [62]. (b) Immunostaining of various forms of cytokeratin reveals hetero-
geneity in protein marker expression. Representative images of minority cohort are provided in 
boxed images (bottom left). Scale bar, 20 μm [63]. (c) Molecular FISH analysis carried out with 
clinical human CTCs from an NSCLC patient using Vysis ALK Break Apart FISH probe. Varied 
frequency of separation of the original gene fusion signal (arrows) is detected in cells obtained 
from the same sample [12]. Scale bar: 16 mm [12]. (d) Antibody coated membranes demonstrates 
active protein secretion of CK19 (green) and MUC1 (red) from viable CTCs respectively [64] 
(Color figure online)
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For example, accumulation of mutations in the adenomatous polyposis coli (APC) 
gene may lead to abnormal production of APC protein, an alteration associated with 
increased colorectal cancer risk [83]. Cancer cells presented with the APC mutation 
also has increased resistance towards certain drug strategies [84].

The varied protein expression often confers cancer cells with favorable character-
istics for growth and survival. For example, the amplified production of human epi-
dermal growth factor receptor 2 (HER2) has been suggested to induce cluster 
formation in membranes, leading to heightened susceptibility to tumorigenesis [85]. 
Processing and comparison of large databases have led to resources that provide quan-
titative values for EMT phenotypes, based on various protein expressions [86]. These 
dynamics have hindered attempts to completely map the extent of cancer heterogene-
ity [87]. Our inability to fully comprehend cancer progression often generates con-
flicting hypotheses and reduces our ability to generate effective treatment strategies.

4.2.1  �Understanding CTC Proteomics for Diagnostic and Prognostic 
Relevance

Tumor-associated proteins have been regularly identified to characterize cancer for 
administering precise therapeutic treatment. The golden standard involves extrac-
tion of these proteins from tumor biopsies [88]. However, few proteins demonstrate 
actual clinical utility due to cancer heterogeneity [89], except for few instances such 
as the prostate-specific antigen (PSA). CTC has been broadly defined in a similar 
way as DTCs [90], namely being positive for epithelial markers (e.g. EpCAM and 
CKs) and negative for leukocyte markers. However, the proteomics of CTCs are 
extremely varied (Fig. 3b), and may even not reflect the phenotype observed from 
the tumor(s) of the same patient. Hence, researchers have been looking for unique 
specific markers.

To better identify the full CTC spectrum, researchers have started to explore 
tumour-associated proteins detectable in the serum. Although the field of serum 
proteomics is in its infancy, technological advances are surfacing which will aid in 
identifying novel markers. The serum proteome of tumors is a rich source for the 
analysis of cancer cell activity and interaction with the tumor niche [91]. Circulating 
tumor DNA (ctDNA), which are short fragments of 150–200 bp DNA, are released 
from apoptotic CTCs and are now a major interest for diagnostic purposes [92]. 
ctDNA constitutes about 3–93 % of the total cell-free DNA (cfDNA) and ctDNA 
can be used as a liquid biopsy biomarker for cancer treatment by analyzing somatic 
mutations, chromosomal aberrations and loss of heterozygosity [93]. Recently, de 
novo multiplexed identification of ctDNA mutation is performed from different 
types of tumor (SHIVA trial) and 28 of 29 mutations detected in the tissue biopsy 
can be identified in the ctDNA from 27 cancer patients. This signifies the potential 
of ctDNA as a biomarker [94]. DEP microelectrodes can be used for the isolation of 
ctDNA from whole blood; however, this system is unsuitable for separation of small 
fragments of apoptotic DNA (<0.01 μm) and the use of DEP microelectrodes also 
suffers from cross-sample contamination issues and higher fabrication cost [95, 96]. 
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In another study, digital PCR is used to define malignant growth in various types of 
cancer such as pancreatic, ovarian, colorectal and they can identify ctDNAs in 
greater than 75 % of the patients [97]. Additionally, next generation sequencing 
(NGS) techniques has also been used for sequencing ctDNA and to monitor the 
response of patients to anti-cancer treatments [98]. ctDNA retains the spectrum of 
gene mutations found in tumours, and has the same ability to capture mutation pat-
terns as per tumor biopsies [94]. A supposed advantage of utilizing ctDNA is the 
heightened abundance of material over CTCs, as well as the ease of detection over 
capturing CTCs [97]. Most importantly, the technology advancement in DNA pro-
filing has enabled sensitive detection of a small amount of genetic material, in fact 
less than the amount of genetic material within a single CTC [93].

MicroRNAs (miRs) are small (20–22 bases), single stranded fragments of 
nucleic acid that can negatively regulate gene expression and many tumors have a 
characteristic miR-based tissue profiles. The miRs can be released into the microen-
vironment due to an active process or via passive secretion from a dying cancer cell; 
however, some miRs are not secreted from tumor cells [99]. Circulating miRs can 
be identified from serum and plasma of clinical samples and different types of solid 
tumors such as breast, colon, gastric can be distinguished based on miR profiles 
[100]. miRs from cancer cells [101] may also be isolated from plasma or found 
within microvesicles (100–1000  nm) [102], exosomes [103] and oncosomes 
(1–10 μm) (Fig. 4). Exosomes are cell-derived nanovesicles (30–100 nm) that are 
secreted into tumor microenvironment and play a critical role in cell-cell communi-
cation. Exosomes contains genetic information and signaling molecules including 
proteins, lipids, mRNA, miR and dsDNA that help in the formation of the premeta-
static niche at the secondary tumor site [104, 105]. Exosomes can be extracted from 
the body fluids using conventional methods such as ultracentrifugation and combi-
nation of sucrose gradient ultracentrifugation with ultrafiltration centrifugation. 
However, the former method is much simpler in terms of sample preparation 
(requires 4–5 h) and has greater isolation efficiency (5–25 %) [106]. Recently, Exo-
Quick™ (System Biosciences) and Exo-spin™ (Cell Guidance System) commer-
cialized the isolation kits for exosomes in a cost effective and user-friendly manner. 
Exosomes can also be isolated by targeting antibody-immobilized magnetic beads 
against specific antigens that are expressed on their surface such as Alix, annexin, 
EpCAM, Rab5, CD63, CD81, CD82, CD9 [107]. This technique has greater isola-
tion efficiency than conventional methods; however, it fails to collect the entire 
population, as some of the exosomes do not express the targeted protein on its sur-
face. Microfluidics isolation of exosomes has been developed using ExoChip, 
which uses fluorescent imaging to quantify the exosomes that are captured on anti-
CD63 coated chips [108]. Interestingly, this study observed a greater number of 
exosomes in cancer patients (2.34 ± 0.31 fold higher) compared to healthy individu-
als, which indicates the significance of exosomes as a circulating biomarker. 
Microfiltration devices (with membrane pore size of <500 nm) have also been used 
for exosome sorting from whole blood in a highly efficient manner [109]. This 
device can be combined with electrophoresis and pressure driven flow to further 
increase the enrichment efficiency. Label-free identification of exosomes can be 
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carried out using surface plasmon resonance (SPR) sensor chip, the nano-plasmonic 
exosome (nPLEX) [110]. The nPLEX chip can be functionalized with various exo-
somal antibodies and can potentially identify 12 exosomal markers within 30 min.

Research for novel markers in glioma has been extensive for the recent years, 
and several new markers such as CXCR4 [111] and haptoglobin [91] has been dis-
covered. However, the heterogeneity of cancer complicates the validation of any 
new candidate markers, and extensive single-cell analysis will be required. Some 
clinicians are also keen to utilize the serum markers from CTCs, namely exosomes 
and ctDNA, as diagnostic markers for cancer. For example, the mutant EGFRvIII 
protein, found in exosomes [112], has been demonstrated as a potential therapeutic 
marker. Markers from ctDNA, such as miR181 [113], can also be a source for diag-
nostic means, if the half-life of ctDNA is established [114]. To overcome the prob-
lem of information loss due to DNA degradation, extracellular vesicles (EVs) may 
also be extracted from blood serum. EVs are vesicles that bud off from membranes 
or secreted from cells for intercellular communication [115], and the transported 
components are protected from degradation. In the latter instance, these vesicles 
form exosomes [116].

Another alternative to overcoming the low genetic material available from rare 
cancer cell subpopulations, such as CTCs, is via single-cell analysis (SCA). 
Advanced systems, such as the microfluidic image cytometry (MIC) [117] and 

Exosomes (30-100 nm)

Oncosomes (1-10 um)

miRNAs

CTCs

Microvesicles (100-1000 nm)

0

–4 –2 0 2 4

Fold change

1

2

3

4

5

a

b

c

d

e

Fig. 4  Utilizing CTC components for diagnostic and prognostic relevance. (a) Intact CTCs are the 
primary targets for isolation and enrichment for further analysis and utility. A representative image 
of enriched CTCs (white arrow) is provided (Green: cytokeratin; Red: CD45; Blue: Nuclei stain, 
Hoechst). Scale bar: 20 mm [12]. (b) An example of a scatter plot demonstrating the differential 
signal intensities of miRNAs isolated from serum samples of cancer patients and healthy controls 
[101]. (c–e) Extracellular vesicles can be classified into three categories based on size—microves-
icles, exosomes and large oncosomes. Oncosomes appear to display unique properties and could 
serve as an important target for cancer characterization (Color figure online)
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mass cytometry platform (CyTOF) [118], are available. They can simultaneously 
separate, process and analysis information from large panels of protein expression, 
such as the Akt kinase [119, 120].

4.3  �Molecular Profiling

Ideally, CTCs can help to reflect the complete tumor spectrum, if the technological 
limitations impeding enrichment and analysis of rare cells are overcome. Recent 
advances now allow the simultaneous monitoring of multiple gene expression in 
parallel. Sensitive transcriptomic tools, such as the single-cell PCR based approach 
(SINCE-PCR) [121], serve to obtain quantitative and qualitative information which 
can be beneficial in both scientific and clinical settings. Single-cell analysis can also 
be carried out with fluorescence in-situ hybridization (FISH) (Fig. 3c).

Thus far, the identification of CTCs has been made complicated due to the lack 
of specificity of known markers. In fact, most existing molecular subtyping meth-
ods do not distinguish cancer cells from normal stroma tissue. Varied histopatho-
logical sub-types [122] exhibit different sensitivity of markers as well, and some 
markers may be common across several cancer types [123, 124]. Variation also 
exists across tumors from the same patient [125, 126], and some specific cancer 
types only have traces of molecular similarity with other cancer types [127]. This 
hinders the accuracy of tumor profiling, since the small amount of clinical samples 
may be insufficient to reveal rare mutations or intrinsic changes that occurred from 
response to therapeutic treatment [128]. Such extent of tumor heterogeneity may 
contribute to differential response to anti-cancer treatment [93], due to incomplete 
tumor profiling or adaptation to evade treatment.

The rise in advanced technologies, such as the Ensemble Decision Aliquot 
Ranking (eDAR), is now revealing vast heterogeneity in CTC gene expression, both 
within and across different patients [129]. An integrative approach to enrich, recover 
and characterize CTC exomes enabled extensive profiling of prostate CTCs. These 
profiles revealed a match to a portion of the tumor tissue from the same patient 
[130]. The spectrum of mutations varied significantly from cell lines, highlighting 
the issue of translational relevance of immortalized cancer cell phenotypes [131]. 
Extensive profiling also enables mapping of clonality. Preliminary studies suggest 
that the cells from the original tumor and metastases are phenotypically distinct, but 
presence of non-metastatic intermediate phenotypes which are found to persist in 
both the original tumor and its metastases [132]. Screening of various nuclei at the 
single-cell level also revealed extensive heterogeneity for KRAS, PIK3CA and 
other gene expressions [133–135]. These molecular variations may be the reason 
for a high failure in various anti-cancer regimes, due to an inaccurate diagnosis, or 
because the drugs are unable to target all cancer subtypes [93]. Detailed single-cell 
profiling of tumors may reveal novel mechanisms of tumor progression, such as 
gene amplification (e.g. MET) or chromosomal rearrangements [e.g. ALK (anaplas-
tic lymphoma kinase)] [136].
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4.4  �Lipidomics Profiling

Lipidomics is a relatively new area of research, and is now increasingly utilized due 
to development of novel technologies such as the time-of-flight secondary-ion mass 
spectrometry (TOF-SIMS) [137]. Detection of key enzymes involved in lipid 
metabolism, such as stearoyl-CoA desaturase 1, may also provide a signature for 
monitoring lipid levels, even in single cells [138].

4.5  �Functional and Metabolic Heterogeneity

Generally, the EMT spectrum of CTCs demonstrates both intrapatient and interpa-
tient heterogeneity. Researchers have also showed that not all phenotypes within the 
EMT spectrum may be present; with some being fully epithelial-like or mesenchymal-
like [139]. More recently, it has been hypothesized that single-cell metabolomics 
[140] can be a unique factor for the identification of cancer cells from blood cells. 
These studies may be aided by the novel integrated systems, such as the 
nanostructure-initiator mass spectrometry (NIMS), which will serve to reveal can-
cer cells that may have a higher metastatic potential [141]. However, functional and 
metabolic studies of CTCs are highly limited by the method of CTC enrichment, 
which is often stressful to the primary cancer cells and compromise cellular 
viability.

4.5.1  �Heterogeneity in Cultured CTCs

The functional properties of CTCs can be investigated with viable CTCs. However, 
most CTC enrichment techniques are laborious and require harsh procedures which 
compromise CTC viability. Analysis of the spatial-temporal characteristics of CTCs 
may be possible by the establishment of short-term CTC cultures with in  vitro 
tumorsphere assays [142], structured microwell assays [63], or long-term CTC cell 
lines spontaneously immortalized after >6 months in culture [72, 143]. Secretion 
capabilities of CTCs from various cancer types can also be investigated with a 
membrane-based assay that provides quantification of proteins [64]. The prolifera-
tive capabilities of CTCs vary depending on marker expression [142], as well as 
response to therapeutic treatment [159]. More specifically, upar+/int β1 − CTC sub-
sets are shown to expand better than other combinational subsets of CTCs, and 
longer treatment duration correlates with lower proliferative potential. Upar−/int 
β1 − CTC subsets also appeared to be more mesenchymal and displayed delayed 
clustering.

CTC may also demonstrate varied capabilities for adhesion, albeit most studies 
report low adhesive capabilities of CTCs. These low adhesive properties may reflect 
their heightened potential for extravasation and migration. Interestingly, it has been 
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described that low adhesive CTCs demonstrate high plasticity and may eventually 
adhere to form spheroids under suitable 3D gel conditions [142]. Understandably, 
the more mesenchymal phenotypes also demonstrate higher motility and invasive-
ness. Analysis of these factors and other functional phenotypes, such as the forma-
tion of invadopodia [142], may reveal valuable information of the metastatic 
cascade occurring in vivo.

4.5.2  �Cancer Stem Cells

Technological advances have enabled isolation of rare cancer subtypes with unique 
properties. Cancer stem cells (CSCs) are cells present in the tumor that demon-
strates heightened tumorigenic potential. They are found to demonstrate distinct 
protein signatures, for example, breast CSCs are recognized as CD44+/CD24− 
[144] or aldehyde dehydrogenase 1+ (ALDH1+) cells [12, 145]. Recently, other 
pluripotency factors, such as POUF51 (OCT4), have been associated with the CSC 
subtype [146], supporting their potential role in metastasis. CSCs are often specu-
lated to be associated with worsened patient prognosis [147], as they are found with 
anti-cancer drug resistant or tolerant traits [148]. Despite the distinctive character-
istics of CSCs, the clinical relevance of this rare sub-population is still unclear, and 
further functional analysis may help to resolve this question.

5  �Discussions and Conclusion

Compared to conventional macro scale devices, microfluidics technologies have 
provided several advantages in the field of CTC isolation such as higher throughput, 
greater sensitivity, portability, and ease of operation [149]. Additionally, this tech-
nique enables manipulation of fluid and particle motion at a micron-scale that is 
critical for CTC enrichment considering their rare occurrence in the blood. The 
antibody based isolation techniques provides some inherent benefits including 
higher specificity, lesser leukocyte contamination and enriching viable CTCs due to 
minimum sample handling procedure. However, these devices suffer from low 
throughput (1–3  ml/h) and are dependent on the expression of specific antigen 
markers. Due to the occurrence of EMT, some subpopulations of CTCs might not 
express the epithelial markers such as EpCAM and this might lead to the loss in 
capture efficiency [150, 151]. Label-free approaches can overcome these drawbacks 
of antibody-dependent methods by isolating CTCs based on their physical proper-
ties including size, deformability and dielectric properties in an unbiased manner 
independent of EpCAM expression. However, these techniques are limited by the 
heterogeneity of the cancer cells in terms of their size (CTC size varies from 6 to 
30 μm) and thereby resulting in contamination from other blood cells and decreas-
ing the isolation purity [152].
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Overall, CTC isolation devices have made rapid progress over the last decade; 
however, till date there are few FDA approved methods (the CellSearch system and 
cobas EGFR Mutation Test) [153] for clinical diagnosis. Therefore, development of 
universal optimal protocol for examining the performances of these different devices 
is essential. Recent advancement of microfluidics technology has paved the way for 
solving some of the initial problems associated with conventional macroscale sys-
tems such as lower throughput, purity and sensitivity. The development of hybrid 
systems such as CTC-iChip that uses the advantages of both antibody-dependent and 
label-free approaches might overcome the limitations associated with both these sys-
tems individually. Additionally, negative selection devices that rely on the depletion 
of leukocytes may be an alternative unbiased approach for CTC enumeration. In 
future, we envision the development of an integrated, fully automated CTC enrich-
ment platform that can isolate the CTCs from a simple blood test, characterize their 
biochemical and biophysical properties and identify the potential targets for chemo-
therapeutic administration.

Cancer manifests as a heterogeneous disease in several different ways [154], and 
detailed profiling of this manifestation is essential to develop personalized drug 
therapeutic strategies [155]. Biopsies of tumors are generally undesirable due to the 
invasive nature and possibility of dissociation of cancer cells during the surgical 
process. Hence CTCs represent an alternative source of cancer cells obtained via 
blood withdrawal, so termed as liquid biopsy [155]. The CTCs may also provide a 
better profile for the tumors, as they are shed from a range of sites as compared to a 
single biopsied region.

Several questions remain which impede the clinical utility of CTCs. The rele-
vance of CTCs in influencing therapeutic strategies is in question since it is not 
known how CTCs persist within the circulation and contribute to metastasis. CTC 
lifespan has also not been conclusively defined, and it is speculated that this may 
vary from a few hours to years [156, 157]. The persistence of CTCs in blood fuels 
the conjecture that these rare cells may play a role in tumor relapse. Overall, the 
clinical relevance of CTCs will be determined by their resemblance to the original 
tumor phenotype, their transition in blood and their functional dynamics with 
time. CTCs and associated markers (e.g. microRNAs) could help to rectify the 
incomplete tumor profile. The characterization of CTC components may shed 
light for a single pathway [158] or on the patient conditions at a point of time dur-
ing treatment, but monitoring of a patient’s condition will require serial sampling 
or culturing of CTCs which could reveal dynamics of an individual’s cancer 
progression.
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