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Abstract In this paper, the vibrational motion of an elastic beam under the
parametric excitation is investigated theoretically and numerically. The problem is
motivated by biological tactile sensors, called vibrissae or whiskers. Mammals use
these thin long hairs for exploration of the surrounding area, object localization and
texture discrimination. We propose a mechanical model of the vibrissa sweeping
across a rough surface as a straight truncated beam stimulated by a periodic fol-
lowing force. The equation of transverse motion of the beam is studied using the
Euler–Bernoulli beam theory and asymptotic methods of mechanics. The numerical
analysis is performed by means of the finite element method. It is shown that the
parametric resonance of the beam occurs at the specific ranges of the excitation
frequency, which depend on the parameters of the beam and the amplitude of the
applied force. For these frequency values, the vibrations of the beam are unstable
with exponentially increasing amplitude. The comparison of the resonance ranges
obtained theoretically and numerically is made. Thus, together with the realisation
of the viscoelastic support of an artificial tactile sensor, the parametric resonance
may be a potentially useful method for amplifying small signals arising from the
contact with an object.
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1 Introduction

In nature, all mammals except humans possess specialised tactile hairs, called
vibrissae or whiskers. These thin long hairs grow usually in groups in different
locations on an animal’s body. Among the most familiar to us are mystacial vib-
rissae orderly distributed over the whiskerpad on a muzzle, supraorbital vibrissae
above the eyes, and carpal vibrissae that are located on the downside aspect of the
forelimbs (Fig. 1). For terrestrial and marine mammals, vibrissae are significantly
important tactile sensors used for the exploration of the surrounding area, texture
discrimination, or even detection of water vibrations (Dehnhardt and Kaminski
1995; Niederschuh et al. 2014; Vincent 1912).

The structure and characteristics of vibrissae differ considerably from normal
body hairs of the same mammal individual. They are thicker and stiffer than other
types of hairs and have a conical shape with the linearly decreasing diameter
(Voges et al. 2012). Another significant difference lies in the more complicated base
of the vibrissa. The vibrissal hair grows from a special follicle, called the follicle-
sinus complex (FSC). It incorporates lots of sensory nerve endings and a capsule of
blood (Ebara et al. 2002). For some groups of vibrissae, the FSC is surrounded by
two types of muscles that allow an animal to move its vibrissae back and forth
(Dörfl 1982). These sniffing active movements of vibrissae, called whisking, play an
important role during the exploratory behaviour of mammals.

The fascinating biological paradigm of the vibrissal tactile sensing has inspired a
large number of research investigations. Scientists, biologists and engineers would
like to understand the functional principles of the vibrissal sensing system from
different aspects. Neuroscientists are trying to figure out how nerve impulses are
processed from vibrissae to the brain and how an animal encodes the information.
They perform laboratory experiments with living creatures, e.g. (Jadhav and
Feldman 2010; Wolfe et al. 2008). Biologists usually describe the anatomy and
morphology of vibrissae from species to species. They believe that the vibrissal
sensing system played an important role during evolutionary development of
mammals (Mitchinson et al. 2011).

For the engineers, the biological vibrissa gives an inspiration to design various
artificial tactile sensors and find possible applications for them, as it promises to be
competitive with artificial vision. Most often, the research focus lies on the

(a) (b)

Fig. 1 a Mystacial and supraorbital vibrissae of a house cat; b Triple of carpal vibrissae at a
forelimb of Rattus norvegicus, photo taken by Voges D (TU Ilmenau)
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development of single sensors. Some interesting examples are the rotary actuated
whisker for obstacle avoidance and the whisker-like sensor for underwater appli-
cations (Scholz and Rahn 2008; Valdivia y Alvarado et al. 2012). Furthermore, a
variety of developed prototypes of mobile robots with a vibrissa-like sensory array
can be found, e.g., in (Fend et al. 2004; Solomon and Hartmann 2006; Zimmer
1995). One of the latest platforms is the SCRATCHbot—a rat-like robot, which can
move and position its whiskers toward specific objects with three degrees of free-
dom (Pearson et al. 2011).

Recent experimental investigations performed at the Department of Mechanical
Engineering (TU Ilmenau) show that it is possible to reconstruct a profile of an
object by one single quasi-static sweep of the straight technical vibrissa made of
steel (Fig. 2). By measuring the clamping forces and the bending moment at the
fixed base of the beam, the contact point with an object may be quantified. The
theoretical analysis of the problem is based on the non-linear Euler–Bernoulli
theory of the static deformable beam (Will et al. 2016).

Summarising the research on mathematical-mechanical modelling of vibrissae,
two approaches may be marked out: rigid rod models, e.g. (Behn 2013; Berg and
Kleinfeld 2003; Volkova et al. 2016a), and continuum elastic models, e.g. (Neimark
et al. 2003; Scholz and Rahn 2008; Volkova et al. 2016b; Yan et al. 2013). The
continuum models are in turn closer to the biological paradigm, as they take into
account the inherent dynamical behaviour and the bending stiffness of the vibrissal
hair. As for the modelling of the viscoelastic support of the hair inside the FSC,
several spring and damping elements may be used, e.g. (Behn 2013). In (Volkova
et al. 2016a), the FSC incorporating the blood capsule is modelled as a continuum
volume filled with a viscous magnetic fluid. There, an approach to realise and
control three-dimensional oscillations of the rigid rod is presented using an applied
uniform magnetic field.

The present paper focuses on the non-linear process of the vibrissa sweeping
across a surface of an object during texture discrimination. Frictional interactions
between the tip of the vibrissal hair and a rough surface generate vibrations of the
hair (Fig. 3). Since it has no receptors along the length, the tactile signals are
transmitted by these mechanical vibrations to sensory receptors inside the FSC.

Profile of 
a moving object

Technical vibrissa

Force and torque
sensors

Fig. 2 The experimental
setup at the Department of
Mechanical Engineering (TU
Ilmenau) for the quasi-static
profile scanning
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In this paper, the vibrissal hair is modelled as a straight elastic beam with
linearly decreasing diameter along its length. The model describing in-plane
vibrations of the beam stimulated by a periodic following force is developed. Based
on asymptotic methods of mechanics, the parametric resonance of the beam is
analysed theoretically. According to the so-called resonance hypothesis proposed in
(Andermann and Moore 2008; Neimark et al. 2003), the vibrissa resonance may be
a potentially useful mechanism during texture discrimination. It could amplify small
tactile signals arising from the contact with an object and enchase the sensitivity of
these biological tactile sensors. In the second part of the work, the numerical
analysis of the problem using a finite element model is presented. The simulations
are performed for various values of the excitation frequency of the applied force.
The comparison of the theoretical and numerical results is made.

2 Theoretical Analysis

2.1 Geometry and Assumptions of the Model

Consider a truncated Euler–Bernoulli beam whose undeformed neutral axis is a
straight line of a length L (Fig. 4). The radius rðxÞ of the beam’s circular
cross-section evolves linearly along the axial direction:

rðxÞ ¼ rb � rb � rt
L

x; ð1Þ

where rb and rt are, respectively, the radii at the base and the tip of the beam. The
Cartesian coordinate system ðx; y; zÞ is placed such that the x axis lies along the
neutral axis of the beam, and the origin is in the middle of the base’s cross-section.
The Cartesian basis vectors are ex; ey; ez. The material properties of the beam are
constant, i.e., the density ρ = const and the Young’s modulus E = const. The
support condition of the beam at the base is assumed to be pinned. It allows the
beam to rotate around the z axis, but not to translate in any direction. At the end of
the beam, the roller support is considered, which provides free rotation around the

Vibrissa

Skin 

FSC 
Follicular 
intrinsic muscle

Surface of an objectFig. 3 Schematic drawing of
a vibrissa sweeping past a
rough surface
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z axis and the horizontal deflection (Fig. 4). The beam is stimulated by a periodic
force applied directly toward the cross-section of the beam at the tip:

FðtÞ ¼ �F0 cosð2pX tÞnt; ð2Þ

where F0 is the amplitude, Ω is the excitation frequency, t is the time, and nt is the
normal to the cross-section at the tip. The assumed force FðtÞ corresponds to the
frictional force, which arises from interactions between the vibrissal tip and the
complex roughness profile of a surface (Fig. 3). Thus, it may be considered as a first
harmonic component of the Fourier transform spectrum of the friction force.

It is supposed throughout that the transverse vibrations of the beam caused by
the force FðtÞ about its straight natural configurations are in the x-y plane and small.
The displacement vector of the axis points has the transverse component:
uðx; tÞ ¼ vðx; tÞey:

2.2 Equation of Motion and Its Approximation

The small in-plain vibrational motion of the straight beam can be described with a
single partial differential equation of the fourth order. With regard to the rotary
inertia and in the absence of the force of viscous damping, the equation of motion in
terms of vðx; tÞ has the following form (Svetlitsky 2005; Zentner 2014):

m0ðxÞ @
2vðx; tÞ
@t2

þ @2

@x2
E IzðxÞ @

2vðx; tÞ
@x2

� �
þF0 cos 2pX tð Þ @

2vðx; tÞ
@x2

¼ 0: ð3Þ

Here, m0ðxÞ ¼ pqr2ðxÞ is the mass of the beam’s element, and IzðxÞ ¼ p r4ðxÞ=4
is the moment of inertial of the cross-section.

The bending moment Mðx; tÞ ¼ Mðx; tÞez at any cross-section of the beam can
be expressed by the transverse displacement as:

r b
ρ, E, Iz(x)

y

z

υ(x,t)

L
F(t)

0
x

r t

ey

ex

ez

Fig. 4 Deflection of the straight truncated beam under the following force applied toward the
cross-section at the tip
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Mðx; tÞ ¼ E IzðxÞ @
2vðx; tÞ
@x2

: ð4Þ

According to the chosen support combination, and since no external bending
moment is applied, we have the following boundary conditions for the displacement
function itself as well as for the second derivative of it:

vð0; tÞ ¼ vðL; tÞ ¼ 0;
@2vðx; tÞ
@x2

����
ð0;tÞ

¼ @2vðx; tÞ
@x2

����
ðL;tÞ

¼ 0: ð5Þ

In order to find the solution of the partial differential Eq. 3, let us first reduce it to
an ordinary one using the Galerkin method (Kantorovich and Krylov 1958). We
shall seek one-term approximate solution of Eq. 3 in the form:

vðx; tÞ ¼ sin
p x
L

� �
f ðtÞ; ð6Þ

which satisfies the boundary conditions of the beam (Eq. 5). Substituting this
expression in Eq. 3 with the requirement of the orthogonality of Eq. 3 to the
function sin p x=Lð Þ, we obtain an ordinary second-order differential equation for the
function f ðtÞ. It can be written in the dimensionless form as:

€f ðsÞþ 1� e cosðc sÞð Þf ðsÞ ¼ 0: ð7Þ

Here, the dot notation is used to represent a time derivative of a function, and the
dimensionless variables are introduced as follows:

e ¼ 2pL2F0

b1Er4b
; c ¼ X

x1
; s ¼ 2px1 t; b0 ¼ 1

6
1þ dþ d2
� �� 1

4p2
1� dð Þ2 [ 0; ð8Þ

b1 ¼ p4

10
1þ dþ d2 þ d3 þ d4
� �� p2

2
1� dð Þ 1� d3

� �þ 3
4

1� dð Þ4 [ 0; d

¼ rt
rb
2½0; 1�:

The natural frequencies of transverse vibrations of the beam are (in Hz):

xn ¼ n2rb
4pL2

ffiffiffiffiffiffiffiffi
b1E
b0q

s
; n ¼ 1; 2; 3; . . . ð9Þ

In particular, for the cylindrical beam with constant radius rðxÞ ¼ rb, the
assumed solution (Eq. 6) is an exact one. In this case, Eq. 3 reduces to the same
Eq. 7 with the parameters b0 ¼ 1=2 and b1 ¼ p4



2 as d ¼ 1.
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3 Parametric Resonance

Equation 7, known as the Mathieu equation, describes periodically excited vibra-
tions of a system (McLachlan 1947). It has a cosinusoidal time-dependent coeffi-
cient of the term f ðsÞ. The dimensionless parameters ε and γ, defined by Eq. 8,
depend on parameters of the beam and the periodic applied force. It appears that for
different values of ε and γ solutions of Eq. 7 may be periodic and bounded for all
time, or the amplitude of the vibrations in solutions may grow progressively in time
(parametrical resonance). Let us determine analytically and numerically ranges of
the parameters, when the parametric resonance of the beam takes place.

3.1 Procedure of Averaging

For the approximate analysis of the oscillating process described by Eq. 7, the
method of averaging is used (Bogolyubov and Mitropoliskii 1961). First, in order to
reduce Eq. 7 to the standard form, it is assumed that the function f ðsÞ and its
derivative have the form: f ðsÞ ¼ aðsÞ cosðwðsÞÞ and _f ðsÞ ¼ �aðsÞ sinðwðsÞÞ:

Then, the differential equation of the second order (Eq. 7) converts to the system
of two equations of the first order for the new variables aðsÞ and wðsÞ:

_aðsÞ ¼ � e
2
aðsÞ sinð2wðsÞÞ cosðcsÞ; _wðsÞ ¼ 1� e cos2ðwðsÞÞ cosðcsÞ: ð10Þ

As it will be shown, the most intense parametric resonance occurs for values of
the excitation frequency Ω close to 2x1 of free vibrations of the beam. Therefore,
we can set c ¼ 2þ eD, where Δ corresponds to the amplification factor of the
parametric excitation. Consider the amplitude F0 to be small in comparison with the
elastic forces of the beam element, so that ε can be treated as a small positive
parameter: 0\e � 1. If aðsÞ and nðsÞ ¼ cs� 2wðsÞ are smooth functions of the
time such that their derivatives are small terms of order ε, the values of these
functions can be seen as the superposition of slowly varying part and small rapidly
oscillating terms. Thus, they can be averaged on w over one period:

_a0ðsÞ ¼ 1
2p

Z2p
0

_aðsÞdw ¼ e
4
a0ðsÞ sinðn0ðsÞÞ; ð11Þ

_n0ðsÞ ¼
1
2p

Z2p
0

_nðsÞ dw ¼ eDþ e
2
cosðn0ðsÞÞ:
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3.2 Region of the Principal Parametric Resonance

The non-linear system (Eq. 11) may be simplified to a linear one with constant
coefficients by defining new variables gðsÞ ¼ a0ðsÞ cosðn0ðsÞ=2þ p=4Þ and
1ðsÞ ¼ �a0ðsÞ sinðn0ðsÞ=2þ p=4Þ:

_gðsÞ ¼ � e
4
gðsÞþ eD

2
1ðsÞ: _1ðsÞ ¼ � eD

2
gðsÞþ e

4
1ðsÞ: ð12Þ

The matrix corresponding to the system (Eq. 12) has the following eigenvalues:

k2 ¼ e2

4
1
4
� D2

� �
: ð13Þ

Thus, the solution of Eq. 12 is aperiodic and unstable, when there is an eigen-
value with positive real part, i.e., for Dj j\1=2 around the dimensionless frequency
value X=x1 ¼ 2. This means that the resonance takes place within the interval

0\e � 1 and 2� e
2
\

X
x1

\2þ e
2
: ð14Þ

It is called the region of the principal parametric resonance. The width of this
range is proportional to the parameter ε.

Other frequency ranges of the parametric resonance are close to the values
X ¼ 2x1=n for any natural number n (Landau and Lifshitz 1969). However, the
width of them gets narrow proportionally to the value en as n increases. In practice,
the cases for n = 1, 2, and 3 (rarely) are usually observed.

4 Numerical Analysis and Results

The small transverse vibrations of the parametrically excited beam are described by
the partial differential Eq. 3. The solution of it with respect to the boundary con-
ditions (Eq. 5) may be obtained by means of the finite element method. The
numerical simulations are performed using software ANSYS Workbench 16.2.

Two particular models of the beam are considered:

1. A straight cylindrical beam (CB) with a constant radius of the cross-section.
2. A straight truncated beam (TB), when the radius at the tip is half of that at the

base: rt ¼ rb=2.
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4.1 Remarks on the Simulations

For both beam models, the vibrational characteristics (natural frequencies and mode
shapes) are evaluated using an analysis system ANSYS “Modal”. The dynamic
response of a structure under the action of a periodic following load is calculated
within the ANSYS module “Transient structural”.

The CB is modelled as a line body with a thin circular solid cylinder attached at
the right end. The latter one is needed to apply the periodic following force per-
pendicular to the cross-section. The cylinder may be considered massless and rigid.
The transition between beam elements (beam 188, 50 elements) of the line body
and solid elements (solid 186, 16 elements) of the cylinder is defined with the
multi-point constraint bonded contact. Both translational and rotational degrees of
freedom are accounted for. The TB is modelled as a whole using solid elements
(solid 186, 504 elements). The values of the parameters for both models are given
in Table 1. The boundary conditions are applied according to the theoretical for-
mulation of the problem. Within the simulations, no damping is considered. The
numerical damping is defined manually to be zero.

For the chosen parameter sets, the natural frequencies are listed in Table 2. It is
shown that the values of the CB obtained numerically for three different meshing
elements coincide with the theoretical eigenfrequencies given by Eq. 9. It has to be
noted that the values of the parameters assigned to the beam (Table 1) do not
correspond to vibrissae values reported in literature, e.g. (Neimark et al. 2003;
Voges et al. 2012). They are chosen in such a way that x1 ≈ 1 Hz of the CB. This
in turn further allows using a reasonable adequate time step size (10−2–10−3 s) in
transient simulations. The theoretical natural frequencies of the TB give upper
boundary values, i.e., they are slightly higher than the numerical results (Table 2).

The transient analysis of parametric vibrations requires an initial deflection of the
beam from the equilibrium position. Thus, the load process is developed in three
steps: (1) [0, 0.25] s, (2) [0.25, 0.5] s, and (3) [0.5, 30] s. Within the first two steps,
the impulse force is applied and discharged linearly at the midst of the beam in the
transverse direction. Its maximum magnitude is 10–7 N. Then, within a time range
[0.25, 30] s, the main load is applied as a pressure PðtÞ ¼ �P0 cosð2p X tÞ, P0 ¼ 3
Pa, normal to the cross-section at the right end.

Table 1 Values of the parameters used in numerical simulations

Parameters Cylindrical beam (CB) Truncated beam (TB)

Line body Solid cylinder Solid body

Length L (mm) 50 1 50

Radius rb (mm) 1 – 1

Radius rt (mm) 1 1 0.5

Density ρ (kg m−3) 1000 10−6 1000

Young’s modulus E (Pa) 10,313 2 × 1013 10,313
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4.2 Regions of the Parametric Resonance

The dynamic response of the system under the parametric excitation is simulated for
various frequency values. For the CB, the solution is found to be unstable for the
frequencies close to the doubled eigenfrequency of the beam (region of the prin-
cipal parametric resonance), as well as for the frequencies around this value (second
range of the parametric resonance). For the TB, the region of the principal para-
metric resonance is obtained. Within these frequency intervals, the vibrations of the
beam are unstable, i.e., their amplitude increases exponentially with time.

The comparison of the theoretical (Eq. 14) and numerical regions of the para-
metric resonance is given in Table 3. It may be seen that the results of the CB
correspond to each other. Moreover, it is shown that the response of the system on
the parametric excitation is qualitatively stronger within the region of the principal
parametric resonance than within the second range. For the TB, a slight discrepancy
between the theoretical and numerical results is observed. It is associated with the
accounting of the variable radius of the cross-section.

In Fig. 5, some simulation results of the CB and TB are presented. The averaged
amplitude of the theoretical solution is plotted for comparison as a dash line.

Table 2 Natural frequencies of transverse vibrations of the CB and TB

Frequency(Hz) Cylindrical beam (CB) Truncated beam (TB)

Theory Numerical simulations (ANSYS) Theory ANSYS

Equation 9 Beam 3 Beam 188 Solid 186 Equation 9 Solid 186

ω1 1.0089 1.007 1.0068 1.0053 0.7835 0.709

ω2 4.0355 4.008 4.007 4.0016 3.1338 2.9593

ω3 9.08 8.9526 8.9439 8.9324 7.0511 6.6026

Elements 50 + 16 50 + 16 512 504

Nodes 101 + 93 101 + 93 2201 2167

Table 3 Regions of the
parametric resonance of the
CB and TB (in Hz)

Theory Numerical simulations
(ANSYS)

Region of the principal parametric resonance: Ω ≈ 2ω1

CB 1.8691 < Ω < 2.1665 1.87 ≤ Ω ≤ 2.15

TB 1.483 < Ω < 1.6508 1.32 ≤ Ω ≤ 1.50

Second range of the parametric resonance: Ω ≈ x1
CB 0.9907 < Ω < 1.0125 0.99 ≤ Ω ≤ 1.01
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5 Conclusions

In this work, amodel of a straight truncated beam is developed to study the vibrational
motion of mammal’s vibrissae. The transverse oscillations of the beam stimulated by
a periodic following force are investigated theoretically and numerically. It is shown
that the parametric resonance of the beam occurs at the specific ranges of the exci-
tation frequency, within which the vibrations of the beam are unstable with expo-
nentially increasing amplitude. Together with the realisation of the viscoelastic
support of an artificial tactile sensor, it may be a potentially useful method for
amplifying small signals arising from the contact with an object. Future investigations
will also focus on the design of sensor arrays consisting of several vibrissa elements.
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