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Abstract A mechanism is designed to transform forces and/or displacements from
an input to one or multiple outputs. This transformation is essentially ruled by the
kinematics, i.e. the defined ratio between input and output displacements. Although
the kinematics forms the basis for the design of conventional mechanisms, some
common approaches for the topology and shape optimization of compliant mech-
anisms do not explicitly include the kinematics in their optimization formulation.
The kinematics is more or less an outcome of the optimization process. A defined
kinematics can only be realized by iteratively adjusting process-specific optimiza-
tion parameters within the optimization formulation. This paper presents an opti-
mization formulation that solves the aforementioned problem. It bases on one of the
authors former publications on the design of compliant mechanisms with selective
compliance. The formulation is derived by means of an intensive workup of the
design problem of compliant mechanisms. The method is validated for a common
design example: a force inverter.

Keywords Compliant mechanisms � Topology optimization � Selective compli-
ance � Defined kinematics

1 Introduction

Over the course of more than two decades of ongoing research into the structural
topology and shape optimization of compliant mechanisms, several optimization
problem formulations have already emerged—but none of these are universally
accepted (Deepak et al. 2008). The first contribution was presented in the beginning
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of the 1990s by Ananthasuresh et al. (1994). Based on the common view that a
compliant mechanism must be flexible enough to provide a certain motion and at
the same time stiff enough to sustain external loads, they used a weighted sum of
mutual potential energy (MPE) and strain energy (SE) as the objective function to
minimize, where the MPE is a measure for the structure’s flexibility and the SE is a
commonly used measure of the structure’s stiffness (Shield and Prager 1970). Since
then, numerous researchers (Frecker et al. 1999; Kota et al. 2001; Chen et al. 2001)
have followed with modified and extended MPE/SE formulation. A different
approach was presented by Sigmund (1997). The objective of his approach was to
maximize the so-called mechanical advantage (MA), the ratio between input and
output force, subject to constraints on the input displacement and volume. Later,
this formulation was reduced to maximize the output displacement actuated by a
force at the mechanism’s input (Bendsøe and Sigmund 2003). In the following
years, various other objectives, for instance the energy efficiency formulation
presented by Hetrick and Kota (1999) and the artificial I/O spring formulation
presented by Rahamatalla and Swan (2005), have been introduced. However, a
study performed by Deepak et al. (2008) showed that this formulation produces
essentially similar designs. Furthermore, something that nearly all of the formula-
tions presented so far have in common is that they apply additional springs at the
output in order to support the optimization. It was observed that the stiffness values
chosen for these springs have strong influence on the optimization result—it
requires some experience to choose the right stiffness value in order to realize the
desired kinematical behavior. Without these additional springs, the structural
optimization could result in non-connected designs between input and output
(Deepak et al. 2008; Sigmund 1997). Another drawback of the aforementioned
formulations is the occurrence of point flexures—concentrated regions with
extremely low stiffness compared to the remaining regions. With the desire to avoid
the occurrence of point flexures, Chen and Wang (2007) proposed the characteristic
stiffness formulation which requires no additional springs. This formulation can be
applied to single-input, single output mechanisms. With a conventional
sub-structuring approach they reduced the global stiffness matrix to the input and
output degrees of freedom. They presented different possible objective functions
based on the diagonal terms of the reduced stiffness matrix and the geometric
advantage (the desired ratio between input and output displacement). An alternative
approach (Hasse and Campanile 2009) presented by the author also relies on a
reduced stiffness matrix and offers the same advantages as Wang’s approach.
Thereby, the objective function integrates modal quantities obtained from a spe-
cially synthesized eigenvalue problem in order to optimize the kinematical
behavior. This paper presents a reformulation of this objective function based on the
same idea in order to make the method more accessible. Therefore, we start with a
discussion of the design problem of compliant mechanisms. Having understood
what needs to be realized in terms of stiffness distribution makes it possible to
derive a formal optimization problem under linear assumptions. This formulation is
then implemented in a complete optimization procedure and tested on several
design problems related to the well-known force inverter.
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2 Design Problem

Before discussing the design of compliant mechanisms, we consider their con-
ventional counterparts: classical mechanisms. They gain their mobility from relative
movement of stiff members against each other. Seen as an elastic structure, a
classical mechanism principally has an infinite number of structural degrees of
freedom (structural DoFs). For practical reasons, the structure is mostly discretized
to a finite number p of DoFs, and the general displacement field will be described
by the vector

u 2 R
p: ð1Þ

Due to the presence of conventional hinges, it is possible to model all members as
rigid bodies by preserving the mechanism’s capability to deform and perform its
function. This allows for a simpler motion analysis with a reduced number m of
kinematic DoFs.

If the motion is linearized about a given configuration, m expresses the number
of linearly independent deformation modes

vi 2 R
p; i ¼ 1; . . .;m ð2Þ

that can be generated when starting from this configuration. Hence, there will be a
m-dimensional subspace K�R

p, which defines the possible motion of the
mechanism

K ¼
Xm
i¼1

aivijai 2 R

( )
: ð3Þ

In the following, this subspace will be denoted as the kinematics of the mechanism.
u 2 K holds for all the displacements that the mechanisms can produce—of course
only under the assumption of rigid members.

The kinematics is normally the basis, i.e. the primary input parameter, of the
synthesis of the mechanism, because it sets the ratio of displacement between the
inputs and outputs of the mechanism and therefore determines the transformation of
motion and/or force.

In principle, a compliant mechanism must fulfill the same task as its conven-
tional counterpart: transforming motion and/or force from an input to an output.
Thus, the kinematics should be the driving input parameter when designing com-
pliant mechanisms as well. Nevertheless, there is a substantial difference in the
functional principle: the motion is produced by elastic deformation. Therefore, the
assumption of rigid members is not admissible—so the mechanism’s displacements
u due to an external load are principally not constrained to be u 2 K. It is therefore
useful to divide the displacements into desired ud and undesired uud displacements,
whereas ud 2 K. The complement
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K ¼ R
pnK ð4Þ

is denoted as the subspace of the undesired deformations, so it holds:

uud 2 K: ð5Þ

Under linear considerations, this subspace K is spanned by p� m linear indepen-
dent undesired deformation modes vi 2 R

p (analogously to Eq. (3)). The desired
deformation modes are furthermore denoted with vi 2 R

p, as with the classical
mechanisms.

The components of u in K and K as a result of external loads f at the mecha-
nism’s inputs and outputs are determined by the stiffness of the mechanisms—
which in turn is determined by the mechanisms topology, shape and material. The
force-displacement-relationship of a general structure is normally described by a
p� p stiffness matrix k so that holds

ku ¼ f: ð6Þ

Now, we assume that the desired and undesired deformation modes are collected in
a basis

X ¼ v1 . . . vm vmþ 1 . . . vp
� � ð7Þ

and are defined in an orthogonal fashion, so that holds

1
2
XTkX ¼ 1

2

k1 0 � � � 0

0 . .
.

km . .
. ..

.

..

. . .
.

�kmþ 1

. .
.

0
0 � � � 0 �kp

2
6666666664

3
7777777775
: ð8Þ

The terms

ki 2 R; i ¼ 1; . . .;m ð9Þ

related to the desired deformation modes are denoted as primary stiffness and the
terms

�ki 2 R; i ¼ mþ 1; . . .; p ð10Þ
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related to the undesired deformation modes are denoted as secondary stiffness.
Under normalization condition

vTi vi ¼ 1; 8i ¼ 1. . .m

vTi vi ¼ 1; 8i ¼ mþ 1. . .p
ð11Þ

Equation (8) gives insight into the physical meaning of the primary and secondary
stiffness. If the structure is deformed according to a given deformation mode, it is

ua ¼ av ð12Þ

where the scaling factor a has the dimension of a length. The corresponding
deformation energy is

SE ¼ a2
1
2
vTkv ð13Þ

and therefore

1
2
vTkv ¼ SE

a2
ð14Þ

i.e. the left side of Eq. (8) corresponds to the deformation energy divided by the
square of the scaling factor. Its numerical value is equal to the energy stored in the
system when the scaling factor is set to a unit length (1 m for SI units). Its
dimension, however, equates to the energy per square length (Joule per square
meter). A primary or secondary stiffness value is twice this energy per square length
unit. For this reason, deformation modes with high stiffness values are stiffer, which
means that more energy must be spent in order to reach the amplitude level defined
by the condition a ¼ 1m. Due to the low required energy, deformation with low
stiffness values will dominate the static response of the system i.e. the system will
preferentially deform according to a displacement distribution given by a linear
combination of these deformation modes.

If a mechanism is required only to deform with u 2 K then an infinite secondary
stiffness needs to be realized—this is impossible with real structures. However, it is
typically for classical mechanisms that the stiffness of the members, and thus the
secondary stiffness, is chosen so high that possible undesired deformation are
negligible. Even if it is difficult to achieve, compliant mechanisms may have a
similar behavior: the displacements are limited to the kinematics independent of the
external loads. Then they are called “compliant mechanisms with selective com-
pliance” (Hasse and Campanile 2009).

It can be stated that the higher the secondary stiffness compared to the primary
stiffness is the more the compliant mechanism tends towards selective compliance
behavior. In the following section the described design problem is translated into a
formal optimization problem.
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3 Optimization Formulation

Normally, the kinematics is not defined for all structural DoFs. In practice, the
kinematics only refers to certain input and output DoFs (together from hereon
named as master DoFs). It is therefore appropriate only to refer with the desired and
undesired deformation mode to this reduced set of master DoFs. Therefore, we
divide the p DoFs into q master DoFs and p� q slave DoFs. The master DoFs are
collected in the set a and the slave DoFs in c. Under the assumption that no external
forces f 2 R

p act on the slave DoFs, the linear system equations

kaa kac
kca kcc

� �
ua
uc

� �
¼ fa

0

� �
ð15Þ

can be reduced to

ðkaa � kcak�1
cc kacÞua ¼ k̂ua ¼ fa ð16Þ

where k̂ is a q� q matrix. Within this paper, we constrain our consideration to
single-input single-output mechanisms with one kinematic DoF, i.e. k̂ is a 2� 2
matrix and the input to the optimization formulation is the normalized desired
deformation mode

vTv ¼ 1; v 2 R
2: ð17Þ

A normalized undesired deformation mode

vTv ¼ 1; v 2 R
2 ð18Þ

exists for every k̂ and it holds

vT k̂v ¼ 0: ð19Þ

The design problem derived in the last section could be directly translated in the
following optimization

max �k ¼ vT k̂ðxÞv
s:t: k � kdesired ¼ 1

2
vT k̂ðxÞv� kdesired � 0

ð20Þ

where the vector x ¼ ðx1; . . .; xnÞT contains the design variables and kdesired is the
upper bound on the primary stiffness. Problematic with this direct formulation is
that the undesired deformation mode v changes with the design variables
throughout the optimization. The undesired deformation mode has to be determined
by a suitable procedure, such as the Gram-Schmidt-orthogonalization, within every
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iteration of the optimization procedure. A corresponding approach was already
presented by the author in (Hasse and Campanile 2009). However, within this
publication we want to present a more compact formulation. Therefore, we rewrite
condition (19)

vT k̂ðxÞv ¼ bvTd: ð21Þ

d can be defined prior to the optimization by using the normalization condition

dTd ¼ 1; d 2 R
2; ð22Þ

since d is independent of the design variables. Only the scaling factor b relates to
the design variables. Thus, we can write the objective function in problem (20) as

f ðxÞ ¼ vT k̂ðxÞv ¼ b2dT k̂ðxÞ�1d: ð23Þ

Through the normalization condition (18)

1 ¼ vTv ¼ b2dT k̂ðxÞ�1k̂ðxÞ�1d: ð24Þ

the scaling factor b can be determined

b2 ¼ 1

dT k̂ðxÞ�1k̂ðxÞ�1d
: ð25Þ

Therefore, the objective function writes as follows

f ðxÞ ¼ dT k̂ðxÞ�1d

dT k̂ðxÞ�1k̂ðxÞ�1d
: ð26Þ

The optimization problem (20) is extended, additionally to the new objective
function, with a further constraint limiting the distributable amount of material
within the design domain and lower and upper bounds on the design variables

max f ðxÞ ¼ dT k̂ðxÞ�1d

dT k̂ðxÞ�1k̂ðxÞ�1d

s:t: gðxÞ ¼ 1
2
vT k̂ðxÞv� kdesired � 0

hðxÞ ¼
X

x� v ¼ 0

xmin � x� xmax

ð27Þ

where m is the limit to the amount of distributable material. Obviously, the only term
in the optimization problem, which is now dependent on the design variables, is the
stiffness matrix k.
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4 Implementation

The derived optimization formulation (27) is integrated in a complete optimization
procedure. We have chosen a ground structure approach (Bendsøe and Sigmund
2003) as parametrization. Thereby, the design variables xi scale the stiffness of the i-
th ground-element:

kðxÞ ¼
Xn
i¼1

xiki: ð28Þ

In our case, the ground elements are modelled by Bernoulli-Euler beam elements.
The ground structure approach is exemplified in Fig. 2. The parametrization, the
structural model and the derived optimization formulation need to be completed by
a proper optimization algorithm in order to obtain a complete optimization proce-
dure. Within this work, however, we have applied an interior-point method stan-
dardly implemented in MATLAB. This algorithm converged best.

5 Problem Statement of Design Examples

The validation example is a force inverter. The corresponding mechanism’s input
and the output are defined as master DoFs. The difference between the derived (27)
and other formulations is that the derived formulation does not require explicit
distinction between input and output. Because only two master DoFs are considered
and the mechanism should only have one kinematic DoF, the kinematics is
described by one desired deformation mode v 2 R

2.
The design domain, the support and the master DoFs are shown in Fig. 1. The

design domain is described by the following geometric parameters

l ¼ 100 mm; h ¼ 50 mm; d ¼ 10 mm ð29Þ

where l is the reference, h is the height and d is the mechanism’s width.
Concerning the parametrization, the design domain is meshed with ground

elements as depicted in Fig. 2.

Fig. 1 Design domain with
corresponding support and
master DoFs
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Every beam of the reference ground-structure is characterized by the following
material and geometric parameters

E ¼ 1500 MPa; I ¼ 6:66 mm4; A ¼ 20 mm2 ð30Þ

where E is the Young’s modulus, I the moment of inertia and A is the
cross-sectional area.

The lower and the upper bounds for the design variables are defined as

10�5 � xi\1; i ¼ 1. . .n: ð31Þ

As a starting point for the optimization, all design variables are set to the limit to the
amount of distributable material m.

6 Results and Discussion

The optimization procedure was applied to force-inverter design tasks with different
kinematics. The input parameters m and kdesired to the optimization formulation
(27) are

m ¼ 0:06; kdesired ¼ 8:5
N
mm

ð32Þ

The results for different desired deformation modes are shown in Fig. 3. The
beams are drawn with different line thicknesses. Each thickness is proportional to
the corresponding design variable. Beams for which the design variable is smaller
than 5� 10�3 are omitted from the plot. The optimization procedure converged for
every choice of kinematics. A clear mechanical structure has emerged for all cases.
The values of the objective function are similar for all designs. The results show a
dependency on the choice of the kinematics. The constraint function is almost zero
for nearly all of the obtained results. Thus, the desired primary stiffness is realized.

symmetry condition
fixed stiffness ground-element fixed stiffness ground-element

Fig. 2 Parameterized design
domain
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The optimization can result in different local minima when starting from dif-
ferent positions within the search space. Therefore, the obtained results do not
necessarily describe the global optimum. The possibility of finding a solution with
higher objective function values is left open.

The following studies will examine whether or not selective compliance
behavior is obtained for the different designs by applying different loads. The
structure optimized for v ¼ 1 �1½ �T (see Fig. 3) is chosen as representative. The
other mechanisms behave similarly; therefore their representation has been left out.
Load-case 1 is an applied force fin = 300 N at master DoF I. The displacements uin
at master DoF I and uout at master DoF II are calculated as the response. The
deformed state is shown at the top of Fig. 4a. It can be observed, that the input and
output displacements are not an exact scaling of the desired deformation mode, but
they tend towards the desired kinematics.

Load-case 2 is an applied force fin = 120 N at master DoF I plus an additional
load fout = −240 N at master DoF II (see Fig. 4b). The ratio between input and
output displacement has now changed compared to Load-case 1. This indicates that
the second eigenvalue is too small and both eigenvectors are therefore stimulated by
the external loads.

Examinations have shown that by increasing the parameters m and xmax, there is a
stronger implementation of the desired kinematics in the structure. Then the output
and input displacement is more or less a scaling of the desired deformation mode.

×

×

×

Fig. 3 Force inverter optimized for different desired deformation modes
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Furthermore, the mechanism showed a higher independency of the applied external
forces—the ratio of the input and output displacements do not significantly change
with changing external loads.

7 Conclusion and Future Work

This paper presented a reformulation of the authors former optimization formula-
tion for the design of compliant mechanisms with selective compliance. It is written
in a compact manner and offers the advantages that no optimization supporting
spring elements are needed. Furthermore the kinematics is directly considered.

Future examinations should consider stress constraints according to the applied
material and large deformations. Furthermore, the design of mechanism with
kinematic DoFs higher than one should be considered.
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