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Abstract The objective of this work is to develop a manipulator of 5 degrees of
freedom for micromilling. It consists of a XY stage under a 3PRS compliant parallel
mechanism, obtaining the advantages of the compliant joints as are higher repeti-
tiveness, smoother motion and a higher bandwidth, due to the high precision
demanded from the process, under 0.1 μm. In this work, the dynamics of the
compliant stage will be developed. The modelling approach is based on the use of
the Principle of Energy Equivalence combined with the Boltzmann-Hamel equa-
tions to analyze the rotational dynamics of the platform. A pseudo-rigid model has
been assumed for the compliant joints, calculating the flexural and torsional stiff-
ness by FEA. Finally, a prototype has been built and some preliminary results are
shown comparing the simulation and the measurements.

Keywords Compliant mechanism � Parallel mechanism � Dynamics

1 Introduction

Nowadays, micromilling applications have a great demand in several fields:
scientific, medical, metrology and communication. The requirements are very
restrictive in terms of precision and surface finish. For several parts, the machines

A. Ruiz � F.J. Campa (&) � C. Roldán-Paraponiaris � O. Altuzarra
Department of Mechanical Engineering, Compmech Research Group,
University of the Basque Country UPV/EHU, Leioa, Spain
e-mail: fran.campa@ehu.es

A. Ruiz
e-mail: antonio.ruiz@ehu.es

C. Roldán-Paraponiaris
e-mail: constantino.roldan@ehu.es

O. Altuzarra
e-mail: oscar.altuzarra@ehu.es

© Springer International Publishing Switzerland 2017
L. Zentner et al. (eds.), Microactuators and Micromechanisms,
Mechanisms and Machine Science 45, DOI 10.1007/978-3-319-45387-3_14

153



used in this sector are too large compared to the demanded workspace. For that
reason, the design of smaller and more compact machines is desirable, which is the
objective of the present work.

Here, the development of a compact micromilling machine based on a compliant
parallel manipulator is proposed. The workpiece will be supported on a 3PRS
compliant parallel mechanism (Gao et al. 2010) in series with an XY stage whereas
the high speed spindle will remain on a fixed gantry. The 3PRS solution is a fusion
of a compliant mechanism (Howell 2001) and a parallel mechanism (Merlet 2000),
so the advantages of both devices can be obtained: no friction, not need lubrication
and zero backlash from the flexure devices and the higher mechanical stiffness,
higher loading capacity, and higher positioning accuracy from the parallel
mechanism.

The use of compliant mechanisms in high precision applications is becoming
very common. For example, in (Choi and Kim 2012), a mechanism for a single-axis
flexure-based nano-positioning stage (1dof) with a range of motion up to a mil-
limeter and a compact stage size is presented. For mechanisms with 2 dof, some
different configurations have been developed. A planar motion stage design based
on flexure elements is shown in (Choi et al. 2011). Another example of this type of
device is resented in (Aphale et al. 2009), where a device with a relatively large
range and high scanning speed is shown. Also, 3 dof mechanisms have been
proposed. For example, an ultra-precision XYθz flexure stage with nanometer
accuracy is presented by Ahn et al. (2010). A high-performance three-axis
serial-kinematic nano-positioning stage for high-bandwidth applications is devel-
oped by Kenton and Leang (2012). Other design of a XYZ compliant parallel
manipulator is shown in Hao and Kong (2012), where the structure is composed by
identical spatial double four-beam modules.

On the other hand, the manufacturing of microlenses consists of milling a matrix
of NxN concave aspherical cavities with the negative of the lens on one of a
cylindrical workpiece, which diameter ranges from 10 to 20 mm, see Fig. 1.
Different shapes can be developed, ranging diameters from 0.5 to 2 mm and sagittal
depths less than 1 mm. The kinematic requirements in terms of needed displace-
ments have been obtained by means of the design of a standard process, where a
matrix of 4 × 4 cavities in a cylindrical mould of 18 mm is achieved. The cavities
are spherical with a diameter of 2 mm, and are machined in down-milling with a
spiral down strategy in counter-clock direction. The offset between the part and the
tool tip for the motions between cavities is of 1 mm. The resulting displacements
needed in the workpiece are ±10 mm in X and Y.

To perform this operation, a XY3PRS hybrid mechanism has been selected. It is
based on a 3PRS compliant parallel kinematics manipulator mounted in series on a
XY stage, see Fig. 1. The moving platform is connected to the XY stage by each
leg, where a P joint, a R joint and a S joint are placed in sequence and the P joint is
actuated by a linear actuator. Thus, three identical PRS linkages attach the moving
platform to the base (Li and Xu 2007). This configuration allows meeting the
requirements of the process and offers the option of performing rotations around the
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X and Y axis. this offers the possibility of performing rotations around the X and Y
axis, which would allow a better orientation of the ball end mill with respect to the
workpiece.

The present study is focused on the dynamic analysis of the 3PRS compliant
manipulator, whose rigid body kinematics has been previously solved following the
work from (Li and Xu 2007). That dynamic model will be used for integrated
simulation of the mechatronics of the manipulator during the milling process.

2 Dynamic Analysis

The dynamic problem has been solved using the Principle of Energy Equivalence,
that is, the mechanism will be divided in b open-chain subsystems where the
Lagrange equations can be applied with their local generalized coordinates qb. The
condition that the b individual subsystems move like belonging to an assembled
mechanism implies that qB, the set of all the generalized coordinates qb is a function
of the generalized coordinates q of the assembled mechanism. Thus, the virtual
displacements can be related by means of the Jacobian. Furthermore, as the
movement is the same, the virtual work performed by the assembly system and by
the set of subsystems must be the same:

dW ¼ dWB ) dqTs ¼ dqTBsB ¼ dqTJTsB ð1Þ

Hence, the actuating forces on the assembled mechanism can be calculated as:

s ¼ JTsB ¼
XB
b¼1

JTb sB ð2Þ

Fig. 1 Left CAD model of a microlenses mould. Right Schematic of a XY3PRS manipulator
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This method was covered in Altuzarra et al. (2015) and will be applied to the
compliant 3PRS in the following sections.

2.1 Compliant 3PRS Description and Hypotheses

The schematics of the compliant 3PRS is shown in Fig. 2. The length of the legs is
L, and the radius from the center of the moving platform to the center of the
spherical joints is b. Three prismatic actuators at 120° have been employed, being
the joint space coordinates s1, s2, and s3, which indicate the position of the center of
the revolute joints. Those will be the generalized coordinates of the 3PRS mech-
anism. The angles between the legs and the XY stage are αi, whose values are 45°
in the default position. As a result, the platform is able to perform two rotations
around X and Y axis, ψ and θ, respectively, as well as movements in Z direction.
Parasitic motions in X, Y and a rotation around Z, ϕ, also appear.

For the study of the dynamics, all the elements will be considered as rigid
bodies, whereas the joints will be treated as conventional using torsional springs to
model their stiffness. That is, a pseudo-rigid model will be considered.

2.2 Actuated Plates

The base of each leg performs a translation measured by si under the force imposed
by the actuators Fi where i = 1, 2, 3, see Fig. 2. Applying the Lagrange equations,
the following equation of motion can be obtained, where Mact is the inertial matrix
containing the mass of the plates.

Fig. 2 Schematic of the compliant 3PRS manipulator and loads acting on the platform
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Mact€q ¼ fact ) Mact €s1 €s2 €s3f gT
¼ F1 F2 F3f gT ð3Þ

2.3 Platform Translational Dynamics

To solve the dynamic problem of the platform, the translational and rotational
dynamics of the platform have been decoupled. The generalized coordinates are
defined by the position of the platform center pt ¼ xP yP zPf gT . Considering
the gravity g and the cutting forces due to the milling process as a force f applied in
a position defined by vector d in the moving frame UVW, see Fig. 3, the equations
of motion of the platform translational dynamics are:

Rf ¼ M€pt þ g ð4Þ

Where R is the rotation matrix that relates the moving frame of the platform
UVW with the fixed XYZ.

R ¼ RyðhÞRxðwÞRzð/Þ ¼
chc/þ swshs/ �chs/þ swshc/ cwsh

cws/ cwc/ �sw
�shc/þ swchs/ shs/þ swchc/ cwch

2
4

3
5 ð5Þ

Projecting to the manipulator coordinates, the contribution to the global
dynamics is:

JTplatt f ¼ JTplattMJplatt€qþ JTplattM
_Jplatt _qþ JTplattg ð6Þ

Where Jplatt is the Jacobian that relates the platform center coordinates pt with
the generalized coordinates q. The Jacobian is obtained analyzing the kinematics of
the 3PRS. Taking into account the three loop closure equations and the three
restrictions due to the planar motion of the legs in the planes at 120°, the following
relations can be written:

Fig. 3 Coordinate frames
used to obtain the spherical
joint rotations
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OPþPBi ¼ OAi þ si � sio þ L � lio OBi � ui ¼ ðOPþPBiÞ � ui ¼ 0 ð7Þ

After derivation, the 3PRS generalized coordinates q are related to the platform
center velocity and the platform angular speed ω components, regarded here as
quasi-velocities, by means of _pT ¼ _xp _yp _zp xx xy xz

� � ¼ _pTt xT
� �

.

lio � _pt þ PBi ^ lioð Þ � x ¼ sio � lio � _si
ui � _pt þ PBi ^ uið Þ � x ¼ 0

�
) Jp1i _p ¼ Jqi _q

Jp2 _p ¼ 0 _q

�
ð8Þ

Finally, the Jacobian of the platform is obtained as in Eq. (9), and divided in its
translational and rotational part.

Jp1
Jp2

� �
_p ¼ Jp _p ¼ Jq1

0

� �
_q ¼ Jq _q ) _p

¼ J�1
p Jq _q ¼ Jplat _q ¼ Jplatt

Jplatr

� �
_q

ð9Þ

2.4 Platform Rotational Dynamics

To study the rotational dynamics of the platform, the Boltzmann-Hamel equations
will be used, as the quasi-velocities ω will be the generalized local coordinates that
define the orientation change of the platform. The quasi-velocities can be related to
the Euler rotations _e as:

x ¼ DT _e ¼
cu shsu 0
�su shcu 0
0 cu 1

2
4

3
5 _h

_w
_u

8<
:

9=
; ð10Þ

Quasi-velocities are also related to the 3PRS generalized coordinates by means
of the platform rotational Jacobian Jplatr as in Eq. (9), so it is possible to relate
Euler rotations and the 3PRS generalized coordinates by means of Je Jacobian.

x ¼ DT _e ¼ Jplatr _q ) _e ¼ DT� 	�1
Jplatr _q ¼ Je _q ð11Þ

Using the Boltzmann-Hamel equations, the contribution of the platform rota-
tional dynamics to the global is:

JTplatrm ¼ JTe DTIplatDT� 	
Je€qþ cplat ð12Þ
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Where Iplat is the inertia tensor in the moving frame, cplat is a term that depends
on the centrifugal and Coriolis forces and m is the vector of the moments acting on
the platform.

cplatr ¼ JTe DTIplatDT� 	
_Je þ DTIplat _D

T
h i

Je
h

þ 2 _D
T
Iplat � @ _x

@ _e


 �T

Iplat

" #
Jplatr

#
_q

ð13Þ

Regarding the loads on the platform, see Fig. 2, two sources have been con-
sidered, the moments due to the cutting forces and the moments due to the spherical
joints deflection. Although their elastic deflection can be considered in the potential
energy used of the Lagrangian formulation, instead, here they have been regarded
as external moments acting on the platform. Hence, the moments vector is Eq. (14),
where d is the position of the tool center point with respect to the platform center.

m ¼ mcut þmjoints ¼ Rðd ^ fÞþmjoints ð14Þ

To compute the torques due to the spherical joints deflections, two coordinate
systems have been located in each spherical joint, the first, Si, fixed to the platform
and the second, Sio, fixed to the leg, see Fig. 3 for the leg 1. In the zero position, at
αi = 45º, both systems are identical. Rotations around the m- and n-axes make
reference to the joint deflection and rotation around the l-axis represents torsional
deformation. To obtain the rotations between the systems Si and Si0, the rotation
matrix that relates them must be developed. To do that, the unit vectors of each
system Sio regarding to the global system XYZ must be calculated. These systems
belong to the different limbs of length L, with li0 aligned with the leg and mi0

parallel to the revolute joint axis. As a result, the rotation matrici Rio to change from
Sio that is placed in each leg to the fixed frame XYZ can be expressed as:

Ri0 ¼ mi0 ni0 li0½ � i ¼ 1; 2; 3 ð15Þ

On the other hand, the rotation matrices Ri that Si systems with XYZ are
calculated. The unit vectors for each system Si can be defined by their fixed position
in the platform, being αi0 = 45º the default value of αi. To refer these vectors to the
fixed frame, it is necessary to multiply them by the rotation matrix R that relates the
moving frame attached to the platform UVW, with the fixed one XYZ:

Ri ¼ mi ni li½ � ð16Þ

Finally, the rotation matrix Ri-io that relates frames Sio and Si is:

Ri�i0 ¼ RT
i0Ri i ¼ 1; 2; 3 ð17Þ
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Furthermore, this matrix can be developed as a function of three rotations around
all the axes system Sio, (βmi, βni, βli), where βmi and βni are the two rotations due to
the deflection of the joints, and βli is due to the torsion of the joints. Therefore, the
rotation matrix that relates the systems Si with Si0 may also be expressed as the
product of the above rotation matrices.

Ri�i0 ¼ RmðbmÞRnðbnÞRlðblÞ

¼
cbncbl �cbnsbl sbn

sbmsbncbl þ cbmsbl �sbmsbnsbl þ cbmcbl �sbmcbn
�cbmsbncbl þ sbmsbl cbmsbnsbl þ sbmcbl cbmcbn

2
64

3
75 ð18Þ

Equaling the terms of the matrices in Eq. (17) and (18), the rotations in the
spherical joints can be obtained. The resulting expressions are:

bmi ¼ a tan �Ri�i0ð2;3Þ
Ri�i0ð3;3Þ

� 
bni ¼ a sin Ri�i0ð1; 3Þð Þ bli ¼ a tan �Ri�i0ð1;2Þ

Ri�i0ð1;1Þ
� 

ð19Þ

Knowing the rotations produced in the spherical joints, the torques in each hinge
can be obtained multiplying by the corresponding stiffness.

mjoints ¼
X3
i¼1

smi þ sni þ slif g
smi ¼ kfsph � bmi
sni ¼ kfsph � bni
sli ¼ ktsph � bli

8<
: ð20Þ

2.5 Legs

The position of the mass centers and the angular position of each limb have been
considered as local generalized coordinates, plegi ¼ xGi yGi zGi aif g, see
Fig. 4. After obtaining the equations of motion of each leg, their contribution to the
global dynamics of the manipulator is:

JTlegi Mleg Jlegi€qþ JTlegi Mleg _Jlegi _qþ JTlegi gklegi ¼ 0 i ¼ 1; 2; 3 ð21Þ

Where Mleg is the mass matrix of each leg, Jlegi are the Jacobians that relate plegi
with the 3PRS generalized coordinates q, and gklegi is the vector that contains
gravitational and elastic terms from the revolute joints.

Developing the closure loop equation for each leg and deriving, it is possible to
relate the legs mass center position with the 3PRS generalized coordinates q.

d
dt

OGi ¼ OAi þ si � si0 þ L
2
� li0


 �
) JGi _plegi ¼ JqGi _q i ¼ 1; 2; 3 ð22Þ
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Also, to relate the legs angular position αi with q, it is necessary to average the
three loop closure equations of the manipulator and derive:

d
dt

OP ¼ 1
3

X3
i¼1

OAi þ sisi0 þ Lli0 � PBi

 !
) Jai _ai ¼ Jqai _q ð23Þ

Finally, combining Eqs. (22) and (23), it is possible to obtain the three legs
Jacobians.

JGi
Jai

� �
_plegi ¼ JqGi

Jqai

� �
_q ) _plegi ¼ Jlegi _q ð24Þ

2.6 Dynamic Model of the Manipulator

Once the dynamic analyses for each of the components of the mechanism have been
developed, it is necessary to group all of them in a single expression to model the
whole manipulator. To do that, a summation of Eq. (3), (6), (12) and (21) is
performed. The resultant expression is:

Mact€q½ � þ �JTplatt f þ JTplattMJplatt€qþ JTplattM
_Jplatt _qþ JTplattg

h i
þ �JTplatrmþ JTe DTIplatDT� 	

Je€q þ cplatr
h i

þ

þ
X3

i¼1
JTlegiMlegJlegi€qþ JTlegiMleg _Jlegi _qþ JTlegigklegi
h i

¼ fact

ð25Þ

Fig. 4 Schematic representation of the legs variables
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2.7 Joints Stiffness

To design and analyze the performance of 3PRS compliant parallel mechanism
joints, ANSYS Workbench FEM software has been used. The mesh applied to the
mechanism consists of a quadratic tetrahedral mesh. The nodes size in the flexure
joints has been reduced to obtain more accurate results in the areas with a high
deformation and stress concentration. After checking the stresses and displacements
reached for several joint dimensions, the dimensions of the revolute joints are 8 mm
radius and 2 mm of minimum thickness, for the spherical joints, 13 mm length,
3 mm of minimum diameter and a fillet radius of 4 mm. The stiffness if the joints
have been also measured. For the revolute hinge, the achieved value has been
krev = 98.37 Nm/rad. For the spherical joint, the bending stiffness and the torsional
stiffness have been kfsph = 32.67 Nm/rad and ktsph = 24.46 Nm/rad.

3 Experimental Validation

An initial prototype in aluminum 7075T6 has been built, see Fig. 5. The three
actuators are based on a linear belt drive Igus ZLW-1040-02-S-100 coupled to a DC
RE-40 Maxon servomotor with a GP-32 14:1 reduction. A NI-PXIe 1062 has been
used to control the prototype motion in real time with a cascaded joint space control
of position, velocity and current. The position loop cycle time is 5 ms.

Currently, intensive testing is being made to validate the results from the
dynamic model. The main sources of uncertainty are the friction in the linear
guides, the FEA estimated stiffness, the simplified kinematics of the joints, the
bolted joints not modelled in FEA and the manufacturing and assembly errors on
the prototype. Nevertheless, in Figs. 6 and 7 it can be seen the torque measured at
the motors, which is an indirect measurement of the force, for two motions, first a
sinusoidal motion in Z with an amplitude of 2 mm and 0,5 Hz, and then a

Fig. 5 Developed prototype

162 A. Ruiz et al.



sinusoidal motion of the three actuators with the same amplitude and frequency but
a phase shift of 120°. Although the results are quite similar, there are deviations and
even the trend is different, in the first test the simulated torque is lower and vice
versa, so further testing must be made to adjust the model parameters to the real
ones.
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Fig. 6 Simulated motor torque (red continuous line) versus measured (blue discontinuous line)
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Fig. 7 Simulated motor torque (red continuous line) versus measured (blue discontinuous line)
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4 Conclusions

The present work shows a procedure to model the dynamics of a compliant 3PRS
parallel manipulator. Given the fact that the compliant joints are relatively small in
size comparing to the limbs and platform dimensions, it has been assumed that all
the bodies behave as rigid, and the joints have been modelled as lumped torsional
springs. The method used is the Principle of Energy Equivalence, combined with
the Bolttzmann-Hamel equations to study the rotational dynamics of the platform.
A prototype has been constructed for validation. Although there are several sources
of discrepancy that are being analyzed, the initial results seem to be promising.
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