
A Study on Fuzzy Cognitive Map Optimization
Using Metaheuristics

Aleksander Cis�lak1(B), W�ladys�law Homenda2, and Agnieszka Jastrz ↪ebska1

1 Faculty of Mathematics and Information Science,
Warsaw University of Technology,

ul. Koszykowa 75, 00-662 Warsaw, Poland
{a.cislak,a.jastrzebska}@mini.pw.edu.pl

2 Faculty of Economics and Informatics in Vilnius, University of Bialystok,
Kalvariju g. 135, LT-08221 Vilnius, Lithuania

homenda@mini.pw.edu.pl

Abstract. Fuzzy Cognitive Maps (FCMs) are a framework based on
weighted directed graphs which can be used for system modeling. The
relationships between the concepts are stored in graph edges and they
are expressed as real numbers from the [−1, 1] interval (called weights).
Our goal was to evaluate the effectiveness of non-deterministic optimiza-
tion algorithms which can calculate weight matrices (i.e. collections of all
weights) of FCMs for synthetic and real-world time series data sets. The
best results were reported for Differential Evolution (DE) with recombi-
nation based on 3 random individuals, as well as Particle Swarm Opti-
mization (PSO) where each particle is guided by its neighbors and the
best particle. The choice of the algorithm was not crucial for maps of
size roughly up to 10 nodes, however, the difference in performance was
substantial (in the orders of magnitude) for bigger matrices.

1 Introduction

Real-world phenomena modeling requires a framework that would not be hin-
dered a by variety and diversity of relevant information. Standard methods,
for instance for time series modeling, are predominantly numerical and are not
well-fitted to process data in a form different than a sequence of numbers. An
impressive range of fuzzy and granular models has emerged as a remedy for such
issues. Fuzzy Cognitive Maps (FCMs) have been proposed by Kosko [11] in 1986
as an alternative framework for phenomena modeling.

FCMs represent knowledge in the form of a directed graph. Phenomena are
stored in vertices, while edges represent their relationships. These relationships
are expressed as real numbers from the [−1, 1] interval. Weight matrix (or con-
nection matrix) is a formal representation of each FCM as it gathers all weights
in the map. In our research we focus on the application of FCMs to time series
modeling, a domain relatively new as it has emerged in the 2000s [20].

In this paper, we present a study on a very important aspect of modeling
with FCMs, namely on weight matrix learning procedures. In general, the core of
each FCM, the weight matrix, can be constructed in three ways: (a) manually,
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
K. Saeed and W. Homenda (Eds.): CISIM 2016, LNCS 9842, pp. 577–588, 2016.
DOI: 10.1007/978-3-319-45378-1 51

578 A. Cis�lak et al.

by human experts; (b) automatically, using optimization algorithms; (c) with
the combination of the two aforementioned options.

The first and the last option often turn out to be inapplicable, as they
require human expert knowledge. A convenient alternative is offered by auto-
mated approaches that are able to determine the shape of the weight matrix.
In particular, the literature of the topic recommends the application of various
metaheuristic optimization procedures [15,19]. Inspired by the current develop-
ments in the studies on FCM optimization, we present a comparative study on
various algorithms, which are presented later in this paper.

The study is supported by a series of empirical experiments that let us inves-
tigate and compare the quality of obtained maps. The experiments were con-
ducted for a few time series data sets (containing both real-world and synthetic
data) and for maps of various sizes. In contrast to the studies on FCM optimiza-
tion reported in the literature, in our experiments we also process very large
maps, with up to 27 nodes (which turned out to be crucial in terms of algorithm
performance). The key novel element introduced in this paper is a thorough
comparison of the effectiveness of various optimization methods. Also, to the
best of our knowledge, this is the first paper where we apply Harmony Search
and Improved Harmony Search to FCM optimization.

2 Related Works

The need for automated methods for FCM weight matrix construction coincided
with a rapid development of various search metaheuristics. Researchers recog-
nized opportunities offered by this family of algorithms and applied them to
FCM optimization.

Indeed, there are several important arguments speaking in favor of this app-
roach. First, FCMs are fuzzy models and the key limitation of search metaheuris-
tics, which is a lack of guarantee for the global optimal solution, is not a major
concern. Hence, when it comes to FCMs, it is common to model phenomena with
an “acceptably” good accuracy. In other words, there is no need for the best solu-
tion as long as we can arrive at a one which is “good enough”. Secondly, weight
matrix optimization is a difficult problem and standard optimization procedures
are inadequate to handle it. Last but not least, metaheuristics are attractive:
they are easy to use, they make few or no assumptions about the problem being
optimized, and they provide a relatively good performance. Having the above
in mind, more and more heuristic search algorithms have been adapted to FCM
optimization. However, many of the latest contributions mostly build on the first
methodologies that have been proposed.

The objective is to form a weight matrix by an iterative search procedure.
The initial weight matrix is filled in randomly, which eliminates the necessity for
involving human experts in the learning process. Algorithms explore the search
space in order to find a weight matrix that satisfies to the greatest extent given
fitness criterion. Usually, such fitness criterion is expressed as an error between
map’s responses and target values:

A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics 579

min
W=[wij],wij∈[−1,1],i,j=1,...,c

error (Y,T) (1)

where Y = [yij], yij ∈ [0, 1], i = 1, . . . , c, j = 1, . . . , N is map’s output. error
is a measure of discrepancy between FCM’s outputs (Y) and desired target
values, T = [tij], tij ∈ [0, 1], i = 1, . . . , c, j = 1, . . . , N . N is the number
of observations, and c is the number of nodes in the map. The literature-based
approaches often use Mean Squared Error (MSE) [15,19]:

MSE =
1

N · c
·

N∑

j=1

c∑

i=1

(
yij − tij

)2
, (2)

where yij denotes map’s ij-th response and tij is a corresponding target value.
Koulouriotis et al. [12] proposed the first methodology in 2001 that joined

search heuristics with FCM learning. The authors applied Evolution Strategies to
FCM learning in a case study of two FCMs, both with 6 nodes. Stach et al. [21]
published in 2005 another important attempt at employing search heuristics
for the benefits of FCM learning. Cited authors applied Real-coded Genetic
Algorithm (RCGA) to develop FCM weight matrix. Presented results for maps
with up to 10 nodes confirm the soundness of this approach.

Briefly after the appearance of FCM learning algorithms employing genetic
approaches, Parsopoulos et al. [17] applied Particle Swarm Optimization (PSO)
to automated FCM learning. The authors modeled an exemplary industrial con-
trol problem: a tank and three valves that guard the level of a liquid. The fitness
function was determined accordingly to fit the application domain and it repre-
sented a combination of conditions for the tank and the valves that stabilize the
industrial process. Further applications of PSO and related swarm intelligence
algorithms to FCM learning have been documented [13,15]. Also, a few other
successful methods for FCM learning using heuristics other than ones already
discussed have been proposed, e.g., Big Bang-Big Crunch [16].

3 Approach

Our goal was to determine the performance of various non-deterministic algo-
rithms in the context of optimizing FCM weight matrix. Regular approaches
turn out to be rather ill-suited to this problem. Let us clarify that we used
a popular classical algorithm Limited-memory BFGS-B [4]. The limitations con-
cern first and foremost large maps, with 17 nodes (289 weights) and more. In
our experiments we have observed that as we add more nodes, a classical opti-
mization algorithm starts to set more and more weights to its pre-defined upper
and lower bounds (−1 and 1). Such a result is not acceptable for the model
assumptions of FCMs and it produces high error values. Hence, a more suited
approach is required.

The challenge is caused by the lack of a feasible exact algorithm that could
ensure reaching a global minimum (using, e.g., an exhaustive combinatorial
search) owing to the complexity of the problem. However, with metaheuristic

580 A. Cis�lak et al.

approaches there still exists a risk of reaching a local minimum, and there is
no a priori approach to determine which evolutionary approach is better suited,
which is the motivation behind our experimental evaluation.

All algorithms which were used for the optimization fall into the category of
population-based algorithms, and most of them can be also described as evolu-
tionary, since they feature operations such as breeding, mutation, and selection
based on utility. Popular terms include a population, which describes a set of
all individuals (candidate solutions) that are considered during a current itera-
tion of the algorithm, and fitness, which describes the utility of an individual.
An individual is essentially a multidimensional vector V = [v1, . . . , vd] which
consists of a fixed number of features. The number of dimensions, d, usually
corresponds to certain properties of real-world objects, or, in our case, the size
of the FCM.

Since in our case the fitness describes an average error, we deal with a min-
imization problem. When we mention a better or worse fitness value, it means
that it is associated with a lower or a higher fitness value, respectively (the terms
error and fitness are used interchangeably). Similarly, a better individual is the
one associated with a lower fitness.

Typical operation of a population-based algorithm proceeds as follows:

1. The initial population containing n random individuals is created.
2. The fitness of each individual is calculated.
3. A predefined number (e) of individuals with the best fitness is preserved

(so-called elite). Afterwards, the population is refreshed, i.e. typically n − e
individuals are replaced with new (random) ones, although this might depend
on fitness values (e.g., new individuals might enter the population only if they
are better than the previous ones).

4. The population is updated using algorithm-specific tools – this can consist
in, e.g., mutating the features, that is introducing random changes.

5. The search continues until a desired number of iterations is performed. In the
end, the individual with the overall best fitness is returned.

Specific algorithms which were evaluated are listed below:

– Artificial Bee Colony (ABC) [10]
ABC is based on the behavior of bees in their natural habitat. Each individual
is called a bee, and a current state of the feature vector is referred to as a
position. There exist 3 kinds of bees:

• Employed bees: they modify their positions by mutating single features.
• Unemployed bees: they randomly select one of the positions of the

employed bees (the better the fitness of the position, the higher the prob-
ability that this position is selected) and mutate it.

• Scout bees: they try to occupy a new random position.
Each new position in the ABC algorithm is retained only if it turns out
to be better than the original one. Main parameters include the ratios of
the number of bees of each kind in the population.

A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics 581

– Differential Evolution (DE) [22]
DE is closely related to the Genetic Algorithm, however, it uses various strate-
gies for crossing individuals rather than the standard crossover operation, and
explicit mutation is usually omitted. These differ mostly in the number of
selected individuals, sampling strategies, as well as the method for combining
the features. After testing selected strategies, we have decided to opt for the
one which combines 3 individuals (V1, V2, V3) sampled randomly from the
current population. With a given probability, each feature is replaced with a
new value according the following formula: V [i] = V1[i]+δ(V2[i]−V3[i]), where
δ is a fixed parameter.

– Genetic Algorithm (GA)
GA is based on two basic operations – crossover, which takes two individuals
and combines them into one by mixing their features together, and mutation,
which assigns a random value to one of the features. These operations cor-
respond directly to changes in the genetic material which happen in the real
world. The parameters consist of a probability of a crossover between an indi-
vidual and another randomly selected individual, and a probability that an
element is mutated.

– Harmony Search (HS) [8]
HS was inspired by a group of musicians who use improvisation (that is, essen-
tially, mutations of musical notes) in order to find the optimal sound combi-
nation. During a single iteration, each harmony (individual) is improvised
(mutated) and it replaces the current worst harmony if it produces a better
fitness score. Each feature V [i] is then either replaced with a random value,
or it is replaced with another feature Vx[i] from a randomly selected harmony
Vx from the current generation. Moreover, if one of the existing features is
selected, its value is changed (it is “pitch-adjusted”) by a random value from
a given interval of size δ(max − min) (in our case min = −1 and max = 1).
The parameters describe the probabilities of mutations.

– Improved Harmony Search (IHS) [14]
IHS is based directly on harmony search and it strives to fine-tune its para-
meters. According to authors, effectiveness of the original algorithm might be
improved when, for each consecutive iteration, the probability that a muta-
tion occurs increases, however, the rate of change decreases. This means that
at the beginning the algorithm causes the features to take fewer longer leaps,
and at the end there are more frequent but smaller changes.

– Particle Swarm Optimization (PSO) [5]
PSO consists of multiple particles (individuals), which change the position
in the search space. The maximum value of this change is determined by
the speed of a particle in question, and it can be influenced by other particles
(e.g., k of its neighbors or the best particle found so far). We have investigated
a simple PSO variant, where the particles explore the search space on their
own, that is they are not influenced by other particles, as well as a more
complicated variant from the cran library [3] (we refer to it as informed PSO),
which takes into account both the position of the best particle as well as k
neighbors (where k = �1 − (1 − (1 − 1

n))3� for the population of size n).

582 A. Cis�lak et al.

4 Time Series Modeling with Fuzzy Cognitive Maps

In this section we briefly present the necessary formalisms related to FCM con-
struction in order to present a self-contained experimental study on FCM opti-
mization.

In a nutshell, FCM is represented by its weight matrix W which is used to
iteratively model the behavior of phenomena. On the input to the map we pass
current activation values, and the map responds with an output. Ideally, map’s
response is as close to the actual state of phenomena (the target) as possible. The
input corresponds to the i-th discrete time point, while the output corresponds
to the i + 1-th time point.

A single run of an FCM (single input-output) is described with an input
activation vector x, x = [x1, x2, . . . , xc]T , xi ∈ [0, 1]. Map’s response is a vector
y = [y1, y2, . . . , yc]T , yi ∈ [0, 1]. In order to calculate the i-th element of the
output vector we apply the following formula:

yi = f
(c∑

j=1

wij · xj

)
(3)

for i = 1, 2, . . . , c. f is a sigmoid function endowed with a steepness parameter
τ > 0:

f(u) =
1

1 + e−τu
(4)

The greater the τ , the more the shape of f resembles the unit step function.
Here, τ = 5 was assumed, which was based on experimental studies and on the
literature review, where the majority of researchers assume the same settings [19,
20].

When the processing concerns a sequence of N activation vectors (N obser-
vations), we gather them in an activation matrix that is denoted as X =
[x1, . . . ,xN], where xi is an i-th activation vector. Consistently, the FCM
responds with matrix of outputs (Y = [y1, . . . ,yN]), which is of size c × N .

Modeling with an FCM consists of the following steps:

1. FCM design,
2. FCM optimization,
3. FCM interpretation.

The first step revolves around the process of node extraction for the map, and
it is a crucial point which determines the quality of the map. A general concern
is that the more nodes we have in a map, the more specific model we obtain.
A corollary of this is that when we add a node to the map, we should expect that
its numerical accuracy will increase. The downside of an increased map size is
that it affects not only the ease of interpretation, but also a computational effort
needed to optimize such a map. Let us stress that number of edges (elements in
the weight matrix) grows quadratically, but an average time needed to optimize
such map using any metaheuristic algorithm grows faster than quadratically.

A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics 583

There exists a key parameter of a time series representation for modeling
with FCMs: concept’s dimensionality. Dimension corresponds to the number
of consecutive time points represented by each concept. For instance, if the
dimensionality is equal to 2, then each concept represents a pair: current time
series value (zi ∈ R, i = 2, . . .) and change (δzi = zi − zi−1). If dimensionality
equals 3, then each concept represents current value (zi), change (δzi), and
change of change (δδzi = δzi−δzi−1 = zi−2zi−1+zi−2). The same representation
has been applied by Stach et al. [20], who published a fundamental paper for
the time series modeling method analyzed in this study.

Our previous research shows that the larger the dimension, the better numer-
ical accuracy of predictions. However, the gain diminishes as the dimensionality
grows. Having in mind that FCMs are models constructed to be interpreted
and applied by human beings, concept dimensionality equal to 2 or 3 is a very
reasonable choice, especially since we may easily represent such a space visually.

A detailed elaboration on the issues of FCM design has been presented in
our previous paper [9]. At this point let us assume that we are proceeding with
a task of time series modeling and we are equipped with the following: (a) a set
of c concepts and (b) a set of training and testing data sets consisting of input
activations X and targets T.

In this paper we do not dwell further on this topic, as the focus in on the
second step: FCM optimization. The aim is to construct a weight matrix W of
size c × c that provides the smallest possible MSE (as defined in Formula 2).
FCM exploration is as described in Formula 3. The time series that we model
was elevated to the level of concepts and hence the modeling procedure operates
on the level of concepts. In a typical scenario (as in this paper), concepts are
realized with fuzzy sets, and we predict membership degrees to the extracted
concepts in each discrete time point. With such assumptions we move towards
the empirical section of this article, where we employ and compare a suite of
different heuristic search algorithms in order to construct FCM weight matrix.

5 Experimental Results

Let us note that the problems in question are very demanding from the compu-
tational point of view, as a single run on all 4 of our data sets requires at least
several days even on a modern multithreaded machine. Still, the experiments
were conducted a few times and the results were consistent with one another. In
fact, the relative differences between consecutive runs were surprisingly small,
namely less than a few percent, and they were often negligible.

Our implementation is mostly based on the tools provided by the DEAP
library [7] for Python. Moreover, we have also implemented the Genetic Algo-
rithm from scratch in order to rule out a possible dependency on the library, and
the results turned out to be similar. We have investigated 4 data sets, two of
which represent real-world data (Bicup, Rainfall), and 2 synthetic ones (Synth3,
Synth10); see Appendix A for more information. As regards the parameters, we
have used similar values to those suggested in the literature [8,10,14,18]; consult
Appendix B for a complete list.

584 A. Cis�lak et al.

Fig. 1. Results for Differential Evolution (DE) which managed to minimize the error
as the matrix size increased. Four consecutive rows correspond to each of the data sets:
Synth3, Synth10, Bicup, and Rainfall (top to bottom), whereas the columns correspond
to the dimensionality of data samples (consult Sect. 4 for more information). Values on
the x-axis of each subplot refer to matrix sizes, and values on the y-axes describe the
error (i.e. fitness in our case). Training set errors are indicated with black bars, and
test set errors are indicated with grey bars.

Our results can be summarized as follows: for this particular problem class,
the best effectiveness was achieved by Differential Evolution (DE, consult Fig. 1)
and informed PSO. We also present the results for Improved Harmony Search
(IHS) in Fig. 2. Results for other algorithms are omitted, since they demonstrate
the same tendencies as the ones presented in the figures, but with higher error
values (informed PSO with respect to DE and the remaining algorithms with
respect to IHS).

It is worth noticing that the algorithms which managed to continue decreas-
ing the error value as the matrix size increased were also the ones which reported
overall the smallest error values. Moreover, let us note that almost all algorithms
(with the exception of ABC) managed to decrease the error up to a certain point,

A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics 585

Fig. 2. Results for Improved Harmony Search (IHS) which was mostly successful only
up to the matrix size of 10. Four consecutive rows correspond to each of the data sets:
Synth3, Synth10, Bicup, and Rainfall (top to bottom), whereas the columns correspond
to the dimensionality of data samples (consult Sect. 4 for more information). Values on
the x-axis of each subplot refer to matrix sizes, and values on y-axes describe the error
(i.e. fitness in our case). Training set errors are indicated with black bars, and test set
errors are indicated with grey bars.

roughly matrix size 10, and in these cases the relative differences between error
values were rather insignificant. This observation is consistent with the results
reported by other authors, referred to in Sect. 2. Beyond this point, and espe-
cially for the largest matrices, the error value actually increased, despite a larger
(i.e. more precise, at least in theory) amount of information describing the model.
This leads us to the conclusion that the choice of the optimizing algorithm is
not significant for smaller matrix sizes (in which case even the aforementioned
L-BFGS-B approach was successful, while also being faster than population-
based algorithms), however, it can be a true game changer for bigger matrices.
The biggest relative differences in error values were observed for the 27-node
matrix, and for some algorithms they ranged up to two orders of magnitude.

586 A. Cis�lak et al.

For some algorithms (e.g., simple PSO) it could be inferred from the data that
a certain local minimum was being approached. This was due to the increasing
appearance of −1 s and 1 s in the weight matrix, and this behavior was similar
to one observed for the L-BFGS-B algorithm (as mentioned in Sect. 3). In that
case, we observed a clear correlation between an increase in the error value and
an increasing number of −1 s and 1 s. Still, in other cases the situation was not
so clear, for instance the IHS did not manage to minimize the error value as
the matrix size increased, even though the aforementioned −1 s and 1 s did not
appear in the weight matrix at all.

We believe that the better performance of DE could be possibly explained
by the fact that it is mostly based on the recombination of the existing popu-
lation members, augmented with only a limited number of mutations. This can
be partially supported by the fact that increasing the crossover probability and
lowering the number of mutations for the Genetic Algorithm produced relatively
better results (although still worse than DE, in particular it was unsuccessful for
maps of sizes 22 and 27). Conversely, increasing the mutation probability and
decreasing the crossover probability had a negative effect on the error value. Sim-
ilar behavior was observed for HS, which was more effective when the mutation
was almost disabled (with the probability of 1 % for each attribute). Surprisingly,
this leads us to the conclusion that it is the limiting rather than the widening
of the search radius which yields better results in this particular case.

6 Future Works

We would like to recognize a certain threat to validity, namely the dependence
on parameter values. It is not feasible to perform exhaustive parameter tuning
for this particular problem due to computational constraints. Moreover, there
exist certain drawbacks associated with such tuning, explored in detail by, e.g.,
Eiben et al. [6]. For this reason, we plan to investigate certain parameter control
methods [6] (one of the algorithms that we have evaluated, namely IHS, is an
example of such a method) as future work. It would be also advantageous to
extend the scope of the study onto other real-world as well as synthetic time
series data samples.

Appendix A

The following data sets were used in the empirical study:

– synthetic time series (Synth3) based on sequence (2,6,8),
– synthetic time series (Synth10) based on sequence (1,5,7,3,9,9,3,7,5,1),
– real-world time series Bicup,
– real-world time series Rainfall.

Synthetic time series were constructed by replication of a base sequence so
that the entire set had 3,000 elements. Then, a random distortion taken from

A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics 587

the normal distribution with mean 0 and standard deviation 0.7 was added to
each value.

Bicup time series describes the number of passenger arrivals at a subway bus
terminal. Rainfall time series contains information on daily precipitation [1,2].

Appendix B

This appendix describes parameter values for each evaluated algorithm; for
detailed information regarding these parameters we refer the reader to origi-
nal articles. For the description of the algorithms, consult Sect. 3. The number
of iterations was set to 200 for all algorithms (a larger number was unneces-
sary, since in most cases the improvements in fitness values were non-existent
or negligible beyond this point), and the population size was equal to 100 indi-
viduals (with the exception of informed PSO, which uses its fine-tuned, custom
parameters).

– ABC: employed bee ratio = 0.5, abandon limit = 3.
– DE: δ = 0.25, mutation probability = 0.5.
– GA: two-point crossover probability = 0.2, attribute mutation probability =

0.05, tournament size = 10, elitism rate = 0.25.
– HS: random value probability = 0.1, pitch adjustment probability = 0.3,

δ = 0.01.
– IHS: pitch adjustment probability ∈ [0.1, 0.9], delta ∈ [0.0001, 0.75].
– PSO (simple): minimum speed = min/4, maximum speed = max/4, (where

min = −1 and max = 1), φ = 1.5.

References

1. Bicup time series. http://robjhyndman.com/tsdldata/data/bicup2006.dat. Acces-
sed 11 Jan 2016

2. Rainfall time series. http://robjhyndman.com/tsdldata/data/rainfall.dat. Acces-
sed 11 Jan 2016

3. Bendtsen, C.: Package ‘PSO’. https://cran.r-project.org/web/packages/pso/pso.
pdf. Accessed 1 Apr 2016

4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

5. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, New York, NY, vol. 1, pp. 39–43. (1995)

6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

7. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.:
DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175
(2012)

8. Geem, Z.W., Kim, J., Loganathan, G.V.: A new heuristic optimization algorithm:
harmony search. Simulation 76(2), 60–68 (2001)

http://robjhyndman.com/tsdldata/data/bicup2006.dat
http://robjhyndman.com/tsdldata/data/rainfall.dat
https://cran.r-project.org/web/packages/pso/pso.pdf
https://cran.r-project.org/web/packages/pso/pso.pdf

588 A. Cis�lak et al.

9. Homenda, W., Jastrzebska, A., Pedrycz, W.: Design of fuzzy cognitive maps for
modeling time series. IEEE Trans. Fuzzy Syst. 24(1), 120–130 (2016)

10. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459–471 (2007)

11. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986)
12. Koulouriotis, D., Diakoulakis, I., Emiris, D.: Learning fuzzy cognitive maps using

evolution strategies: a novel schema for modeling and simulating high-level behav-
ior. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2001),
pp. 364–371 (2001)

13. León, M., Mkrtchyan, L., Depaire, B., Ruan, D., Bello, R., Vanhoof, K.: Learning
method inspired on swarm intelligence for fuzzy cognitive maps: travel behaviour
modelling. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN
2012, Part I. LNCS, vol. 7552, pp. 718–725. Springer, Heidelberg (2012)

14. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algo-
rithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579
(2007)

15. Papageorgiou, E.: Learning algorithms for fuzzy cognitive maps - a review study.
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42(2), 150–163 (2012)

16. Papageorgiou, E.: Maps, Fuzzy Cognitive Maps for Applied Sciences and Engineer-
ing: From Fundamentals to Extensions and Learning Algorithms. Springer Science
& Business Media, Heidelberg (2013)

17. Papageorgiou, E., Parsopoulos, K., Stylios, C., Groumpos, P., Vrahatis, M.: Fuzzy
cognitive maps learning using particle swarm optimization. J. Intell. Inf. Syst.
25(1), 95–121 (2005)

18. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.
1(1), 33–57 (2007)

19. Stach, W., Kurgan, L., Pedrycz, W.: A survey of fuzzy cognitive map learning
methods. Issues Soft Comput.: Theor. Appl., 71–84 (2005)

20. Stach, W., Kurgan, L., Pedrycz, W.: Numerical and linguistic prediction of time
series. IEEE Trans. Fuzzy Syst. 16(1), 61–72 (2008)

21. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cog-
nitive maps. Fuzzy Sets Syst. 153, 371–401 (2005)

22. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

	A Study on Fuzzy Cognitive Map Optimization Using Metaheuristics
	1 Introduction
	2 Related Works
	3 Approach
	4 Time Series Modeling with Fuzzy Cognitive Maps
	5 Experimental Results
	6 Future Works
	References

