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Abstract. In this study, we discuss the use of Dempster-Shafer theory as a
well-rounded algorithmic vehicle in the construction of fuzzy decision rules. The
concept of fuzzy granulation realized via fuzzy clustering is aimed at the dis-
cretization of continuous attributes. Detailed experimental studies are presented
concerning well-known medical data sets available on the Web.
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1 Introduction

Fuzzy modeling is regarded to be one of the possible classification architecture of
machine learning and data mining. There have been a significant number of studies
devoted to generating fuzzy decision rules from sample cases or examples. These
include attempts to extend many classical machine learning methods to learn fuzzy
rules. One very popular approach is decision trees [10]. Since the inception of this
concept, it has been extended for the construction and interpretation of more advanced
decision trees [3, 5–7, 9, 13, 15, 18]. Although the decision trees based methods can
extract a set of fuzzy rules which works well, a problem is that the lack of backtracking
in splitting the node leads to lower learning accuracy comparing to other machine
learning methods. Another widely used machine learning method is artificial neural
network. In recent years enormous work has been done in attempt to combine the
advantages of neural network and fuzzy sets [14]. Hayashi [4] has proposed to extract
fuzzy rules from trained neural net. Lin [8], on the other hand, introduced a method of
directly generating fuzzy rules from self-organized neural network. The common
weakness of neural network, however, is a problem of determination of the optimal size
of a network configuration, as this has a significant impact on the effectiveness of its
performance.

The objective of this paper is to employ the Dempster-Shafer theory (DST) as a
vehicle supporting the generation of fuzzy decision rules. More specifically, we con-
centrate on the role of fuzzy operators, and on the problem of discretization of con-
tinuous attributes. We show how they can be effectively used in the quantization of
attributes for the generation of fuzzy rules.

The material is arranged in the following way. First, we summarize the underlying
concepts of the Dempster-Shafer theory and briefly discuss the nature of the underlying
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construction. By doing so, the intension is to make the paper self-contained and help
identify some outstanding design problems emerging therein. In Sect. 4 we explain
essentials of our model. Finally, in Sect. 5, we report exhaustive experimental studies.

This paper is a continuation of our earlier work [12]. Here we apply theoretical
vehicle, introduced in previous research, to the new input data in order to find possible
area of application. Our important objective here is to reveal a way in which this
approach becomes essential to a more comprehensive treatment of continuous
attributes.

2 Dempster-Shafer Theory

The Dempster-Shafer theory starts by assuming a Universe of Discourse H also called
Frame of Discernment, which is a finite set of mutually exclusive alternatives. The
frame of discernment may consist of the possible values of an attribute. For example, if
we are trying to determine the disease of a patient, we may consider H being the set
consisting of all possible diseases.

For each subset S of H it is associated:

• a basic probability assignment m(S)
• a belief Bel(S)
• a plausible belief Pla(S)

m(S), Bel(S) and Pla(S) have value in the interval [0,1], and Bel(S) is not greater
than Pla(S).

In particular, m represents the strength of some evidence. For example, in rule-
based expert system, m may represent the effect of applying of a rule. Bel(S) sum-
marizes all our reasons to believe S. Pla(S) expresses how much we should believe in S
if all currently unknown facts were to support S. Thus the true belief in S will be
somewhere in the interval [Bel(S), Pla(S)]. More formally, a map

m : 2H ! 0; 1½ � ð1Þ

such that for each A 2 2H (where 2H is set of all subsets of H)

1. mð;Þ ¼ 0
2.

P
A�H

mðAÞ ¼ 1

is called a basic probability assignment for H.
Subset A is called a focal element of m if m(A) > 0.
For a given basic probability assignment m, the Belief of a subset A of H is the

sum of m(B) for all subsets B of A, so

Bel : 2H ! 0; 1½ � ð2Þ

such that BelðAÞ ¼ P
B�A

mðBÞ.
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The Plausibility of a subset A of H is defined as Pla(A) = 1 − Bel(A’), where A’ is
the complement of A in H.

If we are given two basic probability assignments m1 and m2, we can combine them
into a third basic probability assignment m : 2H ! 0; 1½ � in the following way.

Let us consider frame of discernment H and two belief functions Bel1 and Bel2. We
denote focal elements of Bel1 as A1…AK and focal elements of Bel2 as B1…BL

respectively and the basic probability assignments as m1 and m2. Then we can show
graphically this combination as an orthogonal sum of m1 and m2.

The mass of probability of the interval Ai \ Bj expressed as a measure m1(Ai)�
m2(Bj) is illustrated in Fig. 1.

Of course, more intersections can give the same focal element A. In general the
mass of probability of set A is defined as:

mðAÞ ¼
X

i; j
Ai \Bj ¼ A

m1ðAiÞ � m2ðBjÞ ð3Þ

Then we find a problem with an empty set. It is possible that sets with empty
intersection exist. We can meet this normal situation in many combinations. Then the
mass of∅, according to above definition, will be greater than zero, but according to the
definition of basic probability assignment, it is not possible.

We assume that

X

i; j
Ai \Bj ¼ ;

m1ðAiÞ � m2ðBjÞ\1 ð4Þ

to define the orthogonal sum m1 and m2, and denote it as m1 � m2.
Then it is necessary to change the definition (3) of the formula of the basic

probability assignment of the combination as follows:

m2 (BL)   
...
m2 (Bj)

...
m2 (B1)           

m1 (A1) ... m1 (Ai) ... m1 (AK)

Fig. 1. Orthogonal sum of m1 and m2
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1. mð;Þ ¼ 0

2. mðAÞ ¼

P
i; j

Ai \Bj ¼ A

m1ðAiÞ�m2ðBjÞ

1�
P
i; j

Ai \Bj ¼ ;

m1ðAiÞ�m2ðBjÞ for non-empty A � H

We call this as an orthogonal sum of Bel1 and Bel2, and denote as Bel1 ⊕ Bel2.
This is the Dempster Rule for Combining of Beliefs [11].

For H we have m Hð Þ ¼ P
A�H

mðAÞ ¼ 1 and for combination if

X

i; j
Ai \Bj ¼ ;

m1ðAiÞ � m2ðBjÞ ¼ 0

we have

mðHÞ ¼
X
A�H

mðAÞ ¼
X
A�H

X

i; j
Ai \Bj ¼ A

m1ðAiÞ � m2ðBjÞ ¼
X
i;j

m1ðAiÞ � m2ðBjÞ ¼ 1

3 Fuzzy Modelling

Fuzzy set theory is widely known and we do not introduce its underlying concepts
essential to understand this framework. Readers interest themselves we refer to [16]
and [17].

Fuzzy Modeling is applied in those areas where the model of the system cannot be
described precisely because of many reasons. The input data received by the system
may not be completely reliable, may contain noise, or may be inconsistent with other
data or with expectation about these data. The system is described by the set of
linguistic rules. Let D denotes an output variable of the system, and X1, X2, …, Xn

denote an input variables. The linguistic rules have the following format:

If ðX1 is Ak;1;j1Þ And . . .And ðXn is Ak;n;jnÞ Then ðD is Sk;pÞ ð5Þ

where (Xi is Ak,i,ji) are the fuzzy antecedents, Ak,i,ji (1 � ji � |Ai|) are values of the i-th
input variable, and Sk,p (1 � p � |S|) is the value of output variable in k-th rule.

The rules are implemented as fuzzy relation according to the formula:

Rk ¼ Ak;1;jl 	 Ak;2;jl 	 � � � 	 Ak;n;jl 	 Sk;p ð6Þ

where 	 denotes the fuzzy Cartesian product.
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Then all rules are aggregated to relation R described as:

R ¼
[M
k¼1

Rk ð7Þ

where M is the number of rules.
The conclusion is based on the compositional rule of inference

S0 ¼ A
0
1;j1 	 A

0
2;j2 	 � � � 	 A

0
n;jn

� �

 R ð8Þ

where A
0
1;j1;A

0
2;j2; � � � ;A

0
n;jn are input values, S0 is a conclusion (decision class), and 


denotes the composition of fuzzy relation.
In fuzzy modeling we can assume that expert defines the rule set, or we can

automatically generate them from the set of samples describing the behavior of the
system being modeled.

4 Fuzzy Dempster-Shafer Model

In Fuzzy Dempster-Shafer (FDS) model [2] we consider rules Rr as:

If X1is Ar;1;j1

� �
. . . And . . . Xnis Ar;n;jn

� �
Then D is mrð Þ ð9Þ

where Xi and D stand for input and output respectively, and mr is a fuzzy belief
structure, that is a standard belief structure with focal elements Sr,p as fuzzy subset of
frame of discernment H with basic probability assignment mr (Sr,p), and mr (Sr,p) is the
believe that the conclusion should be represented as class Sr,p.

4.1 Learning – Rules Construction

In antecedent construction, let us assume that we have n features (attributes) in ante-
cedents of testing example. We consider a collection of m generic linguistic terms
characterized by membership functions defined in a universe of discourse being a
domain of each attribute. The conclusion belongs to decision class S.

For each element of data t we build a collection:

A1;1;t A2;1;t . . . An;1;t

A1;2;t A2;2;t . . . An;2;t

..

. ..
. . .

. ..
.

A1;m;t A2;m;t . . . An;m;t

ð10Þ

where Ai,j,t are the values of j-th membership function for i-th feature and for t-th
element of data.
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Example 1. We demonstrate the calculations on the set of synthetic data presented in
Table 1.

First six rows (L1–L6) will constitute learning data, while the remaining ones (T1–
T4) will form testing data. All the features are numbers from the <0; 9> interval. The
last column represents the decision class equal to 1 or 2. We will consider four
membership quadratic functions uniformly distributed along the space of all attributes.
Other membership functions will be discussed in the next section.

According to (10) for row T1 we have:

1:0 1:0 0:0625 0:0156
0 0 0:9375 0:9844
0 0 0 0
0 0 0 0

■
On the base of (10), for a given data point t we can calculate two vectors:

Al;t : A1;max1;t A2;max2;t . . . An;maxn;t ð11Þ

and index of membership functions

Ic;t : I1;max1;t I2;max2;t . . . In;maxn;t ð12Þ

where Ai;maxi;t is a maximum value of all membership functions designed for the feature
i and Ii;maxi;t is the number of the best membership function for feature i.

Then we have the following candidate for a rule

Rt : I1;max1;t I2;max2;t . . . In;max2;t ð13Þ

The firing level of the rule is calculated according to the following formula

Table 1. Sample data set

Item F1 F2 F3 F4 Class

L1 1 1 1 1 1
L2 9 8 8 9 2
L3 1 1 3 4 1
L4 2 1 2 2 1
L5 2 2 2 2 2
L6 5 6 7 8 2
T1 3 3 3 2 1
T2 1 2 2 1 1
T3 4 7 7 9 2
T4 2 8 7 8 2
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st ¼ /
n

i¼1
Ai;maxi;t
� � ð14Þ

where / means the operator of fuzzy matching. See Sect. 5.2. for details.
The rule candidate is added to rules set if / sr;mr½ � � Th (where Th threshold value,

and / matching operator). This can help to eliminate bad rules from the final rule set.
More ten one rule can have the same antecedent part but it is also possible that

conclusion of these rules are different. Then we have to use appropriate counters ct,1,..,
ct,|S|, where |S| denotes the power of decision class set. These counters can show us how
many data, according to rule pattern, vote for each decision class.

Example 2. In our sample (T1) the vectors are:

Al,1: 1.0000, 1.0000, 0.9375, 0.9844
Ic,1: 1, 1, 2, 2 with counters vector 1, 0

In our sample matching value equals to 0.9229, were multiplication was used as the
matching operator (1.0000* 1.0000* 0.9375* 0.9844 = 0.9229). For the threshold set
on 0.75, we obtain a new rule.

■
The product is a new belief structure on X

m̂r ¼ sr ^ mr ð15Þ

Focal elements are fuzzy subset given as

Fr;pðxÞ ¼ sr ^ Sr;pðxÞ ð16Þ

and appropriate distributions of new focal elements are defined as:

m̂rðFr;pÞ ¼ mrðSr;pÞ ð17Þ

So we can build an aggregate:

m ¼
[R
r¼1

m̂r ð18Þ

Then for each collection

= ¼ Fr1;p1 ;Fr2;p2 ; . . .; FrR;pR

� � ð19Þ

where Frt ;pt are focal elements of m̂r we have focal element E of m described as

E ¼
[R
t¼1

Frt ;pt ð20Þ

with appropriate probability distribution
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m Eð Þ ¼
YR
t¼1

m Frt ;pt

� � ð21Þ

At this point, the rule generation process is complete.

Example 3. Our sample data produce the following rule set.

I1max I2max I3max I4max C1 C2 m
R1 : 1 1 2 2 1 0 2:5000
R2 : 1 1 4 1 2 1 2:0833
R3 : 4 4 4 4 0 1 1:2500
R4 : 2 3 3 4 0 1 1:2500

The first four elements are numbers of the best membership function for proper
features, the next two are counters for decision classes and the last one is a probability
distribution.

Let us observe that rule R2 covers the data L1, L4 and L5. L1 and L4 produce
decision class C1 but L5 decision class C2.

■
Now we can move to the testing of new rules.

4.2 Test

In testing we ignore the value from the last column in Table 1, that is decision class
number, because our goal is to calculate it.

To compute the firing level of a rule k for a given data

Xk : X1;k X2;k . . . Xn;k Dk ð22Þ

where Xi,k – feature’s value, Dk – conclusion decision class that we have to compare
with the result of inference; we build a rule matrix

lk;t ¼ U
n

i¼1
Ai;l;k Xi;t

� �� �
; l ¼ Ii;max;k ð23Þ

We are interested only in active rules i.e. rows with matching value lk;t [ 0.

Example 4. In test we will demonstrate calculations on

L5: 2 2 2 2
T1: 3 3 3 2

For sample data L5 we have two active rules:

R1:1 1 2 2 1 0 0:859375 0:859375 0:609375 0:609375 0:274242
R2:1 1 1 1 2 1 0:859375 0:859375 0:859375 0:859375 0:54542
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The first four elements are the rule pattern, the next two are the counters for decision
classes. The next four numbers are the values of appropriate membership function. The
number 0.859375 is the value of the first membership function, according to the first
number in the rule, on the first feature. The next three numbers are calculated in the
same way.

The last numbers in the above rows are the matching value for the rule. It has been
calculated by matching operator for the values of membership function.

We focused only on the rows with matching value grater then zero.
For sample data T1 we have:

R1: 1 1 2 2 1 0 0:4375 0:4375 0:9375 0:6094 0:1093
R2: 1 1 1 1 2 0 0:4375 0:4375 0:4375 0:8594 0:0720

■
For each collection of Frt ;pt focal elements m̂r we define an aggregate

E ¼ [ R
t¼1Frt ;pt ð24Þ

with basic probability assignment

mðEÞ ¼
YR
t¼1

m Frt ;pt

� � ð25Þ

The results of classification are D is m, with focal elements Ek(k = 1,…,R|S|) and
distribution m(Ek). That results are calculated using focal elements and appropriate
counters ct,1,.., ct,|S|.

Example 5. For sample point L5 and T1 the counters are 3, 1, and 3, 0 respectively
■

Then we perform defuzzification according to COA method [1].

�y ¼
XRjSj

k¼1

�ykmðEkÞ ð26Þ

where �yk are defuzzified values for focal element Ek defined as

�yk ¼

P
1� t� n

xtlk;tðxtÞ
P

1� t� n
lk;tðxtÞ

ð27Þ

In the next step, the rules structure is simplified to

If Antecedentr Then ðD isHrÞ;

where Hr ¼ 1
cr

n o
is a singleton fuzzy set for factor cr ¼

PjSj
p¼1

�ypmrðSr;pÞ.
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Example 6. For both L5 and T1 we calculate decision class 1. It is correct in case of
T1, but wrong for L5. The values of Hr are 0.4283 and 0.4800 respectively. ■

5 Empirical Learning for FDS Model

In this section we compare and analyze the performance of several membership
functions and matching operators. We start from a standard solution used in the
introduction to fuzzy modeling, then we consider more complicated models. We
compute results for the following membership function: Linear, Quadratic, Gaussian,
and FCM. We concentrate on Minimum, Multiply and Implication as a matching
operators. The most valuable is comparing the results of all calculations. In the end of
this section we show some results of experimental research.

5.1 Membership Functions

The membership function makes possible the division of data into n intervals. It is a
way of discretization of the input data. Hence, we get the best result for continuous data
or for data with several discrete (nominal) values. If we have discrete or binary data
then results of the proposed model are not good enough.

The choice of membership function has a great influence on the quality of rules.
Although the quantity of rules is different, the quality of classification is comparable.

The most interesting membership function was generated by Fuzzy c-Means
(FCM) algorithm [1]. The results of experimental research with membership functions
have been summarized in Table 2.

Table 2. Membership functions

Function Formula Features

1 Linear
triangle

F1: Y = (X − xi+1)/
(xi − xi+1)

F2: Y = (X − xi)/
(xi+1 − xi)

The simplest,
The result are not so good;

2 Quadratic Y = 1 − (X − xi)
2/

(xi+1 − xi)
2

Still simply calculated function,
The result are better than in the case of

Linear function;
3 Gaussian

y ¼ e
� X�xi

xiþ 1�xi

� �2 Exponential function,
Using it leads in general to proper

conclusions especially in learn sample;
4 FCM FCM algorithm The complex algorithm – values of

function have to be previously
generated. In general proper
conclusion
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5.2 Matching Operators

It was shown in our experiments that a matching operator applied to data sample with
existing rules plays the very important role in the accuracy of diagnoses. It occurred as
early as the rules were generated. A matching operator influences the quality of the
generated rules. Of course, this quality has secondary means, but in general, the more
rules the better accuracy.

From the analysis of the results of experiments in Table 4, we can infer that the
most powerful operator is implication. This is not all the true, because Table 4 shows
the results only for one fixed threshold value. It is not optimal in all instances, espe-
cially in multiply operator. The change of the threshold value (e.g. to 0.25) gives
almost the same results as for implication operator. Anyway, the choice of the threshold
value is of minor importance here, but it can have influence on the result of the
receiving of rules. Of course, we cannot analyze the threshold value without keeping in
mind the features of the membership function and the number of intervals. The choice
of the threshold value will be subject of future works.

The results of the investigation of various matching operators are collected in
Table 3.

6 Experimental Studies

Some results of experimental research are shown in Table 4. We fixed here count of
membership functions on 6 and threshold value on 0.75. All data sets have been
divided into two parts: learning (training) data (about 2/3 of the entire data set) and
testing data (remaining 1/3). The learning data has been used to generate the rule set.
Testing data has been applied to test the produced rule set. To obtain reliable results,
we carried out the experiment several times.

That formulation does not show the most favorable case but it is allowed to see the
part of real results with using different methods for generalizing rules. These results can
be comparable.

Table 3. Matching operators

Name Formula Features

1 Minimum Max(0,min(x,y)) The simplest case
In many experiments the results are good

2 Multiply Max(0, x*y) It’s case of implication, with / = − 1.
The results are better than in the case
of Minimum operator. Important
setting of threshold value

3 Implication Max(0,(/+1)* (x + y−1)
− /*x*y)

Function seems to be complex. The best
results. Setting constant / - direction
for future research
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The methods of automatically generated decision rules that are described in this
paper have the best results on Iris data set. In a few points, reach a destination 100 % of
the decision accuracy. This set consists of all data as continuous values. In other cases,
the construction of the data discretization caused a little worse results. In spite of the
fact that in the case of Ulcers data set, for which over the half features was discrete, the
results on the learning data was nearly the same like in the case of Iris data.

Diabetes data set is a sample of testing proposed algorithms on discrete data. The
results of rules accuracy are not satisfactory. It has shown the case when the method of
generating and verifying decision rules ineffectual as only one.

Another observation is that, the smaller number of binary data in antecedent, then
the better accuracy of our rules. If the features have no binary data or if number of it is
strongly less, then others then our rules can be applicable. We can see that during
analyzing Breast Cancer Wisconsin and Dermatology data sets. In Echocardiogram
data set, when number of binary data is equal to three the results are worse.

In all the instances, intermediate reports were stored in disk data files. It was used to
compute results with the FCM algorithm. It also made possible to connect described
method with others.

In our research, the proper choice of threshold value gave us information if rule is
valuable or not. The importance of this value has been shown in the case of Multiply
operator. The result presented in Table 4 could suggest less “weight” of this operator,
but it is not true. If we change threshold value, we notice that it has almost the same
occurrence as more complied in calculations Implication operator. Implication is a
sample of a very interesting and powerful operator of fuzzy relation.

We compare the results of our research with standard decision trees algorithm [10].
For all data sets, we get better results using Gaussian function or FCM algorithm [1],
and in a few points of Quadratic function, we obtained also better accuracy.

Table 4. Experimental results

Linear Quadratic Gaussian FCM Decision Trees

Rules Learn Test Rules Learn Test Rules Learn Test Rules Learn Test Learn Test

Minimum
Iris 15 93.80 97.50 41 97.50 97.50 41 93.75 100.00 - - - 94.00 91.30
Ulcers 43 66.25 9.52 79 93.75 28.57 79 87.50 52.38 76 78.75 57.14 - -
Diabetes 0 0.00 0.00 58 94.29 37.84 23 87.14 56.76 9 47.14 24.32 - -
BCW 2 59.66 73.73 203 91.63 85.71 203 40.56 24.42 201 95.28 91.71 96.00 90.30
Derm. 0 0.00 0.00 244 100.00 86.89 244 100.00 50.82 241 100.00 73.77 94.00 87.50
EKG 1 2.27 5.56 44 100.00 38.89 44 100.00 66.67 43 100.00 72.22 76.00 59.00

Multiply

=
-1

Iris 0 0.00 0.00 18 95.00 97.50 19 95.00 100.00 - - -
Ulcers 0 0.00 0.00 2 35.00 2.38 2 70.00 2.38 74 65.00 54.76
Diabetes 0 0.00 0.00 35 82.86 29.73 25 80.00 54.05 9 47.14 24.32
BCW 2 59.66 73.73 30 81.33 79.72 33 95.06 97.24 17 60.30 82.95
Derm. 0 0.00 0.00 230 95.08 86.89 235 99.18 51.64 13 9.84 24.59
EKG 1 2.27 5.56 6 45.45 5.56 6 50.00 11.11 35 56.82 55.56

Implication

= 
   

-2
0

Iris 35 83.75 97.50 39 97.50 97.50 40 96.25 100.00 - - -
Ulcers 43 61.25 9.52 75 90.00 28.57 75 85.00 52.38 75 80.00 59.52
Diabetes 31 0.00 0.00 58 94.29 37.84 58 87.14 56.76 9 47.14 24.32
BCW 15 40.34 46.08 203 91.63 85.71 103 62.02 70.51 203 97.21 93.55
Derm. 0 0.00 0.00 233 99.18 86.89 243 99.59 50.82 200 95.90 90.16
EKG 22 70.45 0.00 41 100.00 38.89 43 100.00 66.67 39 100.00 77.78

α
α
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In Dermatology and Echocardiogram data sets, we removed records with missing
input features, because we concentrate only on complete data.

7 Conclusions

The study has focused on the use of Fuzzy Dempster-Shafer model for generating of
fuzzy decision rules. Fuzzy sets are useful in discretization of continuous attributes.
The approach is discussed in the concrete applications of two real medical data sets
(especially to problems of identification of diseases) and several well-known data sets
available on the Web. The results are used to classify objects. It has been found through
series of experiments that this approach outperforms the results of the C4.5 algorithm in
terms of higher classification accuracy.
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