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Abstract. Mutual Information method is a widely used method for esti-
mation of time delay value in the process of time delay embedding. It’s
designed for a univariate scalar time series. In the real systems often
many outputs of investigated system are available. In this case a mul-
tivariate time delay estimation method is necessary if one may require
to perform the uniform time delay embedding. The special case of mul-
tivariate data is a kinematic time series(e.g. quaternion time series or
Euler angles time series). The main goal of this paper is to provide a
method for this case: Mutual Information method’s extension for quater-
nion time series. The results are also compared with previosly presented
quaternion’s angle method. The method was tested on the real kinematic
data - the recordings of human gait.
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1 Introduction

The time delay embedding is heavily explored area of nonlinear time series analy-
sis and nonlinear dynamical systems areas. Usually the most common applica-
tion of this method is when we want to discover the dynamics of underlying
system from the univariate scalar time series created from the measurements
of one of the investigated system’s outputs. Taken’s Embedding Theorem [18]
implies, that one can reconstruct an equivalent dynamics from univariate time
series using it’s time delays. To carry out the embedding procedure, which should
result in the reconstructed attractor in the output, two parameters need to be
estimated: time delay and embedding dimension.

The time delay is a integer value describing which samples from the inves-
tigated time series we need to incorporate to time-lagged embedding vector -
reconstructing the underlying phase space. There are few approaches of esti-
mation of time delay value Td [9]. One group of methods is series correlation
approaches (autocorrelation, mutual information [8] or high order correlations
[2]). Second grop are approaches of phase space extension (fillfactor [5], waver-
ing product [4] or average displacement [17]). There are available also multiple
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
K. Saeed and W. Homenda (Eds.): CISIM 2016, LNCS 9842, pp. 453–461, 2016.
DOI: 10.1007/978-3-319-45378-1 40



454 M. Piórek

autocorrelation and non-bias multiple autocorrelation methods [11]. The embed-
ding dimension is an equivalent of the real underlying phase space dimension. It
could be estimated using the false nearest neighbors method [3] or it’s extension
- Cao’s method [7]. Another methods are also the saturation of system invariants
method [1] or neural network approaches [13].

The popularity of the univariate embedding may be caused by the fact, that
according to the embedding theorem, for recovering dynamics only a univariate
time series is needed. In fact, often many time series measured in the output of
the test process are available. Since in multivariate case more data is available, it
helps to establish more accurate embedding - in the sense of further predictions or
in the presence of data noise. However, it brings a new dilemma: which quantities
from multivariate time series to use and whether is better to use constant or
non-constant embedding parameters for all quantities selected to embedding
vector [6].

The problem of multivariate time series embedding can be seen in terms
of suitable conditioned embedding of the considered set of time series [19]. In
the related work there are two approaches of multivariate time series embed-
ding: Uniform embedding and Non-uniform embedding. The uniform embedding
scheme is more popular approach and assumes that embedding parameters: the
time delay and embedding dimension are selected a priori and separately for
each time series. The non-uniform embedding is based on the progressive selec-
tion of time delayed values from a set of candidate values(e.g. X, Y , Z) and
incorporation them to the embedding vector. In each step the most informative
time delayed variables are chosen and then added to the time delay vector. As a
selection criteria the mutual information between constructed embedding vector
and the future state of the system is used [14,19].

A particular case of multivariate time series is a rotational data time series.
There are three main parametrization of rotations: matrix of rotation, Euler
angles and Quaternions. Basing on this fact one may record and construct rota-
tional time series according to the one of the above parameterizations. In this
paper quaternion rotational time series is considered.

The main goal of this work is to propose time delay estimation method for
uniform time delay embedding of multivariate quaternion rotational data. The
proposed approach bases on mutual information approach and it’s re-designed
for quaternion kinematic time series. The presented method could be used in the
further time delay embedding and nonlinear analysis aimed to detect determinis-
tic chaos properties in the investigated data. The author would like to underline
that the considered method allows to estimate the time delay value staying in
quaternion domain, which should help to keep physical sense of the kinematic
data.

The paper is organized as following: in the second section the applicability of
mutual information method for quaternion data is discussed and proposed app-
roach is described. It also includes the information about investigated quaternion
time series and how K-Means algorithm is applied. The third section presents
the numerical results. The conclusions are presented in section four.
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2 Mutual Information Approach for Quaternions

Quaternions are computationally efficient parametrization of rotational data.
They are an extension of complex numbers defined as following:

q = [w, (x, y, z)] = w + ix + jy + kz (1)

where: w represents a real part and v = (x, y, z) is called a vector part (i, j and
k are equivalents of imaginary unit).

The details of Quaternions algebra widely used in the parametrization of
rotations is well described in the related work(e.g. [10]). In the scope of our
interests are unit quaternions which describe the rotation in 3D space:

‖q‖ = 1 (2)

where quaternion norm is defined by:

‖q‖ =
√

w2 + x2 + y2 + z2 (3)

We assume that the method is designed for the following quaternion time series
formed by unit quaternions as following:

Q(n) = (q1, q2, ..., qN ) = (w1 + ix1 + jy1 + kz1, ..., wN + ixN + jyN + kzN ) (4)

2.1 Mutual Information - Existing Approach

The mutual information is a measure which describes the general dependence of
two variables. The definition comes from Shannon’s information theory, which
gives the formalism of measuring information spreading. Frasser proposed to use
this approach in time delay estimation process [8].

Let’s assume that there are two nonlinear systems: A and B. The outputs
of these systems are denoted as a and b, while the values of these outputs are
represented by ai and bk. The mutual information factor describes how many
bits of bk could be predicted where ai is known.

IAB(ai, bk) = log2

(
PAB(ai, bk)

PA(ai)PB(bk)

)
, (5)

where PA(ai) is the probability that a = ai and PB(bk) is the probability that
b = bk and PAB(ai, bk) is the joint probability that a = ai and b = bk.

The average mutual information factor can be described by:

IAB(T ) =
∑

ai,bk

PAB(ai, bk)IAB(ai, bk). (6)

In order to use this method to assess the correlation between different samples
in the same time series, the Average mutual information factor is finally described
by the equation:

I(T ) =
∑N

n=1 P (S(n), S(n + T ))

log2

(
P (S(n),S(n+T ))

P (S(n))P (S(n+T ))

)
.

(7)
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Fraser and Swinney [8] propose that Tm where the first minimum of I(T )
occurs as a useful selection of time lag Td. This selection guarantees that the
measurements are somewhat independent, but not statistically independent. In
case of absence of the average mutual information clear minimum, this criterion
needs to be replaced by choosing Td as the time for which the average mutual
information reaches four-fifths of its initial value:

I(Td)
I(0)

≈ 4
5
. (8)

2.2 Mutual Information Extension for Quaternion Time Series

The average mutual information method for univariate time series consists of
2-dimensional adaptive histogram and that is the problem in it’s application to
multivariate(quaternion’s case). The empirical histogram is straightforward to
estimate for univariate time series, however for quaternion’s time series it’s not
trivial. Computation of multivariate histogram is exhaustive process and in the
result one may obtain the histogram empty in some places.

In the current approach instead of multidimensional histogram for quaternions
we propose here to use histogram based on clusters. The whole quaternion time
series is initially clustered into k-groups (where k is defined a priori). The obtained
clusters are treated as an equivalent of histogram bins. Further in empirical his-
togram estimation, instead of computing the probability of belonging to the his-
togram’s bins, the probability of belonging to the clusters is being computed.

Algorithm 1. k Means algorithm
1: procedure k Means
2: X ← Instance set
3: k ← Number of clusters
4: C ← Initialize clusters randomly
5: i ← 0Number of iterations
6: while Ci! = Ci+1 do
7: Assign instances to the closest cluster center
8: Update cluster centers based on the assignment
9: end while

10: end procedure

Data clustering as a part of machine learning and data sciences is an actively
investigated field of science. There are many available clustering techniques. The
review of clustering methods is presented in the related work e.g. [16]. In the
presented approach K-means clustering algorithm was selected as a the simplest
and commonly used method. The main goal of this work is not to examine
the efficiency of clustering approaches but to provide the mutual information
estimation technique used clusters based histogram. In the oder hand, the author
see the underlying potential in investigation of the impact of clustering method
selection on the general algorithm’s performance.
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The K-means algorithm was described by MacQueen [12]. It partitions the
data into K clusters (C1, C2, ..., Ck), represented by their centers. The center
of each cluster, until converge, is calculated as the mean of all the samples
belonging to that cluster. Initially the centers are selected randomly. Then, in
each iteration each sample is assigned to the closest cluster center according to
the Euclidean distance. Then the centers are re-calculated. The whole procedure
is repeated until the convergence criteria is fulfilled (e.g. there is no relocation
of the centers in new iteration) [16]. The whole procedure is presented in the
pseudo-code 1.

Algorithm 2. Mutual information algorithm for quaternion time series
1: procedure MutualInforamtionQuat(QVect,T) � Mutual information for

QVec-quaternion vector and T -time delays vector
2: k ← Number of clusters
3: n ← length(QVec)
4: [labels, centroids] ← KMeans(QVect,k)
5: for each t in T do
6: labelsQ ← labels(1:n-t)
7: labelsQD ← labels(1+t:n)
8: mI(t) ← 0
9: for i=1:k do

10: for j=1:k do
11: c1 ← centroids(i)
12: c2 ← centroids(k)
13: jointP ← find(c1==labelsQ and c2==labelsQD)
14: jointP ← length(jointP)
15: c1P ← find(c1==labelsQ)
16: c2P ← find(c2==labelsQD)
17: if jointP > 0 then
18: jointP ← jointP/(n-t)
19: c1P ← length(c1P)/(n-t)
20: c2P ← length(c2P)/(n-t)
21: mI(t) ← mI(t)+ jointP*log2(jointP/(c1P*c2P))
22: end if
23: end for
24: end for
25: end for
26: end procedure

Finally, the mutual information algorithm for a quaternion time series is
described by the pseudo code 2. Initially it treats quaternion time series as a
4-dimensional time series and partitions it into K-clusters. The next step is an
estimation of probability of belonging samples to the each cluster which is an
equivalent of estimation of probability of belonging samples to histogram bins
in a standard version of the algorithm.

The author sees the potential advance in the method using an algorithm of
clustering which partitions quaternion time series staying in quaternion domain.
It will be the subject of further research. It is also worth to investigate how the
number of the clusters impacts the performance of the algorithm.
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3 Numerical Results

The method was tested on live kinematic data recorded in the Human Motion
Laboratory (HML) of the Polish-Japanese Institute of Information Technology.
The recordings were performed using the Vicon Motion Kinematics Acquisition
and Analysis System equipped with 10 Near InfraRed cameras. The cameras
were attached to a suit which was worn by a subject.
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Fig. 1. Mutual information dependency for the patient A

Gait sequences were recorded in Euler angles and then converted to quater-
nions. Six kinds of time series were recorded - movements of femurs, tibias and
feet (left and right). The method was tested on the data recorded from the
treadmill walking of two healthy patients. The number of clusters in K-means
algorithm was set to 7. The designed method was additionally compared with
the quaternion angle method presented by the author in the same conference
last year [15]. The results for the designed method are presented using solid line,
where the results performed using quaternion angle method are presented using
dashed line. Constantly the first local minima of the mutual information func-
tions(time delay selection criteria) was marked by vertical lines. All estimated
time delays are gathered in the Table 1.
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Fig. 2. Mutual information dependency for the patient B

Table 1. Time delay estimation comparison for subject A and subject B

Body part Td MI-angle(Patient A) Td MI-quat(Patient A) Td MI-angle(Patient B)Td MI-quat(Patient B)

Left femur 25 28 13 6

Right femur 24 18 11 5

Left foot 17 17 14 8

Right foot 30 32 13 8

Left tibia 38 26 24 22

Right tibia 25 25 24 22

4 Conclusion

The main goal of this article was to present a time delay estimation method for
a quaternion time series. The approach extends the existing mutual information
approach for quaternion time series by incorporation of K-means clustering for
multivariate data instead of the empirical histogram. The method might be a first
step to perform time delay embedding staying only in the quaternion domain,
which will be a field of author’s further research.

From visual inspection one can see that the results from the proposed
method are in the same range as the results coming from previously investigated
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quaternion angle method. It is worth to underline that the differences in the
result are expected, since quaternion angle method bases only on a part of quater-
nion’s information where the new method utilize the whole information carried
by a quaternion.

The field of further interests should be also the impact of clustering parame-
ters on the methods performance and the analysis of the quality of embedding
using the proposed approach.
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